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Abstract

Today’s companies, including Google, Facebook (Meta), Instagram, and Twitter, depend
heavily on REST-based services. In this type of environment, these services are highly ex-
posed to unexpected scenarios, which may lead to service failures. Robustness, therefore,
is a crucial feature of REST services.

Robustness is the degree to which a particular system or component can operate correctly
in the presence of invalid input or stressful conditions. Due to these services’ increasing
use, interconnection, and complexity, acquiring assurances concerning their robustness
has become an essential part of their development process. Even more so, when these
services support critical systems, where a failure can have significant consequences for
the business or even for people’s lives.

Unlike SOAP services, which have been widely tested for robustness, REST services have
not undergone the same scrutiny. Despite its extensive use, little research has been done
on the topic. As a result, only a few approaches for black-box testing of REST services
have emerged, and all face the problem of generating high-quality workloads (e.g., inputs
that allow good code coverage), which is an open and difficult challenge, especially from
a black-box perspective.

In this dissertation, we present an evolutionary mechanism called EvoReFuzz for robust-
ness testing of REST services. Although several approaches and software testing tools
have been studied and applied to a wide range of problems, REST services need new
practices in the intelligent generation of quality inputs and the improvement of the ex-
haustive process of verification and validation. Also, the potential of using evolutionary
computation for this purpose has been mostly disregarded. Therefore, we fill in this gap
by proposing EvoReFuzz, a tool that uses an evolutionary algorithm to automatically gen-
erate valid and invalid inputs solely based on the OpenAPI interface description and the
observed external behavior of the service.

We used EvoReFuzz to evaluate 12 different services, 11 public real-world APIs, and one
private. The experimental results on the 11 real-world RESTful APIs demonstrate the
effectiveness and efficiency of EvoReFuzz, where we were able to disclose 28 unique ro-
bustness problems in the GitLab and Microsoft Bing Maps services, such as Run Time er-
rors. These results depict that REST services are being deployed online, holding software
bugs. In addition, the lack of parameter validation is one of the most common implemen-
tation errors, and flawed practices while specifying the OpenAPI files are widespread.
Private services are also included in this group, where we could find four different bugs
and bad implementation practices in an implemented API for a framework. Moreover, we
made a code coverage comparison between EvoReFuzz and the state-of-the-art testing
tool EvoMaster, in which both approaches had a relatively close performance.

Keywords

Software testing, robustness evaluation, RESTful APIs, Evolutionary Testing, Genetic
algorithms
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Resumo

As empresas de atualmente, incluindo Google, Facebook (Meta), Instagram e Twitter, de-
pendem fortemente de serviços baseados em REST. Consequentemente, os serviços web,
em particular, estão constantemente expostos a cenários inesperados, que podem ou não
levar a falhas no serviço. Fazendo com que a Robustez seja, portanto, uma propriedade
essencial dos serviços REST.

Robustez é o grau em que um determinado sistema ou componente pode operar correta-
mente na presença de entradas inválidas ou em condições de stress. Devido ao crescente
uso, interconexão e complexidade desses serviços, adquirir garantias sobre a sua robustez
tornou-se uma parte importante do seu processo de desenvolvimento. Sendo particular-
mente essencial, quando esses serviços suportam sistemas críticos, onde uma falha pode
ter consequências significativas para o negócio ou mesmo para a vida das pessoas.

Enquanto os serviços SOAP, que foram amplamente testados quanto à sua robustez, os
serviços REST não passaram pelo mesmo escrutínio. Apesar de seu alargado uso, poucas
pesquisas foram feitas sobre o tema. Como resultado, apenas algumas abordagens para
testes de caixa-preta de serviços REST surgiram e todas enfrentam o problema de gerar
cargas de trabalho de alta qualidade (por exemplo, entradas que permitem uma boa cober-
tura de código), o que é um desafio aberto e difícil, especialmente do ponto de vista da
caixa-preta.

Nesta dissertação, apresentamos um mecanismo evolutivo chamado EvoReFuzz para testes
de robustez de serviços REST. Embora diversas abordagens tenham sido estudadas e apli-
cadas a uma ampla gama de problemas, os serviços REST necessitam de novas práticas
na geração inteligente de entradas de qualidade e no aprimoramento do processo exaus-
tivo de verificação e validação. No entanto, o potencial do uso da computação evolutiva
para este propósito tem sido em grande parte desconsiderado. Portanto, preenchemos esta
lacuna ao propor o EvoReFuzz, uma ferramenta que utiliza um algoritmo evolucionário
para gerar automaticamente entradas válidas e inválidas apenas com base na descrição da
interface OpenAPI e no comportamento externo observado do serviço.

Usamos o EvoReFuzz para avaliar 12 serviços diferentes, 11 APIs públicas do mundo
real e uma privada. Os resultados experimentais nas APIs públicas demonstram a eficácia
e eficiência do EvoReFuzz, onde foram descobertos 28 problemas únicos de robustez nos
serviços GitLab e Microsoft Bing Maps. Estes resultados exibem que os serviços REST
estão a ser publicados online, com bugs presentes no software. Além disso, os serviços
privados também estão incluídos, onde encontramos 4 bugs únicos. Assim, a falta de
validação dos parâmetros de entrada é um dos erros de implementação mais comuns,
como as más práticas ao descrever as interfaces dos serviços. Em adição, fizemos uma
comparação de cobertura de código entre o EvoReFuzz e a ferramenta de teste EvoMaster,
na qual ambas as abordagens tiveram um desempenho relativamente próximo.

Palavras-Chave

Teste de Software, avaliação de robustez, RESTful APIs, Teste Evolutivo, Algortimos genéticos
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Chapter 1

Introduction

Most of the services available today depend on software systems. These systems must
be robust to avoid failures and thus prevent unexpected conditions. Web services are
particularly susceptible to unexpected scenarios due to the fact that they are often exposed
to abnormal and malicious inputs which, if left unchecked and unaddressed, can lead to
problems such as data loss and disclosure of private information [1].

The majority of web services available today are REpresentational State Transfer (REST)
services [2] which follow the REST architecture [3], and large technology companies such
as Facebook, Instagram, Twitter, or Google, have their products publicly deployed via
REST services. The resources available through REST (i.e., RESTful service, REST API)
are identi�ed by Uniform Resource Identi�ers (URI) and can be manipulated with actions
based on the semantics of the prede�ned HTTP verbs, such as GET, POST, DELETE, and
PUT [4, 5]. Usually, REST rely solely on the Hypertext Transfer Protocol (HTTP) for
message transfer communication. Additionally, it has have a relatively loose architectural
style where the presence of an interface description document (e.g., a WSDL document)
is not mandatory. Consequently, there is no standard way to describe an interface of a
RESTful API, but an OpenAPI speci�cation [6] is among the most popular.

Given the lack of formal description and the common public access, many potential inputs
can be sent to these services. As a result, if such inputs are not validated, they can activate
software faults, which can cause the system to go into an erroneous state, which can lead
to a failure [7]. The latter is something that is evident at the system's boundaries and
indicates a deviation from the expected behavior. Furthermore, there should be a concern
for preventing server crashes and incorrect responses. Even more so if the service in
question is a business or mission critical.

Unlike SOAP services, which have been widely tested for robustness, REST services have
not been subjected to the same examination [1]. Despite its widespread use, there is little
literature on the topic. As a result, a small number of automated tools for software testing
of REST services have been developed, and most of them use dictionaries or random
inputs for data generation [8–13]. It is argued that software engineering is ideal for the
application of metaheuristic search techniques where the search-based technique must
outperform the random technique [14]. Furthermore, several observations support the
idea that the random technique may not be suitable for industrial applications with huge
input spaces [15, 16].
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Chapter 1

To test REST services, we followed a black-box approach since it only needs a description
of the system interface and does not require knowledge of the artifacts or the code itself. In
this case, and among other aspects, designing good quality tests (e.g., tests that have high
code coverage) is much more challenging, but, at the same time, designing and executing
tests may be more straightforward as the whole system is viewed from an external point
(many times, the tests represent user operations, which tend to be accessible to model).

In many cases, black-box is actually a mandatory option to use (e.g., closed-source sys-
tems, participants in a service mesh provided by external entities, tests performed for spe-
ci�c certi�cation purposes). Additionally, it allows the generalization of testing different
REST services that are heterogeneous in an automated way without extensive and chal-
lenging incorporation into the system's code. Therefore, any tester may use our approach
to test any RESTful API with an interface speci�cation �le (e.g., OpenAPI [6]).

Regarding the related work, we started by analyzing different Evolutionary Algorithms
and their components, such as the �tness function, variation operators, parent selection,
and population. Further, we present the related work for software testing, focusing on
state-of-the-art tools for testing RESTful APIs. After this analysis, we use the collected
knowledge to highlight the lack of academic support for solutions to evaluate the robust-
ness of RESTful APIs using evolutionary algorithms. We seek to unravel this problem by
proposing a novel approach.

In this thesis, we present an evolutionary approach for testing the robustness of REST
services that takes advantage of the components that compose an Evolutionary Algorithm
to generate valid requests in the form of a workload and to generate invalid ones in the
form of faultload (i.e., empty values, boundary values, invalid strings) that will be sent to
the service to test its robustness. Our approach, named EvoReFuzz, is capable of produc-
ing these requests in an automated way assisted by a Genetic Algorithm, which operates
as a client application. The Genetic Algorithm evaluates its individuals by analyzing the
returned responses from the service. With such information, our evolutionary approach
generates high-quality solutions to optimize the search problems, which is, in our case,
producing valid (i.e., requests that originate a response with status code 200) and invalid
requests (i.e., requests that originate a response with status code 500). This methodology
aims to produce high-quality input to obtain an acceptable code coverage of the system
under testing (SUT).

To demonstrate the usefulness and usability of our approach in �nding robustness prob-
lems, we then performed tests over a set of 12 services, where 11 are real-world services
from GitLab [17] and Microsoft Bing Maps [18], and one private service in which we
partner with a Masters's student to evaluate the API developed for the framework's dis-
sertation. We conducted over 500,000 tests, in which we discovered 28 unique bugs for
the real-world services and four for the private service. This information is essential to
the testers and developers. It also helps �nd bad practices over the conventional RESTful
APIs practices and the lack of input validation, which is very common while developing
complex systems. Moreover, we performed an experiment to compare the code coverage
between our approach, EvoReFuzz, and the state-of-the-art tool EvoMaster [19] over six
different systems with different levels of complexity, functions, and code logic.

The main contributions of this dissertation are the following:

2
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• The de�nition of an Evolutionary approach for testing the robustness of REST ser-
vices using the components of a Genetic Algorithm.

• A robustness framework, named EvoReFuzz, using our Evolutionary approach avail-
able in [20] to be used by testers and developers.

• The practical application of EvoReFuzz to a set of 11 real-world RESTful APIs and
one private, which demonstrates the capability of producing robustness problems in
these services and �nding lousy programming practices in the service itself as well
as in the speci�cation �le.

• A practical code coverage comparison between EvoReFuzz and the state-of-the-art
tool EvoMaster [19, 21], to a set of six REST services.

The outcomes of this dissertation incorporate a paper submission, which is under evalua-
tion at the time of writing. We submit to PRDC 2022 (Paci�c Rim International Sympo-
sium on Dependable Computing) reporting on “A Framework for Evolutionary Black-box
Testing of REST Services”. Moreover, we are also currently writing a second paper with
the full description of our approach and its experimental results to submit to GECCO
2023 (Genetic and Evolutionary Computation Conference).

The remainder of this document is organized as follows. Chapter 2 provides a context
background on concepts addressing the REST architecture, software testing, and Evolu-
tionary algorithms. In chapter 3, we begin by exploring the different Evolutionary Al-
gorithms applied in the literature with a thorough analysis, particularly in Genetic algo-
rithms. Furthermore, a study of relevant work in software testing was undertaken, with
particular attention paid to tools for testing REST services as well as various applications
that could bene�t from the use of evolutionary algorithms. Chapter 4 describes our ap-
proach for testing the robustness of REST services using an Evolutionary Algorithm, its
architecture, and the correlated components that comprise an EA. Chapter 5 presents the
experimental setup conducted in our work, describing each service and the experimental
environment. Following up is Chapter 6 showing the results obtained from the conducted
experiences. Last but not least, chapter 7 concludes this intermediate report by describing
the threads to validity and future work.
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Chapter 2

Background

In this chapter, we provide the background on the fundamental concepts related to the
work's main subjects, speci�cally, REST services and software testing. In Section 2.2,
we describe the REST architectural and show a simple example of a REST service archi-
tecture and its components. Finally, in Section 2.1, we go over the main characteristics of
software testing as well as methodologies like white-box and black-box testing.

2.1 Software Testing

As described by Myers et al. [22], software testing is a process, or a series of processes,
designed to make sure computer code behaves as designed and that it does not do anything
unintended. As so, software should be predictable and consistent, presenting no surprises
to users. The purpose of software testing should be considered as a destructive process
of attempting to locate program faults (i.e., the root cause of a problem, also known as
a bug or a defect). Therefore an appropriate de�nition for testing application can be
the following: “Testing is the process of executing a program with the intent of �nding
errors.” [22]. It is important to keep in mind that software testing is not meant to prove
the absence of code errors; rather, it is meant to establish their presence.Black-box
testing (also known as datadriven or input/output-driven testing) andwhite-box (or logic-
driven) testing are two of the most prevalent testing procedures, these two methods are
categorized according to visibility [22]. It is important to keep in mind that there's another
intermediate level known asgrey-box testing [23], which is practiced by software testers
less frequently.

The degree to which a testing activity accounts for the logic and internal structure of
the system or component under test (SUT) is referred to as visibility in software testing.
White-box testing refers to scenarios in which testers, who design test cases, have full
visibility of the entity (i.e., code) under test and re�ect that information in the test cases
they develop [22] (e.g., by creating test cases that subject speci�c code paths of the func-
tions under test to such test). In Figure 2.1, we demonstrate an example of white-box
testing with a constructed control �ow graph, which is used in the control �ow testing
technique as we further explain.

There are considerableadvantagesof white-box testing [24]. For instance, it reveals

5
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Figure 2.1: Example of white-box testing, Control Flow Testing technique

an error in hidden code by removing extra lines of code, side effects are bene�cial, and
maximum coverage is attained during test scenario writing. However, there are alsodis-
advantages. It is costly as it requires a skilled tester to perform it, and many paths will
remain untested as it is challenging to look into every nook and corner to �nd hidden
errors. Moreover, some of the codes omitted in the code could be missed out.

Regarding white box testing techniques, some important types are brie�y described below
[24]:

• Control Flow Testing: It is a structural testing strategy that uses the program control
�ow as a model control �ow and favours more but simpler paths over fewer but
complicated path.

• Branch Testing: BT has the objective to test every option (true or false) on every
control statement which also includes compound decision.

• Basis Path Testing: It allows the test case designer to produce a logical complex-
ity measure of procedural design and then uses this measure as an approach for
outlining a basic set of execution paths

• Data Flow Testing: In this type of testing the control �ow graph is annoted with the
information about how the program variables are de�ne and used.

• Loop Testing: It exclusively focuses on the validity of loop construct.

The lack of visibility about the SUT, on the other hand, is referred to asblack-box testing,
in which the testers are uninformed of the internal structure. Test cases are mostly deter-
mined by the availability speci�cations and interface descriptions, as well as the tester's
additional system expertise, about the context. The technique referred as Equivalence
Partitioning, splits the value ranges of inputs to the SUT into logical classes (e.g., positive
and negative numbers can be classi�ed into two classes), ensuring a good coverage of
the existing input value ranges provided in the system interface. Testers can choose at
least one value from each of the partitioned input classes rather than selecting completely
random inputs (which is not really ideal for large value ranges). The output of the SUT is
then compared to the speci�cation to verify that it is correct. To contextualize, in Figure
2.2, we show an example of the Boundary Value Analysis black-box testing technique.
It targets the testing at boundaries or where the extreme boundary values are chosen. It
includes minimum, maximum, just inside/outside boundaries, error values, and typical
values.

6
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Figure 2.2: Example of black-box testing, Boundary Value Analysis technique

Theadvantagesof black-box testing are the following [25]: ef�cient for large code seg-
ments, tester perception is straightforward, user's perspective is separated from the devel-
opers perspective (programmer and tester are independent of each other), and quicker test
case development. On the other hand, thedisadvantagesare that only a selected num-
ber of test scenarios are actually performed. As a result, there is only limited coverage.
Moreover, without precise speci�cations, test cases are dif�cult to design.

