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Abstract

Today’s companies, including Google, Facebook (Meta), Instagram, and Twitter, depend
heavily on REST-based services. In this type of environment, these services are highly ex-
posed to unexpected scenarios, which may lead to service failures. Robustness, therefore,
is a crucial feature of REST services.

Robustness is the degree to which a particular system or component can operate correctly
in the presence of invalid input or stressful conditions. Due to these services’ increasing
use, interconnection, and complexity, acquiring assurances concerning their robustness
has become an essential part of their development process. Even more so, when these
services support critical systems, where a failure can have significant consequences for
the business or even for people’s lives.

Unlike SOAP services, which have been widely tested for robustness, REST services have
not undergone the same scrutiny. Despite its extensive use, little research has been done
on the topic. As a result, only a few approaches for black-box testing of REST services
have emerged, and all face the problem of generating high-quality workloads (e.g., inputs
that allow good code coverage), which is an open and difficult challenge, especially from
a black-box perspective.

In this dissertation, we present an evolutionary mechanism called EvoReFuzz for robust-
ness testing of REST services. Although several approaches and software testing tools
have been studied and applied to a wide range of problems, REST services need new
practices in the intelligent generation of quality inputs and the improvement of the ex-
haustive process of verification and validation. Also, the potential of using evolutionary
computation for this purpose has been mostly disregarded. Therefore, we fill in this gap
by proposing EvoReFuzz, a tool that uses an evolutionary algorithm to automatically gen-
erate valid and invalid inputs solely based on the OpenAPI interface description and the
observed external behavior of the service.

We used EvoReFuzz to evaluate 12 different services, 11 public real-world APIs, and one
private. The experimental results on the 11 real-world RESTful APIs demonstrate the
effectiveness and efficiency of EvoReFuzz, where we were able to disclose 28 unique ro-
bustness problems in the GitLab and Microsoft Bing Maps services, such as Run Time er-
rors. These results depict that REST services are being deployed online, holding software
bugs. In addition, the lack of parameter validation is one of the most common implemen-
tation errors, and flawed practices while specifying the OpenAPI files are widespread.
Private services are also included in this group, where we could find four different bugs
and bad implementation practices in an implemented API for a framework. Moreover, we
made a code coverage comparison between EvoReFuzz and the state-of-the-art testing
tool EvoMaster, in which both approaches had a relatively close performance.

Keywords

Software testing, robustness evaluation, RESTful APIs, Evolutionary Testing, Genetic
algorithms

vii





Resumo

As empresas de atualmente, incluindo Google, Facebook (Meta), Instagram e Twitter, de-
pendem fortemente de serviços baseados em REST. Consequentemente, os serviços web,
em particular, estão constantemente expostos a cenários inesperados, que podem ou não
levar a falhas no serviço. Fazendo com que a Robustez seja, portanto, uma propriedade
essencial dos serviços REST.

Robustez é o grau em que um determinado sistema ou componente pode operar correta-
mente na presença de entradas inválidas ou em condições de stress. Devido ao crescente
uso, interconexão e complexidade desses serviços, adquirir garantias sobre a sua robustez
tornou-se uma parte importante do seu processo de desenvolvimento. Sendo particular-
mente essencial, quando esses serviços suportam sistemas críticos, onde uma falha pode
ter consequências significativas para o negócio ou mesmo para a vida das pessoas.

Enquanto os serviços SOAP, que foram amplamente testados quanto à sua robustez, os
serviços REST não passaram pelo mesmo escrutínio. Apesar de seu alargado uso, poucas
pesquisas foram feitas sobre o tema. Como resultado, apenas algumas abordagens para
testes de caixa-preta de serviços REST surgiram e todas enfrentam o problema de gerar
cargas de trabalho de alta qualidade (por exemplo, entradas que permitem uma boa cober-
tura de código), o que é um desafio aberto e difícil, especialmente do ponto de vista da
caixa-preta.

Nesta dissertação, apresentamos um mecanismo evolutivo chamado EvoReFuzz para testes
de robustez de serviços REST. Embora diversas abordagens tenham sido estudadas e apli-
cadas a uma ampla gama de problemas, os serviços REST necessitam de novas práticas
na geração inteligente de entradas de qualidade e no aprimoramento do processo exaus-
tivo de verificação e validação. No entanto, o potencial do uso da computação evolutiva
para este propósito tem sido em grande parte desconsiderado. Portanto, preenchemos esta
lacuna ao propor o EvoReFuzz, uma ferramenta que utiliza um algoritmo evolucionário
para gerar automaticamente entradas válidas e inválidas apenas com base na descrição da
interface OpenAPI e no comportamento externo observado do serviço.

Usamos o EvoReFuzz para avaliar 12 serviços diferentes, 11 APIs públicas do mundo
real e uma privada. Os resultados experimentais nas APIs públicas demonstram a eficácia
e eficiência do EvoReFuzz, onde foram descobertos 28 problemas únicos de robustez nos
serviços GitLab e Microsoft Bing Maps. Estes resultados exibem que os serviços REST
estão a ser publicados online, com bugs presentes no software. Além disso, os serviços
privados também estão incluídos, onde encontramos 4 bugs únicos. Assim, a falta de
validação dos parâmetros de entrada é um dos erros de implementação mais comuns,
como as más práticas ao descrever as interfaces dos serviços. Em adição, fizemos uma
comparação de cobertura de código entre o EvoReFuzz e a ferramenta de teste EvoMaster,
na qual ambas as abordagens tiveram um desempenho relativamente próximo.

Palavras-Chave

Teste de Software, avaliação de robustez, RESTful APIs, Teste Evolutivo, Algortimos genéticos
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Chapter 1

Introduction

Most of the services available today depend on software systems. These systems must
be robust to avoid failures and thus prevent unexpected conditions. Web services are
particularly susceptible to unexpected scenarios due to the fact that they are often exposed
to abnormal and malicious inputs which, if left unchecked and unaddressed, can lead to
problems such as data loss and disclosure of private information [1].

The majority of web services available today are REpresentational State Transfer (REST)
services [2] which follow the REST architecture [3], and large technology companies such
as Facebook, Instagram, Twitter, or Google, have their products publicly deployed via
REST services. The resources available through REST (i.e., RESTful service, REST API)
are identified by Uniform Resource Identifiers (URI) and can be manipulated with actions
based on the semantics of the predefined HTTP verbs, such as GET, POST, DELETE, and
PUT [4, 5]. Usually, REST rely solely on the Hypertext Transfer Protocol (HTTP) for
message transfer communication. Additionally, it has have a relatively loose architectural
style where the presence of an interface description document (e.g., a WSDL document)
is not mandatory. Consequently, there is no standard way to describe an interface of a
RESTful API, but an OpenAPI specification [6] is among the most popular.

Given the lack of formal description and the common public access, many potential inputs
can be sent to these services. As a result, if such inputs are not validated, they can activate
software faults, which can cause the system to go into an erroneous state, which can lead
to a failure [7]. The latter is something that is evident at the system’s boundaries and
indicates a deviation from the expected behavior. Furthermore, there should be a concern
for preventing server crashes and incorrect responses. Even more so if the service in
question is a business or mission critical.

Unlike SOAP services, which have been widely tested for robustness, REST services have
not been subjected to the same examination [1]. Despite its widespread use, there is little
literature on the topic. As a result, a small number of automated tools for software testing
of REST services have been developed, and most of them use dictionaries or random
inputs for data generation [8–13]. It is argued that software engineering is ideal for the
application of metaheuristic search techniques where the search-based technique must
outperform the random technique [14]. Furthermore, several observations support the
idea that the random technique may not be suitable for industrial applications with huge
input spaces [15, 16].
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Chapter 1

To test REST services, we followed a black-box approach since it only needs a description
of the system interface and does not require knowledge of the artifacts or the code itself. In
this case, and among other aspects, designing good quality tests (e.g., tests that have high
code coverage) is much more challenging, but, at the same time, designing and executing
tests may be more straightforward as the whole system is viewed from an external point
(many times, the tests represent user operations, which tend to be accessible to model).

In many cases, black-box is actually a mandatory option to use (e.g., closed-source sys-
tems, participants in a service mesh provided by external entities, tests performed for spe-
cific certification purposes). Additionally, it allows the generalization of testing different
REST services that are heterogeneous in an automated way without extensive and chal-
lenging incorporation into the system’s code. Therefore, any tester may use our approach
to test any RESTful API with an interface specification file (e.g., OpenAPI [6]).

Regarding the related work, we started by analyzing different Evolutionary Algorithms
and their components, such as the fitness function, variation operators, parent selection,
and population. Further, we present the related work for software testing, focusing on
state-of-the-art tools for testing RESTful APIs. After this analysis, we use the collected
knowledge to highlight the lack of academic support for solutions to evaluate the robust-
ness of RESTful APIs using evolutionary algorithms. We seek to unravel this problem by
proposing a novel approach.

In this thesis, we present an evolutionary approach for testing the robustness of REST
services that takes advantage of the components that compose an Evolutionary Algorithm
to generate valid requests in the form of a workload and to generate invalid ones in the
form of faultload (i.e., empty values, boundary values, invalid strings) that will be sent to
the service to test its robustness. Our approach, named EvoReFuzz, is capable of produc-
ing these requests in an automated way assisted by a Genetic Algorithm, which operates
as a client application. The Genetic Algorithm evaluates its individuals by analyzing the
returned responses from the service. With such information, our evolutionary approach
generates high-quality solutions to optimize the search problems, which is, in our case,
producing valid (i.e., requests that originate a response with status code 200) and invalid
requests (i.e., requests that originate a response with status code 500). This methodology
aims to produce high-quality input to obtain an acceptable code coverage of the system
under testing (SUT).

To demonstrate the usefulness and usability of our approach in finding robustness prob-
lems, we then performed tests over a set of 12 services, where 11 are real-world services
from GitLab [17] and Microsoft Bing Maps [18], and one private service in which we
partner with a Masters’s student to evaluate the API developed for the framework’s dis-
sertation. We conducted over 500,000 tests, in which we discovered 28 unique bugs for
the real-world services and four for the private service. This information is essential to
the testers and developers. It also helps find bad practices over the conventional RESTful
APIs practices and the lack of input validation, which is very common while developing
complex systems. Moreover, we performed an experiment to compare the code coverage
between our approach, EvoReFuzz, and the state-of-the-art tool EvoMaster [19] over six
different systems with different levels of complexity, functions, and code logic.

The main contributions of this dissertation are the following:
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• The definition of an Evolutionary approach for testing the robustness of REST ser-
vices using the components of a Genetic Algorithm.

• A robustness framework, named EvoReFuzz, using our Evolutionary approach avail-
able in [20] to be used by testers and developers.

• The practical application of EvoReFuzz to a set of 11 real-world RESTful APIs and
one private, which demonstrates the capability of producing robustness problems in
these services and finding lousy programming practices in the service itself as well
as in the specification file.

• A practical code coverage comparison between EvoReFuzz and the state-of-the-art
tool EvoMaster [19, 21], to a set of six REST services.

The outcomes of this dissertation incorporate a paper submission, which is under evalua-
tion at the time of writing. We submit to PRDC 2022 (Pacific Rim International Sympo-
sium on Dependable Computing) reporting on “A Framework for Evolutionary Black-box
Testing of REST Services”. Moreover, we are also currently writing a second paper with
the full description of our approach and its experimental results to submit to GECCO
2023 (Genetic and Evolutionary Computation Conference).

The remainder of this document is organized as follows. Chapter 2 provides a context
background on concepts addressing the REST architecture, software testing, and Evolu-
tionary algorithms. In chapter 3, we begin by exploring the different Evolutionary Al-
gorithms applied in the literature with a thorough analysis, particularly in Genetic algo-
rithms. Furthermore, a study of relevant work in software testing was undertaken, with
particular attention paid to tools for testing REST services as well as various applications
that could benefit from the use of evolutionary algorithms. Chapter 4 describes our ap-
proach for testing the robustness of REST services using an Evolutionary Algorithm, its
architecture, and the correlated components that comprise an EA. Chapter 5 presents the
experimental setup conducted in our work, describing each service and the experimental
environment. Following up is Chapter 6 showing the results obtained from the conducted
experiences. Last but not least, chapter 7 concludes this intermediate report by describing
the threads to validity and future work.
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Chapter 2

Background

In this chapter, we provide the background on the fundamental concepts related to the
work’s main subjects, specifically, REST services and software testing. In Section 2.2,
we describe the REST architectural and show a simple example of a REST service archi-
tecture and its components. Finally, in Section 2.1, we go over the main characteristics of
software testing as well as methodologies like white-box and black-box testing.

2.1 Software Testing

As described by Myers et al. [22], software testing is a process, or a series of processes,
designed to make sure computer code behaves as designed and that it does not do anything
unintended. As so, software should be predictable and consistent, presenting no surprises
to users. The purpose of software testing should be considered as a destructive process
of attempting to locate program faults (i.e., the root cause of a problem, also known as
a bug or a defect). Therefore an appropriate definition for testing application can be
the following: “Testing is the process of executing a program with the intent of finding
errors.” [22]. It is important to keep in mind that software testing is not meant to prove
the absence of code errors; rather, it is meant to establish their presence. Black-box
testing (also known as datadriven or input/output-driven testing) and white-box (or logic-
driven) testing are two of the most prevalent testing procedures, these two methods are
categorized according to visibility [22]. It is important to keep in mind that there’s another
intermediate level known as grey-box testing [23], which is practiced by software testers
less frequently.

The degree to which a testing activity accounts for the logic and internal structure of
the system or component under test (SUT) is referred to as visibility in software testing.
White-box testing refers to scenarios in which testers, who design test cases, have full
visibility of the entity (i.e., code) under test and reflect that information in the test cases
they develop [22] (e.g., by creating test cases that subject specific code paths of the func-
tions under test to such test). In Figure 2.1, we demonstrate an example of white-box
testing with a constructed control flow graph, which is used in the control flow testing
technique as we further explain.

There are considerable advantages of white-box testing [24]. For instance, it reveals
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Known Inputs Known Outputs

Application under test

Figure 2.1: Example of white-box testing, Control Flow Testing technique

an error in hidden code by removing extra lines of code, side effects are beneficial, and
maximum coverage is attained during test scenario writing. However, there are also dis-
advantages. It is costly as it requires a skilled tester to perform it, and many paths will
remain untested as it is challenging to look into every nook and corner to find hidden
errors. Moreover, some of the codes omitted in the code could be missed out.

Regarding white box testing techniques, some important types are briefly described below
[24]:

• Control Flow Testing: It is a structural testing strategy that uses the program control
flow as a model control flow and favours more but simpler paths over fewer but
complicated path.

• Branch Testing: BT has the objective to test every option (true or false) on every
control statement which also includes compound decision.

• Basis Path Testing: It allows the test case designer to produce a logical complex-
ity measure of procedural design and then uses this measure as an approach for
outlining a basic set of execution paths

• Data Flow Testing: In this type of testing the control flow graph is annoted with the
information about how the program variables are define and used.

• Loop Testing: It exclusively focuses on the validity of loop construct.

The lack of visibility about the SUT, on the other hand, is referred to as black-box testing,
in which the testers are uninformed of the internal structure. Test cases are mostly deter-
mined by the availability specifications and interface descriptions, as well as the tester’s
additional system expertise, about the context. The technique referred as Equivalence
Partitioning, splits the value ranges of inputs to the SUT into logical classes (e.g., positive
and negative numbers can be classified into two classes), ensuring a good coverage of
the existing input value ranges provided in the system interface. Testers can choose at
least one value from each of the partitioned input classes rather than selecting completely
random inputs (which is not really ideal for large value ranges). The output of the SUT is
then compared to the specification to verify that it is correct. To contextualize, in Figure
2.2, we show an example of the Boundary Value Analysis black-box testing technique.
It targets the testing at boundaries or where the extreme boundary values are chosen. It
includes minimum, maximum, just inside/outside boundaries, error values, and typical
values.
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Figure 2.2: Example of black-box testing, Boundary Value Analysis technique

The advantages of black-box testing are the following [25]: efficient for large code seg-
ments, tester perception is straightforward, user’s perspective is separated from the devel-
opers perspective (programmer and tester are independent of each other), and quicker test
case development. On the other hand, the disadvantages are that only a selected num-
ber of test scenarios are actually performed. As a result, there is only limited coverage.
Moreover, without precise specifications, test cases are difficult to design.

Concerning types of black box testing techniques, the following are essential ones, which
we pithily described [25]:

• Equivalence Partitioning: It can reduce the number of test cases by dividing the
input data of a software unit into a partition of data from which test cases can be
derived.

• Boundary Value Analysis: It focuses more on testing at boundaries or where the
extreme boundary values are chosen. It includes minimum, maximum, just insid-
e/outside boundaries, error values, and typical values.

• Fuzzing: Fuzz testing is used for finding implementation bugs, using malformed/semi-
malformed data injection in an automated or semi-automated session.

• Cause-Effect Graph: It is a testing technique that begins by creating a graph and
establishing the relation between the effect and its causes. Identity, negation, logic
OR, and logic AND are the four elemental symbols that express the interdepen-
dency between cause and effect.

• Orthogonal Array Testing: OAT can be applied to problems in which the input
domain is relatively small but too large to accommodate exhaustive testing.

• All Pair Testing: In all pair testing techniques, test cases are designed to execute all
possible discrete combinations of each pair of input parameters. Its main objective
is to have a set of test cases that covers all the pairs.

7
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• State Transition Testing: This type of testing helps test state machines and naviga-
tion of graphical user interfaces.

Grey-box testing [23], also referred to as gray box testing, is a software testing approach
used to evaluate a software product or application while only knowing a portion of the
application’s underlying structure. Grey box testing looks for and uncovers defects caused
by improper application usage or code structure. It is a software testing method that
combines white-box testing and black-box testing. While the internal structure (i.e., code)
is known in white-box testing and unknown in black-box testing, the internal structure is
partially acknowledged in grey-box testing.

Grey-box testing has a few advantages as it provides combined benefits of white box and
black box testing techniques [26]. For instance, the tester relies on interface definition
and functional specification rather than source code. The tester can design excellent test
scenarios. The test is done from the user’s point of view rather than the designer’s point
of view. Moreover, it creates an intelligent test authoring and unbiased testing. Whereas,
for its disadvantages, the test coverage is limited as access to source code is unavailable,
and it is challenging to associate defect identification in distributed applications. More-
over, many program paths remain untested, and the tests can be redundant if the software
designer has already conducted a test case.

To summarize and accordingly with Myers et al. [22], the following are important princi-
ples of testing:

• Testing is the process of executing a program with the goal of identifying errors.

• Testing is more effective when not performed by the developer(s).

• A good test case is one that has a high chance of detecting an error that has yet to
be discovered.

• A successful test case is one that uncovers a previously unknown error.

• Testing success requires a thorough definition of both desired output and input.

• Testing success includes a thorough examination of test results.

2.1.1 Fuzz testing

The first mention of fuzzing was seen in the research in 1990 when Miller et al. [27]
created a tool named “fuzz”, in which random input strings were generated to perform
their reliability tests. The interest in fuzzing has been growing during the past few years
when its potential has been enhanced, and it is nevertheless a relatively new field of re-
search. The initial idea of fuzz testing is to create semi-valid test data either by mutating
valid data or generating data with specific rules [28]. Fuzzers that alter existing test cases
to create new ones are called mutation-based fuzzers. In contrast, the fuzzers that create
the test cases are called generation-based fuzzers. Both generation and mutation-based
fuzzers have to fuzz the current test cases, either randomly or with given pre-defined rules
[29].
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Regarding the black-box Fuzz testing [30, 31], it is a software testing technique that
consists in finding implementation bugs using malformed/semi-malformed data injection
in an automated fashion. The application is then checked for errors like crashes, failed
in-built code assertions, or possible memory leaks. Fuzzers are typically used to evaluate
programs that accept structured inputs. This structure separates valid input from invalid
input and is provided, for example, in a file format. Effective fuzzers provide semi-valid
inputs that are "valid enough" to trigger unexpected behaviors deeper in the program but
are "invalid enough" to disclose cases that have not been appropriately addressed.

2.1.2 Robustness testing

The act of producing faulty functioning by triggering design or programming errors within
a particular system (i.e., robustness failure) [32] is known as robustness testing, which
is deeply linked to reliability testing. Limit situations (e.g., out-of-bounds values) or
improper inputs are typically sent into a system’s interface throughout robustness testing.
The system’s robustness is then assessed using the ratio between the number of test cases
that disclose robustness faults and the total number of test cases performed. A system is
said to be resilient if it retains normal operational behaviour as a result of external failures
[33].

In other words, when the subject of robustness in software testing raises, it usually in-
dicates that the system, whether it is already in operation or still being developed, is
functioning normally. Enhancing dependability and identifying unforeseen circumstances
through data that simulates extreme environmental conditions can support establishing
whether a system is reliable enough to perform as expected. It is not about those ideal-
ized situations where everything works without a problem. To determine what the other
tests are missing, we do robustness testing. The goal is to develop test environments for
evaluating the robustness of software systems. Furthermore, testing robustness is more
focused than dependability benchmarking.

Laranjeiro et al. [1] conducted a systematic review on Software Robustness Assessment in
which the authors analyzed 145 papers. They reached the conclusion that the most popular
techniques for robustness testing can be classified into two categories: fault injection,
which was included in about three-quarters of the works, and model-based techniques in
the other category. The authors also discovered fuzzing methods for assessing system
properties related to robustness.

Looking at the types of fault used in the works, Laranjeiro et al. [1] identified that invalid
inputs overwhelm the distribution, used in more than half of the works, and followed up
by random and boundary inputs. In fewer occurrences, there were also bit-level faults,
timing faults, MACD operations, and invalid outputs.

2.2 REST architecture

The REpresentational State Transfer (REST) architecture was introduced in 2000, by
Thomas Fielding [3]. In simple words, the available resources of the services are ex-
posed accordingly to the REST principles and the REST interfaces rely solely on Uniform
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Resource Identifiers (URI) for resource identification and interaction, and usually on the
Hypertext Transfer Protocol (HTTP) for message transfer communication. A REST ser-
vice URI only provides the location and name of the resource, which serves as a unique
resource identifier. These resources can then be manipulated with actions based on the
semantics of the predefined HTTP verbs [4, 5], such as GET, POST, DELETE, and PUT,
these verbs also known as methods are mapped to CRUD operations (Table 2.1) and are
used to define the type of operation that should be performed. During the handling of
an HTTP request, the API might need to read or write data from or to a database and
communicate with other web services. A web service (i.e., REST or RESTful service)
using REST should follow some specific guidelines [3, 4]. The architecture should be
client-server by separating the user interface concerns from the data storage concerns,
and communications between client and server should be stateless (i.e., the server do not
store the client state between requests). Also, the responses must be defined as cacheable
or non-cacheable (i.e., If the same request is processed multiple times and the response
is equal every time, then the server can store it in the cache to fulfill future requests),
for scalability purposes. The requests and responses must be self-descriptive, i.e., they
should hold enough information to describe how to process them. In addition the server
responses must provide links to related and available resources. Lastly, requesting a new
resource puts the client in a new state, where server responses must provide links to re-
lated and available resources following (Hypermedia As The Engine Of Application State
principle).

Table 2.1: CRUD operations to HTTP methods

CRUD operations HTTP methods
CREATE PUT/POST

READ GET
UPDATE PUT/PATCH
DELETE DELETE

According to the HTTP methods, a resource can be retrieved using the method GET. PUT
and POST methods should, on the other hand, be used to create a resource. There are,
however, differences between the two. The PUT method is idempotent, which means that
executing the same request several times will result in the same output (response) as if
just one was performed, whereas the POST method will result in different outputs (re-
sponses)if multiple requests are made, each one equal to the next. Therefore, PUT should
be used when the client decides or knows the URI for the new resource. Alternatively,
the POST method should be used when the server assigns the URI. The PUT and PATCH
methods are used to update a resource. The difference between these two lies in the fact
that the PUT updates the entire resource, whereas PATCH only makes partial modifica-
tions. In other words, if a resource consists of two parameters with the names param1 and
param2, then to update the value of param1 with the PUT method, it will be necessary to
specify both values of the two parameters (param1 and param2). While for the method
PATCH, it will only be necessary to specify the value of the parameter to be updated, in
this case, param1. Finally, the DELETE method removes a resource. Over time, some
methods were introduced, such as the PATCH itself, HEAD, CONNECT, and OPTIONS,
but usually the main usage is given to the methods PUT, POST, GET, and DELETE.

Each pair of a URI and an HTTP method in a REST service is referred to as an operation.
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Optionally, parameters and a payload may be required for an operation. HTTP headers or
the URI itself can be used to define operation parameters. Path parameters are included in
URI parameters (i.e., /api/123 is a generic example as a result of /api/<variable>),
and query string parameters (i.e., defined after the ? and at the end of the URI separated
with a &, like so /api/car?type=suv&color=red). The operation’s payload is sent in
the HTTP request body, and most REST services adopt JSON objects as payloads, al-
though alternative formats, such as XML, plain text, and even file formats, are frequently
accepted as well.

Untitled 1

openapi: '3.0.0' 
info: 
  title: Example of an OpenAPI 
  description: API description 
  version: 1.0.0 
servers: 
  - url: http://localhost:8080/Example/API 
paths:  
  /users: 
    post:  
      summary: Creates new user 
      operationId: create_User 
      requestBody: 
        description: User information input in json 
        content: 
          application/json: 
            schema: 
              required: 
                - firstName 
                - lastName 
                - password 
              properties: 
                firstName: 
                  type: string 
                  minLength: 1 
                  maxLength: 20 
                lastName: 
                  type: string 
                  minLength: 1 
                  maxLength: 20 
                password: 
                  type: string 
                  format: password 
                  minLength: 8 
                  maxLength: 50 
      responses: 
        '200': 
          description: 'OK' 
    '400': 
     description: 'Malformed request, incorrect JSON structure'

Figure 2.3: An example of OpenAPI specification.

Every HTTP request is followed by a response, which contains a status code as well as
the content (if any). The status code indicates whether a specific HTTP request has been
successfully completed and categorizes the responses in five classes [34]:

1. Informational responses (100–199)

2. Successful responses (200–299)
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3. Redirection messages (300–399)

4. Client error responses (400–499)

5. Server error responses (500–599)

The interface of a REST service (i.e., API) must be documented so that developers can
design suitable client applications. API specifications are now available in a variety of
formats, the most extensively used being the OpenAPI specification (previously known as
Swagger) [6]. Figure 2.3 demonstrates a simple example of an OpenAPI specification file
formatted in YAML [35]. Here, the paths field describes a list of resources available (i.e.,
API endpoints, operations, URIs), each corresponding to a set of HTTP methods that can
be performed (e.g., the POST method is supported for the resource /users).

For each HTTP method, the format of input and output parameters are described in the pa-
rameters (i.e., properties for a request body) and responses fields (e.g., the input-parameter
password should take a string value of format password; it is required, and should be sent
in the request body). For example, for a 200 OK (i.e., success) response, one may define
the HTTP response payload, whereas a different payload could be returned for an error
response (e.g., 500 Internal Server Error). As a result, developers can verify that the ser-
vice’s implementation and specification agree on each response. Regarding the example
of Figure 2.3, a user can be created with a first name, last name, and password. There are
also constraints concerning the size of each one of these parameters (e.g., string max and
min length) that will be sent in a JavaScript Object Notation body, also known as JSON.

In Figure 2.4 is represented a general architecture of a REST web service and how the
communication between the client-server is made. An HTTP request initiated by a client
application must at least include the URI and method for a valid resource in the server.
The method is mapped with the operation performed on that resource by the server (e.g.,
GET for retrieving). Both parameters and payloads are optional and vary depending on
the API operation. Generally, REST frameworks return an HTTP response with a generic
error message when malformed HTTP requests are made (i.e., when they do not follow
the HTTP specification [36]).

