

Miguel de Sousa Nunes Teixeira

µDETECTOR: AN INTRUSION DETECTION
TOOL FOR MICROSERVICES

Dissertation in the context of the Master in Informatics Engineering, specialization in

presented to the Department of Informatics Engineering of the Faculty of Sciences
and Technology of the University of Coimbra.

July 2022

Software Engineering, advised by Professor Nuno Antunes and José Flora and

DEPARTMENT OF INFORMATICS ENGINEERING

Miguel de Sousa Nunes Teixeira

µDetector: An Intrusion Detection
Tool for Microservices

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Nuno Antunes and José

Flora, and presented to the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra.

July 2022

The work presented in this thesis was carried out within the Software and Sys-
tems Engineering (SSE) group of the Centre for Informatics and Systems of the
University of Coimbra (CISUC)

This work is partially supported by the project AIDA: Adaptive, Intelligent and
Distributed Assurance Platform FCT (CMU-PT) (POCI-01-0247-FEDER-045907),
co-funded by the Portuguese Foundation for Science and Technology (FCT) and
by the Fundo Europeu de Desenvolvimento Regional (FEDER) through Portugal 2020
- Programa Operacional Competitividade e Internacionalização (POCI).

This work has been supervised by Prof. Nuno Antunes and José Flora, and pre-
sented to the Department of Informatics Engineering of the Faculty of Sciences
and Technology of the University of Coimbra.

i

Acknowledgements

To begin with, I would like to thank my supervisors Professor Nuno Antunes and
José Flora for the opportunity to work with them and for all the support given
before and during this dissertation.

I want to thank Adriana for her love, care, and support. You mean the world to
me.

I would also like to thank my friends for all the good moments we spent and for
helping me throughout this journey.

Finally, I would like to thank my family - dad, mom, brothers, and aunt - for al-
ways being there for me, for the unconditional love and sacrifice, and for making
sure I had everything I ever needed.

This thesis is dedicated to all of you.

Thank you.

iii

Abstract

In recent years, there has been an increasing adoption of microservice-based ap-
plications in organizations and businesses. This software architectural style di-
vides an application into small independent services that communicate using
lightweight mechanisms, improving flexibility and scalability in dynamic De-
vOps environments. Containers are often used to deploy these applications with
the help of orchestration tools such as Kubernetes. However, the growing pop-
ularity of microservices raises concerns related to dependability and security of
these systems. The rising number of attacks and the lack of intrusion detection
tools that target microservices applications aggravate these problems. Thus, the
development of solutions that can be deployed in real-world scenarios and whose
purpose is to keep applications and businesses secure is of the utmost impor-
tance. Monitoring and identifying suspicious activities with the help of Intru-
sion Detection tools are a possible approach to making microservices applications
trustworthy in real-world scenarios.

In this work, we propose µDetector, an intrusion detection tool for microservice-
based applications. This tool relies on proof-of-concept techniques of Intrusion
Detection, previously researched in the group, and automates their functioning
for Kubernetes and KubeEdge deployments. In practice, after the user has pro-
vided a configuration, the tool uses monitoring agents to automatically collect
system calls from the desired containers and transfers them over to the Intrusion
Detection module of the tool. This module covers all the stages of anomaly-
based intrusion detection and all activity classified as anomalous will trigger
alarms in real-time indicating a possible intrusion in the microservices’ applica-
tion. The user can interact with the tool and its monitoring capabilities through a
command-line interface or a web dashboard. Following the development phase,
the µDetector tool was validated using functional testing, and performance and
scalability tests. The results showed that the µDetector tool performs well and
does not impact the proper functioning of the microservices application: in sce-
narios where there were over 100 000 system calls being collected per second, the
Central Processing Unit (CPU) and memory usage of the worker nodes did not
exceed 10% of the total resources available. This work presents itself as a further
step in strengthening container security and microservices applications in cloud
environments through the use of state-of-the-art intrusion detection techniques.

Keywords

Microservices, Cloud Computing, Kubernetes, Intrusion Detection, Containers,
Monitoring

v

Resumo

Nos últimos anos, tem havido uma grande adoção de aplicações baseadas em
microsserviços por parte de organizações e empresas. Este estilo arquitetural de
software divide uma aplicação em pequenos serviços independentes que comu-
nicam entre si utilizando mecanismos lightweight, melhorando assim a flexibili-
dade e a escalabilidade em ambientes de DevOps. Os containers são frequente-
mente utilizados para implementar estas aplicações juntamente com a ajuda de
ferramentas de orquestração, tais como o Kubernetes. Contudo, a crescente pop-
ularidade dos microsserviços suscita preocupações relacionadas com a confiabil-
idade e segurança destes sistemas. O número crescente de ataques e a falta de
ferramentas de detecção de intrusão direcionadas a aplicações de microsserviços
agravam estes problemas. Assim, o desenvolvimento de soluções que podem
ser implementadas em cenários reais e cujo objectivo é manter as aplicações e
as empresas seguras é de extrema importância. A monitorização e identificação
de actividades suspeitas com a ajuda de ferramentas de detecção de intrusão são
uma abordagem possível para tornar as aplicações de microsserviços confiáveis.

Neste trabalho, propomos µDetector, uma ferramenta de detecção de intrusões
para aplicações baseadas em microsserviços. Esta ferramenta faz uso de técnicas
de Detecção de Intrusão, previamente pesquisadas no grupo de investigação, e
automatiza o seu funcionamento para Kubernetes e KubeEdge. Na prática, após
o utilizador ter fornecido uma configuração, a ferramenta usa agentes de mon-
itorização nos nodes pretendidos da aplicação, recolhe system calls e transfere-os
para o módulo de Detecção de Intrusão da ferramenta. Este módulo cobre todas
as fases da detecção de intrusão baseada em anomalias e toda a actividade clas-
sificada como anómala desencadeará alarmes em tempo real indicando uma pos-
sível intrusão na aplicação. O utilizador pode interagir com a ferramenta através
de uma interface de linha de comandos ou através de uma Web Dashboard. Após a
fase de desenvolvimento, a ferramenta µDetector foi validada recorrendo a testes
funcionais, de desempenho e de escalabilidade. Os resultados mostram que a
ferramenta oferece um bom desempenho e não afeta o funcionamento normal da
aplicação de microsserviços: em cenários onde mais de 100 000 system calls estão
a ser recolhidas por segundo, a percentagem de utilização de CPU e de memória
dos worker nodes não ultrapassou os 10% do total de recursos disponíveis. Este
trabalho pretende contribuir para o reforço da segurança em containers e apli-
cações de microsserviços em ambientes de computação em nuvem, através da
utilização de técnicas de detecção de intrusão de última geração.

Palavras-Chave

Microsserviços, Computação na Nuvem, Kubernetes, Deteção de intrusão, Con-
tainers, Monitorização

vii

List of Publications

This dissertation is partially based on the work presented in the following publi-
cations:

– José Flora, Paulo Gonçalves, Miguel Teixeira, Nuno Antunes, “My Services
Got Old! Can Kubernetes Handle the Aging of Microservices?”, The 13th
International Workshop on Software Aging and Rejuvenation (WOSAR 2021),
Wuhan, China, October 25-28, 2021.

