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Abstract

Reinforcement Learning (RL) is a Machine Learning (ML) branch, in which an agent
interacts with an environment by trial and error. Since RL can work without knowledge
of the problem domain, it has the advantage of not needing previously labelled training
data to function. As a result, it has found success in many areas, such as robotics and
games. RL is frequently paired with Neural Networks (NNs), resulting in Deep Learning
approaches, which can work well even when dealing with large state spaces.

At the same time, Quantum Computing is an area that has the potential to surpass clas-
sical supercomputers at specific tasks. While it is unknown when this potential will be
realized, it is important to research possible applications. Furthermore, as current quan-
tum hardware is noisy and quantum simulations are difficult to perform for more complex
systems, it is especially relevant to figure out practical use cases for Quantum Computing
in the near future. Quantum ML is one of the areas that shows potential to work under the
current quantum context. Specifically for Quantum RL, there is the prospect of achieving
a better balance between the exploration of the state space and the exploitation of the
knowledge acquired, as seen in some recent research related with quantum tagged action
selection, which has been applied to the board game of Checkers.

In this work, we applied quantum tagged action selection to the RL context of Connect
Four, extending the scope of this technique to other board games. To do so, we paired it
with an offline Deep Learning method, which was key in dealing with the state-space com-
plexity of the problem. We tested both classical and quantum agents against a Randomized
Negamax opponent. The results obtained showed a superior performance in comparison
with a standard ε-greedy approach. Furthermore, the quantum version of the flagged ac-
tion selection led to better training efficiency than its classical counterpart. Since going
second is a major disadvantage in this board game, we also analysed the performance of the
agents that trained as player 2, finding less conclusive but still ultimately positive results.

Keywords

Reinforcement Learning, Quantum Computing, Connect Four.
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Resumo

Aprendizagem por reforço é um dos ramos da aprendizagem computacional, em que um
agente interage com um ambiente por tentativa e erro. Como a aprendizagem por reforço
pode funcionar sem conhecimento do domínio do problema, tem a vantagem de não precisar
de dados de treino previamente etiquetados. Como consequência, tem tido sucesso em
várias áreas, como a da robótica e a dos jogos. Aprendizagem por reforço é frequentemente
acompanhada por redes neuronais, formando abordagens de aprendizagem profunda, que
podem funcionar mesmo quando lidando com grandes espaços de estados.

Ao mesmo tempo, a computação quântica é uma área que tem o potencial de superar
supercomputadores clássicos em tarefas específicas. Apesar de ser desconhecido quando
este potencial será realizado, é importante investigar possíveis aplicações. Para além disso,
como o hardware quantum atual tem ruído e simulações quânticas são difíceis de realizar
para sistemas mais complexos, é especialmente relevante descobrir casos de uso práticos
para a computação quântica num futuro próximo. Aprendizagem computacional quantum
é uma das áreas que mostra potencial de funcionar dentro do contexto quantum atual.
Especificamente para a aprendizagem por reforço quantum, há a perspetiva de conseguir
um melhor equilíbrio entre a exploração do espaço de estados e a exploração do conheci-
mento obtido, como visto em trabalhos recentes relacionados com a quantum tagged action
selection, que foi aplicada ao jogo de tabuleiro das Damas.

Neste trabalho, aplicámos quantum tagged action selection dentro do contexto da apren-
dizagem por reforço no 4 em Linha, estendendo o âmbito desta técnica a outros jogos de
tabuleiro. Para o fazer, combinámo-la com um método de aprendizagem profunda offline,
que foi a chave para lidar com a complexidade do espaço de estados do problema. Testámos
agentes clássicos e quânticos contra um adversário que utilizou Randomized Negamax. Os
resultados obtidos mostraram um desempenho superior em comparação com uma abor-
dagem ε-greedy comum. Além disso, a versão quântica da flagged action selection levou
a uma melhor eficiência ao treinar do que a sua versão clássica. Como o jogador 2 tem
uma grande desvantagem neste jogo de tabuleiro, também analisámos o desempenho dos
agentes que treinaram como jogador 2, encontrando resultados menos conclusivos, mas
ainda assim positivos.

Palavras-Chave

Aprendizagem por Reforço, Computação Quântica, 4 em Linha.
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Chapter 1

Introduction

In this chapter, the theme of this dissertation is introduced. We start by briefly describ-
ing what Reinforcement Learning (RL) is and looking at its current context, while also
addressing Deep RL and explaining why Quantum Computing can be relevant for this
Machine Learning (ML) branch. We then go over the motivation for this thesis, cover-
ing why Quantum RL is a relevant area to tackle, from a more practical point of view.
We also cover how that leads to this dissertation’s main topic. Afterwards, we look at
the objectives of this work and the relevant research questions. This is followed by the
contributions. Finally, we examine the structure of this document.

1.1 Context

RL is an area of ML in which an agent learns by interacting with an environment through
trial and error, in a sequence of steps that take it from one state to another, by following
a certain policy. Due to its ability to learn without relying on domain knowledge, RL can
be useful in various fields, such as games, Natural Language Processing (NLP), robotics
and even art [19].

The policy followed by the agent dictates which actions it can take in each state, and with
which probability. According to the decisions it takes, the agent receives scalar rewards
based on its performance. These rewards are then used to update the agent’s policy,
allowing it to keep learning better actions for each situation.

RL is especially interesting since it typically starts with no knowledge of the problem
domain, which can give it key advantages in relation to other ML approaches, such as
supervised learning. In the case of supervised learning, training data and its correspond-
ing outputs are used for training, with the intent of learning the relation between them.
However, getting enough high-quality hand labeled data can not only be inefficient, but
also ultimately create an upper bound on the performance of the agent. For instance,
learning from the decisions of top players in a game might bound the peak performance of
the learner not too far from human capabilities.

However, when it comes to problems in the real world, it is very possible that the data
being used is too high-dimensional, which can ruin the effectiveness of RL. A typical
solution when dealing with that kind of data is to enhance RL with Deep Learning, which
involves the use of Neural Networks (NNs), in order to represent states and approximate
functions [19]. This Deep RL approach has been quite successful, with Alpha Go Zero [26],

1



Chapter 1

which avoids human data entirely, being able to completely outclass the classical Alpha
Go algorithm that could already defeat the best players at the game of Go.

At the same time, we have the prospect of Quantum Computing having the potential to
surpass classical computation in specific tasks in the future, being able to solve them in a
reasonable time frame. While it is unknown how long it will take for this breakthrough to
happen, there have been theoretical works and experiments that support this. For instance,
Google’s 53 quantum bit (qubit) quantum computer has been used to demonstrate that
it can run certain calculations in a very small fraction of the time they would take on a
classical supercomputer (200 seconds instead of the estimated thousands of years) [11]. All
of this theoretical potential motivates the exploration of Quantum Computing.

On the other hand, we have to take into consideration the current limitations of Quan-
tum Computing. We must first consider the limited number of qubits that current devices
can take advantage of. Since adding more qubits exponentially increases the computa-
tional power of a quantum computer, it is only natural that having a reduced number
of them heavily reduces their potential advantages. Furthermore, Quantum Computing is
extremely prone to noise. This is something that can be alleviated with quantum error cor-
rection, but doing so requires even more qubits. As such, current quantum computations
are noisy, which narrows the usefulness of Quantum Computing down to algorithms that
are capable of functioning despite the noise. Simulations with a large number of qubits
are also very difficult, since simulating such high-dimensional quantum environments is
computationally intensive for classical computers.

However, Quantum Computing is gradually becoming more accessible due to simulators
and remote access to quantum hardware through platforms such as IBM-Quantum, which
has led to more research in the area. Due to properties inherent to quantum physics, it is
expected that quantum approaches will be able to further improve RL through quadratic
speedups and better balance between exploration and exploitation [32].

1.2 Motivation

Due to the limitations imposed by current quantum hardware, it is important to consider
the practical applications of Quantum Computing in the near future. As quantum ML is
one of the areas expected to be able to reach meaningful results in this Noisy Intermediate-
Scale Quantum (NISQ) era, it is natural to think about what can be achieved in its three
main branches: supervised learning, unsupervised learning and RL. The latter remains the
least explored of the three [27], which incites interest in attempting to figure out what can
be achieved in its domain.

Recent work has shown that quantum approaches and quantum-inspired algorithms can
lead to different benefits for RL [27, 32], such as needing less parameters to execute the
same tasks.

Furthermore, it has been shown that Quantum RL can be applied to the board game
of Checkers, improving the exploration of the state space [30]. In other words, it helps
dealing with the exploration-exploitation problem of RL, which involves having to correctly
balance how much an agent should explore new states with how much it should exploit its
knowledge by choosing the state it believes to be better. This work raises the question of
whether similar or different benefits can be achieved in other board games. As Connect
Four is a board game with slightly lower complexity than Checkers, we believe it is a prime
candidate for this type of analysis.
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1.3 Objectives and Research Questions

For this dissertation, the game of Connect Four was used as a way to test the potential
of Quantum Computing for RL in the near future. Specifically, we wanted to verify what
kinds of advantages could be found when using a quantum algorithm for the RL problem
of learning how to win at Connect Four. For instance, if the training efficiency was better
than classical approaches. We also took advantage of the quantum tagged action selection
policy used in [30], to examine whether the improvements to the exploration of the state
space achieved for Checkers could be found in a different board game, generalizing the
applicability of this technique.

Considering that Connect Four is a game that has already been solved using classical brute-
force methods, the aim of this study is not to create a quantum approach that always finds
the optimal move. Rather, it is to develop a quantum enhanced algorithm that can be
competitive with relatively powerful classical approaches.

Thus, we can think of the following research questions.

• Research Question 1: In what way can a quantum approach improve the exploration
of the state space for the RL problem of Connect Four?

• Research Question 2: What changes need to be made so that a similar approach to
the one used for Checkers [30] can be applied to Connect Four, in order to better
explore the state space?

• Research Question 3: How does this exploration of the state space compare to a
standard ε-greedy approach?

• Research Question 4: Considering that going second is a significant disadvantage in
Connect Four, how does the quantum approach fare in this scenario?

1.4 Contributions

For this work, the following contributions were achieved:

• The application of quantum tagged action selection to the Connect Four RL problem,
combining it with a classical NN and extending its scope to other board games.

• The comparison between quantum tagged action selection and its classical version,
as well as a standard exploration policy, known as ε-greedy.

• The analysis of the effects of scaling the quantum algorithm to the more complex
scenario of learning how to win as player 2.

1.5 Document Outline

Following this introduction, the subsequent chapters are as follows:

• Chapter 2 goes over some relevant background for this thesis, covering: RL and its
key topics; a brief introduction to Quantum Computing and some of its algorithmic
applications; the game of Connect Four.
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• In Chapter 3, we look at literature related with classical Deep RL and Quantum RL,
followed by an analysis of quantum frameworks.

• In Chapter 4, we present the methodology used in this work, covering the Randomized
Negamax opponent and the representation of Connect Four as a Markov Decision
Process (MDP), as well as the Q-Learning [28] approach employed. From there,
the exploration-exploitation problem is introduced and we describe the classical and
quantum approaches used to solve it.

• In Chapter 5, we detail the parameters used for the Randomized Negamax opponent,
the training and testing strategies utilized, and the experimental setup for the agents.

• In Chapter 6, the results of the experiments for the player 1 and the player 2 agents
are shown, as well as a discussion about them. We also present answers for the
research questions, taking into account the work developed and the results obtained.

• In Chapter 7, we provide a conclusion to this thesis.

4
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Chapter 2

Background Knowledge

In this chapter, background knowledge useful for understanding this work is given. We
start with an introduction to Reinforcement Learning (RL) and then go into some of its
key topics. These include Markov Decision Processes (MDPs), Dynamic Programming
(DP), Monte Carlo (MC) methods and Temporal-Difference (TD) learning. From there,
a brief overview of Quantum Computing and some of its key concepts is given. This can
aid the reader in understanding some basic quantum properties, which are then useful
for following along the literature review and the rest of this work. We also cover two
specific algorithmic applications of Quantum Computing and explain how they work. These
applications are Grover’s algorithm and quantum walks, both of which are related with
the quantum exploration policy used in this work. Lastly, we go over the game of Connect
Four, covering its components, rules and conditions for reaching the end of a game and
deciding a winner.

2.1 Reinforcement Learning

We will now go over a basic overview of RL. This will be mostly based on Richard Sutton
and Andrew Barto’s book [28], which provides a very complete introduction to the topic.

When it comes to RL, we consider the problem of learning by interacting with an envi-
ronment. This involves a learning agent, who interacts with the environment so it can
achieve a specific goal. This is done through the execution of actions, which can influence
the environment by modifying its state. Instead of explicitly telling the agent what to do,
its learning process is guided through the use of rewards. These rewards are signals, which
can inhibit or promote the execution of certain actions, shaping how the agent behaves.