Concerning types of black box testing techniques, the following are essential ones, which
we pithily described [25]:

• Equivalence Partitioning: It can reduce the number of test cases by dividing the
input data of a software unit into a partition of data from which test cases can be
derived.

• Boundary Value Analysis: It focuses more on testing at boundaries or where the
extreme boundary values are chosen. It includes minimum, maximum, just insid-
e/outside boundaries, error values, and typical values.

• Fuzzing: Fuzz testing is used for �nding implementation bugs, using malformed/semi-
malformed data injection in an automated or semi-automated session.

• Cause-Effect Graph: It is a testing technique that begins by creating a graph and
establishing the relation between the effect and its causes. Identity, negation, logic
OR, and logic AND are the four elemental symbols that express the interdepen-
dency between cause and effect.

• Orthogonal Array Testing: OAT can be applied to problems in which the input
domain is relatively small but too large to accommodate exhaustive testing.

• All Pair Testing: In all pair testing techniques, test cases are designed to execute all
possible discrete combinations of each pair of input parameters. Its main objective
is to have a set of test cases that covers all the pairs.

7
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• State Transition Testing: This type of testing helps test state machines and naviga-
tion of graphical user interfaces.

Grey-box testing [23], also referred to as gray box testing, is a software testing approach
used to evaluate a software product or application while only knowing a portion of the
application's underlying structure. Grey box testing looks for and uncovers defects caused
by improper application usage or code structure. It is a software testing method that
combines white-box testing and black-box testing. While the internal structure (i.e., code)
is known in white-box testing and unknown in black-box testing, the internal structure is
partially acknowledged in grey-box testing.

Grey-box testing has a fewadvantagesas it provides combined bene�ts of white box and
black box testing techniques [26]. For instance, the tester relies on interface de�nition
and functional speci�cation rather than source code. The tester can design excellent test
scenarios. The test is done from the user's point of view rather than the designer's point
of view. Moreover, it creates an intelligent test authoring and unbiased testing. Whereas,
for its disadvantages, the test coverage is limited as access to source code is unavailable,
and it is challenging to associate defect identi�cation in distributed applications. More-
over, many program paths remain untested, and the tests can be redundant if the software
designer has already conducted a test case.

To summarize and accordingly with Myers et al. [22], the following are important princi-
ples of testing:

• Testing is the process of executing a program with the goal of identifying errors.

• Testing is more effective when not performed by the developer(s).

• A good test case is one that has a high chance of detecting an error that has yet to
be discovered.

• A successful test case is one that uncovers a previously unknown error.

• Testing success requires a thorough de�nition of both desired output and input.

• Testing success includes a thorough examination of test results.

2.1.1 Fuzz testing

The �rst mention of fuzzing was seen in the research in 1990 when Miller et al. [27]
created a tool named “fuzz”, in which random input strings were generated to perform
their reliability tests. The interest in fuzzing has been growing during the past few years
when its potential has been enhanced, and it is nevertheless a relatively new �eld of re-
search. The initial idea of fuzz testing is to create semi-valid test data either by mutating
valid data or generating data with speci�c rules [28]. Fuzzers that alter existing test cases
to create new ones are called mutation-based fuzzers. In contrast, the fuzzers that create
the test cases are called generation-based fuzzers. Both generation and mutation-based
fuzzers have to fuzz the current test cases, either randomly or with given pre-de�ned rules
[29].
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Regarding the black-boxFuzz testing [30, 31], it is a software testing technique that
consists in �nding implementation bugs using malformed/semi-malformed data injection
in an automated fashion. The application is then checked for errors like crashes, failed
in-built code assertions, or possible memory leaks. Fuzzers are typically used to evaluate
programs that accept structured inputs. This structure separates valid input from invalid
input and is provided, for example, in a �le format. Effective fuzzers provide semi-valid
inputs that are "valid enough" to trigger unexpected behaviors deeper in the program but
are "invalid enough" to disclose cases that have not been appropriately addressed.

2.1.2 Robustness testing

The act of producing faulty functioning by triggering design or programming errors within
a particular system (i.e., robustness failure) [32] is known asrobustness testing, which
is deeply linked to reliability testing. Limit situations (e.g., out-of-bounds values) or
improper inputs are typically sent into a system's interface throughout robustness testing.
The system's robustness is then assessed using the ratio between the number of test cases
that disclose robustness faults and the total number of test cases performed. A system is
said to be resilient if it retains normal operational behaviour as a result of external failures
[33].

In other words, when the subject of robustness in software testing raises, it usually in-
dicates that the system, whether it is already in operation or still being developed, is
functioning normally. Enhancing dependability and identifying unforeseen circumstances
through data that simulates extreme environmental conditions can support establishing
whether a system is reliable enough to perform as expected. It is not about those ideal-
ized situations where everything works without a problem. To determine what the other
tests are missing, we do robustness testing. The goal is to develop test environments for
evaluating the robustness of software systems. Furthermore, testing robustness is more
focused than dependability benchmarking.

Laranjeiro et al. [1] conducted a systematic review on Software Robustness Assessment in
which the authors analyzed 145 papers. They reached the conclusion that the most popular
techniques for robustness testing can be classi�ed into two categories: fault injection,
which was included in about three-quarters of the works, and model-based techniques in
the other category. The authors also discovered fuzzing methods for assessing system
properties related to robustness.

Looking at the types of fault used in the works, Laranjeiro et al. [1] identi�ed that invalid
inputs overwhelm the distribution, used in more than half of the works, and followed up
by random and boundary inputs. In fewer occurrences, there were also bit-level faults,
timing faults, MACD operations, and invalid outputs.

2.2 REST architecture

The REpresentational State Transfer (REST) architecture was introduced in 2000, by
Thomas Fielding [3]. In simple words, the available resources of the services are ex-
posed accordingly to the REST principles and the REST interfaces rely solely on Uniform
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Resource Identi�ers (URI) for resource identi�cation and interaction, and usually on the
Hypertext Transfer Protocol (HTTP) for message transfer communication. A REST ser-
vice URI only provides the location and name of the resource, which serves as a unique
resource identi�er. These resources can then be manipulated with actions based on the
semantics of the prede�ned HTTP verbs [4, 5], such as GET, POST, DELETE, and PUT,
these verbs also known as methods are mapped to CRUD operations (Table 2.1) and are
used to de�ne the type of operation that should be performed. During the handling of
an HTTP request, the API might need to read or write data from or to a database and
communicate with other web services. A web service (i.e., REST or RESTful service)
using REST should follow some speci�c guidelines [3, 4]. The architecture should be
client-server by separating the user interface concerns from the data storage concerns,
and communications between client and server should be stateless (i.e., the server do not
store the client state between requests). Also, the responses must be de�ned as cacheable
or non-cacheable (i.e., If the same request is processed multiple times and the response
is equal every time, then the server can store it in the cache to ful�ll future requests),
for scalability purposes. The requests and responses must be self-descriptive, i.e., they
should hold enough information to describe how to process them. In addition the server
responses must provide links to related and available resources. Lastly, requesting a new
resource puts the client in a new state, where server responses must provide links to re-
lated and available resources following (Hypermedia As The Engine Of Application State
principle).

Table 2.1: CRUD operations to HTTP methods

CRUD operations HTTP methods
CREATE PUT/POST
READ GET

UPDATE PUT/PATCH
DELETE DELETE

According to the HTTP methods, a resource can be retrieved using the method GET. PUT
and POST methods should, on the other hand, be used to create a resource. There are,
however, differences between the two. The PUT method is idempotent, which means that
executing the same request several times will result in the same output (response) as if
just one was performed, whereas the POST method will result in different outputs (re-
sponses)if multiple requests are made, each one equal to the next. Therefore, PUT should
be used when the client decides or knows the URI for the new resource. Alternatively,
the POST method should be used when the server assigns the URI. The PUT and PATCH
methods are used to update a resource. The difference between these two lies in the fact
that the PUT updates the entire resource, whereas PATCH only makes partial modi�ca-
tions. In other words, if a resource consists of two parameters with the names param1 and
param2, then to update the value of param1 with the PUT method, it will be necessary to
specify both values of the two parameters (param1 and param2). While for the method
PATCH, it will only be necessary to specify the value of the parameter to be updated, in
this case, param1. Finally, the DELETE method removes a resource. Over time, some
methods were introduced, such as the PATCH itself, HEAD, CONNECT, and OPTIONS,
but usually the main usage is given to the methods PUT, POST, GET, and DELETE.

Each pair of a URI and an HTTP method in a REST service is referred to as an operation.
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Optionally, parameters and a payload may be required for an operation. HTTP headers or
the URI itself can be used to de�ne operation parameters. Path parameters are included in
URI parameters (i.e.,/api/123 is a generic example as a result of/api/<variable> ),
and query string parameters (i.e., de�ned after the ? and at the end of the URI separated
with a &, like so/api/car?type=suv&color=red ). The operation's payload is sent in
the HTTP request body, and most REST services adopt JSON objects as payloads, al-
though alternative formats, such as XML, plain text, and even �le formats, are frequently
accepted as well.

Figure 2.3: An example of OpenAPI speci�cation.

Every HTTP request is followed by a response, which contains a status code as well as
the content (if any). Thestatus codeindicates whether a speci�c HTTP request has been
successfully completed and categorizes the responses in �ve classes [34]:

1. Informational responses (100–199)

2. Successful responses (200–299)
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3. Redirection messages (300–399)

4. Client error responses (400–499)

5. Server error responses (500–599)

The interface of a REST service (i.e., API) must be documented so that developers can
design suitable client applications. API speci�cations are now available in a variety of
formats, the most extensively used being the OpenAPI speci�cation (previously known as
Swagger) [6]. Figure 2.3 demonstrates a simple example of an OpenAPI speci�cation �le
formatted in YAML [35]. Here, the paths �eld describes a list of resources available (i.e.,
API endpoints, operations, URIs), each corresponding to a set of HTTP methods that can
be performed (e.g., the POST method is supported for the resource /users).

For each HTTP method, the format of input and output parameters are described in the pa-
rameters (i.e., properties for a request body) and responses �elds (e.g., the input-parameter
password should take a string value of format password; it is required, and should be sent
in the request body). For example, for a 200 OK (i.e., success) response, one may de�ne
the HTTP response payload, whereas a different payload could be returned for an error
response (e.g., 500 Internal Server Error). As a result, developers can verify that the ser-
vice's implementation and speci�cation agree on each response. Regarding the example
of Figure 2.3, a user can be created with a �rst name, last name, and password. There are
also constraints concerning the size of each one of these parameters (e.g., string max and
min length) that will be sent in a JavaScript Object Notation body, also known as JSON.

In Figure 2.4 is represented a general architecture of a REST web service and how the
communication between the client-server is made. An HTTP request initiated by a client
application must at least include the URI and method for a valid resource in the server.
The method is mapped with the operation performed on that resource by the server (e.g.,
GET for retrieving). Both parameters and payloads are optional and vary depending on
the API operation. Generally,REST frameworksreturn an HTTP response with a generic
error message when malformed HTTP requests are made (i.e., when they do not follow
the HTTP speci�cation [36]).

Figure 2.4: General architecture of a REST web service

In any case, if the HTTP request is well-formed, it will be passed to the REST framework
component. As a result, the request's body will be parsed so that the server can determine
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which operation the user is requesting. If, for example, the provided URI does not match
the URI of the server resource (e.g., sending a request with PUT method on a resource for
which the server only supports PATCH) or there are security requirements that the client
has not checked, the REST framework halt processing the request and noti�es the client
with the suitable error message.

If the targeted API operation requires parameters or a payload, this component will check
their existence, extract them, and, in the case of media type-formatted payloads (e.g., a
JSON object), cautiously convert the contents of the HTTP request body into the appro-
priate format. The server will again provide an error response to the client if the payload
is faulty.

When the required API action is found, the Service component's corresponding func-
tion (i.e., the one which performs the API operation's logic) is invoked, and the HTTP
request's inputs are supplied to it. Calls to external systems may be made by the ser-
vice. The REST Framework returns the result of the called function's execution to the
caller component, which may encapsulate it in a JSON object, for example. The re-
quired response elements are returned to the HTTP Connector, which encapsulates these
in a suitable HTTP response object, serializes it into a sequence of bytes, and sends it to
the calling client application over the Internet, completing one effective request-response
communication process.

2.3 SOAP vs REST

In this section, we take a brief comparison between SOAP and REST services. We start
by describing the main aspects of a SOAP service and then identify the main differences
between SOAP and REST web services.

SOAP [37] is a uniform protocol and was �rst designed to allow communication be-
tween programs created in different programming languages and on multiple platforms.
It has built-in restrictions that increase its complexity and overhead since it is a protocol,
which causes longer page load times. However, these standards have built-in compliances
that make them more advantageous in business circumstances. Security, atomicity, con-
sistency, isolation, and durability (ACID), a collection of characteristics that guarantee
trustworthy database transactions, are included in the built-in compliance requirements.
Figure 2.5 demonstrates a SOAP-based Web services architecture.

Figure 2.5: SOAP-based Web services architecture
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SOAP relies on the WSDL [38], or Web Service Description Language, which is an XML-
based de�nition language. It's used for describing the functionality of a SOAP-based web
service. In other words, it describes the service interface (e.g., elements, attributes, data
types). A WSDL �le may be considered a contract between the provider and the consumer
of such service.

Table 2.2: SOAP vs REST [3, 39, 40]

Property SOAP REST

Nature

It is a protocol and was designed
with a speci�cation. It includes a
WSDL �le that has the required information
on what the web service does, along with the
location of the web service.

It is an Architectural style in which a
web service can only be treated as a RESTful
service if it follows the constraints of being:
- Client Server
- Stateless
- Cacheable
- Layered System
- Uniform Interface

On API Changes Client code must be recompiled with new WSDLCan be backward compatible
Asynchronous Yes, Asynchronous Messaging Synchronous
Bandwidth Usage +++ +
Cacheable No Yes
Data Formats Only XML XML, Json, Plain Text, etc

Documentation
The SOAP protocol can be quite complex
but it is well documented.

Depends on the documentation provided
by the service designer.
(OpenAPI/Swagger for example)

Error Handling Built-in No error handling
Exposed Business LogicServices Interfaces URIs/Endpoints
Failure Handling Retry logic built-in Expects Client to retry

Goal
Focuses on exposing pieces of
application logic (not data) as service.

Focuses on accessing named resources
through a single consistent interface.

Invokation Invokes Services by calling RPC Methods Simply call services using HTTP Requests.
Java API JAX-WS Jax-RS
Javascript Support Dif�cult Easy

Network Transfer over HTTP, SMTP, FTP etc.
Purely HTTP, however, REST is an
architectural style and may use other
protocols.

Of�cial Standard Yes No
Statefullness Supports stateless and stateful operations Emphasizes stateless communication

Payload
XML Soap Envelop, must comply
SOAP schema.

Can be any format

Payload Constraints Must support XML Serialization. -
Performance Depends on Message Encryption, Signing etc. Almost no protocol overhead.
Protocol XML Based Message Protocol A free architectural Style Protocol

Reliability Reliable
Not Reliable. e.g., an HTTP Delete can
return OK even if it did not work.

Security
Supports SSL, but also WS-Security
(XML Encryption and Signature)

Depends on the documentation provided
by the service designer.

Time to Market Slow Fast

Tooling
Requires signi�cant middleware
tooling support.

Only HTTP support is required.

Who uses it?
Financial, Payment Gateways,
Telecommunication.

Social Media, Web, Mobile.

Unlike SOAP, REST services have a relatively loose architectural style where the presence
of an interface description document (e.g., a WSDL document) is not mandatory. Con-
sequently, this loosely coupled relationship between client and server does the practices
used for robustness testing on SOAP services completely impractical for REST services.
Additionally, this loosely coupled relationship between client and server allows for po-
tential weaknesses in the service. Given the lack of formal description, REST services are
easily exposed to invalid or malicious inputs that may activate residual faults in the code.
Additionally, establishing guarantees about their robustness has become an integral ele-
ment of the development process due to their increasing use and complexity. Therefore,
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REST services must be thoroughly tested to accomplish such guarantees.