– Abstract: The exploding popularity of microservice based applications is taking com-
panies to adopt them along with cloud services to support them. Containers are the
common deployment infrastructures that currently serve millions of customers daily,
being managed using orchestration platforms that monitor, manage, and automate
most of the work. However, there are multiple concerns with the claims put forward
by the developers of such tools. In this paper, we study the effects of aging in mi-
croservices and the utilisation of faults to accelerate aging effects while evaluating
the capacity of Kubernetes to detect microservice aging. We consider three opera-
tion scenarios for a representative microservice-based system through the utilization
of stress testing and fault injection as a manner to potentiate aging in the services
composing the system to evaluate the capacity of Kubernetes mechanisms to detect
it. The results demonstrate that even though some services tend to accumulate aging
effects, with increasing resource consumption, Kubernetes does not detect them nor
acts on them, which indicates that the probe mechanisms may be insufficient for ag-
ing scenarios. This factor may indicate the necessity for more effective mechanisms,
capable of detecting aging early on and act on it in a more proactive manner without
requiring the services to become unresponsive.

ix

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Document Structure . 4

2 Background and Related Work 5
2.1 Microservices Architecture . 5

2.1.1 Microservices vs Monolithic Applications 6
2.1.2 Microservices Setups . 8

2.2 Containers . 10
2.2.1 Definition . 11
2.2.2 Docker . 12
2.2.3 Kubernetes . 13
2.2.4 KubeEdge . 15
2.2.5 Docker Swarm . 17
2.2.6 Apache Mesos/Marathon . 17
2.2.7 Nomad . 18

2.3 Communication Mechanisms . 19
2.3.1 TCP Sockets . 19
2.3.2 Websockets . 20
2.3.3 REST . 20
2.3.4 RPC . 21
2.3.5 Message Queues . 22
2.3.6 Comparison of communication mechanisms 22

2.4 Intrusion Detection Systems . 22
2.4.1 Detection Target . 23
2.4.2 Detection Approach . 23
2.4.3 Anomaly Detection Algorithms 24

2.5 Monitoring . 25
2.5.1 Tracing Solutions . 25
2.5.2 Monitoring Solutions . 27
2.5.3 Comparison of Related Systems 32

3 Requirements Analysis 35
3.1 User Stories . 35
3.2 Mockups . 36
3.3 Functional Requirements . 37
3.4 Non-Functional Requirements . 41
3.5 Technical Restrictions . 41

xi

Chapter 0

4 A Tool to Automate Intrusion Detection in Microservices 43
4.1 Proposed Architecture . 43
4.2 Implementation . 46

5 Validation and Experimentation 53
5.1 Validation Plan . 53
5.2 Functional Testing . 54
5.3 Non-Functional Requirements Validation 58

6 Project Management 65
6.1 Methodology . 65
6.2 Work Plan . 66
6.3 Risk Assessment . 66

7 Conclusion 75

Appendix A User Stories and Mockups 87

xii

Acronyms

API Application Programming Interface. 12, 14, 17, 19, 20, 22, 28, 30, 31, 44, 45,
46, 47, 49, 51

BoSC Bags of System Calls. 24, 44, 45, 50, 59

CISUC Centre for Informatics and Systems of the University of Coimbra. 3

CLI Command-Line Interface. xvii, 4, 13, 18, 19, 36, 37, 38, 40, 44, 45, 47, 50, 54,
56, 75, 87, 88, 90

CNCF Cloud Native Computing Foundation. 12, 13, 29

COTS Commercial off-the-shelf. 28

CPU Central Processing Unit. v, vii, 1, 3, 11, 41, 53, 59, 60, 62

CRI Container Runtime Interface. 14

CSS Cascading Style Sheets. 45, 50

eBPF Extended Berkeley Packet Filter. xv, 25, 26, 27, 32, 33

GUI Graphical User Interface. 32, 33, 47

HIDS Host Intrusion Detection System. 2, 23

HTML HyperText Markup Language. 45, 47, 50

HTTP Hypertext Transfer Protocol. 9, 17, 20, 29

IDS Intrusion Detection System. 2, 22, 23, 44, 45

IoT Internet of Things. 15

JSON JavaScript Object Notation. 14, 20, 36, 38, 39, 40, 43, 44, 45, 48, 49, 51, 56,
57, 90

KNN K-Nearest Neighbour. 24

ML Machine Learning. 24

NIDS Network Intrusion Detection System. 2, 23

OCI Open Container Initiative. 12, 13

OS Operating System. 12, 25, 32

xiii

Chapter 0

PNG Portable Graphics Format. 39

RAM Random Access Memory. 1, 12, 58, 59

REST Representational State Transfer. 5, 8, 9, 12, 17, 19, 20, 22, 28, 31, 43, 45, 46,
49

RPC Remote Procedure Call. 19, 21

SOAP Simple Object Access Protocol. 19

STIDE Sequence Time-Delaying Embedding. 24, 44, 45, 50

SVM Support Vector Machines. 24

TCP Transmission Control Protocol. 19, 22

UI User Interface. 18

VM Virtual Machine. 1, 11, 12

YAML YAML Ain’t Markup Language. 14, 30, 58

xiv

List of Figures

2.1 Monolithic architecture vs Microservices architecture from [1]. . . . 7
2.2 TeaStore service architecture from [26]. 9
2.3 Sock Shop service architecture from [27]. 10
2.4 TrainTicket service architecture from [28]. 11
2.5 Virtualization in virtual machines and containers from [36]. 12
2.6 Docker architecture from [41]. 13
2.7 Kubernetes architecture from [46]. 15
2.8 KubeEdge architecture from [48]. 16
2.9 Docker Swarm architecture from [49]. 17
2.10 Apache Mesos/Marathon architecture from [52]. 18
2.11 Nomad architecture of a single region from [55]. 19
2.12 gRPC architecture from [66]. 21
2.13 Strace workflow from [85]. 26
2.14 Sysdig workflow from [85]. 26
2.15 Extended Berkeley Packet Filter (eBPF) workflow from [87] 27
2.16 Prometheus architecture from [98]. 29
2.17 Falco architecture from [13]. 30
2.18 KubAnomaly architecture from [100]. 31

3.1 Mockup of the dashboard page. 37

4.1 General Architecture. 44
4.2 IDS Architecture. 46
4.3 Dashboard page. 52

5.1 Experimental Setup of the Non-Functional Requirements Validation. 58
5.2 Locust workloads. Scenarios 1 and 3 used the constant-wl and Sce-

narios 2 and 4 used the variable-wl. 60
5.3 System calls collected . 61
5.4 Requests Throughput . 61
5.5 Median Response Time and 95% Percentile Response Time 61
5.6 CPU Usage - µDetector machine (first graph), CPU Usage - Mas-

ter node machine (second graph) and CPU Usage - worker-1 node
machine. 63

5.7 Memory Usage - µDetector machine (first graph), Memory Usage -
Master node machine (second graph) and Memory Usage - worker-
1 node machine (third graph) . 64

xv

Chapter 0

6.1 Gantt chart for the expected work plan. Grey bars represent a ma-
jor chapter and orange bars represent smaller task. Each bar has a
number that corresponds to the duration in days. 67

6.2 Gantt chart for the actual work plan. Grey bars represent a major
chapter and orange bars represent smaller task. Each bar has a
number that corresponds to the duration in days. 68

6.3 Risk Exposure Matrix. 73

A.1 Mockup of the dashboard page. 92
A.2 Mockup of the alarms page. 92
A.3 Mockup of the resources page. 93
A.4 Mockup of the help page. 93

xvi

List of Tables

2.1 Comparison of Related Systems. 33

3.1 System Functional Requirements - Command-Line Interface (CLI). 38
3.2 System Functional Requirements - Dashboard. 39
3.3 System Functional Requirements - Optional. 40
3.4 Technical restrictions of the project. 41

4.1 API Server Endpoints . 48

5.1 General case tests. 55
5.2 Functional Requirements Validation - CLI case tests. 56
5.3 Functional Requirements Validation - Dashboard case tests. 57
5.4 Experimental Scenarios . 59

6.1 Risk Assessment for the project at the beginning of the first semester. 70
6.2 Risk Assessment for the project at the end of the first semester/beginning

of the second semester. 71
6.3 Risk Assessment for the project at the end of the second semester. . 72

xvii

Chapter 1

Introduction

In recent years, the software development industry has witnessed a shift from the
traditional large monolithic application where components are strongly coupled,
to their decoupling resulting in a collection of relatively small and independent
services where each one provides a unique business capability while communi-
cating with each other using lightweight mechanisms [1]. Applications that fol-
low these principles are said to follow a microservice-based architecture. While
working with a small application, the monolithic architecture naturally appears
as a simple and efficient solution. However, as the complexity of the application
increases, changes require the entire monolith to be rebuilt and deployed, teams
become dependent on a single technology stack, modularity becomes tough to
achieve and scaling the entirety of the application instead of single components
is usually the only alternative [1]. The consequences reflect across the whole soft-
ware development life cycle translating into increased costs for the companies.
Microservice-based applications allows businesses and organizations to mitigate
the problems related to monolithic applications and achieve higher availability,
flexibility and scalability of resources on cloud infrastructures [2]. In this ar-
chitectural style, services comprise smaller and independent codebases that al-
low introducing automation for faster deployments. Additionally, the failure of
a single module does not affect the entirety of the application. This catalyzes the
delivery of software products to maximize profits by automating the software
development life cycle.

