

Paulo Rafael Soares Oliveira Vieira

OPEN-WORLD ACTIVE LEARNING IN SELF-DRIVING

CARS

VOLUME 1

Dissertation in the context of the Master in Informatics Engineering,
Specialization in Intelligent Systems, advised by Professor Luís Macedo and

presented to the Department of Informatics Engineering of the Faculty of Sciences
and Technology of the University of Coimbra.

September 2022

O
P

E
N

-W
O

R
L

D
 A

C
T

IV
E

 L
E

A
R

N
IN

G
 I

N
 S

E
L

F
-D

R
IV

IN
G

 C
A

R
S

P
au

lo
 R

af
ae

l S
o

ar
es

 O
li

v
ei

ra
 V

ie
ir

a

DEPARTMENT OF INFORMATICS ENGINEERING

Paulo Rafael Soares Oliveira Vieira

Open-World Active Learning in
Self-Driving Cars

Dissertation in the context of the Master in Informatics Engineering,
specialization in Intelligent Systems, advised by Prof. Luís Macedo and

presented to the Department of Informatics Engineering of the Faculty of
Sciences and Technology of the University of Coimbra.

September 2022

Acknowledgements

I would like to thank my supervisor, Luís Macedo, for his continuous availability,
assistance and suggestions throughout the development of this work, which was
crucial for its success.

Also I would like to thank my family for the constant support given, motivating
me through the toughest times, and my closest friends who accompanied me on
this adventure.

At last but not least, I would like to thank all my colleagues and teachers from my
graduation and master’s degree that helped over the course of this last 5 years.

v

Abstract

Self-driving cars are placed in an environment with many different objects, where
for each of these objects, the intelligent agent driving the car has to receive many
example images. Having someone constantly labeling each object is an expensive
and time-consuming process, and even in the unlikely event that all objects are
labeled, there are some for which it is difficult to get examples, such as goods
lost by a truck. In order to adjust to this environment and be able to perform the
safest action for a set of conditions, causing the least damage, an agent of this
type must be able to detect and learn these objects/classes that it has never seen,
thus becoming an open-world learning model. It should be noted that sometimes
the agent may be in contact with different unknown classes, and it then has to be
able to identify that many classes. It should be noted that sometimes the agent
may be exposed to different unknown classes at once, therefore it has to be able
to identify that many classes.

In this project, we implemented a model capable of not only detecting samples
belonging to unknown classes, but also identifying the number of classes hidden
in these samples. This model consists in training four Convolutional Neural Net-
work (CNN), in order to create a network capable of correctly classifying most
samples, and then use them together with the OpenMax algorithm to detect sam-
ples belonging to unknown classes. Finally, the samples detected by OpenMax
are used in the Density-based Spatial Clustering of Applications with Noise (DB-
SCAN) algorithm to obtain the number of unknown classes.

To measure the quality of the model, we calculated the percentage of each class
per group created by the DBSCAN algorithm. This way, we can see whether each
detected unknown class is well represented and if its samples can be used for
training.

Our results show that, although we can get the number of groups equal to the
true number of unknown classes, the samples from each group do not represent
exactly one class, i.e. each group may contain more than one of the true unknown
classes. For example, for one of the test data sets with 8 unknown classes, one of
the groups contains 5 of these. Nevertheless, this method proved to be capable
of solving, since in some situations it was able to distinguish some classes and
group similar classes together.

Keywords

Open-World Artificial Intelligence, Active Learning, Unknown Classes Distinc-
tion

vii

Resumo

Os carros autónomos estão inseridos num ambiente com muitos objetos difer-
entes, sendo que, para cada um destes objetos, o agente inteligente capaz de
conduzir o carro tem de receber muitas imagens exemplo. Ter alguém constan-
temente a etiquetar cada objeto é um processo caro e demorado e mesmo na
eventualidade de se conseguir etiquetar todos os objetos, existem alguns para
os quais é dificil de conseguir exemplos, como é o caso de mercadoria perdida
por um camião. Um agente deste tipo, para se ajustar a este ambiente e ser
capaz de executar a ação mais segura para um conjunto de condições, provo-
cando o menor dano possivel, tem de ser capaz de detetar e aprender estes obje-
tos/classes que nunca viu, tornando-se assim num modelo de aprendizagem em
mundo aberto. É de notar que por vezes o agente pode estar em contacto com
diferentes classes desconhecidas, tendo este então de conseguir identificar essa
quantidade de classes.

Neste projeto, implementamos um modelo capaz de não só detetar amostras per-
tencentes a classes desconhecidas como também detetar o número de classes es-
condidas nestas amostras. Este modelo consiste em treinar quatro Redes Neural
Convolucional (RNCs), de modo a se conseguir criar uma rede capaz de clas-
sificar corretamente a maioria das amostras, e, posteriormente, usá-las em con-
junto com o algoritmo OpenMax para se conseguir detetar amostras pertencentes
a classes desconhecidas. Finalmente, as amostras detetadas pelo OpenMax são
utilizadas no algoritmo Agrupamento Espacial Baseado em Densidade de Apli-
cações com Ruído (AEBDAR) para se obter o número de classes desconhecidas.

Para medir a qualidade do modelo, calculamos a percentagem de cada classe
por grupo criado pelo algoritmo AEBDAR. Desta forma, conseguimos perceber
se cada classe desconhecida detetada está bem representada e as suas amostras
podem ser utilizadas para treino.

Os nossos resultados mostram que, embora se consiga obter o número de gru-
pos igual ao verdadeiro número de classes desconhecidas, as amostras de cada
grupo não representam exatamente uma classe apenas, isto é, cada grupo pode
conter mais do que uma das verdadeiras classes desconhecidas. Por exemplos,
para um dos conjuntos de dados de teste com 8 classes desconhecidas, um dos
grupos contém 5 destas. De qualquer das formas, este método provou ser capaz
de resolver, uma vez que, em algumas situações, conseguiu distinguir algumas
classes e agrupou classes semelhantes.

Palavras-Chave

Inteligência Artificial em Mundo Aberto, Aprendizagem Activa, Distinção de
Classes Desconhecidas

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 3
1.3 Approach . 4

1.3.1 Implement a machine learning model 4
1.3.2 Detection of instances belonging to an unknown class 4
1.3.3 Division of the unknown class into smaller classes 4

1.4 Contribution . 5
1.5 Structure . 5

2 Background 7
2.1 Artificial Intelligence . 7
2.2 Machine Learning . 8

2.2.1 Supervised learning . 9
2.2.2 Unsupervised learning . 16
2.2.3 Reinforcement learning . 18
2.2.4 Online learning . 19
2.2.5 Active learning . 20

2.3 Open-World Artificial Intelligence 20

3 Literature review on open-world learning 23
3.1 One versus Set Machines . 23
3.2 Weibull-calibrated SVM . 25
3.3 OpenMax . 26
3.4 Open-set Nearest Neighbor . 27
3.5 Neural-Network-Based Representations 30
3.6 Unseen Class Distinction . 31
3.7 Summary . 33

4 Methods and materials 35
4.1 Programming Environment . 35

4.1.1 Programming Language . 35
4.1.2 Machine Learning Framework 36
4.1.3 Relevant Libraries . 36

4.2 Data set . 36
4.3 Data Set Treatment . 38
4.4 Model Architectures . 41

4.4.1 Convolutional Neural Networks Architectures 41
4.4.2 OpenMax Model . 43

xi

Contents

5 Experimental Setup 47
5.1 Machine and Environment Specifications 47
5.2 Classes Selection . 48

5.2.1 Excluded Classes . 48
5.2.2 Accepted Classes . 49

5.3 Training Convolutional Neural Networks 50
5.4 Training and Testing OpenMax . 50
5.5 Experimenting with DBSCAN . 51

6 Results and Discussion 53
6.1 Experimental Results . 53
6.2 Discussion . 54

6.2.1 OpenMax . 54
6.2.2 DBSCAN . 65

7 Conclusion and Future Work 69

xii

Acronyms

AI Artificial Intelligence.

API Application Programming Interface.

CAP Compacting Abating Probability Model.

CNN Convolutional Neural Network.

CV Class Verification.

DBSCAN Density-based Spatial Clustering of Applications with Noise.

DNN Deep Neural Network.

ML Machine Learning.

NNDR Nearest Neighbor Distance Ratio.

OCN Open Classification Network.

OSNN Open-Set Nearest Neighbor.

OvS 1-vs-Set Machines.

PCN Pairwise Classification Network.

SVM Support Vector Machines.

W-SVM Weibull-calibrated SVM.

xiii

List of Figures

2.1 Apple data representation in two-dimensional plane 10
2.2 Apple data representation in two-dimensional plane with three

possible thresholds that divide the two classes 10
2.3 Apple data representation in two-dimensional plane with three

possible thresholds that divide the two classes and a new instance . 11
2.4 Apple data representation in two-dimensional plane with a thresh-

old and misclassified instances . 11
2.5 Apple data representation in two-dimensional plane with a thresh-

old and soft margins . 12
2.6 Deep Neural Network with four layers (red section is the input

layer, blue sections are the hidden layers and green section is the
output layer). Each circle represents a neuron 13

2.7 Mapping of a 5x5 region from the input layer to a neuron in the
following layer . 15

2.8 Feature maps resulting from 3 different kernels with size 5x5 15
2.9 Example of a CNN . 16
2.10 Apple data representation for DBSCAN with a selected data point

and its neighbours . 17
2.11 Apple data representation for DBSCAN with the cluster for red

apples complete . 18
2.12 Apple data representation for DBSCAN with a point that could

belong to two clusters (second cluster yet to be created) 18
2.13 Final result of DBSCAN for the apple problem 19
2.14 Number of samples for each class following a Long Tail distribution 21

3.1 ROC curves comparing the accuracy of the 1-vs-Set Machine ap-
proach to a multiclass SVM approach using V1-like features [50].
Each point represents mean accuracy and the error bars reflect stan-
dard error . 24

3.2 F-scores of the several approaches tested for LETTER (left plot) and
MNIST (right plot) [4] . 26

3.3 F-scores of OpenMax and SoftMax with threshold on ILSVRC 2012
data set [9] . 27

3.4 Results of the several approaches tested for one of the best data
sets of OSNN (LETTER) and one of the worst data sets of OSNN
(15-Scenes) on all measure methods [5] 29

xv

List of Figures

3.5 Results of the several approaches tested for the MNIST data set (ce
is the use of the cross entropy only, ii is the use of the ii loss function
only, and ii+ce is the use of both) [6] 31

3.6 Results of the several approaches tested for the Microsoft Malware
Challenge data set (ce is the use of the cross entropy only, ii is the
use of the ii loss function only, and ii+ce is the use of both) [6] . . . 31

3.7 Results of the several approaches tested for the Android Genome
Project data set (ce is the use of the cross entropy only, ii is the use
of the ii loss function only, and ii+ce is the use of both) [6] 31

4.1 Example of an image from the data set 37
4.2 Example of a pixel-level annotated image from the data set 37
4.3 Number of finely annotated pixels per class and their associated

categories . 38
4.4 Proportion of finely annotated pixels per category for Cityscapes,

KITTI, CamVid and DUS . 38
4.5 Point of view of the driver . 39
4.6 Person framed in a white rectangle 39
4.7 Person framed in a white rectangle with a margin of 10 pixels . . . 40
4.8 Results of applying different resolutions: (a) 32x32 pixels; (b) 64x64

pixels; (c) 128x128 pixels; . 40
4.9 Number of images for each object/class 41
4.10 First CNN architecture . 42
4.11 Second CNN architecture . 43
4.12 Third CNN architecture . 43
4.13 Fourth CNN architecture . 44

5.1 Number of images for each class . 48

6.1 OpenMax's F-score across all combinations of tail, alpha and CNNs
given the test set with no instances belonging to unknown classes . 54

6.2 OpenMax's F-score across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 1 . . 55

6.3 Amount of instances that belong to unknown classes correctly clas-
sified by OpenMax across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 1 . . 56

6.4 OpenMax's F-score across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 2 . . 57

6.5 Amount of instances that belong to unknown classes correctly clas-
sified by OpenMax across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 2 . . 58

6.6 OpenMax's F-score across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 3 . . 59

6.7 Amount of instances that belong to unknown classes correctly clas-
sified by OpenMax across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 3 . . 60

6.8 OpenMax's F-score across all combination of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 4 . . 61

xvi

List of Figures

6.9 Amount of instances that belong to unknown classes correctly clas-
sified by OpenMax across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 4 . . 62

6.10 Example of a bus (right image) and a truck (left image) in the data
set . 66

xvii

List of Tables

3.1 Results of the OCN and OpenMax for MNIST data set 33
3.2 Results of the OCN and OpenMax for EMNIST data set 33
3.3 Results of the clustering of the rejected instances (# of C is the num-

ber of clusters and NMI is the Normalized Mutual Information) . . 33
3.4 Summary of the different papers reviewed on open-word AI 34

4.1 Categories and classes of the dataset 38

6.1 Percentage of samples of each unknown class in Group 1 found per
cluster given an ε and minimum number of neighbors 55

6.2 Percentage of samples of each unknown class in Group 2 found per
cluster given an ε and minimum number of neighbors 63

6.3 Percentage of samples of each unknown class in Group 3 found per
cluster given an ε and minimum number of neighbors 63

6.4 Percentage of samples of each unknown class in Group 4 found per
cluster given an ε and minimum number of neighbors 64

xix

Chapter 1

Introduction

In this chapter, we introduce the subject of this dissertation. Firstly, we present
an initial motivation, followed by the research question and how will it be ad-
dressed. Afterwards, we describe the main contributions of our thesis and close
with the organisation of this document.

1.1 Motivation

Artificial Intelligence (AI) can either be a field of study or capacity. As a field of
study, it can be described as the field concerned with understanding and build-
ing machines with some form of intelligence (it may or may not be human in-
telligence). As a capacity, it may be portrayed as the machines ability to exhibit
intelligence in problem solution and performing tasks. Russel and Norvig [1] as-
sume one category to define the intelligence exhibited by a machine, being this
the success in terms of human performance versus the ideal concept of intelli-
gence, to which they call rationality. The first one, success in terms of human
performance , is an "empirical science, involving hypothesis and experimental"
while the second, success in terms of rationality, is combining mathematics and
engineering. The authors make this distinction because humans make mistakes
and their reasoning takes into account their emotions.

The constant research and improvement of this subject throughout the years al-
lows it to be applied today in all industries, from healthcare to marketing and
from cars to surveillance and security, improving the efficiency of a task, automat-
ing repetitive work, and assisting in decision-making situations.

One of the main areas of AI is Pattern Recognition, which is the ability to recog-
nize patterns in data, and potentially detect multiple classes, where patterns is
defined as similarity between instances for a particular characteristic and a class
is the group of instances similar in all characteristics. The example of two fruits,
red apples and cherries, can be used to simulate the process done by a machine
during pattern recognition. When only taking into consideration the color and
shape of the fruits, it is possible to state that all instances are similar, existing
just one big class, but when a third feature, size, is added, two different classes

1

Chapter 1

emerge, big red apples and small red apples (cherries).

There are two main approaches to teach an artificially intelligent agent to per-
form this recognition. One is unsupervised learning [1], in which the agent re-
ceives data without any labels, unaware of the number of different classes in the
environment. Therefore, it detects patterns by grouping instances according to
their similarity with each other. The closer an instance is to a group, the higher
chance it has to be a part of it. In opposition to the previous approach, the super-
vised learning approach considers that the learner receives a data set comprising
labeled instances. Thus, the learner knows how many and which classes exist in
the environment.

The latter approach has been quite effective in the scenarios in which it has been
applied [2; 3], but a model trained with typical supervised learning lives in a
closed world. Returning to the example of fruit with two classes, red apples and
cherries, and three features, color, size and shape, with closed-world learning,
the model perceives which feature values are inherent to apples and which to
cherries. After its training, whichever of the fruit pieces it is, the model is able, to
some extent, to distinguish between the two.

However, when the model is applied to the real world, some problems can arise
with this learning when there is a lack of control. If a new unknown class is
provided to the model, it is unable to perceive that it is facing an instance of that
new class. Should this be a fruit similar to those provided during training, such
as a green apple or a peach, where the greatest variation occurs in one or two of
the features, although it can only state whether it is a red apple or a cherry, it may
be able to state the most similar piece of fruit yet not by association. Otherwise,
if that is a completely different fruit, such as a banana or a fig, the response given
by the model seems random, being that it outputs one of the two trained classes
with lots of uncertainty.