Figure 2.6: SOAP vs REST - Google Trends [41]

Even though we cannot have a straight comparison between the usage of REST and SOAP
services, we can, however, look at each search topic across the years in Google trends by
the category of Computers and Electronics. Figure 2.6 shows the evolution graph of
these keywords searched since 2004. We can analyze from the start of 2011 that the
REST services started to be the most searched therm between the two. Additionally, this
evolution complies with the conclusion based on the empirical studies in the extensive
survey conducted by Laranjeiro et al. [1], in which the amount of research on web services
robustness evaluation peaked in the late 2000s where the preponderance focused on SOAP
web services. However, the research interest has stopped, and the last work on SOAP
services dates back to 2015.
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Related work on Evolutionary
Algorithms and Software Testing

In this chapter, we analyze the related work on Evolutionary Algorithms and Software
Testing, mainly focusing on RESTful API testing. In section 3.1, we begin by describing
Evolutionary Algorithms. Furthermore, we deeply analyze Genetic Algorithms and the
associated methodologies applied in their components, such as �tness function, mutation,
crossover, and parent selection. Then, in sub-section 3.1.3, we discuss the empirical
studies. We conclude this chapter with section 3.2, where we present the related work
regarding software testing using evolutionary algorithms and approaches for RESTful
API testing. Lastly, we �nish with sub-section 3.2.2, where we conduct a discussion
about the analyzed works.

3.1 Studies on Evolutionary algorithms

In arti�cial intelligence, an Evolutionary Algorithm is regarded as a part of evolutionary
computation. As a result of solving problems, an evolutionary algorithm uses various
evolutionary computational models inspired by the Darwinian principles of the natural
process of evolution [42]. Here, the least �t individuals of the population are eliminated
during the selection process used by evolutionary algorithms. In contrast, the most suit-
able individuals survive and evolve until better solutions are found. In other words, evo-
lutionary algorithms are computer programs that simulate biological processes to address
challenging problems. Successful individuals develop over time to offer the problem's
optimal solution.

This analysis's primary objective is to identify the methodologies and values upheld in the
literature so that we may establish a basis from which to start our implementation. These
methodologies and values are correlated to the parameters that compose an Evolutionary
algorithm, and we must �rst agree on a list of all its signi�cant components. Accordingly,
we assume the following components of an EA:

• Representation of individuals;

• Evaluation function (i.e., �tness function);
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• Variation operators (i.e., mutation, crossover, mutation probability, crossover prob-
ability);

• Selection operator (i.e., parent selection or mating selection);

• Replacement operator (i.e., survival selection or environmental selection);

• Population (e.g., size, topology).

Table 3.1: Evolutionary Algorithms and techniques

Theme Sub-theme Papers
Algorithm Simulated annealing Kirkpatrick et al. [43], Metropolis et al. [44],

Latiu et al. [45]
Evolutionary Algo-
rithms

Evolutionary strate-
gies

Hans-Georg Beyer and Hans-Paul Schwefel [46], Dar-
rell Whitley [47]

Particle Swarm Opti-
mization

Kennedy and Eberhart [48], Latiu et al. [45], Eberhart
and Yuhui Shi [49]

Differential Evolu-
tion

Storn and Price [50], Thomsen [51]

Genetic algorithm Holland et al. [52]

1+ 1 EA Droste et al. [53]

Memic algorithm Moscato [54]
Genetic algorithm Variation operators

(i.e., mutation and
crossover) and Pa-
rameters control

De Jong [55], Schaffer et al. [56], Grefenstette et
al. [57], Goldberg et al. [58], Tuson and Ross [59],
Spears [60], Srinivas and Patnaik [61], Eiben et al. [62],
Michalewicz et al. [63], Homaifar et al. [64], Joines
and Houck [65], Mühlenbein and Heinz [66], Smith and
Fogarty [67], Hesser and Männer [68], Julstrom [69],
Bäck [70–73], Lis [74]

Parent selection Baker, [75], Brindle [76], Goldberg and Deb [77],
Razali and Geraghty [78], Cavicchio [79]

Genetic algorithm
variations

messy GA's Goldberg et al. [80]

Genetic Simulated
Annealing

Koakutsu et al. [81]

Species conserving
genetic algorithm

Li et al. [82]

Observation Studies Effect of reduction
the search space

Harman et al. [83]

Comparison between
GA, SA, GSA,
SA/AAN

Xiao et al. [15]

In the following paragraphs, we will describe the components previously mentioned of the
EAs, and we will also discuss different techniques to assign values to these parameters.
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Furthermore, we deeply analyze genetic algorithms and the associated components, such
as �tness function, mutation, crossover, and parent selection. Table 3.1 is a compilation of
the analyzed studies. We aggregated them into categories such as the main evolutionary
algorithms, different techniques for the genetic algorithm operators, some variations of
genetic algorithms, and essential observation studies.

Even though Simulated annealing is a probabilistic technique and is not considered an
Evolutionary algorithm, several studies compare the performance of Evolutionary Algo-
rithms and Simulated Annealing. As a result, we chose to address it in the context of
the related work. Kirkpatrick et al. [43] proposed the Simulated annealing as the basis
of a search mechanism. It was inspired by the annealing procedure of the metal working
[44]. SA is a stochastic global search optimization algorithm that is inspired by the slow
cooling of metals, which is characterized by a gradual reduction in atomic movements,
lowering the density of lattice defects until the lowest-energy state is achieved. Similarly,
the simulated annealing algorithm generates a new potential solution (or neighbor) to the
problem by modifying the current state according to predetermined criteria at each simu-
lated annealing temperature. The new state is then accepted based on the satisfaction of
the Metropolis criterion, and the process is repeated until convergence is achieved. This
enables a worse solution to be accepted, allowing the system to escape from a local opti-
mum and converge to the global minimum. Figure 3.1 illustrates a Simulated annealing
�owchart.

Figure 3.1: Simulated Annealing �owchart inspired by [45]
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Evolutionary Strategies were developed by Ingo Rechenberg and Hans-Paul Schwefel
[46, 47], in the late 1960's and 1970's. ESs are generally applied to real-valued optimiza-
tion problem representations and emphasize mutation over recombination. Moreover, the
many methods of manipulating parents and the offspring make up an additional distinct
feature. Correspondingly,mrefers to the size of the parents' population andl to the num-
ber of offspring that are produced in a single generation before applying selection. In this
note, the following are the commonly used strategies for manipulation of the population
[46]:

• (m,l )� Parents are replaced by the offspring. Here, the selection occurs among
the l offspring only, whereas their parents are replaced no matter how good or
bad their �tness is compared to the new generation. This strategy relies on a birth
overbalance (i.e., onl > m) in a strictly Darwinian sense of natural selection.

• (m+ l )� Offspring is added to the current population, and then to keep the popu-
lation size constant, thel worst out of all(m+ l ) individuals are discarded.

• (m+ 1) - The parents generate a single offspring which only survives if it is a better
solution than one of the parents.

• (1+ 1)� A single parent generates a single offspring through mutation, and the
best solution between the parent and the offspring becomes the new parent.

The �rst applications of ESs in experimental optimization were welcomed as innova-
tive despite lacking proof of convergence toward an indisputable (global) optimum, and
people were much more doubtful regarding numerical evolutionary optimization and its
potential bene�ts [46]. The(m+ 1)-ES already uses not only of the so far best individual
to generate an offspring but also of the second best and even the worst ofmparents. On
the other hand, the(m+ l )� ES was welcomed as a further step into a wrong direction,
since it does not make immediate use of new information gathered by the next offspring.
Instead, it delays the selection decision until alll descendants are born.

In the sense that even superior intermediate solutions can now be discarded and replaced
by worse ones, the transition in the adoption from the plus to the comma version �nally
appeared to ascend to the top of absurdity. Additionally, it is easier to guarantee the con-
vergence to a(m+ l )� ES since its worst behavior is premature stagnation, for instance,
when the mutation strength becomes too low before reaching the optimum. In contrast, a
comma version can diverge, especially when the mutation strength is too high.

Particle Swarm Optimization (PSO) is an evolutionary computation technique intro-
duced by Kennedy and Eberhart [48]. Since it starts with a set of randomly initialized
individuals (initial population) and uses a �tness value to assess each particle from the
population, the PSO technique is identical to the genetic algorithm method. In PSO, a
randomized velocity is given to each potential solution. PSO's particle tracking process
keeps track of a particle's coordinates (location and velocity), which are associated to the
particle's best solution so far. The particle swarm optimization technique alters the veloc-
ity of each particle at each step to propel it towards its best performance (pbest) and the
overall best value reached by all particles in the population at each step (gbest). A ran-
dom termw is also used to weight acceleration (weight inertia). For pbest and gbest [49],
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distinct random values are used to generate acceleration. The main steps of the particle
swarm optimization method are illustrated in Figure 3.2.

Figure 3.2: Particle Swarm Optimization �owchart inspired by [45]

Storn and Price [50] introduced theDifferential Evolution (DE) algorithm. In this al-
gorithm, parameter vectors or genomes are the individual trial solutions that make up a
population. DE performs the same stages as a conventional EA in terms of computation.
Unlike standard EAs, DE searches the �tness function landscape by using the difference
of parameter vectors. DE, like other population-based search techniques, generates new
points (trial solutions) that are perturbations of existing points; however, unlike Evolution
Strategies techniques, these deviations are not samples from a predetermined probability
density function. Instead, DE scales the difference of two randomly chosen population
vectors to disrupt current generation vectors. DE creates a donor vector equivalent to
each population vector by adding the scaled, random vector difference to a third randomly
chosen population vector (also known as target vector). The components of the target and
donor vectors are then combined to make a trial vector using a crossover operation. The
trial (or offspring) vector competes against the population vector of the same index, i.e.
the parent vector, in the selection stage. The survivors of all pair wise competitions be-
come parents for the next generation in the evolutionary cycle when the last trial vector
has been tested.

Droste et al. [53] proposed(1+ 1) evolutionary algorithm (EA) which is a very sim-
ple algorithm. The so called(1+ 1) Evolutionary Algorithm((1+ 1) EA), is applied
to Boolean �tness functionsf : f 0,1gn ! R (n being the bit string length) and can be
formally described as follows, assuming that maximization off is the objective:

1. Setpm := 1/ n.
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2. Choose randomly an initial bit stringx 2 f 0,1gn.

3. Repeat the following mutation step: Computex0by �ipping independently each bit
xi with probability pm. Replacex by x0 if f (x0) � f (x).

An algorithm of this type is sometimes described as a randomized or stochastic hill-
climber. It uses only one point in the search space and never accepts a new point with
inferior function value, just like a hillclimber. Unlike normal hillclimbers, the(1+ 1) EA
has no clearly de�ned neighborhood, that is, it can reach any point in the search space
in one step, while the probability of reaching a point decreases as the Hamming distance
increases. The(1+ 1) EA may be considered as a degenerate case of Simulated Anneal-
ing [43], where the cooling scheme is trivial, since the temperature is constant zero. Once
again, however, the probability-based neighborhood is quite unusual.

3.1.1 Genetic algorithms

It is well known that local search techniques can suffer from the problem of becoming
trapped in local optima. To overcome this problem many authors have considered global
search techniques, most notably genetic algorithms [84–88], giving rise to the so-called
evolutionary testing (ET) approach.

Genetic algorithms(GAS) are stochastic search techniques introduced by Holland et al.
[52] in 1975. Genetic algorithms are loosely based on ideas from population genetics.
First, a population of individuals is created randomly. Each individual can be viewed as
a bit string and considered a potential solution to an issue of interest. Some individuals
are better quali�ed to solve a problem than others in the population (e.g., better problem
solvers). The selection of a new set of candidate solutions at the next time step, also
known as the selection, is in�uenced by these differences. The selection procedure en-
tails duplicating the most effective individuals while eliminating the less successful ones.
The duplicates, however, are not exact. During the copy operation, there is a chance of
mutation (random bit �ips), crossover (exchange of related sub-strings between two indi-
viduals), or other alterations to the bit string. Mutation and crossover operations produce
a new set of good individuals by transforming the existing ones into a new set. This new
set of individuals have typically a higher chance of also being good than a previously
existing set. Throughout this cycle of evaluation, selection, and genetic operations, the
overall �tness of the population generally improves, and the individuals in the popula-
tion represent improved solutions to whatever problem was posed in the �tness function.
Figure 3.3 demonstrates an example of a Genetic algorithm �owchart.

Goldberg et al. [80] presented the messy GA's (mGA's) in 1989. This approach is intended
for binary representations of �xed length, however it enables for representations to be
under or over de�ned. Each gene has a value (a bit) and a place on the chromosome.
The length of the chromosomes varies, and they may include too few or too many bits for
the representation. If more than one gene speci�es a bit location, the �rst one found is
selected. On the other hand, if the chromosome does not specify bit positions, they are
�lled in using so-called competitive templates. Messy GAs avoid mutation and instead
rely on cut and splice operators to replace crossover. A run of an mGA is in two phases:
(i) a primordial phase which enriches the proportion of good building blocks and reduces
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Figure 3.3: Genetic algorithm �owchart

the population size using only selection; (ii) a juxtapositional phase which uses all the
reproduction operators. This method is intended for problems with misleading binary
bitstrings. The algorithm adjusts its representation to �t a speci�c instance of the problem
at hand. The �rst use of self-adaptive control was for the dominance mechanism of diploid
chromosomes. Each chromosome is duplicated twice here. The extra chromosomes code
for different solutions, and dominance determines which one is expressed.

3.1.2 Studies on parameter control of an EA

In this subsection, the main goal is to understand and enlighten the most remarkable works
about the parameters that compose an EA. Moreover, which techniques are used to control
the parameters of an EA, such as the mutation probability, crossover probability, parent
selection, population size, and some approaches that automatically tune these parameters.

Several control parameters in�uence the performance of each optimization algorithm.
Numerous papers have described approaches and methods for determining the appropriate
control parameter values for a given algorithm. There is, however, no general formula for
determining the values of control parameters. In many circumstances, we must modify
the values to �t the problem and methodology. Consequently, we can classify the methods
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for changing the value of a parameter (i.e., the probability of mutation, the tournament
size of selection, or the population size) of an evolutionary algorithm into one of these
three categories [62]:

• Deterministic Parameter Control: This occurs when a deterministic rule changes
the value of a strategy parameter. This rule makes deterministic adjustments to the
strategy parameter without relying on search feedback. A time-varying schedule
is commonly applied, which means that the rule will be activated when a certain
number of generations have elapsed since the last time it was activated.

• Adaptive Parameter Control: This occurs when the search provides some kind of
feedback that is used to determine the direction and/or magnitude of the change to
the strategy parameter. Credit assignment may be involved in the assignment of the
value of the strategy parameter, and the EA's action may affect whether the new
value remains or propagates throughout the population.

• Self-Adaptive Parameter Control: The concept of evolution can be used to imple-
ment parameter self-adaptation. The modi�ed parameters are encoded in the chro-
mosomes and are subjected to mutation and recombination here. Better values of
these encoded parameters result in better individuals, that are more likely to survive
and generate offspring, propagating the better parameter values.

This terminology, introduced by Eiben et al. [62], leads to the taxonomy illustrated in
Figure 3.4.

Figure 3.4: Taxonomy of parameter setting in EA's [62]

De Jong [55] concluded in 1975 that increasing population size reduced stochastic ef-
fects (of random sampling on a de�ned population) and improved long-term performance
at the cost of a slower initial response. Off-line performance was shown to improve at
the expense of on-line performance as the mutation rate was increased. Reducing the
crossover rate signi�cantly improved performance, implying that creating totally new in-
dividuals was a too high sampling rate. As a result of these experiments, a set of values
for these parameters was discovered to produce generally satisfactory behavior for this
class of problems, both online and of�ine. Therefore, these values have become part of
the conventional wisdom on the topic. They are the following:
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• population size: 50-100

• crossover rate: 0.60

• mutation rate: 0.001

De Jong also established off-line and on-line performance measures, with the assumption
that off-line performance is based on monitoring the best solution in each generation, but
on-line performance considers all solutions in the population.