Client

HTTP request
(GET, PUT,

POST, DELETE)

Server

HTTP Connector

REST Framework

ServiceHTTP response

Figure 2.4: General architecture of a REST web service

In any case, if the HTTP request is well-formed, it will be passed to the REST framework
component. As a result, the request’s body will be parsed so that the server can determine
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which operation the user is requesting. If, for example, the provided URI does not match
the URI of the server resource (e.g., sending a request with PUT method on a resource for
which the server only supports PATCH) or there are security requirements that the client
has not checked, the REST framework halt processing the request and notifies the client
with the suitable error message.

If the targeted API operation requires parameters or a payload, this component will check
their existence, extract them, and, in the case of media type-formatted payloads (e.g., a
JSON object), cautiously convert the contents of the HTTP request body into the appro-
priate format. The server will again provide an error response to the client if the payload
is faulty.

When the required API action is found, the Service component’s corresponding func-
tion (i.e., the one which performs the API operation’s logic) is invoked, and the HTTP
request’s inputs are supplied to it. Calls to external systems may be made by the ser-
vice. The REST Framework returns the result of the called function’s execution to the
caller component, which may encapsulate it in a JSON object, for example. The re-
quired response elements are returned to the HTTP Connector, which encapsulates these
in a suitable HTTP response object, serializes it into a sequence of bytes, and sends it to
the calling client application over the Internet, completing one effective request-response
communication process.

2.3 SOAP vs REST

In this section, we take a brief comparison between SOAP and REST services. We start
by describing the main aspects of a SOAP service and then identify the main differences
between SOAP and REST web services.

SOAP [37] is a uniform protocol and was first designed to allow communication be-
tween programs created in different programming languages and on multiple platforms.
It has built-in restrictions that increase its complexity and overhead since it is a protocol,
which causes longer page load times. However, these standards have built-in compliances
that make them more advantageous in business circumstances. Security, atomicity, con-
sistency, isolation, and durability (ACID), a collection of characteristics that guarantee
trustworthy database transactions, are included in the built-in compliance requirements.
Figure 2.5 demonstrates a SOAP-based Web services architecture.

Service
Consumor

Service
Provider

UUDI 

Service
Registry

SOAP messages

Publish WSDL
service description

Find WSDL service
description

Figure 2.5: SOAP-based Web services architecture
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SOAP relies on the WSDL [38], or Web Service Description Language, which is an XML-
based definition language. It’s used for describing the functionality of a SOAP-based web
service. In other words, it describes the service interface (e.g., elements, attributes, data
types). A WSDL file may be considered a contract between the provider and the consumer
of such service.

Table 2.2: SOAP vs REST [3, 39, 40]

Property SOAP REST

Nature

It is a protocol and was designed
with a specification. It includes a
WSDL file that has the required information
on what the web service does, along with the
location of the web service.

It is an Architectural style in which a
web service can only be treated as a RESTful
service if it follows the constraints of being:
- Client Server
- Stateless
- Cacheable
- Layered System
- Uniform Interface

On API Changes Client code must be recompiled with new WSDL Can be backward compatible
Asynchronous Yes, Asynchronous Messaging Synchronous
Bandwidth Usage +++ +
Cacheable No Yes
Data Formats Only XML XML, Json, Plain Text, etc

Documentation
The SOAP protocol can be quite complex
but it is well documented.

Depends on the documentation provided
by the service designer.
(OpenAPI/Swagger for example)

Error Handling Built-in No error handling
Exposed Business Logic Services Interfaces URIs/Endpoints
Failure Handling Retry logic built-in Expects Client to retry

Goal
Focuses on exposing pieces of
application logic (not data) as service.

Focuses on accessing named resources
through a single consistent interface.

Invokation Invokes Services by calling RPC Methods Simply call services using HTTP Requests.
Java API JAX-WS Jax-RS
Javascript Support Difficult Easy

Network Transfer over HTTP, SMTP, FTP etc.
Purely HTTP, however, REST is an
architectural style and may use other
protocols.

Official Standard Yes No
Statefullness Supports stateless and stateful operations Emphasizes stateless communication

Payload
XML Soap Envelop, must comply
SOAP schema. Can be any format

Payload Constraints Must support XML Serialization. -
Performance Depends on Message Encryption, Signing etc. Almost no protocol overhead.
Protocol XML Based Message Protocol A free architectural Style Protocol

Reliability Reliable
Not Reliable. e.g., an HTTP Delete can
return OK even if it did not work.

Security
Supports SSL, but also WS-Security
(XML Encryption and Signature)

Depends on the documentation provided
by the service designer.

Time to Market Slow Fast

Tooling
Requires significant middleware
tooling support. Only HTTP support is required.

Who uses it?
Financial, Payment Gateways,
Telecommunication. Social Media, Web, Mobile.

Unlike SOAP, REST services have a relatively loose architectural style where the presence
of an interface description document (e.g., a WSDL document) is not mandatory. Con-
sequently, this loosely coupled relationship between client and server does the practices
used for robustness testing on SOAP services completely impractical for REST services.
Additionally, this loosely coupled relationship between client and server allows for po-
tential weaknesses in the service. Given the lack of formal description, REST services are
easily exposed to invalid or malicious inputs that may activate residual faults in the code.
Additionally, establishing guarantees about their robustness has become an integral ele-
ment of the development process due to their increasing use and complexity. Therefore,
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REST services must be thoroughly tested to accomplish such guarantees.
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Figure 2.6: SOAP vs REST - Google Trends [41]

Even though we cannot have a straight comparison between the usage of REST and SOAP
services, we can, however, look at each search topic across the years in Google trends by
the category of Computers and Electronics. Figure 2.6 shows the evolution graph of
these keywords searched since 2004. We can analyze from the start of 2011 that the
REST services started to be the most searched therm between the two. Additionally, this
evolution complies with the conclusion based on the empirical studies in the extensive
survey conducted by Laranjeiro et al. [1], in which the amount of research on web services
robustness evaluation peaked in the late 2000s where the preponderance focused on SOAP
web services. However, the research interest has stopped, and the last work on SOAP
services dates back to 2015.
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Related work on Evolutionary
Algorithms and Software Testing

In this chapter, we analyze the related work on Evolutionary Algorithms and Software
Testing, mainly focusing on RESTful API testing. In section 3.1, we begin by describing
Evolutionary Algorithms. Furthermore, we deeply analyze Genetic Algorithms and the
associated methodologies applied in their components, such as fitness function, mutation,
crossover, and parent selection. Then, in sub-section 3.1.3, we discuss the empirical
studies. We conclude this chapter with section 3.2, where we present the related work
regarding software testing using evolutionary algorithms and approaches for RESTful
API testing. Lastly, we finish with sub-section 3.2.2, where we conduct a discussion
about the analyzed works.

3.1 Studies on Evolutionary algorithms

In artificial intelligence, an Evolutionary Algorithm is regarded as a part of evolutionary
computation. As a result of solving problems, an evolutionary algorithm uses various
evolutionary computational models inspired by the Darwinian principles of the natural
process of evolution [42]. Here, the least fit individuals of the population are eliminated
during the selection process used by evolutionary algorithms. In contrast, the most suit-
able individuals survive and evolve until better solutions are found. In other words, evo-
lutionary algorithms are computer programs that simulate biological processes to address
challenging problems. Successful individuals develop over time to offer the problem’s
optimal solution.

This analysis’s primary objective is to identify the methodologies and values upheld in the
literature so that we may establish a basis from which to start our implementation. These
methodologies and values are correlated to the parameters that compose an Evolutionary
algorithm, and we must first agree on a list of all its significant components. Accordingly,
we assume the following components of an EA:

• Representation of individuals;

• Evaluation function (i.e., fitness function);
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• Variation operators (i.e., mutation, crossover, mutation probability, crossover prob-
ability);

• Selection operator (i.e., parent selection or mating selection);

• Replacement operator (i.e., survival selection or environmental selection);

• Population (e.g., size, topology).

Table 3.1: Evolutionary Algorithms and techniques

Theme Sub-theme Papers
Algorithm Simulated annealing Kirkpatrick et al. [43], Metropolis et al. [44],

Latiu et al. [45]
Evolutionary Algo-
rithms

Evolutionary strate-
gies

Hans-Georg Beyer and Hans-Paul Schwefel [46], Dar-
rell Whitley [47]

Particle Swarm Opti-
mization

Kennedy and Eberhart [48], Latiu et al. [45], Eberhart
and Yuhui Shi [49]

Differential Evolu-
tion

Storn and Price [50], Thomsen [51]

Genetic algorithm Holland et al. [52]

1+ 1 EA Droste et al. [53]

Memic algorithm Moscato [54]
Genetic algorithm Variation operators

(i.e., mutation and
crossover) and Pa-
rameters control

De Jong [55], Schaffer et al. [56], Grefenstette et
al. [57], Goldberg et al. [58], Tuson and Ross [59],
Spears [60], Srinivas and Patnaik [61], Eiben et al. [62],
Michalewicz et al. [63], Homaifar et al. [64], Joines
and Houck [65], Mühlenbein and Heinz [66], Smith and
Fogarty [67], Hesser and Männer [68], Julstrom [69],
Bäck [70–73], Lis [74]

Parent selection Baker, [75], Brindle [76], Goldberg and Deb [77],
Razali and Geraghty [78], Cavicchio [79]

Genetic algorithm
variations

messy GA’s Goldberg et al. [80]

Genetic Simulated
Annealing

Koakutsu et al. [81]

Species conserving
genetic algorithm

Li et al. [82]

Observation Studies Effect of reduction
the search space

Harman et al. [83]

Comparison between
GA, SA, GSA,
SA/AAN

Xiao et al. [15]

In the following paragraphs, we will describe the components previously mentioned of the
EAs, and we will also discuss different techniques to assign values to these parameters.
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Furthermore, we deeply analyze genetic algorithms and the associated components, such
as fitness function, mutation, crossover, and parent selection. Table 3.1 is a compilation of
the analyzed studies. We aggregated them into categories such as the main evolutionary
algorithms, different techniques for the genetic algorithm operators, some variations of
genetic algorithms, and essential observation studies.

Even though Simulated annealing is a probabilistic technique and is not considered an
Evolutionary algorithm, several studies compare the performance of Evolutionary Algo-
rithms and Simulated Annealing. As a result, we chose to address it in the context of
the related work. Kirkpatrick et al. [43] proposed the Simulated annealing as the basis
of a search mechanism. It was inspired by the annealing procedure of the metal working
[44]. SA is a stochastic global search optimization algorithm that is inspired by the slow
cooling of metals, which is characterized by a gradual reduction in atomic movements,
lowering the density of lattice defects until the lowest-energy state is achieved. Similarly,
the simulated annealing algorithm generates a new potential solution (or neighbor) to the
problem by modifying the current state according to predetermined criteria at each simu-
lated annealing temperature. The new state is then accepted based on the satisfaction of
the Metropolis criterion, and the process is repeated until convergence is achieved. This
enables a worse solution to be accepted, allowing the system to escape from a local opti-
mum and converge to the global minimum. Figure 3.1 illustrates a Simulated annealing
flowchart.

Randomize
configuration for

current temp

False

True

Replace current
solution with a new one

True

False

Better than
current solution

Reached temp
by specified

rate

Stop

Start

Decrease temp by
specified rate

TrueLower temp
bound reached

False

Figure 3.1: Simulated Annealing flowchart inspired by [45]
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Evolutionary Strategies were developed by Ingo Rechenberg and Hans-Paul Schwefel
[46, 47], in the late 1960’s and 1970’s. ESs are generally applied to real-valued optimiza-
tion problem representations and emphasize mutation over recombination. Moreover, the
many methods of manipulating parents and the offspring make up an additional distinct
feature. Correspondingly, µ refers to the size of the parents’ population and λ to the num-
ber of offspring that are produced in a single generation before applying selection. In this
note, the following are the commonly used strategies for manipulation of the population
[46]:

• (µ ,λ )− Parents are replaced by the offspring. Here, the selection occurs among
the λ offspring only, whereas their parents are replaced no matter how good or
bad their fitness is compared to the new generation. This strategy relies on a birth
overbalance (i.e., on λ > µ) in a strictly Darwinian sense of natural selection.

• (µ +λ )− Offspring is added to the current population, and then to keep the popu-
lation size constant, the λ worst out of all (µ +λ ) individuals are discarded.

• (µ +1) - The parents generate a single offspring which only survives if it is a better
solution than one of the parents.

• (1+ 1)− A single parent generates a single offspring through mutation, and the
best solution between the parent and the offspring becomes the new parent.

The first applications of ESs in experimental optimization were welcomed as innova-
tive despite lacking proof of convergence toward an indisputable (global) optimum, and
people were much more doubtful regarding numerical evolutionary optimization and its
potential benefits [46]. The (µ +1)-ES already uses not only of the so far best individual
to generate an offspring but also of the second best and even the worst of µ parents. On
the other hand, the (µ +λ )−ES was welcomed as a further step into a wrong direction,
since it does not make immediate use of new information gathered by the next offspring.
Instead, it delays the selection decision until all λ descendants are born.

In the sense that even superior intermediate solutions can now be discarded and replaced
by worse ones, the transition in the adoption from the plus to the comma version finally
appeared to ascend to the top of absurdity. Additionally, it is easier to guarantee the con-
vergence to a (µ +λ )−ES since its worst behavior is premature stagnation, for instance,
when the mutation strength becomes too low before reaching the optimum. In contrast, a
comma version can diverge, especially when the mutation strength is too high.

Particle Swarm Optimization (PSO) is an evolutionary computation technique intro-
duced by Kennedy and Eberhart [48]. Since it starts with a set of randomly initialized
individuals (initial population) and uses a fitness value to assess each particle from the
population, the PSO technique is identical to the genetic algorithm method. In PSO, a
randomized velocity is given to each potential solution. PSO’s particle tracking process
keeps track of a particle’s coordinates (location and velocity), which are associated to the
particle’s best solution so far. The particle swarm optimization technique alters the veloc-
ity of each particle at each step to propel it towards its best performance (pbest) and the
overall best value reached by all particles in the population at each step (gbest). A ran-
dom term w is also used to weight acceleration (weight inertia). For pbest and gbest [49],
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distinct random values are used to generate acceleration. The main steps of the particle
swarm optimization method are illustrated in Figure 3.2.

Start

Stop

Generate initial
population

Update velocity

Update position

TrueFalse
end criteria

Evaluate

Figure 3.2: Particle Swarm Optimization flowchart inspired by [45]

Storn and Price [50] introduced the Differential Evolution (DE) algorithm. In this al-
gorithm, parameter vectors or genomes are the individual trial solutions that make up a
population. DE performs the same stages as a conventional EA in terms of computation.
Unlike standard EAs, DE searches the fitness function landscape by using the difference
of parameter vectors. DE, like other population-based search techniques, generates new
points (trial solutions) that are perturbations of existing points; however, unlike Evolution
Strategies techniques, these deviations are not samples from a predetermined probability
density function. Instead, DE scales the difference of two randomly chosen population
vectors to disrupt current generation vectors. DE creates a donor vector equivalent to
each population vector by adding the scaled, random vector difference to a third randomly
chosen population vector (also known as target vector). The components of the target and
donor vectors are then combined to make a trial vector using a crossover operation. The
trial (or offspring) vector competes against the population vector of the same index, i.e.
the parent vector, in the selection stage. The survivors of all pair wise competitions be-
come parents for the next generation in the evolutionary cycle when the last trial vector
has been tested.

Droste et al. [53] proposed (1+ 1) evolutionary algorithm (EA) which is a very sim-
ple algorithm. The so called (1+ 1) Evolutionary Algorithm ((1+ 1) EA), is applied
to Boolean fitness functions f : {0,1}n → R (n being the bit string length) and can be
formally described as follows, assuming that maximization of f is the objective:

1. Set pm := 1/n.
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2. Choose randomly an initial bit string x ∈ {0,1}n.

3. Repeat the following mutation step: Compute x′ by flipping independently each bit
xi with probability pm. Replace x by x′ if f (x′) ≥ f (x).

An algorithm of this type is sometimes described as a randomized or stochastic hill-
climber. It uses only one point in the search space and never accepts a new point with
inferior function value, just like a hillclimber. Unlike normal hillclimbers, the (1+1) EA
has no clearly defined neighborhood, that is, it can reach any point in the search space
in one step, while the probability of reaching a point decreases as the Hamming distance
increases. The (1+ 1) EA may be considered as a degenerate case of Simulated Anneal-
ing [43], where the cooling scheme is trivial, since the temperature is constant zero. Once
again, however, the probability-based neighborhood is quite unusual.

3.1.1 Genetic algorithms

It is well known that local search techniques can suffer from the problem of becoming
trapped in local optima. To overcome this problem many authors have considered global
search techniques, most notably genetic algorithms [84–88], giving rise to the so-called
evolutionary testing (ET) approach.

Genetic algorithms (GAS) are stochastic search techniques introduced by Holland et al.
[52] in 1975. Genetic algorithms are loosely based on ideas from population genetics.
First, a population of individuals is created randomly. Each individual can be viewed as
a bit string and considered a potential solution to an issue of interest. Some individuals
are better qualified to solve a problem than others in the population (e.g., better problem
solvers). The selection of a new set of candidate solutions at the next time step, also
known as the selection, is influenced by these differences. The selection procedure en-
tails duplicating the most effective individuals while eliminating the less successful ones.
The duplicates, however, are not exact. During the copy operation, there is a chance of
mutation (random bit flips), crossover (exchange of related sub-strings between two indi-
viduals), or other alterations to the bit string. Mutation and crossover operations produce
a new set of good individuals by transforming the existing ones into a new set. This new
set of individuals have typically a higher chance of also being good than a previously
existing set. Throughout this cycle of evaluation, selection, and genetic operations, the
overall fitness of the population generally improves, and the individuals in the popula-
tion represent improved solutions to whatever problem was posed in the fitness function.
Figure 3.3 demonstrates an example of a Genetic algorithm flowchart.

Goldberg et al. [80] presented the messy GA’s (mGA’s) in 1989. This approach is intended
for binary representations of fixed length, however it enables for representations to be
under or over defined. Each gene has a value (a bit) and a place on the chromosome.
The length of the chromosomes varies, and they may include too few or too many bits for
the representation. If more than one gene specifies a bit location, the first one found is
selected. On the other hand, if the chromosome does not specify bit positions, they are
filled in using so-called competitive templates. Messy GAs avoid mutation and instead
rely on cut and splice operators to replace crossover. A run of an mGA is in two phases:
(i) a primordial phase which enriches the proportion of good building blocks and reduces
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Start

Create initial population
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Evaluate individuals

Figure 3.3: Genetic algorithm flowchart

the population size using only selection; (ii) a juxtapositional phase which uses all the
reproduction operators. This method is intended for problems with misleading binary
bitstrings. The algorithm adjusts its representation to fit a specific instance of the problem
at hand. The first use of self-adaptive control was for the dominance mechanism of diploid
chromosomes. Each chromosome is duplicated twice here. The extra chromosomes code
for different solutions, and dominance determines which one is expressed.

3.1.2 Studies on parameter control of an EA

In this subsection, the main goal is to understand and enlighten the most remarkable works
about the parameters that compose an EA. Moreover, which techniques are used to control
the parameters of an EA, such as the mutation probability, crossover probability, parent
selection, population size, and some approaches that automatically tune these parameters.

Several control parameters influence the performance of each optimization algorithm.
Numerous papers have described approaches and methods for determining the appropriate
control parameter values for a given algorithm. There is, however, no general formula for
determining the values of control parameters. In many circumstances, we must modify
the values to fit the problem and methodology. Consequently, we can classify the methods
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for changing the value of a parameter (i.e., the probability of mutation, the tournament
size of selection, or the population size) of an evolutionary algorithm into one of these
three categories [62]:

• Deterministic Parameter Control: This occurs when a deterministic rule changes
the value of a strategy parameter. This rule makes deterministic adjustments to the
strategy parameter without relying on search feedback. A time-varying schedule
is commonly applied, which means that the rule will be activated when a certain
number of generations have elapsed since the last time it was activated.

• Adaptive Parameter Control: This occurs when the search provides some kind of
feedback that is used to determine the direction and/or magnitude of the change to
the strategy parameter. Credit assignment may be involved in the assignment of the
value of the strategy parameter, and the EA’s action may affect whether the new
value remains or propagates throughout the population.

• Self-Adaptive Parameter Control: The concept of evolution can be used to imple-
ment parameter self-adaptation. The modified parameters are encoded in the chro-
mosomes and are subjected to mutation and recombination here. Better values of
these encoded parameters result in better individuals, that are more likely to survive
and generate offspring, propagating the better parameter values.

This terminology, introduced by Eiben et al. [62], leads to the taxonomy illustrated in
Figure 3.4.

Parameter setting

Parameter tuning Parameter control

Deterministic Adaptive
 Self-adaptive


before the run during the run

Figure 3.4: Taxonomy of parameter setting in EA’s [62]

De Jong [55] concluded in 1975 that increasing population size reduced stochastic ef-
fects (of random sampling on a defined population) and improved long-term performance
at the cost of a slower initial response. Off-line performance was shown to improve at
the expense of on-line performance as the mutation rate was increased. Reducing the
crossover rate significantly improved performance, implying that creating totally new in-
dividuals was a too high sampling rate. As a result of these experiments, a set of values
for these parameters was discovered to produce generally satisfactory behavior for this
class of problems, both online and offline. Therefore, these values have become part of
the conventional wisdom on the topic. They are the following:
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• population size: 50-100

• crossover rate: 0.60

• mutation rate: 0.001

De Jong also established off-line and on-line performance measures, with the assumption
that off-line performance is based on monitoring the best solution in each generation, but
on-line performance considers all solutions in the population.

Schaffer et al. [56] described an extensive experimental on the effect of changes in control
parameters (mutation, crossover and population). The extensive analysis demonstrated
that the pattern of the population-crossover-mutation interaction can be seen clearly. At
low population size (10) good performance is very sensitive to mutation rate (m) and less
so to crossover rate (c). It can be achieved with m = 0.02 and c = 0.85. As popula-
tion size is increased, the sensitivity to mutation rate decreases and the best mutation rate
to use also decreases (m = 0.002, 0.005 at p = 50). The inverse relationship between
population and mutation most likely reflects the fact that increasing either one increases
exploration and they can be traded off while keeping exploration at a somewhat constant
level. The authors speculated that naive evolution (NE) (a GA using only selection and
mutation) does perform a hillclimb-like search and given the range of strategies that can be
achieved by varying population size and mutation rates, it is likely to be a powerful search
algorithm, even without the assistance of crossover. Moreover, the use of Gray coding,
which makes hillclimbing even more effective by eliminating the Hamming cliffs, con-
tributes to this effect. However, they also did note, that NE appears to be a much stronger
component in this experiment than suggested by the conventional wisdom. At least in
the first generation (if random), a large population size can achieve a large sample of the
space (exploration). However, a big population imposes a high cost every generation, and
the operators can explore for schemata not present in the initial population. The success
of rather high mutation rates and the reduced sensitivity to crossover rates suggests that
our suite is still too simplistic to explore the influence of crossover appropriately.

Eiben et al. [62] proposed an approach to change the Mutation Step Size, assuming that
Gaussian mutation is used together with arithmetical crossover to produce offspring for
the next generation. The mean, which is frequently set to zero, and the standard deviation
sigma, which can be understood as the mutation step size, are both required parameters
for a Gaussian mutation operator. Mutations then are realized by replacing components of
the vector x⃗ by x′i = xi +N(0,σ) where N(0,σ) is a random Gaussian number with mean
zero and standard deviation σ . The simplest method to specify the mutation mechanism
is to use the same σ for all vectors in the population, for all variables of each vector, and
for the whole evolutionary process, for instance, x′i = xi+N(0,1). Changing the mutation
step size could be advantageous [72, 73, 89] and several options should be discussed one
by one. To begin, the authors suggested to change the static argument σ to a dynamic
parameter, such as a function σ(t). This function can be defined using a heuristic rule
that assigns different values based on the number of generations. The mutation step size,
for example, could be defined as

σ(t) = 1−0.9 · t
T

where t is the current generation number, which ranges from 0 to T , T being the maximum
generation number. As the number of generations t approaches T , the mutation step size

25



Chapter 3

σ(t) will gradually decrease from one at the start of the run (t = 0) to 0.1. Such decreases
may aid the algorithm’s fine-tuning capabilities. The value of the provided parameter
changes according to a fully deterministic scheme in this approach. As a result, the user
has complete control over the parameter, and its value at any given time t is completely
predictable.

Grefenstette et al. [57] presented in 1986 a GA as a metaalgorithm to optimize values
for the same parameters for both on-line and off-line performance of the algorithm. The
most effective set of parameters for optimizing the GA’s on-line (off-line are given in
parenthesis) performance were:

• population size of 30 (80);

• probability of crossover equal to 0.95 (0.45);

• probability of mutation equal to 0.01 (0.01);

Fitness Function

The fitness function also called the evaluation function, assesses how closely a given so-
lution adheres to the ideal solution to the desired problem. It establishes how fit a solution
is to the problem at hand. Different problems require different fitness functions, and each
case implements different approaches. Some techniques may optimize the search time
of the genetic algorithm. The subsequent studies present a penalty practice to punish
infeasible solutions that are known from the start, as invalids to the problem being solved.

Michalewicz et al. [63] in 1996, presented the general principle used for the method
based on penalty function. They confirmed that the majority of constraint handling ap-
proaches are based on the concept of (external) penalty functions that penalize infeasible
solutions, for instance, solving an unconstrained issue (on S ) using a modified fitness
function:

eval (x) =

{
f (x), if x ∈F

f (x)+ penalty (x), otherwise

where penalty (x) is zero if no violation occurs and is positive (for minimization prob-
lems) otherwise. Typically, the penalty function is based on a solution’s distance from
the feasible area F or the effort required to "fix" the solution (i.e., force it into F ). The
first instance is the most common where several approaches apply a series of functions
f j(1≤ j≤m) to calculate the penalty, with the function f j measuring the violation of the
jth constraint as follows:

f j(x) =

{
max

{
0,g j(x)

}
, if 1≤ j ≤ q∣∣h j(x)

∣∣ , if q+ 1≤ j ≤ m

In 1994 Homaifar et al. [64] proposed one of the previously referenced methods, the
method of static penalties. It assumes that for every constraint we establish a family of
intervals that determine the appropriate penalty coefficient.

• For each constraint, create several (l) levels of violation.
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• For each level of violation and for each constraint, create a penalty coefficient Ri j
(i = 1,2, . . . , l; j = 1,2, . . . ,n) where higher levels of violation require larger values
of this coefficient.

• Start with a random population of individuals.

• Evolve the population and then evaluate individuals using the following formula:

eval(x) = f (x)+
n

∑
j=1

Ri jg2
j(X)

The weakness of the method is in the number of parameters. For n constraints the method
requires n(2l + 1) parameters in total: n parameters to establish number of intervals for
each constraint; l parameters for each constraint, defining the boundaries of the intervals
(levels of violation); and l parameters for each constraint representing the penalty coeffi-
cients Ri j. For instance, for n = 5 constraints and l = 4 levels of violation, it is needed a
set of 45 parameters.

The method of dynamic penalties was proposed by Joines and Houck [65] in 1994.
Contrary to the previous method, the authors assumed dynamic penalties. Individuals are
evaluated (at the iteration t) by the following formula:

eval(x) = f (x)+ (C× t)α
n

∑
j=1

f β

j (x)

where C,α , and β are constants. A reasonable choice for these parameters, presented by
Joines and Houck, is C = 0.5, and α = β = 2. The method requires a much smaller num-
ber (independent of the number of constraints) of parameters than the of static penalties
method previously mentioned. Also, instead of defining several levels of violation, the
pressure on infeasible solutions is increased due to the (C× t)α component of the penalty
term: Toward the end of the process, for high values of the generation number t, this
component assumes large values.