Microservice-based applications usually leverage container technologies to aid
in the deployment of their services [3]. Containers are packages that contain soft-
ware and bundle up all the dependencies needed to run an application. They
differ from a Virtual Machine (VM) in the sense that they only virtualize the user
space of an existing operating system, whereas VMs virtualize an entire machine
including Central Processing Unit (CPU), Random Access Memory (RAM), file
systems and network resources. Containers adoption has been taking off recently
due to Docker release in 2013 [4] allowing users to easily manage containers and
bridging the gap between developers and operations teams to ship software.
Also, their lightweight properties allow them to achieve fast instantiation and
minimize the use of resources as when compared to VMs, containers work with
sizes in the order of megabytes instead of gigabytes. The usage of containers al-

1

Chapter 1

lows developers to efficiently build applications that run anywhere using fewer
resources and still maintain the principles of the microservices approach where
application components can be deployed and scaled more granularly [5].

Still, with the continuous growth of applications, managing containers becomes a
difficult task. It is not feasible to manage individual containers. Therefore, the use
of tools and methods that automate and simplify this cumbersome process be-
comes a fundamental necessity. Orchestration platforms such as Kubernetes [6],
Apache Mesos [7] or Docker Swarm [8] emerged as an approach to solve this
problem and provide support to the infrastructure of cloud applications. They
usually follow a master-slave approach, where a small number of master nodes
controls the majority of the other nodes, referred to as slave or worker nodes. Or-
chestrators add a layer of abstraction that implements a large set of features, such
as service discovery and load balancing.

These functionalities try to improve the process of managing and deploying con-
tainers. However, even though Kubernetes provides features for creating a secure
cluster, it lacks built-in security and security decisions usually rely on the opera-
tor to ensure the containers and code running on the cluster are safe [9].

Furthermore, edge computing solutions such as KubeEdge which extends Ku-
bernetes capabilities to host at Edge (i.e., closer to the user and the data source)
are being considered to complement and improve the current cloud infrastruc-
ture increasing performance and minimizing the need for data to be processed in
remote data centers.

Stemming from the fact that microservices and containers technologies have rapidly
gained popularity [4], new security challenges arise in both cloud and edge en-
vironments. It is important to make sure containers and applications running
inside containers are safe from threats and operate in a secure environment. The
use of vulnerable container images, privilege escalation and poor container isola-
tion are examples of security risks that can harm an organization [10]. Moreover,
edge computing expands the potential attack surface by storing sensitive data
stored across more systems [11]. Therefore, security plays an important role in
these environments and techniques based on Intrusion Detection are a possible
solution to approach the security concerns of microservices and containers.

Intrusion detection is defined as the process of monitoring events occurring in a
computer system or network and analyzing them for signs of intrusions, defined
as attempts to compromise the confidentiality, integrity, availability, or bypass the
security mechanisms of a computer or network [12]. An Intrusion Detection Sys-
tem (IDS) automates this process and when it comes to where the detection takes
place, IDSes can be classified as Network Intrusion Detection System (NIDS) or
Host Intrusion Detection System (HIDS). NIDSes analyze packets moving across
the network and IDSes analyze system configurations and application activity on
an individual machine. Even though there is a vast set of solutions for Intru-
sion Detection in general, the number of options drastically diminishes when it
comes to the application of intrusion detection systems in microservices-based
environments that make use of containers technologies. In this domain, there are
few solutions and the ones available are either in early versions or are distributed

2

Introduction

as paid services by specialized companies. Current open-source solutions such
as Falco [13] use predefined rules which transfer the responsibility to the user.
Therefore, novel automated approaches are encouraged to improve security in
microservices applications and further contribute to the observability and moni-
toring stack of these systems.

This work focuses on designing and developing an intrusion detection tool for
microservice-based applications called µDetector. This Host-based Intrusion De-
tection tool provides monitoring capabilities by implementing proof-of-concept
intrusion detection techniques researched at Centre for Informatics and Systems
of the University of Coimbra (CISUC) and automates their functioning for Kuber-
netes and KubeEdge deployments. Through the use of a command-line interface
or a web dashboard, the user can interact with the tool and provide a configura-
tion of the system he wants to monitor. The tool will then configure the necessary
probes to gather data in the form of system calls and transfer them to the Intrusion
Detection module of the tool. This module uses anomaly detection techniques to
control both the training and detection phase. It works by searching for devia-
tions in the systems calls collected, following the principle that something that
is not normal is considered to be suspicious, instead of looking for predefined
signatures.

To validate the tool and certify that µDetector meets the requirements, the tool was
deployed on Sock Shop, a microservice-based application. Kubernetes served as
the infrastructure and 1 Master Node and 3 Worker Nodes were used, where one
of them was operating on the Edge with the help of KubeEdge. Functional tests
were made to make sure the requirements were fulfilled. Additionally, perfor-
mance and scalability experiments were conducted to demonstrate our solution
is scalable and performance-efficient. We used Locust to simulate users access-
ing the Sock Shop application and collected metrics including CPU and memory
usage, requests throughput and response time, and system calls per second. The
results showed that the performance of the machines of the Kubernetes cluster is
not affected and there is a negligible impact on the proper functioning of the mi-
croservices application: in scenarios where there were over 100 000 system calls
being collected per second, the CPU and memory usage of the worker nodes did
not exceed 10% of the total resources available. Also, there were no failed requests
and no visible difference in the response time of the requests.

The µDetector tool allows development and operation teams to improve the secu-
rity and reliability of their solution in an automated fashion by monitoring their
microservices-based application in real-time. It also leverages proof-of-concept
intrusion detection techniques, which present as a further step in strengthening
container security and microservices applications in cloud environments.

1.1 Contributions

The main contributions of this work are:

• Design and Implementation of an intrusion detection tool that monitors

3

Chapter 1

microservice-based applications with the help of proof-of-concept tech-
niques developed by the research group. After a configuration is provided
and the probes are running on cluster nodes, the tool automatically collects
system calls from the hosts and uses anomaly-based intrusion detection al-
gorithms to trigger alarms in real-time.

• Development of a Web Dashboard that allows users to communicate with
the tool. While the CLI focuses on simplicity and provides a fast and ef-
ficient way to run commands, the Web Dashboard improves usability by
displaying charts and information more appealingly. In both interfaces it
is possible to configure the monitoring of the application, view the status
of the monitoring phases, view the alarms generated and resources of the
cluster.

• Extension of the tool to Edge Computing. The µDetector tool was designed
to operate in cloud and edge environments. Therefore, it is possible to
install the probes on nodes from both Kubernetes and KubeEdge deploy-
ments, extending the domain of the solution to edge environments.

• Validation of the tool. The µDetector tool was subjected to functional, per-
formance and scalability tests. The goal is to prove the requirements were
fulfilled and that the tool did not impact the normal functioning of the mi-
croservices application.

1.2 Document Structure

The remainder of this document is structured as follows:

Chapter 2 presents the fundamental concepts and technologies related to this
work. This includes an overview of microservices, containers and containers or-
chestrators. edge computing, communication mechanisms, intrusion detection,
monitoring concepts and related systems are also presented in this chapter.