Schaffer et al. [56] described an extensive experimental on the effect of changes in control
parameters (mutation, crossover and population). The extensive analysis demonstrated
that the pattern of the population-crossover-mutation interaction can be seen clearly. At
low population size (10) good performance is very sensitive to mutation rate(m) and less
so to crossover rate (c). It can be achieved withm = 0.02 andc = 0.85. As popula-
tion size is increased, the sensitivity to mutation rate decreases and the best mutation rate
to use also decreases(m = 0.002, 0.005 at p= 50). The inverse relationship between
population and mutation most likely re�ects the fact that increasing either one increases
exploration and they can be traded off while keeping exploration at a somewhat constant
level. The authors speculated that naive evolution (NE) (a GA using only selection and
mutation) does perform a hillclimb-like search and given the range of strategies that can be
achieved by varying population size and mutation rates, it is likely to be a powerful search
algorithm, even without the assistance of crossover. Moreover, the use of Gray coding,
which makes hillclimbing even more effective by eliminating the Hamming cliffs, con-
tributes to this effect. However, they also did note, that NE appears to be a much stronger
component in this experiment than suggested by the conventional wisdom. At least in
the �rst generation (if random), a large population size can achieve a large sample of the
space (exploration). However, a big population imposes a high cost every generation, and
the operators can explore for schemata not present in the initial population. The success
of rather high mutation rates and the reduced sensitivity to crossover rates suggests that
our suite is still too simplistic to explore the in�uence of crossover appropriately.

Eiben et al. [62] proposed an approach to change the Mutation Step Size, assuming that
Gaussian mutation is used together with arithmetical crossover to produce offspring for
the next generation. The mean, which is frequently set to zero, and the standard deviation
sigma, which can be understood as the mutation step size, are both required parameters
for a Gaussian mutation operator. Mutations then are realized by replacing components of
the vector~x by x0

i = xi + N(0,s ) whereN(0,s ) is a random Gaussian number with mean
zero and standard deviations . The simplest method to specify the mutation mechanism
is to use the sames for all vectors in the population, for all variables of each vector, and
for the whole evolutionary process, for instance,x0

i = xi + N(0,1). Changing the mutation
step size could be advantageous [72, 73, 89] and several options should be discussed one
by one. To begin, the authors suggested to change the static arguments to a dynamic
parameter, such as a functions (t). This function can be de�ned using a heuristic rule
that assigns different values based on the number of generations. The mutation step size,
for example, could be de�ned as

s (t) = 1� 0.9�
t
T

wheret is the current generation number, which ranges from 0 toT, T being the maximum
generation number. As the number of generationst approachesT, the mutation step size
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s (t) will gradually decrease from one at the start of the run(t = 0) to 0.1. Such decreases
may aid the algorithm's �ne-tuning capabilities. The value of the provided parameter
changes according to a fully deterministic scheme in this approach. As a result, the user
has complete control over the parameter, and its value at any given timet is completely
predictable.

Grefenstette et al. [57] presented in 1986 a GA as a metaalgorithm to optimize values
for the same parameters for both on-line and off-line performance of the algorithm. The
most effective set of parameters for optimizing the GA's on-line (off-line are given in
parenthesis) performance were:

• population size of 30 (80);

• probability of crossover equal to 0.95 (0.45);

• probability of mutation equal to 0.01 (0.01);

Fitness Function

The �tness function also called the evaluation function, assesses how closely a given so-
lution adheres to the ideal solution to the desired problem. It establishes how �t a solution
is to the problem at hand. Different problems require different �tness functions, and each
case implements different approaches. Some techniques may optimize the search time
of the genetic algorithm. The subsequent studies present a penalty practice to punish
infeasible solutions that are known from the start, as invalids to the problem being solved.

Michalewicz et al. [63] in 1996, presented thegeneral principle used for the method
based on penalty function. They con�rmed that the majority of constraint handling ap-
proaches are based on the concept of (external) penalty functions that penalize infeasible
solutions, for instance, solving an unconstrained issue (onS ) using a modi�ed �tness
function:

eval(x) =

(
f (x), if x 2 F

f (x) + penalty(x), otherwise

where penalty(x) is zero if no violation occurs and is positive (for minimization prob-
lems) otherwise. Typically, the penalty function is based on a solution's distance from
the feasible areaF or the effort required to "�x" the solution (i.e., force it intoF ). The
�rst instance is the most common where several approaches apply a series of functions
f j (1 � j � m) to calculate the penalty, with the functionf j measuring the violation of the
jth constraint as follows:

f j (x) =

(
max

�
0,g j (x)

	
, if 1 � j � q

�
�h j (x)

�
� , if q+ 1 � j � m

In 1994 Homaifar et al. [64] proposed one of the previously referenced methods, the
method of static penalties. It assumes that for every constraint we establish a family of
intervals that determine the appropriate penalty coef�cient.

• For each constraint, create several (l ) levels of violation.
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• For each level of violation and for each constraint, create a penalty coef�cientRi j
( i = 1,2,: : : , l ; j = 1,2,: : : ,n) where higher levels of violation require larger values
of this coef�cient.

• Start with a random population of individuals.

• Evolve the population and then evaluate individuals using the following formula:

eval(x) = f (x) +
n

å
j= 1

Ri j g2
j (X)

The weakness of the method is in the number of parameters. Forn constraints the method
requiresn(2l + 1) parameters in total:n parameters to establish number of intervals for
each constraint;l parameters for each constraint, de�ning the boundaries of the intervals
(levels of violation); andl parameters for each constraint representing the penalty coef�-
cientsRi j . For instance, forn = 5 constraints andl = 4 levels of violation, it is needed a
set of 45 parameters.

The method of dynamic penaltieswas proposed by Joines and Houck [65] in 1994.
Contrary to the previous method, the authors assumed dynamic penalties. Individuals are
evaluated (at the iterationt) by the following formula:

eval(x) = f (x) + ( C� t)a
n

å
j= 1

f b
j (x)

whereC,a , andb are constants. A reasonable choice for these parameters, presented by
Joines and Houck, isC = 0.5, anda = b = 2. The method requires a much smaller num-
ber (independent of the number of constraints) of parameters than the of static penalties
method previously mentioned. Also, instead of de�ning several levels of violation, the
pressure on infeasible solutions is increased due to the(C� t)a component of the penalty
term: Toward the end of the process, for high values of the generation numbert, this
component assumes large values.

The penalty approach in the �tness function allows the core optimization issue to be
changed using the penalty function approach into different formulations, and a series of
unrestricted minimization problems are then solved to provide numerical solutions. There
are, however, advantages and disadvantages of such methods:

• It is applicable to generally constrained problems with equality and inequality con-
straints.

• The starting point can be arbitrary.

• The method iterates through the infeasible region where the cost and/or constraint
functions may be unde�ned.

• The �nal point might not be feasible and thus worthless if the iterative process ends
prematurely.
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Population

A population is a group of individuals or Chromosomes and each individual is a candidate
solution to the problem. Figure 3.5 illustrates an example of the gene, chromosome, and
population in the context of Evolutionary algorithms.

Figure 3.5: An example of the gene, chromosome, and population

Goldberg et al. [58] made effort to determinate which size a population must have for
the best results. They stated that urgent use of variance-based population sizing in prac-
tical applications of genetic algorithms, as well as deeper foundational investigations, is
recommended based on the results. They also proved that population size has a role in
de�ning a distinction between two quite different sorts of simple genetic algorithm behav-
ior. The authors witness the GAs at low population sizes, converging only by the graces
of random changes that are lucky enough to survive long enough to be properly evaluated.
Finally, they also saw GAs that promote just the best among competing building blocks
at signi�cant population sizes, and that when and if these are global, we can predict high
probability convergence to global solutions after enough recombination. Understanding
these two regimes is bene�cial, as is having a quantitative yardstick to discern between
high and low population sizes.

As mentioned before, De Jong [55] experimented with population sizes from 50–100,
whereas Grefenstette [57] applied a meta-GA to control parameters of another GA (in-
cluding populations size), the population size range was 30-80. Additional empirical
effort was made by Schaffer et al. [56] and the recommended range for population size
was 20-30.

Parent Selection

Parent selection is the process of selecting parents to produce the child, or offspring as it
is also known, who will be a participant in the upcoming generation. Parent selection is
especially crucial to the convergence rate of the GA as suitable parents drive individuals
to better and �tter solutions.

Baker in [75] suggested a ranking selection algorithm for GA. The basic principle is that
the population is sorted from best to worst, and then a new �tness value is assigned to
each individual, which is inversely proportional to their rank. There are two methods,
one being the linear ranking and the other exponential ranking. Inlinear ranking , the

28



Related work on Evolutionary Algorithms and Software Testing

best individual gets a �tnesss, between 1 and 2. Whereas the worst gets a �tness of
2� s. Intermediate individuals' �tness values are given by interpolation, as described by
Hancock [90]:

f ( i) = s�
(2i(s� 1))

(N � 1)
, i = f 1..Ng

The worst string has no possibility of reproduction ifs is set to 2. In theory,s may be
increased beyond 2 to create larger selection pressures, but this would result in negative
�tness values for several of the worst strings. In theexponential ranking, on the other
hand, the best individual receives a �tness of 1. The second-best receives a �tness of
s, which is typically around 0.99. The third best receivess2, and so on until the last
receivessN� 1. Because the selection pressure is proportional to 1� s, s = 0.994 yields
a convergence rate double that ofs = 0.998. Exponential ranking provides the worst
individuals more opportunities at the expense of those who are above average.

Tournament selectionis one of the different approaches to parent selection. One of the
�rst forms of tournament selection was studied by Brindle in [76]. In this technique, sev-
eral individuals are randomly selected from a population in tournament selection. For
genetic processing (i.e. crossover and mutation), the best individual from the group is
chosen. This can be done again and again until the mating pool is full. The tournaments
are usually held between pairs of individuals (also known as binary tournaments), al-
though a different number,n, can be used. The tournament selection gives a chance to all
individuals to be selected and therefore preserves diversity. Note that high diversity may
lead to a slower convergence speed. Despite this, the tournament selection has several
advantages, namely ef�cient time complexity, low susceptibility to takeover by dominant
individuals and there is no need for �tness scaling or sorting [77, 91].

Another parent selection technique is theproportional roulette wheel. Here, the indi-
viduals are chosen with a probability that is directly proportional to their �tness values.
Those with the best �tness (larger segment sizes) have a higher chance of being selected.
Within the roulette wheel, the �ttest individual occupies the largest segment, while the
least �t occupies a smaller segment. Every segment has a chance, with a probability pro-
portional to the width of the segment. By repeating this process each time an individual
must be selected, the �tter individuals will be chosen more frequently than the inferior
ones, ensuring that the survival of the �ttest requirements is met. Letf1, f2,: : : , fn be �t-
ness values of individual 1 , 2,: : : ,n. Then the selection probability,Pi for individual i is
de�ne as,

pi =
fi

å n
j= 1 f j

The major advantage of proportional roulette wheel selection is that it does not exclude
any individuals from the population and allows all of them to be chosen. As a result,
population diversity is preserved. However, there are a few key drawbacks in propor-
tional roulette wheel selection. Outstanding individuals will add bias at the beginning of
the search, which could lead to an early convergence and loss of diversity. If an initial
population contains one or two very �t but not the best individuals, and the majority of
the population is impoverished, these �t individuals will quickly dominate the popula-
tion, preventing the population from exploring other promising candidates. Such a strong
dominance results in a signi�cant loss of genetic variety, which is detrimental to the op-
timization process. On the other hand, if individuals in a population have very identical
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�tness values, it will be extremely dif�cult for the population to improve since selection
probabilities for �t and un�t individuals are relatively similar.

Razali and Geraghty in [78] compared three selection techniques for solving the traveling
salesman problem. The comparison was made between the tournament selection, roulette
wheel selection, and rank-based roulette wheel selection. The authors concluded that the
quality of solution improved with rank-based roulette wheel selection. In comparison to
the other two strategies, the GA-based tournament selection is more ef�cient in attaining
the smallest total distance with the fewest number of generations and fastest iteration time.
This, however, is only applicable to small problems. Tournament selection, as well as the
proportional roulette wheel, becomes vulnerable to premature convergence as the size of
the problem grows. Rank-based selection, on the other hand, keeps exploring the search
area until it �nds the shortest distance through the tour. As a result, tournament selection
is better suited to small-scale problems, but a rank-based roulette wheel can be utilized to
address larger-scale problems.

Cavicchio in his Ph.D. thesis in 1970, introduced different methods for genetic algorithms
[79]. Thepreselectionscheme was proposed in particular to maintain the diversity of the
population. The children compete with their parents for survival in this scheme. In the
next generation, if a child has a higher �tness (as evaluated by an objective function) than
its parent, the parent is replaced by the child.

Goldberg and Deb in [77] stated that ranking and tournament selection are shown to main-
tain strong growth under normal conditions, while proportionate selection without scaling
is shown to be less effective in keeping a steady pressure toward convergence.

Crossover

The crossing operation, also called recombination, is a genetic operator that combines
the genetic information (i.e., chromosomes) of two parents to generate new offspring.
There is relative success of commonly used crossover techniques in a GA based structural
optimization. Below is a quick explanation of these methods.

The most straightforward crossover procedure is asingle-point crossover(Fig. 3.6), in
which paired individuals are each cut at a crossover site that is selected at random, and
the sections that remain after the cuts are exchanged to create two new (child) individuals.

Figure 3.6: Single-point crossover implementation

In the2-point crossover, individuals are removed at two randomly chosen crossover lo-
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cations. Swapping either the outer portions of the interior portions that fall between the
locations accomplishes a design exchange (Fig. 3.7). Bare in mind that in both scenarios,
the resulting individuals would be the same. Compared to single-point crossover, the 2-
point crossover increases an individual's probability of swapping the essential genes on
their chromosomal strings [92].

Figure 3.7: 2-point crossover implementation

Another technique is theMulti-point crossover, which seeks to provide a more dispersed
exchange through an attempt to take a higher number of crossover sites. The imple-
mentation for Multi-point crossover, Fig. 3.8, is not so much different from single or
two-point crossovers. Again, �rst a selected number of(nc > 3) crossover sites are ran-
domly chosen, and individuals are cut at these sites to be separated into(nc + 1) por-
tions. The procedure is concluded by completely exchanging one of the two groups
of portions. The �rst group incorporates the set off 1st, 3 rd ,: : : ,(2k � 1) th, where
k = 1,2,: : : , int(nc/ 2+ 1)g portions, and the portions that are not a part of the �rst group
are included in the second group.

Figure 3.8: Multi-(5)-point crossover implementation

There is also theVariable to variable crossovermethod, where the paired individuals
(strings) are �rst segmented into their substrings. A single-point crossover is performed
on each of the substrings independently (Fig. 3.9). Therefore, each individual's design
variable is turned on to ful�ll the design exchange individually.

31



Chapter 3

Figure 3.9: Variable to variable crossover implementation

A different approach is theUniform crossover[93]. While compared to the methods used
when taking crossover sites on individuals, the uniform crossover is radically different.
A randomly generated crossover mask is necessary for uniform crossover (Fig. 3.10).
According to this mask, a child's genes are inherited from their parents. At positions
where the mask has a 1, the new child carries the genes from parent one, otherwise carries
the genes from parent two at positions in which the mask holds a 0. We can either use
the complementary of the �rst mask to generate the second child or create a new mask
where we repeat the whole procedure. In this case, the numerical tests adhere to the latter
strategy.

Figure 3.10: Uniform crossover implementation

The crossover has a ratepc that acts on a pair of chromosomes, giving the probability that
the selected pair undergoes crossover. Some common settings forpc obtained by tuning
traditional GA's arepc = 0.6 [55], pc = 0.95 [57], andpc 2 [0.75,0.95] [56]. Currently,
is well understood that the crossover rate should not be too low, and values of less than
0.6 are rarely adopted.

Tuson and Ross in [59] presented the approach with the name COBRA which explicitly
collects information on operator performance (e.g. mutation and crossover) and uses this
to adjust the operator probabilities. Normally, this adjustment is done with an ad hoc
nature by the developer, as so COBRA is no exception. The main idea of the authors
was to provide an operator adaptation mechanism that works in practice. The nature of
COBRA is as follows: Givenk operatorso1,: : : ,ok, let bi(t) be the bene�t,ci(t) the cost
(the amount of computational effort to evaluate a child), andpi(t) the probability of a
given operator,i at timet. They then apply the following algorithm:
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1. The user decides on a set of initial probabilitiespi .

2. When a child is produced,bi(t) is updated.

3. After G (the gap between operator probability readjustments) evaluations, rank the
operators according their values ofbi / ci , and assign the operators their new proba-
bilities according to their rank (i.e. the highest probability to the operator with the
highest value ofbi / ci ).