When we think about action selection, we also have to consider the concepts of exploration
and exploitation. When an agent is choosing new actions, to figure out which ones yield the
best results, it is exploring the environment. Meanwhile, when it is choosing the actions it
believes to be better, it is exploiting its current knowledge. These are two concepts that
need to be very well balanced, so the agent can sufficiently explore the environment, while
taking enough advantage of what it has learned.

While the environment and the agent are considered the main elements of RL, there are
also four sub-elements involved: the policy, the reward signal, the value function and the
model of the environment [28].

The policy is essentially a function that maps states to actions, dictating which action to
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take in each state.

The reward signal is a number given to the agent at each time step. This number is based
on how well the selected action handles the current state. The agent’s objective is to
obtain as much total reward as possible. In essence, the policy keeps changing to get closer
to this goal. In other words, policies are changed, so that they may lead to a selection
of actions with better rewards. Accordingly, updates to the policy are dependent on the
reward signal.

Meanwhile, the value function is used to predict how much reward will be received when
starting from a specific state. That is to say, it focuses on the long-term value of a state
and not just the immediate reward.

Finally, the model represents the behaviour of its corresponding environment, being useful
for predicting future states and rewards. As such, it is generally used for planning the best
actions to take, taking the predictions into account. Since there are both model-based and
model-free RL methods, the model is considered an optional sub-element of RL.

2.1.1 Markov Decision Processes

When it comes to RL problems, it is possible to define them as MDPs, as long as they obey
the Markov property. If the state of the system can represent all the relevant information
about the sequence of states that led to the current one, this property holds [28].

We can then define RL problems using the tuple (S, A, P , R, γ), as explained by Yuxi Li
[19]. Keep in mind that t represents the time step, s′ = St+1, s = St and a = At.

S is the set of states s that the environment can be in.

A is the set of actions a the agent can take in each state.

P (s′|s, a) is the transition model that defines the probability of transitioning from state
s to state s′, considering the action taken a.

R(s, a, s′) is the reward function, dictating the reward r, which is received for taking
action a in state s and reaching state s′.

γ ∈ (0,1] is the discount factor, which is used to make future rewards weight less.

As the goal of the agent is to try to maximize the total reward obtained, we need to
consider the total sum of rewards received, Gt. The accumulation of future rewards leads
us to a Total Reward

Gt =
∞∑
k=0

Rt+k+1

If we discount future rewards using a discount factor γ, then we have a Discounted Reward

Gt =

∞∑
k=0

γkRt+k+1

These two ways of representing the total sum of rewards are usually useful for different
kinds of problems.

7
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The Total Reward is ideal for episodic tasks, which are tasks that are divided into episodes.
For situations in which the interaction between the agent and the environment can be
divided into subsequences, which have a concrete terminal state, we can consider the
sequence of events until the terminal state to be an episode. At the end of an episode,
there is a reset to the starting state and a new episode begins. An example of an episodic
task would be a game like Connect Four, where each game would be considered an episode,
which would start from the starting position (no discs on the grid) until reaching a terminal
state (when a player wins or when the grid is entirely filled up). In this case, each move is
a subsequence of the corresponding episode.

Meanwhile, the Discounted Reward is typically used for continuing tasks, which are tasks
that do not have a clear ending. This is done to avoid an infinite sum of rewards, as there
is no concrete terminal state, unlike in episodic tasks.

To decide which action to do in each state, we can consider a policy π(a|s), which defines
the probability of taking action a in state s. The objective in an MDP is to get close to
the optimal policy π∗, which is the one that maximizes the expected total reward.

Furthermore, we need to think about value functions. As mentioned previously, the notion
of value is related with the expected rewards when starting from a certain state. By
considering a policy π, we can then think about a state-value function vπ(s), which defines
the expected value for following policy π, starting from state s.

At the same time, it is also possible to think about the value of starting in state s, executing
action a and then following policy π. This is defined as the action-value function qπ(s, a).

The optimal policy π∗ then corresponds to the optimal state-value and action-value func-
tions, which are v∗(s) and q∗(s, a), respectively.

2.1.2 Dynamic Programming

DP is an RL approach used to find optimal policies. It is not considered practical in most
situations, as it requires a perfect model of the environment to function. Furthermore, it
is very computationally expensive, which means that problems with bigger state spaces
are out of reach. However, a lot of the basis behind this methodology is used for more
practical approaches, which makes it important from a theoretical standpoint.

For starters, we can think about policy evaluation. This involves figuring out which is
the state-value function vπ that corresponds to the current policy π. We start with an
arbitrary value function, which is then iteratively updated using an update rule. This
is done by executing a full backup on each iteration, which corresponds to replacing the
current value of each state s with the sum of the immediate reward and the current values
of all possible following states. This process repeats until the difference between the new
calculated values and the old ones is small enough, at which point we assume the policy
evaluation has converged.

After obtaining the correct state-value function vπ, we need to consider policy improvement.
Essentially, we want to find out if using a different policy would be better. This is where
qπ(s, a) comes into play. Recall that this action-value function represents the value of
executing action a and then following policy π. If that value is greater than simply following
policy π, then a policy that picks action a in state s and then acts the same way as the
current policy would clearly be better. From there, we can think about a comparison across
every state. If we compare the current value of each state with the values obtained with a
greedy policy that always selects the action that maximizes qπ(s, a), we will always get to
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a policy that is either equal or better than the previous one. If it is equal, then we have
found the optimal policy.

The process of using policy evaluation to find the corresponding state-value function vπ
and then using policy improvement to obtain a better policy repeats iteratively. This is
referred to as policy iteration.

Since policy evaluation is a very long process itself, policy iteration will naturally be so as
well. As such, it is important to consider ways to shorten policy evaluation. This can be
done by stopping it after a single backup of each state, as opposed to repeating it multiple
times. This simplified approach is called value iteration.

2.1.3 Monte Carlo Methods

MC methods learn from direct or simulated interaction with the environment, in order to
estimate value functions and find optimal policies. They function similarly to DP methods,
with a value function being changed to match the policy (policy evaluation) and a policy
being updated to maximize returns according to the value function (policy improvement).
However, they do not require complete knowledge of the environment, as everything is
learned through the sample transitions experienced. While a model of the environment is
still necessary for the simulated case, to be able to generate the samples, it is far easier to
do so than to figure out the full probability distribution of the environment.

When considering episodic tasks, value function estimation and policy updates are done
at the end of each episode. For each state-action pair occurring in an episode, the total
return of rewards obtained from that state-action pair until the end of the episode is taken
into account. From there, the value of each state-action pair is based on the average of
returns received across all episodes up to that point. This way, we can construct values
based on experience.

However, there is a problem that needs to be addressed. While following a policy, there
are actions that might never be picked for a given state. If state-action pairs are being
ignored, then it becomes impossible to estimate their value. In other words, something
needs to be done to ensure that every state-action pair is estimated. This can be achieved
with either on-policy or off-policy methods.

On-policy methods improve the same policy that is used to control the behaviour of the
agent. To guarantee that every state-action is visited, a stochastic policy in which every
state only has actions with nonzero probability of occurring is typically used. The policy is
then gradually updated so that it becomes more deterministic and optimal. For example,
it is possible to use an ε-greedy policy, which selects a random action with probability ε
and an optimal action otherwise [28].

Off-policy methods make decisions using one policy, while trying to improve a different
one. The policy controlling the behaviour of the agent is the behaviour policy, while the
one whose value function we are trying to learn is the target policy. Since the behaviour
policy is used to guarantee exploration, it should be a stochastic policy such as ε-greedy.
On the other hand, the target policy can be fully greedy, always selecting the action most
favoured by the action-value function qπ(s, a).

9
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2.1.4 Temporal-Difference Learning

TD methods share similarities with both DP and MC methods. On the one hand, they
bootstrap estimates of following states to update the value of the current one, which is
similar to what DP methods do. On the other hand, they learn from experience, without
requiring full knowledge of the environment’s dynamics, just like MC methods.

A key difference with MC methods lies in how long they wait to update their estimates.
MC methods wait until the end of an episode and then compare the return obtained for
each state with the corresponding estimate. Meanwhile, TD methods do so after reaching
the next state and using the reward obtained Rt+1 and the estimated value of St+1 as the
target. This leads us to the equation for TD(0), which is the most basic TD method:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)], (2.1)

in which α is the learning rate.

There are several types of problems in which waiting for the termination of an episode
slows down learning too much. Furthermore, empirical data has shown that TD methods
tend to learn faster than MC methods.

An alternative way of taking advantage of TD learning is to use a batch of data. In this
case, the value function is only updated after a certain number of time steps or episodes,
corresponding to the batch. The updates consider the sum of all the increments calculated
by the equation corresponding to the TD(0) update, which can be seen above.

Just like with MC learning, in TD learning we also have to consider the choice between on-
policy and off-policy methods to deal with the exploration-exploitation dilemma. Examples
of on-policy and off-policy methods include Sarsa and Q-Learning, respectively.

2.2 Quantum Computing

Quantum Computing is a computing paradigm that intentionally takes advantage of quan-
tum properties [6]. By doing so, they have the potential to execute tasks that would
otherwise be unfeasible to complete in a reasonable time frame.

While there are different kinds of Quantum Computing models, quantum circuits are the
most common way to represent Quantum Computing. In the model of quantum circuits,
we can think of the data, operations and results as quantum bits (qubits), quantum gates
and measurements, respectively.

2.2.1 Qubits

Qubits are the basic unit used to represent quantum data. While a classical bit is repre-
sented by states 0 and 1, a qubit is similarly represented by states |0〉 and |1〉. However,
while classical bits can be exclusively in state 0 or 1, qubits are considered to be in a
combination of states |0〉 and |1〉, being characterized by α |0〉 + β |1〉, in which α and β
are complex numbers and |α|2+ |β|2 = 1. This means that each qubit is continuous, being
able to take an infinite number of different values. This ability to be in a combination of
states is called superposition. These qubits can be represented as column vectors ψ =

( α
β

)
.
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Furthermore, we can use the Bloch Sphere, which has 3 coordinates (x, y and z), in order
to map these 2D, complex vectors onto a real, 3D space [5]. In Figure 2.1, we can see the
|+〉 state represented.

Figure 2.1: The Bloch Sphere. Adapted from [5].

We can then think of basis states for the poles in each axis of the Bloch Sphere. The
most common ones are the basis states for the z-axis, |0〉 and |1〉. Besides these ones, the
basis states for the x-axis, |+〉 and |−〉, are also very important, as they represent an even
superposition of the previous two states (i.e. measuring them has a 50% probability of
returning 0 and the same probability of returning 1).

|0〉 =
(
1
0

)
(2.2)

|1〉 =
(
0
1

)
(2.3)

|+〉 = |0〉+ |1〉√
2

(2.4)

|−〉 = |0〉 − |1〉√
2

(2.5)

2.2.2 Single Qubit Gates

In order to apply operations on these qubits, quantum gates are used. These can be used
to change the qubits or to create certain relationships between them, e.g. entanglement
(which will be explained in Subsection 2.2.3). We can represent these quantum gates as
unitary matrices, which can then multiply the vectors that represent the qubits.

There are multiple quantum gates [5], the most important of which will now be explained.
We will be looking at the Pauli gates, which are the X, Y and Z gates, along with the
identity I. The Hadamard and P gates will also be introduced, along with the S and T
gates.

11
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To start, we can look at the identity I, which simply has no effect when applied.

I =

(
1 0
0 1

)
(2.6)

From there, we have the X gate, which can take a qubit from state |0〉 to state |1〉 and vice-
versa. More generally, it switches the amplitudes of states |0〉 and |1〉 [6]. This is similar to
what a NOT gate does classically, so it is typically also recognized as the quantum NOT
gate. As for the Bloch Sphere, the operation of this gate is depicted as a rotation by π
radians around the x-axis.

X =

(
0 1
1 0

)
(2.7)

X |ψ〉 = β |0〉+ α |1〉 , withψ = α |0〉+ β |1〉 (2.8)

From there, we also have the Z gate, which has no effect when applied to a |0〉 state, but
changes the sign of a |1〉 state. Similarly to the X gate, the Z gate corresponds to a rotation
by π radians around the z-axis of the Bloch sphere.

Z =

(
1 0
0 −1

)
(2.9)

Z |0〉 = |0〉 (2.10)

Z |1〉 = − |1〉 (2.11)

Just like the other Pauli gates, the application of the Y gate corresponds to rotating by π
radians around the y-axis of the Bloch sphere.

Y =

(
0 −i
i 0

)
(2.12)

The H or Hadamard gate can take the basis states |0〉 and |1〉 into a superposition of these
states, creating the |+〉 and |−〉 states, respectively.

H =
1√
2

(
1 1
1 −1

)
(2.13)

H |0〉 = |+〉 (2.14)

H |1〉 = |−〉 (2.15)
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There is also the P or phase gate, which is a parameterized gate, as it changes based on
the parameter it receives. Essentially, it is a rotation of φ around the z-axis, with φ being
a real number.