For a fruit classification problem, it is feasible to keep the learning and classifi-
cation processes under control so that the model never receives instances of un-
known classes. Nonetheless, there are real-world situations where assuming that
models with closed-world learning will perform well is unrealistic since they are
mostly exposed to dynamic systems with various uncertainties and need constant
updating of their knowledge. Such models applied in dynamical systems can be
commonly found in healthcare or automobiles.

Open-world artificial intelligence [4–6] can solve the problem that supervised
learning models face in systems that are constantly changing or full of uncer-
tainty. It allows the model the ability to introduce new classes into its knowl-
edge, classes that were unseen during the training phase, without the need for
retraining. In this way, the model learns incrementally.

A great example of open-world learning application is the classification of the el-
ements that an autonomous car [7; 8] detects in its surroundings. This car is an
intelligent vehicle capable of autonomously moving on the roads, and for that,
it needs to recognize the various elements around it as the ones that can ever be
in its field of view. To understand why open-world learning is applied in au-
tonomous cars, it is necessary to attempt to name all the elements that it might

2

Introduction

see. The two mandatory elements the agent has to recognize are the other cars
and people outside so that the journey is safe and smooth, and no one is harmed.
It also has to recognize buildings and trees so that, in a road without white lines
(the guidelines for autonomous cars), the car is to see that it has to act when one
of these is near. As traffic signs dictate the behavior that the driver should follow
in a given region or street, it is crucial to make the agent know them too. Here
the difficulty increases due to the variety of traffic signs. These might be about
directions, warnings, information, and others, where each one comprises multi-
ple symbols, for instance, in danger signs, there are symbols such as falling or
fallen rocks, slippery road, or road narrows on both sides, and many others. In
addition to all these noted elements and the more that can still be added, there
are elements such as a lost tire or goods and even animals that can appear in front
of the vehicle. This latter ones corresponds to the majority of situations with un-
certainty in the environment. Since there is so much diversity in the elements
needed for annotation and so many others that are rare, possibly discarded for
model training, an open-world learning approach allows for simplification both
in structure and in knowledge aggregation. Thus the model is able to detect ele-
ments it has never seen before and, if in an iterative learning phase, add them to
its knowledge base or, if in an implementation phase (e.g., when it detects a lost
box in the middle of the road), act accordingly by steering away or stopping.

1.2 Research Question

From the above considerations, open-world AI provides several advantages when
it comes to the implementation of an agent in an environment full of uncertain-
ties. Such an agent can adopt two types of behavior. One behavior rejects all
instances corresponding to the unknown class while the other learns these in-
stances by expanding its knowledge so that, at a later stage, when it is provided
with more instances of this new class, the agent can already identify them as
known.

Formalizing this idea, we obtain the following. Let X = {x1, x2, x3, ..., xn} be the
training data instances and Y = {y1, y2, y3, ..., yn} be the labels of the instances X ,
where n is the total number of training instances in the data set. In this case, the
element xi from X at position i is represented by the label yi from Y at the same
position i. The Y labels belong to the known classes set C = {c1, c2, c3, ..., ck},
where k is the number of known classes.

The aim of open-world recognition is to create a model able to detect the elements
of a test data set T = {t1, t2, t3, ..., tm}, in which the set of labels is defined by
L = {l1, l2, l3, ..., lm}, that do not belong to the set C of known classes, should
there be any, adding them to the rejected R set, while still correctly identifying
the others based on its training with X .

As described above, open-world learning goes a step further and learns the in-
stances inR. In other words, being ri an instance ofR, where ri 6∈ C, a new class
ck+1 is created and added to the known classes C set. The model is then trained
withR and its labels {ck+1, ck+1, ck+1, ..., ck+1}.

3

Chapter 1

In the literature [4; 5; 9], it is usually assumed that the instances inR belong all to
the same unknown class. However, there might be a set U = {u1, u2, u3, ..., uj} of
unknown classes to which the labels of R belong to, i.e., R might have instances
corresponding to more than one unknown class.

1.3 Approach

To accomplish the steps formalized in the previous section, it is necessary to di-
vide the work into two main stages which are the detection of instances belong-
ing to an unknown class and the division of those instances into smaller sample
classes, to later be included in the known set.

1.3.1 Implement a machine learning model

In order for a model to detect instances that do not belong to any of its known
classes, it firstly needs to be trained with that known set of classes, so, as this
work is targeted at self-driving cars that use images, it is required to implement
a CNN capable of performing image classification on a custom data set.

Being this step the base for the two previously mentioned stages, where its perfor-
mance affects their outcome, and as there are no restrictions or mandatory rules
to follow while building a CNN for a given problem, it is important to consider
multiple different networks, detailed in Subsection 4.4.1, in order to attain a good
one.

1.3.2 Detection of instances belonging to an unknown class

To expand the CNNs to an open-world classification, their outcome must be
treated in a way to acknowledge an extra (unknown) class. To accomplish this,
due to reasons presented in Subsection 4.4.2, we chose to implement the method
developed by Bendale and Boult [9] called OpenMax.

Although we can measure the performance of the CNNs individually and apply
afterwards the best performing one to OpenMax, we ignore the influence that
they have on each other. Thus, we apply the open-world method on each neural
network and the ensemble with the best results advances onto the next stage. The
quality measure of the ensemble is both the f-score and the number of correctly
classified instances belonging to the unknown class.

1.3.3 Division of the unknown class into smaller classes

The last stage is about receiving the instances belonging to an unknown class and
trying to find as many different classes as possible within those instances. To ac-
complish this, we opted for the DBSCAN algorithm since it creates the classes by

4

Introduction

clustering the instances without requiring a prior knowledge about the number
of classes in the data set provided.

To evaluate the quality of this stage, it is taken into account both the number of
clusters found as well as the percentage of instances of each true class in every
cluster.

1.4 Contribution

This work aims to investigate techniques capable of identifying multiple hidden
classes in samples belonging to an unknown class. To this end, we built the hy-
brid model described in the previous subsection with two main purposes: finding
as many clusters as there are hidden classes within the samples classified as be-
longing to an unknown class, with each cluster being associated mostly one class.
This way, we explore deeper the goal of the work [10], looking for a model with
better performance in identifying the amount of unknown classes discovered,
based on another quality control variable (percentage of each class per cluster).

To do this, the model was tested with several parameters. With this, we con-
cluded that, for a given combination of these, it is possible to find the true number
of classes present in the set of samples belonging to the unknown class. However,
it cannot fully isolate one class per cluster, clustering sometimes similar classes
and even pairs of classes that have nothing to do with each other. Nonetheless,
through this method, it is possible to understand that only identifying the num-
ber of unknown classes does not imply that the instances of each cluster can be
used for active learning.

1.5 Structure

The structure of the document starts with Chapter 1 introducing the subject of
this work, the motivation, research question and approach followed by the con-
tributions. Subsequently, in Chapter 2, we provide the theoretical knowledge
necessary to understand the concepts presented throughout the paper. Follow-
ing this is Chapter 3, where we describe some of the State-of-the-Art approaches
in open-world AI. Afterwards, in Chapter 4, we establish both the environment in
which the work is developed as well as the chosen data set and its treatment, and
the model architecture. Then, in Chapter 5, we describe the experimental process
in detail, from the machine and environment specifications to class selection and
model training and testing, continuing with Chapter 6.1, where we present the
experimental results, analyse and compare them. Finally, in Chapter 7, is given a
summary of the work developed along with a future work.

5

Chapter 2

Background

This chapter aims to clarify some concepts of artificial intelligence, some broader
than others, discussed throughout the paper. To this end, the necessary theoreti-
cal knowledge is explored.

2.1 Artificial Intelligence

Since the topic is concerned with intelligent systems, an introduction to artificial
intelligence is necessary. The term “artificial intelligence” was first officially used
by John McCarthy in his workshop at Dartmouth in the summer of 1956 [11]. The
workshop was based on the idea that all the characteristics of learning and intelli-
gence could be described in such detail that it would be possible to simulate such
behaviour in machines. In the workshop proposal, the authors stated the goal as
“An attempt will be made to find how to make machines use language, form ab-
stractions and concepts, solve kinds of problems now reserved for humans, and
improve themselves”.

But, before looking into the aim of this area, it is imperative to formally define
the term “artificial intelligence”, a task that is not easily done. Over the years,
several authors have developed their definitions, among which we find Kurzweil
[12], who defines it as “The art of creating machines that perform functions that
require intelligence when performed by people”, Bellman [13], who states “[The
automation of] activities that we associate with human thinking, activities such
as decision-making, problem solving, learning...”, Winston [14], who claims “The
study of the computations that make it possible to perceive, reason, and act.”,
Poole et al. [15] with “Computational Intelligence is the study of the design of
intelligent agents”, Nilsson [16] who wrote “AI . . . is concerned with intelligent
behavior in artifacts”.

Russel and Norvig [17], based on various definitions to that time, built their idea
of “artificial intelligence” by dividing the concept according to two main criteria.
One criterion involves the process of representing the outcome, dividing it into
either thought process or behaviour and the second criterion covers performance
regarding whether the final result is close to the result obtained by the human

7

Chapter 2

or the ideal/rational result. The rationality referred to is due to the reasons that
explain why not all people get the same best marks in exams or are good at chess.
Thus we have the four definitions, “thinking humanly”, where Bellman’s thought
fits in, “thinking rationally”, framing Winston, “acting humanly”, corresponding
to Kurzweil's idea, and finally Poole and Nilsson represented by the last defini-
tion “acting rationally”. Taking this into account, Russel and Norvig argue that
the concept of artificial intelligence should be mostly focused on the last defini-
tion, “acting rationally”, since, ideally, an intelligent agent should always opt for
the best action when faced with a problem.

With the term “artificial intelligence” introduced, we return to the goal of this
field. As McCarthy indicated, this area seeks to make machines capable of demon-
strating intelligence to solve problems and evolve. However, there are two types
of AI: weak and strong. Weak AI is limited by functionality, giving the impres-
sion of intelligence. Using sophisticated algorithms, agents of this type manage
to handle important problems, but are nevertheless limited to the problem for
which they were developed. The current state of AI is of this type, with examples
such as voice assistants [18] and recommendation systems [19]. Strong artificial
intelligence, on the other hand, is the idea of agents capable of possessing their
own intelligence by showing traces of consciousness and feelings. These agents
are, for now, hypothetical, with one example of their existence being an agent that
manages to fool the interrogator in the Turing test [20].

The objectives of this topic reveal that AI is a very broad area of study. An arti-
ficial intelligent agent may have as target the detection of an object in an image
or the sentiment analysis of a sentence or dialogue. From this emerge the several
fields that this area employs, from computer vision to natural language process-
ing. In this chapter, there is a section dedicated to one of those fields, that be-
ing machine learning, since it is necessary that the machine learns to distinguish
known objects and detect unknown objects through given data.

2.2 Machine Learning

The concept of Machine Learning (ML) was firstly introduced in the work of
Arthur Samuel, where his idea was “A computer can be programmed so that
it will learn to play a better game of checkers than can be played by the person
who wrote the program” [21]. His approach was based on algorithms that mea-
sured the value of every move, at any time, to make the best move. A few years
later, the author published a second paper where he generalized his idea by stat-
ing that “Programming computers to learn from experience should eventually
eliminate the need for much of this detailed programming effort” [22]. Another
researcher, Tom Mitchell, shares, to some extent, Arthur Samuel's ideas stating
that ML is about finding the answer to “how to construct computer programs
that automatically improve with experience?” [23].

With this in mind, it can be said that ML is the autonomous construction of a
knowledge representation by an algorithm, giving the idea of human-like self-
organised learning. The construction of the knowledge representation comes

8

Background

from training the algorithm with a set of initial data, called training data set.
Once trained, this representation must be as general as possible so that it may
accurately classify or make predictions on a new batch of data never seen before
while still being able to identify instances from the training data.

However, there are cases where the training performs well, but because it is
trained on examples that do not fully represent the population, the model is
unable to generalize and underperforms for unseen instances. Such an event is
known as overfitting, which can be prevented in different ways, but as these are
not the focus of this study, they will not be discussed.

As ML consists in the self-learning of a machine, how is it done? Well, there are
many types of learning, but this section will only focus on the ones used in this
work, such as supervised, unsupervised and active learning, or related to it, as it
is the case of reinforcement and online learning.

2.2.1 Supervised learning

The term “supervised learning” comes from the idea of providing the agent some
form of feedback during its learning process.This translates into providing both
the input data and the corresponding labels for each instance in that data [24].
With this learning method, the model analyses the characteristics of the input
instances and tries to correlate it with the desire output, this being the target
labels. An illustrative example of supervised learning is a data set comprising 100
images, where one-half of these represent dogs and the remaining half represent
cats. For each image provided to the model, a correspondence is made between
the image content and the image label, which represents the animal included in
the image.

As the papers that comprise the state-of-art of this topic, mentioned in Section
3, and as this thesis use supervised learning algorithms, they are going to be
explored in this subsection. The algorithms are Support Vector Machines (SVM)
and Deep Neural Network (DNN), particularly CNN.

Support Vector Machines

SVM [25] training technique consists in positioning all the instances of a data
set in a k-dimension space, where k is the number of features in the data set,
and finding the function (there may be more than one) that better separates the
existing classes.

To explore this algorithm further, it will be applied to a simple example of apples.
The example consists in separating green apples from red apples through the
characteristics/features: ratio between green and red pigmentation and width.
Displaying 15 randomly generated instances of apples on a two-dimensional plane,
we obtain the Figure 2.1.

Note that it is possible to separate the two classes by a threshold, as long as it

9

Chapter 2

Figure 2.1: Apple data representation in two-dimensional plane

is between the instances at the extremity of each class, also known as support
vectors. Thus, when a new point emerges on the left side of the threshold, it is
classified as a red apple, otherwise it is classified as a green apple.

Figure 2.2: Apple data representation in two-dimensional plane with three possi-
ble thresholds that divide the two classes

Nevertheless, the choice of the threshold location requires attention. Assuming a
new point near the red apple group, as shown in the Figure 2.3, it is more likely
that this new instance belongs to the red apple class. However, using only the
three thresholds displayed in the figure, if the threshold on the left is chosen, the
instance is declared to belong to the green apple class.

To tackle this problem, we define the threshold where the distance between the
support vectors is maximum. This distance is called the margin. Yet, this ap-

10

Background

Figure 2.3: Apple data representation in two-dimensional plane with three possi-
ble thresholds that divide the two classes and a new instance

proach is sensible to outliers. Adding an instance of green apple near the group
of red apples, as it can be seen in Figure 2.4, in addition to forming a threshold
too close to the support vectors, it does not represent well the space of each of the
classes, leading to misclassifications.

Figure 2.4: Apple data representation in two-dimensional plane with a threshold
and misclassified instances

To decrease the large amount of unwanted outliers coming from threshold mis-
placement, instead of using the maximum margin strategy, one implements a soft
margin, which allows misclassification during training.

To find a threshold with the desired soft margin, we first look for the pair of in-
stances from different classes with the smallest distance, marking these two as

11

Chapter 2

extremes of the respective classes. Then, for each of these extremes, we look for
the neighbouring instance belonging to the same class and calculate the distance
between them. The extreme-neighbour pair with the smallest distance is selected
and the neighbour is considered the new extreme. Finally, the threshold is cal-
culated using the maximum margin between the two extremes. These steps of
extremes and threshold calculation are repeated until the desired ratio of misclas-
sified instances is within the margins. An example of a final result is provided by
Figure 2.5.

Figure 2.5: Apple data representation in two-dimensional plane with a threshold
and soft margins

The threshold is, in this particular problem, a line but, when it comes to larger
dimensions, it is a hyperplane described by a function called a kernel.

An SVM may also encounter problems that are not linearly separable. For that,
the kernel trick is used. This trick consists in increasing the number of dimen-
sions of the problem so that it can be linearly separable. Increasing the number
of dimensions occurs by performing pairwise similarity comparisons on the orig-
inal data, instead of transforming the data since it would be very costly to find
the most appropriate transformation function. On the new data, the previous
concepts are applied to obtain the kernel function.