Chapter 3 documents and explains the whole requirement gathering process.
This includes the user stories, mockups, requirements and technical restrictions
of the project.

Chapter 4 explains the proposed architecture and the implementation details of
the µDetector tool.

Chapter 5 describes the validation plan followed to certify the tool meets the
requirements and the respective results.

Chapter 6 documents the methodology used during this thesis. It also includes
the work plan for both the first and second semesters and a risk assessment for
the project.

Chapter 7 summarises the work performed during the course of this dissertation.

4

Chapter 2

Background and Related Work

In this chapter, we discuss important concepts, technologies and work related to
the project. This information comes from an extensive analysis of articles, web
searching and knowledge acquired throughout the academic years. In particu-
lar, we focus on the microservices architecture and compare it to the monolithic
approach. Afterward, we present microservices applications that can be used
to run tests and benchmarks. Next, we explain containers concepts and present
technologies such as Docker and Kubernetes. We also focus on communication
mechanisms including Representational State Transfer (REST) and gRPC. Finally,
we explain concepts related to intrusion detection and present related monitoring
systems.

2.1 Microservices Architecture

In this section, we provide some background related to the microservices archi-
tecture. We explain the concept of microservices and compare it to monolithic
applications, and also present some open-source microservices setups that try to
simulate real-world applications.

The earliest documented reference to microservices occurred in 2005 when Dr.
Peter Rodgers used the term “Micro-Web-Services” in a presentation at the Web
Services Edge conference [14]. A few years later, in 2011, at a software architec-
ture workshop held near Venice, Italy, participants used this term to describe an
architectural style based on a collection of small and independent services and,
in the following year, they formally adopted it as the most appropriate term for
the architecture. It was also around this time that companies like Netflix started
using this architecture describing it as a “fine-grained SOA” [1].

Microservices can be described as a type of software architecture that splits an ap-
plication into a collection of small, lightweight and independent services where
each one provides a unique business capability while communicating with each
other through lightweight mechanisms [1]. It is inspired by service-oriented com-
puting and emerged as an alternative to the traditional monoliths where all mod-
ules of an application are bound together [15]. Microservices try to solve the

5

Chapter 2

problem of building and maintaining complex applications by making the com-
ponents of an application modular and independent.

In the past years, microservices have been on the rise and have gained a signifi-
cant amount of supporters. A survey [16], conducted in 2020, showed that around
76% of the respondents (n=1502) claim they have adopted microservices in their
organization.

2.1.1 Microservices vs Monolithic Applications

A monolith is described as a software application whose modules cannot be ex-
ecuted independently [15]. Usually, this is a good approach for simple or small-
sized projects because it enables software teams to quickly write code and test the
application. Since the application is viewed as a single package, the deployment
is relatively easy as is not required to orchestrate modules separately. The scaling
of these types of applications is usually straightforward because we can simply
increase the number of resources or run several instances behind a load balancer.

However, problems arise when businesses start growing and larger teams start
working on the monolith. Due to the strong cohesion of the modules that consti-
tute the application, scaling, maintaining and accelerating deployments becomes
a challenging task [15]. For example, as the software matures, more and more
features are added and the monolithic application is likely to become complex
and heavy which impacts the speed at which teams can deliver new releases and
improvements. This usually leads to difficult challenges such as refactoring the
whole monolith and the need to rethink the architecture. Furthermore, technolo-
gies evolve at a relatively fast pace. Some require frequent updates and others
become obsolete forcing teams to change or update the technology stack [15].

Figure 2.1, explains the difference between the monolithic architecture and mi-
croservices architecture when it comes to scaling. Owing to the strong cohesion
of components in a monolith, when it is required to scale the application, one
must scale the entire system. In a microservices architecture, we can scale spe-
cific services, thus, making better use of resources. In addition, the loosely cou-
pled and modular characteristics of microservices allow developers to have the
freedom to choose from different programming languages and frameworks for
each service. They can promptly develop a small portion of an application (i.e.,
a service) without interfering with other parts or needing to refactor the whole
infrastructure.

Contrasting with the monolithic solution, an easier deployment is also possible
to achieve using microservices because each module is independently deployable
and fault tolerance should be easier to achieve as long as the full application does
not crash when a service is not responding. To achieve this there are several
microservices patterns that describe a possible approach to a certain problem.
For example, to improve the reliability of a system we can use the microservices
circuit breaker pattern [17] which prevents the failure of one service from having
a cascade effect on other services throughout the application.

6

Background and Related Work

Microservices combine well with the DevOps culture and increase the speed at
which engineering teams build and deploy software [18]. DevOps is a set of prac-
tices, tools, and a cultural philosophy that automates and integrates the processes
between software development and IT teams [19]. Fundamentally, it tries to im-
prove the communication between Development and Operation teams because
in the traditional software development model these teams are organizationally
and functionally apart [19]. It makes use of practices such as Continuous Inte-
gration and Continuous Delivery which uses tools and automated processes to
quickly deliver software to the customers.

The benefits of microservices have been proved by some of the largest technology
companies, such as Netflix, which started with a monolithic application and later
migrated to microservices precisely to overcome the limitations of the monolithic
architecture [20].

Figure 2.1: Monolithic architecture vs Microservices architecture from [1].

Nevertheless, the microservice architecture also has its drawbacks. Firstly, when
starting a new project, it is extremely hard to design and conceptualize an applica-
tion separated into small independent services. Secondly, doing general changes
that affect the entire application becomes a strenuous task even though it is quick
and easy to perform small changes. Finally, because services communicate with
each other through a network, the communication is subject to failures and delays
that impact the system.

The key takeaway is that microservices arise from the necessity to solve common
problems identified in traditional monoliths. However, it should not be seen as a
replacement for the monolithic architecture but as an alternative instead. Despite
the ease of starting new projects with a monolithic architecture, microservices are
likely to be the software architecture style of choice in the long run. Even though
it does require extra effort in terms of manageability, the benefits it provides, in

7

Chapter 2

the long run, are far greater than the required investment [21].

2.1.2 Microservices Setups

Microservices applications composed of many services are extremely complex to
build. We can take a look at real-world applications, usually comprised of hun-
dreds of microservices, that took years to build and required a huge investment.
Examples of these applications are Netflix, AWS and Twitter [22]. The dimension
of these applications and the fact that they are not open-source makes it difficult
(and in most cases impossible) to conduct experiments on these applications. To
overcome this problem, smaller microservices applications were developed by
academic institutions and other organizations.

There are several open-source microservices setups (often referred to as “testbeds”
or “benchmark applications”) that try to simulate real-world applications built
on a microservices architecture. Their main limitation is usually the size of the
applications which usually contain a relatively small number of services.

Examples of these setups include TeaStore [23], Sock Shop [24] and TrainTicket [25].

TeaStore

TeaStore [23] is a microservices testbed that simulates the functioning of an on-
line tea store and is used for benchmarking and testing [26]. It is composed of six
different services: WebUI, Registry, Image-Provider, Auth, Persistence and Rec-
ommender, each one with its docker image. Every request is done using REST
and all the services are deployed on Apache Tomcat as web services.

The services are depicted in Figure 2.2 and an explanation of their functioning is
presented below.

• Registry. Its main objective is to know which services are alive and which
ones are dead. By receiving keep-alive messages from the other services, it
can keep a list of their IP addresses, hostnames and ports;

• WebUI. Handles all the requests directed to TeaStore. It uses Java Server
Pages to provide the web pages;

• Image provider. When it starts, it queries the Persistence service for all the
images. Then, it waits for the WebUI requests for images. It uses a least
frequently used cache to get better performance;

• Authentication. Does the authentication of the users that want to login on
TeaStore. It also keeps track of the session data of the users that already
logged in;

• Recommender. The first instance queries Persistence for a generated data-
set to train, while new Recommenders ask the remaining for their data-set

8

Background and Related Work

to train itself. It uses a rating algorithm to recommend products for the
users;

• Persistence. It receives requests and queries the database for the informa-
tion that is requested. It also uses a cache to reduce response times.