The penalty approach in the fitness function allows the core optimization issue to be
changed using the penalty function approach into different formulations, and a series of
unrestricted minimization problems are then solved to provide numerical solutions. There
are, however, advantages and disadvantages of such methods:

• It is applicable to generally constrained problems with equality and inequality con-
straints.

• The starting point can be arbitrary.

• The method iterates through the infeasible region where the cost and/or constraint
functions may be undefined.

• The final point might not be feasible and thus worthless if the iterative process ends
prematurely.

27



Chapter 3

Population

A population is a group of individuals or Chromosomes and each individual is a candidate
solution to the problem. Figure 3.5 illustrates an example of the gene, chromosome, and
population in the context of Evolutionary algorithms.

.


.


. Population

1

2

3

n

Gene

Individual/Chromosome

1 1 1 0

1 0 0 0 1

1 1 0 1 1

1

1 0 0 1 0

Figure 3.5: An example of the gene, chromosome, and population

Goldberg et al. [58] made effort to determinate which size a population must have for
the best results. They stated that urgent use of variance-based population sizing in prac-
tical applications of genetic algorithms, as well as deeper foundational investigations, is
recommended based on the results. They also proved that population size has a role in
defining a distinction between two quite different sorts of simple genetic algorithm behav-
ior. The authors witness the GAs at low population sizes, converging only by the graces
of random changes that are lucky enough to survive long enough to be properly evaluated.
Finally, they also saw GAs that promote just the best among competing building blocks
at significant population sizes, and that when and if these are global, we can predict high
probability convergence to global solutions after enough recombination. Understanding
these two regimes is beneficial, as is having a quantitative yardstick to discern between
high and low population sizes.

As mentioned before, De Jong [55] experimented with population sizes from 50–100,
whereas Grefenstette [57] applied a meta-GA to control parameters of another GA (in-
cluding populations size), the population size range was 30-80. Additional empirical
effort was made by Schaffer et al. [56] and the recommended range for population size
was 20-30.

Parent Selection

Parent selection is the process of selecting parents to produce the child, or offspring as it
is also known, who will be a participant in the upcoming generation. Parent selection is
especially crucial to the convergence rate of the GA as suitable parents drive individuals
to better and fitter solutions.

Baker in [75] suggested a ranking selection algorithm for GA. The basic principle is that
the population is sorted from best to worst, and then a new fitness value is assigned to
each individual, which is inversely proportional to their rank. There are two methods,
one being the linear ranking and the other exponential ranking. In linear ranking, the

28



Related work on Evolutionary Algorithms and Software Testing

best individual gets a fitness s, between 1 and 2. Whereas the worst gets a fitness of
2− s. Intermediate individuals’ fitness values are given by interpolation, as described by
Hancock [90]:

f (i) = s− (2i(s−1))
(N−1)

, i = {1..N}

The worst string has no possibility of reproduction if s is set to 2. In theory, s may be
increased beyond 2 to create larger selection pressures, but this would result in negative
fitness values for several of the worst strings. In the exponential ranking, on the other
hand, the best individual receives a fitness of 1. The second-best receives a fitness of
s, which is typically around 0.99. The third best receives s2, and so on until the last
receives sN−1. Because the selection pressure is proportional to 1− s, s = 0.994 yields
a convergence rate double that of s = 0.998. Exponential ranking provides the worst
individuals more opportunities at the expense of those who are above average.

Tournament selection is one of the different approaches to parent selection. One of the
first forms of tournament selection was studied by Brindle in [76]. In this technique, sev-
eral individuals are randomly selected from a population in tournament selection. For
genetic processing (i.e. crossover and mutation), the best individual from the group is
chosen. This can be done again and again until the mating pool is full. The tournaments
are usually held between pairs of individuals (also known as binary tournaments), al-
though a different number, n, can be used. The tournament selection gives a chance to all
individuals to be selected and therefore preserves diversity. Note that high diversity may
lead to a slower convergence speed. Despite this, the tournament selection has several
advantages, namely efficient time complexity, low susceptibility to takeover by dominant
individuals and there is no need for fitness scaling or sorting [77, 91].

Another parent selection technique is the proportional roulette wheel. Here, the indi-
viduals are chosen with a probability that is directly proportional to their fitness values.
Those with the best fitness (larger segment sizes) have a higher chance of being selected.
Within the roulette wheel, the fittest individual occupies the largest segment, while the
least fit occupies a smaller segment. Every segment has a chance, with a probability pro-
portional to the width of the segment. By repeating this process each time an individual
must be selected, the fitter individuals will be chosen more frequently than the inferior
ones, ensuring that the survival of the fittest requirements is met. Let f1, f2, . . . , fn be fit-
ness values of individual 1 , 2, . . . ,n. Then the selection probability, Pi for individual i is
define as,

pi =
fi

∑
n
j=1 f j

The major advantage of proportional roulette wheel selection is that it does not exclude
any individuals from the population and allows all of them to be chosen. As a result,
population diversity is preserved. However, there are a few key drawbacks in propor-
tional roulette wheel selection. Outstanding individuals will add bias at the beginning of
the search, which could lead to an early convergence and loss of diversity. If an initial
population contains one or two very fit but not the best individuals, and the majority of
the population is impoverished, these fit individuals will quickly dominate the popula-
tion, preventing the population from exploring other promising candidates. Such a strong
dominance results in a significant loss of genetic variety, which is detrimental to the op-
timization process. On the other hand, if individuals in a population have very identical
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fitness values, it will be extremely difficult for the population to improve since selection
probabilities for fit and unfit individuals are relatively similar.

Razali and Geraghty in [78] compared three selection techniques for solving the traveling
salesman problem. The comparison was made between the tournament selection, roulette
wheel selection, and rank-based roulette wheel selection. The authors concluded that the
quality of solution improved with rank-based roulette wheel selection. In comparison to
the other two strategies, the GA-based tournament selection is more efficient in attaining
the smallest total distance with the fewest number of generations and fastest iteration time.
This, however, is only applicable to small problems. Tournament selection, as well as the
proportional roulette wheel, becomes vulnerable to premature convergence as the size of
the problem grows. Rank-based selection, on the other hand, keeps exploring the search
area until it finds the shortest distance through the tour. As a result, tournament selection
is better suited to small-scale problems, but a rank-based roulette wheel can be utilized to
address larger-scale problems.

Cavicchio in his Ph.D. thesis in 1970, introduced different methods for genetic algorithms
[79]. The preselection scheme was proposed in particular to maintain the diversity of the
population. The children compete with their parents for survival in this scheme. In the
next generation, if a child has a higher fitness (as evaluated by an objective function) than
its parent, the parent is replaced by the child.

Goldberg and Deb in [77] stated that ranking and tournament selection are shown to main-
tain strong growth under normal conditions, while proportionate selection without scaling
is shown to be less effective in keeping a steady pressure toward convergence.

Crossover

The crossing operation, also called recombination, is a genetic operator that combines
the genetic information (i.e., chromosomes) of two parents to generate new offspring.
There is relative success of commonly used crossover techniques in a GA based structural
optimization. Below is a quick explanation of these methods.

The most straightforward crossover procedure is a single-point crossover (Fig. 3.6), in
which paired individuals are each cut at a crossover site that is selected at random, and
the sections that remain after the cuts are exchanged to create two new (child) individuals.
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1 1 1 1 1
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1
0

1
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1
0

1
0

1
0

1
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1
0

1
0
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Figure 3.6: Single-point crossover implementation

In the 2-point crossover, individuals are removed at two randomly chosen crossover lo-
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cations. Swapping either the outer portions of the interior portions that fall between the
locations accomplishes a design exchange (Fig. 3.7). Bare in mind that in both scenarios,
the resulting individuals would be the same. Compared to single-point crossover, the 2-
point crossover increases an individual’s probability of swapping the essential genes on
their chromosomal strings [92].
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Figure 3.7: 2-point crossover implementation

Another technique is the Multi-point crossover, which seeks to provide a more dispersed
exchange through an attempt to take a higher number of crossover sites. The imple-
mentation for Multi-point crossover, Fig. 3.8, is not so much different from single or
two-point crossovers. Again, first a selected number of (nc ⩾ 3) crossover sites are ran-
domly chosen, and individuals are cut at these sites to be separated into (nc + 1) por-
tions. The procedure is concluded by completely exchanging one of the two groups
of portions. The first group incorporates the set of {1st, 3 rd , . . . , (2k− 1) th, where
k = 1,2, . . . , int (nc/2+ 1)} portions, and the portions that are not a part of the first group
are included in the second group.
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Figure 3.8: Multi-(5)-point crossover implementation

There is also the Variable to variable crossover method, where the paired individuals
(strings) are first segmented into their substrings. A single-point crossover is performed
on each of the substrings independently (Fig. 3.9). Therefore, each individual’s design
variable is turned on to fulfill the design exchange individually.
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Figure 3.9: Variable to variable crossover implementation

A different approach is the Uniform crossover [93]. While compared to the methods used
when taking crossover sites on individuals, the uniform crossover is radically different.
A randomly generated crossover mask is necessary for uniform crossover (Fig. 3.10).
According to this mask, a child’s genes are inherited from their parents. At positions
where the mask has a 1, the new child carries the genes from parent one, otherwise carries
the genes from parent two at positions in which the mask holds a 0. We can either use
the complementary of the first mask to generate the second child or create a new mask
where we repeat the whole procedure. In this case, the numerical tests adhere to the latter
strategy.
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Figure 3.10: Uniform crossover implementation

The crossover has a rate pc that acts on a pair of chromosomes, giving the probability that
the selected pair undergoes crossover. Some common settings for pc obtained by tuning
traditional GA’s are pc = 0.6 [55], pc = 0.95 [57], and pc ∈ [0.75,0.95] [56]. Currently,
is well understood that the crossover rate should not be too low, and values of less than
0.6 are rarely adopted.

Tuson and Ross in [59] presented the approach with the name COBRA which explicitly
collects information on operator performance (e.g. mutation and crossover) and uses this
to adjust the operator probabilities. Normally, this adjustment is done with an ad hoc
nature by the developer, as so COBRA is no exception. The main idea of the authors
was to provide an operator adaptation mechanism that works in practice. The nature of
COBRA is as follows: Given k operators o1, . . . ,ok, let bi(t) be the benefit, ci(t) the cost
(the amount of computational effort to evaluate a child), and pi(t) the probability of a
given operator, i at time t. They then apply the following algorithm:
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1. The user decides on a set of initial probabilities pi.

2. When a child is produced, bi(t) is updated.

3. After G (the gap between operator probability readjustments) evaluations, rank the
operators according their values of bi/ci, and assign the operators their new proba-
bilities according to their rank (i.e. the highest probability to the operator with the
highest value of bi/ci ).

4. Repeat step 2 every G evaluations.

The measure of benefit in this extensive study was operator productivity. Such operator
is defined as the average gain in fitness when a child is born fitter than its parents (i.e., if
the child is fitter than the parent, the productivity is zero) over a specific duration. The
variables in the adaptation method are derived from two sources: the gap between oper-
ator probability readjustments G and the user-supplied initial operator probabilities. The
authors observed that while there was no gain in performance when COBRA was applied,
the GA was often made less sensitive to the operator probabilities provided when COBRA
was used, reducing the effect of bad choices, which may be beneficial in some applica-
tions. In that case, obtaining equal performance may be easier than looking through a
vast number of typical GA runs. They back up this claim by stating that COBRA’s per-
formance may be a technique that prioritizes speed over quality. Finally, COBRA looked
promising as a way to eliminate some of the parameter tuning problems that surround GA
applications. However, some problems may lead to a poor choice of operator probabili-
ties, and it should be established that the choice of crossover probability is dependent on
the problem to be solved.

Spears in [60] proposed a simple adaptive mechanism that allows the GA to choose be-
tween uniform and two-point crossover while the problem is being solved. Each individ-
ual got an extra bit, which defines whatever form of crossover is used for that individual.
As a result, the offspring will inherit their parents’ crossover type preference. The mech-
anism is simple and easy to implement. Also, it will work with almost any conceivable
evolutionary algorithm (EA) style. The author states that 1bit adaptation generates good
performance results, but much of the performance stems from simply having the two
crossover operators at disposal. Consequently, this leads the author to think that it may
often be beneficial for an EA to have a more extensive set of search operators that are
customarily used.

Srinivas and Patnaik in [61] proposed an adaptive pc (i.e., probability of crossover) and
pm (i.e., probability of mutation). To do so is essential to be able to identify whether
the GA is converging to an optimum, therefore, the authors stated that one possible way
of detecting convergence is to observe the average fitness value f̄ of the population in
relation to the maximum fitness value fmax of the population. fmax− f̄ is likely to be
less for a population that has converged to an optimum solution than that for a population
scattered in the solution space. The values of pc and pm are varied depending on the value
of fmax− f̄ . The value pc should depend on the fitness values of both the parent solutions.
The closer f is to fmax, the smaller pm should be, i.e., pm should vary directly as fmax− f .
Similarly, pc should vary directly as fmax− f ′, where f ′ is the larger of the fitness values of
the solutions to be crossed. Srinivas and Patnaik reinforce that pc and pm are zero for the
solution with the maximum fitness. Also pc = k1 for a solution with f ′ = f̄ , and pm = k2
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for a solution with f = f̄ . For solutions with subaverage fitness values i.e., f < f̄ , pc and
pm might assume values larger than 1.0. To prevent the overshooting of pc and pm beyond
1.0, the following constraints were stated,

pc = k3, f ′ ≤ f̄

and
pm = k4, f ≤ f̄

where k3,k4 ≤ 1.0. The final expressions for pc and pm are given as

pc = k1 ( fmax− f ′)/ ( fmax− f̄ ) , f ′ ≥ f̄ ,
pc = k3, f ′ < f̄

and
pm = k2 ( fmax− f )/ ( fmax− f̄ ) , f ≥ f̄
pm = k4, f < f̄

where k1,k2,k3,k4 ≤ 1.0. Finally, the authors have assigned the value 1.0 to k1, 0.5 to k2,
1.0 to k3 and 0.5 to k4.

The adaptive approach proposed by Srinivas and Patnaik allows low values of pc, and
pm, to be assigned to high fitness solutions, while low fitness solutions have very high
values of pc, and pm. As a result, each population’s optimal solution is "protected" (i.e.,
not vulnerable to crossover) and encounters minimal mutation. On the other hand, any
solutions that have a fitness value that is lower than the population’s mean fitness value
have pm = 0.5. Consequently, all below-average solutions will be radically altered, and
new ones will be produced. Therefore, the GA is unlikely to become trapped at a local
optimum.

Mutation

The mutation can be defined as a slight random modification of the chromosome to obtain
a new solution. It is used to maintain and introduce diversity in the genetic population and
is generally applied with a low probability (i.e., pm). Holland has introduced mutation to
Genetic Algorithms as a “background operator” [52], which assures the principal possi-
bility to recover from lost alleles, i.e. alleles which are converged within the population.

De Jong [55] recommended a mutation probability of pm = 0.001, the meta-level GA
used by Grefenstette [57] indicated pm = 0.01, while Schaffer et al. [56] came up with
pm ∈ [0.005,0.01]. Mühlenbein and Heinz [66] derived a formula for pm which depends
on the length of the bitstring (L), namely pm = 1/L should be a generally "optimal" static
value for pm. This rate was compared with several fixed rates by Smith and Fogarty [67]
who found that pm = 1/L outperformed other values for pm in their comparison. Bäck
[70] also found 1/L to be a good value for pm together with Gray coding.

Hesser and Männer [68] proposed a derived theoretically optimal schedules for determin-
istically changing pm for the counting-ones function. They suggest

pm(t) =
√

α

β
×

exp
(
−γt

2

)
λ
√

L
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where α ,β ,γ are constants, λ is the population size, t is the time (i.e., generation counter),
and L being the length of the bitstring.

The issue with deterministically changing pm, however, is that a predetermined deter-
ministic time schedule cannot account for the unique characteristics of various fitness
functions because fresh exogenous inputs establish it. As a result, the schedule must
be changed according to the fitness function, much like the temperature schedule tuning
problem in Simulated Annealing.

On the other hand, with a different perspective, the function to control the decrease of
pm was proposed by Bäck and Schütz [94] and constrains pm(t) so that pm(0) = 0.5 and
pm(T ) = 1/L if a maximum of T evaluations are used

pm(t) =
(

2+
L−2

T
· t
)−1

, if 0≤ t ≤ T .

where L is the length of the bitstring and t is the time (i.e., generation counter).

Julstrom [69] presented a mechanism that adaptively adjusts the probabilities with which
a steady-state genetic algorithm applies its operators. The ADOPP mechanism distributes
operator probabilities proportionally to their recent contributions to chromosomal con-
struction that are better than the population median or 90th percentile, adjusted so that
no operator has a probability of zero. To develop an offspring, both operators are ap-
plied individually, and the algorithm maintains a tree of their recent contributions to new
offspring and rewards them accordingly. With numerous variants of the adaptive mech-
anism, the algorithm’s performance was no better than when operator probabilities were
locked at plausible values. This raised fundamental problems about obtaining data from a
GA’s population and recent performance, as well as using that data during the execution
of a GA. As a result, Julstrom stated that for this reason to develop an effective adaptive
operator probability mechanism, these problems must be addressed.

Bäck [70, 71] self-adapts the mutation rate of a GA by adding a rate for the pm, coded in
bits, to every individual. This value is the rate, which is used to mutate the pm itself. Then
this new pm is used to mutate the individuals’ object variables. In other words, better
pm rates will produce better offspring, who will pass on their improvements to future
generations, whereas bad pm rates will die out.

Fogarty and Smith [67] used Bäck’s idea [70, 71], implemented it on a steady-state GA,
and added an implementation of the 1/5 success rule for mutation. There has been empir-
ical evidence showing that there is an optimal “acceptance” ratio of approximately 1:5.
In other words, for every five individuals created, one should be integrated into the pop-
ulation. This can be explained by considering that, while repeated mutation of a single
individual corresponds to a form of local search, which has been shown to improve the
performance of Genetic Algorithms [95], there is a trade-off between local and global
search that affects both the convergence velocity and possibly the quality of the final so-
lution. They also observed that gray coding performed significantly better than binary
coding in the most complex, uncorrelated landscapes. Gray coding provides a much more
uniform landscape for the system to learn mutation rates, and as the landscapes becomes
less correlated, mutation becomes more significant in the search process.

Lis [74], in 1995, proposed a method in order to eliminate the necessity of determining
the mutation probability in advance. Hence, the mutation probability value is decided
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along the course of algorithm generation. The developed method is based on the obser-
vation that, given the optimal mutation probability, some chromosomes’ fitness function
values are close to the current highest value of that function, while the remaining chromo-
somes achieve lower function values while searching for new solutions outside the local
minimum. During the GA operation, a criterion represents the proportion ratio between
both chromosome groups, and the mutation probability is increased or decreased based
on its value. Such a method allows the GA to start with nearly any initial mutation prob-
ability and arrive at reasonable values of that probability after a few dozens of steps of
algorithm performance. The fitness function values for a GA with many predetermined
constant mutation probabilities and a GA with various mutation probabilities were statis-
tically compared. This analysis of sample data indicated that a GA with variable mutation
probability produces better outcomes than a GA with any predefined constant mutation
probability.

Bäck in [72] concluded that a time-dependent variation in the mutation rate could help a
Genetic Algorithm optimize in fewer iterations. The author observed that when the fitness
function becomes multimodal, their observations indicate that the search for a mutation
rate control different from a constant value 1/l, where l denotes the bit string length, may
be worthwhile to overcome local optima. Finally, for the case of a multimodal fitness
function, the results reported may be interpreted as an explanation of the usefulness of
a self-adaptation mechanism for mutation rates as described in [71] where a remarkable
diversity of mutation rates exists in a population of individuals.

Multimodal optimization

The purpose of multimodal optimization is to find multiple global and local optima (rather
than a single solution) for the same function, so that the user can better comprehend the
different optimal solutions in the search space and apply them as and when needed, the
current solution may be switched to another suitable one while still maintaining the opti-
mal system performance. Since late 1970s, evolutionary optimization methods for locat-
ing multiple (global or local) optima have been developed. They are commonly referred
to as “niching” methods. As part of a standard EA, niche-based methods can be incorpo-
rated to promote and maintain multiple stable subpopulations within a single population,
with the aim of finding multiple global optimal or suboptimal solutions simultaneously. In
Engelbrecht’s book [96], niching algorithms are categorized based on the way the niches
are located. Three categories can be identified:

• Sequential niching (or temporal niching) develops niches over time. Iteratively,
the procedure finds a niche (or optimum) and removes all references to it from
the search space. The removal of niche references frequently involves a change
in the search space. The process of finding and removing niches continues until
a convergence criteria is met, such as when no more niches can be located after a
certain number of generations.

• Parallel niching locates all niches in parallel. Individuals dynamically self-organize,
or speciate, on the locations of optima. Parallel niching algorithms must organize
individuals in such a way that they keep their positions around optimal locations
throughout time, in addition to locating niches. Such that, once a niche has been
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discovered, individuals should proceed to cluster around it.

• Quasi-sequential niching locates niches sequentially, but does not change the search
space to remove the niche. Rather, the search for a new niche continues, while the
niches that have already been discovered are improved and preserved in parallel.

Parallel Niching (PN) is based on a parallel hillclimbing technique, which is similar to a
binary search technique. The hillclimbing method starts with a large step size and each
population element hillclimb until it cannot climb any more (cannot improve). The step
size is then divided into half, and the hillclimbing approach is again applied. This is
repeated until the predefined smallest possible step size, ε , is used.

Beasley et al. [97] described the Sequential Niching (SN) method. This method is practi-
cally an extension of the iterating GAs that maintain the best solution of each run off-line.
Every time SN finds a solution, it depresses the search space at all points that fall within
a threshold radius, known as the niche radius [98], to avoid converging to the same opti-
mum over and over. It is not too easy to determine the stopping criterion of SN, generally
after finding out all desired peaks the iterations are terminated.

Mahfoud [99] concluded, after applying parallel Niching and Sequential Niching on var-
ious multimodal problems, that parallel hillclimbing works best for easier problems and
reasonably well for problems with intermediate complexity. However, it fails for prob-
lems with high complexity. In comparison, SN is weak on easy problems and remains
unable to tackle harder ones as well.

De Jong [55] in 1975, introduced the crowding technique to increase the chance of locat-
ing multiple optima. The crowding technique compares each child to a randomly selected
subpopulation of c f members in the existing parent population (c f stands for crowding
factor). Using a distance metric, the parent member most similar to the child is chosen.
If the child is fitter than the parent member selected, then the child replaces the parent
member. For multimodal optimization [51], Thomsen has also incorporated crowding
techniques [55] into differential evolution (CrowdingDE). Thomsen used the crowding
factor and Euclidean distance as the dissimilarity measure. The closer the distance, the
more similar they are, and vice versa. Even though an intensive computation is required,
differential evolution can be effectively transformed into an algorithm specialized for mul-
timodal optimization.

Li et al. [82] introduced the species conserving genetic algorithm (SCGA). It is a tech-
nique for evolving parallel subpopulations for multimodal optimization. As a result of this
algorithm, a set of species seeds can be bypassed during each generation and be saved into
the subsequent generations, after which a population is divided into several species based
on the dissimilarity measure. Species seeds are identified by selecting the most fit indi-
viduals from the population. After the identification of the species seeds, the population
undergoes the usual genetic algorithm operations: selection, crossover, and mutation. In
order to maintain the survival of less fit species, the seeds of the saved species are copied
back into the population at the end of each generation. Species seeds are determined by
sorting a population in decreasing fitness order. Once sorted, the algorithm selects the
fittest individual as the first species seed and forms a region around it. If the next fittest
individual is not located within a species region, it is selected as a species seed and another
species region is created around it. Otherwise, it is not selected. All remaining individu-
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als are checked against all existing species seeds using similar operations. Following the
genetic operations, the algorithms need to identify which species each individual belongs
to in order to copy the species seeds back to the population. The algorithm replaces the
worst (lowest fitness) individual within a species with its seed. If no such individual ex-
ists within a species, the algorithm replaces the worst and unreplaced individual across
the whole population. By preserving the fittest individuals for each species, the main goal
is to preserve the population diversity.

Mahfoud after reviewing De Jong’s [55] crowding factor technique indicated its inability
to maintain more than two peaks of a multimodal objective function due to replacement
errors that result from genetic drift. Additionally, Mahfoud [100–102] suggested Deter-
ministic crowding with the objective of maintaining the diverse population, eliminating
parameter requirements, reducing replacement error, as well as restoring selection pres-
sure. At first, the algorithm randomly selects two parents from the current population,
performs crossover and mutation to create two offspring, and then the offspring replace
the nearest parent if they are more fit. In case of a tie, the parents take precedence. There-
fore, Deterministic Crowding (DC) results in two sets of tournaments: parent 1 against
child 1 and parent 2 against child 2; or parent 1 against child 2 and parent 2 against child
1. A set of tournaments that yields the closest competition is selected. The similarity is
calculated by using preferably phenotypic distance.

Mengshoel [103] proposed a probabilistic crowding technique. Under the proposal, a
probabilistic replacement rule allows individuals with higher fitness to win against indi-
viduals with lower fitness proportionally. As a result, a restorative pressure is permitted,
preventing the extinction of niches with lower fitness levels. The algorithm employs a
probabilistic replacement operator in addition to deterministic crowding. Evidently, in
probabilistic crowding, two comparable individuals X and Y play in a probabilistic tour-
nament, with the probability of X winning determined by: p(X) = f (X)

f (X)+ f (Y ) where f is
the fitness function.

Goldberg in his book [104], originally introduced the Sharing method, being the first
attempt to deal directly with the locations and preservation of multiple solutions among all
the niching techniques. The idea is to divide the population into separate subgroups based
on how similar the individuals are. An individual must share its knowledge with others
in the same niche. In heavily populated areas, fitness sharing affects the search space
by reducing the payoff. It reduces each individual’s fitness by a factor approximately
proportional to the number of similar individuals in a population.

Goldberg and Wang in [105] proposed an alternative sharing scheme known as the co-
evolutionary sharing. As a result, it overcomes the limitations of fixed sharing schemes
by allowing niche radius and location to be adapted to complex landscapes, as well as
allowing for better distribution of solutions in problems with many poorly spaced optima.
Coevolutionary sharing relies on the principle of monopolistic competition in economics,
which uses two populations - a population of businessmen and a population of customers.
In this case, the businessmen’s locations represent niche locations and the customers’ lo-
cations are analogous to solutions. Therefore, individuals in both populations strive to
maximize their own individual interests, thereby developing suitably spaced niches com-
prising of the most fit individuals.

Harik [106] introduced the Restricted Tournament Selection (RTS). RTS is a modified
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tournament selection for multimodal optimization. In RTS, GAs may choose which indi-
viduals will be replaced to insert a pair of elements. As in deterministic crowding, RTS
selects two parents from a population at random and produces two offspring by applying
crossover and mutation operations. For each offspring, the algorithm then picks a random
sample of w (window size similar to CF in Crowding) individuals from the population
and finds the closest one to the offspring, by applying either an Euclidean similarity or
Hamming (for binary coded variables) distance. The nearest member among the w in-
dividuals will compete with the offspring to determine who is fitter. Upon winning, the
offspring can enter the population by replacing its opponent. This type of tournament pre-
vents elements of the population from competing against those which are too dissimilar
to them.