Deep Neural Networks

To understand the architecture of CNNs, it is required an introduction to DNNs,
which is a network of neurons arranged in layers, as shown in Figure 2.6.

Each neuron in a layer is connected to all neurons in the previous and following
layers. The importance of these comes from the weights and biases associated
with it. A neuron in a given layer has a specific weight and bias for their link
with each neuron in the previous layer. It is through the expression 2.1, where n

12

Background

Figure 2.6: Deep Neural Network with four layers (red section is the input layer,
blue sections are the hidden layers and green section is the output layer). Each
circle represents a neuron

is the number of neurons in the previous layer, X = x1, x2, ..., xn the value sent
by each neuron in the previous layer,W = ω1, ω2, ..., ωn and b = b1, b2, ..., bn the
weights and biases associated with each neuron in the previous layer, that one
obtains the intrinsic value of the neuron for a given input instance.

f (X) =W ×X T + b (2.1)

Since the expression above represents a linear function, the data undergoes only
linear transformations throughout the DNN, preventing the detection of com-
plex patterns as most data cannot be modeled by a linear function. To this end,
an activation function is applied to the intrinsic value of the neuron. As its name
suggests, this function aims to activate (outputting 1) or deactivate (outputting 0)
the neuron. An example of such a function is the sigmoid function, which maps
into real values within the interval [0,1]. The value derived by each neuron is for-
warded to all neurons in the next layer, giving the name of forward propagation
to this movement.

As stated earlier, weights and biases are important. This is because they are the
core of improving knowledge representation by being adjusted during training
to minimize the error between the final result and the true value (label).

Having covered the smallest particular of DNNs, we expand to the concept of
layers. Even though the layers are composed of neurons, they do not necessarily
have to be of the same size. The amount of neurons may vary between layers
due to its position in the structure, which can be divided in three sections: input,
hidden and output layers.

The input layer, corresponding to the first layer of the network, receives the in-
put instances and, traditionally, feeds this data directly to the next layer without
transforming it. This layer has two main constraints on the data: all instances
must have the same number of features and must be encoded in real or integer
numbers. Its number of neurons in depends on the number of features of the
instances. For example, remembering the apples illustration, given in the SVM
algorithm in Section 2.2.1, the number of neurons in the first layer would be two,
and adding other features, such size and height, would increase it to 4 neurons.

All layers between the second and penultimate one refer to the midsection - hid-

13

Chapter 2

den layers. Given the fixed number of input and output layers, the concept of
“deep” neural networks derives from the great number of layers found in this
section. However, both the number of layers, otherwise referred to as depth of
the network, and the number of neurons in each layer, which may vary between
layers, is arbitrary. An important note to be aware is that while increasing the
depth and number of neurons generally yields good results, such as discovering
more abstract patterns, it comes at the cost of increasing the complexity of the
network.

The last section of the network is the output layer, which receives the outputs
of the last hidden layer and, through an activation function, obtains the value of
each class, with each class being represented by a neuron. The final result of the
DNN is the class which neuron outputs the highest value. Using Figure 2.6 as an
example and assuming that the neuron with the highest value in the last layer is
the second from the top, the decision produced by the DNN is class 1, since the
classification starts at 0.

Convolution Neural Networks

Having introduced the main concepts, it is now possible to delve deeper into
concepts inherent to CNNs. This structure is a type of DNN designed to process
data in a grid structure, such as images [26]. However, since images are only
different arrangements of real/integer values, the following question arises: what
is the need to create a specific network for processing this type of data?

As seen earlier, the value of each feature of an instance is sent to all neurons of the
following layer, i.e. each neuron in the first hidden layer receives all the instance
information. With an image as input, this process translates into each neuron
of the hidden layer receiving all the pixels of the image to find the patterns in
it. Yet, patterns in images are in regions so, the DNN should not be required to
receive the whole image and evaluate its pixels equally. Thus, it was necessary to
create a new method that could analyze an image by regions, leading to CNNs.
To understand the functionalities of these neural networks, a 16x16 pixel image
(256 pixels in total) will be used.

The analysis in CNN regions consists in connecting each neuron of the first hid-
den layer to a small region of the input image, which can be of size 5x5 as shown
in Figure 2.7. Starting by assigning the first neuron of the region that is in the
upper left corner of the image, the window is slid to the right a certain number of
columns, usually 1, where this sliding value is given by the stride. When the re-
gion reaches the upper right corner, it moves down one or more lines, depending
on the stride value, and begins to slide the region again from left to right. This
whole process ends when the region reaches the bottom right corner.

Since the region in this example consists of 25 pixels, it is necessary to perform
some kind of operation to transform it to just one value. This operation is depen-
dent on the type of layer implemented. CNN offers two different types of layers:
convolutional and pooling.

14

Background

Figure 2.7: Mapping of a 5x5 region from the input layer to a neuron in the fol-
lowing layer

The convolution layer first creates a matrix with random values, the size of which
is the same as the region, and then performs the convolution operation on each
region obtained from the image. Expression 2.2 represents the convolution op-
eration, where region is the region obtained from the image and kernel is the ran-
domly generated matrix.

convolution = ∑
n

regioni × kerneli (2.2)

The result of the layer is a feature map. Usually, several different matrices are
used so that it is possible to detect a feature in all regions, as can be seen in image
2.8.

Figure 2.8: Feature maps resulting from 3 different kernels with size 5x5

15

Chapter 2

When training the CNN, the kernels are adjusted to improve the accuracy of the
model.

The pooling layer usually follows the convolutional layers in order to summarize
each feature map. The operation performed by these layers consists in choos-
ing the highest value of the region (max-pooling) or the average of the region
(average-pooling). Note that the region for this layer is smaller than the region
used to create the feature map.

An example of a complete CNN is shown in Figure 2.9.

Figure 2.9: Example of a CNN

2.2.2 Unsupervised learning

In contrast to the previous learning method, an unsupervised learning model op-
erates upon data without its labels. Therefore, the model has to discover patterns
and relationships between instances of data without any sort of guidance [26].
Since there is an absence of a teacher, the output of this type of learning is not
necessarily wrong, is just depends on what we are looking for.

Despite the various techniques used in unsupervised learning, only clustering
will be discussed in this subsection since the work described in this report incor-
porates an algorithm of this nature.

Clustering aims at dividing the data into groups, where similar instances are in
the same group and therefore closer together in space, while dissimilar instances
are in different groups and further away from each other. As previously stated,
this task is subjective, and therefore different forms of reasoning can be applied
when building a clustering algorithm. However, due to the clustering algorithm
implemented in our work, only density-based models are worth mentioning.
These models search for areas of high density of data points and assigns them
to the same cluster [27]. By doing so, it isolates the clusters with sparse areas and
is even able to find some outliers.

16

Background

Density-based Spatial Clustering of Applications with Noise

DBSCAN is the clustering algorithm used in this work and, as such, it is necessary
to give an introduction to how it works. For this, the same example of apples used
in the SVM algorithm in Section 2.2.1 will be employed, but with a larger number
of samples.

The process starts by iterating over each instance and counting the number of
neighbours. An instance is considered a neighbour of another if it is within a
predetermined problem dependent distance ε. Taking the following Figure 2.10
as an example, the red point has 6 neighbours since the red point is neighbour to
itself.

Figure 2.10: Apple data representation for DBSCAN with a selected data point
and its neighbours

Then, each instance is marked as a core point in case it has at least a certain num-
ber of neighbours. The minimum number of neighbours necessary that makes an
instance become a core point is also predetermined and problem dependent.

As soon as all core points are defined, a random core point and all of its core
point neighbours are selected and marked as belonging to a cluster. This cluster
continues to grow by iteratively adding neighbouring core points. Next, once all
core points are added, the neighbouring non-core points are added to the cluster.
It must be noted that a non-core point can only join the cluster and not extend
further. A complete cluster is shown in Figure 2.11.

This algorithm creates clusters sequentially, i.e. when a non-core point is between
two clusters, as exemplified in Figure 2.12, this instance belongs to the first cluster
created of those two, and then cannot be considered for any other cluster.

Figure 2.13 is the final result of the DBSCAN for the apple problem, where the
green cluster may represent the green apples and the red cluster the red apples.

17

Chapter 2

Figure 2.11: Apple data representation for DBSCAN with the cluster for red ap-
ples complete

Figure 2.12: Apple data representation for DBSCAN with a point that could be-
long to two clusters (second cluster yet to be created)

2.2.3 Reinforcement learning

Although reinforcement learning is not used in this work, some researchers use
it in an open-world context [28][29], hence being addressed in this chapter.

An agent that learns by reinforcement operates in an environment with a specific
set of actions and must discover which one to perform in a certain situation ac-
cording to a reward function. Just as for unsupervised learning, the agent is not
told what to do, meaning there is not a guide that maps environment conditions
to actions, but instead the agent has to figure out which action generates the high-

18

Background

Figure 2.13: Final result of DBSCAN for the apple problem

est reward by trying them [30]. And since the agent is in an environment, it is not
limited to just one event, i.e. a fixed data set. Its learning comes from constant in-
teraction with this environment, where its experiences are loops between actions
and feedbacks (result from the reward function) [26].

An example of this type of learning is the AWS DeepRacer [31]. This project is
about virtually training a car to drive, with only the steering angle and throttle
power as actions, and then applying the agent’s knowledge to a real car and track.

2.2.4 Online learning

Like the previous learning method, online learning is featured because of multi-
ple articles made on this topic that implement it [32] [33] [34].

Traditionally training an agent consists of using a fixed amount of data to opti-
mize an equation. This can be called offline training since there is no new infor-
mation coming into the system [35]. However, there are situations where new
observations are provided over time or a data set too large to store in memory
that needs to be split up and provided to the agent in parts as a stream of data
[17].

Online learning is suited for this latter situations.The objective of this type of
learning is to minimize regret, which is given by the difference between the achieved
outcome and the best achievable result. A simple example of online learning is
a shopping website that is constantly receiving and learning real-time user be-
haviour in order to provide personalised shopping recommendations.

19

Chapter 2

2.2.5 Active learning

Considering again the supervised learning method, this is about collecting sub-
stantial amounts of data to train a model to perform predictions. The machine
simply receives it with no free will in deciding what to learn, and thus this pro-
cess is called passive learning. However, there are situations where either there
is not much data to begin with or, from the vast collected data, there is only a few
labels and increasing it would be expensive.

Active learning algorithms were created to deal with these scenarios. They are
able to perform on a low amounts of training data or labels but, to do so, the
model has to query a human during the learning process in order to clarify some
“doubts” it might find along the way. This learning method seeks to achieve the
same or better results than supervised learning with less data [36].

This is related to our work because the data set is comprised of many unlabeled
data (treated as unknown) and when these unknown instances are divided into
classes, there is a need to analyze and label each created class.

2.3 Open-World Artificial Intelligence

We now introduce the central topic of our work: open-world artificial intelli-
gence.

A famous example that describes an open-world situation well is the Black Swan
problem. This example dates back to the beginning of the 17th century. Until then,
in Europe, only white swans had been seen and a logical assumption to make
at that time would be that all swans are white. Meanwhile, upon discovering
and exploring an island, known today as Australia, a seemingly impossible event
occurred as a black swan was spotted. With only one observation, the general
knowledge collapsed and revealed the fragility of our knowledge.

This can be seen when introducing, for example, supervised learning agents to
open-world environments. Since they only know what they have seen during
training (white swans), they are unable to understand that a sample belonging to
a new never seen class (black swans) is in fact unknown and try match the sample
to the known class whose examples are most similar. To add the new class, the
whole knowledge has to be deconstructed and a new one has to be built from
scratch. This leads to a new field of research: anomaly/novelty/outlier detection
[37][38][39][40].

However, these unexpected events can also be seen differently. Despite knowing
that these events exist and are bound to happen, they could be treated as if we did
not knew. This is the case of the Long Tail problem. It occurs when the data set is
not well balanced and the frequency of elements per class decreases substantially.

Considering, the 2 classes 17 and 9 from Figure 2.14, it is possible to see that
the difference in samples between the two classes is high. This is detrimental
when training a deep neural network model, since it gets biased towards cars

20

Background

Figure 2.14: Number of samples for each class following a Long Tail distribution

[41]. Note that the problem necessarily stems from missing observations, but
rather labeled observations. Often, labeling them is a costly and time-consuming
process, especially in a data set with 10,000 or more samples per class, as happens
in the current example.

From the many already implemented solutions [42][43][44][45], a classical one is
the re-sampling method which is about randomly repeating instances from low
sampling level classes and randomly discarding instances from high sampling
level classes.

Yet, open-world artificial intelligence differs from the above mentioned situations
once this approach learns the unknown samples, adding them to its knowledge.
This is a continuous process, similar to active learning.

21

Chapter 3

Literature review on open-world
learning

Numerous methods integrate the open-world component into a model requir-
ing supervised learning, so in this chapter, it will be conducted a comprehensive
review of some of the current literature on this topic. Both the problems and so-
lutions are described. Other works related to open-world learning may be found
in Parmar and Chouhan [46].

3.1 One versus Set Machines

In the early days of open-world learning exploration, SVM for just one class (1-
class SVM) were able, albeit in a rather rudimentary way, to deal with outliers or
anomalies in the data. As it is a problem of multiple classes, this approach con-
sists in having n SVMs, where, as suggested by the name, each SVM is trained
with only one class, referred to as the positive class. Since there is no negative
class to help find the plane, the origin of the space is used as only instance from
the negative class. On this basis, its training process involves finding the plane,
in a k-dimensional space, being k the number of features of the dataset, that sepa-
rates the positive class from the negative one. Given that the solution is an SVM,
the plane, in a simple solution, must intersect the support vectors, which are the
data instances from the positive class closest to the origin of the space, keeping
the remaining instances of the positive class in the positive region of the space
opposite to the one where the negative instance is included.

However, 1-class SVMs have severe shortcomings in terms of generalization and
specialization, as the space is infinite. The reason is that if an instance is located
far away from the positive class, as long as it is on the positive side of the plane,
it is considered as an instance of a known class (overgeneralization). Since the
changes on the plane have to be minor, so that most positive instances are on the
right side and not many negative instances are accepted, there is a specialization
problem (it can never be specific enough).

In order to minimize this open-space risk, [47] improved the 1-class SVM to what

23

Chapter 3

they called 1-vs-Set Machines (OvS), by adding a new Ω plane parallel to the
plane created by the 1-class SVM, refered to as base near plane, limiting the pos-
itive class. Hence a serious reduction of the volume is obtained since the space
referring to the positive class ceased to be half-space, but only the space between
the two margins. It is possible to notice that this improved approach allows man-
aging the generalization and specialization by moving the two planes further
(generalize) or closer (specialize) from each other.

Once the far plane is set to include all instances of the positive class, support-
ing generalisation means distancing the margins, which results in a negligible
impact as these instances are still accepted and only the volume of the positive
class space increases. Nevertheless, this notion is necessary to tackle the prob-
lem of overspecialisation. The overspecialisation comes from trying to decrease
the number of false positives. By doing so, it approximates the two straight lines
in such a way that only a small percentage of instances of the positive class are
accepted. By generalising the first margin (approximating it to the closest nega-
tive instance contained in the negative region), it allows the second margin to be
brought closer without losing volume. To also mitigate overgeneralisation and
overspecialization, a ν value that trades-off accuracy for smoothness is set.

To evaluate the performance of their work, the authors used two data sets, Cal-
tech 256 [48] and Labeled Faces in the Wild (LFW) [49]. For the first data set, the
authors established 7.2% of the classes as known, achieving 33.33% of accuracy
for the positive classes, correctly labeling 10 instances out of 30, and 79.86% of
accuracy for the negative classes, matching in 2300 instances out of 2880. As for
the second data set, Scheirer et al. compared their model with one of the best
performing algorithms on LFW [50], using ROC curves, attaining the results in
Figure 3.1.

Figure 3.1: ROC curves comparing the accuracy of the 1-vs-Set Machine approach
to a multiclass SVM approach using V1-like features [50]. Each point represents
mean accuracy and the error bars reflect standard error

As the multi-class SVM approach using V1-like features is one of the best for this
specific data set, its closed-world nature (purple line in Figure 3.1) outperforms
the OvS. Meanwhile, its open-world aspect falls significantly short.