Figure 2.2: TeaStore service architecture from [26].

Sock Shop

Sock Shop [24] is a microservices application that simulates the user-facing part of
an e-commerce website that sells socks [27]. It was developed using Spring Boot,
Go, and Node.js, with the specific aim of aiding the demonstration and testing of
existing microservices and cloud-native technologies. All services communicate
using REST over Hypertext Transfer Protocol (HTTP). As we can see in Figure 2.3
it is made up of 8 services: Front-End, Order, Payment, User, Catalogue, Cart,
Shipping and Queue-Master.

The services are explained below:

• Front-end. This service puts together all of the microservices and exposes
the Sock Shop to the users. It is written in Node.js.

• Order. This service provides ordering capabilities. It is written in Java and
.NET Core and is associated with a MongoDB instance.

• Payment. This service provides payment services. It is written in Go.

• User. This service covers user account storage, including cards and ad-
dresses. It is written in Go and is associated with a MongoDB instance.

• Catalogue. This service provides catalog/product information. It is written
in Go and is associated with a MySQL instance.

• Cart. This service provides shopping carts for users. It is written in Java
and is associated with a MongoDB instance.

9

Chapter 2

• Shipping. This service provides shipping capabilities. It is written in Java.

• Queue-Master. This service provides reading from the shipping queue. It
will spawn new docker containers that simulate the shipping process. It is
written in Java.

Figure 2.3: Sock Shop service architecture from [27].

TrainTicket

TrainTicket [25] is a booking system for trains based on the microservices architec-
ture [28]. It is a medium-size benchmark system composed of 41 microservices
and is written in Java, Go, Node.js and Python. Even though it is considered
a medium-size benchmark it is the larger open-source microservice application
known to date. Due to the high amount of services, we will not go into detail
on the TrainTicket architecture. However, Figure 2.4 shows all the services that
compose the application.

2.2 Containers

Microservices applications can be deployed in cloud environments using con-
tainer technologies [29]. In this section, we explain the concept of containers and
present the most used technologies used in the industry.

10

Background and Related Work

Figure 2.4: TrainTicket service architecture from [28].

2.2.1 Definition

The idea of a container first appeared in the 1970s, when the concept was first
employed on Unix systems to better isolate application code [30]. This isolation
could be achieved through the use of the command chroot which allowed the user
to change the root directory for the currently running process and its children but
they still share the resources, like users, hostname and IP address [31].

In 2000, FreeBSD extended chroot to FreeBSD Jails allowing the possibility to vir-
tualize users, and network subsystems, among others. In the following years,
other technologies like Linux VServer, Solaris Containers and Open VZ were in-
troduced [30].

In 2006, Google launched Process Containers which were designed for limiting,
accounting and isolating resource usage (CPU, memory, disk I/O, network) of a
collection of processes. It was renamed “Control Groups (cgroups)” the next year
and got merged to the Linux kernel [32]. Linux namespaces and cgroups were
then used together to implement the LXC (LinuX Containers) technology, in 2008.
Linux containers did not require dedicated guest operating systems, instead, they
share the host operating system kernel providing less baggage when compared
to Virtual Machines (VMs) [33].

In 2013, Docker, Inc. (former dotCloud), launched Docker [34]. It leveraged ex-
isting containers concepts to allow users to easily manage containers which lead
to massive adoption of the container technology [30].

Essentially, containers are packages that contain software and bundle up all the
dependencies needed to run an application [35]. They differ from a VM in the
sense that they only virtualize the user space of an existing operating system
whereas VMs virtualize an entire machine [5] including Central Processing Unit

11

Chapter 2

(CPU), Random Access Memory (RAM), file systems and network resources. As
shown in Figure 2.5, VMs use hardware virtualization and containers use Op-
erating System (OS) virtualization [36]. This difference in the type of virtual-
ization allows containers to “reuse” existing hardware and virtualize only the
software layers above the OS level, becoming thinner than virtual machines. The
lightweight properties of containers allow them to use far fewer resources than
virtual machines [36]. Additionally, they can be instantiated very quickly when
compared to VMs, which is extremely important in cloud environments where
they try to guarantee the on-demand availability of resources [37, 38]. Organiza-
tions, such as Cloud Native Computing Foundation (CNCF) and Open Container
Initiative (OCI), try to create open industry standards around container formats
and also support open-source projects to make them even more portable [39] and
available to everyone [40].

Figure 2.5: Virtualization in virtual machines and containers from [36].

2.2.2 Docker

Docker (also referred to as “Docker Engine”) [41] is a software platform that fol-
lows a client-server architecture and makes use of containers technology. The
isolation achieved by Docker is made possible thanks to three concepts: Names-
paces which limit what the container can see; Control groups (cgroups) that
limit an application to a specific set of resources allowing the Docker Engine to
share available hardware resources to containers enforcing limits and constraints;
Union file systems that operate by creating layers, Docker image is made up of
file systems layered over each other making it very lightweight and fast.

Docker architecture is shown on Figure 2.6. It is composed of five components
described below:

• Docker Daemon. Responds to the requests from the Docker REST Ap-

12

Background and Related Work

plication Programming Interface (API) and acts accordingly by managing
Docker objects such as images, containers, networks and volumes. It is
considered the server in the Docker client-server architecture. On a deeper
level, the Daemon communicates with containerd through gRPC calls. Con-
tainerd is a container runtime, responsible for pulling images, managing
network, storage and running containers using runc. Runc is a tool for
spawning and running containers on Linux according to the OCI which
creates open industry standards around container formats and runtimes.

• Docker Client. Allow users to interact with Docker daemon through a
Command-Line Interface (CLI).

• Docker Host. Provides an environment to execute and run applications. It
comprises of the Docker daemon, Images, Containers, Networks, and Stor-
age.

• Docker Images. Read-only templates that contain information about the
application and its dependencies. Containers are created and executed from
these images. Docker images can be described in a Dockerfile.

• Docker Registry. Stores Docker images privately or publicly (e.g., Docker
Hub).

Figure 2.6: Docker architecture from [41].

2.2.3 Kubernetes

Kubernetes [6], also known as k8s, is an open-source system for automating de-
ployment, scaling, and management of containerized applications [42]. It was
originally developed by Google based on an internal cluster management system
called Borg [43]. It is currently maintained by the CNCF [40].

13

Chapter 2

Kubernetes allows users to build and scale container-based applications, sched-
ule containers across a cluster and manage their health over time eliminating
many of the manual processes involved in deploying and scaling containerized
applications across public, private, or hybrid clouds [44]. A cluster is composed
of nodes and is deployed by describing a configuration in a file using either a
YAML Ain’t Markup Language (YAML) or JavaScript Object Notation (JSON).

In Kubernetes, pods are the smallest deployable units of computing that can be
created and managed [45]. A Pod contains one or more containers, with shared
storage and network resources, and a specification for how to run the contain-
ers [45]. Kubernetes supports multiple container runtimes because it uses Con-
tainer Runtime Interface (CRI) which defines an API between Kubernetes and
the desired container runtime. Therefore, container runtimes such as containerd
(which came from Docker) and CRI-O (developed by RedHat, IBM, Intel, etc.) are
supported by Kubernetes.

Pods are deployed on nodes (which may be a virtual or physical machine) and
are controlled by the Control Plane comprised of the etcd, scheduler, API server
and controller manager. Typically, as depicted in Figure 2.7, we have a master
node (or more) responsible for the Control Plane and several worker nodes that
contain pods that run the workload (i.e., do the “hard work”). Together they form
a cluster. Kubernetes components are described in detail below:

• API server. Exposes the Kubernetes API so that users can interact with it
using a client such as a command-line tool (e.g., kubectl) or the Kubernetes
dashboard. A request made to the API by the user is validated and then
forwarded to another process providing an initial barrier of authentication.