4. Repeat step 2 everyG evaluations.

The measure of bene�t in this extensive study was operator productivity. Such operator
is de�ned as the average gain in �tness when a child is born �tter than its parents (i.e., if
the child is �tter than the parent, the productivity is zero) over a speci�c duration. The
variables in the adaptation method are derived from two sources: the gap between oper-
ator probability readjustmentsG and the user-supplied initial operator probabilities. The
authors observed that while there was no gain in performance when COBRA was applied,
the GA was often made less sensitive to the operator probabilities provided when COBRA
was used, reducing the effect of bad choices, which may be bene�cial in some applica-
tions. In that case, obtaining equal performance may be easier than looking through a
vast number of typical GA runs. They back up this claim by stating that COBRA's per-
formance may be a technique that prioritizes speed over quality. Finally, COBRA looked
promising as a way to eliminate some of the parameter tuning problems that surround GA
applications. However, some problems may lead to a poor choice of operator probabili-
ties, and it should be established that the choice of crossover probability is dependent on
the problem to be solved.

Spears in [60] proposed a simple adaptive mechanism that allows the GA to choose be-
tween uniform and two-point crossover while the problem is being solved. Each individ-
ual got an extra bit, which de�nes whatever form of crossover is used for that individual.
As a result, the offspring will inherit their parents' crossover type preference. The mech-
anism is simple and easy to implement. Also, it will work with almost any conceivable
evolutionary algorithm (EA) style. The author states that 1bit adaptation generates good
performance results, but much of the performance stems from simply having the two
crossover operators at disposal. Consequently, this leads the author to think that it may
often be bene�cial for an EA to have a more extensive set of search operators that are
customarily used.

Srinivas and Patnaik in [61] proposed an adaptivepc (i.e., probability of crossover) and
pm (i.e., probability of mutation). To do so is essential to be able to identify whether
the GA is converging to an optimum, therefore, the authors stated that one possible way
of detecting convergence is to observe the average �tness valuef̄ of the population in
relation to the maximum �tness valuefmax of the population. fmax � f̄ is likely to be
less for a population that has converged to an optimum solution than that for a population
scattered in the solution space. The values ofpc andpm are varied depending on the value
of fmax� f̄ . The valuepc should depend on the �tness values of both the parent solutions.
The closerf is to fmax, the smallerpm should be, i.e.,pm should vary directly asfmax� f .
Similarly, pc should vary directly asfmax� f 0, wheref 0is the larger of the �tness values of
the solutions to be crossed. Srinivas and Patnaik reinforce thatpc andpm are zero for the
solution with the maximum �tness. Alsopc = k1 for a solution withf 0= f̄ , andpm = k2
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for a solution withf = f̄ . For solutions with subaverage �tness values i.e.,f < f̄ , pc and
pm might assume values larger than 1.0. To prevent the overshooting ofpc andpm beyond
1.0, the following constraints were stated,

pc = k3, f 0� f̄

and
pm = k4, f � f̄

wherek3,k4 � 1.0. The �nal expressions forpc andpm are given as

pc = k1 ( fmax� f 0) / ( fmax� f̄ ) , f 0� f̄ ,

pc = k3, f 0< f̄

and
pm = k2 ( fmax� f ) / ( fmax� f̄ ) , f � f̄

pm = k4, f < f̄

wherek1,k2,k3,k4 � 1.0. Finally, the authors have assigned the value 1.0 tok1, 0.5 tok2,
1.0 tok3 and 0.5 tok4.

The adaptive approach proposed by Srinivas and Patnaik allows low values ofpc, and
pm, to be assigned to high �tness solutions, while low �tness solutions have very high
values ofpc, andpm. As a result, each population's optimal solution is "protected" (i.e.,
not vulnerable to crossover) and encounters minimal mutation. On the other hand, any
solutions that have a �tness value that is lower than the population's mean �tness value
havepm = 0.5. Consequently, all below-average solutions will be radically altered, and
new ones will be produced. Therefore, the GA is unlikely to become trapped at a local
optimum.

Mutation

The mutation can be de�ned as a slight random modi�cation of the chromosome to obtain
a new solution. It is used to maintain and introduce diversity in the genetic population and
is generally applied with a low probability (i.e.,pm). Holland has introduced mutation to
Genetic Algorithms as a “background operator” [52], which assures the principal possi-
bility to recover from lost alleles, i.e. alleles which are converged within the population.

De Jong [55] recommended a mutation probability ofpm = 0.001, the meta-level GA
used by Grefenstette [57] indicatedpm = 0.01, while Schaffer et al. [56] came up with
pm 2 [0.005,0.01]. Mühlenbein and Heinz [66] derived a formula forpm which depends
on the length of the bitstring(L), namelypm = 1/ L should be a generally "optimal" static
value forpm. This rate was compared with several �xed rates by Smith and Fogarty [67]
who found thatpm = 1/ L outperformed other values forpm in their comparison. Bäck
[70] also found 1/ L to be a good value forpm together with Gray coding.

Hesser and Männer [68] proposed a derived theoretically optimal schedules for determin-
istically changingpm for the counting-ones function. They suggest

pm(t) =
r

a
b

�
exp

�
� gt
2

�

l
p

L
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wherea ,b ,g are constants,l is the population size,t is the time (i.e., generation counter),
andL being the length of the bitstring.

The issue with deterministically changingpm, however, is that a predetermined deter-
ministic time schedule cannot account for the unique characteristics of various �tness
functions because fresh exogenous inputs establish it. As a result, the schedule must
be changed according to the �tness function, much like the temperature schedule tuning
problem in Simulated Annealing.

On the other hand, with a different perspective, the function to control the decrease of
pm was proposed by Bäck and Schütz [94] and constrainspm(t) so thatpm(0) = 0.5 and
pm(T) = 1/ L if a maximum ofT evaluations are used

pm(t) =
�

2+
L � 2

T
� t

� � 1

, if 0 � t � T.

whereL is the length of the bitstring andt is the time (i.e., generation counter).

Julstrom [69] presented a mechanism that adaptively adjusts the probabilities with which
a steady-state genetic algorithm applies its operators. The ADOPP mechanism distributes
operator probabilities proportionally to their recent contributions to chromosomal con-
struction that are better than the population median or 90th percentile, adjusted so that
no operator has a probability of zero. To develop an offspring, both operators are ap-
plied individually, and the algorithm maintains a tree of their recent contributions to new
offspring and rewards them accordingly. With numerous variants of the adaptive mech-
anism, the algorithm's performance was no better than when operator probabilities were
locked at plausible values. This raised fundamental problems about obtaining data from a
GA's population and recent performance, as well as using that data during the execution
of a GA. As a result, Julstrom stated that for this reason to develop an effective adaptive
operator probability mechanism, these problems must be addressed.

Bäck [70, 71] self-adapts the mutation rate of a GA by adding a rate for thepm, coded in
bits, to every individual. This value is the rate, which is used to mutate thepm itself. Then
this new pm is used to mutate the individuals' object variables. In other words, better
pm rates will produce better offspring, who will pass on their improvements to future
generations, whereas badpm rates will die out.

Fogarty and Smith [67] used Bäck's idea [70, 71], implemented it on a steady-state GA,
and added an implementation of the 1/5 success rule for mutation. There has been empir-
ical evidence showing that there is an optimal “acceptance” ratio of approximately 1:5.
In other words, for every �ve individuals created, one should be integrated into the pop-
ulation. This can be explained by considering that, while repeated mutation of a single
individual corresponds to a form of local search, which has been shown to improve the
performance of Genetic Algorithms [95], there is a trade-off between local and global
search that affects both the convergence velocity and possibly the quality of the �nal so-
lution. They also observed that gray coding performed signi�cantly better than binary
coding in the most complex, uncorrelated landscapes. Gray coding provides a much more
uniform landscape for the system to learn mutation rates, and as the landscapes becomes
less correlated, mutation becomes more signi�cant in the search process.

Lis [74], in 1995, proposed a method in order to eliminate the necessity of determining
the mutation probability in advance. Hence, the mutation probability value is decided
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along the course of algorithm generation. The developed method is based on the obser-
vation that, given the optimal mutation probability, some chromosomes' �tness function
values are close to the current highest value of that function, while the remaining chromo-
somes achieve lower function values while searching for new solutions outside the local
minimum. During the GA operation, a criterion represents the proportion ratio between
both chromosome groups, and the mutation probability is increased or decreased based
on its value. Such a method allows the GA to start with nearly any initial mutation prob-
ability and arrive at reasonable values of that probability after a few dozens of steps of
algorithm performance. The �tness function values for a GA with many predetermined
constant mutation probabilities and a GA with various mutation probabilities were statis-
tically compared. This analysis of sample data indicated that a GA with variable mutation
probability produces better outcomes than a GA with any prede�ned constant mutation
probability.

Bäck in [72] concluded that a time-dependent variation in the mutation rate could help a
Genetic Algorithm optimize in fewer iterations. The author observed that when the �tness
function becomes multimodal, their observations indicate that the search for a mutation
rate control different from a constant value 1/ l , wherel denotes the bit string length, may
be worthwhile to overcome local optima. Finally, for the case of a multimodal �tness
function, the results reported may be interpreted as an explanation of the usefulness of
a self-adaptation mechanism for mutation rates as described in [71] where a remarkable
diversity of mutation rates exists in a population of individuals.

Multimodal optimization

The purpose of multimodal optimization is to �nd multiple global and local optima (rather
than a single solution) for the same function, so that the user can better comprehend the
different optimal solutions in the search space and apply them as and when needed, the
current solution may be switched to another suitable one while still maintaining the opti-
mal system performance. Since late 1970s, evolutionary optimization methods for locat-
ing multiple (global or local) optima have been developed. They are commonly referred
to as “niching” methods. As part of a standard EA, niche-based methods can be incorpo-
rated to promote and maintain multiple stable subpopulations within a single population,
with the aim of �nding multiple global optimal or suboptimal solutions simultaneously. In
Engelbrecht's book [96], niching algorithms are categorized based on the way the niches
are located. Three categories can be identi�ed:

• Sequential niching(or temporal niching) develops niches over time. Iteratively,
the procedure �nds a niche (or optimum) and removes all references to it from
the search space. The removal of niche references frequently involves a change
in the search space. The process of �nding and removing niches continues until
a convergence criteria is met, such as when no more niches can be located after a
certain number of generations.

• Parallel niching locates all niches in parallel. Individuals dynamically self-organize,
or speciate, on the locations of optima. Parallel niching algorithms must organize
individuals in such a way that they keep their positions around optimal locations
throughout time, in addition to locating niches. Such that, once a niche has been
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discovered, individuals should proceed to cluster around it.

• Quasi-sequential nichinglocates niches sequentially, but does not change the search
space to remove the niche. Rather, the search for a new niche continues, while the
niches that have already been discovered are improved and preserved in parallel.

Parallel Niching (PN) is based on a parallel hillclimbing technique, which is similar to a
binary search technique. The hillclimbing method starts with a large step size and each
population element hillclimb until it cannot climb any more (cannot improve). The step
size is then divided into half, and the hillclimbing approach is again applied. This is
repeated until the prede�ned smallest possible step size,e, is used.

Beasley et al. [97] described the Sequential Niching (SN) method. This method is practi-
cally an extension of the iterating GAs that maintain the best solution of each run off-line.
Every time SN �nds a solution, it depresses the search space at all points that fall within
a threshold radius, known as the niche radius [98], to avoid converging to the same opti-
mum over and over. It is not too easy to determine the stopping criterion of SN, generally
after �nding out all desired peaks the iterations are terminated.

Mahfoud [99] concluded, after applying parallel Niching and Sequential Niching on var-
ious multimodal problems, that parallel hillclimbing works best for easier problems and
reasonably well for problems with intermediate complexity. However, it fails for prob-
lems with high complexity. In comparison, SN is weak on easy problems and remains
unable to tackle harder ones as well.

De Jong [55] in 1975, introduced the crowding technique to increase the chance of locat-
ing multiple optima. The crowding technique compares each child to a randomly selected
subpopulation ofc f members in the existing parent population (c f stands for crowding
factor). Using a distance metric, the parent member most similar to the child is chosen.
If the child is �tter than the parent member selected, then the child replaces the parent
member. For multimodal optimization [51], Thomsen has also incorporated crowding
techniques [55] into differential evolution (CrowdingDE). Thomsen used the crowding
factor and Euclidean distance as the dissimilarity measure. The closer the distance, the
more similar they are, and vice versa. Even though an intensive computation is required,
differential evolution can be effectively transformed into an algorithm specialized for mul-
timodal optimization.

Li et al. [82] introduced the species conserving genetic algorithm (SCGA). It is a tech-
nique for evolving parallel subpopulations for multimodal optimization. As a result of this
algorithm, a set of species seeds can be bypassed during each generation and be saved into
the subsequent generations, after which a population is divided into several species based
on the dissimilarity measure. Species seeds are identi�ed by selecting the most �t indi-
viduals from the population. After the identi�cation of the species seeds, the population
undergoes the usual genetic algorithm operations: selection, crossover, and mutation. In
order to maintain the survival of less �t species, the seeds of the saved species are copied
back into the population at the end of each generation. Species seeds are determined by
sorting a population in decreasing �tness order. Once sorted, the algorithm selects the
�ttest individual as the �rst species seed and forms a region around it. If the next �ttest
individual is not located within a species region, it is selected as a species seed and another
species region is created around it. Otherwise, it is not selected. All remaining individu-
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als are checked against all existing species seeds using similar operations. Following the
genetic operations, the algorithms need to identify which species each individual belongs
to in order to copy the species seeds back to the population. The algorithm replaces the
worst (lowest �tness) individual within a species with its seed. If no such individual ex-
ists within a species, the algorithm replaces the worst and unreplaced individual across
the whole population. By preserving the �ttest individuals for each species, the main goal
is to preserve the population diversity.

Mahfoud after reviewing De Jong's [55] crowding factor technique indicated its inability
to maintain more than two peaks of a multimodal objective function due to replacement
errors that result from genetic drift. Additionally, Mahfoud [100–102] suggestedDeter-
ministic crowdingwith the objective of maintaining the diverse population, eliminating
parameter requirements, reducing replacement error, as well as restoring selection pres-
sure. At �rst, the algorithm randomly selects two parents from the current population,
performs crossover and mutation to create two offspring, and then the offspring replace
the nearest parent if they are more �t. In case of a tie, the parents take precedence. There-
fore, Deterministic Crowding (DC) results in two sets of tournaments: parent 1 against
child 1 and parent 2 against child 2; or parent 1 against child 2 and parent 2 against child
1. A set of tournaments that yields the closest competition is selected. The similarity is
calculated by using preferably phenotypic distance.

Mengshoel [103] proposed a probabilistic crowding technique. Under the proposal, a
probabilistic replacement rule allows individuals with higher �tness to win against indi-
viduals with lower �tness proportionally. As a result, a restorative pressure is permitted,
preventing the extinction of niches with lower �tness levels. The algorithm employs a
probabilistic replacement operator in addition to deterministic crowding. Evidently, in
probabilistic crowding, two comparable individualsX andY play in a probabilistic tour-
nament, with the probability ofX winning determined by:p(X) = f (X)

f (X)+ f (Y) where f is
the �tness function.

Goldberg in his book [104], originally introduced the Sharing method, being the �rst
attempt to deal directly with the locations and preservation of multiple solutions among all
the niching techniques. The idea is to divide the population into separate subgroups based
on how similar the individuals are. An individual must share its knowledge with others
in the same niche. In heavily populated areas, �tness sharing affects the search space
by reducing the payoff. It reduces each individual's �tness by a factor approximately
proportional to the number of similar individuals in a population.

Goldberg and Wang in [105] proposed an alternative sharing scheme known as theco-
evolutionary sharing. As a result, it overcomes the limitations of �xed sharing schemes
by allowing niche radius and location to be adapted to complex landscapes, as well as
allowing for better distribution of solutions in problems with many poorly spaced optima.
Coevolutionary sharing relies on the principle of monopolistic competition in economics,
which uses two populations - a population of businessmen and a population of customers.
In this case, the businessmen's locations represent niche locations and the customers' lo-
cations are analogous to solutions. Therefore, individuals in both populations strive to
maximize their own individual interests, thereby developing suitably spaced niches com-
prising of the most �t individuals.