24

Literature review on open-world learning

3.2 Weibull-calibrated SVM

Despite OvS machines being able to significantly reduce the space of the posi-
tive class, the space is still infinite between the two parallel planes. To overcome
this issue, the same authors developed a Compacting Abating Probability Model
(CAP) [4] which is capable of isolating the positive class in a finite manner and
ensure the probability that a test data instance falls into a certain class decreases
the further away it is from the sample of this class.

The CAP model is composed of two parts. The first part consists of a finite abat-
ing bound. According to the authors, an abating bound is "a non-negative finite
square integrable continuous decreasing function", where its decreasing charac-
teristic allows the value of the function to be lower the further two points are from
each other, these being a test instance and a class training sample. As this func-
tion is used to isolate the positive class, it is used as the kernel function of a SVM.
The second part is the calibration of the kernel in order to obtain probabilities. To
this end, the authors use the training data to define a "monotonically decreasing
probability distribution", such as an exponential or Weibull distribution, and use
the probabilistic distribution on the outputs of kernel. Meanwhile, most of the
probabilities are non-zero even though they are very small. By applying a min-
imum threshold to accept a test instance, this issue is dissolved, where rising it
lowers the open-space risk.

However, the probability achieved by applying the CAP model only takes into
account the probability of belonging to an unknown class. To overcome this
problem, Scheirer et al. implemented a complementary method only when the in-
stance is accepted as a known class, i.e. when the probability of a given instance xi
belonging to a class c is higher than the threshold established in the CAP model.
The complementary method is a binary SVM, from which are attained both the
probability of xi belonging to the known class c (P+) and the probability of not
belonging to that class (P−). These probabilities are transformed into scores using
two Weibull cumulative distribution functions, one for each type of probability
(P+ and P−), in the attempt to minimize the impact of the overall distribution of
the data on the final result. Thus, two different sets of values are obtained, which
are Pη, representing the scores of being accepted as instances of a known classes,
and Pψ, the scores of being unknown instances.

The authors complete their method with the application of the equation 3.1, which
retrieves the most likely known class for the instance xi.

c = arg max
c∈C

Pη,c(xi)× Pψ,c(xi) (3.1)

In order to prove that their new approach is better than their previous OvS [47],
they tested with four data sets, such as Caltech-265 [48], ImageNet [51], LET-
TER [52], MNIST [53], and compared the F-scores between other open-world
approaches and multi-class algorithms. Scheirer et al. took a step further in
their evaluation of the different approaches by comparing their performance in
worlds widely and poorly opened. The expression 3.2 describes the openness of

25

Chapter 3

the world.

openess =
√

2× Tc/(Rc + Ec) (3.2)

For the Caltech-265 and ImageNet data sets, the Weibull-calibrated SVM (W-
SVM) has shown a 20% to 26% improvement in F-measure, in relation to the
previous OvS approach. For the remaining LETTER and MNIST data sets, it is
clear in Figure 3.2 that W-SVM outperforms the others in unknown instances de-
tection.

Figure 3.2: F-scores of the several approaches tested for LETTER (left plot) and
MNIST (right plot) [4]

3.3 OpenMax

DNN are not prepared to embrace the open-world AI since they require the labels
of the training data set. Even though a solution such as thresholding the values of
its last layer is possible, some researchers showed that certain images are able to
mislead [54] [55]. With this in mind, Bendale and Boult proposed a new method
to be appended as the last layer of a DNN, obtaining the class of an instance in
an open-world scenario called OpenMax [9].

In the first stage, the DNN is trained normally. Then, the training images are sent
to DNN again, but this time for classification, and the output of the penultimate
layer, to which the authors gave the name activation vector, is used to calculate
the mean of each class for each neuron. Next, the test data set is used in the DNN
where the OpenMax method is applied.

The new method starts by receiving the activation vector and calculating its dis-
tance to the mean of each class. As there is no need to compare all classes, since
only the closest classes are the most likely to correspond to a given instance, the
authors decided to limit the comparisons. The cumulative Weibull distribution
function is then applied to the top classes of an instance, and the new class "un-
known" is added, which corresponds to the remaining of the subtraction between

26

Literature review on open-world learning

one and the sum of the scores of the top classes. Finally, test instances are de-
clared as unknown whenever the highest scoring class is the "unknown" class or
the highest scoring class is known but its score does not meet a certain threshold.

To verify that their new proposed method enables open-world AI in DNN, the
authors compared the performance of OpenMax against a SoftMax function with
threshold, so it is able to detect unknown instances, and a Softmax without thresh-
olds. All these three layers were appended to the AlexNet DNN provided by the
Caffe software package [56]. The data set used for the tests was ImageNet Large
Scale Visual Recognition Competition 2012 (ILSVRC) [57].

As it is illustrated in the following Figure 3.3, the OpenMax outperforms the Soft-
max with threshold method, with an improvement in accuracy of 4.3%. OpenMax
also revealed an improvement of 12.3% over a SoftMax without threshold.

Figure 3.3: F-scores of OpenMax and SoftMax with threshold on ILSVRC 2012
data set [9]

3.4 Open-set Nearest Neighbor

Open-Set Nearest Neighbor (OSNN) [5] is an extension of the existing closed-
world Nearest Neighbor classifier, adapted to identify unknown class instances
from test samples. Instead of calculating the similarity scores for all classes and
applying a threshold on the highest similarity score (score of the most similar
class), as the traditional method does, this new method gets the two closest neigh-
bors, through the Euclidean distance measure, from distinct classes, calculates
the ratio of similarity between them and applies a threshold on it. This new ap-
proach is characterized by the disregard for the "open" scenario, for the regions
of space where unknown classes may appear as well as for the number of un-
known classes that may appear in the test samples. It also has the ability to create
a boundary around the positive region, limiting the open space risk. This ability
is what allows the method to find and reject unknown classes.

Unlike the previous open-world approaches described, OSNN is inherently a
multi-class solution, meaning that while other solutions have intersections be-

27

Chapter 3

tween the positive and the negative classes, where the more classes the problem
has, the worse they perform, the OSNN is not affected by it, needing at least two
known classes.

The authors built two different methods of the OSNN approach. These are the
Class Verification (CV) and Nearest Neighbor Distance Ratio (NNDR) and, even
though they differ in the methodoly, the major difference is in the ability to find
unknowns, where the first one is not able to declare a test instance far from the
two closest training instances as unknown, while the latter succeeds.

The first method, CV, is rather simple. It selects the two nearest neighbors of the
test instance, and if they have the same class, that class is assigned to the test
instance, otherwise the test instance is declared as unknown and discarded.

The second NNDR method is more elaborated with a problem-dependent vari-
able. This one also selects the two closest neighbors but these have to belong to
distinct classes. Being s the test sample, and t and u its neighbors (where t will
always be closer to s, or at the same distance, than u), the NNDR obtains the
distance between the test instance and each of the neighbors and calculates the
distance ratio according to the following expression:

R =
d(s, t)
d(s, u)

(3.3)

From this, the label of the test sample can only be the same as the label of the
neighbor t, or be unknown. The decision is made by a positive threshold value
less than 1. If R is smaller than the threshold, then the test sample belongs to the
same class as t, otherwise its class unknown.

The threshold is the boundary characteristic, being the problem-dependent vari-
able due to its decision component. As such, the authors developed a mechanism
to find the best threshold automatically, avoiding its manual discovery, keeping
the solution simple. To accomplish this, from the data that would be for training
T, they divide the number of known classes into two. One part remains known
and is split into two, where the first half is the reduced training data F and the
second half is inserted into the validation data V. The remaining part becomes
unknown and is also inserted into V. With F and V defined, the threshold is
calculated in the following way. First, they assign the interval from 0.5 to 1.0
to the threshold, partitioning it into ten equal parts. Then, all threshold values
are tested against V and the threshold i, where i is the i-th threshold from the
interval, that achieves the highest accuracy is selected. As the threshold can be
more specific, they take the thresholds (i − 1)-th and (i + 1)-th and calculate the
following average values.

meanA =
thresholdi−1 + thresholdi

2

meanB =
thresholdi+1 + thresholdi

2

(3.4)

28

Literature review on open-world learning

The two values meanA and meanB are taken as the extremes of the new threshold
interval and the whole procedure is repeated. This cyclical process is performed
four times and the final threshold is set as the best one for the given problem.

Figure 3.4: Results of the several approaches tested for one of the best data sets
of OSNN (LETTER) and one of the worst data sets of OSNN (15-Scenes) on all
measure methods [5]

To identify the potential of OSNN, six data sets were used such as 15-Scenes [58],
LETTER [52], Auslan [59], Caltech-256 [48], ALOI [60] and Ukbench [61]. Its per-
formance was compared with other works, including the OvS and W-SVM. The
authors took into consideration different measures, for instance, the normalized
accuracy (NA), the macro (OSFMM) and micro-averaging (OSFMµ) open-set f-
measures, and the accuracies of the known (AKS) and unknown samples (AUS).

For all the measure methods, excluding the accuracy of the known samples, OSNN
outperformed all the other approaches except for the 15-Scenes and Caltech-256.

29

Chapter 3

If a more detailed analysis is required, the full results can be found in [5].

3.5 Neural-Network-Based Representations

Hassen and Chan [6] try a different approach on the open-world problem. In-
stead of trying to develop a model or a set of them, they go for data representa-
tion, transforming it in order to find outliers in an easier way. To this end, they
use a DNN to learn the training data representation and adjust it. The data repre-
sentation must have two properties. The first property is to have all instances of a
class close together and the second property is to have different classes far apart
from each other. Converting the training data to respect these properties allows
you to isolate a class by having all its instances close to the mean/center, and to
have the means of two different classes as far apart as possible.

The learning and transformation of the data is done in the layers of the neural
network. The layers can be either convolutional or fully connected ending with
a loss function, named by the authors as "ii_loss", given by the following expres-
sion.

ii_loss = intra_spread− inter_separation (3.5)

By minimizing this loss function, the intra-class distance is minimized while the
inter-class distance is maximized.

With all this set, even though the aim of the work is to have a low classification
error, it is not stated in the properties of the solution. For this, the authors set a
third property declaring a low classification error in training. To this end, they
combined the "ii_loss" function with a cross entropy loss function and trained
with the intention to minimize both loss functions.

As the models finish the train, the model is stored in order to transform the test
data. The averages of each of the known classes are also stored since these are be
used to detect outliers.

Their solution classifies the test instances as one of the known classes if it is suf-
ficiently near the class mean, or as unknown if it too far from any of the known
classes means. To be declared as an unknown, there are two steps needed. First,
an outlier score is calculated, which corresponds to the distance of the test in-
stance to the center of the closest class. Next, a threshold is applied to check
whether the instance should be accepted or not. The threshold is, like many other
solutions, problem dependent. The authors train the models as if 1% of the train-
ing data is outliers and so, the minimum distance is to closest considered outlier
is set as the threshold. This is set global to all the classes instead of being class
dependent since, according to the authors, it holds the best results.

In order to test their approach, the authors compared their multiple versions with
the state-of-art OpenMax [9]. To this end, Hassen and Chan used three data sets,
such as the Microsoft Malware Challenge data set [62], the Android Genome

30

Literature review on open-world learning

Project data set [63] and MNIST data set [53]. As measure methods, they used
the precision, recall and F-score.

Figure 3.5: Results of the several approaches tested for the MNIST data set (ce is
the use of the cross entropy only, ii is the use of the ii loss function only, and ii+ce
is the use of both) [6]

Figure 3.6: Results of the several approaches tested for the Microsoft Malware
Challenge data set (ce is the use of the cross entropy only, ii is the use of the ii loss
function only, and ii+ce is the use of both) [6]

Figure 3.7: Results of the several approaches tested for the Android Genome
Project data set (ce is the use of the cross entropy only, ii is the use of the ii loss
function only, and ii+ce is the use of both) [6]

As it can be seen by the Figures 3.5, 3.6 and 3.7, the neural-network-based repre-
sentations allow better results in all data sets, particularly in the Android Genome
Project data set. Even though the variant that combines the ii loss function with
cross entropy is not always the best one, it outperforms OpenMax in every situa-
tion.

3.6 Unseen Class Distinction

Diverting from the search for unknown class instances in the test data, some re-
searchers set out to analyze all the rejected instances, the ones that do not belong

31

Chapter 3

to any known class, and find how many unknown distinct classes are there [10].
To do so, they divided the problem in four parts.

The first part is the acceptance and rejection of test instances. For this, the authors
build an Open Classification Network (OCN) which consists of a CNN followed
by a fully-connected layer and a 1-vs-rest layer of sigmoid activation functions.
The latter layer is able to reject instances by applying a threshold on its output,
where an instance that does not have a probability output value higher than 50%
is rejected.

The second part is the comparison of the classes of two test instances. Here,
the authors focused on training a model, Pairwise Classification Network (PCN),
that takes two data instances and learns their intra-class or inter-class relation.
The model is equivalent to the one used to reject instances, where each instance
requires a CNN and a fully-connected layer. The outputs of the two-fully con-
nected layers are used to predict whether the instances are from the same class
or not, based on the distance between them, through one last activation sigmoid
function.

As training both the OCN and PCN with nothing but data from known classes is
highly prone to overfit, their third part consists of an auto-encoder trained with
some unlabeled data instances. This is trained simultaneously with the two other
previous models where the aim of the training is to decrease the joint loss of the
three parts described.

The last part is the main objective of their work. For this fourth part, the authors
use an hierarchical clustering, where, from the rejected data instances, it is used
the distances obtained from the PCN to form the clusters. The hierarchical clus-
tering used is agglomerative, i.e., it starts with several different clusters and it
will merge the closest pair iteratively until one big cluster of clusters is formed.
The distance between clusters is the maximum distance between two instances of
each cluster. On this basis, a dendrogram is created and the number of cluster is
obtained through it. Since some clusters may originate from mislabelling of OCN,
the authors assigned a threshold, where only the clusters with a distance lower
than the threshold are recognized as unknown classes. The threshold is problem
dependent and so, Shu et al. added an extra validation step, which consists of
four classes that are fed to the hierarchical cluster and the threshold value that
holds four final unknown classes is set to be the best value to that given problem.

Towards the end of their work, the authors Shu et al. assessed the capabilities of
their model. This was organised in two parts. Firstly, they evaluated the rejection
capability of unknown instances by comparing it to the OpenMax [9] approach
with different Weibull tail sizes (20 and 1000), through the values of precision
and recall, macro F-score of all classes, and F-score of the rejection class. These
approaches were applied on the MNIST [53] and EMNIST [64] data sets. As it
can be seen in Tables 3.1 and 3.2, the OCN has a better performance on detecting
unknown instances on both data sets.

Secondly, they assessed the ability to find the number of unknown classes among
the rejected instances. By using the same data sets as for the first assessment, the
results obtained are presented in the following Table 3.3, where it is shown that

32

Literature review on open-world learning

Algorithms (m + 1) classes Rejection class
Macro F-score Precision Recall F-score

OCN 0.914 0.920 0.824 0.869
OpenMax (w = 20) 0.678 0.955 0.026 0.051
OpenMax (w = 1000) 0.684 0.956 0.043 0.083

Table 3.1: Results of the OCN and OpenMax for MNIST data set

Algorithms (m + 1) classes Rejection class
Macro F-score Precision Recall F-score

OCN 0.832 0.664 0.47 0.554
OpenMax (w = 20) 0.789 0.786 0.07 0.13
OpenMax (w = 1000) 0.803 0.725 0.239 0.359

Table 3.2: Results of the OCN and OpenMax for EMNIST data set

the number of classes/clusters found by the OCN is close to the ground truth
number of unknown classes.

Algorithms Ground truth OCN
of Clusters # of Clusters NMI

MNIST 4 6 0.320
EMNIST 10 14 0.500

Table 3.3: Results of the clustering of the rejected instances (# of C is the number
of clusters and NMI is the Normalized Mutual Information)

3.7 Summary

After an extensive review of the various works on open-world AI, we summarize
them in a table that provides for each of the works the data sets used, the goal of
each one (tasks), the main methods used and some notes. This is all compressed
in Table 3.4.