• Controller manager. Runs controller processes that are constantly trying to
detect changes in the cluster and tries to recover from undesired states. The
information is then passed to other processes like the Scheduler

• etcd. The key-value store used by Kubernetes to store cluster data such as
the resources available. Data produced by applications running in Kuber-
netes is not stored in etcd.

• Scheduler. Manages the scheduling of pods, more specifically, it decides
which nodes will host newly created pods, taking into account the available
resources.

• kubelet. Works on each node of the cluster and executes requests forward
by other processes such as pod scheduling. It also makes sure the pods are
running and healthy.

• kube-proxy. Runs on each node in the cluster and forwards requests to and
from the pods ensuring communication in the network.

14

Background and Related Work

sched
schedsched

Control Plane

Node

etcd

Kubernetes cluster

api
api
api

c-c-m
c-c-m
c-c-m

c-m
c-m
c-m

Node

k-proxy

kubelet kubelet

k-proxy Control plane

Scheduler
sched

Cloud controller
manager
(optional) c-c-m

Controller
manager c-m

kubelet
kubelet

kube-proxy
k-proxy

etcd
etcd

Node

API server
api

Figure 2.7: Kubernetes architecture from [46].

2.2.4 KubeEdge

Edge deployments are becoming more and more common due to the increasing
rise of Internet of Things (IoT) devices. Edge computing further improves the
current cloud infrastructure by increasing performance and minimizing the need
for data to be processed in remote data centers because they are closer to the
user and the data source. KubeEdge [47] is an open-source system that extends
Kubernetes to deploy nodes at the Edge. It provides core infrastructure support
for networking, application deployment and metadata synchronization between
cloud and edge [48]. KubeEdge is divided in the CloudCore and the EdgeCore.
Figure 2.8 presents the architecture of KubeEdge. In more detail, the CloudCore
has two controllers responsible for the management of devices (device controller)
and pods and nodes on the edge (edge controller). The CloudHub communicates
the changes that happen at the cloud side with the EdgeCore (in particular the
EdgeHub), through web sockets. On the edge side, the EdgeHub communicates
with the CloudHub to sync cloud-side resource updates to the edge and reports
changes on the edge-side to the cloud. The EventBus on the EdgeCore allows an
MQTT client to interact with MQTT servers. Still, on the EdgeCore, DeviceTwin
provides query interfaces for applications and is responsible for storing device
status and syncing device status to the cloud. The MetaManager acts as a mes-
sage processor between edged and EdgeHub and communicates with an SQLite
database. Finally, Edged works as a daemon that runs on edge nodes and man-
ages containerized applications.

15

Chapter 2

Figure 2.8: KubeEdge architecture from [48].

16

Background and Related Work

2.2.5 Docker Swarm

Docker introduced in version v1.12.0 a cluster management and orchestration
feature called Swarm mode. Instead of deploying a standalone container, Swarm
mode allows developers to deploy containers in nodes called workers and per-
form orchestration and cluster management using managers nodes. A Docker
host can be a manager, a worker, or both.

Manager node’s responsibility is to maintain cluster state, schedule services and
serve swarm mode HTTP API endpoints [49]. An implementation of Raft1 is
used if there is more than one manager node. Raft is a fault-tolerant algorithm
that tries to guarantee consensus via an elected leader [50]. Worker nodes, on the
other hand, run tasks instructed by the manager nodes as depicted in Figure 2.9.

Figure 2.9: Docker Swarm architecture from [49].

2.2.6 Apache Mesos/Marathon

Apache Mesos [7] began as a research project developed by UC Berkeley RAD
Lab Ph.D. students and later presented at the Usenix Symposium on Networked
Systems Design and Implementation Conference. However, it was not until 2016
that the first version was released under the Apache Software Foundation. Mesos
is a cloud-native distributed systems kernel that provides applications with APIs
resource management and scheduling [51]. Marathon2 is a framework for Apache
Mesos that acts as a container orchestration platform and provides features such
as high availability, health checks, service discovery and load balancing. It also
supports Docker and provides a REST API for scaling applications and collecting
metrics. Figure 2.10 illustrates the Apache Mesos / Marathon architecture com-
posed of: Mesos Master which manages resources in the cluster; Mesos Slave that
runs agents that report to the Master; Marathon is responsible for running and

1https://raft.github.io/
2https://mesosphere.github.io/marathon/

17

https://raft.github.io/
https://mesosphere.github.io/marathon/

Chapter 2

maintaining other frameworks (such as Chronos); Zookeeper assures the cluster
high availability. The user interacts with the Marathon Scheduler and Master via
the CLI or User Interface (UI).

Figure 2.10: Apache Mesos/Marathon architecture from [52].

2.2.7 Nomad

Nomad [53] is a container orchestrator technology developed by HashiCorp that
can deploy a mix of microservice, batch, containerized, and non-containerized
applications. It has native Consul and Vault integrations and relies on plugins to
execute. Nomad supports technologies such as Docker, contairnerd, LXC, rkt and
Java. The majority of features are available in an open-source version, and some
more advanced features require upgrading to Nomad Enterprise [54].

As we can observe in Figure 2.11, a Nomad region is composed of servers and
clients. Regions are fully independent of each other and do not share jobs, clients,
or state. They are loosely coupled using a gossip protocol, which allows users to
submit jobs to any region or query the state of any region transparently.

Servers elect a single leader (who has more responsibilities) using an implemen-
tation of Raft and are responsible for accepting jobs from users, managing clients,
and computing task placements.

18

Background and Related Work

Figure 2.11: Nomad architecture of a single region from [55].

Clients communicate with their regional servers through Remote Procedure Call
(RPC) to register themselves, send heartbeats, wait for new allocations and up-
date the status of allocations. A client registers with the servers to provide the
resources available, attributes, and installed drivers. Servers use this information
for scheduling decisions and create allocations to assign work to clients.

Finally, users make use of a CLI or API to submit jobs to the servers that provide
the set of tasks that are run by the clients [55].

2.3 Communication Mechanisms

This section presents some of the mechanisms used to communicate over dis-
tributed systems. This includes TCP Sockets, WebSockets, REST, RPC and Mes-
saging. We discard other technologies such as Simple Object Access Protocol
(SOAP) due to being outdated or less common in real-world applications. At
the end of this section, a brief comparison is made between the communication
mechanisms.

2.3.1 TCP Sockets

Sockets allow the communication between two different processes on the same or
different machines [56]. TCP Sockets are sockets that make use of Transmission
Control Protocol (TCP) to guarantee the delivery of network packets. It is an
implementation of a communication mechanism that offers little abstraction thus
being considered a low-level technology. This makes it possible to achieve high
throughput and low latency communication between server and client.

19

Chapter 2

2.3.2 Websockets

Websockets is an API [57] that makes it possible to open a two-way interactive
communication session between the user’s browser and a server [58]. They are
primarily used (though not necessarily) in web applications that require a perma-
nent connection to the server. It is based on the protocol with the same name. This
protocol, by definition, enables two-way communication between a user agent
running untrusted code running in a controlled environment to a remote host
that has opted-in to communications from that code [59]. It is layered over TCP
and appears as an alternative to opening multiple HTTP connections. There are
several frameworks that implement websockets such as Flask-SocketIO [60] and
ws4py [61].

2.3.3 REST

REST is an architectural style that provides guidelines for designing web APIs.
It follows a stateless approach where each request from the client should contain
all of the information necessary for the server to understand and attend to the
request. It uses HTTP methods like GET, POST, PUT, and DELETE to interact
with resources located on the server. REST typically uses the JSON format to
transfer data. Python Web frameworks such as Flask [62], Django REST [63] and
Falcon [64] take advantage of this architectural style and provide the necessary
tools to build powerful web aplications.

Falcon is a lightweight Python Web API framework for building high-performance
microservices, app backends, and higher-level frameworks. According to their
documentation [64], aside from being extremely simple to use, Falcon requests
performance is several times faster than most other Python frameworks. It also
transfers the responsibility of the implementation details to the developer allow-
ing greater flexibility.