Harik [106] introduced theRestricted Tournament Selection(RTS). RTS is a modi�ed
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tournament selection for multimodal optimization. In RTS, GAs may choose which indi-
viduals will be replaced to insert a pair of elements. As in deterministic crowding, RTS
selects two parents from a population at random and produces two offspring by applying
crossover and mutation operations. For each offspring, the algorithm then picks a random
sample ofw (window size similar toCF in Crowding) individuals from the population
and �nds the closest one to the offspring, by applying either an Euclidean similarity or
Hamming (for binary coded variables) distance. The nearest member among thew in-
dividuals will compete with the offspring to determine who is �tter. Upon winning, the
offspring can enter the population by replacing its opponent. This type of tournament pre-
vents elements of the population from competing against those which are too dissimilar
to them.

Yin [107] proposed aclustering-based nichingscheme to help the formation of the
niches and avoid the need for estimation ofsshare needed in sharing technique. The
�tness is calculated based on the distancedi,c between thei th individual and its niche
centroid, hence reducing signi�cantly the time complexity. The formation of the niches
is based on the adaptive Macqueen'sK-means clustering algorithm. The bestk individ-
uals are chosen from a set number(k) of seed points in this algorithm. A few clusters
are created from the seed points using a minimum allowable distancedmin between niche
centroids. The remaining members of the population are then joined to these existing
clusters or used to develop new clusters based ondmin anddmax. These calculations are
carried out in each generation. The �nal �tness of an individual is calculated using the
following relation:

Fi =
fi

nc
�
1� (di,c/ 2dmax)

a �

wherenc is the number of individuals in the niche containing the individuali,dmax is
the maximum distance allowed between an individual and its niche centroid, anda is a
constant.

Moscato [54] introduced theMemetic algorithm (MA) in 1989. MA tries to mimic cul-
tural evolution and, as stated by the author, it is a marriage between a population-based
global search and the heuristic local search made by each of the individuals. MA greatly
improves the accuracy of EAs in locating the optimal solutions for function optimization
problems, the reason being that concentrate on locating a promising area in the search
space and then use different local search techniques to strengthen the search within that
region. Given a representation of an optimization problem, a certain number of individ-
uals are created. The state of these individuals can be randomly chosen or according to
a certain initialization procedure. After that, each individual makes local search. The
mechanism to do local search can be to reach a local optima or to improve (regarding the
objective cost function) up to a predetermined level. After that, when the individual has
reached a certain development, it interacts with the other members of the population. The
interaction can be a competitive or a cooperative one. The competition can be similar to
the one described by the author in the Competitive and Cooperative method [54] or can be
similar to the selection processes of GA. The cooperative behaviour can be understood as
the mechanisms of crossover in GA or other types of breeding that result in the creation
of a new individual.

Vitela and Castanos [108] proposed the Sequential Niching Memetic Algorithm (SNMA).
SNMA combines a gradient-based local search procedure with a derating function, as
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well as niching and clearing techniques. It penalizes individuals who linger in areas near
previously found optima in order to promote the occupation in different niches in the
function to be optimized. The SNMA technique requires the usage of a niche radius.
However, unlike other algorithms were determining the actual value of this radius or the
species distance is complex, the performance results are not signi�cantly sensitive to the
values of this parameter. This is a bene�t in problems where the quantity and distribution
of the optima are unknown.

In SNMA, �rst, we have to initialize the population of the sequence with randomly gener-
ated individuals. Here the total number of optimal solutions, local and global, is given by
JTotal . A new generation is obtained after applying the genetic operators (i.e., evaluation,
selection, reproduction, and mutation) to all members of the current population. Like the
GAs, the population size is kept constant from generation to generation. Every individual
in the population at each generation moves toward its nearest peak following a hillclimb-
ing gradient-based algorithm. If, at some point, during this process, an individual leaves
the pre-speci�ed search space, then the corresponding variable takes the boundary value
assigned.

It has been assumed that the population consists ofM individuals and expectsJTotal op-
timal solutions within the search space. SupposeJ optimal solutions have already been
located (withJ < JTotal ), the distancesdm from each individual in the population to their
nearest optimal solution are determined. These distances, together with the niche radius
R, assign a suitable �tness function to each individual in the population. The niche radius
R is identi�ed with the width of the inverted Gaussian function. Thus, the �tness value
of an individual will be closer to zero as it will approach any of the previously found
optima. The individuals in the population are now ordered according to their �tness value
in decreasing order fromm= 1 toM.

Then a roulette wheel selection is used according to a probability of survival in which
clearing is introduced. This selection operator assigns larger survival probabilities to
individuals with a more signi�cant �tness value. Regardless, the probabilities assigned
are not proportional to the �tness value of the individuals. Instead, they decrease linearly
(except for clearing) following the order position. Because clearing the SNMA has the
essential characteristic that it eliminates individuals lying within a niche radius from any
previously located optima promoting the occupation of niches not yet found by the MA.
Recombination is implemented through the parent-centric PBX crossover. The mutation
is applied to all population members with probabilityPm.

The performance of the SNMA is not highly sensitive to the selection of the niche radius
R, a feature advantageous, especially when the number and distribution of the optima
are unknown. Furthermore, an advantage of SNMA over other algorithms is that it does
not need to maintain permanent populations around each optimal found, and it is only
necessary to store the location of these peaks.

Observation Studies

The following studies are essential observations made in the literature where we can see
the impact of some environmental aspects in the search algorithms and valuable compar-
isons between evolutionary algorithms.
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Harman et al. [83] demonstrated the effect of this domain reduction in the search space,
results were presented from the application of local and global search algorithms to real
world examples. The main goal of this study was to provide evidence to support the claim
that domain reduction has implications for practical search–based test data generation.
The conclusions withdrawn were the following:

• There is no relationship between search space reduction and reduction in cost for
random search.

• There is a signi�cant improvement in cost reduction for both hill climbing and the
genetic algorithm.

• The reduction in cost is more for the genetic algorithm than for hill climbing.

• There is no relationship between search space reduction and search effectiveness in
terms of coverage for any of the search algorithms.

The SA and the GA are powerful optimization methods. However, both have limitations.
Koakutsu et al. [81] discussed the characteristics of SA and GA. One of the essential
features of SA is its stochastic hill climbing. In order to exhaustively search the solution
space, SA introduces small random changes in the neighborhood and thus is computa-
tionally intensive. Furthermore, GA has crossover operations, which allow it to locate
the global optimum in the large search space at a rough and rapid pace. However, it does
not have a way to accommodate small changes in the solution space explicitly. In or-
der to combine the good features of these two methods, a new method was proposed by
Koakutsu et al. [81], namedGenetic Simulated Annealing(GSA).

The GSA [81] combines the hill-climbing features of SA and the crossover operation
from GA. GSA has three primary operations: SA-based local search, GA-based crossover
operation, and population update. SA-based local search slightly changes the local search
space while preserving the best-so-far local solution. When the search comes to a large
�at area or the system is frozen, the GA-based crossover operation creates a big jump
in the search space. GSA updates the population by replacing the worst solution. This
replacement can be conducted in two ways: 1) The weakest solution in the population is
replaced with the solution produced by the crossover. 2) At the end of the local SA-based
search, the weakest solution is replaced with the local best-so-far solution in the local
SA-based search.

Xiao et al. [15] reported experimental results of the effectiveness of �ve different opti-
mization techniques over �ve different C/C++ programs. The experiments took a white-
box approach, and the same �tness function is used for the same program under test
by each heuristic test data generator. This means that the “�tness landscape” factor has
no in�uence on the comparison process. Four optimization algorithms were used in the
experiments, which were Genetic Algorithm (GA), Simulated Annealing (SA), Genetic
Simulated Annealing (GSA) and Simulated Annealing with Advanced Adaptive Neigh-
borhood (SA/AAN). For the purposes of comparison, a random test data generator was
used. GA has the best overall performance, according to the results. In fact, the GA
method consistently outperforms the competition. With the Time Shuttle, Perfect Num-
ber, and Rescue programs, GA provides full condition-decision coverage. However, the
GA was unable to achieve complete coverage with the other two SUT, despite this, no
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other optimization technique was able to perform better. The GA has the ability to keep
the bene�cial gene transferred down from previous generations and pass it down to suc-
cessive generations, resulting in high-quality test cases being generated quickly. GA and
SA/AAN performed admirably in both input spaces, with average coverage levels of 85
percent and above. To obtain the coverage levels achieved by the GA and SA/AAN meth-
ods, the SA and GSA techniques required a lot more effort. With smaller input spaces, the
SA and GSA approaches performed signi�cantly better than with larger input spaces. In
general, GSA did not perform well in the experiments, and it only slightly outperformed
the Random test-data generator. However, the parameters applied in the GSA algorithm
used in the experiments, were not optimally tuned, which could explain these results.
With a basic program and a modest input space, the Random test data generator performs
well. Nevertheless, on programs with a complex structure and a vast input space, it per-
forms poorly and inef�ciently. As a result, the SA, GSA, and Random techniques may
not be suitable for industrial applications with huge input spaces.

3.1.3 Discussion

In this sub-section, we discuss our observations of the analyzed studies of Evolutionary
Algorithms' components. We �rst focus on the probabilities of crossover and mutation
and then highlight a few relevant aspects of the analyzed approaches.

The main emphasis in the presentation of the empirical studies was to understand which
probability values and techniques were used for the variation operators (i.e., crossover and
mutation) and which methods existed in the literature. Moreover, we also sought studies
related to parent selection, �tness function, and population. Subsequently, We had the
following questions:

• RQ-1: Which interval of values for the probability of crossover and mutation are
considered in the literature?

• RQ-2: Which interval of values for the population size are considered in the litera-
ture?

• RQ-3: Should these values be static or dynamic across the number of generations
in an Evolutionary Algorithm?

• RQ-4: Is there any standardized method to help tune these parameters?

In an attempt to answerRQ-1, we observed several studies dating from 1975 through
1990 reporting crossover probabilities between 0.6 and 0.95 [55–57]. Nowadays, it is well
comprehended in the literature that the crossover rate should not be too low, and values
smaller than 0.6 are seldom adopted. While for crossover probabilities, the values should
not be too low, the opposite is the standard for the mutation probability. We identi�ed
the interval of values between 0.001 and 0.01. However, since different problems to
be solved may behave differently in these static values, some renowned authors in the
literature [66, 67, 70] identi�ed that apm = 1/ L, whereL is the length of the bitstring,
was an excellent mutation rate.
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Looking at RQ-2, concerning population size, we identi�ed in the papers an interval
ranging from 20 up to 100 [55–57]. However, values higher than 60 appears to be too
high.

RegardingRQ-3, Eiben et al. [62] concluded that a general drawback of the parameter
tuning approach, regardless of how the parameters are tuned, is based on the observa-
tion that a run of an EA is an intrinsically dynamic, adaptive process. This concept is
consequently contradicted by the adoption of in�exible parameters that do not vary their
values. Furthermore, it is self-evident that different parameter values may be ideal at
different stages of the evolutionary process [72, 73, 89, 109–111].

It may be advantageous to make big mutation steps in the early generations to explore
the search space, and modest mutation changes in the subsequent generations to �ne-tune
the sub-optimal chromosomes. As a result, using static parameters can degrade algorithm
performance on its own. Using parameters that can change over time is a reasonable way
to overcome this problem, that is, by replacing each parameter by a functionp(t) where
t represents the generation counter [68, 94]. However, choosing the best static parame-
ters for a given problem can be complex, and the optimal solution can be in�uenced by
a variety of other factors (e.g., such as the applied recombination operator, the selection
mechanism). Therefore, creating an optimal functionp may be even more challenging.
The downside to thep(t) approach is that the parameter values are adjusted determinis-
tically by time t, regardless of how far along the problem is being solved (i.e., without
taking into account the current state of the search). However, researchers have enhanced
their evolutionary algorithms by applying such simple deterministic criteria (i.e.,p(t))
to improve the quality of outcomes their algorithms produced while working on speci�c
problems.

For RQ-4 there are some exciting methodologies where the authors attempted to stan-
dardize the tuning of the Evolutionary Algorithm's parameters. The authors tried clever
approaches, such as adding the mutation probability codded in the bits of every individual
where the mutation rate self-adapts throughout the generations [70, 71]. Others developed
sophisticated mechanisms that adaptively adjusts the crossover and mutation probabilities
proportionally to their recent contributions to chromosomal construction [59, 69, 74].

To conclude, �nding acceptable parameter values for an evolutionary algorithm is, as a
result, a poorly structured, ill-de�ned, and challenging problem. Several studies tackle
this problem with innovative approaches. Nevertheless, in most cases, the problem to be
solved has particularities where these approaches will not outperform simple deterministic
criteria. Regardless, EAs generally outperform other techniques on this type of problem.

3.2 Studies on Software testing

In this section, we examine software testing studies using genetic algorithms that stand
out in their techniques, characteristics, and comparisons for software testing, particularly
Search-Based Software Engineering. Then, in sub-section 3.2.1, we present the academic
research contributions in different techniques for testing REST web services. We con-
clude this chapter with sub-section 3.2.2, where we discuss our main observations con-
cerning the work presented and emphasize some limitations of the current state-of-the-art
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practices on RESTful API testing, namely in the evolutionary approaches.

Software testing can be modeled as an optimization problem, where one wants to maxi-
mize the code coverage and fault detection of the generated test suites. Then, once a �t-
ness function is de�ned for a given testing problem, a search algorithm can be employed
to explore the space of all possible solutions (test cases).

Buehler and Wegener [112] use evolutionary algorithms to test speci�cation conformance
of an early version of an automated vehicle parking system. This system seeks to auto-
mate the parking of a vehicle lengthwise into a parking spot by gathering and analyzing
data from environmental sensors that detect nearby objects. Individuals in the search are
just parking scenarios that specify the parameters of a parking place, including collision
zones and the vehicle's initial position. With this information, the parking control unit is
invoked, and a simulated parking maneuver is simulated. With a successful test being one
that causes a collision, the objective function is simply the value of the smallest distance
between the car and the collision area recorded during the simulation. In the experiment
undertaken, roughly 900 scenarios were simulated, with more than 25 scenarios found
guiding to collisions. After analyzing these scenarios, it was discovered that the con-
troller had dif�culties with scenarios where the parking space was some distance away,
and the starting position was already near the collision area on one side. A vulnerability in
the simulation environment was also revealed, where it was discovered that calculations
concerning the position of the car were too inaccurate. Such vulnerability culminated in
more simulated collisions with the collision site.

This work by Buehler and Wegener is interesting since we can interconnect the "success-
ful test being one that causes a collision" in their work with ours being the generation of
a valid request (i.e., a request that generates a response with status code 200) to the work-
load or an invalid request in the faultload to the REST service. Furthermore, the authors
use “the value of the smallest distance between the car and the collision area recorded
during the simulation in the objective function", similar to resembling the distance be-
tween two responses from the RESTful API (e.g., the levenshtein distance [113] between
the content of two responses).

Harman and Jones in [14] call this new �eld of software engineering research “Search-
Based Software Engineering”. They argue that software engineering is ideal for the appli-
cation of metaheuristic search techniques. They also note that the search-based technique
must outperform the random technique in order to be quali�ed as worthy of even being
considered a successful application. The random method, therefore, provides the lowest
benchmark. If the metaheuristic method does not outperform the random method, it is
likely because it is poorly implemented. They also expect to see dramatic growth in the
�eld of search-based software engineering within the next few years. They list the likely
application areas and the developments that the growing research capacity will provide.

Boden and Martino [114] used a GA to generate API tests. They concentrated on the
operating system error treatment routines. The chromosome uses order-based [115] en-
coding to represent an API call or command invocation, followed by ordered parameter
codes. Encoding is at the byte level, allowing simple associative-array decoding of call
and parameter codes. The genetic operations of order-based crossover and mutation (byte,
non-order based) were used. The cycle used to process a single GA population consists
of the following steps: 1) On the GA-host system, each chromosome is used to derive an

44



Related work on Evolutionary Algorithms and Software Testing

API test case (the phenotype); 2) each API test is sent to a test system where the API calls
or command invocations are executed; 3) The API test results are sent back to the GA-
host system; 4) The GA then evaluates the results; 5) Chromosomes with higher �tness
are proportionally selected for the next generation. Finnaly, the �tness function was a
weighted sum of various factors of a test response with an attempt to assess the sequences
of operating system calls.