33

Chapter 3

Papers Reviewed Datasets Tasks Methods Remarks

[47] [48], [49]

Rejection of in-
stances belong-
ing to unseen
classes

SVM

First model
adapted to
open-world AI;
Parameters and
open space risk
not optimized
(infinite)

[4] [48], [51], [52], [53]

Rejection of
instances be-
loning to
unseen classes

SVM
Optimizes the
Open Space risk
from [47]

[9] [57]
Detect instances
belonging to
unseen classes

DNN Layer

Replacing the
last DNN layer
(e.g. softmax)
by one adapted
to open-world
recognition

[5] [48], [52], [58], [59], [60],
[61]

Detect instances
belonging to
unseen classes

Adapted
Nearest

Neighbor
Classifier

Efficient per-
formance of
a Nearest
Neighbor in
open-world AI

[6] [53], [62], [63]
Detect instances
beloning to un-
seen classes

DNN

Solution fo-
cused on data
representation
(learning and
adjusting)

[10] [53], [64] Unseen class
distinction CNN

Introduces
distinction
in rejected
instances. Re-
jection method
lacks on reject-
ing instances
(low perfor-
mance)

Table 3.4: Summary of the different papers reviewed on open-word AI

34

Chapter 4

Methods and materials

Before tackling the problem there are some points to be defined. In this chap-
ter we lay out all the aspects and conditions to start implementing the solu-
tion. Therefore, we describe, in a first moment, the programming environment
in which the work is performed, followed by the data set used and its treatment
and ending with the model architecture.

4.1 Programming Environment

Firstly, we decide the conditions under which the work is carried out, from pro-
gramming language to additional libraries.

4.1.1 Programming Language

One important step before developing the solution is the choice of the program-
ming language where the work is developed, posing the following question:
What is the best programming language for machine learning?

Despite being an easy question to make, it is not that simple to answer. There are
many frameworks and libraries across all multiple languages, such as Python,
C/C++, Java, among others, making it hard to single out any, and depending on
what we want to build or what tools may already be employed, some languages
are more favourable than others.

The choice could also be made based upon popularity [65], however it does not
represent well since it does not takes into account professional background and,
as stated previously, the aim of the project. Nevertheless, it can help choosing the
programming language.

As this work is mostly being developed from scratch, there is not a restriction nor
a promotion of any available language. However, the language should have a
great and active support community of users [66] [67] [68]. It should also high-
level as these are easier to use. For these reasons, the chosen language was Python

35

Chapter 4

[69].

4.1.2 Machine Learning Framework

Once we have chosen the programming language, a more specific component
has to be decided, which is the ML structure. This framework is a set of tools
and libraries that allows us to quickly and easily build a machine learning model
without having to fully understand its workings. It also facilitates the manipula-
tion of already implemented models due to its low restrictions.

Following the same idea of the programming language, we opt for an high-level
neural network framework. Tensorflow [70], and more specifically its high-level
neural network API Keras [71], meets the criteria and is the second most used in
academia [72]. Another possible framework would be PyTorch [73] since it is the
most used in the academia.

4.1.3 Relevant Libraries

Some additional libraries were necessary to develop this work. One crucial li-
brary is NumPy [74], essential for manipulating arrays of multiple dimensions
and for enabling the data to be used in neural networks. A second vital library is
libMR [75], which provides MetaRecognition and Weibull fitting functionalities.
Another library is Matplotlib [76], responsible for creating graphical represen-
tations of the data both used and obtained. SciPy [77] is another library used,
which allows to compute different types of distances between two instances of
data. Finally OpenCV [78], used for image processing, either for reading, cutting
or re-shapping images.

4.2 Data set

Cityscapes [79] is a large-scale data set made for approaches for pixel and instance-
level semantic labeling, providing a visual understanding of the urban scenes.
The data set consists of images from the front viewpoint of the car (Figure 4.1),
taken from a moving vehicle, mostly in areas with a lot of traffic, over several
months in 50 cities in Germany, mainly, and neighbouring countries, during spring,
summer, and fall.

For this data set, two different types of annotation methods were applied to the
2048x1024 dimension images: instance and pixel-level annotations. The first an-
notation type focuses on making a distinction between elements of the same class
while the second is not concerned with this. As one of the objectives of this work
is to detect people, cars, and other things, instead of determining who exactly is
crossing the road or the model of the car in front, the pixel-level annotation was
the one selected to develop this work. The pixel-level annotation data set com-
prises 5000 images and consists of key points around the marked objects, forming

36

Methods and materials

Figure 4.1: Example of an image from the data set

polygons as it can be seen in Figure 4.2.

Figure 4.2: Example of a pixel-level annotated image from the data set

There are, however, background objects that are in the middle of others, such as
buildings in between the tree leaves, or objects that are seen through transparent
elements, as people behind car windows. In order to avoid holes in the closest
ones, everything is considered as the single closest element. That is, in the first
example, part of the building is considered a tree while in the second example
part of the building is considered a car.

As it can be seen in Figure 4.2, various colors are available, where each color is
associated to a class, obtained from another file. The auxiliary file contains the
coordinates of the key pixels and the class of the respective object. Divided into
eight categories, the data set contains 30 distinct classes illustrated by the Table
4.1 followed by the classes distribution Figure 4.3.

In this field of research, there are other data sets such as KITTI Vision Benchmark
Suite [80], CamVid [81] and Daimler Urban Segmentation (DUS) [82]. When com-
paring the KITTI and Cityscapes data sets, the first exhibits more nature, less flat
elements, and fewer humans due to Cityscapes exploring more inner-city traffic.
CamVid has a large number of pixels of the sky, being this the most uninteresting
class for self-driving cars, and DUS does not have any information about nature
or objects categories. For these reasons, we chose the Cityscape data set.

37

Chapter 4

Categories Classes

Flat Road Sidewalk Parking Rail track
Construction Building Wall Fence Guard rail Bridge

Tunnel
Nature Vegetation Terrain
Vehicle Car Truck Bus On rails Motorcycle

Bicycle Caravan Trailer
Sky Sky
Object Pole Pole group Traffic sign Traffic light
Human Person Rider
Void Ground Dynamic Static

Table 4.1: Categories and classes of the dataset

Figure 4.3: Number of finely annotated pixels per class and their associated cate-
gories

Figure 4.4: Proportion of finely annotated pixels per category for Cityscapes,
KITTI, CamVid and DUS

4.3 Data Set Treatment

As one of the points of this work is to classify all the objects found in the street
by a self-driving agent, being these objects known or unknown, each object has
to be extracted from the images to either train or test the agent. The auxiliary file
that contains the pixel coordinates of each object for a specific image mentioned
in the previous section plays an important role in the extraction of the objects.

The coordinate system of the auxiliary file corresponds to the Cartesian plane of
two dimensions on the image, whose origin is the upper left corner, the x-axis
refers to the image width and the y-axis refers to the image height. Taking this
into account, all the coordinates corresponding to a certain object were searched
to find those that correspond to the smallest or largest value of either x or y. The

38

Methods and materials

resulting four values define the corners of the rectangle that frames the object. Let
us consider Figure 4.5 as representing the driver's point of view.

Figure 4.5: Point of view of the driver

In this image, only one person, marked red near the left margin, is in the driver's
field of view. From the several coordinates that constrain the image object, the
values of x are within the interval [74, 100] while the values of y are between
[406, 479]. This produces the white rectangle shown in the following Figure 4.6.

Figure 4.6: Person framed in a white rectangle

However, with just the information inside the rectangle in question, it is difficult
to understand what the object in question is, should one not know the meaning
of the colour. To this end, the rectangle was expanded on all sides by a value of
10 pixels, as illustrated in Figure 4.7. This increment makes a small object more
noticeable due to the clear shape of the object. Large objects, on the other hand,
are not affected due to their specific size and shape.

After cropping the object, since convolutional neural networks only accepts im-
ages of the same size, all images of objects have to be resized to a size that has
to meet two requirements. The first requirement is that it has to be small due to
the time availability to train the neural network. Therefore, we considered three

39

Chapter 4

Figure 4.7: Person framed in a white rectangle with a margin of 10 pixels

small dimensions: 32x32, 64x64 and 128x128 pixels. The second requirement at-
tempts to answer the question “How much information are we willing to lose?”.
Most of the time, changing the object dimension does not deform or cut the ob-
ject. However, when it comes to objects whose size will be considerably reduced,
the final dimensions play an important role on what is observable, beyond the
intended object. In order to help us understand this, let us take as an example the
building in Figure 4.5. This building extends the entire length of the image with
various elements in front of it, from traffic signs to cars and people and its final
size, as it is evidenced in Figure 4.8, can partially or totally destroy the remaining
objects, as is the case of the traffic light and signs on the left side of the 32x32 pixel
resolution image or in the middle of the 64x64 pixel resolution image.

(a) (b) (c)

Figure 4.8: Results of applying different resolutions: (a) 32x32 pixels; (b) 64x64
pixels; (c) 128x128 pixels;

To successfully train a model capable of detecting objects with noise (other over-
lapping objects), it is necessary to include it in several locations of an object, i.e.
lose as little information as possible. For this reason, and according to the previ-
ous picture, the size set for all of images of objects is 128x128 pixels.

40

Methods and materials

Once all objects have been cropped and resized, the distribution per class is given
by Figure 4.9.

Figure 4.9: Number of images for each object/class

4.4 Model Architectures

In this section, we introduce the model architecture used as a solution for this
work. Since the data set is composed of images, we need to firstly build a CNN
to be able to classify them, hence addressing the CNNs architectures in the first
place. Next, to identify instances belonging to unknown classes, we use the
OpenMax method, presented in Section 3, due to its application in multiple ap-
proaches on open-world scenarios [10; 83] and the implementation support being
in Python. Therefore, we also address this method. As the last stage, we use the
algorithm DBSCAN to find as many hidden classes as possible within the in-
stances identified as belonging to an unknown class by OpenMax. However, as
it has already been introduced in Section 2.2.2, and only different values of ε and
minimum number of neighbors needed to turn a instance into a core point will
be tuned when applying this algorithm, this algorithm is not mentioned in this
section.

4.4.1 Convolutional Neural Networks Architectures

Building a CNN is a challenging task since, despite general rules or ideas, there
are no restrictions on the architecture and it is problem dependent. Usually the
data set is referred to as the problem that CNN tries to solve. However, in this
case, in addition to the data set, the problem is also the ability to find instances
belonging to unknown classes while maintaining a good classification in known
classes (performed by the OpenMax model described in the next subsection).

41

Chapter 4

Therefore, we developed and tunned four CNNs to get a wider range of results
and use the one with the highest accuracy.

As it is expected, since they are included in the same problem, the input layer size
of all CNNs is 128x128x3, due to the data set being comprised of 128x128 pixel
images with three channels for colors, and their output layer size is 4, whose
reason for this value is given in the next section of this chapter.

It should be noted that all convolutional and max-pooling layers in each CNN
model have one parameter in common, which is the stride value for each layer.
The value set for it is 1 as we want to cover as many areas of the image as possible.
In addition, all convolutional and fully-connected layers apply the same activa-
tion function, this being the “ReLu” function, except for the last fully-connected
layers which applies the “Softmax” function.

The first CNN built, represented in the Figure 4.10, starts with a convolutional
layer with 64 kernels, where each kernel has size 5x5, followed by a max-pooling
layer with a kernel size of 4x4 and a dropout layer with probability of 20%. On
top of this is applied yet another convolutional layer with the same number and
size of kernels as the first convolutional layer, and a max-pooling layer with a 4x4
kernel size. The structure ends with two fully-connected layers intertwined with
a dropout layer with a rate of 20%.

Figure 4.10: First CNN architecture

Figure 4.11 illustrates the architecture of the second CNN implemented. This has
a convolutional layer with 32 3x3 kernels, followed by max-pooling layer with a
kernel size of 2x2. A convolutional layer with 32 5x5 kernels follows it with an-
other 2x2 kernel size max-pooling layer. One last 64 5x5 kernels convolution layer
is applied before the final string of layers. This string is composed of two fully-
connected layers interleaved with two dropout layers, where the first dropout
layer has a 10% rate and the second has a 5% rate, ending with another two fully-
connected layers.

As displayed in Figure 4.12, the third structure starts with a convolutional layer
with 32 3x3 kernels followed by a 4x4 kernel size max-pooling layer and a dropout
layer with a 20% rate. The structure continues with a 64 5x5 kernels convolutional

42

Methods and materials

Figure 4.11: Second CNN architecture

layer and a max-pooling layer with a 4x4 kernel, ending with a fully connected
layer followed by a dropout layer with 20% rate and another fully connected
layer.

Figure 4.12: Third CNN architecture

The fourth and final structure, shown in Figure 4.13, begins with a 32 3x3 kernels
convolutional layer ensued with a max-pooling layer with a kernel size of 4 and
a dropout layer with 20% drop rate. The middle section has a convolution layer
with 32 5x5 kernels, a max-pooling layer with a 4x4 kernel and two convolutional
layer with 64 5x5 kernels each. The last three layers of this structure are a fully
connected layer followed by a dropout layer with 20% rate and another fully
connected layer.

4.4.2 OpenMax Model

As mentioned in Chapter 3, OpenMax was created with the purpose of adapting
a DNN to an open-world situation by replacing the activation function of the last
layer by an algorithm that integrates a Weibull continuous probabilistic distribu-
tion model. Since OpenMax is external to the DNN, being in this case a CNN, it
is necessary to first train the neural network and then use the same training set to
build the probabilistic model, so that they are in harmony. This process starts by

43

Chapter 4

Figure 4.13: Fourth CNN architecture

providing the data to the CNN again, this time for classification, extracting from
the correctly classified instances the values resulting from the last hidden layer,
which the authors call activation vector. Note that, since it is about the last layer,
recalling Subsection 2.2.1, the size of this vector is equal to the number of known
classes.

Once all the data is provided, the vectors are arranged by classes, where for each
one is calculated the mean and the distances between the vectors of that class to its
mean. Then, from each group of distances, a predetermined number of the largest
ones is selected, which number is given the name tail, and fed to the “fit_high”
function from the library mentioned in Section 4.1.3. With this, the OpenMax
model is considered trained, having as many Weibull continuous probabilistic
distribution models as there are known classes.

At this point, it is possible to use the model for detection. Starting by feeding
a new image to the CNN, both the activation vector and the probability vector,
given, in this case, by the Softmax activation function, are extracted.

In a first moment, the probability vector is sorted and a predetermined number
of the highest probability classes are selected as relevant for the given sample. To
these classes is assigned a rank of importance that is related to its probabilistic
value, i.e. the greater the probability of the sample belonging to the class, the
greater is its rank. The predetermined number is referred to as alpha, which must
be greater than 1 and can be as large as the number of known classes.

In a second moment, the distance from the activation vector to the mean of each
class is calculated, with each distance being used by the function "w_score", also
belonging to the libMR library, returning the Weibull score.

Then, for a given class, the new probability is calculated according to equation
4.1, where scorec is the Weibull score of class c and rankc is the importance rank
of the same class.

new_probabilityc = old_probabilityc ∗ (1− scorec ∗ rankc) (4.1)

44

Methods and materials

Since the new probabilities cannot be higher than those provided by the Softmax
activation function, the sum of these may not add up to 100%. Therefore, the
probability that no known class is chosen is calculated through the Equation 4.2,
where c corresponds to the number of known classes.

probabilityunknown =
c

∑
n=1

old_probabilityn − new_probabilityn (4.2)

Combining the output of the two previous equations, a vector with size equal
to the number of classes plus one is produced, where the first class is labeled
as unknown. To eliminate possible residuals, the Softmax activation function is
applied to this vector.

45

Chapter 5

Experimental Setup

Having establishing the methods and materials in general, it is necessary to de-
fine the training and testing process performed in this work, including the spec-
ifications of the machine and tools used and the class selection, as well as the
specific methods related with the evaluation of the solution. All these topics are
covered in this chapter.

5.1 Machine and Environment Specifications

All the work, more specifically training and testing, was developed on the same
machine and environment so that the results obtained would be stable and unbi-
ased. Their specifications are provided in this section so that others can to repro-
duce similar results.

The machine specifications are:

• Operating system: Microsoft Windows 10 Education 10.0.19042

• Processor: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, 22021 MHz, 6 Cores,
12 Logical Processors

• Random-access memory: 8GB DDR4

• Graphics card: NVIDIA GeForce GTX 1050

• CUDA: Version 11.2

The environment specifications are:

• Python: Version 3.7.11

• Tensorflow: Version 2.8.0

• Keras: Version 2.6.0

47

Chapter 5

• NumPy: Version 1.20.3

• Matplotlib: Version 3.5.1

• Scipy: Version 1.7.3

• OpenCV: Version 4.5.5

The CUDA version is made available as it was used to speed up the training and
testing process.