Flask is a micro framework written in Python designed to be simple, lightweight
and powerful. Similar to Falcon, most decisions and implementation details rely
solely on the developer. There are several extensions to Flask developed by the
python community that add value to the base functionalities. Flask makes use of
the Jinja template engine and the Werkzeug WSGI toolkit [62]. Flask has a more
mature community due to being more popular when compared with Falcon.

Django is a high-level Python web framework that encourages rapid develop-
ment and clean, pragmatic design [63]. It offers more functionalities when com-
pared to Falcon and Flask. This comes with the downside of being a heavier
framework which might not be desirable for simpler and smaller projects. Also,
customizing details in the Django framework becomes a harder task due to less
freedom and minimalism.

20

Background and Related Work

2.3.4 RPC

RPC is the synchronous language-level transfer of control between programs in
disjoint address spaces whose primary communication medium is a narrow chan-
nel [65]. It is used as a form of client-server interaction where a client calls a
subroutine on a server. It can be implemented in different ways. Our particular
focus is on gRPC, the high-performance, open-source RPC framework initially
developed by Google. It is based on a client-server model where the client can
directly call methods on a server application as if it was a local object. gRPC uses
protocol buffers which are an extensible and powerful mechanism for serializing
structured data. It works, by first defining a service in a .proto file and generating
the server and client code using the protocol buffer compiler. Then the server
and client applications are created making it possible to execute RPC calls using
generated stubs. As depicted in Figure 2.12, the client and the server may use dif-
ferent technologies and still communicate with each other. The steps that make
the communication possible are the following:

1. A client application makes a local procedure call to the client stub contain-
ing the parameters to be passed on to the server and the stub serializes the
parameters.

2. The client stub forwards the request to the local client time library which
then forwards the request to the server stub.

3. The server run-time library receives the request and calls the server stub
procedure which unmarshalls parameters.

4. The server stub calls the actual procedure and sends back a response to the
client stub using the same process.

Figure 2.12: gRPC architecture from [66].

21

Chapter 2

2.3.5 Message Queues

A message queue is responsible for asynchronously transferring data from one
application to another. In a messaging system, producers create messages and
deliver them to the message queue while consumers connect to the queue and
retrieve the messages to be processed [67]. Messages are stored in a queue un-
til the consumer retrieves them. Examples of message queues systems include
RabbitMQ [68] and ZeroMQ [69].

2.3.6 Comparison of communication mechanisms

The communication mechanisms mentioned above are used in different scenar-
ios. For the transfer of system calls, we could consider TCP sockets. Even though
they achieve higher throughput, TCP sockets offer no security as it is up to the
programmer to implement most of the functionalities. This can be a time consum-
ing task and solutions such as Websockets already solve these problems while
still having a high throughput [70]. Websockets add a Web “origin”-based se-
curity model for the browser and can pass through most firewalls without any
reconfiguration. Websockets are a framing mechanism on top of TCP that elimi-
nates the length limits imposed by plain TCP protocol [59]. They simplify socket
programming and are also suitable for real-time applications that deal with lots
of information such as the transfer of a high volume of system calls. Message
queues could also be considered, however, we discard them since they have a
larger overhead and are used to store messages for later use when there is no
need for immediate action.

When creating APIs, gRPC and REST are the two most popular architectural
styles. Both are viable solutions that could be used. gRPC offers better perfor-
mance due to the use of protocol buffers to serialize data and HTTP/2 to solve
latency issues. However, REST is a more generic and mature technology that
provides universal browser support.

2.4 Intrusion Detection Systems

Intrusion detection is the process of monitoring system events and analyzing
them for possible incidents, automated through an Intrusion Detection System
(IDS) [71]. The main purpose of an IDS is to detect malicious activities and pro-
tect computers and the network infrastructure. An IDS will capture and analyze
network traffic or host data to discover suspicious activities and report them to
an administrator, human or computational system, which will then decide what
to do to that activity [72]. To put it simply, an IDS uses rules and heuristics to
help identify unauthorized host or network activity that may or may not be an
intrusion. The deployment of IDSes as a security countermeasure is advised [71]
and provides a good mechanism against external and internal attacks. This is
extremely important in microservices scenarios where a collection of services in-
teracts with each other through the network. It is also a challenge due to the

22

Background and Related Work

isolation of the services.

This section presents intrusion detection concepts such as the types of intrusion
detection systems when it comes to their nature and approach. Also, we briefly
present anomaly detection algorithms because it is of particular interest to this
work.

2.4.1 Detection Target

The detection or monitoring target refers to the nature of the target being mon-
itored. It can be Host Intrusion Detection System (HIDS), Network Intrusion
Detection System (NIDS) or Hybrid.

HIDS are usually installed on servers and their focus is on verifying the integrity
of system files, monitoring unusual resource utilization or unauthorized access,
or other system activity as long as it resides on the host machine [73]. They log
any activities discovered to a secure database and check to see whether the events
match any malicious event record listed in the knowledge base. They are often
critical in detecting internal attacks directed towards an organization’s servers.
An example of an HIDS is OSSEC [74].

NIDS are dedicated network devices distributed within networks that monitor
and inspect network traffic flowing through the devices [73]. They monitor net-
work infrastructure to identify attacks, analyze the flow of packets, inspecting
headers and contents. Instead of analyzing information that originates and re-
sides on a host, NIDS use packet sniffing techniques to pull data from TCP/IP
packets or other protocols that are traveling over the network. Most Network-
based IDS log their activities and report or alarm suspicious events. An example
of a NIDS is Snort [75].

Hybrid systems combine both HIDS (which monitors events occurring on the
host system) and NIDS (which monitors network traffic) functionalities on the
same system [73]. They monitor the host in which they are placed and also use the
network interfaces the host is connected to, to monitor the ongoing traffic similar
to a NIDS. They try to combine the best of the two detection target methods. An
example of an hybrid IDS is Prelude SIEM [76].

2.4.2 Detection Approach

The detection approach classification uses intrusion detection principles to clas-
sify the type of intrusion. It divides the type of approach into a Signature-based
process and an Anomaly-based process [77].

The signature-based process continuously analyzes the incoming data and at-
tempts to identify patterns of well-known and established attacks [73]. Because
they only detect known attacks, a signature must be created for every attack. The
false negatives rate is higher if the attack is not identified properly and there is
not a corresponding signature to that attack [78]. Therefore, this approach fails to

23

Chapter 2

detect unseen attacks [73].

The anomaly-based process focuses on finding abnormalities in the traffic in
question by following the principle that something that is not normal is consid-
ered to be suspicious [78]. Therefore, anomaly detection uses a baseline behavior
to determine a “normal” state for the system and compare events that occur to
that profile [73]. A new attack can be detected if it falls out of the “normal” pro-
file. False positives alarms may appear if the “normal” profile is inaccurate or
not representative of the system [78]. Overall, this approach overcomes the limi-
tations of the signature-based approach at the cost of relying heavily on the data
used during the training phase subjecting to false positives [73].

2.4.3 Anomaly Detection Algorithms

This subsection presents the most used algorithms for anomaly detection. The al-
gorithms researched in the group focus only on anomaly detection. In particular,
the algorithms researched in the group are the Bags of System Calls (BoSC) and
Sequence Time-Delaying Embedding (STIDE). However, there are others such
as K-Nearest Neighbour (KNN) and Support Vector Machines (SVM). Signature
Detection, which usually uses rule-based approaches, will not be covered.

The BoSC algorithm uses a sliding window over a collection of system calls to
detect intrusions and define a baseline behavior database, which contains bags
of system calls considered normal [78]. The order in which the system calls are
made is not taken into account because this algorithm counts the frequency of
each system call every time it appears in the sliding window [79].

The STIDE algorithm uses a window sliding over a collection of system calls
to define a baseline behavior database that will be used in the detection phase
to find possible intrusions [78]. Unlike BoSC, it maintains the original order of
system calls.