P (φ) =

(
1 0
0 eiφ

)
(2.16)

The S and T gates are merely special cases of the P gate. The S and T gates correspond
to a φ of π/2 and π/4, respectively.

S =

(
1 0

0 ei
π
2

)
(2.17)

T =

(
1 0

0 ei
π
4

)
(2.18)

2.2.3 Multiple Qubit Systems, the CNOT gate and Entanglement

When it comes to two-qubit systems, we can simply represent the state as:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 =


α00

α01

α10

α11

 (2.19)

With that in mind, we can now think of two-qubit gates as 4x4 matrices. The most
prominent of these is the CNOT gate, which stands for Controlled NOT gate (also referred
to as CX gate).

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.20)

The idea behind this gate is to look at the first qubit affected and decide what to do with
the second one based on that. If the first qubit is |0〉, then nothing happens. If it is |1〉
however, the second qubit is flipped, just as would happen by applying an X gate directly
to it.

CNOT |00〉 = |00〉 CNOT |01〉 = |01〉 CNOT |10〉 = |11〉 CNOT |11〉 = |10〉
(2.21)

The reason this gate is so important is because it can create entanglement. To understand
why this is so important, we can first briefly explain what a product state is and how
entangled qubits are different.

A state of multiple qubits is a product state if there is a tensor of states with less qubits
equal to it [6]. In other words, a product state exists when |ψ〉 = |ψ1〉 |ψ2〉. When we have
a product state, each qubit is still effectively independent of each other.
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The CNOT gate allows us to reach entangled states, which cannot be represented as
product states. This is due to the correlations between the first and second qubit, created
by entangling the qubits. For example, if we have the following state, when we measure 0
on the first qubit, the result on the second qubit will always be 0 and vice-versa. Similarly,
if we measure 1 on the first qubit, the second one will always be 1 and vice-versa. In
other words, the only possible results are 00 and 11, with the first number representing
the classical bit obtained by measuring the first qubit and the second one representing the
classical bit obtained by measuring the second qubit.

|00〉+ |11〉√
2

(2.22)

This is one of the four Bell states, which all represent different entangled states. The other
Bell States are the following:

|00〉 − |11〉√
2

|01〉+ |10〉√
2

|01〉 − |10〉√
2

(2.23)

2.2.4 Measurements

In order to obtain the result of an operation, we must perform a measurement. Doing so
implies collapsing the quantum state, which results in classical bits. Each resulting classical
bit obtained can be in either the 0 or the 1 state, which are returned with probabilities
equal to |α|2 and |β|2, respectively. This means that measurements in quantum systems
are probabilistic in nature, requiring multiple executions of the same circuit in order to
obtain the expected value of each state.

2.2.5 Summary of Quantum Properties

We will now go over some key quantum properties, some of which were explained in more
detail previously. This can serve as a summary of some basic quantum properties.

No-Cloning Theorem

The No-Cloning Theorem states that it is impossible to make an independent copy of a
qubit. This is due to the fact that it is impossible to know the state of a qubit until it is
measured, at which point it collapses the quantum state and becomes classical.

Superposition

A qubit is in a superposition characterized by |ψ〉 = α |0〉 + β |1〉, in which α and β are
complex numbers. That is to say, a qubit is in a combination of states |0〉 and |1〉.

Entanglement

When two qubits are entangled, the result of measuring one of them is dependent on the
result of measuring the other and vice-versa.
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Interference

Interference is the manipulation of positive and negative amplitudes, in order to reinforce
or weaken the probability of obtaining certain states. This property is used in order to
reduce the probability of measuring the incorrect result, while amplifying the probability
of reaching the desired outcome.

2.2.6 Grover’s Algorithm

Grover’s algorithm [17] is used for searching items in unsorted lists. The idea is to find an
element that satisfies a certain condition, while making no assumptions about the structure
of the elements. Classically, such a task would have a time complexity of O(N) for N items,
as each item would need to be evaluated individually until one of them met the condition.
However, with Grover’s algorithm, it is possible to reach a complexity of O(

√
N), which

represents a quadratic speedup in comparison with the classical approach. This speedup
is achieved by taking advantage of the superposition property, which makes it possible to
analyse every element simultaneously.

Furthermore, this algorithm can serve as the basis for the amplitude amplification trick [4],
in order to achieve quadratic run time speedups in other quantum algorithms. This further
cements its importance as one of the key components for obtaining quantum advantage.

The process starts with the group of elements all having the same amplitude. In order
to analyse if the elements respect the condition, it is necessary to use a Boolean function
F (x), which returns 1 when they do and 0 when they do not. Using the oracle −1F (x),
the elements are evaluated and the ones respecting the condition rotate by a phase of π
radians (phase kickback), which corresponds to negating their amplitudes. From there,
a unitary transformation is applied, in order to calculate the average of the amplitudes.
Then, the amplitudes of the elements suffer an inversion around the mean, which slightly
lowers the amplitudes of all the elements that do not obey the condition, while sharply
increasing the amplitudes of the ones that do. This inversion around the mean is referred
to as Grover’s Diffusion Operator and can be observed in Figure 2.2. The entire process
repeats multiple times, in order to keep magnifying the amplitude of the elements that
respect the condition, so they can be measured with higher probability. The number of
repetitions is proportional to

√
N .

Figure 2.2: Inversion around the mean in Grover’s algorithm. Adapted from [17].
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2.2.7 Quantum Walks

Quantum walks are quantum processes that can be exploited by multiple algorithms. In
order to properly introduce them, we must first define classical random walks. Firstly, we
can think about a random walk on a line, which is a stochastic process in which a particle
moves along a line with probability p of going to the right and probability 1 − p of going
to the left [31]. This particle is considered the walker, while the probability distribution is
the coin, which controls the direction to move to. If we replace the line with a graph, it is
possible to further generalize this process to higher dimensions, at which point it can be
thought of as a Markov Chain.

As for quantum walks, they can be defined as quantum processes which move the walker in
a direction, due to the influence of unitary transformations [7]. The most basic quantum
walk is the Discrete Quantum Walk on a Line (DQWL). For the previous definition to hold
for a DQWL, it is necessary to consider two quantum systems, one for the walker and one
for the coin [31]. As for the unitary transformations, there is a coin operator that decides
which direction to take and a shift operator that moves the walker in the corresponding
direction. Just as in the classical case, this definition can be extended to graphs, in order
to consider higher dimensional spaces. Furthermore, it is possible to consider the case in
which time is continuous, which leads to continuous quantum walks.

While there are different unitary transformations that can be used for the coin operator,
this is typically done using either the Hadamard transformation or Grover’s Diffusion
Operator.

Search via Quantum Walk

One of the key applications of quantum walks is searching for elements in a set. If we
consider a set of N elements, there are M elements within the set that meet a certain
condition. By taking advantage of quantum walks, it is possible to achieve a quadratic
speedup for the number of iterations necessary to find a marked element, in comparison
with a classical approach. Mario Szegedy [29] found this speedup to be possible only under
certain conditions, which involve the corresponding Markov Chain being ergodic and having
a symmetric transition matrix. This speedup for searching marked elements may sound
very similar to Grover’s algorithm. This is due to the fact that Grover’s algorithm can be
considered a quantum walk on the edges of a graph.

Frédéric Magniez et al. [21] improved upon Mario Szegedy’s work by using quantum phase
estimation, with the aim of approximating the reflection present in Grover’s Diffusion
Operator. They also generalized searching via quantum walks to a less restrictive group of
Markov Chains.

By considering pxy as the probability of reaching state y from state x, we can define the
starting state of the searching algorithm as

|π〉 =
∑
x∈X

√
πx |x〉 |px〉 (2.24)

in which π is the stationary distribution and |px〉 =
∑

y∈X
√
pxy |y〉. The key idea here is

to transform this initial state into a normalized projection onto the group of marked states
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M , which is defined as

|µ〉 = 1
√
pM

∑
x∈M

√
πx |x〉 |px〉 (2.25)

in which pM =
∑

x∈M πx is the sum of the probability of the marked states. In order to
do so, a process similar to Grover’s algorithm is applied T times, with T being selected
uniformly at random in [0, 1/

√
ε] and ε being a lower bound on the probability of an element

being marked.

2.3 Connect Four

Connect Four is a turn-based game in which players drop discs in a grid. The grid is
composed of 7 columns and 6 rows. As for the discs, they are available in 2 different
colors, which are used to distinguish the players.

Each turn, a player is forced to pick a column that has not been filled yet and inserts one
of their discs in it. This is followed by their opponent, who must do the same. Whenever
a player drops a disc, it falls on top of the highest one of that column (unless the column
was empty). This process repeats until either a winner is found or the grid is completely
filled up.

A player wins if 4 discs of the color they picked are positioned next to each other in
sequence. This can happen horizontally, vertically or diagonally. If the grid becomes full
and this condition is never verified, then the game is considered a draw.
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Chapter 3

Literature Review

This chapter starts by covering related work in the field of classical Reinforcement Learning
(RL). This is relevant for two reasons. Firstly, since a classical RL approach was developed
to be used as a means of comparison with the quantum version. Secondly, as understanding
the current capabilities of classical RL is useful for putting the current quantum context in
perspective. We then look at the quantum literature and explore different topics, with a
good portion of them being related with applications within the domain of games. Lastly,
different quantum frameworks are presented and evaluated, so as to establish their capa-
bilities and to be able to provide a proper explanation of the framework chosen for this
work.

3.1 Classical Deep Reinforcement Learning

Yuxi Li [19] gives an introductory overview on Deep RL, covering many essential topics.
For instance, the difference between deep and "shallow" learning is explained, with the
former relying on hidden layers that receive the input of the previous layers. There is
also a backpropagation of gradients, that leads to the optimization of the weights on the
network. The book also goes over many different applications of Deep RL, such as games,
Natural Language Processing (NLP) and robotics.

3.1.1 Atari Games

Volodymyr Mnih et al. [23] used a Convolutional Neural Network (CNN), in order to learn
from raw video data. The objective here is to estimate future rewards, so the agent can
better understand the Atari games it has to play. They made use of Experience Replay,
in which experiences can be replayed from a buffer, so that local minimums that are too
far from the desired can be avoided. They managed to obtain good results, outperforming
previous approaches for 6/7 games and even top players in roughly half of the games.
While they used uniform sampling for their work, they mention that there is potential to
use more advanced strategies, which could yield better results.

3.1.2 The Game of Go

David Silver et al. [26] propose a more focused approach to Alpha Go, which they refer to
as Alpha Go Zero. While the original Alpha Go was first trained by analysing moves made
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by professional players and only afterwards practiced against itself using RL, this new
approach uses only RL. This modification was done to combat some of the known issues
with supervised learning, such as (i) the fact that access to a good quantity of quality
data can be difficult, and (ii) more importantly, the skill ceiling that can be reached when
using human data, since the performance might not reach the levels it otherwise could.
While Alpha Go was already capable of defeating the best human players, it was found
that Alpha Go Zero could go further beyond, winning every single time in a head-to-head
matchup.

3.2 Quantum Neural Networks

S. Mangini et al. [22] present a summary of recent findings and the landscape of the field.
They go over the multiple models, such as:

1. Quantum Neural Networks, which are usually defined as Parameterized Quantum
Circuits (PQCs) that attempt to emulate classical Neural Networks (NNs). Due to
their relatively low requirements in terms of resources, they have the potential to be
useful in near-term noisy quantum computers.

2. Quantum Generative Neural Networks, which are a quantum version of its classical
counterpart. One way to implement them is through Quantum Generative Adver-
sarial Networks, which are composed of 2 quantum NNs: a generator that learns
how to create accurate samples and a discriminator that attempts to distinguish real
examples from the generated samples.

3. Quantum Convolutional Neural Networks, which consist of repeated convolutional
and pooling layers. Convolutional layers are parameterized unitary operations that
apply local transformations to their input, in order to extract information. Pooling
layers consist in measuring selected portions of qubits, in order to achieve dimension-
ality reduction (through the use of mathematical operations, e.g. sum).

4. Quantum Dissipative Neural Networks, in which multiple layers are connected. Once
a layer is no longer needed, it is discarded and the process moves on to the following
one.

However, they also mention possible difficulties in translating classical approaches to the
quantum context, specifically the non-linear functions that are necessary in Deep Learning
(as opposed to the linear nature of Quantum Computing) and the inability to copy.

Christa Zoufal et al. [34] tackle the problem of loading classical data into the quantum
context. They explore the option of loading an approximation of the state, as opposed
to attempting to represent it in its entirety. It is demonstrated that this new approach
requires O(poly(n)) gates, instead of the usual O(2n). As such, this approximate loading
can be useful for algorithms that are resistant to small errors in the input.