Yin [107] proposed a clustering-based niching scheme to help the formation of the
niches and avoid the need for estimation of σshare needed in sharing technique. The
fitness is calculated based on the distance di,c between the i th individual and its niche
centroid, hence reducing significantly the time complexity. The formation of the niches
is based on the adaptive Macqueen’s K-means clustering algorithm. The best k individ-
uals are chosen from a set number (k) of seed points in this algorithm. A few clusters
are created from the seed points using a minimum allowable distance dmin between niche
centroids. The remaining members of the population are then joined to these existing
clusters or used to develop new clusters based on dmin and dmax. These calculations are
carried out in each generation. The final fitness of an individual is calculated using the
following relation:

Fi =
fi

nc
(
1− (di,c/2dmax)

α
)

where nc is the number of individuals in the niche containing the individual i,dmax is
the maximum distance allowed between an individual and its niche centroid, and α is a
constant.

Moscato [54] introduced the Memetic algorithm (MA) in 1989. MA tries to mimic cul-
tural evolution and, as stated by the author, it is a marriage between a population-based
global search and the heuristic local search made by each of the individuals. MA greatly
improves the accuracy of EAs in locating the optimal solutions for function optimization
problems, the reason being that concentrate on locating a promising area in the search
space and then use different local search techniques to strengthen the search within that
region. Given a representation of an optimization problem, a certain number of individ-
uals are created. The state of these individuals can be randomly chosen or according to
a certain initialization procedure. After that, each individual makes local search. The
mechanism to do local search can be to reach a local optima or to improve (regarding the
objective cost function) up to a predetermined level. After that, when the individual has
reached a certain development, it interacts with the other members of the population. The
interaction can be a competitive or a cooperative one. The competition can be similar to
the one described by the author in the Competitive and Cooperative method [54] or can be
similar to the selection processes of GA. The cooperative behaviour can be understood as
the mechanisms of crossover in GA or other types of breeding that result in the creation
of a new individual.

Vitela and Castanos [108] proposed the Sequential Niching Memetic Algorithm (SNMA).
SNMA combines a gradient-based local search procedure with a derating function, as

39



Chapter 3

well as niching and clearing techniques. It penalizes individuals who linger in areas near
previously found optima in order to promote the occupation in different niches in the
function to be optimized. The SNMA technique requires the usage of a niche radius.
However, unlike other algorithms were determining the actual value of this radius or the
species distance is complex, the performance results are not significantly sensitive to the
values of this parameter. This is a benefit in problems where the quantity and distribution
of the optima are unknown.

In SNMA, first, we have to initialize the population of the sequence with randomly gener-
ated individuals. Here the total number of optimal solutions, local and global, is given by
JTotal . A new generation is obtained after applying the genetic operators (i.e., evaluation,
selection, reproduction, and mutation) to all members of the current population. Like the
GAs, the population size is kept constant from generation to generation. Every individual
in the population at each generation moves toward its nearest peak following a hillclimb-
ing gradient-based algorithm. If, at some point, during this process, an individual leaves
the pre-specified search space, then the corresponding variable takes the boundary value
assigned.

It has been assumed that the population consists of M individuals and expects JTotal op-
timal solutions within the search space. Suppose J optimal solutions have already been
located (with J < JTotal ), the distances dm from each individual in the population to their
nearest optimal solution are determined. These distances, together with the niche radius
R, assign a suitable fitness function to each individual in the population. The niche radius
R is identified with the width of the inverted Gaussian function. Thus, the fitness value
of an individual will be closer to zero as it will approach any of the previously found
optima. The individuals in the population are now ordered according to their fitness value
in decreasing order from m = 1 to M.

Then a roulette wheel selection is used according to a probability of survival in which
clearing is introduced. This selection operator assigns larger survival probabilities to
individuals with a more significant fitness value. Regardless, the probabilities assigned
are not proportional to the fitness value of the individuals. Instead, they decrease linearly
(except for clearing) following the order position. Because clearing the SNMA has the
essential characteristic that it eliminates individuals lying within a niche radius from any
previously located optima promoting the occupation of niches not yet found by the MA.
Recombination is implemented through the parent-centric PBX crossover. The mutation
is applied to all population members with probability Pm.

The performance of the SNMA is not highly sensitive to the selection of the niche radius
R, a feature advantageous, especially when the number and distribution of the optima
are unknown. Furthermore, an advantage of SNMA over other algorithms is that it does
not need to maintain permanent populations around each optimal found, and it is only
necessary to store the location of these peaks.

Observation Studies

The following studies are essential observations made in the literature where we can see
the impact of some environmental aspects in the search algorithms and valuable compar-
isons between evolutionary algorithms.
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Harman et al. [83] demonstrated the effect of this domain reduction in the search space,
results were presented from the application of local and global search algorithms to real
world examples. The main goal of this study was to provide evidence to support the claim
that domain reduction has implications for practical search–based test data generation.
The conclusions withdrawn were the following:

• There is no relationship between search space reduction and reduction in cost for
random search.

• There is a significant improvement in cost reduction for both hill climbing and the
genetic algorithm.

• The reduction in cost is more for the genetic algorithm than for hill climbing.

• There is no relationship between search space reduction and search effectiveness in
terms of coverage for any of the search algorithms.

The SA and the GA are powerful optimization methods. However, both have limitations.
Koakutsu et al. [81] discussed the characteristics of SA and GA. One of the essential
features of SA is its stochastic hill climbing. In order to exhaustively search the solution
space, SA introduces small random changes in the neighborhood and thus is computa-
tionally intensive. Furthermore, GA has crossover operations, which allow it to locate
the global optimum in the large search space at a rough and rapid pace. However, it does
not have a way to accommodate small changes in the solution space explicitly. In or-
der to combine the good features of these two methods, a new method was proposed by
Koakutsu et al. [81], named Genetic Simulated Annealing (GSA).

The GSA [81] combines the hill-climbing features of SA and the crossover operation
from GA. GSA has three primary operations: SA-based local search, GA-based crossover
operation, and population update. SA-based local search slightly changes the local search
space while preserving the best-so-far local solution. When the search comes to a large
flat area or the system is frozen, the GA-based crossover operation creates a big jump
in the search space. GSA updates the population by replacing the worst solution. This
replacement can be conducted in two ways: 1) The weakest solution in the population is
replaced with the solution produced by the crossover. 2) At the end of the local SA-based
search, the weakest solution is replaced with the local best-so-far solution in the local
SA-based search.

Xiao et al. [15] reported experimental results of the effectiveness of five different opti-
mization techniques over five different C/C++ programs. The experiments took a white-
box approach, and the same fitness function is used for the same program under test
by each heuristic test data generator. This means that the “fitness landscape” factor has
no influence on the comparison process. Four optimization algorithms were used in the
experiments, which were Genetic Algorithm (GA), Simulated Annealing (SA), Genetic
Simulated Annealing (GSA) and Simulated Annealing with Advanced Adaptive Neigh-
borhood (SA/AAN). For the purposes of comparison, a random test data generator was
used. GA has the best overall performance, according to the results. In fact, the GA
method consistently outperforms the competition. With the Time Shuttle, Perfect Num-
ber, and Rescue programs, GA provides full condition-decision coverage. However, the
GA was unable to achieve complete coverage with the other two SUT, despite this, no
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other optimization technique was able to perform better. The GA has the ability to keep
the beneficial gene transferred down from previous generations and pass it down to suc-
cessive generations, resulting in high-quality test cases being generated quickly. GA and
SA/AAN performed admirably in both input spaces, with average coverage levels of 85
percent and above. To obtain the coverage levels achieved by the GA and SA/AAN meth-
ods, the SA and GSA techniques required a lot more effort. With smaller input spaces, the
SA and GSA approaches performed significantly better than with larger input spaces. In
general, GSA did not perform well in the experiments, and it only slightly outperformed
the Random test-data generator. However, the parameters applied in the GSA algorithm
used in the experiments, were not optimally tuned, which could explain these results.
With a basic program and a modest input space, the Random test data generator performs
well. Nevertheless, on programs with a complex structure and a vast input space, it per-
forms poorly and inefficiently. As a result, the SA, GSA, and Random techniques may
not be suitable for industrial applications with huge input spaces.

3.1.3 Discussion

In this sub-section, we discuss our observations of the analyzed studies of Evolutionary
Algorithms’ components. We first focus on the probabilities of crossover and mutation
and then highlight a few relevant aspects of the analyzed approaches.

The main emphasis in the presentation of the empirical studies was to understand which
probability values and techniques were used for the variation operators (i.e., crossover and
mutation) and which methods existed in the literature. Moreover, we also sought studies
related to parent selection, fitness function, and population. Subsequently, We had the
following questions:

• RQ-1: Which interval of values for the probability of crossover and mutation are
considered in the literature?

• RQ-2: Which interval of values for the population size are considered in the litera-
ture?

• RQ-3: Should these values be static or dynamic across the number of generations
in an Evolutionary Algorithm?

• RQ-4: Is there any standardized method to help tune these parameters?

In an attempt to answer RQ-1, we observed several studies dating from 1975 through
1990 reporting crossover probabilities between 0.6 and 0.95 [55–57]. Nowadays, it is well
comprehended in the literature that the crossover rate should not be too low, and values
smaller than 0.6 are seldom adopted. While for crossover probabilities, the values should
not be too low, the opposite is the standard for the mutation probability. We identified
the interval of values between 0.001 and 0.01. However, since different problems to
be solved may behave differently in these static values, some renowned authors in the
literature [66, 67, 70] identified that a pm = 1/L, where L is the length of the bitstring,
was an excellent mutation rate.
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Looking at RQ-2, concerning population size, we identified in the papers an interval
ranging from 20 up to 100 [55–57]. However, values higher than 60 appears to be too
high.

Regarding RQ-3, Eiben et al. [62] concluded that a general drawback of the parameter
tuning approach, regardless of how the parameters are tuned, is based on the observa-
tion that a run of an EA is an intrinsically dynamic, adaptive process. This concept is
consequently contradicted by the adoption of inflexible parameters that do not vary their
values. Furthermore, it is self-evident that different parameter values may be ideal at
different stages of the evolutionary process [72, 73, 89, 109–111].

It may be advantageous to make big mutation steps in the early generations to explore
the search space, and modest mutation changes in the subsequent generations to fine-tune
the sub-optimal chromosomes. As a result, using static parameters can degrade algorithm
performance on its own. Using parameters that can change over time is a reasonable way
to overcome this problem, that is, by replacing each parameter by a function p(t) where
t represents the generation counter [68, 94]. However, choosing the best static parame-
ters for a given problem can be complex, and the optimal solution can be influenced by
a variety of other factors (e.g., such as the applied recombination operator, the selection
mechanism). Therefore, creating an optimal function p may be even more challenging.
The downside to the p(t) approach is that the parameter values are adjusted determinis-
tically by time t, regardless of how far along the problem is being solved (i.e., without
taking into account the current state of the search). However, researchers have enhanced
their evolutionary algorithms by applying such simple deterministic criteria (i.e., p(t))
to improve the quality of outcomes their algorithms produced while working on specific
problems.

For RQ-4 there are some exciting methodologies where the authors attempted to stan-
dardize the tuning of the Evolutionary Algorithm’s parameters. The authors tried clever
approaches, such as adding the mutation probability codded in the bits of every individual
where the mutation rate self-adapts throughout the generations [70, 71]. Others developed
sophisticated mechanisms that adaptively adjusts the crossover and mutation probabilities
proportionally to their recent contributions to chromosomal construction [59, 69, 74].

To conclude, finding acceptable parameter values for an evolutionary algorithm is, as a
result, a poorly structured, ill-defined, and challenging problem. Several studies tackle
this problem with innovative approaches. Nevertheless, in most cases, the problem to be
solved has particularities where these approaches will not outperform simple deterministic
criteria. Regardless, EAs generally outperform other techniques on this type of problem.

3.2 Studies on Software testing

In this section, we examine software testing studies using genetic algorithms that stand
out in their techniques, characteristics, and comparisons for software testing, particularly
Search-Based Software Engineering. Then, in sub-section 3.2.1, we present the academic
research contributions in different techniques for testing REST web services. We con-
clude this chapter with sub-section 3.2.2, where we discuss our main observations con-
cerning the work presented and emphasize some limitations of the current state-of-the-art
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practices on RESTful API testing, namely in the evolutionary approaches.

Software testing can be modeled as an optimization problem, where one wants to maxi-
mize the code coverage and fault detection of the generated test suites. Then, once a fit-
ness function is defined for a given testing problem, a search algorithm can be employed
to explore the space of all possible solutions (test cases).

Buehler and Wegener [112] use evolutionary algorithms to test specification conformance
of an early version of an automated vehicle parking system. This system seeks to auto-
mate the parking of a vehicle lengthwise into a parking spot by gathering and analyzing
data from environmental sensors that detect nearby objects. Individuals in the search are
just parking scenarios that specify the parameters of a parking place, including collision
zones and the vehicle’s initial position. With this information, the parking control unit is
invoked, and a simulated parking maneuver is simulated. With a successful test being one
that causes a collision, the objective function is simply the value of the smallest distance
between the car and the collision area recorded during the simulation. In the experiment
undertaken, roughly 900 scenarios were simulated, with more than 25 scenarios found
guiding to collisions. After analyzing these scenarios, it was discovered that the con-
troller had difficulties with scenarios where the parking space was some distance away,
and the starting position was already near the collision area on one side. A vulnerability in
the simulation environment was also revealed, where it was discovered that calculations
concerning the position of the car were too inaccurate. Such vulnerability culminated in
more simulated collisions with the collision site.

This work by Buehler and Wegener is interesting since we can interconnect the "success-
ful test being one that causes a collision" in their work with ours being the generation of
a valid request (i.e., a request that generates a response with status code 200) to the work-
load or an invalid request in the faultload to the REST service. Furthermore, the authors
use “the value of the smallest distance between the car and the collision area recorded
during the simulation in the objective function", similar to resembling the distance be-
tween two responses from the RESTful API (e.g., the levenshtein distance [113] between
the content of two responses).

Harman and Jones in [14] call this new field of software engineering research “Search-
Based Software Engineering”. They argue that software engineering is ideal for the appli-
cation of metaheuristic search techniques. They also note that the search-based technique
must outperform the random technique in order to be qualified as worthy of even being
considered a successful application. The random method, therefore, provides the lowest
benchmark. If the metaheuristic method does not outperform the random method, it is
likely because it is poorly implemented. They also expect to see dramatic growth in the
field of search-based software engineering within the next few years. They list the likely
application areas and the developments that the growing research capacity will provide.

Boden and Martino [114] used a GA to generate API tests. They concentrated on the
operating system error treatment routines. The chromosome uses order-based [115] en-
coding to represent an API call or command invocation, followed by ordered parameter
codes. Encoding is at the byte level, allowing simple associative-array decoding of call
and parameter codes. The genetic operations of order-based crossover and mutation (byte,
non-order based) were used. The cycle used to process a single GA population consists
of the following steps: 1) On the GA-host system, each chromosome is used to derive an
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API test case (the phenotype); 2) each API test is sent to a test system where the API calls
or command invocations are executed; 3) The API test results are sent back to the GA-
host system; 4) The GA then evaluates the results; 5) Chromosomes with higher fitness
are proportionally selected for the next generation. Finnaly, the fitness function was a
weighted sum of various factors of a test response with an attempt to assess the sequences
of operating system calls.

Tracey et al. [16, 116] used genetic algorithms and simulated annealing to generate input
data to test handling runtime error conditions in code. These runtime errors are exceptions
in many languages, such as C++ and Java. These languages provide explicit exception-
handling constructs so that exception-related code can be separated from the main logic
of the program. The authors generate test data for triggering an exception subsequently
for the exception handler’s structural coverage. Seven basic programs without any more
than 200 lines were used in the experiments. Metaheuristic techniques were discovered to
generate test data for practically all exception conditions within the code and full branch
coverage of exception handlers where they existed. An industrial experiment was also
undertaken on an engine controller. Here, test data were generated, raising various ex-
ception conditions. However, it was found that these exceptions could not be raised in
practice since input situations had been generated, which were not possible during the
actual operation of the system.

Mansour and Salame [84] compared Evolutionary Testing, Hill Climbing, and Simulated
Annealing for path coverage test data generation, revealing that Hill Climbing discovers
test data faster than Evolutionary Testing and Simulated Annealing, while Evolutionary
Testing and Simulated Annealing can cover more paths. Simulated Annealing outper-
forms Genetic Testing, according to the researchers. Hill Climbing, on the other hand, is
only applied to programs with integer inputs, and the research is limited to eight functions
with fewer than 86 lines of code.

Hunt in [117] used a GA for testing cruise control system software. In his work a GA
chromosome represents the input and corresponding expected output. The fitness value
is assigned, if the measured output differs from the expected output. The greater the
difference, the higher the fitness value. The expected output is derived from the origi-
nal software specification. Hunt states that software is often developed by a third party,
and the tester only has the software, which he treats as a black-box and tests against the
corresponding requirement specification. A GA chromosome must be able to represent
all input values that the software can process, as well as the values that its single output
can have. He claims that the chromosome must be able to represent both the valid and
erroneous inputs. In his approach the GA is used as an aid for a human tester. The GA
identifies failure scenarios, but it is up to the human tester to identify the faults that led to
the failure.

Lin and Yeh [118] have also studied automatic test data generation by a GA for a chosen
subpath. Their method uses a so-called "normalized extended Hamming distance" to
guide the optimization process and to test the optimality of the candidate solutions. The
fitness function, called Similarity, defines how similar the traversed path is to the target
path, is used to choose the surviving test cases. Optimality here means that the test case
(i.e. a particular input) forces the program to follow the given path of program statements
when executed. They claim that a GA is able to significantly reduce the time required for
automatic path testing.
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Minohara and Tohma [119] developed a GA to estimate the parameters of a so-called
“hyper-geometric distribution software reliability growth model” (HGDM), in which the
number of errors increases as a function of time. A set of parameter values is represented
by its GA chromosome. The fitness value is calculated by comparing observed and es-
timated test-and-debug data for errors. They tried to minimize the number of errors and
their results suggest that the GA approach may be a more reliable method for obtaining
the estimations of their problem.

Kasik and George [120] developed a GA to simulate software inputs in an unexpected,
but not completely random, way. The GA is applied as a repeatable technique for creating
user events that are used to drive standard automated test tools, allowing the system to
imitate various forms of naive user behavior. The system seeks to replicate how a new user
learns to use a program. The fitness value is determined by how much the chromosome
directs the activities to resemble beginner behavior. A specific reward system based on
observations has been developed to describe novice behavior.

Bingul et al. [121] apply a GA to test the war simulation software THUNDER with the
black box method. They applied multiobjective optimization with the Pareto method,
and define three different ways to assign fitness values. The THUNDER software can be
viewed more like a two-player game in which blue represents the friendly side and red is
the enemy side, and the problem itself as four main objectives for the different scenarios:
(i) Minimize the territory that blue side losses; (ii) Minimize the blue side aircraft lost;
(iii) Maximize the number of red side strategic targets killed; (iv) Maximize the number of
red side armor killed. As previously mention this is a typical multiobjective optimization
problem. They try to optimize software behavior, war strategies, and the running time.
The authors claimed that the GA was able to provide optimal or near optimal solutions.

Last [122] used the fuzzy based extension of GA (FAexGA) approach for test case gen-
eration. Using mutated versions of the original program, the goal is to uncover a minimal
number of test cases that are likely to reveal faults. Crossover probability varies according
to the age intervals assigned during a lifetime in the FAexGA technique. Young and old
individuals have a low crossover probability, whereas other age categories have a high
crossover possibility. The crossover probability of very young offspring is low, allow-
ing for exploration. On the other contrary, older offspring have a lower probability of
crossover, and dying out would help avoid a local optimum or premature convergence.
Middle-aged offspring, on the other hand, are usually used for crossover operations. The
fuzzy logic controller (FLC) is used to calculate the probability of crossover, with state
variables such as chromosome age and lifetime (parents). FLC’s fuzzification interface
includes variables that indicate an offspring’s age. As a result, FLC assigns the values
Young, Middle-age, or Old to each parent, using the concepts of fuzzy set theory [123].
The membership of each rule in the FLC rule base is determined by these values. The cen-
tre of gravity (COG) is a defuzzification method that calculates real values for crossover
probability using the FLC’s linguistic variables. Therefore, and accordingly to this tech-
nique, its main goal is on the exploration and exploitation of individuals.
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3.2.1 Studies on RESTful API Testing

In this section, we analyze related studies on testing RESTful APIs, where we focus on
approaches that rely on multiple techniques for testing. We divided the studies in two
categories the evolutionary and non-evolutionary approaches. Also, our main concern
was to understand if any of related studies target robustness testing of REST web services.
In Table 3.2, we compiled these categories as way of resume the main findings in the
literature. We wrap up this section with a few paragraphs highlighting the key trends we
observed in the assessed methodologies.

Figure 3.11 demonstrates an example of a tool for testing the robustness of RESTful APIs.
It generates valid and invalid requests according to the RESTful API specification. The
figure is inspired by the tool presented in [8] and described later in this section.

The main takeaway of Figure 3.11 is the logic behind the tool. It starts by parsing the
specification file, and then a Workload is generated with valid requests accordingly with
the specification of the REST service. Next, after the valid requests are sent to the service,
faults are injected to create invalid requests, and once again, they are sent to the service.
Such an approach can be seen as fuzzing testing since it sends random valid requests and
then invalid ones. The responses from the generated requests are stored in files for the
tester to analyze a posterior.

RESTful API

Specification


(e.g., OpenAPI)

Testing Tool

Specification 

parser

HTTP request

HTTP response

Generated

Requests

Workload

Faultload Requests
Controler


Requests with
Injected faults 

REST service

Stored

Requests

Figure 3.11: Example of a tool for testing RESTful APIs, inspired by [8]

Identification of studies

For the identification of the studies present in this related work, we used three well-known
online libraries to search for primary studies, and they are the following:

• ACM Digital Library [124]

• Google scholar [125]

• IEEE Xplore [126]

Our initial choice of data source was Google Scholar since it is renowned for indexing a
vast number of works. We conducted the search using the following query string, which
was established based on early testing of different queries while using the relevant search
engines of the three online libraries:

47



Chapter 3

(((REST AND (services or API)) or ("RESTful API")) AND ((test OR testing) OR Fuzzing))

We had the objective of finding state-of-the-art tools for black-box testing of REST ser-
vices. To achieve it, we needed to agglomerate RESTful API, REST API, and REST ser-
vices, as the authors use these similar three keywords, which are the central theme of our
targeted search. Also, initial observations indicate the use of fuzzing or testing by the
writers with the absence of thermology Robustness, which was found only in one paper
[8].

We also did recursive research by dissecting papers that were referenced by other key
papers and authors. For instance, any paper of Andrea Arcuri [19, 127–132] had key
references for related works. We would also recursively analyze the references of a new
identified tool or approach. Furthermore, we took advantage of the survey: RESTful API
Testing Methodologies: Rationale, Challenges, and Solution Directions [133] that helped
identify new studies in the related area.

Studies

Table 3.2: Techniques for testing REST services

System RESTful APIs Arcuri [128, 129], Zhang et al. [127], Liu and Chen
[134], Laranjeiro et al. [8], Viglianisi et al. [9], Atl-
idakis et al. [10], Martin-Lopez et al. [11], Karls-
son et al. [12], Ed-douibi et al. [13], Segura et al.
[135], Chakrabarti and Kumar [136], Chakrabarti and
Rodriquez [137], Godefroid et al. [138], Fertig and
Braun [139], Wu et al. [140]

Type of testing Robustness Laranjeiro et al. [8]

Other Arcuri [128, 129], Zhang et al. [127], Liu and Chen
[134], Viglianisi et al. [9], Atlidakis et al. [10], Martin-
Lopez et al. [11], Karlsson et al. [12], Ed-douibi
et al. [13], Segura et al. [135], Fertig and Braun
[139], Chakrabarti and Kumar [136], Chakrabarti and
Rodriquez [137], Godefroid et al. [138], Wu et al. [140]

Evolutionary algo-
rithms

GA Arcuri [129], Liu and Chen [134]

(1+ 1) EA Arcuri [128], Zhang et al. [127]

None Laranjeiro et al. [8], Viglianisi et al. [9], Atlidakis et
al. [10], Martin-Lopez et al. [11], Karlsson et al. [12],
Ed-douibi et al. [13], Segura et al. [135], Fertig and
Braun [139], Chakrabarti and Kumar [136], Chakrabarti
and Rodriquez [137], Godefroid et al. [138], Wu et al.
[140]

Non-Evolutionary approaches

The bBOXRT tool was presented by Laranjeiro et al. [8]. It is a tool for black-box ro-
bustness testing of REST services. Its concept is divided in four steps. In the first step,
the tool starts by parsing the basic information of the system under test. An interface
description document (OpenAPI [6]) is read and analyzed. Information as the Uniform
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Resource Identifier (URI), the available resources and the HTTP methods, input and out-
put datatypes, error codes, and example requests are obtained to generate new requests.
For the second step, a valid workload is generated randomly, according to the specifica-
tion. This workload involves sending requests to the service so that the behavior of the
service can be understood in the absence of any errors. The third step involves creat-
ing faulty requests by injecting a single fault into each request (e.g., an integer with its
maximum value plus 1) present in the workload previously generated. Using the faulty
requests, the service is triggered to act in an incorrect manner. Last but not least, in the
fourth step, the responses to the services are stored to support the behavior analysis that
follows.

Segura et al. [135] proposed an entirely different black-box approach, where the oracle is
based on metamorphic relations among multiple requests (inputs) and responses (outputs).
It operates by making small changes to the testing environment while keeping the inputs
to system calls constant, then evaluating whether the results of these calls, specifically
the metamorphic relation output patterns, fulfill specific requirements. For instance, they
send two queries to the same REST API, where the second query has stricter conditions
than the first one (e.g., by adding constraint). The result of the second query should be
a proper subset of entries in the result of the first query. When the result is not a sub-
set, the oracle reveals a defect. However, this approach only works for search-oriented
APIs. Furthermore, this technique is only partially automatic since the user is supposed to
identify the metamorphic relation to exploit manually and what input parameters to test.
The approach was evaluated on the Youtube and Spotify REST APIs, and 11 issues were
discovered in the services.

Viglianisi et al. [9] proposed a black-box tool, RESTTESTGEN, intended to automatically
generate test cases for REST API. The tool uses the API Swagger specification to know
which operations can be called and their input/output data format, to send well formed
HTTP requests. The authors implemented in the tool an Operation Dependency Graph,
mapping the dependencies between operations. Assuming there is a data dependency
between two operations (n1 and n2), a common field in the output (response) of n1 and
in the input (request) of n2, then the intuitive meaning of this dependency is that the first
operation n1 should be tested before n2, because the output of n1 could be used to guess
input values to test n2. Two fields (parameters) are assumed to be common when: (i) they
are of atomic type (i.e., string or numeric) and they have the same name; (ii) they are of
non-atomic type (i.e., structured) and they are associated to the same schema.

Chakrabarti and Kumar [136] propose a test framework, called Test-the-REST (TTR),
used to execute test cases based on specific REST requirements. The tester writes a test
case represented as an XML file with essential pieces of information, such as the HTTP
method, the URI of the resource, and the expected representation, and is used as input
to the test case validation module. Once validated, a test case is executed, and when
the response is obtained from the target API, it is then used for verifying pass or fail
conditions defined in the corresponding test case. This process is repeated for each test
case that a tester provides to the tool. The results showed that the framework could detect
a considerable amount of faults in the test RESTful service.