5.2 Classes Selection

Despite the relatively large number of classes available in the data set (30 classes
as mentioned in Section 4.2), not all are possible to use. In this subsection, with
the support of Figure 5.1, we indicate the excluded classes (highlighted in red)
along with the reason for exclusion, and the separation of the remaining ones
into known and unknown classes (highlighted in green and blue) necessary for
the development of the work.

Figure 5.1: Number of images for each class

5.2.1 Excluded Classes

We start by listing the excluded classes, as choosing these is easier than selecting
which ones to use.

We firstly dismiss the classes Rail track, Trailer, Guard rail, Caravan, Tunnel and
Pole group due to their low volume of samples to either train a CNN or to use as

48

Experimental Setup

unknown classes in the DBSCAN algorithm, where they are most likely identified
as outliers.

Secondly, even though it has a higher volume than the previous ones (around 3
times more samples), the class Bridge is an extra because it would not affect the
drive if it were not for its pillars, which could be treated as another class (Wall).
Thus, we also exclude it.

Then, we disregard the classes Sidewalk, Terrain, Road, Ground and Parking since
they have similar colors, locations, and purpose (a space where cars and people
travel). Otherwise, for this work, these classes could be combined into a single
one.

We also find Static and Dynamic classes inadmissible as they are comprised of
more than one object, i.e. in just these two classes, elements such as dogs, birds,
street lights, garbage containers, traffic signs seen from behind, among others,
may be found.

Having discarded all these classes, we are left with some futile ones such as Sky,
given that it is not something that a driver has to pay attention or even consider
while driving, and Pole, since they are complemented by either a lighting compo-
nent, whether it is traffic or street light, or a signaling component (other classes).
Therefore, these classes are also disregarded.

One last excluded class is Traffic light as they are similar to Traffic signs but with a
lower volume of samples. However, this class could also be considered.

5.2.2 Accepted Classes

With the remaining 12 classes, we split them up into known, used in training the
CNN, and unknown classes, used by the OpenMax and DBSCAN algorithms. As
this report's focus is on the distinction between the multiple classes within the un-
known samples detected by the OpenMax algorithm, only 4 of the 12 classes are
used as known to achieve both the widest possible range of classes for distinction
as well as having a healthy number of annotated classes.

Given that cars (Car) and people (Person) are the most important elements that
drivers must be aware of while driving, these hold two of the known class slots.
This assignment has benefits since, among the remaining 10 classes, there are
variances of these two, such as Truck, Bus, Rider, among others, useful to under-
stand the behavior of OpenMax when facing two similar classes, one of which is
unknown, and DBSCAN when facing two similar unknown classes.

Two additional interesting classes to consider for known classes are Traffic sign
and Vegetation because of their constant appearance in front of other classes like
Car and Building.

Having filled the four available slots for known classes, we have the remaining
eight as a single unknown class. These are arranged into groups of 2, with each
group including the classes from the previous group. The goal of each is to study

49

Chapter 5

the architecture's behavior towards similar known and unknown classes, for ex-
ample Car versus Bus and Truck, the behavior towards similar unknown classes,
as is the case of Bus versus Truck and Fence versus Wall, and the behaviour to-
wards the increasing number of classes in the unknown component. The formed
groups are displayed in the following list.

• Group 1: Bus and Truck

• Group 2: Fence and Wall

• Group 3: Building and Bicycle

• Group 4: Rider and Motorcycle

5.3 Training Convolutional Neural Networks

Having, in the previous section, selected which classes to be used in this work,
including the separation between known and unknown classes, we can now start
thinking about the process of training the neural networks, for which are used
the images belonging to one of the 4 known classes.

However, as it is possible to notice in Figure 5.1, the difference between the class
with highest and lowest volumes is almost the double so, to prevent the data
set from being skewed, the number of instances of each class was reduced to the
same amount as Vegetation (class with lowest volume). This means that we must
select which instances to use from the classes with the higher volume, thus, in
an attempt to prevent another problem, this time being a biased data set, these
instances are chosen randomly.

To measure the training success of both CNNs and OpenMax it is important to
reserve a portion of the data set for testing. Therefore, we randomly divide it,
with 85% of it being used for training and the remaining 15% for testing. Still, the
CNN is subject to biased training since its values are tuned based on the same
images over and over again. Hence, we divide the training data set even more,
so that it comprises of only 60% of the original data set, and the extra 25% is used
for validation. This way, when the CNN is trained, at each tuning cycle, there is
a validation of the new adjusted values, decreasing the model bias.

It is important to note that, as we use 4 different CNN architectures in our work,
in order to compare their results, we used the same training, validation and test
sets. These are also applied in the OpenMax model.

5.4 Training and Testing OpenMax

As stated in Subsection 4.4.2, OpenMax needs to be trained with the same images
provided to CNNs, in order to get the means of each class as well as the sample

50

Experimental Setup

distances to those means. As such, the training and validation set were provided
to the neural network, corresponding to 85% of the data set.

Having trained the OpenMax, we feed it 5 different test sets. The first test set
is the one created in the previous subsection, corresponding to 15% of the total
data set, which only contains the known classes (Car, Person, Traffic sign and Veg-
etation). The remaining 4 test sets, in addition to including the first test set, also
include instances from unknown classes corresponding to their group, presented
in Subsection 5.2.2. In other words, the second test set, besides the four known
classes, contains classes Truck and Bus (Group 1) considered as unknown, the third
test set has the four known classes and classes Truck, Bus, Fence and Wall (Group 1)
considered as unknown, and so forth. The combination of known and unknown
classes mixed in the test set has two purposes, the first of which is to test the qual-
ity of the neural network on the known classes, and the second is to simulate an
environment where known and unknown elements co-exist.

It should be noted that we have to balance the test sets just as was necessary for
the known classes. We attempt to ensure that every set of 2 unknown classes takes
up 12.5% of the original test set, with each of this pair occupying half. There are
two reasons for this, the first reason being that it is a reasonable fraction to not
overshadow the number of instances of known classes while still being able to
use a significant amount of unknown instances, and the second reason being that
Group 1 does not have enough instances to satisfy higher percentages. As it has
been done so far, the instances for each unknown class are randomly selected.

As it is a dependent solution of the problem, the parameters addressed in Sub-
section 4.4.2, alpha and tail, play an important role on detecting instances form
unknown classes and so, they must assume multiple possible values to have the
possibility of achieving good results. For that, we define the following: alpha can
assume the possible values, which are all integer numbers from 1 to 4, and, in
order to understand the impact of low and high values, the parameter tail can
assume [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 1000].

Once trained and tested, the combination (CNN + OpenMax + alpha + tail) with
the best results for a given test set moves on to the next stage. The quality is
measured not only the number of instances belonging to the unknown class but
also the F-score value.

5.5 Experimenting with DBSCAN

This is the last yet most important stage of our solution because it is here that
we receive the instances classified by the OpenMax method as belonging to one
major unknown class and identify multiple smaller classes within it.

It is worth mentioning that OpenMax's model not only detects instances belong-
ing to unknown classes, but also processes them, as they are fed one more time to
the CNN in order to extract the activation vectors. This way, instead of supply-
ing the DBSCAN algorithm with data of size 128x128, only vectors of size 4 are

51

Chapter 5

provided, given that there are 4 known classes.

Since DBSCAN is also a problem-dependent solution, there are two parameters,
ε and minimum number of neighbors, mentioned in section 2.2.2, that have to
assume multiple values until we find a combination that approximates the num-
ber of clusters to the number of real unknown classes, with each cluster having
mostly instances corresponding to the same class. The choice for the values of the
minimum number of neighbors is based on the following reasons. Since a given
point is taken into account as its neighbour, we excluded the possibility that the
minimum number of neighbors is 1. As we do not want two close outliers to form
a class, we also excluded the possibility that the minimum number of neighbors
is 2. Finally, to understand the impact that a high values have on the solution,
we set as upper limit 18. Thus, the values that this parameter can assume are
all integer numbers between 3 and 18 inclusive. As for ε, it is more difficult to
narrow it because it requires a knowledge of the distances between the different
instances. Therefore, we choose all values from 0.1 to 1000.0 in intervals of 0.1.

Having defines the DBSCAN experimentation process, it is necessary to establish
the desired outcomes. Given that the purpose of this algorithm is to find as many
clusters as there are unknown classes in the test set, we should have this as a
quality measure. However, using only this variable alone, we cannot claim that
this algorithm solves the problem at hands. For this, we also take into account
the percentage of samples of each class per cluster.

52

Chapter 6

Results and Discussion

In this chapter we display the experimental results and analyze the performance
of the models.

6.1 Experimental Results

In this section we present the experimental results obtained from OpenMax, both
F-score and the number of correctly classified unknowns, for all combinations of
alpha and tail in each CNN, grouped by test sets. Following this, we also present
the results obtained from the DBSCAN algorithm for all combinations of the pa-
rameters ε and minimum number of neighbors. Recalling Section 5.4, this algo-
rithm is applied on the best CNN/OpenMax architecture for each test set only.

At first, we provide the results for a test set which only contains instances belong-
ing only to the known classes. Therefore, for this case, only display the F-score
for all combinations of alpha and tail for the four CNNs, Figure 6.1.

Then, since all the remaining test sets include instances belonging to unknown
classes, we present, for each test set, the F-score obtained for all combinations of
alpha and tail for the four CNNs, displayed in Figures 6.2, 6.4, 6.6 and 6.8, and the
number of instances belonging to unknown classes correctly classified, shown in
Figures 6.3, 6.5, 6.7 and 6.9.

It should be noted that throughout the images, the id of the CNN is indicated
in the title (“CNN 1”, “CNN 2”, “CNN 3” and “CNN 4”), and this id represents
which of the CNNs presented in Subsection 5.3 is used. In other words, “CNN
1” corresponds to the first presented architecture, “CNN 2” corresponds to the
second architecture, and so on.

Finally, we present the results of the DBSCAN algorithm for each of the test sets
containing instances of unknown classes (Tables 6.1, 6.2, 6.3 and 6.4). These re-
sults are merely the most interesting ones since there are numerous combinations,
with the majority of them producing repeated results.

It should be noted that the percentage represents the portion of instances of a

53

Chapter 6

Figure 6.1: OpenMax's F-score across all combinations of tail, alpha and CNNs
given the test set with no instances belonging to unknown classes

given class within each cluster, i.e. the sum of the rows in a column for a given
combination can exceed 100%, however, the sum of the columns in a row can
only add up that value and, when it is not able to achieve it, that is because the
algorithm deemed the remaining as outliers.

6.2 Discussion

In this section we analyze and compare the data presented in the previous section,
dividing it by the algorithms OpenMax and DBSCAN. During the discussion of
the results provided by each of these algorithms, we divide them further by test
set.

6.2.1 OpenMax

First Test Set

Our goal in using a test set with only instances belonging to known classes is to
evaluate the quality of the implemented CNN + OpenMax model and understand
the impact of the parameters alpha and tail.

54

Results and Discussion

Figure 6.2: OpenMax's F-score across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 1

Clusters
Classes ε Min Nei 1 2
Truck 90,0% 1,3%
Bus 265,1 3 82,2% 0,0%

Truck 95,5% 1,3%
Bus 306,2 3 79,7% 0,0%

Truck 5,2% 58,9%
Bus 175,3 5 0,0% 65,2%

Truck 10,8% 1,3%
Bus 96 6 0,0% 24,6%

Truck 12,1% 2,2%
Bus 102,3 9 0,0% 24,7%

Truck 2,6% 12,1%
Bus 108,1 15 23,7% 0,0%

Truck 13,9% 1,7%
Bus 108,7 16 0,8% 22,0%

Table 6.1: Percentage of samples of each unknown class in Group 1 found per
cluster given an ε and minimum number of neighbors

According to the obtained results, for the CNNs with architectures 1, 2 and 3,
varying alpha and tail has no significant impact on the F-score. That is, changing
these, with some exceptions, causes a variation in the F-score in the range of 0.03

55

Chapter 6

Figure 6.3: Amount of instances that belong to unknown classes correctly classi-
fied by OpenMax across all combinations of tail, alpha and CNNs given the test
set with instances belonging to classes in Group 1

in architecture 1, 0.05 in architecture 2, and 0.015 in architecture 3. This occurs
due to the fact that the most distant instances are close to the means. Thus, the
new probabilities of the known classes are not sufficiently smaller to allow the
probability of the new class (unknown) to be greater than them.

It is important to note that, although peaks occur for the values of tail = 1000 and
alpha = 4 in architecture 1 and tail = 1000 and alpha = 1 in architecture 3, due to its
small magnitude (only about 0.05 for the former and 0.10 for the latter), it is not
necessary to consider them as abnormal behavior. It is, however, worth consider-
ing the difference in F-score between the combination of values of alpha = 1 and
tail = [50, 100, 150, 200] with the remaining ones since this peak has a magnitude
of about 0.150. The reason for this occurrence is that, for these combinations, the
model classifies half of the instances as belonging to the Traffic light class instead
of only 25%, correctly classifying most of them.

Unlike the other CNNs, the F-score value decreases with increasing tail for the
fourth architecture. However, changing the alpha does not significantly impact it,
with the variation being about 0.02.

Overall, although all the F-score values are low, the architecture capable of pro-
ducing the best results for this test set is the first one because while achieving an
F-score as good as the second and fourth architectures, the F-values are constant
and is not confined to classify all the instances as a single class.

56

Results and Discussion

Figure 6.4: OpenMax's F-score across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 2

Second Test Set

The second test set is similar to the previous test set with the addition of classes
belonging to Group 1 (Truck and Bus). With this set, we already intend to analyze
the model’s detection ability on instances not belonging to any of the four known
classes.

For this test set it is possible to notice a different behavior when comparing it
with the previous one. While the alpha does not have a significant impact, with
some exceptions, the increase of the tail has, in general, a positive influence on
the F-score. The reason for this is that now we have instances belonging to an
unknown class, these being the furthest from any class mean, and the more we
take them into account on the Weibull model, the better the model fits the test
data.

Continuing to take into account the results of the previous test set, we find a re-
peated problem. The second CNN architecture, for the values of alpha = 1 and tail
= [50, 100, 150, 200], produces significantly high F-score values when compared
to the other combinations. Since the problem and reason persist (biased results),
this architecture is disregarded for this test set.

Although it is new, another problem is found in this test set, this being with the
third CNN architecture. Comparing the results of this one with the remaining
two, both the F-score values and the amount of instances belonging to unknown

57

Chapter 6

Figure 6.5: Amount of instances that belong to unknown classes correctly classi-
fied by OpenMax across all combinations of tail, alpha and CNNs given the test
set with instances belonging to classes in Group 2

classes found are significantly lower, and so this architecture is also discarded for
this test set.

As a consequence of these exclusions, we are left with two architectures, 1 and
4. Starting with the latter, we may observe a strange behavior for alpha value =
1. That is, when raising the tail value, the F-score decreases while the number of
instances belonging to well classified unknown classes increases. This is due to
the fact that the Weibull model classifies more instances as belonging to unknown
classes as the value of the parameter tail becomes bigger. This way, the amount of
true positives is reduced (decreasing F-score) while the amount of the unknown
class instances correctly classified grows. Therefore, from this architecture, we
can only consider the other results of the remaining alpha values but, as these are
lower than the ones produced by the first architecture, we deem this architecture
as not suitable for this test.

Thus, we remain only with the first architecture. As it does not pose any major
issues, besides the low F-score values, it is the one to proceed on to the next
stage, more specifically with the parameter tail = 1000 since this produces the
highest F-score values for any alpha parameter. There is, however, an indecision
in the choice of alpha value, where for alpha = 3 the F-score value is greater while
for alpha = 4 the number of instances belonging to the unknown class is higher.
Due to the fact that the F-score better describes the classification quality of the
CNN, thus having more importance in this tie, and the difference in the number

58

Results and Discussion

Figure 6.6: OpenMax's F-score across all combinations of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 3

of instances belonging to the unknown class between the two values of alpha is
minimal, we proceed to select alpha = 3. The rate of correctly classified unknown
class instances for this combination is 32.8%.