3.3 Quantum Reinforcement Learning

3.3.1 Quantum-inspired Experience Replay

Qing Wei et al. [32] proposed a new method for training NNs, using a quantum-inspired
version of a replay buffer, in which experiences can be stored and later replayed for train-
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ing. Their strategy involved using quantum representations of the experiences and then
applying what they referred to as preparation and depreciation operations. The prepara-
tion operation prioritizes the experiences in terms of importance (complexity), while the
depreciation operation takes into account the number of replays of each experience, to
guarantee diversity. Their experiments involved different types of Atari games from the
OpenAI Gym platform [10]. The authors found that their approach achieved either better
or roughly equal training efficiency when compared to classical state-of-the-art algorithms,
namely Deep Reinforcement Learning - Prioritized Experience Replay (DRL-PER) and
Deep Curriculum Reinforcement Learning (DCRL). It is important to notice that this
new method is a quantum inspired algorithm and not a purely quantum one, as it can be
simulated on a classical computer.

3.3.2 Variational Quantum Circuits

Chen et al. [11] used Variational Quantum Circuits (VQCs) for a Q-Learning approach, in
order to approximate the optimal Q-value function. Part of their approach involved trans-
lating classical techniques that solve issues in Deep Q-Learning into a quantum context.
Those techniques were experience replay, which is useful for lowering correlations, and the
use of a target network, to avoid abrupt changes in the Q-value function. They utilized this
RL approach to solve the Frozen Lake and the Cognitive Radio problems. These two were
chosen since they are standard OpenAI Gym environments of low complexity, being suited
for the current era of Noisy Intermediate-Scale Quantum (NISQ). The second one involves
choosing an unoccupied radio channel, showing potential practical applications of Quan-
tum RL for the future. As for the quantum state representation of these environments,
computational basis encoding was used. Their tests involved 3 different types of experi-
ments. They first tested standard simulations on classical hardware, taking advantage of
the python library PennyLane. Secondly, they repeated the same tests while simulating
noise, by using a backend that allows the use of noise models, Qiskit-Aer. Finally, they
used the IBM Quantum platform to test the agents trained in the first experiment on real
quantum hardware. The results from this final experiment showed that even agents trained
on noiseless simulations could reach the desired goals when run on quantum computers.

Andrea Skolik et al. [27] analysed training methods for a Deep Q-learning algorithm that
uses a PQC as the Q-function approximator. Unlike NNs, which are the typical approx-
imator, PQCs have a fixed range of output values, which depend on its measurements.
That fixed range is a limitation, since the Q-values (expected rewards) that need to be
learned can have varying values, depending on both the environment and the agent’s per-
formance. In order to get around this issue, the authors suggest adding trainable weights
to the outputs. They also evaluated the importance of data encoding when it comes to
increasing the expressivity of the model, exploring two methods: data re-uploading and the
addition of trainable weights for the inputs. In data re-uploading, the encoding is done at
the beginning of each layer, instead of solely on the first one. They used Cirq and Tensor-
Flow Quantum in order to study the impact of these techniques on two Atari benchmark
environments, Frozen Lake (discrete) and Cart Pole (continuous). For Cart Pole, their
results validated their assumptions regarding the importance of the encoding and readout
strategies used. They compared it with classical NNs in terms of episodes needed to win
the game and found that the classical model could not complete that task with the same
number of parameters, needing triple of that to achieve the same performance.

Jen-Yueh Hsiao et al. [18] tackled the problem of sample inefficiency that is typically
present in classical RL. For that purpose, they propose a Single-qubit-based Variational
Quantum Circuit (SVQC), which exclusively employs single qubit gates, instead of relying
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on operations that take advantage of entanglement. The outputs of the quantum circuit
are then used as input for a classical NN, which is followed by a softmax function that cal-
culates the probabilities of selecting each action. They evaluated their method in multiple
OpenAI Gym benchmark environments, including Cart Pole, Acrobot and LunarLander.
The results obtained showed that it is not only possible to improve the speed of conver-
gence relative to classical NN approaches, but that the number of trainable parameters
necessary to achieve the same performance is lower. This work is also the first time the
LunarLander environment has been successfully completed by a Quantum RL algorithm.
Furthermore, additional tests were done to ascertain the usefulness of this strategy in cur-
rent NISQ devices. These tests used agents that had been trained on quantum simulators
and compared their performance on the real quantum devices with the one they had on
the simulators, which revealed fairly similar results.

3.3.3 Atari Games

Owen Lockwood et al. [20] propose encoding data into a quantum circuit using a classical
NN, as opposed to doing it in a static manner. This novel approach tries to overcome
previous issues in dealing with large inputs, specifically when it comes to Quantum RL
with Atari games, whose inputs consist of the pixels on the screen. Encoding data of
this sort would typically require either a massive number of qubits or gates, depending
on the specific method. For their experiments, they used a simulator on the TensorFlow
Quantum environment, in order to compare their hybrid quantum-classical methods with
classical ones. Their results showed that the hybrid agents did not learn the environments,
as opposed to the classical approaches, with them concluding that new advancements in
Quantum RL might be necessary to get the desired results in more complex environments.
However, they also mention that there are some key strategies not utilized in their work,
such as data re-uploading, which could be a key factor for the results obtained.

3.3.4 Projective Simulation

Hans J. Briegel et al [9] established an RL framework that projects an agent into simulated
situations, before it chooses the action to take. Projective Simulation is centered around
clips, which represent episodes stored in memory. By considering a stochastic clip network,
it is then possible to think about a clip being excited by a perception of the environment,
which leads to the corresponding experience being replayed. That clip can then jump to a
neighboring clip that contains similar experiences and so forth, through the use of classical
or quantum random walks, until an actuator clip produces an action. This allows the agent
to simulate future situations before making a choice, by projecting itself into those clips.
There is also the possibility of creating fictitious clips, which can let the agent plan using
experiences that never actually happened, before committing to a decision. Furthermore,
tags were employed so that transitions between clips could be classified based on how they
were rewarded. This way, actions that had previously been rewarded for a certain state
have a higher chance of being picked again, as not only is the related transition probability
higher, but the corresponding tag can confirm that the simulated action is a good choice.
They applied their framework to the invasion game, so as to demonstrate its capabilities in
a simple environment. The results obtained showed comparable learning speed to similar
strategies, such as experience replay and Dyna-style planning.

Giuseppe Paparo et al. [24] expanded upon this initial concept by further exploring a
specific variant of this model, known as Reflecting Projective Simulation. This name

22



Literature Review

derives from the fact that the agent reflects upon its choices when it has to select an
action. When a percept clip is excited, by using a re-normalized probability distribution
with support only over its flagged actions, we then apply a quantum walk and check if a
tagged action was obtained. The quantum walk over the clip network mimics the search
for marked elements seen in [21], with the marked elements being the flagged actions. If
the action was tagged, then it is selected, otherwise the process repeats up to a predefined
number of tries, which corresponds to the agent reflecting on that choice. Their work
proved that it is possible to achieve a quadratic speedup with the quantum version of
the framework, while still respecting that the actions need to be chosen according to that
specific re-normalized probability distribution.

3.3.5 Checkers

Miguel Teixeira [30] applied Quantum RL to the game of Checkers, by using a quantum-
enhanced agent. In order to avoid dealing with a large state space composed of every
possible board position, they instead represented the problem using the relative position of
the pieces on the board and their number. This way, similar board states were interpreted
similarly by the agent. As for the agent itself, a quantum flag update mechanism inspired
by [9] was used to facilitate the identification of positive actions, by amplifying the prob-
ability of selecting flagged actions. This mechanism is based on searching via quantum
walks [21]. Their experiments involved a comparison with a classical agent, which used
Negamax to pick its moves. The agent’s learning efficiency was found to be better than
the aforementioned classical approach.

3.4 Quantum Frameworks Analysed

In this section, we will be covering multiple quantum frameworks, explaining how they can
be used and why they are useful. This is not meant as a purely comparative perspective,
but more so as a showcase of their potential usefulness, as some of these tools are compatible
with each other in multiple ways.

IBM-Quantum Experience [1] is an established platform on the field of Quantum
Computing, that provides entry to anyone that creates an account. It has an extensive
and complete documentation, facilitating the creation of complex programs.

There are three main ways to take advantage of this environment:

1. Firstly, it is possible to use a simple drag and drop feature, which allows the user to
position gates on a circuit and view the corresponding representations of the system
(such as the Statevector and the Q-Sphere).

2. Secondly, there is a very basic OpenQASM language, which can be used to create
very simple programs.

3. Finally, there is the possibility of working with Qiskit, which is a very thoroughly
documented and more complete Python based framework. This third option is what
is used for developing in real scenarios. It is especially convenient since it is integrated
with Jupyter Notebook, a widely used Python editor.

After creating a program, a user can select whether they want it to be ran on a simulator or
on a real quantum computer. In case of the latter, it is possible to check the characteristics
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of the quantum hardware selected beforehand (such as the connections between qubits and
the errors associated), in order to make a more informed decision. As these quantum
systems are shared between all users, it is necessary to queue the task to be executed and
wait for it finish. It should also be pointed out that IBM’s quantum simulators allow the
specification of noise models, which can be useful for simulating quantum programs with
a more clear view of how they would perform in a real situation.

However, it is worth noting that most of the quantum hardware, especially the most
powerful, is only available for specific users.

Cirq [2] is Google’s open source python library that can be used to develop quantum
programs. It is possible to use Cirq by installing and importing it, which can be done
either locally or on Google Colab. Google provides thorough documentation and multiple
tutorials for this framework.

Currently, the average user can only run programs created with this tool on quantum
simulators. Access to Google’s quantum hardware is restricted to users with approved
projects. It is also possible to integrate Cirq with other kinds of quantum hardware,
specifically AQT hardware, Azure Quantum, IonQ hardware, Pasqal hardware and Rigetti
hardware. However, these are either restricted to partners, are only in public preview or
have some other type of limitation restricting public access.

There are multiple libraries and extensions that can be used in tandem with Cirq, such as
OpenFermion and TensorFlow.

Microsoft’s Quantum Development Kit [3] has recently started its public preview.
This development kit is based around the programming language Q#, which is a high-
level language that focuses on allowing users to create more complex quantum programs,
without having to worry about circuit details as much [15]. The idea behind developing
this framework was to create something not only suited for running quantum programs
on current quantum hardware, but also for future large-scale quantum computers. This
scalability is achieved through abstractions of standard quantum algorithms and access to
a multitude of general and domain-specific libraries.

While any user can simulate their quantum programs in their own classical setup, running
Q# programs on quantum hardware requires an Azure subscription, which has several
limitations for users with free accounts.

It is also worth noting that the development kit is compatible with Cirq and Qiskit, allowing
users to submit circuits developed with those frameworks.

PennyLane [8] is a python library that aids users in creating quantum Machine Learning
(ML) algorithms. It can be particularly useful for hybrid classical-quantum optimization
architectures, as it provides an interface with standard ML libraries.

It is cross-platform in multiple ways. For instance, it can use quantum hardware from
different sources as its backend, such as IBM-Quantum or IonQ hardware. On top of
that, it can be integrated with other quantum frameworks, including Microsoft’s Quantum
Development Kit and Google’s Cirq. Furthermore, it can be combined with other Python
libraries, e.g. TensorFlow and PyTorch, which are both ML frameworks. It is also possible
to run programs using PennyLane’s own simulators.

Quirk [16] is a web-based quantum circuit simulator, which allows users to drag and drop
gates on a circuit in an interactive way. This platform can be accessed by anyone and does
not require an account. It is designed to be used to test very simple circuits, as it only
allows users to use a maximum of 16 qubits.
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With this program, users can experiment with different circuit setups, to confirm that they
make sense. It is also possible to view more information about each state related with a
circuit, such as their amplitudes, which can aid users in understanding them at a deeper
level.

Essentially, this is a simple visualization tool, which together with other frameworks can
help users design the circuits to implement or to better understand the existing circuits.

3.4.1 Framework Used in this Work

IBM-Quantum Experience was chosen as the framework for this thesis. This decision came
about for multiple reasons. Firstly, as the approach presented is based on the Quantum
RL method developed for Checkers [30], it makes sense to employ the same framework,
so as to be able to reuse some of the code related with the creation of quantum circuits.
Secondly, this is a framework that the author of this work is quite familiar with and will
be able to take full advantage of. Lastly, the completeness of its documentation makes it
easier to solve any potential issues. It is worth noting that the experiments were run on
a quantum simulator, as opposed to real quantum hardware, as training RL agents would
take far too long otherwise.
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Chapter 4

Methods

In this chapter, the methods are presented. We start by covering the opponent, which the
agents have to play against. We discuss how we ultimately got to the Randomized Negamax
approach, explain its usefulness and then proceed to describe it in detail. We then define
Connect Four as a Markov Decision Process (MDP) and explain how Q-Learning was
applied to this board game. From there, we tackle the exploration-exploitation dilemma
within the context of this problem, first going over the approaches applied for the classical
agents. For that purpose, we define a standard ε-greedy approach and then describe the
more complex action selection with tags utilized. Additionally, the quantum exploration
policy is covered, which is the quantum version of the action selection with tags. We show
how it differs from the classical version, the advantages it has, go into detail about its
quantum reflection process and how the action selection probabilities were encoded.