Later Chakrabarti and Rodriquez [137] presented a method of testing RESTful web ser-
vices called connectedness. Such testing is based on every resource in the web service
being reachable from the base resource by successive HTTP GET requests. The imple-
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mented method takes advantage of a formal web service specification to test its connect-
edness automatically. The specification is described in WADL++, an enhancement of
the Web Application Description Language (WADL), which defines the graphs underly-
ing the hierarchies between the available resources in the service. Consequently, only
web service developers can supply such a specification file. Moreover, after creating the
graph, a Depth-First Search is carried out by making a GET request on the base URI and
extracting all the URIs that appear in the response payload. The process is repeated on
all these URIs in a depth-first way and continues until no more unvisited URIs are being
visited or a maximum search limit is reached. Then, by comparing the resulting URIs
list of both the resource graph and the WADL++ description, a test verdict is conducted,
and if there is a difference, then the web service is not fully connected. As an important
note, specific requirements such as security (e.g., Basic authorization) are not entirely
worked out in this approach, resulting in some resources being blockaded and, therefore,
originating misleading results.

Atlidakis et al. [10] presented a stateful REST API fuzzer, with the name RESTler and
written in python. The authors stated that RESTler was the first automatic stateful REST
API fuzzing tool for test generating with the objective of finding security vulnerabilities.
It starts by doing a static analysis of an OpenAPI specification (also know as Swagger)
[6], and then generates and executes tests in a stateful manner. It generates requests by in-
ferring dependencies among request types declared in the OpenAPI specification [6], and
also by dynamically analysing responses to intelligently build request sequences in order
to avoid requests combinations that can lead to future errors in the server. Furthermore,
RESTler relies in a user-configurable dictionary to fuzz input values.

Martin-Lopez et al. [11] proposed an automated black-box testing tool for RESTful, with
the name RESTest. The main feature of this tool is the automated analysis of interparam-
eter dependencies, which enables for the automated generation of valid test cases using
constraint solvers. In fact, certain REST APIs impose constraints that limit not only input
values but also how input values can be combined to fill valid requests. The OpenAPI
grammar as of now does not allow for formal documentation of these kind of dependen-
cies. In this note, Martin-Lopez et al. [141] introduced a domain-specific language, called
inter-parameter dependency language (IDL). RESTest relies in the so called IDL to map
the inter-parameter dependencies of the SUT. Finally, RESTest can produce both nomi-
nal and faulty test cases using two strategies: random testing (RT) and constraint-based
testing, by taking into account the constraints of inter-parameter dependencies.

Karlsson et al. [12] presented the QuickREST to generate input values accordingly to
the API’s specification. QuickREST follows a black-box approach to generate test cases
for REST APIs automatically. The test inputs are generated using a two-fold mechanism:
(i) randomly generated values that are agnostic to the specification, as well as (ii) values
that are generated at random and comply with the parameter requirements in the OpenAPI
document[6]. QuickREST uses a Clojure (functional programming language) variant with
the name TestCheck [142], which provides functionality for defining data specifications
and validating whether the given data conforms to those specifications. In addition, a
key feature of QuickREST is its property-based testing (PBT), which involves generating
input data and determining if it holds specific properties when exercised with that input
(e.g., testing a sort function, the input should be an array sorted).

Wu et al. [140] presented RESTCT, a systematic and fully automatic approach using
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Combinatorial Testing (CT) to test RESTful APIs. The approach first generates a con-
strained sequence covering array to determine the execution orders of available operations
and then applies an adaptive strategy to create and refine several constrained covering ar-
rays to concretize input parameters of each operation. The overall process of RESTCT is
divided in two phases: (1) Operation Sequence Generation and (2) Input-Parameter Value
Rendering.

In the operation Sequence Generation, the approach seeks to model the input space of
available operations and construct a sequence covering an array as a representative set
of operation sequences by identifying dependency relationships between the operations.
Regarding the Input-Parameter Value Rendering, it models the input space of input-
parameters of each operation, and sample representative value assignments via several
covering arrays to produce concrete HTTP requests. The authors have four different tech-
niques to generate input values for each input parameter identified in the operation. The
first technique, which the authors call Dynamic, uses output values parsed from previous
responses with the most similar names to the input parameter, assigning it as its value
domain. The second technique uses values (i.e., enums or default values) from examples
provided by the developers in the Swagger (i.e., OpenAPI) specification. The third one
uses values from previous successful requests (i.e., returning HTTP status code of 200
range). Lastly, for the fourth technique, the values are generated randomly by respecting
the domain of the parameter’s data type when the other three methods cannot identify/-
generate a new value.

With the above approaches to determine input parameters and infer constraints, RestCT
will then utilize an adaptive strategy to generate concrete HTTP requests to execute oper-
ations in the given operation sequence.

Godefroid et al. [138] presented differential regression testing, which is a technique that
finds regressions on REST APIs by comparing the behavior of different system versions
against each other using the same inputs [143]. The approach considers regressions (i.e.,
breaking changes) in the API specification of the RESTful service and the software com-
ponents of the service. The technique is applied to pairs of different versions to find re-
gression bugs along two dimensions: when the service changes and when new clients are
derived from the changed specification. Consequently, to detect a potential regression, the
new version must produce an output different from the previous version. Moreover, the
authors used RESTler [10], a stateful REST API fuzzer that automatically generates and
executes sequences of HTTP requests defined in the API specification. The proposed tech-
nique can automatically detect deviations and highlight possible regression bugs based on
the HTTP responses obtained during testing. Lastly, the authors assessed the approach
across 17 different versions of the Microsoft Azure networking APIs from 2016 to 2019
[144], where five regressions were detected in the official API specifications and nine in
the software components of the service.

Fertig and Braun [139] introduced an automated test case generation approach via Model-
Driven testing of RESTful APIs. The approach not only automatically generates the
source code for the API but also a large batch of functional and security test cases based
only on an abstract RESTful API model that consists entirely of resources, states, and
transitions. The authors designed the model for RESTful APIs using the Xtext frame-
work and established the test cases on the supplied description. They were enabled to
provide templates for the test cases by using Xtend, which is a Java dialect capable of

51



Chapter 3

implementing code generators within Xtext. The evaluation of a model-based software
development-generated RESTful API was successful since the authors could produce over
20,000 test cases for only an API with four resources.

Ed-douibi et al. [13] proposed an approach to generate specification-based test cases for
REST APIs. Their approach has as its goal ensuring that such APIs match the require-
ments defined in their specification and ensure a high coverage level for both nominal
and fault-based test cases. It is divided in four steps. In the first step extracts the model
by parsing the OpenAPI specification file [6]. Secondly, extends the previously created
method by adding parameter examples which will be used as input data for the test cases.
The third step, generates a TestSuite model by deducing the test case definitions for the
API operations. Finally, the TestSuite model is converted into executable code in the last
phase (e.g., JUnit). During the Transformation from OpenAPI to TestSuite (step 2 to step
3), two rules are defined, one generates nominal test case definitions given correct input
data, and the second generates faulty test case definitions given incorrect input data (e.g.,
for an integer its maximum value plus 1).

Evolutionary approaches

Arcuri [129] proposed a technique to automatically collect white-box information from
the running web services, and, then, exploit such information to generate test cases using
an evolutionary algorithm. The approach was implemented in a tool called EvoMASTER
[19]. The evolutionary algorithm used iteratively improves upon randomly generated test
cases that aim to maximize code coverage and the amount of error status code responses
from the service under test. A GA was used and each individual represents set of test
cases, randomly initialized, with variable size and length. The fitness of a test suite is the
aggregated fitness of all of its test cases. The crossover operator will mix test cases from
two parent sets when new offspring are generated. The mutation operator will do small
modifications on each test case (e.g., like increasing or decreasing a numeric variable by
1). They support all valid types in JSON (e.g., numbers, strings, dates, arrays and objects)
and some of them need to be treated specially. For example, for date times, as genotype
they consider an array of six bounded numeric values: year, month, day, hour, minute and
seconds. They additionally consider valid values (e.g., minutes are from 0 to 59 ), but also
some invalid ones (e.g., −1 minute) to check how the SUT behaves when handling time
stamps with invalid format. When such date is used in a JSON variable, the phenotype
will be a date string composed from those six integer values. When a test is executed,
they check all targets it covers. If it covers a new target, the test will be copied from the
test suite and added to an archive, to not lose it during the search (e.g., due to a mutation
operation in the next generations). At the end of the search, all tests stored in the archive
are collected, the redundant ones are removed, and the minimised suite is written to disk
as a test class file.

Later on Arcuri presented the Many Independent Objective (MIO) algorithm [128]. MIO
[128] combines the simplicity and effectiveness of (1+1) EA [53] with a dynamic popu-
lation, dynamic exploration/exploitation tradeoff, and feedback-directed target selection.
It holds a test archive, with a different population of tests of size n (e.g., n = 15) for each
testing target. As a result, given z targets, the archive can keep up to n×z tests at the same
time. The archive will be empty at the start of the search, thus a new test will be generated
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at random. From the second stage on, MIO will choose whether to randomly sample a
new test (probability Pr) or to copy and change (i.e., mutate) an existing test from the
archive (probability 1−Pr). Finally, when a new test is sampled (i.e., mutated), its fitness
is evaluated, and if necessary, it is stored in the archive. Based on the fitness value of a
test, a duplicate of it may be saved in 0 or more of the z populations in the archive. Each
target will have a heuristic score h in the range [0,1], with 1 indicating that the target is
covered and 0 indicating the worst possible heuristic value.

EvoMASTER also provides introductory support for black-box testing of REST services,
essentially random generation with no support for data generators or inter-parameter de-
pendencies [131]. However, the black-box configuration in EvoMaster performs signifi-
cantly worse than the white-box strategy implemented in the tool [130].

After Arcuri presented the MIO algorithm [128], a more recent version was proposed by
Zhang et al. [127]. The test case generation and optimization procedure in this version
was improved by taking into account the semantics of HTTP methods used in REST
services. The main idea was to define a set of templates (e.g., an operation mapped
with GET method may be dependent of a POST method from another operation) that
list meaningful combinations of actions on one resource based on the semantics of the
HTTP methods. Therefore, the authors used these templates to sample new individuals,
instead of sampling them completely at random. This approach can be seen as inter-
dependability between operations of the API. When compared to the previous version of
the MIO algorithm, the results showed an overall improvement in performance throughout
all case studies, with increased code coverage and error response finding.

Liu and Chen [134] presented an approach to optimized Test Data Generation for RESTful
Web Service. Their approach starts by reading and parsing an extended WADL specifi-
cation of the API. This document describes the data type of the input parameters, and
a restriction element must be added to this XML Schema to describe the constraint of
certain input data types accurately (e.g., an integer with a minimum value of 0 and a max-
imum value of 20). Input data is then generated according to the data types and their
constraints by equivalence partitioning with boundary value analysis. After the last step,
the generated data is mutated according to each data type through one of a set of seven
mutation operators. In order to reduce the cost of testing and select more effective test
data, a genetic algorithm supported by a K-means clustering was used to evaluate the
bug-detection capability of the mutants (i.e., data that suffered a mutation). The method
was tested on a straightforward RESTful online shopping service system. However, the
results did not reveal anything compelling.

3.2.2 Discussion

In this section, we present a discussion regarding our observations of the investigated
methodologies for software testing with evolutionary algorithms and the testing of REST
services.

It is argued that software engineering is the ideal scenario for the application of meta-
heuristics, as the search-based approach has to outperform the random approach [14].
According to the extensive surveys [145, 146], GAs and their extensions are the most
used search algorithms in search-based testing (SBT) literature (73 %), followed by more
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limited use of simulated annealing and its extensions (14 %) [146]. Furthermore, most
papers (78 %) do not target any specific faults but focus on structural coverage of differ-
ent test models. These algorithms, with slight adjustments to adapt to the task at hand,
were used to handle several problems, including data test generation. Their frequent use
also resides in the fact that there exist many publications on the application of GAs to
various problems. Moreover, it is a strong indicator that such algorithms can be prac-
tical and achieve good results for the types of problems related to search-based testing.
Consequently, substantial empirical data is available for the different parameter settings
required by the GAs. This data dramatically helps choose appropriate parameters for a
specific problem to be solved.

Regarding RESTful API testing, several methodologies were applied to carry out the test-
ing of REST services. For instance, metamorphic relations between input and output in
order to evaluate specific requirements, dependency graph to map dependencies between
operations available in the REST service. The use of a functional programming language
to allow the definition of specific dependencies between the properties of the parameters
in a request. We also identified different types of testing, such as Differential Regression
testing to compare the behavior of different system versions of a REST API, model driven
testing, robustness testing, white-box and black-box testing.

1 1

2

1 1 1 2 1 4 1 1

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

1 + 1 EA

GA

None

Figure 3.12: Distribution of REST API testing methodologies occurrences based on Evo-
lutionary Algorithms over the years.

Although we can identify different techniques that were carried out in the literature,
the same cannot be stated regarding evolutionary approaches for testing RESTful APIs.
Looking at Figure 3.12, where we identified the number of occurrences of the studies con-
cerning evolutionary approaches, we quickly recognize that Andrea Arcuri developed the
most work with the EvoMaster project [19, 130, 147] (i.e., 3 out of 4 papers), which we
identified as the current state-of-the-art tool for the testing of REST services, mostly fo-
cusing on white-box testing. However, it also has a black-box mode that takes advantage
of its (1+1) EA used for unit testing.

Taking a deep dive into robustness testing, according to Laranjeiro et al. [1] and the con-
ducted systematic review on Software Robustness Assessment in which the authors found
that the work encountered on web applications is relatively scarce. The authors concluded
at the time of writing the survey (2021) that Web services robustness evaluation has seen
a peak of research being carried out in the late 2000s, with some work on Web Appli-
cations though with the majority focusing on SOAP web services. However, research
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interest has stopped, and they could also not identify robustness evaluation research of
more recent web service implementations, such as REST services. Moreover, in the set of
145 papers analyzed for the extensive systematic review, only one paper proposed a tool
by the name of Chizpurfle [148] for testing proprietary Android services with a fuzzing
approach based on genetic algorithms. It also showed that services associated with more
complex APIs benefit most from the evolutionary approach.

Even though SOAP services have been extensively tested for robustness, REST services
have not been put under the same scrutiny [1] despite their wide range of applications.
Consequently, to the best of our knowledge, there are no studies on black-box robustness
testing for REST services using an evolutionary approach to generate robustness tests.
However, a few automated tools for software testing of REST services have been devel-
oped, where most of them either use dictionaries or random inputs for data generation
[8–13]. Nevertheless, several observations suggest that the random technique may not be
appropriate for industrial applications with large input spaces [15, 16].
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Evolutionary Approach and Testing
Tool Architecture

In this chapter, we describe our automated evolutionary approach for robustness testing
of REST services. We begin by introducing, in section 4.1, a simple overview and the
main concepts that support the approach, and section 4.2 describes the different parts and
obligations of our Evolutionary REST Fuzzer approach’s internal components and how
they interact to support each other.

4.1 Approach Overview

Figure 4.1 summarizes the idea underlying our approach. The box delimits the scope of
our architecture, having several components that interact with each other and with the
external system under test (i.e., RESTful API). It is worth mentioning that the bBOXRT
tool [8] is in our scope once we use some of its components to parse the interface’s infor-
mation. As a result, by leveraging information about the system’s interface under testing
(i.e., OpenAPI [6] description file), our approach, while taking advantage of the evolu-
tionary algorithm, produces valid and invalid requests in an attempt to trigger faults in the
REST service. The procedure is divided into the following steps:

• Interface description analysis - This first step reads and analyzes the basic infor-
mation of the description file of the RESTful API (e.g., OpenAPI [6]) by parsing it.
This information is then collected and used in the following steps, which include the
Uniform Resource Identifier (URI) of available resources and the Hypertext Trans-
fer Protocol (HTTP) methods they implement, input and output data types, error
codes, and example requests. This step is performed by the bBOXRT tool, which
can parse the RESTful API description file structured in the YAML format [35].

• Generation of Workload - In an attempt to generate valid requests (i.e., request
that generates a response with status code 200) the Evolutionary Algorithm tries to
generate valid inputs, sent as parameters in the requests, to analyze the behavior
of the REST services. The generated inputs are produced by the EA components
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(e.g., evaluation function, variation operators, selection operator, population and
the representation of individuals).

• Generation of Faultload - Similar to generating a Workload, the goal is to generate
invalid inputs to analyze the REST service behavior when confronted with faulty
inputs that may trigger erroneous behavior (robustness problems). These inputs are
also based on the EA helped by a dictionary of pre-defined faults (e.g., replace a
parameter by null) along with incorrect values for the specific data types (e.g., an
integer’s maximum value plus 1).

• Results storage - The last step takes care of storing every data retrieved regarding
the test process to support further behavior analysis of the SUT by the tester. For the
workload and faultload phases, the requests and responses are held in xlsx files (i.e.,
Excel). Additionally, the same raw information and the tool messages concerning
the testing process are stored in a txt file for extensive debugging. Lastly, when
code coverage is enabled, the code coverage report is gathered from the SUT and
stored for further analysis.

Rest API
Description

bBOXRT
tool

Random
population

HTTP Request

Executor

REST
Service

HTTP Response

Evolutionary

Algorithm

i2 ... iki1

r2 ... rkr1

Individuals 

Responses

Scope

Figure 4.1: Overview of the proposed approach

The following section clarifies these steps in further detail and maps them to the different
software elements that comprise our approach, EvoReFuzz.

4.2 EvoReFuzz: Evolutionary Approach for REST Test-
ing

The architecture of our approach is depicted in Figure 4.2, where the EvoReFuzz compo-
nents are contained in a rectangle, and the elements of the evolutionary algorithm itself
are sub-contained in the dashed rectangle. These interact between each other and with
external entities (e.g., REST services).

The bBOXRT tool [8] is responsible for parsing an OpenAPI document structured in the
YAML format [35], which describes the interface of a given RESTful API service. The
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Figure 4.2: Evolutionary approach architecture with a genetic algorithm as the Evolution-
ary algorithm

basic information parsed is then translated to Java classes and used to generate a set of ran-
dom requests. We use the bBOXRT tool, therefore, to support the Interface description
analysis.

A RESTful API may have multiple operations (i.e., pair of a URI and an HTTP method)
that may also require parameters and a payload (i.e., parameters located in the HTTP
request body, such as in a JSON object). Each request is, therefore, composed of a URI, an
HTTP method, and parameters. Additionally, there are different data types of parameters
and possible locations for the parameters’ values. Table 4.1 present some examples.

Table 4.1: Examples of values for the different data types

Type Example of a value

Array
[1,2],
[ {"name":"Carlos"}, {"name": "Coimbra"} ]

Boolean true, false
Byte U3dByb2Nrcw==
Date 2020-07-19, 2019-07-20
DateTime 2019-07-20T17:20:19Z
Double 1.7976931348623157E+308
Float 19.20
Integer 2147483647
Long 9223372036854775807
String "eSGIAhrNOd", "MHNk5a5Ui0", "deiuc"

Object
{"car":{"color":"black"}},
{"ret": [ {"area":20}, {"area":10} ] }

The parameters’ possible locations can be in the HTTP headers, the endpoint URI itself
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(i.e., named a path parameter), the HTTP query string, or the request payload (i.e., gener-
ally a JSON object). For instance, GET http://localhost:8080/api/123 is a generic
example as a result of /api/<variable>, where the variable is the operation parameter
located in the path of the URI, and GET is the HTTP method.

Moreover, considering the possible parameters’ data types and location for an Evolution-
ary Algorithm in our problem, we need to establish the representation of the subsequent
individuals (i.e., chromosomes), their genes, and the population. In Figure 4.3, we demon-
strate a simple example of a RESTful API with n operations. In this example, Operation
1 returns a list of elements with basic information about a car, where a parameter with the
name listSize defines the size of the returned list. Accordingly, for each operation, one
population is associated with it, representing multiple individuals (i.e., requests).

Operations 

available in 


RESTful API 

 

Individual 1
Server: http://localhost:8080/API
Method: GET
Endpoint: /Cars
Operation ID: getListCars
HTTP Request:
	 HTTP method: GET 
	 URI: http://localhost:8080/API/Cars?listSize=10


Operation 1
ID: getListCars
Method: GET
Endpoint: /Cars
Parameters:
	 - listSize: type: integer

	 	 	  location: query

	 	 	  required: true


Population 

Operation 1

.

.

Operation n

Individual 1



Individual n

Server: http://localhost:8080/API
Method: GET
Endpoint: /Cars
Operation ID: getListCars
HTTP Request:
 		 HTTP method: GET 
	 URI: http://localhost:8080/API/Cars?listSize=2

Operation 2

Individual 2
.
.

Individual n

Figure 4.3: Representation of Population and Individuals in our approach

Looking at the population itself in Figure 4.4, our individuals (i.e., chromosomes) are the
requests that will be sent to the service. Hence, one individual may have zero or more
parameters (i.e., genes), that will be modified by the mutation and crossover that will
occur in these genes’ values (i.e., alleles), as we will explain further.

Population

Indiv. 1 GenelistSize = 2 . .

Indiv. 2
.

listSize =   8 Parameter n. .Indiv. n

.

.

Parameter n

listSize = 10 Parameter n. . Individual/Request

Allele

Figure 4.4: Context of Population, Individuals, Genes, and Alleles in our approach

The main focus of our approach is the Evolutionary Algorithm and its elements. The
comprehensive tool has two phases, Workload and Faultload, which the user may decide
to perform both or one at a time. For each mode, we used a Genetic Algorithm capable of
generating requests accordingly to the objective of that specific mode. In the Workload,
the GA generates valid values to the requests’ parameters with the purpose of getting
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responses with status code 200. The generation of these values is based on the information
parsed from the RESTful API description file (i.e., data types, domain of the values), the
fitness function, and the variation operators (i.e., crossover and mutation). Whereas in
the Fautload, invalid requests are generated with injected faults (i.e., replace a parameter
with empty value) in an attempt to trigger unexpected behavior from the service (e.g., a
response with status code 500 - internal server error). In both phases, we took advantage
of several elements of a genetic algorithm, such as mutation, crossover, parent selection,
survival selection, and fitness function. We detail these in the following paragraphs.

The Converter component converts the raw requests randomly generated from the parsed
information gathered in the Interface description analysis into individuals with fitness
values. These individuals will be part of the initial population of our genetic algorithm.
Additionally, this component can sort and filter requests that may not be appropriate for
the current phase (i.e., Workload or Faultload), not affecting the initial population.

The Executor receives the individuals, processes the raw request associated with each
individual, sends it to the service, and waits for a response. The response helps gather
information regarding the system’s behavior. The lack of one is also a strong indicator that
something internally in the service went wrong. Additionally, the gathered information
has the status code and the content returned that will be used in the Evaluator component.

In the Evaluator the individuals are assigned their fitness values using a function. The
responses obtained from the REST API always have a status code and content associated.
Depending on the response’s status code and content, the Evaluator assigns a numeric
value to each individual. Our approach is a multimodal optimization problem (i.e., multi-
ple requests can lead to multiple responses, each of which will be a solution to our prob-
lem) since we can find multiple global and local optima (rather than a single solution), so
the only guidance we have is the feedback retrieved from the REST service itself. In this
note, if valid requests are prioritized, then every response with a status code 2xx should
be considered a solution (i.e., 2xx represents any status code in the range of 200-299).
Whereas, if invalid requests are prioritized, for instance, to trigger robustness problems in
the service, then a status code 500 would be fitter than a 200 or even a 404.

The following equation describes the components used to assess the quality of each indi-
vidual in the Evaluator component:

F(X) = SCWeight ∗SC(status code) +LV TWeight ∗distance(Xo,Xc) (4.1)

where SC represents the function that evaluates the individual against the status code
returned in the response described by:

Workload Fautload

SC(status code) =


1.0, if status code = 2xx
0.4, if status code = 4xx
0.0, if status code = 5xx
0.0, otherwise

SC(status code) =


0.0, if status code = 2xx
0.4, if status code = 4xx
1.0, if status code = 5xx
0.0, otherwise

The function distance calculates the average distance between the responses’ content of
two individuals Xo and Xc, using the normalized Levenshtein distance [113]:
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meanDistances(Xo,Xc) = levenshtein distance(xor,xcr) (4.2)

where xor and xcr represent the string value of the response’s content of both individuals.
We compare the response content of one of the parents, chosen randomly, to the cur-
rent individual (i.e., child). Subsequently, the levenshtein distance function calculates the
distance between the response content of both individuals. The calculated distance is nor-
malized with the maximum possible distance between both strings (e.g., for strings “car”
and “house”, the maximum possible distance is five since the longest string has a length
of five). As a result, we reward individuals with a response content that is more distinct
than its father since we consider that different responses’ content may result in higher
code coverage when the status code is equivalent in both individuals. Moreover, both
functions, SC and distance, have an associated weight in the fitness function, SCWeight
and LVTWeight, respectively.

Regarding the status codes 1xx and 3xx groups in the implemented fitness function, we
consider them an imperfect solution due to their meaning in the services. A 1xx status
code is an informative status code indicating that the server has received the request and
is still processing it. This will mostly never happen since these are purely temporary and
are given while the request processing continues until the complete response is retrieved.
On the other hand, the 3xx group implies multiple possible responses to the request, and
one of these should be chosen by the user-agent or the user himself. Since there is no
conventional method for selecting one of the responses, this response status code is rarely
used.

We also examined the OpenAPI specification file of 2313 public APIs available in the
APIs.guru database [149], where we counted the number of occurrences of each status
code per file. If a status code appeared multiple times in the specification file, we only
counted it as one occurrence. The idea was to understand the most commonly used status
codes in the most popular APIs. This analysis allowed us to verify that the status codes
groups 1xx and 3xx combined represent less than two percent of the total number of
occurrences, followed by the group of 5xx with 12%, 2xx with 40%, and 4xx with 47%
due to its high variety specified by the developers. Even though the group of the status
code 4xx has the most cumulative occurrences, the status code 200 itself appeared in 2302
of the 2313 OpenAPI files analyzed.

The Parent Selection is the component of our Genetic Algorithm that selects the parents
who will breed and recombine to create offspring for the next generation. This process
is essential to the convergence rate of the GA as good parents drive individuals to better
and fitter solutions. We used the Tournament Selection method which chooses k number
of individuals (i.e., pool size) randomly from the current generation and then selects the
fitter one, or, in other words, the one with the highest fitness value to be a parent. The k
number of individuals that compose the pool size of the tournament is parameterizable in
the command-line of our tool. This way, the user/tester can control the selection pressure,
which determines the rate of convergence of the GA, and it is a probabilistic measure
of an individual’s likelihood of participation in the tournament based on the participant
selection pool size. Consequently, weak individuals are less likely to be selected for a
larger tournament since a stronger individual will also have a high probability of being in
the same tournament and, therefore, be selected.

After selecting the parents, the Crosser component is in charge of performing the crossover
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in each pair of parents. Each pair has a crossover probability (pc), which decides if that
pair will undergo crossover. As with many other probabilities, the pc is also parame-
terizable in the command-line of our tool by the user. For the crossover operator, we
implemented a variation of the multi-point crossover, where we defined each parameter
(i.e., gene) in the request (i.e., individual) as a crossover point. Here, the technique will
cross the value of that specific parameter’s value between the two individuals. For each
pair under crossover, we defined a probability of half of the number of parameters present
in the request (i.e., individual). This means that, half of the genes are switched between
the two individuals. In Figure 4.5, we illustrate the application of crossover between two
individuals with parameters located in the request payload as a JSON Object, and the im-
plemented crossover without recursiveness, which means that for structures (i.e., objects
and arrays, see Table 4.1), the entirety of the value is switched between the individuals.
In addition, the blue and green colors are present to facilitate the distinction between the
values that underwent crossover.