Third Test Set

As mentioned in Subsection 5.2.2, the third set includes instances from the set of
known classes as well as instances from the unknown classes in Group 1 (set used
in the previous test set), and Group 2 (Fence and Wall) (set to be used in this test
set).

Most of the behaviors detected in the second test set are still present in this one.
The first similarity is found in the impact of the alpha and tail parameters, where
alpha, with some exceptions, does not significantly impact the two dependent
variables, i.e. the F-score and the number of samples belonging to the unknown
class correctly classified, while the tail parameter has a positive influence on them.
The second similarity is the sharp increase in the both dependent variables for the
second architecture given alpha = 1 and tail = 250. Therefore, as was decided for
the previous test set, we disregard this architecture for the third test set. The third
and last similarity lies in the low values of the dependent variables obtained with
the third architecture. In terms of F-score, seemingly not, the remaining, still
considered, architectures have an improvement of about 20% to 30%. In terms of

59

Chapter 6

Figure 6.7: Amount of instances that belong to unknown classes correctly classi-
fied by OpenMax across all combinations of tail, alpha and CNNs given the test
set with instances belonging to classes in Group 3

the number of samples correctly classified as belonging to the unknown class, the
other architectures have an improvement from 50% to 75%. For these reasons, we
also exclude this architecture.

This narrows it down again to the first and fourth architectures. Comparing these
two architectures, we can observe that the first one achieves higher F-score values
(about 8% increase) while the other one achieves a higher number of samples cor-
rectly classified as belonging to an unknown class (around 14% gain). It should
also be noticed that for the parameter alpha = 1, the fourth architecture has an
unusual behavior, where the F-score does not increase with values higher of tail
(tail > 350), and since we focus more on this dependent variable, as the activation
vectors are used in the next phase, we prefer the first architecture.

This then simply requires us to choose the best combination of parameters. Since
the two dependent variables achieve their highest values when tail = 1000, all
that is left is to define the value of alpha. For the same reason when choosing the
value of the parameter alpha for the previous test set, we opt for alpha = 3. The
rate of correctly classified unknown class instances for this combination is 24.3%.

60

Results and Discussion

Figure 6.8: OpenMax's F-score across all combination of tail, alpha and CNNs
given the test set with instances belonging to classes in Group 4

Fourth Test Set

Similar to the previous test set, this fourth one consists of instances belonging
the set of four known classes, instances from the previous groups 1 and 2, and
instances from the Group 3 (Building and Bicycle), destined to be used in this test
set.

For this test set, we continue to observe behaviors seen so far. One of these is the
impact of the alpha and tail parameters on the dependent variables. A second re-
peated behaviour is the sharp increase of the dependent variables for the second
architecture given the values of the parameters alpha = 1 and tail = 250, leading us,
as it was done for the previous test sets, to disregard this architecture. Another
behaviour is the low values, even if just by a small amount, for both dependent
variables on the third architecture, when comparing with it the other two, forcing
us to also exclude it for this test set.

Yet again, we are left with only the first and fourth architectures but, this time,
apart from the difference of the dependent variables between alpha = 1 and the
others for initial values of tail, the latter architecture does not exhibit significant
issues to be discarded. In fact, on top of yielding approximately the same F-
score as the first architecture, it has a higher amount of samples belonging to
the unknown class correctly classified. For this reason, the fourth architecture is
chosen for this test set.

61

Chapter 6

Figure 6.9: Amount of instances that belong to unknown classes correctly classi-
fied by OpenMax across all combinations of tail, alpha and CNNs given the test
set with instances belonging to classes in Group 4

Thus, there remains the choice of the best set of parameters, having tail = 1000
since, regardless of the alpha, it provides the highest values of the dependent
variables. Noting that there is no difference in the F-score between alpha = 3 and
alpha = 4, the one with the highest volume of samples belonging to the unknown
class correctly classified is chosen, this being alpha = 4. The rate of correctly
classified unknown class instances for this combination is 25.7%.

Fifth Test Set

This is the last test set to be used on the OpenMax model and, similarly to the
previous ones, this set includes instances of all classes that make up the fourth
test set as well as instances belonging to the classes within Group 4 (Rider and
Motorcycle).

By comparing the results of this test set with the results of the previous ones, it
is possible to observe some repeated events. These are the impact that the alpha
and tail parameters have on the dependent variables and the abrupt change in the
values of these variables for alpha = 1 and tail = 250 on the second architecture,
discarding it for the fifth time.

However, it is possible to find a new situation. As we have been noticing, the
increase in the number of instances of unknown classes causes a decrease in the

62

Results and Discussion

Classes ε Min Nei Clusters

1 2 3 4
Truck

75,1 3

0,0% 0,0% 12,7% 0,0%
Bus 1,2% 5,2% 1,2% 0,0%
Fence 0,0% 0,0% 31,7% 2,4%
Wall 0,0% 0,0% 36,0% 0,9%
Truck

85,2 3

0,0% 0,0% 20,3% 0,0%
Bus 2,8% 1,6% 9,6% 0,0%
Fence 0,0% 0,0% 34,1% 2,4%
Wall 0,0% 0,0% 36,9% 1,8%
Truck

230,6 3

74,6% 0,0% 0,0% 0,0%
Bus 77,1% 1,6% 0,8% 0,0%
Fence 56,9% 0,0% 0,0% 1,6%
Wall 54,0% 0,0% 0,9% 0,9%
Truck

175,3 3

0,0% 66,1% 0,0% 0,0%
Bus 4,8% 54,6% 1,6% 1,6%
Fence 0,0% 53,7% 0,0% 0,0%
Wall 0,0% 50,6% 0,0% 0,0%
Truck

84,8 4

0,0% 16,1% 0,0% 0,0%
Bus 8,0% 1,6% 1,6% 0,0%
Fence 0,0% 0,0% 34,1% 2,4%
Wall 0,0% 0,0% 36,9% 1,8%

Table 6.2: Percentage of samples of each unknown class in Group 2 found per
cluster given an ε and minimum number of neighbors

Classes ε Min Nei Clusters

1 2 3 4 5 6
Truck

23,8 3

28,4% 1,1% 0,0% 0,0% 0,0% 0,0%
Bus 49,2% 0,0% 0,0% 0,0% 0,0% 0,0%
Fence 2,5% 36,3% 1,3% 0,0% 0,0% 0,0%
Wall 0,0% 29,1% 0,0% 1,2% 0,0% 0,0%
Building 64,5% 0,0% 0,0% 3,2% 0,0% 0,0%
Bicycle 0,0% 0,0% 0,3% 8,8% 0,8% 0,8%

Table 6.3: Percentage of samples of each unknown class in Group 3 found per
cluster given an ε and minimum number of neighbors

results produced by the first architecture, being in this test set that architecture 1
presents the lowest results in relation to the other two. For these reason, we disre-
garded it. The opposite is true for the last architecture, where raising the number
of unknown class instances causes an increase in the results obtained, and for this
test set, despite the similar F-score values, the third architecture cannot compete
with about 300 fewer samples correctly classified as belonging to the unknown
class.

Once again, the parameter tail = 1000 produces the highest results, and the best
match is given by alpha = 3 since, although the volume of instances belonging

63

Chapter 6

Classes ε Min Nei Clusters

1 2 3 4 5 6 7 8
Truck

100,6 3

0,0% 76,9% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
Bus 0,0% 81,1% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
Fence 82,6% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
Wall 77,0% 0,6% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
Building 0,0% 89,7% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
Bicycle 0,0% 0,5% 0,8% 0,0% 0,0% 57,6% 0,0% 0,0%
Rider 6,6% 34,4% 0,0% 0,6% 1,3% 0,6% 0,6% 0,6%
Motorcycle 0,5% 33,0% 0,5% 0,0% 0,0% 0,0% 0,0% 0,0%

Table 6.4: Percentage of samples of each unknown class in Group 4 found per
cluster given an ε and minimum number of neighbors

to the unknown class correctly classified is similar to alpha = 4, it has a higher
F-score. The rate of correctly classified unknown class instances for this combi-
nation is 33.6%.

Summary

In this sub-subsection, we proceed to summarize our findings in the results ob-
tained from the OpenMax algorithm. In a first moment, we clarify the influence
that the parameters alpha and tail have on the algorithm for a given test set. Sec-
ondly, we address the interesting behaviours of the second CNN architecture, fol-
lowed by possible justifications for the low values of F-score for all architectures.
Finally, we mention the best combination for each test set.

Let us start with the impact of the parameters on the OpenMax algorithm. When
the test set has no instances belonging to the unknown class, the parameters, in
general, have little to no influence on the F-score, except for the fourth architec-
ture, where increasing the tail decreases the F-score. This low impact is due to the
fact that the farthest instances are still very close to the classes'means. Thus, the
difference between the new probabilities calculated by OpenMax for the known
classes and the probabilities calculated by CNN is not enough for the probability
of the new (unknown) class obtained from the OpenMax algorithm to be higher,
regardless of the amount of farthest instances considered. However, introducing
instances belonging to unknown classes causes an increase in the F-score. The
reason for this is that this time, the instances farthest from the means are actu-
ally far away, and the more we consider them (the bigger the tail), the better the
Weibull model is fit. This way, it is possible to decrease the new probabilities of
the known classes in such a way that the new (unknown) class starts being used
to classify instances, and more elements start to be correctly classified.

Next, we have the interesting behavior of the second architecture. The problem
starts with a bad training, making the CNN overfitted and classifying every in-
stance as belonging to the class Vegetation. As a result, the distance of every in-
stance to the mean of this class is small. Having said this, by providing the prob-
abilistic Weibull model with instances very close to the mean of a class, causes

64

Results and Discussion

the model to assert that everything close it is unknown. That is why, when only
one class is considered as important (alpha = 1), for tail > 200 we find a sharp
variation in the F-score.

Considering, more specifically, each test set, as the first one only contains in-
stances belonging to known classes, the OpenMax model classifies most of them
as belonging to the unknown class, resulting in a very low F-score (around 0.16).
As more instances of unknown classes are added, the F-score increases, reaching
a value of 0.47.

Having addressed the behavior of the second architecture, let us glance at the
F-score values obtained. Since, for the best combinations, F-score values range
from 0.25 to 0.4, we may conclude that the results obtained were not the best and
there are multiple possible reasons for this. A possible reason can be found in
the construction of the data set, both in treatment and in separation and balanc-
ing. Another possible problem can be found in the structure of the CNNs, which
might not be the optimal ones for the problem at hand. A third and last one is
with the OpenMax algorithm by not exploring enough this solution or by not
being good enough for the data set used.

At last, the best combinations for each test set. For the one with instances from
the unknown classes within Group 1, the best combination is the first CNN ar-
chitecture with alpha = 3 and tail = 1000. Regarding the test set with unknown
classes from Group 2, we find the best combination for the first CNN architecture
with alpha = 3 and tail = 1000. As for the test set with class samples from Group
3, we define the best combination as the fourth CNN architecture with alpha = 4
and tail = 1000. The last test set, which includes samples of unknown classes from
Group 4, we selected again the fourth CNN architecture but with alpha = 3 and tail
= 1000.

6.2.2 DBSCAN

Second Test Set

As mentioned in the Subsection 6.2.1, the only use of the first test set is to test
evaluate the quality of the OpenMax model and understand the influence of the
parameters alpha and tail, and as it does not contain any unknown class instance,
this test set is not used in this stage. Therefore, we begin by analyzing the results
for second test set.

Recalling the process described in Subsection 5.5, we supply the OpenMax method
with a test set, where the the instances classified as belonging to an unknown
class are selected and provided to the DBSCAN algorithm, obtaining the intended
results.

Before analyzing the results, it is necessary to mention that the percentages are
obtained for 188 samples of the Truck class and 231 samples of the Bus class.

According to the results obtained, it is possible to detect two different outcomes.

65

Chapter 6

First, DBSCAN classifies most of the instances as belonging to a single class, as
it happens for the combinations ε = [265.1, 306.2] and minimum neighbors = 3,
and ε = 175.3 and minimum neighbors = 5. Although it is not what is intended,
this solution is understandable since the test set consists only of trucks and buses,
with these two elements being similar, as it can be seen in Figure 6.10. In the other
outcome, the algorithm is able to find two clusters with a significant amount of
instances of just one class per cluster. That is, for example, for the combination
ε = 102.3 and minimum number of neighbors = 9, the algorithm is able to isolate
12.1% of the Truck class samples in one cluster, containing no samples from the
Bus class, and is almost able to isolate 24.6% of samples of the Bus class in the
other cluster, having only 2.2% instances of Truck. Similar behavior occurs for
the remaining combinations.

Figure 6.10: Example of a bus (right image) and a truck (left image) in the data
set

Third Test Set

Similarly to the previous test set, the instances used by the DBSCAN are the ones
deemed by the OpenMax method as belonging to unknown classes, being these
unknown classes defined by Group 2.

As for the previous test set, it is necessary to mention the amount of samples
per class to understand the dimension of the solution. The Truck class holds 118
samples, the Bus class contains 231 samples, the Fence class has 123 samples, and
finally the Wall class consists of 111 samples.

Now, comparing the results obtained for this test set with those obtained with the
previous one, it is possible to find a similar outcome. This outcome consists in the
aggregation of a large percentage of instances of each class into a single cluster,
as is the case with the combinations ε = 85.2 and minimum number of neighbors
= 3 or ε = 230.6 and minimum number of neighbors = 3 or even ε = 175.3 and
minimum number of neighbors = 3. Due to the low amount of samples from
the class Bus clustered with the others, the combination ε = 75.1 and minimum
number of neighbors = 3 do not quite represent the same outcome, forming a
cluster with 3 classes.

66

Results and Discussion

Another outcome provided by this algorithm is the one with a combination of
ε = 84.8 and minimum number of neighbors = 4, where the algorithm is able to
find a cluster with 8% of samples belonging to the class Bus, a second cluster with
mostly Truck class samples, containing 16.1% of them, a third cluster combined
of mostly Fence and Wall samples (34.1% and 36.9% of the samples, respectively),
and a fourth cluster with residues of the last two classes.

Thus, for this test set, the algorithm can distinguish between the Truck and Bus
classes, and still create a class containing samples from the Wall and Fence classes.

Fourth Test Set

This test set consists of instances belonging to the unknown classes defined in
Group 3, containing 88 samples from the Truck class, 128 samples from the Bus
class, 157 samples from the Fence class, 165 samples from the Wall class, 31 sam-
ples from the Building class, and 388 samples from the Bicycle class.

For this test set only one interesting solution was found, as the remaining ones are
just clusters consisting of a number of samples between 1 and 10. This solution
is given by the combination ε = 23.8 and minimum number of neighbors = 3,
and consists of 6 clusters. The first is mostly made up of samples from the Truck
class, with 28.4% of its samples, the Bus class, with 49.2% of its samples, and the
Building class, with 64.5% of its samples. The second cluster is mostly composed
of samples belonging to the Fence class, with 36.3% of its samples, and Wall class,
with 29.1% of its classes. The fourth cluster consists of 8.8% of the samples from
the Bicycle class and 3.2% of the samples from the Building class. The other clusters
have few samples from the various classes, not enough to determine anything in
particular.

Hence, for this test set, the algorithm is able to divide samples of the Bicycle class
from the others, it can also isolate the new classes from Group 2, but it is, however,
unable to distinguish between trucks, buses and buildings, which is understand-
able since trucks and buses are similar and there may be buildings behind them,
putting them all together in one cluster.

Fifth Test Set

Finally, the last test set, which is composed of instances belonging to the classes
defined in Group 4. This set has 91 samples from the Truck class, 122 samples from
the Bus class, 161 samples from the Fence class, 157 samples from the Wall class, 29
samples from the Building class, 382 samples from the Bicycle class, 468 samples
from the Rider class and 188 samples from the Motorcycle class.

Similar to the fourth test set, only a combination of parameters is presented due
the the repetition of values. Although the algorithm found the correct number of
clusters, most of them contain a small portion of instances as it happens with the
third cluster, only having three samples of the Bicycle class and one sample of the
Motorcycle class. However, for the clusters that characterize one or more classes,

67

Chapter 6

we have the first, second and sixth. Starting with the first, it is mostly made up of
samples from the Fence class, with 82.6% of its samples, the Wall class, with 77.0%
of its samples, and the Rider class, with 6.6% of its samples. The second cluster is
mostly composed of samples from the Truck class, with 76.9% of its samples, the
Bus class, with 81.1% of its samples, the Building class, with 89.7% of its samples,
the Rider class, with 34.4% of its samples, and the Motorcycle class, with 33% of its
samples. The sixth and last cluster is mostly comprised of samples from the class
Bicycle, having 57.6% of them.