4.1 The Opponent - Randomized Negamax

We will start by establishing an opponent for the Reinforcement Learning (RL) agents to
play against. This way, it will be possible to have a fair comparison between the classical
agents and the quantum agents. While comparing them directly might seem preferable at
first, doing so would complicate matters, as going first in Connect Four is a very significant
advantage. This way, we can indirectly compare classical agents that act as player 1 with
quantum agents that act as the same player. The same logic applies for player 2.

We first considered using Monte Carlo Tree Search (MCTS) agents for this role, as it was
the opponent employed in the work used as a basis for the Q-Learning approach developed
in this dissertation [33]. However, this choice revealed problematic. As the MCTS agents
need to be trained, a significant amount of time is spent training agents that merely exist
to serve as a point of reference. It is further necessary to decide on the number of episodes
these agents need to be trained for, in order to serve as a competent enough adversary.
This is a problem, since it means that in order to create opponents of different strengths,
it is imperative to train multiple agents for a different number of episodes and assess their
performance. Furthermore, it is essential to train agents with the same number of episodes,
in order to ensure that no outliers are selected as actual opponents. The same logic applies
to the parameters of the MCTS, which by themselves lead to the training of more agents,
so as to validate those parameters. On top of that, even if the MCTS agents are trained
for extended periods of time, they can still be vulnerable to very simple strategies, such as
stacking a specific column of the Connect Four board. As a result, this type of opponent
was considered inadequate.
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We then thought about using an opponent that plays randomly for most of the game,
but has a built-in mechanism that looks ahead two moves and forces it to choose winning
moves and never pick ones that lose on the spot, unless all of the moves available are
losing. The problem with this idea is that, although we can ensure that the agents are
being evaluated on their ability to close out a game, the lead-up to that consists of merely
fighting a random opponent, which does not make for a very interesting challenge of the
agents’ abilities.

From there, we contemplated adopting a Minimax [25] strategy for the opponent. This
algorithm can be applied when we have a zero-sum game [25], which implies that the gain
for one player is the equivalent loss for the other player, hence the sum of the scores of
both players is always zero. The idea behind the algorithm is to recursively look ahead
a certain number of moves and evaluate all the possible actions in each move selection
through an evaluation function, in order to pick the best one. In each step corresponding
to its opponent, the action that maximizes that player’s score is selected, which is in turn
the one that minimizes the score of the Minimax player [28]. Essentially, this leads to
choosing the best move according to an evaluation function, while assuming that both
players are selecting the actions that are considered optimal.

The specific variant of Minimax we chose was Negamax 1, which alters the formulation of
the problem, so that in each step one player considers the negated score from the other
player. This is equivalent to the standard Minimax formulation, but avoids having to use
two slightly different functions for each player. This is defined by the following equation,
in which depth is the number of moves we are looking ahead.

scoreA = −Negamax(depth− 1)B (4.1)

Finally, we put some of the previous ideas together, in order to form a Randomized Nega-
max algorithm. The idea here is to have a Negamax algorithm, but after returning from all
the recursive calls back to the final move selection, there is a random chance ω of selecting
a move at random, as opposed to the optimal one. This is done in order to present a
more complicated challenge for the agents, as they will have to deal with some randomness
in the move choices from the Negamax opponent. This random selection prioritizes the
moves with positive scores, so as to guarantee a strong performance under that random-
ness. Furthermore, we incorporated the previously mentioned strategy of always selecting
moves that directly win the game and never selecting ones that directly lose the game, if
possible. This way, we ensure that the agents cannot win in overly trivial ways, such as
stacking a fourth disc when the Negamax player has no reason not to fill that spot first.
This algorithm can be visualized in Algorithm 1.

The Randomized Negamax algorithm makes use of Alpha-Beta Pruning [25] in order to
more efficiently explore the game tree. This technique relies on parameters α and β, which
are lower and upper bounds on the evaluations, respectively. When a score bigger than
the upper bound is found for player A, the analysis of the corresponding tree branch can
stop, as player B would pick a move that denies the opportunity of surpassing that upper
bound. Meanwhile, when player B finds a score smaller than the lower bound, the analysis
can also stop, as player A would choose a move that guarantees that lower bound. This
way, it is possible to reduce the amount of time spent evaluating actions from the game
tree.

The heuristic function called in the Randomized Negamax algorithm corresponds to an

1https://www.chessprogramming.org/Negamax (Accessed: 3 July 2022)

28



Methods

Algorithm 1 Randomized Negamax
1: procedure RandomizedNegamax(state, depth, α, β, tag)
2: if depth = 0 or gameDone(state) then
3: return move← −1, eval← heuristic(state, tag)
4: moves← availableMoves(state)
5: winning_moves← list(), losing_moves← list(), evaluations← dictionary()
6: max_eval← −∞, min_eval←∞
7: tag_b← changeTag(tag)
8: for move in moves do
9: state_b← makeStateFromMove(state,move, tag)

10: evaluation← −randomizedNegamax(state_b, depth− 1,−β,−α, tag_b)[eval]
11: evaluations.update(move← evaluation)
12: if evaluation > max_eval then . Update Max Evaluation
13: max_eval← evaluation
14: best_move← move

15: if evaluation < min_eval then . Update Min Evaluation
16: min_eval← evaluation

17: if evaluation > 0 then . Append Winning Move
18: winning_moves.append(move)
19: else . Append Losing Move
20: losing_moves.append(move)
21: α← max(α,max_eval) . Alpha-Beta Pruning
22: if α >= β then
23: break
24: if length(winning_moves) > 0 then . Choose from the winning moves
25: move← randomChoice(winning_moves)
26: else . Choose from the losing moves
27: move← randomChoice(losing_moves)
28: if depth = starting_depth andmax_eval < 10000 andmin_eval > −10000 then
29: p← random number in [0, 1]
30: if p < ω then
31: return move = move, eval = evaluations[move]

32: return move← best_move, eval← max_eval
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evaluation of the current state and can be visualized in Algorithm 2. This evaluation
starts by checking if the game is over, so that it can employ a protection against choosing
randomly when that specific move choice could end the game. If the game would end in
a draw or the player currently being evaluated would be the winner of the game, then a
score of 10000 is received. On the other hand, if the other player would win, then -10000
is returned. When the Randomized Negamax function gets to the final move choice, it will
compare the highest and lowest evaluations with 10000 and -10000 respectively, so that
the final move decision is never random if the sequence of moves that follow it can end the
game. This way, the Negamax player does not lose in overly simple ways. Ten thousand
was chosen as it is a bigger number than the highest possible heuristic obtained normally,
while still being smaller than ∞. The same logic applies for the negative case.

Algorithm 2 Heuristic
1: procedure Heuristic(state, tag)
2: winner ← gameWinner(state)
3: if winner = tag or winner = 0 then . Win or Draw
4: return 10000
5: else if winner 6= None then
6: return −10000 . Opponent Wins
7: max_heuristic← 0
8: min_heuristic← 0
9: for i← [0, length(state[:, 0])− 3[ do . Rows

10: for j ← [0, length(state[0, :])− 3[ do . Columns
11: new_max, new_min← connect4(state[i : i+ 4, j : j + 4])
12: if new_max > 1 then
13: max_heuristic← max_heuristic+ new_max× 2

14: if new_min < −1 then
15: min_heuristic← min_heuristic+ new_min× 2

16: if tag = 1 then
17: return max_heuristic+min_heuristic
18: else
19: return −(max_heuristic+min_heuristic)

If the game has not ended however, then the evaluation is calculated using an heuristic,
with the state in the algorithm being the Connect Four grid itself, with 7 columns and
6 rows. The idea is to consider every 4 by 4 square inside the Connect Four grid, with
the tags for the players 1 and 2 being identified with 1 and -1, respectively. By sum-
ming along the column, row and both diagonals of each of those squares, we obtain four
numbers, which represent the advantage a player has in each of those four lines. Positive
values indicate that player 1 has the advantage, while negative values signify the opposite.
The connect4 function simply returns the highest and lowest of those four values to the
heuristic algorithm. This iteration through every 4 by 4 square is done in the for loops
of the heuristic function. From there, if the highest value returned is higher than 1, then
we sum the double of its value to the max_heuristic variable, with a similar strategy
being applied for the lowest value. The reason for only considering values higher than 1
and lower than -1 is to only benefit players that are actually connecting multiple discs,
while penalizing lines that have discs from the other player in the middle. The values are
multiplied by 2 to create a bigger gap between, for instance, connecting 2 and 3 discs.
The final value returned is the sum of the highest heuristic, which is always positive, with
the lowest heuristic, which is always negative. This value is negated if the player being
evaluated is player 2, as that player’s discs have the value -1 instead of 1.
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4.2 Connect Four as a Markov Decision Process

We can define the RL problem of Connect Four as an MDP, as it obeys the property of
the future only depending on the current state and action selected (and not on the past)
[19].

State Space S: The state space is composed of every possible combination of empty
spaces and discs from either player. Since the board has 7 columns and 6 rows, that means
we have 7× 6 = 42 spaces on the grid. As such, we have at most 423 possible states (since
each space can be empty, have a piece from player A or have a piece from player B). By
ignoring positions that are impossible to reach, such as having discs in the middle with
nothing below them, we can get a lower state-space complexity of 4.53 × 1012 [14]. As
mentioned in [33], we can consider that half of these states correspond to one player and
the other half to another, as the player going first will always see a board filled with an
even number of pieces before selecting a column to play, while the opposite is true for the
other player. In the context of this thesis, the state space is represented through a matrix
with 7 columns and 6 rows, which corresponds to the Connect Four grid. In this matrix,
0 represents an empty space, 1 represents a disc from player 1 and −1 represents a disc
from player 2.

Action Space A: The action space is defined by the columns a player can insert a
disc in. Since there are 7 columns, this space corresponds to 7 minus the number of full
columns in which discs cannot be inserted.

Reward Function R: The reward function used was adapted from [33] and is the
following:

R(s, a, s′) =


1 if the agent wins the game
0.5 if the game is a draw
−1 if the agent loses the game
0 if the winner is yet to be decided

(4.2)

Discount Factor γ: A discount factor of 1 was chosen for this problem, which means the
Total Reward is being considered.

4.3 A Connect Four Q-Learning Approach

The RL method used in this work was Q-Learning, which is a model-free, Temporal-
Difference (TD) learning approach, as mentioned in Chapter 2. The idea is to try to learn
the optimal action-value function Q directly, with Q(St, At) representing the expected
future reward for the state-action pair [27, 28]. Q-Learning can be defined by the following
equation:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)] (4.3)

in which α is the learning rate, Rt+1 is the reward for selecting action At in state St, γ
is the previously mentioned discount factor and max

a
Q(St+1, a) is the highest action value

Q out of the possible transitions for the following state. It is also worth mentioning that
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Rt+1 + γmax
a
Q(St+1, a) is considered the target value, while Rt+1 + γmax

a
Q(St+1, a) −

Q(St, At) is considered the TD error.

We can think of an optimal action as selecting the action with the highest Q value for a
state.

In [33], a classical Deep Q-Learning approach was used to train RL agents that can learn
how to play Connect Four. Those agents were trained by playing against random agents
and then evaluated by playing against MCTS. The results obtained showed that the trained
Q-Learning agents had a similar win rate to the MCTS agents.

The code present in their work was used as a starting point for the Q-Learning approach
used in this thesis. It initially allowed for the creation of classical agents, which themselves
served as the basis for the quantum agents, as well as a means of comparison.

Since Connect Four is not as complex as Chess or Atari games, it would be possible to
solve the game in a classical computer using a brute-force approach, taking advantage
of search algorithms [12]. As such, the idea behind the Q-Learning approaches proposed
in this dissertation is not to find an algorithm that surpasses those brute-force methods,
but rather to create RL agents that can play well against relatively powerful classical
approaches.

4.3.1 Relevant Choices for this Approach

The Q-Learning method used as reference was changed in order to fulfill multiple purposes.
For instance, in the original work, the ε used for the ε-greedy exploration policy was
changed manually. For this dissertation however, the corresponding ε-greedy approach uses
a varying ε, which decreases gradually with the number of episodes. Furthermore, different
exploration policies were used. These ideas will be thoroughly explored throughout this
chapter.

Furthermore, offline learning was used to train the Q-Learning agents. This means that
the agents played a certain number of games, equal to the size of the batch (which was
fixed at 300 episodes) and were then trained on that batch before moving on to the next
batch of games. Each batch ran for 5 epochs, which means that the Neural Network (NN)
spent 5 cycles with the same batch. This is the same way that the agents were trained in
[33].