{

	 "id": 3,
	 "country": "Portugal",

	 "district": "Lisboa",

	 "districtDeliveryList":

	 	 [  { "district": "Coimbra" , "order_id": 2 } ,

	 	    { "district": "Viseu"      , "order_id": 5 }  ]

}

{

	 "id": 2,
	 "country": "Portugal",

	 "district": "Coimbra",

	 "districtDeliveryList":

	 	 [  {"district": "Braga", "order_id": 7},

                   {"district": "Porto", "order_id": 8} ]

}

Name

Value

id country district districtDeliveryList

 [ {"district": "Coimbra" , "order_id": 2 } ,

  {"district": "Viseu"      , "order_id": 5 } ]3 Portugal Lisboa

id country district districtDeliveryList

 [ {"district": "Braga",  "order_id": 7 },

   {"district": "Porto"  , "order_id": 8 } ]Portugal Coimbra2

Parent 1 Parent 2

Individual 1 - Request content (JSON object) Individual 2 - Request content (JSON object)

Crossover

Name

Value

Name

Value

id country district districtDeliveryList

 [ {"district": "Braga",  "order_id": 7 },

   {"district": "Porto"  , "order_id": 8 } ]2 Portugal Lisboa

Child 1

id country district districtDeliveryList

 [ {"district": "Coimbra" , "order_id": 2 } ,

  {"district": "Viseu"      , "order_id": 5 } ]Portugal Coimbra3

Child 2

Name

Value

Figure 4.5: Implemented Crossover without recursiveness

As it is illustrated in Figure 4.5, each individual has seven parameters, id, country, district,
and districtDeliveryList which counts as four. The districtDeliveryList parameter is an
array (i.e., structured parameter) that may have multiple elements, and each element is an
object with the parameters district and order_id. In our context, these are also considered
parameters. For this particular case, the districtDeliveryList parameter has two elements,
each with two parameters resulting in an individual with seven different genes.

For the Arrays and Objects, we also implemented a crossover with recursiveness to ex-
tract every possible parameter contained in these structures. Arrays may have elements
that are objects, objects may have parameters that are arrays, or objects may even have pa-
rameters that are also objects. Subsequently, a tree of parameters inside parameters may
occur until a certain point, and to overcome this challenge, we used a recursive function
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to extrapolate every contained parameter. Figure 4.6 gives an example of such imple-
mentation. We used two separators, #REP# and #SEP# , to distinguish between different
elements of an array and different parameters within an object, respectively. For instance,
if the districtDeliveryList array had four elements instead of only two, we would store
a key with the name “#REP##REP##REP#districtDeliveryList#SEP#order_id” to
identify the order_id parameter in the fourth element. Additionally, the user/tester can
choose between the crossover with or without recursiveness in the command-line of our
tool.

{

	 "id": 3,
	 "country": "Portugal",

	 "district": "Lisboa",

	 "districtDeliveryList":

	 	 [  { "district": "Coimbra" , "order_id": 2 } ,

	 	    { "district": "Viseu"      , "order_id": 5 }  ]

}

{

	 "id": 2,
	 "country": "Portugal",

	 "district": "Coimbra",

	 "districtDeliveryList":

	 	 [  {"district": "Braga", "order_id": 7}.

                   {"district": "Porto", "order_id": 8} ]

}

Individual 1 - Request content (JSON object) Individual 2 - Request content (JSON object)

Name Value 

id

country

districtDeliveryList#SEP#district

districtDeliveryList#SEP#order_id

#REP#districtDeliveryList#SEP#district

#REP#districtDeliveryList#SEP#order_id

2

Portugal

Braga

7

Porto

8

Coimbradistrict

Parent 2

Child 1

Name Value 

id

country

districtDeliveryList#SEP#district

districtDeliveryList#SEP#order_id

#REP#districtDeliveryList#SEP#district

#REP#districtDeliveryList#SEP#order_id

2

Portugal

Braga

2

Porto

8

Lisboadistrict

Name Value 

id

country

districtDeliveryList#SEP#district

districtDeliveryList#SEP#order_id

#REP#districtDeliveryList#SEP#district

#REP#districtDeliveryList#SEP#order_id

3

Portugal

Coimbra

7

Viseu

5

Coimbradistrict

Child 2

Crossover

Parent 1

Name Value 

id

country

districtDeliveryList#SEP#district

districtDeliveryList#SEP#order_id

#REP#districtDeliveryList#SEP#district

#REP#districtDeliveryList#SEP#order_id

3

Portugal

Coimbra

2

Viseu

5

Lisboadistrict

Figure 4.6: Implemented Crossover with recursiveness

The Mutator component is responsible for mutating the values of the parameters in the
individuals. However, there are several aspects that one needs to take into account. First,
every data type (see Table 4.1) needs a different mutation. Secondly, we may want to
implement different mutation types for each data type. Finally, mutation for the Workload
phase differs from a mutation in the Faultload phase. As such, we considered these aspects
when implementing the code, and it is easily expansible with additional mutations for the
different data types where the user may choose which one to perform.
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Similar to the crossover implementation with recursiveness, we adopted the same ap-
proach to mutation. Here, the mutation probability, pm, is by default 1.0 divided by the
total number of parameters present in the individual. For instance, in the example of
Figure 4.7, the mutation probability for each parameter would be 0.25 (1.0/4.0 = 0.25),
since the individual has four parameters. For non-structured parameters (i.e., any other
data type that is not an array or object), we mutate the value. Whereas, for structured
parameters (i.e., Arrays and Objects), the mutation is chosen randomly from three types
of mutations: Add one element/parameter (Array/Object), Remove one element/param-
eter (Array/Object), or mutate the value of a parameter contained in the structure itself
(i.e., Mutate value). If the last is chosen, the described process is repeated for the pa-
rameters inside the structure. However, Arrays may have a minimum and a maximum
number of elements specified in the RESTful API description. Objects may or may not
have additional parameters to be added or removed (i.e., parameters may or may not be
required). Therefore, if the mutation type “Add one element/parameter” or “Remove one
element/parameter” cannot be performed to the structured data type, we mutate its value.
This value, in an Array, is a randomly selected element, and in an Object is a randomly
selected parameter. For instance, if the Array element is a structured data type (i.e., an
Object), the process will repeat recursively. On the other hand, for the selected parame-
ter in the Object, if it is a non-structured data type, then we mutate the value itself (i.e.,
mutating an integer with the current value plus two).

Pm = 0.25 0.26 0.82 0.72 0.22

Individual

False

True

Is a structured
parameter?

Mutation type
AddRemove Mutate value

Mutate value

Parameter 1

False

Trueis a structured
parameter?

Mutate value

Mutation type
Mutate value

False

AddRemove

False

True
Are all

parameters  

required?

Remove 1
parameter

Mutate value False

True

Add 1 parameter

Mutate valueTrue

False

Violates 

minimum

number of 

elements?

True

False

Violates 

maximum
number of 
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from the array

Add one element

from the array

True false (is an object)Is an array?

Parameter 2 Parameter 3 Parameter 4

Mutate value

True is a structured
parameter?

Exist more
parameters?

Randomly select
an element

Randomly select
a parameter

Figure 4.7: Generic example of the implemented Mutation with recursiveness

A generic example of the implemented Mutation with recursiveness for the Workload
phase is demonstrated in Figure 4.7. Looking at the Flowchart (Figure 4.7), the fourth
parameter is selected for Mutation due to the probability being 0.22, which is lower than
0.25 (1.0/4 = 0.25). Here, suppose the fourth parameter is a structured data type. In
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that case, the Mutator component randomly selects the mutation type to be performed
from the set of three (i.e., Add one element/parameter, Remove one element/parameter,
or Mutate value). Depending on which structured data type (i.e., array or object), there
are conditions from the RESTful API description to be respected. For instance, Arrays
may have a minimum and a maximum number of elements specified in the RESTful API
description. On the other hand, objects may or may not have additional parameters to be
added or removed. Therefore, we mutate its value if either mutation type “Add one ele-
ment/parameter” or “Remove one element/parameter” is chosen but cannot be performed
to the structured data type. In other words, the Mutator component selects the mutation
type “Mutate value” since the previously selected one could not be executed.

A practical example with actual values of the implemented Mutation with recursiveness
for the Workload phase is demonstrated in Figure 4.8. Here, the grey cells represent a
hypothetical view, and the green ones represent the example of the mutation type "Mu-
tate value" always being selected randomly. On the other hand, the red cells indicate that
the parameter, element, or Mutation type, was not selected. Looking at the Flowchart
(Figure 4.8), the parameter districtDeliveryList is an array, and it is selected for Mutation
due to the probability being 0.22, which is lower than 0.25 (1.0/4 = 0.25). Since it is
a structured data type, the Mutator component randomly selects the mutation type to be
performed from the set of three (i.e., Add one element/parameter, Remove one element/-
parameter, or Mutate value). The mutation type "Mutate value" is then selected randomly.
However, the districtDeliveryList is an array with Objects as elements and has two ele-
ments. Of the two elements, one is chosen to be mutated, and in the example, “element 2”
is the one selected. Due to “element 2” being an object and, therefore, a structured data
type, the process is then repeated where one of the three mutation types is chosen to be
executed in “element 2”. In the example, the “Mutate value” type is again selected. Since
“element 2” has two parameters, district, and order_id, one of them must be selected
with a probability of 0.5 (1.0/2 = 0.5). The parameter district is selected and undergoes
Mutation in its value. The value is mutated from “Viseu” to “Faro”. The result is a new
individual with one mutated parameter in the request.
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{

	 "id": 3,

	 "country": "Portugal",

	 "district": "Lisboa",

	 "districtDeliveryList":

	 	 [  { "district": "Coimbra" , "order_id": 2 } ,

	 	    { "district": "Viseu"      , "order_id": 5 }  ]

}

Individual 1 - Request content (JSON object)
Individual 1
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{

	 "id": 3,

	 "country": "Portugal",

	 "district": "Lisboa",

	 "districtDeliveryList":

	 	 [  	 { "district": "Coimbra",

	 	 	   "order_id": 2 } ,
   	 	 	 { "district": "Viseu",

	 	 	   "order_id": 5, "delivered": false } 

	 	 ]

}

{

	 "id": 3,

	 "country": "Portugal",

	 "district": "Lisboa",

	 "districtDeliveryList":

	 	 [ {"district": "Coimbra",

	 	    "order_id": 2 } ,

   	 	   {"order_id": 5 } 

	 	 ]

}

{

	 "id": 3,

	 "country": "Portugal",

	 "district": "Lisboa",

	 "districtDeliveryList":

	 	 [  	 { "district":"Coimbra","order_id":2} ,

   	 	 	 { "district":"Faro","order_id":5} 

	 	 ]

}

Child 1

Remove one element

from the array

Add one element

from the array

Parameter

Figure 4.8: Practical example of the implemented Mutation with recursiveness

Regarding how the values are mutated from the Mutator component for the different
data types, we followed the model present in Table 4.2 for the Workload and Table 4.3
for the Faultload. The tables are systematized by data type and format defined in the
OpenAPI specification [6]. A data type may have multiple formats (e.g., a number may
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be an integer of 32-bit, an integer 64-bit, a float, a double). Here, the goal is to generate
parameters’ values based on the constraints described in the OpenAPI description file of
the RESTful API. For instance, numerical values may have described maximum and min-
imum constraints. However, in the absence of these constraints, we assume the Maximum
and Minimum value of the data type (e.g., 32-bit integer maximum value is 2147483647).
On the other hand, date and date-time data types follow a significantly restricted pattern,
resulting in a straightforward process to generate valid values in compliance with their
patterns.

Table 4.2: Workload mutation model

OpeanAPI data types Parameter mutation description

Array -
Mutate value from an element inside the array
Add 1 element in the array, if possible
Remove last element in the array, if possible

Object -
Mutate value from a parameter inside the object
Add 1 parameter in the object, if possible
Remove 1 parameter in the object, if possible

Boolean - Negate boolean value

Number

32-bit integer,
64-bit integer,

Single-precision (float),
Double-precision (double)

Mutate value under the following Algorithm’s 1 logic

String

No format specified,
Password, Binary

Generate random printable character string
(probiability of 50%)
OR
Randomly select a string from a set of 466 000 english words
(probiability of 50%)

Byte Equal parameter mutation as the No format specified but base64-encoded

Date
Generate a new date from the previous value
(result is always a valid date)

Date-time
Generate a new date-time from the previous value
(result is always a valid date-time)

Furthermore, Strings that do not have any format and, therefore, without a strict pattern
make the process of generating values according to their semantics a challenging problem
(e.g., generate a dog breeds name from a description that, in most cases, is not specified
in the OpenAPI file). However, we are not trying to generate strings to obey the semantic
problem but instead generate valid values according to the constraints in the description
of the service. To achieve this, we resorted to the generation of a random string with
printable characters and retrieved English words from a data set containing over 466 000
words [150]. The method to produce the string is chosen randomly, where each one has a
50% probability.

In the literature, to contextualize, the standardized mutation step size for numerical values
is the following [147]:

• Integer numbers get altered by a ±2i delta, where i is randomly chosen between 0
and a max value that decreases during the search (e.g., from an initial 30 to down
to 10).

• For float/double values, the same kind of ±2i delta is applied, but multiplied by a
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Gaussian value (mean 0 and standard deviation 1), where i = 0 has higher chances
(e.g., 33%) to be selected compared to the other values.

Algorithm 1 Variation operator for numerical values
procedure MUTATION(value, iteration, totalIterations)

do
midPoint← (Maximum+Minimum)/2.0
scale←Maximum−midPoint
scale← scale∗ ((totalIterations− iteration)/totalIterations)
nextValue← value+ random.nextGaussian∗ scale

while !(Minimum < nextValue && Maximum > nextValue)
return nextValue

end procedure

With such in mind, we use algorithm 1 to mutate numerical data types. We followed some
ideas from the literature, such as using a mutation step size based on a random Gaussian
[62]. As well as the mutation step size changing according to the number of iterations
(i.e., current generation index) since this change could be advantageous, as stated by
[72, 73, 89].

In this note, the main goal of Algorithm 1 is to, in initial iterations, alter the current value
by a delta close to the extremes Maximum and Minimum. Whereas, in later iterations,
the delta reaches values close to 1. To contextualize algorithm 1, the scale variable is the
window size between the Mid Point and the Maximum Point, as illustrated in Figure 4.9.
Here, the scale value is multiplied by the normalization of the current iteration to the total
iterations possible (i.e., number of generations) in the Genetic Algorithm. The result of
this multiplication will be the standard variation of the random Gaussian and the mean
the current value being mutated, resulting in x′i = N(xi,scale), where x′i is the new value
and xi is the current value undergoing mutation.

Minimum Maximum
Mid Point

Scale

Figure 4.9: Mid point and Scale

Regarding the fault model (Table 4.3), it was based on [8], where each of the 32 faults
is described as a mutation logic for the request parameters. Moreover, the string fault
types, printable and non-printable, refer to the specific parts of the ASCII table [151],
and malicious are Structured Query Language (SQL) injection strings from a set of 801
different ones acquired in [152]. Concerning the faults implemented (Table 4.3), the
mutation types applied in the Workload phase (i.e., “Add one element/parameter” and
“Remove one element/parameter”) will not be implemented in the Faultload phase
since the mutation “Replace with null” substitutes the “Remove one element/parameter”,
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and the “Add one element/parameter” can be replaced by a fault mutation that cleans all
the injected faults. However, this fault mutation is disabled in our implementation, and we
let the evolutionary algorithm conduct the evolution of the injected faults. In other words,
if an individual has too many faults injected (i.e., not producing robustness problems), it
will be discarded in future generations, and individuals with fewer injected faults will be
rewarded. Nonetheless, we implemented it as an extension and, if needed, to allow future
users of our tool to take advantage of it.

Table 4.3: Fault model

OpeanAPI data types Parameter mutation description

All Applicable to all types
Replace with empty value
Replace with null

Array -

Duplicate random elements in the array
Remove all elements in the array
Remove random element in the array
Add Elements Untill Max size + 1

Boolean -
Negate boolean value
Overflow string representation of boolean value

Number

32-bit integer,
64-bit integer,

Single-precision (float),
Double-precision (double)

Replace with 0
Replace with parameter domain Maximum
Replace with parameter domain Maximum + 1
Replace with parameter domain Minimum
Replace with parameter domain Minimum + 1
Replace with data type Maximum
Replace with data type Maximum +1
Replace with data type Minimum
Replace with data type Minimum -1

String

No format specified,
Password

Append random printable characters to overflow maximum length
Replace with random printable character string of equal length
Replace with random non-printable string of equal length
Append random non-printable characters at the end
Replace with an extensive random printable character string
Insert random non-printable characters at random positions
Append SQL injection attack to original value

Byte,
Binary

Duplicate random elements to overflow maximum length
Swap a random number of element pairs in the string

Date,
Date-time

Add a considerable number of years
Replace value with random invalid date
Subtract a considerable number of years

Date-time
Add 24 hours
Replace value with random invalid time
Subtract 24 hours

These faulty mutations are injected into the requests in the Mutator component in the
Faultload phase. These mutations’ objective is to trigger erroneous behavior in the REST
service. Therefore, individuals that generate requests that originate responses, for in-
stance, with the status code 500 - internal server error, will have a high fitness value in
the population.

The Survival Selection component is responsible for a number of solutions (i., parents) in
each generation to be inserted into the next without undergoing any change. This process
is also known as elitism, a strategy in evolutionary algorithms. Consequently, in this
component, an X number of worst solutions from the offspring are replaced by the X
best solutions of the current generation, where X is the number of elites that are going
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to survive for the next generation. The X value is parameterizable in the tool’s command
line.

Algorithm 2 Pseudo-code of the EvoReFuzz algorithm
Input: Population size PS, Generation size GS, Mutation probability pm , Crossover
probability pc, Elitism quantity eq
Output: Hashmap with all generations for each operation available in the RESTful API

1: randomRequests← generateRandomRequests()
2: initialPopulation←Converter.convert(randomRequests)
3: Executor.sendRequests(initialPopulation)
4: Evaluator.evaluate(initialPopulation)
5: allGenerations.add(initialPopulation)
6: i← 1
7: while i < GS do
8: currentGeneration← allGenerations.get(i−1)
9: for each operation ∈ currentGeneration do

10: currentPopulation← currentGeneration.get(operation)
11: while o f f Spring.size()< PS do
12: parents← ParentSelection.tournament(currentPopulation,2)
13: if Random.double <= pc then
14: childs←Crosser.crossover(parents)
15: else
16: childs← parents
17: end if
18: childs←Mutator.mutate(childs, pm)
19: o f f Spring.add(childs)
20: end while
21: Executor.sendRequests(o f f Spring)
22: Evaluator.evaluate(o f f Spring)
23: SurvivalSelection.select(currentPopulation,o f f Spring,eq)
24: nextGeneration.put(operation,o f f Spring)
25: end for
26: allGenerations.add(nextGeneration)
27: i++
28: end while
29: return allGenerations

To conclude this chapter, we give a simple example of EvoReFuzz’s Pseudo-code in al-
gorithm 2. It describes the main algorithm, where each component used has a high com-
plexity in the implemented code. We also would like to emphasize the fact that several
different mechanisms or techniques could be implemented in our approach. However,
our primary focus is to prove the concept of an evolutionary algorithm as the principal
approach to generating valid and invalid requests.
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Experimental Setup

In this chapter, we describe the experimental setup that we used to evaluate the effective-
ness of our Evolutionary approach for Robustness Testing of rest services, EvoReFuzz.
In Section 5.1, we detail the process and the used material to execute the experiments.
Section 5.2, details what command-line options were used and the overall environment of
the experiences.

5.1 Experiments description

We divided the experimental setup into three different parts. The first one is focused on the
code coverage analysis of our approach when compared to the state-of-the-art tool Evo-
Master [19, 130, 147] using black-box testing In-house services. In the second one, we
validated the effectiveness of producing robustness problems in public services, namely
six GitLab APIs [17] and five Microsoft Bing Maps REST Services [18]. Lastly, we part-
nered with a Master’s student to validate the RESTful backend API of his dissertation
project with the goal of showing our approach’s usefulness and how easy it is to set up
the testing environment. In the subsequent paragraphs, we describe the services in which
we conduct the experiments.

5.1.1 In-house Services

For the first part of the experimental setup, we used in-house services (i.e., locally running
services) to analyze the code coverage. The main focus was to compare the code coverage
reports between the EvoReFuzz tool and EvoMaster for black-box testing. EvoMaster [19,
21]uses an Evolutionary Algorithm and Dynamic Program Analysis to generate effective
test cases. The approach is to evolve test cases from an initial population of random
ones, trying to maximize measures like code coverage and fault detection. EvoMaster
uses several kinds of heuristics to improve performance even further, building on decades
of research in the field of Search-Based Software Testing. Such development resulted in
the so-called MIO algorithm [128]. Moreover, the main focus of the tool is white-box
testing. However, it has a black-box testing mode, which we will use to conduct these
experiments.
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The EvoMaster’s authors created a set of web/enterprise applications for scientific re-
search in Software Engineering called EvoMaster Benchmark (EMB) [153]. Of the 19
RESTful APIs available in EMB, 13 are written in Java. Moreover, we took advantage of
these services and chose the ones that run in a JVM (i.e., Java Virtual Machine) environ-
ment and have any documentation on their Github page. We made this choice since we
needed to measure the code coverage and analyze the open-source APIs that could run
locally. Furthermore, it is easier to gather code coverage reports from the same program-
ming language, or at negligibly not too many different ones, since, for each programming
language, we would need to configure its own code-coverage tool to analyze the test re-
sults.

Table 5.1 shows the six selected REST services in which we will conduct the experiments.
Each of these services runs as a Maven project and, therefore, in a Java Virtual Machine
(JVM).

Table 5.1: In-house REST services

SUT Files JaCoCo LOCs EMB Source code
catwatch 106 1834 ✓ -

cwa-verification 48 620 ✗ From the official github page (v1.3.0)
features-service 39 457 ✓ -

gestaohospital-rest 33 1055 ✓ -
languagetool 1384 3568 ✗ From the official github page (v5.8)
restcountries 24 543 ✓ -

Total 1700 8760 - -

The Catwatch API is a web application that fetches GitHub statistics for GitHub ac-
counts, processes and saves the data in a database, and then makes it available via a REST
API. The data reveals the popularity of the open source projects, most active contributors,
and other information. It is compose of six operations.

Regarding the CWA-verification-server [154], it was developed by the official Corona-
Warn-App [155] which is a COVID-19 contact tracing application used for digital contact
tracing in Germany based on the exposure notification API from Apple and Google. The
applications (for iOS and Android) use Bluetooth technology to exchange anonymous
encrypted data with other mobile phones in the vicinity of an application user’s phone.
The data is stored locally on each user’s device, preventing authorities or other parties
from accessing or controlling the data. In the Corona Warn App world, the Verification
Server helps validate whether upload requests from the mobile App are valid.

The features-service [156] is a RESTful API for managing products Feature Models,
which is, in software development, a compact representation of all the products of the
Software Product Line in terms of features. It allows for defining products, their available
features, and their activation constraints. Define product configurations, understood as
a set of functional features supported by the product that fulfill the constraints of the
features. And query the active features for a configuration, so an application in runtime
can change its behavior depending on the active features of a configuration.

The gestaohospital-rest service [157] was developed with the objective of creating an
API to organize a public health system. The Unified Health System (SUS) is one of
the world’s largest and most complex public health systems, ranging from simple care
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for blood pressure assessment, through Primary Care, to organ transplantation, ensuring
complete, universal access and accessibility for the entire population of the country. In
this note, the API allows, for instance, the registration of the hospital, indicating the
nearest hospital from the patient’s location, performing patient check-in/check-out at the
hospital, checking how many beds are available, registering products and their respective
quantities, and registering and managing blood bank. Accordingly, it emulates the system
management of a SUS hospital.

The languagetool service [158] is the most complex API in the In-house tested services,
and it operates without a database. Additionally, it is an Open Source of proofreading soft-
ware for more than 30 languages and, therefore, a CPU-bound application doing complex
text analysis to find many errors that a superficial spell checker cannot detect.

Regarding the restcountries service [159], it is an API to get information about countries.
For instance, it allows filtering by country code, currency, language code, capital city,
region, regional bloc, name, and full name. The information retrieved for each country is
exceptionally detailed, with several data fields.

Concerning the selection of these services, we chose to select the ones that contained a
description on their GitHub official pages and had correct OpenAPI specifications files.
However, some changes were needed in these files. For instance, some schemes regarding
the HTTP protocol were not detailed since it is not a mandatory field. Regardless, such
protocol information must be available for the EvoReFuzz tool to work. Another aspect is
that several OpenAPI files are provided in JSON formats, and our tool only accepts YAML
structured files. Such an aspect is not a problem as we can use the official swagger editor
[160] to convert from JSON to YAML.

5.1.2 Public Services

Regarding the testing of public services, we conduct experiences in six APIs from GitLab
[161], a popular open-source web service for hosting Git repositories, and five Microsoft
Bing Maps REST Services [18]. We selected these services since they contain complex
APIs and have been used in previous studies [10, 140]. Moreover, the authors of RestCT
[140] also tested these REST services and compared their tool to RESTler [10]. They
discovered eight bugs with RestCT, whereas RESTler only found one. Consequently,
we wanted to directly compare with the study [140] and understand how EvoReFuzz,
which targets robustness testing, would perform for the same services. As a result, we
aimed to test and discover robustness problems (i.e., bugs) in these APIs to validate our
Evolutionary approach’s effectiveness.

We should also note that both Microsoft and Gitlab do not provide official OpenAPI
specification files [6] to detail their services (Gitlab does not provide these files for version
V4). Therefore, to overcome this challenge, the authors of RestCT manually created the
required specifications based on its latest online documentation [17, 18]. They also made
it available on their GitHub page [162] to aid others in replicating and extending their
experiment. Accordingly, we used these manually created specifications and detailed
them slightly better. For instance, there were incomplete Schemas and unprovided formats
for specific data types (i.e., integers without the format int32 or int64, numbers without
any formats).
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In Table 5.2, we identify the tested APIs with the corresponding number of operations and
the average number of parameters per operation. Regarding the functional description of
each one of these APIs, the following paragraphs describe them in further detail.

Table 5.2: Public REST services

Company API name
Number of

endpoints/operations
Average parameters

per operation

Gitlab

Branch 7 2,6
Commit 13 5,1
Groups 17 8,9
Issues 25 7,1
Project 31 10

Repository 8 3,9

Microsoft
Bing Map

Elevations 4 3,5
Imagery 10 15,1

Locations 5 7,6
Route 14 12,8

TimeZone 4 4,8

GitLab APIs

The Branch API [163] operates on repository branches, which is a version of a project’s
working tree. It allows the creation of a branch for each set of related changes to make.
This keeps each set of changes separate from each other, allowing changes to be made in
parallel, without affecting each other. The operations under this API allows the following
actions:

• Get a list of repository branches from a project, sorted by name alphabetically.

• Create a new branch in the repository.

• Get a single project repository branch.

• Delete a branch from the repository.

• Protects a single repository branch or several project repository branches using a
wildcard protected branch.

• Unprotect the given protected branch or wildcard protected branch, by ID and name.

• Delete all branches that are merged into the project’s default branch.

The Commit API [164] operates on repository commits. The Git commits are one of
the key parts of a Git repository, and more so, the commit message is a life log for the
repository. As the project/repository evolves over time (new features getting added, bugs
being fixed, architecture being refactored), commit messages are the place where one can
see what was changed and how. The API has the following operations:
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• Get a list of repository commits in a project

• Create a commit by posting a JSON payload.

• Get a specific commit identified by the commit hash or name of a branch or tag.

• Get all references (from branches or tags) a commit is pushed to.

• Cherry pick a commit to a given branch.

• Reverts a commit in a given branch.

• Get the diff of a commit in a project.