Tracey et al. [16, 116] used genetic algorithms and simulated annealing to generate input
data to test handling runtime error conditions in code. These runtime errors are exceptions
in many languages, such as C++ and Java. These languages provide explicit exception-
handling constructs so that exception-related code can be separated from the main logic
of the program. The authors generate test data for triggering an exception subsequently
for the exception handler's structural coverage. Seven basic programs without any more
than 200 lines were used in the experiments. Metaheuristic techniques were discovered to
generate test data for practically all exception conditions within the code and full branch
coverage of exception handlers where they existed. An industrial experiment was also
undertaken on an engine controller. Here, test data were generated, raising various ex-
ception conditions. However, it was found that these exceptions could not be raised in
practice since input situations had been generated, which were not possible during the
actual operation of the system.

Mansour and Salame [84] compared Evolutionary Testing, Hill Climbing, and Simulated
Annealing for path coverage test data generation, revealing that Hill Climbing discovers
test data faster than Evolutionary Testing and Simulated Annealing, while Evolutionary
Testing and Simulated Annealing can cover more paths. Simulated Annealing outper-
forms Genetic Testing, according to the researchers. Hill Climbing, on the other hand, is
only applied to programs with integer inputs, and the research is limited to eight functions
with fewer than 86 lines of code.

Hunt in [117] used a GA for testing cruise control system software. In his work a GA
chromosome represents the input and corresponding expected output. The �tness value
is assigned, if the measured output differs from the expected output. The greater the
difference, the higher the �tness value. The expected output is derived from the origi-
nal software speci�cation. Hunt states that software is often developed by a third party,
and the tester only has the software, which he treats as a black-box and tests against the
corresponding requirement speci�cation. A GA chromosome must be able to represent
all input values that the software can process, as well as the values that its single output
can have. He claims that the chromosome must be able to represent both the valid and
erroneous inputs. In his approach the GA is used as an aid for a human tester. The GA
identi�es failure scenarios, but it is up to the human tester to identify the faults that led to
the failure.

Lin and Yeh [118] have also studied automatic test data generation by a GA for a chosen
subpath. Their method uses a so-called "normalized extended Hamming distance" to
guide the optimization process and to test the optimality of the candidate solutions. The
�tness function, called Similarity, de�nes how similar the traversed path is to the target
path, is used to choose the surviving test cases. Optimality here means that the test case
(i.e. a particular input) forces the program to follow the given path of program statements
when executed. They claim that a GA is able to signi�cantly reduce the time required for
automatic path testing.
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Minohara and Tohma [119] developed a GA to estimate the parameters of a so-called
“hyper-geometric distribution software reliability growth model” (HGDM), in which the
number of errors increases as a function of time. A set of parameter values is represented
by its GA chromosome. The �tness value is calculated by comparing observed and es-
timated test-and-debug data for errors. They tried to minimize the number of errors and
their results suggest that the GA approach may be a more reliable method for obtaining
the estimations of their problem.

Kasik and George [120] developed a GA to simulate software inputs in an unexpected,
but not completely random, way. The GA is applied as a repeatable technique for creating
user events that are used to drive standard automated test tools, allowing the system to
imitate various forms of naive user behavior. The system seeks to replicate how a new user
learns to use a program. The �tness value is determined by how much the chromosome
directs the activities to resemble beginner behavior. A speci�c reward system based on
observations has been developed to describe novice behavior.

Bingul et al. [121] apply a GA to test the war simulation software THUNDER with the
black box method. They applied multiobjective optimization with the Pareto method,
and de�ne three different ways to assign �tness values. The THUNDER software can be
viewed more like a two-player game in which blue represents the friendly side and red is
the enemy side, and the problem itself as four main objectives for the different scenarios:
(i) Minimize the territory that blue side losses; (ii) Minimize the blue side aircraft lost;
(iii) Maximize the number of red side strategic targets killed; (iv) Maximize the number of
red side armor killed. As previously mention this is a typical multiobjective optimization
problem. They try to optimize software behavior, war strategies, and the running time.
The authors claimed that the GA was able to provide optimal or near optimal solutions.

Last [122] used the fuzzy based extension of GA (FAexGA) approach for test case gen-
eration. Using mutated versions of the original program, the goal is to uncover a minimal
number of test cases that are likely to reveal faults. Crossover probability varies according
to the age intervals assigned during a lifetime in the FAexGA technique. Young and old
individuals have a low crossover probability, whereas other age categories have a high
crossover possibility. The crossover probability of very young offspring is low, allow-
ing for exploration. On the other contrary, older offspring have a lower probability of
crossover, and dying out would help avoid a local optimum or premature convergence.
Middle-aged offspring, on the other hand, are usually used for crossover operations. The
fuzzy logic controller (FLC) is used to calculate the probability of crossover, with state
variables such as chromosome age and lifetime (parents). FLC's fuzzi�cation interface
includes variables that indicate an offspring's age. As a result, FLC assigns the values
Young, Middle-age, or Old to each parent, using the concepts of fuzzy set theory [123].
The membership of each rule in the FLC rule base is determined by these values. The cen-
tre of gravity (COG) is a defuzzi�cation method that calculates real values for crossover
probability using the FLC's linguistic variables. Therefore, and accordingly to this tech-
nique, its main goal is on the exploration and exploitation of individuals.
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3.2.1 Studies on RESTful API Testing

In this section, we analyze related studies on testing RESTful APIs, where we focus on
approaches that rely on multiple techniques for testing. We divided the studies in two
categories the evolutionary and non-evolutionary approaches. Also, our main concern
was to understand if any of related studies target robustness testing of REST web services.
In Table 3.2, we compiled these categories as way of resume the main �ndings in the
literature. We wrap up this section with a few paragraphs highlighting the key trends we
observed in the assessed methodologies.

Figure 3.11 demonstrates an example of a tool for testing the robustness of RESTful APIs.
It generates valid and invalid requests according to the RESTful API speci�cation. The
�gure is inspired by the tool presented in [8] and described later in this section.

The main takeaway of Figure 3.11 is the logic behind the tool. It starts by parsing the
speci�cation �le, and then a Workload is generated with valid requests accordingly with
the speci�cation of the REST service. Next, after the valid requests are sent to the service,
faults are injected to create invalid requests, and once again, they are sent to the service.
Such an approach can be seen as fuzzing testing since it sends random valid requests and
then invalid ones. The responses from the generated requests are stored in �les for the
tester to analyze a posterior.

Figure 3.11: Example of a tool for testing RESTful APIs, inspired by [8]

Identi�cation of studies

For the identi�cation of the studies present in this related work, we used three well-known
online libraries to search for primary studies, and they are the following:

• ACM Digital Library [124]

• Google scholar [125]

• IEEE Xplore [126]

Our initial choice of data source was Google Scholar since it is renowned for indexing a
vast number of works. We conducted the search using the following query string, which
was established based on early testing of different queries while using the relevant search
engines of the three online libraries:
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(((REST AND (services or API)) or ("RESTful API")) AND ((test OR testing) OR Fuzzing))

We had the objective of �nding state-of-the-art tools for black-box testing of REST ser-
vices. To achieve it, we needed to agglomerateRESTful API, REST API, andREST ser-
vices, as the authors use these similar three keywords, which are the central theme of our
targeted search. Also, initial observations indicate the use of fuzzing or testing by the
writers with the absence of thermology Robustness, which was found only in one paper
[8].

We also did recursive research by dissecting papers that were referenced by other key
papers and authors. For instance, any paper of Andrea Arcuri [19, 127–132] had key
references for related works. We would also recursively analyze the references of a new
identi�ed tool or approach. Furthermore, we took advantage of the survey:RESTful API
Testing Methodologies: Rationale, Challenges, and Solution Directions[133] that helped
identify new studies in the related area.

Studies

Table 3.2: Techniques for testing REST services

System RESTful APIs Arcuri [128, 129], Zhang et al. [127], Liu and Chen
[134], Laranjeiro et al. [8], Viglianisi et al. [9], Atl-
idakis et al. [10], Martin-Lopez et al. [11], Karls-
son et al. [12], Ed-douibi et al. [13], Segura et al.
[135], Chakrabarti and Kumar [136], Chakrabarti and
Rodriquez [137], Godefroid et al. [138], Fertig and
Braun [139], Wu et al. [140]

Type of testing Robustness Laranjeiro et al. [8]

Other Arcuri [128, 129], Zhang et al. [127], Liu and Chen
[134], Viglianisi et al. [9], Atlidakis et al. [10], Martin-
Lopez et al. [11], Karlsson et al. [12], Ed-douibi
et al. [13], Segura et al. [135], Fertig and Braun
[139], Chakrabarti and Kumar [136], Chakrabarti and
Rodriquez [137], Godefroid et al. [138], Wu et al. [140]

Evolutionary algo-
rithms

GA Arcuri [129], Liu and Chen [134]

(1+ 1) EA Arcuri [128], Zhang et al. [127]

None Laranjeiro et al. [8], Viglianisi et al. [9], Atlidakis et
al. [10], Martin-Lopez et al. [11], Karlsson et al. [12],
Ed-douibi et al. [13], Segura et al. [135], Fertig and
Braun [139], Chakrabarti and Kumar [136], Chakrabarti
and Rodriquez [137], Godefroid et al. [138], Wu et al.
[140]

Non-Evolutionary approaches

The bBOXRT tool was presented by Laranjeiro et al. [8]. It is a tool for black-box ro-
bustness testing of REST services. Its concept is divided in four steps. In the �rst step,
the tool starts by parsing the basic information of the system under test. An interface
description document (OpenAPI [6]) is read and analyzed. Information as the Uniform
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Resource Identi�er (URI), the available resources and the HTTP methods, input and out-
put datatypes, error codes, and example requests are obtained to generate new requests.
For the second step, a valid workload is generated randomly, according to the speci�ca-
tion. This workload involves sending requests to the service so that the behavior of the
service can be understood in the absence of any errors. The third step involves creat-
ing faulty requests by injecting a single fault into each request (e.g., an integer with its
maximum value plus 1) present in the workload previously generated. Using the faulty
requests, the service is triggered to act in an incorrect manner. Last but not least, in the
fourth step, the responses to the services are stored to support the behavior analysis that
follows.

Segura et al. [135] proposed an entirely different black-box approach, where the oracle is
based on metamorphic relations among multiple requests (inputs) and responses (outputs).
It operates by making small changes to the testing environment while keeping the inputs
to system calls constant, then evaluating whether the results of these calls, speci�cally
the metamorphic relation output patterns, ful�ll speci�c requirements. For instance, they
send two queries to the same REST API, where the second query has stricter conditions
than the �rst one (e.g., by adding constraint). The result of the second query should be
a proper subset of entries in the result of the �rst query. When the result is not a sub-
set, the oracle reveals a defect. However, this approach only works for search-oriented
APIs. Furthermore, this technique is only partially automatic since the user is supposed to
identify the metamorphic relation to exploit manually and what input parameters to test.
The approach was evaluated on the Youtube and Spotify REST APIs, and 11 issues were
discovered in the services.

Viglianisi et al. [9] proposed a black-box tool,RESTTESTGEN, intended to automatically
generate test cases for REST API. The tool uses the API Swagger speci�cation to know
which operations can be called and their input/output data format, to send well formed
HTTP requests. The authors implemented in the tool an Operation Dependency Graph,
mapping the dependencies between operations. Assuming there is a data dependency
between two operations (n1 and n2), a common �eld in the output (response) of n1 and
in the input (request) of n2, then the intuitive meaning of this dependency is that the �rst
operation n1 should be tested before n2, because the output of n1 could be used to guess
input values to test n2. Two �elds (parameters) are assumed to be common when: (i) they
are of atomic type (i.e., string or numeric) and they have the same name; (ii) they are of
non-atomic type (i.e., structured) and they are associated to the same schema.

Chakrabarti and Kumar [136] propose a test framework, called Test-the-REST (TTR),
used to execute test cases based on speci�c REST requirements. The tester writes a test
case represented as an XML �le with essential pieces of information, such as the HTTP
method, the URI of the resource, and the expected representation, and is used as input
to the test case validation module. Once validated, a test case is executed, and when
the response is obtained from the target API, it is then used for verifying pass or fail
conditions de�ned in the corresponding test case. This process is repeated for each test
case that a tester provides to the tool. The results showed that the framework could detect
a considerable amount of faults in the test RESTful service.

Later Chakrabarti and Rodriquez [137] presented a method of testing RESTful web ser-
vices called connectedness. Such testing is based on every resource in the web service
being reachable from the base resource by successive HTTP GET requests. The imple-
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mented method takes advantage of a formal web service speci�cation to test its connect-
edness automatically. The speci�cation is described in WADL++, an enhancement of
the Web Application Description Language (WADL), which de�nes the graphs underly-
ing the hierarchies between the available resources in the service. Consequently, only
web service developers can supply such a speci�cation �le. Moreover, after creating the
graph, a Depth-First Search is carried out by making a GET request on the base URI and
extracting all the URIs that appear in the response payload. The process is repeated on
all these URIs in a depth-�rst way and continues until no more unvisited URIs are being
visited or a maximum search limit is reached. Then, by comparing the resulting URIs
list of both the resource graph and the WADL++ description, a test verdict is conducted,
and if there is a difference, then the web service is not fully connected. As an important
note, speci�c requirements such as security (e.g., Basic authorization) are not entirely
worked out in this approach, resulting in some resources being blockaded and, therefore,
originating misleading results.

Atlidakis et al. [10] presented a stateful REST API fuzzer, with the name RESTler and
written in python. The authors stated that RESTler was the �rst automatic stateful REST
API fuzzing tool for test generating with the objective of �nding security vulnerabilities.
It starts by doing a static analysis of an OpenAPI speci�cation (also know as Swagger)
[6], and then generates and executes tests in a stateful manner. It generates requests by in-
ferring dependencies among request types declared in the OpenAPI speci�cation [6], and
also by dynamically analysing responses to intelligently build request sequences in order
to avoid requests combinations that can lead to future errors in the server. Furthermore,
RESTler relies in a user-con�gurable dictionary to fuzz input values.

Martin-Lopez et al. [11] proposed an automated black-box testing tool for RESTful, with
the name RESTest. The main feature of this tool is the automated analysis of interparam-
eter dependencies, which enables for the automated generation of valid test cases using
constraint solvers. In fact, certain REST APIs impose constraints that limit not only input
values but also how input values can be combined to �ll valid requests. The OpenAPI
grammar as of now does not allow for formal documentation of these kind of dependen-
cies. In this note, Martin-Lopez et al. [141] introduced a domain-speci�c language, called
inter-parameter dependency language (IDL). RESTest relies in the so called IDL to map
the inter-parameter dependencies of the SUT. Finally, RESTest can produce both nomi-
nal and faulty test cases using two strategies: random testing (RT) and constraint-based
testing, by taking into account the constraints of inter-parameter dependencies.

Karlsson et al. [12] presented the QuickREST to generate input values accordingly to
the API's speci�cation. QuickREST follows a black-box approach to generate test cases
for REST APIs automatically. The test inputs are generated using a two-fold mechanism:
(i) randomly generated values that are agnostic to the speci�cation, as well as (ii) values
that are generated at random and comply with the parameter requirements in the OpenAPI
document[6]. QuickREST uses a Clojure (functional programming language) variant with
the name TestCheck [142], which provides functionality for de�ning data speci�cations
and validating whether the given data conforms to those speci�cations. In addition, a
key feature of QuickREST is its property-based testing (PBT), which involves generating
input data and determining if it holds speci�c properties when exercised with that input
(e.g., testing asort function, the input should be an array sorted).

Wu et al. [140] presented RESTCT, a systematic and fully automatic approach using
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Combinatorial Testing (CT) to test RESTful APIs. The approach �rst generates a con-
strained sequence covering array to determine the execution orders of available operations
and then applies an adaptive strategy to create and re�ne several constrained covering ar-
rays to concretize input parameters of each operation. The overall process of RESTCT is
divided in two phases: (1) Operation Sequence Generation and (2) Input-Parameter Value
Rendering.

In the operation Sequence Generation, the approach seeks to model the input space of
available operations and construct a sequence covering an array as a representative set
of operation sequences by identifying dependency relationships between the operations.
Regarding theInput-Parameter Value Rendering, it models the input space of input-
parameters of each operation, and sample representative value assignments via several
covering arrays to produce concrete HTTP requests. The authors have four different tech-
niques to generate input values for each input parameter identi�ed in the operation. The
�rst technique, which the authors call Dynamic, uses output values parsed from previous
responses with the most similar names to the input parameter, assigning it as its value
domain. The second technique uses values (i.e., enums or default values) from examples
provided by the developers in the Swagger (i.e., OpenAPI) speci�cation. The third one
uses values from previous successful requests (i.e., returning HTTP status code of 200
range). Lastly, for the fourth technique, the values are generated randomly by respecting
the domain of the parameter's data type when the other three methods cannot identify/-
generate a new value.