Two networks were tested for the Deep Learning of the Q-function, with them being used
to learn the Q values at the end of every batch, allowing Equation 4.3 to be solved for each
transition stored in the batch. For each state-action pair, the network predicts its value
by considering the Connect Four matrix, which represents the state, appended to a vector
with seven numbers, a 1 in place of the column selected and zeroes everywhere else, which
represents the action taken. Network A was the one used in the work that contains the
code adapted for this project [33]. Meanwhile, Network B is the same Network B used in
[12]. Preliminary results were inconclusive regarding the performance of the two networks.
As such, Network A was ultimately chosen, as it was the one present in the original work
this Q-Learning approach is based on.
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4.4 Exploration Policies for the Classical Approach

A common problem in RL is balancing exploration with exploitation. An agent explores
by trying new actions (usually randomly) and exploits by picking an action considered
optimal by its current policy. If an agent does not explore enough, it will be missing better
moves that it simply never tried to use. However, if an agent does not exploit enough,
than its behaviour will be almost random and it will not take enough advantage of what
it is learning.

4.4.1 A Greedy Solution

In order to deal with this issue, an ε-greedy approach was tested. The idea is to pick an
exploratory action with probability ε and to choose an optimal action with 1-ε probability.
This is a very generic approach that can be applied to most RL problems in order to
achieve some decent results.

ε− greedy =

{
ε Pick a random action
1− ε Pick an optimal action

(4.4)

We first tested this approach using a fixed ε, which seemed to work relatively well. However,
since varying the ε yielded better results, that approach was ultimately chosen. With that
in mind, ε is updated following this equation:

εepisode =
1

log(episode+ 1)
(4.5)

in which the +1 in the denominator is used to avoid log(1) = 0 when episode = 1, as that
would lead to 1/0.

4.4.2 Action Selection with Tags

In order to achieve a better exploration of the state space, we can instead employ action
selection based on tags, as seen in [30]. This is the strategy that will also be adopted for
the quantum version of the algorithm, with the necessary adjustments. We will cover both
the key concepts related to this approach, as well as how they are applied in this work.

The idea to use flags for action selection was initially presented in [9]. The main concept
is to associate each state’s actions with tags, in order to identify which ones have been
rewarded positively in previous action selections. During action selection, the agent can
take advantage of these flags to reflect on its choices, so that it is more likely to select an
action capable of yielding a good result. This process is known as reflection.

In [24], a specific way to utilize the flags in the reflection process is mentioned. Though
there are some differences, as we will see later, this strategy is the baseline for the approach
utilized in this thesis, so we will start by explaining how it works. Every action of each
state starts out by being tagged. When an action is selected for a certain state, if the
corresponding reward is not positive, then the tag is removed. If there is a situation in
which all the actions relative to a certain state have lost their flags, then all of them become
flagged once again, ensuring that there is always at least one action with a flag for each
state. During the reflection process, the agent repeatedly attempts to sample a flagged
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action for a predefined number of iterations R, which corresponds to reflecting about its
choice. Each of these steps of deliberation can be seen as a classical random walk over
a directed weighted graph, in which the transition probabilities lead the agent from the
state to each of the possible actions. More accurately, each step can be described as a
random walk over a Markov Chain, with the transition probabilities to each action having
the same value as the probability of selecting that action while in that state. Figure 4.1
is an example of this type of Markov Chain. The objective of this iterative process is to
ultimately approximate ∼πs for each state s, which is a re-normalized version of the original
stationary distribution πs, but with support only over the flagged actions f(s). ∼πs can be
visualized in Equation 4.6.

Figure 4.1: A Markov chain for a specific state, with the transition probability to each
action matching the probability of selecting that action when in that state. The flagged
actions are coloured orange. The reflection process can be thought of as a random walk
over this Markov Chain, repeated for up to R iterations.

∼
πs(a) =

{
πs(a)∑

a′∈f(s) πs(a
′) If a ∈ f(s)

0 Else
(4.6)

The concept of applying a random walk so as to transition to one of the possible actions is
explored in this thesis. For Connect Four specifically, we consider the transition from each
state into its available actions, each of which corresponds to inserting a disc on a specific
column. These actions all start out by being flagged and may be removed by a process
which will be explained later in this section. We can see this illustrated in Figure 4.2.

Figure 4.2: A graph representing the transition probabilities for each action of a specific
state, with each action corresponding to inserting a disc on that column. The flagged
actions are coloured orange. Each iteration of the reflection process can be seen as a
random walk on a Markov Chain similar to the one on Figure 4.1, with the transition
probabilities matching the ones seen here.
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This strategy of gradually removing flags according to a criteria and deliberating on the
action choice for a specific number of iterations was used as a starting point in [30], in
conjunction with a soft-max policy that will be described below. The approach for action
selection in this thesis uses the same key ideas as the one developed for that work, which
focused on improving the exploration of the state space for Checkers.

The main difference between this method and the previously mentioned one [24] is in the
update mechanism of the flags. Instead of deleting flags based on whether or not their
transitions were rewarded, instead they are removed if their corresponding Q value was
smaller than 0. That way, the update takes into account a more nuanced view of how each
transition impacts the odds of winning a game. This is due to the fact that simply using
the immediate reward leads to ignoring that a move evaluated as worse at the moment
can potentially lead to a game winning scenario and vice versa. In general, using the Q
value makes the most sense when considering more complex environments, in which the
immediate reward does not necessarily present the full picture. This change is especially
crucial for this thesis in particular, considering that the reward function only rewards the
final transition. Meanwhile, if the action selected had a positive Q value despite not having
a tag, then it receives a new one. Also, when all actions of a certain state lose their flags,
all of them except the last one picked gain it back, as opposed to simply allowing every
action of that state to have a flag again. This mechanism for updating flags happens after
the reflection process and can be seen in Algorithm 3, in which the flagged_actions and
the q_values are relative to the current state. Keep in mind that this is the same process
proposed in [30].

Algorithm 3 Flag Update Mechanism
1: procedure UpdateFlags(flagged_actions, q_values, action_selected)
2: if q_values[action_selected] < 0 then
3: Remove action_selected from flagged_actions
4: else
5: if action_selected not in flagged_actions then
6: Append action_selected to flagged_actions
7: if flagged_actions is empty then
8: flagged_actions← all available actions, except action_selected

As for the probabilities of selecting each action for each state, a Boltzmann distribution,
also known as soft-max policy, was used. The key concept for this distribution is to make
the probability of selecting an action related to its Q value. That way, action selection
can benefit from randomness in order to improve the exploration, while still exploiting
its current knowledge by choosing actions with higher Q values more often. Furthermore,
it makes use of a temperature T , which controls the balance between exploration and
exploitation. T decreases with the number of episodes, which corresponds to gradually
increasing the relative probability of selecting actions with high Q values, leading to more
exploitation as the agent becomes more familiar with the environment. This probability
distribution can be seen in Equation 4.7, in which A(s) represents the set of actions for
state s, a represents an action and Q(s, a) represents the Q value of a state-action pair.

P (a|s) = eQ(s,a)/T∑
a′∈A(s) e

Q(s,a′)/T
(4.7)

We can see the reflection process, in which the agent attempts to sample a flagged action
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for a maximum of R iterations, in Algorithm 4. If no flagged action is obtained in R steps,
then the last action sampled is chosen. Notice that this is the previously mentioned process
explored in [24], but using a Boltzmann distribution for the probabilities of each action,
as was done in [30].

Algorithm 4 Classical Reflection
1: procedure ClassicalReflection(flagged_actions,R)
2: for [0, R[ do
3: action← sample according to Boltzmann Distribution
4: if action in flagged_actions then
5: break
6: return action

4.5 A Quantum Exploration Policy

As previously mentioned, this exploration policy is the quantum version of the action
selection with tags introduced in the preceding section, first proposed in [30], which itself
was based on [24]. As the objective of this type of exploration policy is to output flagged
actions with high probability, it is crucial to guarantee that this happens consistently. This
is where Quantum Computing can come into play, making it possible to achieve a quadratic
speedup in the number of iterations necessary to obtain a tagged action during the reflection
process, as will be explained during this section. Achieving this kind of speedup can be
very beneficial, as it implies that we are not reaching the maximum number of iterations
R as often, which would otherwise result in sampling random actions far too frequently,
which goes against the purpose of the algorithm.

We will now cover the quantum reflection process and how it differs from the classical
approach. Recall that the aim of the reflection process is to approximate the ∼πs seen in
Equation 4.6, which is the re-normalized stationary distribution for state s, with support
only over the flagged actions. In the classical version, this is accomplished with a classical
random walk over a Markov Chain, at each step of the iterative process, as seen in Figure
4.1. So naturally, the quantum equivalent would be to use a quantum walk in its place,
as shown in [24]. This process is similar to the search via quantum walk presented in [21],
in which a randomized Grover search is applied in order to find marked elements. In this
case, the marked elements correspond to the flagged actions.

It is important to mention that in a standard quantum walk, it would be necessary to
employ two quantum registers [21]. This implies the use of 2× log(N) qubits for a set of
N elements, with N corresponding to the number of actions available when considering
the context of action selection. However, as explained in [30], for this action selection
process, we are essentially considering the rank-one Markov Chains mentioned in [13, 24],
since each state is being assigned a Markov Chain containing solely the actions for that
state, with transitions to each action having the probability of selecting that action while
in that state. As such, every action in the chain has the same transition probabilities to
the other actions, which means that it is possible to use the same unitary transformation
to encode them. In other words, it is only necessary to utilize a single quantum register
with log(N) qubits. This is important, as it means that not only are less qubits required,
but also that the number of controlled operations on the qubits is reduced, both of which
are key to achieving successful quantum advantage in the current quantum context. Once
again, Figure 4.1 illustrates this type of Markov Chain.
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The first step of this quantum reflection process is to encode the stationary distribution
πs, which leads us to the quantum state |πs〉. This state can be seen in Equation 4.8, with
πs(a) representing the probability of selecting action a and |a〉 being its corresponding basis
state. This part of the process will be explained in more detail in the following section.

|πs〉 =
∑

a∈A(s)

√
πs(a) |a〉 (4.8)

From there, it is necessary to repeatedly apply two reflection operators in succession, in an
identical manner to a randomized Grover algorithm. Note that the reflections performed
by the reflection operators are related with the quantum states, not to be confused with
the reflection process in which the agent reflects over its actions for a maximum of R steps.
The number of repetitions for the two reflections, T , is chosen uniformly at random in
[0, 1/

√
ε], with ε representing a lower bound on the probability of an action being flagged.

The reason for this choice is due to the fact that a randomized Grover algorithm should
be applied a number of times chosen uniformly at random from that interval [21].

The first operator is a reflection over the flagged actions, which is referred to as ref(f(s)).
Its aim is to check which actions have a tag and then flip the phase of every action belonging
to f(s). This is achieved with the use of a Boolean function F (a), which returns 1 if the
action has a tag and 0 otherwise. By applying the oracle −1F (a), the actions are evaluated,
with the flagged ones being subjected to a phase kickback, which is a rotation by a phase
of π radians. Notice that this is very similar to the first step of Grover’s algorithm, which
was explained in Subsection 2.2.6. This operator is represented in Equation 4.9.

|a〉 →

{
− |a〉 If a ∈ f(s)
|a〉 Else

(4.9)

As for the second operator, it is a reflection over the encoded stationary distribution |πs〉.
By reflecting the actions over |πs〉 after having flipped the phase of the ones with flags, the
amplitudes of the flagged actions will greatly increase, while the amplitudes of the other
actions will slightly decrease. This is identical to the inversion around the mean in Grover’s
algorithm, known as Grover’s Diffusion Operator, which was explained in Subsection 2.2.6
and is shown in Figure 2.2. This operator can be seen in Equation 4.10, with I representing
the identity.

ref(πs) = 2 |πs〉 〈πs| − I (4.10)

Typically, quantum phase estimation is used in order to approximate this second reflec-
tion, which can otherwise be difficult to implement. However, since we are considering
transformations being applied on a single quantum register, as mentioned earlier, it is pos-
sible to obtain this operator using the transformations shown in Equation 4.11, which was
proposed in [30]. D0 represents a reflection over the state |0〉. Uπ is the operator used to
encode the stationary distribution and will be explained in more detail in the following
section. U †π is the conjugate of Uπ. First, U †π reverses the encoding, then D0 rotates over
state |0〉 and lastly Uπ encodes the probability distribution once again. This process is
equivalent to a reflection over πs.

ref(πs) = UπD0U
†
π (4.11)
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Finally, the quantum circuit is measured. If the action obtained is tagged or the maximum
number of reflections R has been reached, then it is selected by the agent. Otherwise, the
entire process repeats for that state.

The full quantum reflection procedure is shown in Algorithm 5. The code used for this
algorithm was adapted from the one used in [30].

Algorithm 5 Quantum Reflection
1: procedure QuantumReflection(flagged_actions,R, ε)
2: circuit← encode the quantum state |πs〉
3: for [0, R[ do
4: T ← chosen uniformly at random in [0, 1/

√
ε]

5: for [0, T [ do
6: circuit.reflection_operator(flagged_actions)
7: circuit.diffusion_operator()
8: action← circuit.measure()
9: if action in flagged_actions then

10: break
11: return action

As the average number of repetitions required for this process is 1/
√
ε, as opposed to 1/ε for

the classical case, we achieve a quadratic speedup for obtaining a flagged action [21], while
still obeying the fact that the actions need to be sampled according to the re-normalized
distribution [24]. While this strategy is not regarded as being optimal for simple searching
problems [21], it has been shown to be optimal when it is merely necessary to output an
action from a good approximation of the re-normalized distribution ∼πs [24].