• Get the comments of a commit in a project.

• Get the discussions of a commit in a project.

• List the statuses of a commit in a project.

• Adds or updates a build status of a commit.

• Get a list of Merge Requests related to the specified commit.

• Get the GPG signature from a commit, if it is signed.

The Groups API [165] performs operations over the groups. These groups are used to
manage permissions for projects. For instance, if someone has access to the group, they
get access to all the projects in the group. The user may also view all of the issues, merge
requests for the projects in the group, and view analytics that shows the group’s activity.
The Groups API is constituted of the following operations:

• Get a list of visible groups for the authenticated user.

• Create a new project group. Available only for users who can create groups.

• Get all details of a group. This endpoint can be accessed without authentication if
the group is publicly accessible.

• Update the project group. Only available to group owners and administrators.

• Remove group, and queues a background job to delete all projects in the group as
well.

• Share group with another group.

• Unshare the group from another group.

• Get a list of visible direct subgroups in this group.

• Get a list of group hooks.

• Adds a hook to a specified group.

• Get a list of group hooks
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• Edits a hook for a specified group.

• Removes a hook from a group. This is an idempotent method and can be called
multiple times. Either the hook is available or not.

• Get a list of visible descendant groups of this group.

• Get a list of projects in this group.

• Transfer a project to the Group namespace.

• Get a list of projects shared to this group.

The Issues API [166] performs operations over the used issues that allow the collabora-
tion on ideas, solving problems, and planning work. Moreover, share and discuss propos-
als with the team and outside collaborators, track tasks and work status, and elaborate on
code implementations. The Issues API allows the following operations under its logic:

• Get all issues the authenticated user has access to.

• Get a single issue, only for administrators.

• Get a list of visible groups for the authenticated user.

• Creates a new project group. Available only for users who can create groups.

• Get a list of a group’s issues.

• Get a list of a project’s issues.

• Creates a new project issue.

• Get a single project issue.

• Updates an existing project issue. This call is also used to mark an issue as closed.

• Deletes an issue. Only for administrators and project owners.

• Reorders an issue, you can see the results when sorting issues manually.

• Moves an issue to a different project.

• Subscribes the authenticated user to an issue to receive notifications.

• Unsubscribes the authenticated user from the issue to not receive notifications from
it.

• Manually creates a to-do item for the current user on an issue.

• Sets an estimated time of work for this issue.

• Resets the estimated time for this issue to 0 seconds.

• Adds spent time for this issue.
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• Resets the total spent time for this issue to 0 seconds.

• Get time tracking stats of an issue of a project.

• Get all the merge requests that are related to the issue.

• Get all merge requests that close a particular issue when merged.

• Get Participants on issues.

• Get List of metric image.

• Upload metric image.

The Projects API [167] interacts with the projects’ resources. Here, projects can be
created to host codebases. Moreover, projects can also be used to track issues, plan work,
collaborate on code, and continuously build, test, and use built-in CI/CD to deploy the
developed app. The operations that form this API are the following:

• Get a list of all visible projects across GitLab for the authenticated user. When ac-
cessed without authentication, only public projects with simple fields are returned.

• Creates a new project owned by the authenticated user.

• Creates a new project owned by the specified user. Available only for admins.

• Get a specific project.

• Updates an existing project.

• Deletes a specific project.

• Get the users list of a project.

• Get a list of visible projects owned by the given user.

• Delete an existing forked from relationship.

• List the projects accessible to the calling user that have an established, forked rela-
tionship with the specified project.

• Stars a given project.

• Unstars a given project.

• List the users who starred the specified project.

• Get languages used in a project with percentage value.

• Archives the project if the user is either an administrator or the owner of this project.

• Unarchives the project if the user is either an administrator or the owner of this
project.

• Restores project marked for deletion.
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• Uploads a file to the specified project to be used in an issue or merge request de-
scription, or a comment.

• Allow to share project with group.

• Unshare the project from the group.

• Get a list of project hooks.

• Adds a hook to a specified project.

• Get a specific hook for a project.

• Edits a hook for a specified project.

• Removes a hook from a project.

• Start the Housekeeping task for a project.

• Transfer a project to a new namespace.

• Create a forked from/to relation between existing projects.

• Download snapshot of a Git repository

• Get a list of visible projects owned by the given user.

• Get a list of visible projects owned by the given user.

The Repositories API [168] is responsible for conducting operations regarding the projects’
repositories. In this context, a repository is where the code is stored and changes are made
to it. These changes are tracked with version control. The operations under this API allow
the subsequent actions:

• Get a list of repository files and directories in a project.

• Allow receiving information about a blob in the repository like size and content.

• Get the raw file contents for a blob by blob SHA.

• Get an archive of the repository.

• Compare branches, tags or commits.

• Get repository contributors list.

• Get the common ancestor for 2 or more refs (commit SHAs, branch names or tags).

• Generate changelog data based on commits in a repository.
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Microsoft Bing Map APIs

The Bing Maps REST Services Application Programming Interface provides a Repre-
sentational State Transfer interface to perform tasks such as creating a static map with
pushpins, geocoding an address, retrieving imagery metadata, or creating a route [18].

The first API tested from the set of Microsoft Bing Maps REST services is the Elevations
API [169], which is used to get elevation information for a set of locations, and polylines,
or areas on the Earth. The user may perform the following actions through the available
operations, such as:

• Get elevations for latitude and longitude coordinates.

• Get elevations at equally-spaced locations along a polyline path.

• Get elevations at equally-spaced locations within a bounding box.

• Get the offset of the geoid sea level Earth model from the ellipsoid Earth model.

The second one is the Imagery API [170], which is used to get static maps and Bing
Maps imagery information. The following operations constitute the available actions in
this API:

• Get a map that is centered at a specified point.

• Get a map that shows a specified map area.

• Get a map that is centered at the specified point and that displays a route.

• Get a map that shows a specified map area by specifying the image format to use
for the static map and the desired camera heading in degrees, clockwise from north.

• Get a map that shows a specified map area by a query string that is used to determine
the map location to display.

• Get a map that shows a specified map area from a point on the Earth where the map
is centered.

• Get a map that shows a specified map area by querying a string that is used to
determine the map location to display.

• Make a Local Search API request based on a string query by specifying a user
location by the type of imagery for which the user is requesting metadata.

• Make a Local Search API request based on a string query by specifying a user
location by specifying a center point.

• Make a Local Search API request based on a string query by specifying a user
location, when using Basic Metadata.
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The Locations API [171] is used to get location information. It allows, for instance, get-
ting the latitude and longitude coordinates for a location by specifying values such as a
locality, postal code, and street address. Alternatively, the location information associated
with latitude and longitude coordinates or the latitude and longitude coordinates corre-
sponding to the location information provided as a query string. The Locations API has
the following operations available under its logic:

• Get the latitude and longitude coordinates based on a set of address values for any
country.

• Get an address for a specified point (latitude and longitude).

• Return latitude and longitude coordinates for a location specified by a query.

• Get an address for a specified point (latitude and longitude) in a search radius.

• Make a Local Search API request based on a string query by specifying a user
location.

The Routes API [172] is used to create a route that includes two or more locations and
to create routes from major roads. The user can create driving or walking routes. Driving
routes can include traffic information. The user can also overlay routes on map imagery.
This API is one of the most complexes of the set of tested APIs since it has a large number
of operations and a high number of average parameters per operation. In this note, the
operations available in it are the following:

• Find a driving route. It gets a walking, driving or transit route by specifying a series
of waypoints. A waypoint is a specified geographical location defined by longitude
and latitude that is used for navigational purposes. The route includes information
such as route instructions, travel duration, travel distance or transit information.

• Find a walking, driving or transit route by specifying the mode of travel.

• Get travel routes which take truck attributes such as size, weight and type of cargo.
This is important as not all trucks can travel the same routes as other vehicles.

• Find routes from major roads in four directions (West, North, East, South).

• Synchronous POST Optimize Itinerary which returns an itinerary schedule for one
or more agents to travel between multiple itinerary items (e.g., between multiple
delivery locations).

• Asynchronous POST Optimize Itinerary.

• Synchronous Distance Matrix Request URL retrieves a simple distance matrix for
a set of origins and destinations using an HTTP POST request.

• Asynchronous Distance Matrix Request URL creates a job to calculate a distance
matrix using an asynchronous POST request. This type of request is only supported
when the travel mode is set to driving. A start time must be specified when making
asynchronous requests.
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• Calculate an Isochrone Synchronous, which provides time-specific, isoline poly-
gons for the distance that is reachable from a given location and supports multiple
modes of transportation (i.e., driving, walking, and public transit).

• Calculate an Isochrone Asynchronous.

• Snap Points to Roads Synchronous by taking GPS point data, in the form of lati-
tudes and longitudes, and returns a list of objects that form a route snapped to the
roads on a map.

• Snap Points to Roads Asynchronous.

• Get local Insights Synchronous. It returns a list of local entities within the specified
maximum driving time or distance traveled from a specified point on Earth.

• Get Local Insights Asynchronous.

The last API is the Time Zone API [173], which makes it easy to find a time zone and
daylight savings time (DST) for a location by query or latitude and longitude coordinates.
It also converts UTC date-time stamps to different time zones with DST information or
retrieves a Time Zone by ID and provides a list of time zone information for either the
Microsoft Windows or IANA time zone standard. This API is the least complex one from
the set of the tested public services, and it is composed of the subsequent operations:

• Get the Time Zone from Location Point. It allows retrieving the time zone infor-
mation for any point on Earth. Given a pair of coordinates or a place name query,
the Time Zone API will return the location’s local time zone and daylight savings
(DST) information.

• Get the Time Zone from Location Name. Given a query for a location (e.g., query =
Bellevue, WA) the Time Zone API finds that location and then returns information
about the time zone for that location.

• Convert UTC Date-time to a different Time Zone.

• Get the Time Zone and its information from Time Zone ID (Windows or IANA).

5.1.3 ucXception’s framework API

To highlight our approach’s usefulness in validating robustness problems in RESTful
APIs, we partnered with a student doing his Master’s thesis in software engineering at the
University of Coimbra. The theme of the student’s dissertation is a framework to allow the
performing of fault injection on various target systems, from a local system to virtualized
or even cloud systems. The framework’s name is ucXception [174], which conducts the
evaluation of hardware and software fault tolerance mechanisms and the dependability of
the systems by combining a suite of fault injection tools capable of emulating hardware or
software faults with different fault models. The Backend module consists of two software
components: the Manager and a REST API. Regarding the Manager of the framework, it
is the software component responsible for executing the fault injection campaign and stor-
ing its results, where multiple instances of the Manager process are spawn, one for each

83



Chapter 5

campaign being executed. On the other hand, the REST API exposes the functionalities of
the Manager to the Frontend module. Moreover, the Backend module also encompasses
one database, where the information about the users and their campaigns is kept, as well
as multiple CSV files containing each campaign’s results.

Our focus was to evaluate the RESTful API’s robustness that exposes the Manager’s func-
tionalities to the Frontend module. Such API was developed with Flask [175, 176], a small
web framework written in Python. We then started by helping document the API with the
OpenAPI library available for flask [176]. This way, an OpenAPI file is automatically
generated, and we can start performing tests with EvoReFuzz.

5.2 Experimental Environments

In this section, we detailed which command-line options were used in the tested tools and
the code coverage report obtained between experiences. Furthermore, we specified the
used libraries, the system environment, and the files created to conduct the experiments.

Environment for In-house Services

In order to perform the experiences, we created batch scripts to start each system under
test with the JaCoCo Agent [177] so that we may collect the code coverage reports at the
end of each tool execution. EvoReFuzz and EvoMaster were executed for each of the six
SUTs (see Table 5.1). This results in 2 × 5 x 6 + 6 = 66 batch scripts. Each script starts a
SUT as a background process and then one of the tools, EvoReFuzz or EvoMaster. Each
tool runs in a loop for one hour, and we export the code coverage report at the end of
each hour. As a result, even if the tool crashes or ends before the period of one hour,
we restart it. We repeat this procedure ten times to account for the randomness of the
tools. Moreover, the code coverage is computed based on all the HTTP calls done during
the fuzzing process. Such was adopted for the case that if a tool crashes, we are still
measuring what code coverage it conducts.

Regarding the code coverage analysis, we developed a project called Jacoco-Report-
Generator [178], which extrapolates and automatically stores the code coverage reports
from the JaCoCo agent [177] for the services using JVM. The JaCoCo Agent allows the
creation of a TCP Socket Server that listens for incoming connections from a TCP Socket
Client to retrieve (i.e., request a dump) and read the last code coverage report. The execu-
tion data (i.e., code coverage report) is written to the socket connection on request. After
the request to dump the execution data (i.e., the code coverage report), we can reset the
execution data without restarting the JVM. Consequently, multiple reports can be saved
and reviewed later. As a result, we were able to extract the code coverage report after each
hour by simply executing the runnable jar file of the Jacoco-Report-Generator project.

We also changed the server port for each of the SUTs to perform parallel testing in the
same machine, as well as the port of the TCP socket server of the JaCoCo agent running
in each SUT. The experiments were carried out locally, and the machine used is composed
of an AMD Ryzen 7 1700X with eight cores and sixteen threads, 16GB of RAM at 3200
MHZ, and Windows 10 Pro version 21H2. Every output was stored in an external SSD,
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SAMSUNG T5 with 256GB. Regarding the java versions utilized, for the SUTs running
in java 8, we operated in version 1.8.0_202 and 11.0.15.1 for java 11.

Regarding the scripts, we used the subsequent ones with the names starter.bat, runTool-
For1hourInLoop.bat, runEvoReFuzz.bat, runAndTerminateSUT.bat, and retrieveCodeCov-
erage.bat.

Listing 5.1: Starter script (starter.bat)
for /L %%A in (1,1,10) do (

echo %%A
start "rtsut" runAndTerminateSUT.bat 3635
timeout /t 20
runAndTerminateScriptAfterXtime.bat 3600
timeout /t 3
runCodeCoverageReportRetriever.bat %%A
timeout /t 20
taskkill /FI "WINDOWTITLE eq rtsut"

)

Listing 5.2: Script to run the tool for one hour (runToolFor1hourInLoop.bat)
@echo off
if "%1"=="" (

set duration=10
) else (

set duration=%1
)
start "myscript" runEvoReFuzz.bat
ping 127.0.0.1 -n %duration% -w 1000 > nul
echo %duration% seconds are over. Terminating!
taskkill /FI "WINDOWTITLE eq myscript*"

Listing 5.3: Run EvoReFuzz in loop Script (runEvoReFuzz.bat)
:loop
call java -jar "path\to\EvoReFuzz\target\Evolutionary_REST_Fuzzer-1.0.jar" ^
--wl-rep 40 ^
--api-file Config.java ^
--api-yaml-file openapi.yaml ^
--number-runs 1 ^
--generation-size 50 ^
--population-size 20 ^
--out "path\to\outputfolder\output.txt"
goto loop

Listing 5.4: Run SUT and terminate after one hour Script (runAndTerminateSUT.bat)
@echo off
if "%1"=="" (

set duration=10
) else (

set duration=%1
)
start "myscript" \path\to\SUTfolder\runSUT.bat
ping 127.0.0.1 -n %duration% -w 1000 > nul
echo %duration% seconds are over. Terminating!
taskkill /FI "WINDOWTITLE eq myscript*"
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Listing 5.5: Retrieve the code coverage Script (retrieveCodeCoverage.bat)
java -jar path\to\Jacoco-Report-Generator\target\JaCoCo-report-generator.jar ^
--cc-classes "path\to\SUTfolder\target\classes" ^
--cc-source "path\to\SUTfolder\src\main\java" ^
--cc-socket-IP "127.0.0.1" ^
--folder-name "Coverage" ^
--execution-run %1 ^
--cc-socket-port "8502" ^
--out "path\to\output"

The starter script 5.1 initiates the runAndTerminateSUT script 5.4, which manages the
time to kill the process that runs the SUT. Sequentially, after starting the SUT, the starter
script will execute the runToolFor1hourInLoop script 5.2, which also manages the time
to kill the process running the EvoReFuzz tool in a loop (runEvoReFuzz script 5.3).
Allowing to restart the tool even if it crashes or stops earlier, before the targeted one
hour, and still retrieve the code coverage with the retrieveCodeCoverage script 5.5.
Consequently, the SUT runs a little longer than one hour to allow the testing tool to run
for one hour and then retrieve the code coverage report. After these actions, the SUT is
restarted, and the process repeats itself ten times or, in other words, ten hours. Therefore,
the present "for" in the starter.bat file.

Regarding the command-line options chosen to run EvoReFuzz in script 5.3, we went
for a population size of 40 and a generation size of 50. We defined these values to have a
more diverse set of injected faults when executing the Faultload phase. Moreover, these
values limit the number of requests per operation to 2000 (i.e., 50 ∗ 40), which in most
complex systems will take a long time. The values can be optimized for each SUT, but we
conducted the same ones for every SUT. Looking at the wl-rep option, it establishes the
size of the pool of individuals that will constitute the initial population. For instance, for
a population size of 20 and wl-rep of 40, the initial population will have 40 individuals,
and the best 20 from the initial population will be selected for the first generation. Such
is performed by the Converter component (recall Figure 4.2). We also prioritized a faster
execution to finish before the one-hour mark than finishing over the killed process.

To run EvoMaster, the only scrip that needs a change is the runEvoReFuzz.bat, which
we named runEvoMaster.bat and has the command-line options of the testing tool. The
following script shows the used command-line options for EvoMaster.

Listing 5.6: Run EvoMaster Script (runEvoMaster.bat)
:loop
call java -jar "path\to\EvoMaster\core\target\evomaster.jar" ^
--blackBox true ^
--bbSwaggerUrl "file:///path/to/openapi.yaml" ^
--outputFormat JAVA_JUNIT_4 ^
--maxTime 60m ^
--outputFolder "\path\to\outputfolder" ^
--problemType REST ^
--exportCoveredTarget true ^
--writeStatistics true ^
--ratePerMinute 500
goto loop

Looking at the command-line options for EvoMaster, two aspects must be taken into
account. The first is the option maxTime equal to 60m (i.e., 60 minutes), which limits
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the testing process to one hour. We chose this value since it is stated on the official
EvoMaster’s GitHub page that a more extended period of time will produce better results.
Moreover, since we are limiting the experiences to one hour, we thought adequately to
limit the hour mark in the command-line option of EvoMaster. Furthermore, during the
experiences, we checked if the process would be killed before the complete execution of
EvoMaster, and we witnessed that EvoMaster finishes first, and then the process is killed,
not affecting the experiences. The second aspect is that the ratePerMinute option is
limited to 500. In a pre-mature analysis of the testing environments, we noticed that when
the option was not set, the EvoMaster would run out of TCP connections. Therefore, and
considering this aspect, we limited it to 500 requests per minute.

We had to use a personalized script for the different SUTs to be able to have multiple
ones running and extrapolate the code coverage of each one since they run in different
TCP server sockets in the JaCoCo agent. As a result, the following script 5.7 shows a
generic example of the batch file used to start a SUT with the JaCoCo agent.

Listing 5.7: Run SUT Script (runSUT.bat)
java
-javaagent:path\to\jacoco\jacocoagent.jar=includes=*,output=tcpserver,port=8501,

address="127.0.0.1"
-jar path\to\SUTfolder\target\sut-runnable.jar

Here, the port stands for the port where the TCP Socket Server will listen for upcoming
connections. These connections will retrieve (i.e., request a dump) and read the last code
coverage report. After the request to dump the execution data (i.e., the code coverage re-
port), we can reset the execution data without restarting the SUT. Consequently, multiple
reports can be saved and reviewed later. Additionally, the address is the IP address of the
TCP Socket Server to which a TCP Client socket will connect.

Environment for Public Services

For the APIs under GitLab and Microsoft Bing Maps, we have two different environ-
ments. The first relies on an existing docker image to deploy the GitLab’s APIs, and
the tests were carried out in a local environment on the same machine as the In-house ser-
vices (with Ryzen 7 1700X, 16GB of RAM at 3200 MHZ, and Windows 10 Pro version
21H2). The docker image is from the official GitLab repository, in which we used ver-
sion 13.10.3-ce.0 [179], the same image version as in the paper of the RestCT tool [140].
It emulates the available APIs for GitLab. Since it is running locally, further extensive
testing can be carried out due to the lack of a rate-limited number of requests.

The second environment is for the services of Microsoft Bing Maps. We ran EvoRe-
Fuzz locally while testing the public Microsoft Bing Maps APIs servers remotely (i.e.,
http://dev.virtualearth.net/REST/v1) using a basic private key generated in the Bing Maps
Dev Center [180]. Since we are sending requests to external APIs, the Microsoft Bing
Maps services have a limit for each category of the generated key. We created our key
as a Development/Testing one, and, therefore we have a limit of 125,000 cumulative
billable transactions. As stated in Bing Maps transactions page [181]: only billable
transactions count towards the free-use limits for Basic keys. Non-billable transactions
do not incur charges and do not count towards free-use limits. We had to take that into
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account to not over-extend these restrictions. However, 125,000 requests is a high ceiling
for testing such services.

Regarding the command-line option to run EvoReFuzz for testing the GitLab APIs, we
used a population size of 40 and a generation size of 50, limiting to 2000 requests per
operation. Due to the fact that we are running the docker image of the GitLab APIs, we
could extend the time and, therefore, the number of requests for the conducted experi-
ences. On the other hand, for Microsoft Bing Maps, we set up the population size with
a size of 20 and a generation size of 50, limiting to 1000 requests per operation since we
have a limit of requests as a developer that we can send to the remote Microsoft servers.
Here, we had the same idea, as in the options used for the In-house services, of prioritiz-
ing a more diverse set of injected faults by setting a higher number of generations than
the population. As a last note, we should also emphasize that the testing of these Public
services differs from the testing of the In-house services. We want to find robustness
problems for the public services, whereas, for In-house services, we are targeting a higher
code coverage than EvoMaster. Furthermore, we did not run the In-house services expe-
riences simultaneously as the public services, nor did we perform the tests in the GitLab
APIs in parallel with the ones of Microsoft Bing Maps.

Environment for testing ucXception

To test the ucXception RESTful API, we needed to conduct the experience remotely.
Figure 5.1 shows the overall context of both our and the student’s environments. To be
able to send requests remotely from our router to the student’s router, we needed to port-
forward the port where the REST API was deployed (i.e., port 5000). Furthermore, we
also got the student’s static public IP assigned by the Internet Service Provider 2 (meo),
which can be done in the router’s admin page at http://192.168.1.254 (for MEO routers).
After gathering such information and having the OpenAPI specification file, we were
ready to carry out the experiences.

ISP 1 (vodafone) ISP 2 (meo)

router  router

Open port 5000
HTTP Request

Computer 

running EvoReFuzz

Computer running  

docker image with 


ucXception RESTful API

HTTP Response

Personal Environment Student's Environment

Figure 5.1: Experimental environment overview

Regarding the ucXception RESTful API, it was developed in Flask 2.0.3 and running in a
docker image through the docker engine with version 20.10.16 in Windows 10 Pro version
21H2. The student’s system is composed of an AMD Ryzen 5 3600 6-Core Processor,
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16GB of RAM at 2666 MHZ, and an SSD with 3000 MB read and 1410 MB of writing
speeds. On the other hand, EvoReFuzz was running in a JVM through a runnable jar (Java
8) in a Macbook Pro 14-inches 10cores CPU (M1 Pro) and 16 GB of RAM. Moreover,
we defined a limit of 1200 requests per operation available in the API. In other words, a
population size of 30 and a generation size of 40. We prioritize a higher generation size
since it will result in a more diverse set of injected faults.
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Experimental Results

In this chapter, we present and analyze the results obtained taking into account the experi-
mental setup of the previous chapter. We start by discussing at the In-house services, then
the Public services, and the observations of the problems found in the ucXception API
(i.e., partnership with a Masters’s student). We conclude by reporting the main findings
of all of the experiences.

6.1 Experimental Results

In-house services Results

Testing the set of In-house services to extract the code coverage took a total of 120hours of
computational time. The results show that EvoMaster had a higher average line coverage
in four of the six SUTs. Whereas EvoReFuzz performed better in two of them. Nonethe-
less, the overall average was close between both tools, with EvoMaster having an overall
line coverage average of 47.01% throughout the six SUTs, and EvoReFuzz 45.14%. The
experimental results of the two black-box fuzzers on the six RESTful APIs are depicted
in Table 6.1, where for each tool, we report the average line coverage, as well as its [min,
max] values out of the ten runs. We attained some essential conclusions in both the tested
SUTs and the experimental results, which we will discuss in the subsequent paragraphs.

Table 6.1: In-house Services line coverage results

SUT EvoReFuzz EvoMaster
catwatch 29.01 [29.01, 29.01] 24.42 [24.42, 24.48]
cwa-verification-server 49.55 [44.52, 50.65] 50.45 [50.32, 50.97]
features-service 42.76 [40.92, 43.98] 58.42 [58.42, 58.42]
gestaohospital 48.28 [42.75, 55.64] 52.45 [49.48, 54.12]
languagetool 26.49 [26.46, 26.54] 21.22 [20.21, 27.55]
restcountries 74.73 [71.82, 75.51] 75.1 [74.4, 75.69]
Average 45.14 47.01

In Table 6.2, we compare EvoReFuzz’s performance with EvoMaster, one at a time on
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each SUT, and report the p-values of the Mann-Whitney-Wilcoxon U-Test one-sided, in
which the distribution underlying the number of covered lines of EvoReFuzz is stochasti-
cally greater than the EvoMaster. Moreover, the stated hypotheses are the following:

• Null Hypothesis H0: There is no difference between the ranks of EvoReFuzz and
EvoMaster.

• Alternative Hypothesis H1: There is a difference between the ranks, and the distri-
bution underlying the EvoReFuzz is stochastically greater than the EvoMaster.

Table 6.2: Mann-Whitney-Wilcoxon U-Test one-sided of EvoReFuzz’s results compared
to EvoMaster. Values lower than the α = 0.05 threshold are reported in bold.

SUT P-value Effect size
catwatch 0.000 1.335 (large)
cwa-verification-server 0.982 -
features-service 1.000 -
gestaohospital 0.979 -
languagetool 0.001 0.969 (large)
restcountries 0.732 -

From the results of Table 6.2, we can reject the Null Hypothesis with a significance level
of 0.05, and, therefore, the underlying distribution of EvoReFuzz is stochastically greater
than EvoMaster for the catwatch and languagetool APIs with a large effect size. Whereas,
from Table 6.3, we can reject the Null Hypothesis with a significance level of 0.05, mean-
ing that the underlying distribution of EvoMaster is stochastically greater than EvoReFuzz
for the cwa-verification-server, features-service, and gestaohospital APIs. Consequently,
for the restcountries SUT, we cannot prove that either EvoReFuzz or EvoMaster has a
stochastically greater distribution.

Table 6.3: Mann-Whitney-Wilcoxon U-Test one-sided of EvoMaster’s results compared
to EvoReFuzz. Values lower than the α = 0.05 threshold are reported in bold.