With the above approaches to determine input parameters and infer constraints, RestCT
will then utilize an adaptive strategy to generate concrete HTTP requests to execute oper-
ations in the given operation sequence.

Godefroid et al. [138] presented differential regression testing, which is a technique that
�nds regressions on REST APIs by comparing the behavior of different system versions
against each other using the same inputs [143]. The approach considers regressions (i.e.,
breaking changes) in the API speci�cation of the RESTful service and the software com-
ponents of the service. The technique is applied to pairs of different versions to �nd re-
gression bugs along two dimensions: when the service changes and when new clients are
derived from the changed speci�cation. Consequently, to detect a potential regression, the
new version must produce an output different from the previous version. Moreover, the
authors used RESTler [10], a stateful REST API fuzzer that automatically generates and
executes sequences of HTTP requests de�ned in the API speci�cation. The proposed tech-
nique can automatically detect deviations and highlight possible regression bugs based on
the HTTP responses obtained during testing. Lastly, the authors assessed the approach
across 17 different versions of the Microsoft Azure networking APIs from 2016 to 2019
[144], where �ve regressions were detected in the of�cial API speci�cations and nine in
the software components of the service.

Fertig and Braun [139] introduced an automated test case generation approach via Model-
Driven testing of RESTful APIs. The approach not only automatically generates the
source code for the API but also a large batch of functional and security test cases based
only on an abstract RESTful API model that consists entirely of resources, states, and
transitions. The authors designed the model for RESTful APIs using the Xtext frame-
work and established the test cases on the supplied description. They were enabled to
provide templates for the test cases by using Xtend, which is a Java dialect capable of
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implementing code generators within Xtext. The evaluation of a model-based software
development-generated RESTful API was successful since the authors could produce over
20,000 test cases for only an API with four resources.

Ed-douibi et al. [13] proposed an approach to generate speci�cation-based test cases for
REST APIs. Their approach has as its goal ensuring that such APIs match the require-
ments de�ned in their speci�cation and ensure a high coverage level for both nominal
and fault-based test cases. It is divided in four steps. In the �rst step extracts the model
by parsing the OpenAPI speci�cation �le [6]. Secondly, extends the previously created
method by adding parameter examples which will be used as input data for the test cases.
The third step, generates a TestSuite model by deducing the test case de�nitions for the
API operations. Finally, the TestSuite model is converted into executable code in the last
phase (e.g., JUnit). During the Transformation from OpenAPI to TestSuite (step 2 to step
3), two rules are de�ned, one generates nominal test case de�nitions given correct input
data, and the second generates faulty test case de�nitions given incorrect input data (e.g.,
for an integer its maximum value plus 1).

Evolutionary approaches

Arcuri [129] proposed a technique to automatically collect white-box information from
the running web services, and, then, exploit such information to generate test cases using
an evolutionary algorithm. The approach was implemented in a tool called EvoMASTER
[19]. The evolutionary algorithm used iteratively improves upon randomly generated test
cases that aim to maximize code coverage and the amount of error status code responses
from the service under test. A GA was used and each individual represents set of test
cases, randomly initialized, with variable size and length. The �tness of a test suite is the
aggregated �tness of all of its test cases. The crossover operator will mix test cases from
two parent sets when new offspring are generated. The mutation operator will do small
modi�cations on each test case (e.g., like increasing or decreasing a numeric variable by
1). They support all valid types in JSON (e.g., numbers, strings, dates, arrays and objects)
and some of them need to be treated specially. For example, for date times, as genotype
they consider an array of six bounded numeric values: year, month, day, hour, minute and
seconds. They additionally consider valid values (e.g., minutes are from 0 to 59 ), but also
some invalid ones (e.g.,� 1 minute) to check how the SUT behaves when handling time
stamps with invalid format. When such date is used in a JSON variable, the phenotype
will be a date string composed from those six integer values. When a test is executed,
they check all targets it covers. If it covers a new target, the test will be copied from the
test suite and added to an archive, to not lose it during the search (e.g., due to a mutation
operation in the next generations). At the end of the search, all tests stored in the archive
are collected, the redundant ones are removed, and the minimised suite is written to disk
as a test class �le.

Later on Arcuri presented the Many Independent Objective (MIO) algorithm [128]. MIO
[128] combines the simplicity and effectiveness of(1+ 1) EA [53] with a dynamic popu-
lation, dynamic exploration/exploitation tradeoff, and feedback-directed target selection.
It holds a test archive, with a different population of tests of sizen (e.g.,n = 15) for each
testing target. As a result, givenztargets, the archive can keep up ton� z tests at the same
time. The archive will be empty at the start of the search, thus a new test will be generated
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at random. From the second stage on, MIO will choose whether to randomly sample a
new test (probabilityPr ) or to copy and change (i.e., mutate) an existing test from the
archive (probability 1� Pr ). Finally, when a new test is sampled (i.e., mutated), its �tness
is evaluated, and if necessary, it is stored in the archive. Based on the �tness value of a
test, a duplicate of it may be saved in 0 or more of thez populations in the archive. Each
target will have a heuristic scoreh in the range[0,1], with 1 indicating that the target is
covered and 0 indicating the worst possible heuristic value.

EvoMASTER also provides introductory support for black-box testing of REST services,
essentially random generation with no support for data generators or inter-parameter de-
pendencies [131]. However, the black-box con�guration in EvoMaster performs signi�-
cantly worse than the white-box strategy implemented in the tool [130].

After Arcuri presented the MIO algorithm [128], a more recent version was proposed by
Zhang et al. [127]. The test case generation and optimization procedure in this version
was improved by taking into account the semantics of HTTP methods used in REST
services. The main idea was to de�ne a set of templates (e.g., an operation mapped
with GET method may be dependent of a POST method from another operation) that
list meaningful combinations of actions on one resource based on the semantics of the
HTTP methods. Therefore, the authors used these templates to sample new individuals,
instead of sampling them completely at random. This approach can be seen as inter-
dependability between operations of the API. When compared to the previous version of
the MIO algorithm, the results showed an overall improvement in performance throughout
all case studies, with increased code coverage and error response �nding.

Liu and Chen [134] presented an approach to optimized Test Data Generation for RESTful
Web Service. Their approach starts by reading and parsing an extended WADL speci�-
cation of the API. This document describes the data type of the input parameters, and
a restriction element must be added to this XML Schema to describe the constraint of
certain input data types accurately (e.g., an integer with a minimum value of 0 and a max-
imum value of 20). Input data is then generated according to the data types and their
constraints by equivalence partitioning with boundary value analysis. After the last step,
the generated data is mutated according to each data type through one of a set of seven
mutation operators. In order to reduce the cost of testing and select more effective test
data, a genetic algorithm supported by a K-means clustering was used to evaluate the
bug-detection capability of the mutants (i.e., data that suffered a mutation). The method
was tested on a straightforward RESTful online shopping service system. However, the
results did not reveal anything compelling.

3.2.2 Discussion

In this section, we present a discussion regarding our observations of the investigated
methodologies for software testing with evolutionary algorithms and the testing of REST
services.

It is argued that software engineering is the ideal scenario for the application of meta-
heuristics, as the search-based approach has to outperform the random approach [14].
According to the extensive surveys [145, 146], GAs and their extensions are the most
used search algorithms in search-based testing (SBT) literature (73 %), followed by more
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limited use of simulated annealing and its extensions (14 %) [146]. Furthermore, most
papers (78 %) do not target any speci�c faults but focus on structural coverage of differ-
ent test models. These algorithms, with slight adjustments to adapt to the task at hand,
were used to handle several problems, including data test generation. Their frequent use
also resides in the fact that there exist many publications on the application of GAs to
various problems. Moreover, it is a strong indicator that such algorithms can be prac-
tical and achieve good results for the types of problems related to search-based testing.
Consequently, substantial empirical data is available for the different parameter settings
required by the GAs. This data dramatically helps choose appropriate parameters for a
speci�c problem to be solved.

Regarding RESTful API testing, several methodologies were applied to carry out the test-
ing of REST services. For instance, metamorphic relations between input and output in
order to evaluate speci�c requirements, dependency graph to map dependencies between
operations available in the REST service. The use of a functional programming language
to allow the de�nition of speci�c dependencies between the properties of the parameters
in a request. We also identi�ed different types of testing, such as Differential Regression
testing to compare the behavior of different system versions of a REST API, model driven
testing, robustness testing, white-box and black-box testing.

Figure 3.12: Distribution of REST API testing methodologies occurrences based on Evo-
lutionary Algorithms over the years.

Although we can identify different techniques that were carried out in the literature,
the same cannot be stated regarding evolutionary approaches for testing RESTful APIs.
Looking at Figure 3.12, where we identi�ed the number of occurrences of the studies con-
cerning evolutionary approaches, we quickly recognize that Andrea Arcuri developed the
most work with the EvoMaster project [19, 130, 147] (i.e., 3 out of 4 papers), which we
identi�ed as the current state-of-the-art tool for the testing of REST services, mostly fo-
cusing on white-box testing. However, it also has a black-box mode that takes advantage
of its (1+1) EA used for unit testing.

Taking a deep dive into robustness testing, according to Laranjeiro et al. [1] and the con-
ducted systematic review on Software Robustness Assessment in which the authors found
that the work encountered on web applications is relatively scarce. The authors concluded
at the time of writing the survey (2021) that Web services robustness evaluation has seen
a peak of research being carried out in the late 2000s, with some work on Web Appli-
cations though with the majority focusing on SOAP web services. However, research
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interest has stopped, and they could also not identify robustness evaluation research of
more recent web service implementations, such as REST services. Moreover, in the set of
145 papers analyzed for the extensive systematic review, only one paper proposed a tool
by the name of Chizpur�e [148] for testing proprietary Android services with a fuzzing
approach based on genetic algorithms. It also showed that services associated with more
complex APIs bene�t most from the evolutionary approach.

Even though SOAP services have been extensively tested for robustness, REST services
have not been put under the same scrutiny [1] despite their wide range of applications.
Consequently, to the best of our knowledge, there are no studies on black-box robustness
testing for REST services using an evolutionary approach to generate robustness tests.
However, a few automated tools for software testing of REST services have been devel-
oped, where most of them either use dictionaries or random inputs for data generation
[8–13]. Nevertheless, several observations suggest that the random technique may not be
appropriate for industrial applications with large input spaces [15, 16].
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Evolutionary Approach and Testing
Tool Architecture

In this chapter, we describe our automated evolutionary approach for robustness testing
of REST services. We begin by introducing, in section 4.1, a simple overview and the
main concepts that support the approach, and section 4.2 describes the different parts and
obligations of ourEvolutionary REST Fuzzerapproach's internal components and how
they interact to support each other.

4.1 Approach Overview

Figure 4.1 summarizes the idea underlying our approach. The box delimits the scope of
our architecture, having several components that interact with each other and with the
external system under test (i.e., RESTful API). It is worth mentioning that the bBOXRT
tool [8] is in our scope once we use some of its components to parse the interface's infor-
mation. As a result, by leveraging information about the system's interface under testing
(i.e., OpenAPI [6] description �le), our approach, while taking advantage of the evolu-
tionary algorithm, produces valid and invalid requests in an attempt to trigger faults in the
REST service. The procedure is divided into the following steps:

• Interface description analysis- This �rst step reads and analyzes the basic infor-
mation of the description �le of the RESTful API (e.g., OpenAPI [6]) by parsing it.
This information is then collected and used in the following steps, which include the
Uniform Resource Identi�er (URI) of available resources and the Hypertext Trans-
fer Protocol (HTTP) methods they implement, input and output data types, error
codes, and example requests. This step is performed by the bBOXRT tool, which
can parse the RESTful API description �le structured in the YAML format [35].

• Generation of Workload - In an attempt to generate valid requests (i.e., request
that generates a response with status code 200) the Evolutionary Algorithm tries to
generatevalid inputs, sent as parameters in the requests, to analyze the behavior
of the REST services. The generated inputs are produced by the EA components
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(e.g., evaluation function, variation operators, selection operator, population and
the representation of individuals).

• Generation of Faultload- Similar to generating a Workload, the goal is to generate
invalid inputs to analyze the REST service behavior when confronted with faulty
inputs that may trigger erroneous behavior (robustness problems). These inputs are
also based on the EA helped by a dictionary of pre-de�ned faults (e.g., replace a
parameter bynull) along with incorrect values for the speci�c data types (e.g., an
integer's maximum value plus 1).

• Results storage- The last step takes care of storing every data retrieved regarding
the test process to support further behavior analysis of the SUT by the tester. For the
workload and faultload phases, the requests and responses are held inxlsx�les (i.e.,
Excel). Additionally, the same raw information and the tool messages concerning
the testing process are stored in atxt �le for extensive debugging. Lastly, when
code coverage is enabled, the code coverage report is gathered from the SUT and
stored for further analysis.

Figure 4.1: Overview of the proposed approach

The following section clari�es these steps in further detail and maps them to the different
software elements that comprise our approach,EvoReFuzz.

4.2 EvoReFuzz: Evolutionary Approach for REST Test-
ing

The architecture of our approach is depicted in Figure 4.2, where theEvoReFuzzcompo-
nents are contained in a rectangle, and the elements of the evolutionary algorithm itself
are sub-contained in the dashed rectangle. These interact between each other and with
external entities (e.g., REST services).

ThebBOXRT tool[8] is responsible for parsing an OpenAPI document structured in the
YAML format [35], which describes the interface of a given RESTful API service. The

58



Evolutionary Approach and Testing Tool Architecture

Figure 4.2: Evolutionary approach architecture with a genetic algorithm as the Evolution-
ary algorithm

basic information parsed is then translated to Java classes and used to generate a set of ran-
dom requests. We use thebBOXRT tool, therefore, to support theInterface description
analysis.

A RESTful API may have multiple operations (i.e., pair of a URI and an HTTP method)
that may also require parameters and a payload (i.e., parameters located in the HTTP
request body, such as in a JSON object). Each request is, therefore, composed of a URI, an
HTTP method, and parameters. Additionally, there are different data types of parameters
and possible locations for the parameters' values. Table 4.1 present some examples.

Table 4.1: Examples of values for the different data types

Type Example of a value

Array
[1,2],
[ {"name":"Carlos"}, {"name": "Coimbra"} ]

Boolean true, false
Byte U3dByb2Nrcw==
Date 2020-07-19, 2019-07-20
DateTime 2019-07-20T17:20:19Z
Double 1.7976931348623157E+308
Float 19.20
Integer 2147483647
Long 9223372036854775807
String "eSGIAhrNOd", "MHNk5a5Ui0", "deiuc"

Object
{"car":{"color":"black"}},
{"ret": [ {"area":20}, {"area":10} ] }

The parameters' possible locations can be in the HTTP headers, the endpoint URI itself
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(i.e., named apathparameter), the HTTP query string, or the request payload (i.e., gener-
ally a JSON object). For instance,GET http://localhost:8080/api/123 is a generic
example as a result of/api/<variable> , where thevariable is the operation parameter
located in thepathof the URI, andGETis the HTTP method.

Moreover, considering the possible parameters' data types and location for an Evolution-
ary Algorithm in our problem, we need to establish the representation of the subsequent
individuals (i.e., chromosomes), their genes, and the population. In Figure 4.3, we demon-
strate a simple example of a RESTful API withn operations. In this example, Operation
1 returns a list of elements with basic information about a car, where a parameter with the
namelistSize de�nes the size of the returned list. Accordingly, for each operation, one
population is associated with it, representing multiple individuals (i.e., requests).

Figure 4.3: Representation of Population and Individuals in our approach

Looking at the population itself in Figure 4.4, our individuals (i.e., chromosomes) are the
requests that will be sent to the service. Hence, one individual may have zero or more
parameters (i.e., genes), that will be modi�ed by the mutation and crossover that will
occur in these genes' values (i.e., alleles), as we will explain further.

Figure 4.4: Context of Population, Individuals, Genes, and Alleles in our approach

The main focus of our approach is theEvolutionary Algorithm and its elements. The
comprehensive tool has two phases,Workloadand Faultload, which the user may decide
to perform both or one at a time. For each mode, we used aGenetic Algorithmcapable of
generating requests accordingly to the objective of that speci�c mode. In theWorkload,
the GA generates valid values to the requests' parameters with the purpose of getting
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