4.6 Encoding The Action Selection Probabilities

The encoding of the action selection probabilities was done using the coherent controliza-
tion scheme introduced in [13]. This method was also utilized in [30] and the code utilized
for the probability encoding in this thesis was adapted from that work.

Coherent controlization is built around a unitary operator Uπ, which can take the quantum
state from |0〉 into the encoded stationary distribution |πs〉.

Uπ |0〉 = |πs〉 (4.12)

This type of encoding utilizes angles as parameters, with these corresponding to the proba-
bilities from the stationary distribution. As such, it is first necessary to convert the classical
probabilities into angles. These probabilities are the ones obtained from the Boltzmann
Distribution, just as in the classical process. The procedure used to convert them involves
recursively calculating angles and can be visualized in Algorithm 6. Keep in mind that
the calculateAngle process called is a simple function that returns 2× arccos

√
x, with x

being the value received by calculateAngle.
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Algorithm 6 Probabilities to Angles
1: procedure ProbabilitiesToAngles(probabilities, previous = 1.0)
2: if len(probabilities) = 2 then
3: return calculateAngle(probabilities[0]/previous)
4: lhs, rhs← split(probabilities, 2) . Split the probabilities in 2 arrays
5: angles← []
6: angles.append(calculateAngle(sum(lhs)/previous))
7: angles.append(probabilitiesToAngles(lhs, sum(lhs)))
8: angles.append(probabilitiesToAngles(rhs, sum(rhs)))
9: return angles

After obtaining the angles, Uπ can be constructed by taking advantage of controlled rota-
tions over the y-axis, using the angles as parameters. This type of quantum circuit can be
seen in Figure 4.3, which was adapted from [30].

Figure 4.3: Examples of coherent controlization. Adapted from [30]. The empty circle ◦
represents that the corresponding transformation is applied if the control state is |0〉, while
the filled circle • acts the same way in the presence of |1〉. The circuit at the top shows the
use of 2 qubits to encode up to 22 = 4 actions, while the one at the bottom represents the
use of 3 qubits to encode up to 23 = 8 actions. Notice that the second circuit is constructed
by recursively applying the first one.
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Chapter 5

Experimental Setup

In this chapter, the experimental setup is covered. First, the choices of parameters related
with the Randomized Negamax opponent are explained. From there, an overview of how
the Reinforcement Learning (RL) agents were trained and tested is given. Lastly, aspects
related with the experimental setup of the RL agents are presented. To avoid confusion, any
time the term "agent" is used, it is meant to represent either a classical or quantum agent,
whereas the term "opponent" corresponds to the opponent making use of the Randomized
Negamax strategy.

5.1 Setup for the Opponent (Randomized Negamax)

The probability ω of selecting a random move was chosen to be 0.3. This value was picked
after some preliminary tests with different values for ω. Values lower than this led to the
agents playing too many similar games, which defeated the purpose of using a randomized
approach. Meanwhile, values higher than 0.3 were making the challenge too trivial for the
agents, as the use of too many random moves made it simple to setup winning scenarios.

As for the depth parameter, which represents the number of moves the opponent should
look ahead, a value of 2 was selected. Using a depth of 1 would mean that the opponent
only takes into account the positions it can reach after making its move, while completely
ignoring what the agent is capable of doing during the action selection that comes after
that. As for higher depths, while they would make for interesting experiments, preliminary
tests revealed that even a depth of 4 would lead to a very significant increase in the amount
of time necessary to run a set of games. This longer play time is a consequence of two
factors. Firstly, the opponent takes longer to make a decision, as it needs to look further
ahead for every choice it makes. Secondly, since the opponent is effectively a stronger
player, the agents are forced to train for a much higher number of episodes, so that they
can achieve reasonable win rates. Due to time constraints, doing multiple runs of these
longer experiments was simply not feasible.

5.2 Training and Testing the RL Agents

The agents were trained by letting them play multiple games against the Randomized
Negamax opponent and measuring the average number of moves played and the number of
wins, losses and draws they obtained, among other statistics which will be detailed below.
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This process was repeated for 20 independent runs, each with a unique seed, with the
results for each metric being the average across all of those runs.

The number of games played depended on whether the agent was acting as player 1 or
player 2. Since going second in Connect Four is a considerable disadvantage, the agents
need to play more games in order to reach reasonable win rates. As such, 1800 episodes
were used to train the going first agents, while 3600 were used for the going second agents.

The training time was also recorded. Considering the limitations of the current quantum
context, the quantum agents are expected to perform worse on this metric.

Furthermore, the number of states explored during training was also used as a metric. This
number can allow for a better understanding of how the win rates obtained by each type
of agent relate with the number of states they were exposed to during training.

For the agents with tagged action selection, the average number of iterations to obtain a
flagged action was registered. This metric is used to compare the classical and quantum
versions of this approach on how consistent they are at sampling flagged actions. Specifi-
cally, a lower average number of iterations indicates that flagged actions are obtained more
frequently, since the reflection limit R is not being hit as often, which would results in the
last action sampled being chosen instead. Note that when a flagged action is not hit during
action selection, surpassing the limit R, the corresponding number used for the average
will keep summing the iterations of the following action selection process, and so on, until
a flagged action is eventually hit.

After finishing the training, each agent was tested by playing 1000 games against the
Randomized Negamax opponent. This was done to obtain a good representation of the
performance of the agents after their training had been completed. For these tests, only
the average number of moves and the number of wins, losses and draws were considered.
Just as in the training phase, the results shown will be the average across 20 seeds. Note
that while testing, all of the agents made use of an optimal action selection function,
which always returns the action with the highest Q value. This was done with the intent
of enabling a fair comparison between the different agents, only taking into account the
actions considered optimal by their current policy, which corresponds to exploiting the
knowledge they obtained while training.

5.3 Setup for the RL Agents

The learning rate α of the Q-Learning equation was set to 0.5. This applies to every type
of agent.

For the agents using action selection with tags, the maximum number of iterations R was
set to 5. As for the temperature parameter T seen in Equation 5.1, since the idea of
using a Boltzmann distribution was inspired by [30], the temperature function used in that
work was used as a basis, but altered to fit the context of our approach. In particular,
a parameter that we refer to as δ was changed so that a high inverse temperature 1

T is
reached around 1800 or 3600 episodes, depending on whether it is a going first or a going
second agent. In Figure 5.1, the inverse temperature functions can be observed.

T = 0.2 +
20− 0.2

1 + e0.35×(episode/δ)
(5.1)
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Figure 5.1: The Inverse Temperature Functions.

43



This page is intentionally left blank.



Chapter 6

Results and Discussion

In this chapter, we present and discuss the results obtained from the experiments, which
were designed as described in Chapter 5. We first go over the results from the player 1
agents. Then, we do the same for the player 2 agents. Lastly, we provide answers for the
Research Questions.

6.1 Player 1 Agents

In Table 6.1, we can observe the results that the player 1 agents obtained during training.
The average number of moves was higher for the classical ε-greedy agents, which corre-
sponds to playing longer games. Since their training win rate is still quite similar to the
other agents, this is likely due to them taking longer to convert strong board positions into
a win, which would imply that they might have overly emphasized exploration in favour of
exploitation. Regarding the number of states explored, the classical ε-greedy agents were
once again the exception, being exposed to a significantly higher number of them, which
gives credibility to the previous statement about them overly favouring exploration. This
higher number of states explored could be a consequence of them having played longer
games, which would naturally lead to exploring more states.

Table 6.1: Player 1 Agents (Training)

Agent Iterations States Win% Loss% Draw% Moves Time(h)
Classical, ε-greedy 9743 8.1 91.3 0.6 20.4 2.6
Classical, tags 1.495 8138 7.6 92.4 0.02 15.5 2.1
Quantum, tags 1.414 7986 8.6 91.4 0.04 15.4 2.8

As for the average number of iterations necessary to obtain a flagged action, the quantum
agents required less iterations than their classical counterparts, which is in accordance with
the theory surrounding them. While the difference might seem small, there are two factors
to consider. First, that the maximum number of iterations R was set to 5. And second,
that a considerable number of flagged actions are obtained in the first iteration. As such,
it becomes clear that a difference of almost 0.1 is quite substantial, as is verified by their
results while testing in Table 6.2, in which the quantum agents had the highest win rate
by a significant margin.

Meanwhile, the quantum agents spent the most time training, which is not a surprise
considering the difficulties in simulating quantum computation. However, the difference

45



Chapter 6

between these agents and the classical ε-greedy agents is not very significant, which could
be due to them having played longer games, on average.

Table 6.2: Player 1 Agents (Testing)

Agent Win% Loss% Draw% Moves
Classical, ε-greedy 19.3 78.4 2.3 22.1
Classical, tags 63.2 35.9 0.9 15.0
Quantum, tags 71.4 28.3 0.3 12.8

In Table 6.2, the results obtained while testing the player 1 agents are presented. We
once again find that the classical ε-greedy agents played longer games, which is likely due
to them having favoured exploratory moves too frequently while training. This had a
clear impact on how often they drew a game, with them having a higher number of draws
than the other agents. Looking at the win rates, we can conclude that the tagged action
selection policies are much more effective at training the agents, as they both managed to
achieve reasonable results, while the classical ε-greedy agents had a very poor performance.
Between the flagged action selection agents, the quantum version had a higher win rate,
which validates the hypothesis of them having better training efficiency than the classical
variant.

6.2 Player 2 Agents

In Table 6.3, we can view the results from the training of the player 2 agents. Once
again, the quantum agents required less iterations to obtain flagged actions, which should
be due to the quantum speedup achieved during the reflection process. The time spent
training was lower for the classical agents, just as before. The difference might seem more
pronounced this time, but this is merely due to the values themselves being higher, with
the classical agent taking around 70% of the time in both cases. Of course, as you scale
to more complex problems, while the relative difference might be the same, adding more
hours to each run of an experiment becomes quite a detriment. This further shows that
quantum simulation has very clear limitations.

Table 6.3: Player 2 Agents (Training)

Agent Iterations States Win% Loss% Draw% Moves Time(h)
Classical, tags 1.604 13109 6.2 93.8 0.02 14.4 3.2
Quantum, tags 1.477 12995 5.5 94.4 0.03 14.3 4.5

The results from testing the player 2 agents are shown in Table 6.4. Comparing the win
rates obtained with those of the player 1 agents, we can see that even with double the
number of training episodes, the player 2 agents still obtained a worse performance. This
is in line with the theory regarding the advantage of playing first in Connect Four. As for
how the results of the player 2 agents stack up to each other, it is surprising to see that
the classical agents had a better win rate. Initially, this seemed to be due to the quantum
agents having more runs with outliers (3 as opposed to 1). However, if we remove those
outliers, then the win rate becomes very similar for the two agents, at around 57-58%, when
we would expect the quantum agents to do better. Since the quantum agents obtained
flagged actions more reliably, that means that the algorithm is still working as intended.
The most likely explanation for these strange results is the number of episodes chosen. If
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we were to pick a higher number of episodes, to the point where the quantum agents are
achieving at least a 70% win rate, as is the case for the player 1 agents, it is possible that
the quantum agents would perform better. Since training the player 2 agents is a much
more complex problem, it is possible that for the number of episodes selected, exploration
still needs to be favoured significantly in comparison with exploitation, with the relatively
low win rates of around 50% supporting this theory. As such, the advantage of selecting
flagged actions more consistently would not really come into play. But for a higher number
of episodes, in which exploitation needs to be balanced very carefully, the quantum agents
would likely achieve better results. Regardless, these results show that we should not
expect the quantum agents to achieve a better win rate in every situation, even if they are
sampling flagged actions more consistently.

Table 6.4: Player 2 Agents (Testing)

Agent Win% Loss% Draw% Moves
Classical, tags 55.9 43.8 0.3 15.3
Quantum, tags 50.1 49.7 0.2 16.2

6.3 Answering the Research Questions

We will now provide an answer to each Research Question, taking into account the work
developed and the results obtained.

Research Question 1: In what way can a quantum approach improve the exploration
of the state space for the Reinforcement Learning (RL) problem of Connect Four?

To improve the exploration of the state space, we employed the flagged action selection
policy used in [30], which combines flagged action selection [24] with a Boltzmann dis-
tribution. The quantum version of the flagged action selection policy takes advantage of
quantum walks to achieve a quadratic speedup during the reflection process, so that it
can avoid reaching the maximum number of iterations R reliably, which would otherwise
lead to a random action being selected. This in turn ensures that it will output flagged
actions more consistently, which allows the quantum agents to explore the state space more
efficiently, since they can focus on exploring the more promising paths. The Boltzmann
distribution further stresses this idea, by enhancing the probabilities of the actions with
higher Q values.