SUT P-value Effect size
catwatch 1.0 -
cwa-verification-server 0.022 0.636 (large)
features-service 0.000 1.289 (large)
gestaohospital 0.025 0.622 (large)
languagetool 0.999 -
restcountries 0.294 -

Looking at the experimental results for the catwach API, EvoReFuzz outperformed Evo-
Master in line coverage. However, we identified a significant problem while analyzing
the logic behind the SUT. When a request is made, the SUT makes a call to an outside
service, specifically the GitHub APIs, to obtain project information. In the process, the
call appears to be stuck for a while (and may time out), which prevents the code respon-
sible for interpreting the answers from running. Since external services can change or go
down at any time and deliver different data with each call, calling them is a difficult task
for the current fuzzers.
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Regarding the cwa-verification-server, EvoMaster had a higher average percentage but
only by 0.9%, which translates to 307 missed lines out of 620 lines that composed the
SUT compared to 313 from EvoReFuzz. An average difference of 6 missed lines between
the two fuzzers. Nonetheless, six lines may be the difference in finding a bug in the code.
Moreover, there is an intriguing observation to discuss, which was made by Zhang et al.
[132]. The input in the endpoint handler InternalTanController can be an HTTP header
with the value TELE_TAN_TYPE_HEADER="X-CWA-TELETAN-TYPE". However,
the OpenAPI schema does not contain this information, resulting in the object teleTan-
Type always being null. This is an illustration of underspecified schema, or in other words,
a lack of specification elements in the swagger/OpenAPI file.

In the features-service, we can see a significant variation of code coverage between Evo-
Master and EvoReFuzz. EvoMaster had close to 16% higher line coverage than EvoRe-
Fuzz. Futhermore, we could not look for the output data since running the tools in a loop
made it impossible to control the writing of the output information of each tool in different
folders (at least in our time window). Nonetheless, there are, for instance, getters and set-
ters that will never be callout and some functions that are only used by the manually writ-
ten unit tests. Additionally, the API has an operation dependency where a POST should
create specific data prior to a GET operation fetching it. This particularity is a prominent
factor for the MIO algorithm from EvoMaster to outperform our evolutionary approach.
Zhang et al. [127] implemented a set of effective templates on top of MIO to structure test
actions based on the semantics of HTTP methods used to manipulate the web services’
resources. This technique allows the calling of POST-based operations before GET-based
ones and then uses such previous data to generate valid requests. Consequently, since the
features-service API is based primarily on the management of available resources in the
API, this approach allied with a 1 + 1 EA (e.g., MIO algorithm) will efficiently outper-
form our approach. This conclusion is a fundamental observation to note as future work
to be developed in our Evolutionary Algorithm.

In the experimental results of the gestaohospital API, even though EvoMaster had a
higher average of line coverage, we must point out that the maximum code coverage
achieved was conducted by EvoReFuzz with a 55.64% against 54.12% of EvoMaster.
Moreover, this API heavily depends on interactions between the database, and not much
coverage is achieved if such accessed data is not present in the database.

Languagetool is a CPU-bound application (e.g., no database) executing complex text
computations. This API has only two endpoints: /v2/languages, which is a simple GET
with no parameters; therefore, it is trivially covered by just calling it onetime, and /v2/check,
which is a POST with 11 input parameters. From the set of state-of-the-art tools, such as
bBOXRT, RESTct, RESTler, RESTest, and RESTTESTGEN, only EvoMaster can gener-
ate requests with payloads of nature application/x-www-form-urlencoded [132]. This is
a significant advantage since the more endpoints tested, the easier it should be to achieve
a higher code coverage. We notice that, even though the Languagetool service accepts
application/x-www-form-urlencoded, it also can receive parameters in the query location
for its main operation (i.e., /v2/check). In this note, we changed the OpenAPI only for the
/v2/check operation in order for EvoReFuzz to be capable of generating requests.

Moreover, interestingly we achieved a higher average line coverage than EvoMaster. We
should emphasize that EvoMaster does not have any type of parameter value configu-
ration besides the headers to filter the value for authentication parameters (i.e., RESTful
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API Authentication methods). For these, EvoMaster lets set a value through the command
line options. EvoReFuzz, on the other hand, is capable of setting values in all locations
possible where parameters reside (i.e., query, path, header, and body). We took advantage
of it and we filtered the value of the language parameter (i.e., en, pt, fr, en-US). In a way,
it is unfair, however, from the point of view of being so straightforward to set values that
otherwise, the lack of such would result in lower code coverage, made us test it in this
environment. Additionally, every automated black-box tool should have at least some
type of parameter value customization. Therefore, a framework capable of producing
these features would be ideal for future work. Regarding the code coverage results for
languagetool, we should note that without altering the OpenAPI, EvoReFuzz would not
have achieved values remotely close to the ones in Table 6.1 since it is incapable of build-
ing requests with payloads of nature application/x-www-form-urlencoded. Furthermore,
similar to the case observed in the gestaohospital API where the maximum value of line
coverage was achieved by EvoReFuzz even though it did not have the highest average line
coverage, it occurred in languagetool where EvoMaster has the maximum line coverage
with 27.55%.

Concerning the restcountries SUT, high coverage is achieved with an average of 74.73%
for EvoReFuzz and 75.1% for EvoMaster. Therefore, EvoMaster missed, on average, 135
lines out of 543 that composed the restcountries API, whereas EvoReFuzz missed 137.
Hence, the difference between the two fuzzers is two lines of coverage. Additionally,
like the other SUTs, there is a significant amount of dead code as a result of getters and
setters that are never called and catch blocks for potential non-throwable exceptions. On
the other hand, the API has an operation that returns a list of countries based on different
filtering criteria, such as country codes. However, the response with NOT_FOUND is
never returned. The problem is that, even if the HTTP requests provide invalid inputs
(e.g., a country code that does not exist), the countries list is incorrectly populated with
null values, so the list will never be empty. This is an intriguing API bug, which results in
a crash (i.e., a returned 500 status code). Consequently, these NOT_FOUND statements
are essentially dead code that tests cannot reach until this API bug is fixed.

Public services Experimental Results

In the public 11 real-world RESTful APIs tested, we found major robustness problems in
both GitLab and Microsoft Bing Maps services. More than 360,000 requests were sent
to the GitLab APIs and over 100,000 to the Microsoft Bing Maps services. In the final,
EvoReFuzz detects 28 new bugs (i.e., robustness problems) in the subject APIs, where
only eight of them can be triggered by RESTCT, and just one by RESTler. Table 6.4,
demonstrate the results obtained in our experiences.

In Table 6.4, the cost is the time, in minutes, each tool spent testing each service indi-
vidually. Even though EvoReFuzz takes more time to perform, it uses both workload and
faultload phases. Moreover, most of the found bugs were triggered in the fautload phase,
which means that we could produce the same results with half of the requests and most
likely half of the time. Regarding robustness problems, we consider a request a bug if it
results in a response with status code 500. Additionally, a unique bug is every bug found
in one operation. Therefore, multiple requests producing responses with status code 500
in one operation will only count as one unique bug.
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Table 6.4: Public services results - RESTler and RESTct values were based of [140]

RESTler RESTCT EvoReFuzz
Company APIs Bug Cost Bug Cost Bug Cost

GitLab

Branch 0 23.3 0 2.3 0 12
Commit 0 23.4 0 4.4 0 8
Groups 1 0.5 1 5.2 1 16
Issues 0 60.6 0 27 0 20
Project 0 24.3 0 25.5 0 27
Repository 0 23.1 0 2.3 0 8

Microsoft
Bing Maps

Elevations 0 0.2 0 1.3 4 10
Imagery 0 60.2 4 55.2 10 33
Locations 0 61.4 0 3.8 2 12
Route 0 60.8 3 63.2 9 292
TimeZone 0 1 0 28.6 2 27

Average 0.1 30.8 0.7 19.9 2.5 42.3

From the six APIs under GitLab, we could only find a robustness problem in Groups
API. Overall, these services are well implemented, either responding with status code
200 for valid requests, 400 for invalid ones, or 404 for not found resources. Even in
the presence of multiple injected faults these APIs stayed robust without triggering any
major bug. Except the Groups API, where the operation GET /groups had multiple 500
- Internal server error. In order to contextualize, this operation gets a list of visible
groups for the authenticated user, and only public groups are returned when accessed
without authentication. In this particular case, numerous faults can trigger a bug. For
instance, replacing the parameter page (i.e., the page number of the returned list) with
the Maximum value plus 1 (i.e., 9223372036854775808) of the numeric data type, which
in this case is an integer, produced a bug. There are also two types of faults that can
easily trigger robustness problems in this operation, Replace with null and Replace with
an empty value, which may indicate that parameter verification is not being conducted in
the code. Consequently, in the faultload phase, we had a total of 1274 different requests
that originated bugs over the /groups endpoint (i.e., operation). We found it peculiar since
the other endpoints and the subsequent APIs from GitLab stayed consistent and robust
thought out the experiences.

Regarding the Microsoft Bing Maps APIs, the Bing’s developer center register over
34,000 requests while testing these public APIs. Figure 6.1 shows a pie chart representing
the overall testing usage divided into the primary operations available in the services. The
data labels are composed of the operation’s name, how many requests were sent for that
particular operation, and the respective deducted percentage.

In every API, we found at least two unique bugs, wherein two of them were discovered
a cumulative of 19 robustness problems. Even though these services are complex and
perform complex tasks, by finding a total of 27 unique robustness problems, we may
affirm that these services lack some type of validation in their parameters. We cannot
show what did trigger these problems since the responses disclaim such data as protection
against possible security breaches. Nonetheless, we may affirm that further testing should
be conducted by the Microsoft testers, where server logs may be checked to locate the
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RESTRoutes, 2647, 8%

RESTImagery Metadata, 2437, 7%

Routes Truck, 2112, 6%

RESTImagery StaticMap, 2100, 6%

Routes LocalInsightsAsync, 1973, 6%

RESTCalculateRoutesFromMajorRoads, 1859, 5%

RESTLocations Structured, 1779, 5%

Routes LocalInsights, 1417, 4%

RESTElevations, 7700, 22%

RESTLocalSearch, 764, 2%

RESTTimeZone, 4613, 13%

Routes Isochrone, 594, 2%

RESTImagery StaticMapWithRoute, 265, 1%

RESTLocationRecog, 254, 1%

Routes IsochroneAsyncCallback, 2770, 8%

RESTImagery BasicMetadata, 1362, 4%

Requests

Figure 6.1: Microsoft Bing Maps usage

weakness in the present code’s logic.

Table 6.5 shows the overall distribution by endpoints of the robustness problems found in
the Microsoft Bing Maps APIs. From the 17293 requests that originate a response with
status code 500, we triggered 27 unique bugs. However, in this set of 17293 requests, we
could have also triggered different types of robustness problems that cannot be pinpointed
since we do not have access to the server logs. Therefore, the identified number of unique
robustness problems are correlated to the endpoints in which at least one request with
status code 500 is present.

Table 6.5: Public Services results with unique bugs

API Endpoint
HTTP

method

Total Number
of requests

with
status code 500

Unique
bugs

Total
requests
sent to
the API

Elevations /Elevation

/SeaLevel

GET 4256 4 8240
/List
/Bounds
/Polyline

Imagery

/Imagery/Map

/{imagerySet}

GET 4831 10 20600

/{imagerySet}/{query}
/{imagerySet}/Routes/{travelMode}
/Streetside/{address}
/Streetside/{centerPoint}/{zoomLevel}
/{imagerySet}/{centerPoint}/{zoomLevel}
/{imagerySet}/{centerPoint}/{zoomLevel}/Routes/{travelMode}

/Imagery/BasicMetadata /{imagerySet}/{centerPoint}

/Imagery/Metadata
/{imagerySet}
/{imagerySet}/{centerPoint}

Locations
/LocalSearch /

GET 1127 2 6180
/LocationRecog /{point}

Routes /Routes

/
/{travelMode}

GET
5150 9 58240

/Truck
/Isochrones
/IsochronesAsyncCallback
/LocalInsights
/LocalInsightsAsync
/FromMajorRoads
/DistanceMatrixAsync

POST
/OptimizeItinerary

TimeZone /TimeZone
/
/Convert GET 1929 2 8240
/{point}

Total: 17293 27 101500

Concerning the error messages for the internal server error, a vast majority of responses

96



Experimental Results

Server Error in '/REST/v1/Routes' Application.

Runtime Error

Description: An application error occurred on the server. The current custom error settings for this application prevent the details of the application
error from being viewed remotely (for security reasons). It could, however, be viewed by browsers running on the local server machine. 


Details: To enable the details of this specific error message to be viewable on remote machines, please create a <customErrors> tag within a
"web.config" configuration file located in the root directory of the current web application. This <customErrors> tag should then have its "mode"
attribute set to "Off". 




<!-- Web.Config Configuration File -->



<configuration>

    <system.web>

        <customErrors mode="Off"/>

    </system.web>

</configuration>

Notes: The current error page you are seeing can be replaced by a custom error page by modifying the "defaultRedirect" attribute of the application's
<customErrors> configuration tag to point to a custom error page URL. 




<!-- Web.Config Configuration File -->



<configuration>

    <system.web>

        <customErrors mode="RemoteOnly" 
defaultRedirect="mycustompage.htm"/>

    </system.web>

</configuration>

Figure 6.2: Run time error message

with status code 500 had the error message of RunTime Error which is proof of a bug
in the implemented code. Figure 6.2 shows the RunTime error message returned by the
service that appears consistently across all APIs and is triggered several times. Moreover,
we also find another type of message for the internal server error. Listing 6.1 shows the
generic message returned by the API where it is also current in every API, and the traceId
is different for each one of the occurrences. When we look up both messages, the Runtime
error message (Figure 6.2) occurs considerably more often than the generic message in a
JSON body (Listing 6.1).

Listing 6.1: Generic Error message
{
"authenticationResultCode": "ValidCredentials",
"brandLogoUri": "http://dev.virtualearth.net/Branding/logo_powered_by.png",
"copyright": "Copyright 2022 Microsoft and its suppliers. All rights reserved.

This API cannot be accessed and the content and any results may not be used
, reproduced or transmitted in any manner without express written
permission from Microsoft Corporation.",

"errorDetails": [
"Your request could not be completed because there was a problem with the

service."
],
"resourceSets": [],
"statusCode": 500,
"statusDescription": "Internal Server Error",
"traceId": "4609027139db4a1f9f4af01211355833|DU00002742|0.0.0.0|DU000005E8,
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DU00001FE3|Ref A: 21A23F743F6E4A3AA5D34D9CDBC96E10 Ref B: DB3EDGE2120 Ref C
: 2022-08-13T01:46:44Z"

}

It is undoubtedly intriguing that the APIs have a generic message ( Listing 6.1) for internal
server errors but also return an HTML message for the RunTime error. Even though the
generic message is related to an internal error, it appears to be a more controlled manner of
yielding an answer to the client. Whereas, for the RunTime error, the server unexpectedly
stopped its operation. Nonetheless, having two types of messages different from each
other for an internal error, let us deduct that we are reaching different parts of the code
and, in a way, having a higher code coverage.

An exciting conclusion we come up with, looking at the results, is which requests Mi-
crosoft count as billable and non-billable, or in other words, which requests are registered
in the Microsoft developer center [180]. We deduced that requests producing responses
with status codes 500 would not be registered in the developer center. With this find-
ing, we notice a discrepancy between the values demonstrated in Figure 6.1 showing over
34,000 registered requests, and Table 6.5, which demonstrates a total of 101,500 requests
sent to the server. Of the 101,500 requests, only 17,293 requests were not counted since
they resulted in responses with status code 500. Thus, only 84,207 are valid for registra-
tion in the developer center, although just over 34,000 were indeed reported. Accordingly,
we can conclude that we duplicated many individuals throughout the generations and used
a low mutation rate. Furthermore, due to the fact that these services have a large number
of input parameters, a mutation probability 1.0/number o f parameters is, in fact, a low
mutation rate.

ucXception’s framework API Experimental Results

To test the ucXception API, we did pair testing but remotely. The student started the
API, and we conducted the testing with EvoReFuzz. Both parties analyzed the behavior
of the API, and we helped with the correct conventional implementation that should be
accomplished in RESTful APIs.

Regarding the results, we found some interesting yet common robustness problems in the
ucXception’s API and common implementation errors. Table 6.6 demonstrates the errors
found.

We manually analyzed the output from the test and essentially looked for operations that
ended with a status code of 500. We found robustness problems in four different opera-
tions:

• GET /campaign/{campaign_id}/download

• GET /components/{component_type}

• GET /components/{component_type}/{component_choice}

• GET /components/{component_type}/{component_choice}/{campaign_id}

Regarding these operations, they are in charge of validating a campaign id and retriev-
ing a CSV file, getting the names of all available components in ucXeption (i.e., logger
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Table 6.6: List of encountered problems

Problem Type
Missing verification if the campaign with the
given id existed in the database.

Common missing verification
found, possible future problems

Missing verification if the campaign with the
given id belonged to the user.

Common implementation error
found, possible future problems

Missing validation (syntax) of the campaign id,
validation if it is an integer.

Common missing validation found,
possible wrong feedback in the
frontend module

Lack of validation for positive number. Common missing validation found
Always returned status code 200 regardless of
whether the element existed in the database.

Bad practice, possible wrong feed-
back in the frontend module

Use of body in delete method is not good prac-
tice.

Bad practice

Missing validation of the user email. Common implementation error
found

Missing validation and verification of the path
parameters.

Resulted in robustness problems

analyzer - Probe logs), extrapolating data from a single component, and validating path
parameters to obtain only the allowed components already created. In this note, the bugs
discovered in these operations were critical to bulletproofing the frontend module of pos-
sible flaws. Consequently, the robustness problems were triggered whenever the API tried
to access a parameter that did not exist and had no protection. Furthermore, the operations
that produced the status code for the 2xx group (i.e., 200 to 299) were also examined to
determine whether a validation or verification was missing. Here, it was possible to detect
some errors that could lead to potential future problems in the ucXeption framework. For
instance, looking at Table 6.6, the most typical problems encountered were the missing
validation of path parameters and body parameters and the missing verification of the
existing elements in the database.

In Figure 6.3, a generic Traceback message from the server is sent when a major robust-
ness problem is triggered without any type of handling. The results showed a total of four
different Traceback messages that occurred multiple times. They are correlated with ac-
cessing a not-existent dictionary key, resulting in a key error in Python as demonstrated
in the Figure 6.3. Therefore, we determined four distinct locations where such an error
existed in the code.

While building the OpenAPI specification file and testing the REST service, some bad
practices were in place. For example, some operations returning only the status code 200
regardless of the code’s logic, potentially leading the frontend to present wrong messages
to the user. Consequently, it can be considered a bug in the frontend module. Moreover,
a delete operation accepted a JSON body. Even though such can be implemented, it is
however bad practice in the conventional world of RESTful APIs. We pinpointed that to
the student, and changes were made to accomplish the conventional methods.

We can conclude that since the frontend module is significantly dependent on the re-
sponses gotten from the API, this type of validation is essential to extrapolate some signif-
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icant errors that otherwise would not be discovered and could result in several cumulative
bugs that would originate in a poor experience to the user of the ucXeption framework. In
the end, all the detected errors were corrected not to compromise the API’s function and
the subsequent frontend module. This partnership was also advantageous for both parties
since, on the one hand, we can show the usefulness of our tool for developers to validate
their systems and the student that did a well-structured validation of the implemented API
in the dissertation.

KeyError
KeyError: 'x3Exf'

Traceback (most recent call last)

File ""/usr/local/lib/python3.6/dist-packages/flask/app.py"",
line 2091,
in __call__

    def __call__(self, environ: dict, start_response: t.Callable) -> t.Any:

        """The WSGI server calls the Flask application object as the

        WSGI application. This calls :meth:`wsgi_app`, which can be

        wrapped to apply middleware.

        """

        return self.wsgi_app(environ, start_response)

File ""/app/api/blueprints/campaign.py"",
line 64,
in get_component_information

@token_required

def get_component_information(current_user, component_type, component_choice):

    if(current_app.config['FRAMEWORK_DATA']):

 

        #Get campaigns information from global variable

        all_component_imformation = current_app.config['FRAMEWORK_DATA'][component_type]

 

        if not all_component_imformation:

            return abort("No data relative to specified component!", 422)

 

        for component in all_component_imformation:

KeyError: 'x3Exf'

This is the Copy/Paste friendly version of the traceback.

The debugger caught an exception in your WSGI application. You can now
look at the traceback which led to
the error. If you enable JavaScript you can also use additional features such as code
execution (if the evalex
feature is enabled), automatic pasting of the
exceptions and much more.
Brought to you by DON'T PANIC, your
friendly Werkzeug powered traceback interpreter.

Console Locked

The console is locked and needs to be unlocked by entering the PIN.
You can find the PIN printed out on the
standard output of your
shell that runs the server.

PIN:
 


Traceback (most recent 
call last):


Figure 6.3: Generic Traceback message for robustness problems
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6.2 Main findings

In this section, we summarize the main findings of our experimental evaluation by going
through crucial characteristics we noticed during this endeavor. We enumerate them in
the following list:

• In most systems, it is unrealistic to target a 100% code coverage since it is almost
impossible to achieve it in complex systems (or even 90%) due to unreachable code
or getters/setters that will not be utilized.

• Schemas in the OpenAPI file, like software, might include faults and/or omissions
(e.g., constraints on some inputs might be missing).

• Underspecified schemas are correlated to a lower code coverage when testing REST-
ful APIs. For instance, in the logic underlying the service, there might be parame-
ters that are not specified in the OpenAPI/swagger file.

• A tool capable of dealing with inter-parameters and operations dependencies will
achieve a higher code coverage for APIs heavily dependent on databases. Since,
in the context of these services, the main logic is writing and reading to/from the
database, dealing with possible dependencies in the input data will make it possible
to cover all possible scenarios.

• A tool must be capable of generating requests to any type of possible payloads (i.e.,
application/json, form-data, x-www-form-urlencoded, XML) to achieve a higher
code coverage since higher operation coverage will translate to a higher code cov-
erage of the SUT.

• Parameters value customization is a must for every black-box fuzzer. When testing
a RESTful API, there are times in which the developer/tester knows possible values
to specific parameters where these are crucial to producing, for instance, a response
with status code 200. As a result, the capability of allowing the customization of
such values is a fundamental feature that should be implemented in the fuzzer. For
example, in most RESTful APIs, authorization parameters should be set with a
basic key or token to allow the user (i.e., tool) to send authorized requests.

• Real-world services are being deployed holding software bugs, or in other words,
robustness problems. Consequently, their overall availability is affected when con-
fronted with faulty scenarios, or in other words, unexpected inputs.

• Lack of parameter validation is one of the most common implementation errors
(e.g., not verifying if the input parameter for an ID in the database is a positive
integer).

• Bad practices while specifying the OpenAPI files are widespread (e.g., a delete
operation with a payload).

• Messages returned by the system under test when robustness problems occur may
lead to vulnerability breaches. The responses’ content originated from a robustness
problem may hint to the attacker to possible weaknesses in the service.
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• When an API is used as middleware for a frontend framework, validating such a
system will bulletproof the frontend component from potential misleading bugs.
For instance, if the RESTful API only returns status code 200, then the frontend
component will wrongly give feedback to possible operations that were not exe-
cuted correctly (i.e., feedback that an entry was created in the database, but no data
was added).

• A request that originated a robustness problem appears to stay consistent over time.
In other words, the exact requests will consecutively originate the same robustness
problem.

• Every OpenAPI/swagger file analyzed had a poor expected response specification,
especially for the status code 500, which describes the possible message for the
originated internal server error.

• With a trivial configuration and one hour of testing, the testers, developers, and
practitioners will have a good test bench to validate their systems.

Regarding our evolutionary approach, EvoReFuzz, we found that it achieved close code
coverage compared to the state-of-the-art tool EvoMaster. EvoReFuzz also efficiently
was capable of triggering 28 unique bugs in a total of 11 public APIs deployed by Mi-
crosoft and GitLab, whereas RESTct found eight and RESTler only one. Such robustness
problems are correlated to the lack of verification and validation before deploying these
services, which affects their general availability. Moreover, with an easy testing setup
and a short test time, we found, together with the Masters’s student, that EvoReFuzz is a
valuable tool for discovering bugs and potential future ones that would affect the overall
robustness of a system’s architecture.

We also noticed that duplicate requests sent to the service might affect the results in the
code coverage of the system and in the process of finding robustness problems. On this
note, running a small test bench and then looking for the number of duplicates is help-
ful to decide if we change, for instance, the mutation rate or the tournament selection
pool, reducing the convergence speed of the GA in our approach. Consequently, future
techniques to avoid duplicated requests are practical applications for future work.
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Conclusion

Nowadays, the Internet is present in every aspect of our lives, from simple websites to
complex software systems available in the palm of our hands, such as Google, home bank-
ing, and entertainment, to mention a few. In these software systems, constant availability
is an essential non-functional requirement. As such, these services must operate correctly
by behaving robustly in the presence of invalid input or stressful conditions that may not
be favorable and compromise the service itself. In addition, RESTful web services are
commonly used in such software systems and are based on a relatively loose architectural
style, allowing for potential weaknesses in the service that may result in robustness issues.

In this work, we present a state-of-the-art analysis of Evolutionary Algorithms and soft-
ware testing with a particular focus on the current implemented tools for testing REST
services in the literature. In addition, we propose an Evolutionary approach to test the
robustness of RESTful APIs as a solution to the existing gap in the literature regarding
evolutionary techniques to evaluate these services.

Concerning the current techniques in the literature, we designed a proof of concept based
on a Genetic Algorithm, with the name EvoReFuzz, where the requests are individuals
composed of a fitness function that will guide the genetic algorithm towards better solu-
tions according to the problem being solved, such as, the generation of valid and invalid
requests. We implemented different strategies for applying the operator crossover and mu-
tation to complex requests. Moreover, we subsequently show EvoReFuzz’s capabilities
in the form of a practical experiment, running thousands of tests over 18 REST services
divided into three sets (i.e., real-world, In-house, and private). The outcomes showed the
approach’s capability to evaluate a diverse gamma of services while revealing robustness
problems as well as poor implementation techniques in the tested services.

Regarding the threats to the validity of the approach implementation and evaluation,
for the experiments conducted between EvoReFuzz and EvoMaster, the command-line
options chosen to test the six APIs might have affected the results of both approaches.
However, we did choose these options with the best possible outcome in our mind, at
least to the best of our knowledge.

For the extensive testing of the real-world services, our approach’s parameterizable op-
tions could have led to fewer robustness problems in these services, especially in GitLab’s
APIs. We did not consider a different mutation rate, which could have been advantageous
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in this case. Nonetheless, we did find a large number of unique bugs considering the total
number of available operations.

While testing the ucXception’s API (private service), we ran two phases of testing, in
which more than 50,000 requests were sent in total. In the last run, of the 34,000 requests,
we found four unique bugs and multiple occurrences of the status code 500. Consequently,
some unique bug might have escaped in the manual process of analyzing the output of the
large test bench. Regardless, the number of disclosed issues, such as bad practices in the
OpenAPI specification file and robustness problems in the service, provide the developers
with helpful information for robustness and validation appraisal. Moreover, we manually
analyzed and reproduced the four bugs found to confirm their existence.

Regarding the software bugs of the implemented approach, it might have affected some
results and, therefore, the subsequent observation related to those same results. We tried,
however, to detect any possible bug the fastest we could. Additionally, we tested a diverse
set of operations, where each API from the set of real-world services was exceedingly
complex and worked as a debug method to assess our approach’s code robustness.

In future work, we intend to implement machine learning capable of categorizing ro-
bustness problems from non-robustness problems based on the response’s content and
status code. In this note, after a neural network has been trained, it is readily incorpo-
rated into the code responsible for assessing each individual’s fitness function. With such
in mind, we developed the fitness function code to be easy for future extensibility. Fur-
thermore, implementing a technique capable of resolving operations dependencies that
follows practical templates based on the semantics of HTTP methods to operate over the
web services’ resources. For instance, a POST operation is executed, and the generated
parameters’ values are used for the subsequent GET operation. As a result, such logic
allows the generation of valid requests by reusing the parameters’ values and, therefore,
achieving a higher code coverage. Moreover, another aspect that should be mentioned is a
framework for a graphical interface to facilitate the customization of the parameter values
and the overall approach’s usability.
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