Thus, for this test set, the algorithm was able to isolate the class Bicycle again and
was also aggregate the classes Fence and Wall, with some samples from the class
Rider. It achieved a similar result on the second cluster by joining samples from
the classes Truck, Bus and Building. In this cluster it also included samples from
the classes Rider and Motorcycle.

Summary

From the obtained results, it is possible to say that, although the algorithm found
the correct number of clusters for each test set, its separation fell short. Although
there is a plausible reason why it cannot distinguish samples between the classes
truck, bus, building and motorcycle, which is samples from different classes look
similar or some elements appear behind others (such as buildings behind these
vehicles), it does not justify the association of samples from the Rider class with
these nor does it explain the inability to distinguish samples between the Fence
and Wall classes.

These problems are strongly related to the problems encountered in the results
obtained by OpenMax, since this step is dependent on the previous one and its
F-score values are low.

Despite all this, this algorithm proves to be useful for solving problems in open-
world scenarios when combined with better data processing methods, given its
ability to isolate some classes and find groups of similar classes.

68

Chapter 7

Conclusion and Future Work

Self-driving cars are intelligent agents within a complex environment, and they
must learn about all the elements they may encounter in order to take action and
cause as little damage as possible. However, these environments can be con-
stantly changing having too many different elements to learn. One option for
training them is to provide a small initial amount of elements or classes, and,
over time, increase this number of classes, with the agent having to learn about
these new, unknown classes. The issue with many of the solutions implemented
for this problem is that they assume that there is only one unknown class. Nev-
ertheless, there is always the possibility that an agent will encounter instances
belonging to several unknown classes.

The main purpose of this work was to explore an open-world solutions capable of
identifying multiple unknown classes within a data set built for self-driving cars,
which data set is Cityscapes [79]. To do this, since this is a data set of images,
we created 4 different CNN architectures in order to find one able to correctly
identify as many samples of known classes as possible. This architectures were
later incorporated with the OpenMax algorithm to enable the detection of sam-
ples belonging to unknown classes. Finally, these samples were provided to the
DBSCAN algorithm to identify both the number of unknown classes as well as
the percentage of each class in each cluster. This percentage helps understand if
the clusters created are a good approximation of each class.

The results obtained by the OpenMax algorithm show difficulty in both classi-
fying known classes and identifying samples from unknown classes. This may
have to do with a poorly treated and/or balanced data set, non-optimal CNN
architectures or with OpenMax not being a good solution to handle this data
set. Regardless of the reason, since the DBSCAN algorithm is dependent on the
OpenMax outcome, these low results negatively impact the next stage. This can
be observed when its separation fell short, despite finding the correct number of
clusters for each test set. However, it still manages to isolate some instances and
is able to group similar classes together.

In conclusion, despite the poor results, this methodology proves to be useful to
solve this problem, but has much room for improvement.

69

Chapter 7

For future work, it would be interesting to use other feature extraction method to
process the data set and use its outcome as input data on DBSCAN. New CNN
architectures or deeper search on the parameters to find a more optimal combi-
nation could also be explored in order to improve the the OpenMax model. A
diferent data set or approach on the data set used could be implemented to im-
prove the results from our methodology.

70

References

[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice
Hall, 3 ed., 2010.

[2] A. I. Khan and S. Al-Habsi, “Machine learning in computer vision,” Procedia
Computer Science, vol. 167, pp. 1444–1451, 2020.

[3] L. A. Berrueta, R. M. Alonso-Salces, and K. Héberger, “Supervised pattern
recognition in food analysis,” Journal of Chromatography A, vol. 1158, pp. 196–
214, July 2007.

[4] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set
recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, pp. 2317–2324, 2014.

[5] P. R. M. Júnior, R. M. de Souza, R. de Oliveira Werneck, B. V. Stein, D. V. Paz-
inato, W. R. de Almeida, O. A. B. Penatti, R. da Silva Torres, and A. Rocha,
“Nearest neighbors distance ratio open-set classifier,” Machine Learning,
vol. 106, pp. 359–386, 2016.

[6] M. Hassen and P. K. Chan, “Learning a neural-network-based representa-
tion for open set recognition,” in Proceedings of the 2020 SIAM International
Conference on Data Mining (SDM), pp. 154–162.

[7] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi,
L. Jesus, R. Berriel, T. M. Paixão, F. Mutz, L. de Paula Veronese, T. Oliveira-
Santos, and A. F. D. Souza, “Self-driving cars: A survey,” Expert Systems with
Applications, vol. 165, p. 113816, Mar. 2021.

[8] J. Ni, Y. Chen, Y. Chen, J. Zhu, D. Ali, and W. Cao, “A survey on theories and
applications for self-driving cars based on deep learning methods,” Applied
Sciences, vol. 10, p. 2749, Apr. 2020.

[9] A. Bendale and T. Boult, “Towards open set deep networks,” in Computer
Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on, IEEE, 2016.

[10] L. Shu, H. Xu, and B. Liu, “Unseen class discovery in open-world classifica-
tion,” ArXiv, vol. abs/1801.05609, 2018.

[11] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal for
the dartmouth summer research project on artificial intelligence, august 31,
1955,” AI Magazine, vol. 27, p. 12, Dec. 2006.

71

References

[12] R. Kurzweil, The Age of Intelligent Machines. Kurzweil Foundation, 1990.

[13] R. Bellman, An Introduction to Artificial Intelligence: Can Computers Think?
Boyd & Fraser Publishing Company, 1978.

[14] P. Winston, Artificial Intelligence. Addison-Wesley series in computer science,
Addison-Wesley, 1984.

[15] D. Poole, A. Mackworth, and R. Goebel, Computational Intelligence: A Logical
Approach. USA: Oxford University Press, Inc., 1997.

[16] N. Nilsson, Artificial Intelligence: A New Synthesis. The Morgan Kaufmann
Series in Artificial Intelligence, Elsevier Science, 1998.

[17] S. J. Russell and P. Norvig, Artificial Intelligence: a modern approach. Pearson,
3 ed., 2009.

[18] M. Hoy, “Alexa, siri, cortana, and more: An introduction to voice assistants,”
Medical Reference Services Quarterly, vol. 37, pp. 81–88, 01 2018.

[19] F. Isinkaye, Y. Folajimi, and B. Ojokoh, “Recommendation systems: Princi-
ples, methods and evaluation,” Egyptian Informatics Journal, vol. 16, 08 2015.

[20] A. M. Turing, Computing Machinery and Intelligence, pp. 23–65. Dordrecht:
Springer Netherlands, 2009.

[21] A. L. Samuel, “Some studies in machine learning using the game of check-
ers,” IBM Journal of Research and Development, vol. 3, pp. 210–229, July 1959.

[22] A. L. Samuel, “Some studies in machine learning using the game of checkers.
ii—recent progress,” IBM Journal of Research and Development, vol. 11, no. 6,
pp. 601–617, 1967.

[23] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[24] C. Bishop, Pattern Recognition and Machine Learning. Information Science and
Statistics, Springer, 2006.

[25] B. E. Boser, I. Guyon, and V. N. Vapnik, “A training algorithm for optimal
margin classifiers,” in COLT ’92, 1992.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[27] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” An-
nals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[28] G. Pang, A. van den Hengel, C. Shen, and L. Cao, “Deep reinforcement learn-
ing for unknown anomaly detection,” arXiv preprint arXiv:2009.06847, 2020.

[29] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep actor-critic reinforcement
learning for anomaly detection,” in 2019 IEEE global communications confer-
ence (GLOBECOM), pp. 1–6, IEEE, 2019.

72

http://www.deeplearningbook.org

References

[30] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[31] “Aws deepracer.” Available at https://docs.aws.amazon.com/deepracer/
latest/developerguide/what-is-deepracer.html, Accessed: 2022-08-18.

[32] J. Feng, C. Zhang, and P. Hao, “Online learning with self-organizing maps
for anomaly detection in crowd scenes,” in 2010 20th International Conference
on Pattern Recognition, pp. 3599–3602, IEEE, 2010.

[33] R. Laxhammar and G. Falkman, “Online learning and sequential anomaly
detection in trajectories,” IEEE transactions on pattern analysis and machine in-
telligence, vol. 36, no. 6, pp. 1158–1173, 2013.

[34] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for streaming
data,” in Twenty-second international joint conference on artificial intelligence,
2011.

[35] K. P. Murphy, Machine learning : a probabilistic perspective. Cambridge, Mass.
[u.a.]: MIT Press, 2013.

[36] B. Settles, “Active learning literature survey,” Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

[37] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[38] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A sur-
vey,” arXiv preprint arXiv:1901.03407, 2019.

[39] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of
novelty detection,” Signal processing, vol. 99, pp. 215–249, 2014.

[40] V. Hodge and J. Austin, “A survey of outlier detection methodologies,” Ar-
tificial intelligence review, vol. 22, no. 2, pp. 85–126, 2004.

[41] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep long-tailed learning:
A survey,” arXiv preprint arXiv:2110.04596, 2021.

[42] C. Feng, Y. Zhong, and W. Huang, “Exploring classification equilibrium in
long-tailed object detection,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 3417–3426, 2021.

[43] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and Y. Kalantidis,
“Decoupling representation and classifier for long-tailed recognition,” arXiv
preprint arXiv:1910.09217, 2019.

[44] J. Tan, C. Wang, B. Li, Q. Li, W. Ouyang, C. Yin, and J. Yan, “Equalization loss
for long-tailed object recognition,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11662–11671, 2020.

[45] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale long-
tailed recognition in an open world,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 2537–2546, 2019.

73

https://docs.aws.amazon.com/deepracer/latest/developerguide/what-is-deepracer.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/what-is-deepracer.html

References

[46] J. Parmar, S. S. Chouhan, and S. S. Rathore, “Open-world machine learning:
Applications, challenges, and opportunities,” ArXiv, vol. abs/2105.13448,
2021.

[47] W. Scheirer, A. Rocha, A. Sapkota, and T. Boult, “Toward open set recog-
nition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,
pp. 1757–72, 07 2013.

[48] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,”
CalTech Report, 03 2007.

[49] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in
the wild: A database for studying face recognition in unconstrained envi-
ronments,” Tech. Rep. 07-49, University of Massachusetts, Amherst, October
2007.

[50] N. Pinto, J. J. DiCarlo, and D. D. Cox, “How far can you get with a modern
face recognition test set using only simple features?,” 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2591–2598, 2009.

[51] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, IEEE, June 2009.

[52] P. W. Frey and D. J. Slate, “Letter recognition using holland-style adaptive
classifiers,” Machine Learning, vol. 6, pp. 161–182, Mar. 1991.

[53] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[54] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 12 2014.

[55] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” arXiv 1412.6572, 12 2014.

[56] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature em-
bedding,” MM 2014 - Proceedings of the 2014 ACM Conference on Multimedia,
06 2014.

[57] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
large scale visual recognition challenge,” International Journal of Computer Vi-
sion, vol. 115, pp. 211–252, Apr. 2015.

[58] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories,” in 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition - Volume 2
(CVPR'06), IEEE.

74

References

[59] T. Johnston, “Language standardization and signed language dictionaries,”
Sign Language Studies, vol. 3, no. 4, pp. 431–468, 2003.

[60] J.-M. Geusebroek, G. J. Burghouts, and A. W. Smeulders, “The amsterdam
library of object images,” International Journal of Computer Vision, vol. 61,
pp. 103–112, Jan. 2005.

[61] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition - Volume 2 (CVPR'06), IEEE.

[62] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Microsoft
malware classification challenge,” CoRR, vol. abs/1802.10135, 2018.

[63] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in 2012 IEEE Symposium on Security and Privacy, IEEE, May 2012.

[64] G. Cohen, S. Afshar, J. C. Tapson, and A. van Schaik, “Emnist: Extending
mnist to handwritten letters,” 2017 International Joint Conference on Neural
Networks (IJCNN), pp. 2921–2926, 2017.

[65] M. Wilcox, S. Schuermans, C. Voskoglou, and A. Sobolevski, “State of the
developer nation 12th edition - q1 2017,” Developer Nation, 2017.

[66] “Stack overflow trends.” Available at https://insights.stackoverflow.
com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.
net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cswift%2Cr%
2Cobjective-c, Accessed: 2022-08-18.

[67] “Tiobe index for august 2022.” Available at https://www.tiobe.com/
tiobe-index/, Accessed: 2022-08-18.

[68] “Pypl popularity of programming language.” Available at https://pypl.
github.io/PYPL.html, Accessed: 2022-08-18.

[69] “Python.” Available at https://www.python.org/, Accessed: 2022-08-18.

[70] “Tensorflow.” Available at https://www.tensorflow.org/, Accessed: 2022-
08-22.

[71] “Keras: the python deep learning api.” Available at https://keras.io/,
Accessed: 2022-08-22.

[72] “Papers with code: Trends.” Available at https://paperswithcode.com/
trends, Accessed: 2022-08-22.

[73] “Pytorch.” Available at https://pytorch.org/, Accessed: 2022-08-22.

[74] “Numpy.” Available at https://numpy.org/, Accessed: 2022-08-18.

[75] W. J. Scheirer, A. Rocha, R. Michaels, and T. E. Boult, “Meta-recognition:
The theory and practice of recognition score analysis,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 33, pp. 1689–1695, 2011.

75

https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cswift%2Cr%2Cobjective-c
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cswift%2Cr%2Cobjective-c
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cswift%2Cr%2Cobjective-c
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cswift%2Cr%2Cobjective-c
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://www.python.org/
https://www.tensorflow.org/
https://keras.io/
https://paperswithcode.com/trends
https://paperswithcode.com/trends
https://pytorch.org/
https://numpy.org/

References

[76] “Matplotlib: Visualization with python.” Available at https://matplotlib.
org/, Accessed: 2022-08-18.

[77] “Scipy.” Available at https://scipy.org/, Accessed: 2022-08-18.

[78] “Opencv.” Available at https://opencv.org/, Accessed: 2022-08-18.

[79] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3213–3223, 2016.

[80] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” The International Journal of Robotics Research, vol. 32, pp. 1231 –
1237, 2013.

[81] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video:
A high-definition ground truth database,” Pattern Recognit. Lett., vol. 30,
pp. 88–97, 2009.

[82] T. Scharwächter, M. Enzweiler, U. Franke, and S. Roth, “Efficient multi-cue
scene segmentation,” in GCPR, 2013.

[83] S. D. Zongyuan Ge and R. Garnavi, “Generative openmax for multi-class
open set classification,” in Proceedings of the British Machine Vision Conference
(BMVC) (G. B. Tae-Kyun Kim, Stefanos Zafeiriou and K. Mikolajczyk, eds.),
pp. 42.1–42.12, BMVA Press, September 2017.

76

https://matplotlib.org/
https://matplotlib.org/
https://scipy.org/
https://opencv.org/

	Introduction
	Motivation
	Research Question
	Approach
	Implement a machine learning model
	Detection of instances belonging to an unknown class
	Division of the unknown class into smaller classes

	Contribution
	Structure

	Background
	Artificial Intelligence
	Machine Learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning
	Online learning
	Active learning

	Open-World Artificial Intelligence

	Literature review on open-world learning
	One versus Set Machines
	Weibull-calibrated SVM
	OpenMax
	Open-set Nearest Neighbor
	Neural-Network-Based Representations
	Unseen Class Distinction
	Summary

	Methods and materials
	Programming Environment
	Programming Language
	Machine Learning Framework
	Relevant Libraries

	Data set
	Data Set Treatment
	Model Architectures
	Convolutional Neural Networks Architectures
	OpenMax Model

	Experimental Setup
	Machine and Environment Specifications
	Classes Selection
	Excluded Classes
	Accepted Classes

	Training Convolutional Neural Networks
	Training and Testing OpenMax
	Experimenting with DBSCAN

	Results and Discussion
	Experimental Results
	Discussion
	OpenMax
	DBSCAN

	Conclusion and Future Work