Looking at the results for the player 1 agents, we can verify that the quantum version
of the approach needed less iterations to obtain flagged actions, on average. This, com-
bined with its higher win rate, indicates that the quantum agents explored the state space
more efficiently, by taking advantage of their ability to select flagged actions with more
consistency.

Research Question 2: What changes need to be made so that a similar approach to the
one used for Checkers [30] can be applied to Connect Four, in order to better explore the
state space?

We utilized offline Deep Q-Learning, as opposed to online non-Deep Q-Learning. The
preliminary tests revealed that using a classical Neural Network (NN) to learn the correct
Q values led to more efficient training. This had an impact in different aspects of the work,
which will be highlighted below.

For the state representation, the author of that work divided the Checkers board in different
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sections and identified each state by how many pieces were in each one. This way, similar
states were grouped together, which allowed them to deal with the high dimensionality of
the state-space of that board game. Since the state-space complexity of Connect Four is
not as high and the NN used already allows it to generalize past knowledge, we decided
to represent the state with a simple matrix that corresponds to the Connect Four board.
When the NN has to take in the representation of the environment, it receives a matrix with
the state representation appended to a vector identifying the action selected, as explained
in Subsection 4.3.1. The NN then predicts the Q value of the corresponding state-action
pair using that representation, which will naturally allow it to gradually assign similar
values to similar state-action pairs.

In [30], reward shaping was utilized to deal with the fact that the winner of a game is
only decided during the last transition of the game, which means that this would typically
be the only transition with a non-zero reward. In other words, they introduced smaller
rewards to every transition, based on whether the agent was achieving certain goals that
in theory should give it a better winning probability. In our work, some preliminary tests
were done with this type of approach. However, the agents trained with this methodology
were not learning how to win efficiently, so we decided to drop it. It is possible that better
reward shaping functions could have been used, but this shows that this type of approach is
not strictly necessary and might not be ideal for every board game. It is worth considering
that the offline Deep Learning approach employed helped the agents to get a better grasp
of the impact of each transition, due to it training after each batch of 300 games, using
the NN to evaluate every position from the batch. Once again, the NN takes into account
both the state and the action selected, which leads to it ultimately attributing similar Q
values to similar state-action pairs. The weights of the network are adjusted at the end
of the training of each batch, by comparing the current Q values with the target Q values
from Equation 4.3, in order to better predict the correct Q values.

In summary, it is possible to extend the quantum flagged action selection to other board
games, as long as some adjustments are made.

Research Question 3: How does this exploration of the state space compare to a stan-
dard ε-greedy approach?

In the experiments regarding the player 1 agents, both the classical and the quantum
flagged action selection policies achieved far better win rates than the ε-greedy approach,
while exploring fewer states. The two flagged agents explored a similar number of states,
but the quantum version had the higher win rate of the two. These results suggest that
the quantum flagged action selection policy led to a better balance between exploration
and exploitation than the standard ε-greedy method, which seems to have overvalued
exploration too much. Thanks to the flags implemented in the flagged approach, it was
possible to identify the more appealing actions in an efficient manner, allowing the agents
to exploit their knowledge more reliably, so as to avoid neglecting exploitation during
training.

Research Question 4: Considering that going second is a significant disadvantage in
Connect Four, how does the quantum approach fare in this scenario?

As seen in Tables 6.3 and 6.4, the quantum agents still sampled flagged actions more con-
sistently, which shows that the approach can scale to more complex problems. However,
the win rates obtained seem to indicate otherwise, with the classical agents having bet-
ter results. If the outliers are ignored, then their win rates are similar, but this is still
different than the expectation of the quantum agents performing better. As mentioned
in Section 6.2, this is likely due to the number of episodes chosen. Since they are insuf-
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ficient to obtain a relatively high win rate for either the classical or the quantum agents,
it seems that exploration still needs to be largely favoured for that number of episodes.
As such, the advantage of the quantum agents would not be as helpful and could perhaps
even be detrimental on some level. Assuming a higher number of episodes, high enough
to allow for high win rates, the quantum agents would likely perform better, as balancing
the exploitation correctly would become key.
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Chapter 7

Conclusion

In this work, quantum tagged action selection was applied to the Reinforcement Learning
(RL) context of Connect Four. The objective was to to better balance how much an
agent should explore and how much it should exploit, by taking advantage of a quadratic
speedup for outputting flagged actions. Doing so extended the scope of this technique to
board games other than Checkers, showcasing its general usefulness in this domain.

To that end, we created a Randomized Negamax opponent for the agents to play against,
whose strategy is similar to a standard Negamax, but with some added randomness in its
move choices, so that the agents had a more complicated challenge to overcome. We also
defined Connect Four as a Markov Decision Process (MDP) and explained the Q-Learning
approach taken.

In order to extend this exploration policy to Connect Four, an offline Deep Learning method
was incorporated, with a classical Neural Network (NN) training on each batch of games.
This NN evaluated each state-action pair by using the representation of the Connect Four
board and the action selected as input, which naturally allowed for similar state-action
pairs to be rated similarly. This way, it was possible to deal with the relatively high
dimensionality of the problem.

The experiments involved training both classical and quantum agents and evaluating their
performance. By comparing both the classical and the quantum tagged action selection
policies with a standard ε-greedy approach, we found that the former were trained far more
efficiently. Between the flagged action selection agents, the quantum version found flagged
actions in less iterations, on average, which ultimately led to it achieving a higher win rate.

There were also experiments for agents that trained as player 2. While the quantum
agents still sampled flagged actions in less iterations, their win rates were not superior.
Since neither the classical nor the quantum agents won a relatively high percentage of
games going second and the quantum version still obtained flagged actions in less steps,
these results are likely due to the number of episodes not being high enough to learn the
environment in depth. In this scenario, exploration still needs to be disproportionately
favoured, so the advantage of the quantum agents would not be as relevant. Assuming a
number of episodes high enough for both agents to achieve relatively high win rates, it is
likely that the quantum version would perform better.

This work presents a reasonably successful application of Quantum RL in the current
quantum context, further demonstrating the potential for practical applications in this
area.
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Future work could involve testing trained agents on real quantum hardware. This was
not possible due to time constraints, but it would be intriguing to see if agents trained
on a quantum simulator could perform well on real quantum computers. It would also be
interesting to scale the problem to more difficult opponents. For example, Randomized
Negamax agents that look ahead more than two moves or a completely distinct type of
opponent. As for expanding the work to other contexts, the most natural choice would
probably be Chess, which has a much higher complexity than both Connect Four and
Checkers and is a well known and studied game.

52



This page is intentionally left blank.



References

[1] IBM Quantum. https://quantum-computing.ibm.com/, 2021. (Accessed: 10 Decem-
ber 2021).

[2] Cirq. https://quantumai.google/cirq, 2021. (Accessed: 10 December 2021).

[3] Q# and the quantum development kit. https://azure.microsoft.com/en-
gb/resources/development-kit/quantum-computing/, 2022. (Accessed: 18 January
2022).

[4] Grover’s algorithm. https://quantum-computing.ibm.com/composer/docs/iqx/guide/
grovers-algorithm, 2022. (Accessed: 22 April 2022).

[5] Amira Abbas, Stina Andersson, Abraham Asfaw, Antonio Corcoles, Luciano Bello,
Yael Ben-Haim, Mehdi Bozzo-Rey, Sergey Bravyi, Nicholas Bronn, Lauren Capelluto,
Almudena Carrera Vazquez, Jack Ceroni, Richard Chen, Albert Frisch, Jay Gambetta,
Shelly Garion, Leron Gil, Salvador De La Puente Gonzalez, Francis Harkins, Takashi
Imamichi, Pavan Jayasinha, Hwajung Kang, Amir h. Karamlou, Robert Loredo,
David McKay, Alberto Maldonado, Antonio Macaluso, Antonio Mezzacapo, Zlatko
Minev, Ramis Movassagh, Giacomo Nannicini, Paul Nation, Anna Phan, Marco Pis-
toia, Arthur Rattew, Joachim Schaefer, Javad Shabani, John Smolin, John Stenger,
Kristan Temme, Madeleine Tod, Ellinor Wanzambi, Stephen Wood, and James Woot-
ton. Learn quantum computation using qiskit. http://community.qiskit.org/textbook,
2020. (Accessed: 3 July 2022).

[6] Elias Alvarez. A practical introduction to quantum computing: from qubits to quan-
tum machine learning and beyond. https://indico.cern.ch/event/970903/, 2020. (Ac-
cessed: 18 January 2022).

[7] Andris Ambainis. Quantum walks and their algorithmic applications. International
Journal of Quantum Information, 1(04):507–518, 2003.

[8] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M Sohaib Alam, Shah-
nawaz Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri,
et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations.
arXiv preprint arXiv:1811.04968, 2018.

[9] Hans J Briegel and Gemma De las Cuevas. Projective simulation for artificial intelli-
gence. Scientific reports, 2(1):1–16, 2012.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[11] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and
Hsi-Sheng Goan. Variational quantum circuits for deep reinforcement learning. IEEE
Access, 2020.

54



References

[12] Rob Dawson. Learning to play connect 4 with deep reinforcement learning.
https://codebox.net/pages/connect4, 2020. (Accessed: 10 December 2021).

[13] V Dunjko, N Friis, and H J Briegel. Quantum-enhanced deliberation of learning agents
using trapped ions. New Journal of Physics, 17(2):023006, jan 2015.

[14] Stefan Edelkamp and Peter Kissmann. Symbolic classification of general two-player
games. In Andreas R. Dengel, Karsten Berns, Thomas M. Breuel, Frank Bomarius,
and Thomas R. Roth-Berghofer, editors, KI 2008: Advances in Artificial Intelligence,
pages 185–192, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[15] Alan Geller. Why do we need q#? https://devblogs.microsoft.com/qsharp/why-do-
we-need-q/, 2022. (Accessed: 18 January 2022).

[16] Craig Gidney. Quirk: Quantum circuit simulator. https://algassert.com/quirk, 2022.
(Accessed: 17 January 2022).

[17] Lov K Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages
212–219, 1996.

[18] Jen-Yueh Hsiao, Yuxuan Du, Wei-Yin Chiang, Min-Hsiu Hsieh, and Hsi-Sheng Goan.
Unentangled quantum reinforcement learning agents in the openai gym. arXiv preprint
arXiv:2203.14348, 2022.

[19] Yuxi Li. Deep reinforcement learning. CoRR, abs/1810.06339, 2018.

[20] Owen Lockwood and Mei Si. Playing atari with hybrid quantum-classical reinforce-
ment learning. In NeurIPS 2020 Workshop on Pre-registration in Machine Learning,
pages 285–301. PMLR, 2021.

[21] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via
quantum walk. SIAM Journal on Computing, 40(1):142–164, jan 2011.

[22] S. Mangini, F. Tacchino, D. Gerace, D. Bajoni, and C. Macchiavello. Quantum com-
puting models for artificial neural networks. EPL (Europhysics Letters), 134(1):10002,
apr 2021.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
DaanWierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[24] Giuseppe Davide Paparo, Vedran Dunjko, Adi Makmal, Miguel Angel Martin-
Delgado, and Hans J. Briegel. Quantum speedup for active learning agents. Physical
Review X, 4(3), jul 2014.

[25] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a Modern Approach, 3rd.
Edition. Pearson Education, Inc., 2010.

[26] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian
Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore
Graepel, and Demis Hassabis. Mastering the game of go without human knowledge.
Nature, 550(7676):354–359, Oct 2017.

[27] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. Quantum agents in the gym: a
variational quantum algorithm for deep q-learning. Quantum, 6:720, may 2022.

55



Chapter

[28] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
2nd Edition. MIT press, 2018.

[29] Mario Szegedy. Quantum speed-up of markov chain based algorithms. In 45th Annual
IEEE symposium on foundations of computer science, pages 32– 41, Nov 2004.

[30] Miguel Teixeira. Quantum reinforcement learning applied to games. Universidade do
Porto. MSc Thesis, 2021. https://hdl.handle.net/10216/135628.

[31] Salvador Elías Venegas-Andraca. Quantum walks: a comprehensive review. Quantum
Information Processing, 11(5):1015–1106, Jul 2012.

[32] Qing Wei, Hailan Ma, Chunlin Chen, and Daoyi Dong. Deep reinforcement learning
with quantum-inspired experience replay. IEEE Transactions on Cybernetics, pages
1–13, 2021.

[33] Gilad Wisney. Deep reinforcement learning and monte carlo tree search with
connect 4. https://towardsdatascience.com/deep-reinforcement-learning-and-monte-
carlo-tree-search-with-connect-4-ba22a4713e7a, 2019. (Accessed: 10 December 2021).

[34] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum generative adversarial
networks for learning and loading random distributions. npj Quantum Information,
5(1):103, Nov 2019.

56



Appendices

57



This page is intentionally left blank.



Appendix A

Figure 1: Gannt chart showing the work developed in the context of this thesis.
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