KNN is a Machine Learning (ML) classifier that relies on information acquired
during a training to identify anomalous events [78]. To group the events into
different classes uses distance heuristics between new data and classified data
and tries to find event similarities. Every time a new event is processed the K
nearest neighbors to it are calculated and the most frequent label among them is
assigned to the new event [80].

SVM is a classifier method that relies on information acquired during training
to identify anomalous events [78]. The events collected are split into different
classes separated by a hyperplane defined by several support vectors used to
define boundaries [81].

24

Background and Related Work

2.5 Monitoring

Monitoring is fundamental to ensure the performance of the system and guar-
antee the application is running as intended. It relies on collecting metrics and
analyzing data to obtain information about the resource usage or behavior of the
system. Low-level metrics provided by the operating system such as CPU usage,
memory usage and system calls, or higher-level metrics related to the business
logic of an application such as the number of user requests help development
and operation teams understand the current state of the whole infrastructure and
make decisions based on historic trends, patterns or unexpected behaviors. The
events obtained are collected with the help of tracing tools which provide more
visibility into the runtime behavior of a system. They can be further analyzed
by monitoring systems that usually leverage tracing technology. This section de-
scribes existing tracing and monitoring solutions relevant to the area. A com-
parison between the tracing solutions is not relevant since our focus is only on
Sysdig.

2.5.1 Tracing Solutions

This subsection describes in more detail three of the most popular tracing tools:
Strace, Sysdig and Extended Berkeley Packet Filter (eBPF). Other tools such as
LTTng [82] and SystemTap [83] also belong to this category but will not be cov-
ered due to being less commonly used and because the work being conducted
will focus only on Sysdig to extract system calls.

Strace

Strace [84] is a diagnostic, instructional and debugging tool that collects events
such as system calls and signals received by processes. It is based on a Linux
kernel feature called “ptrace” that listens for the system calls of a given process.
As shown in Figure 2.13, the ptrace mechanism makes it possible for strace to
interrupt the traced process every time a system call is invoked to capture and
decode the call, and then resume the execution of the initial traced process. Every
time a system call is invoked a transition between user mode and kernel mode is
required which can be time consuming. During the collection of the OS events,
multiple transitions will occur making strace not very efficient [85].

Sysdig

Sysdig [86] is an alternative to strace. It is a tool that captures OS events with
the help of the sysdig-probe driver that works directly in the Linux kernel. All the
system calls coming from applications and containers in the host can be captured.
To reduce the amount of data captured, sysdig supports filtering of incoming OS
events. These can be based on specific system calls, the source of an event (such as
specific containers or processes) or attributes of the respective event. As shown in

25

Chapter 2

Figure 2.13: Strace workflow from [85].

Figure 2.14, and starting from the bottom, the sysdig-probe is responsible to cap-
ture the events at the kernel level and store them in an event buffer. If the event
buffer gets full the sysdig-probe starts dropping the incoming events to guarantee
that the performance of the other processes is not affected. Afterwards, libscap
and libsinsp (“scap” and “sinsp” in the figure, respectively) actuate, providing
support for reading, decoding, and parsing events. Sysdig works as a wrapper
around these libraries and provides a command-line interface to ease the interac-
tion.

Figure 2.14: Sysdig workflow from [85].

eBPF

eBPF is a subsystem in the Linux kernel in which a virtual machine can execute
programs passed from the user space to the kernel [87]. It was originally used

26

Background and Related Work

for network packet filtering but later became a powerful tool for kernel devel-
opers and production engineers as they saw an opportunity to get a better in-
sight into their system through the collection of custom metrics. As shown in
Figure 2.15, eBPF allows a user-space application to inject code into the kernel
without the need to recompile the kernel (i.e., at runtime) or install additional
kernel modules [88]. eBPF programs are event-driven and run when the ker-
nel or an application passes a certain hook point such as system calls, function
entry/exit, kernel tracepoints and network events. eBPF programs can be writ-
ten using eBPF assembly instructions and converted to bytecode or in C language
and compiled using the LLVM Clang compiler, as shown in the development part
of Figure 2.15. When the hook is triggered the eBPF program is loaded into the
Linux kernel using the bpf() system call and goes through a sanity-check process
to enforce security. eBPF provides a fast and non-intrusive way of monitoring
events from the kernel to improve observability in the cloud.

Figure 2.15: eBPF workflow from [87]

2.5.2 Monitoring Solutions

Monitoring solutions provide mechanisms to collect and analyze a given sys-
tem. The now considered legacy monitoring tools used to be a good approach
to monitoring. However, with the rising of microservices applications and or-
chestrators like Kubernetes, the paradigm has changed. Each service can be dis-
tributed across multiple instances through different nodes. The use of containers
poses new challenges because of their ephemeral properties and because of that,
after a container exits, usually, the information is lost. Additionally, the num-
ber of metrics collected increases exponentially as more services and containers
are deployed and legacy systems cannot keep up with the continuous growth.
Thus, verifying that all the instances are healthy as well as the performance of
the application becomes a difficult and heavy task. Modern solutions must pivot
on the performance and scaling of the collection of metrics and provide an effi-

27

Chapter 2

cient mechanism to analyze an enormous amount of data and alert the operations
teams. The existence of tools like sysdig only provide functionalities to collect
metrics. Other solutions like cAdvisor and Falco extend these tools to support the
analysis of the data collected and take some sort of action in later stages. Compa-
nies are adopting these solutions to have better control of the infrastructures that
support their businesses.

There are some Commercial off-the-shelf (COTS) alternatives in this domain. COTS
is a type of software usually built by companies to reach the mass market. Most
of the time the implementation is straightforward, it has a vast set of functional-
ities and customer support is usually provided. However, this type of software
typically comes at a certain cost and users must be willing to pay the price for
it. They also do not provide access to the code as this software is generally not
open-source. This makes it difficult to use the product if you are not willing to
pay for it. Examples of COTS monitoring solutions are Sysdig Secure [89] and
PrismaCloud [90].

The subject of this dissertation focuses on using intrusion detection systems in
microservices applications and Kubernetes, therefore all the solutions presented
below are narrowed to this scope.

cAdvisor, Heapster and Kubernetes built-in solutions

cAdvisor [91] is a metrics collection tool that allows users to obtain information
about the resource usage and performance characteristics of containers. cAdvisor
works as a daemon that collects, aggregates, processes, and exports information
about running containers [91]. Specifically, for each container, it keeps resource
isolation parameters, historical resource usage, histograms of complete histori-
cal resource usage and network statistics. Finally, the data can be exported to
various storage drivers such as Prometheus, Kafka, stdout and a few more. The
data collected by cAdvisor also can be viewed with the help of a web-based UI
which it exposes at its port. It also exposes its data via a REST API. When work-
ing with Kubernetes, cAdvisor is integrated into the Kubelet binary. The main
characteristics are that it provides auto-discovery of all the containers running
and collects CPU and memory usage, file system and network usage statistics.
cAdvisor used to be used together with Heapster [92] which runs as a pod in the
cluster and groups the information collected. However, since around 2018, Heap-
ster has become deprecated on versions of Kubernetes greater than v1.11 making
it a nonviable solution [93].

The alternative provided by the Kubernetes development team was Kubernetes
built-in metrics-server [94]. Metrics-server collects resource metrics from Kubelets
and exposes them in the Kubernetes API server through Metrics API. Its main
purpose is to gather data for the autoscaling functionalities of Kubernetes which
include the Horizontal Pod Autoscaler and Vertical Pod Autoscaler. Even though
it is a limited alternative, it allows consumers to access resource metrics (CPU and
memory) for pods and nodes. Other solutions built into Kubernetes, such as the
Kubernetes Dashboard [95], kube-state-metrics [96] and Kubernetes probes [97]
can also be take into consideration. When used together they can provide a

28

Background and Related Work

deeper insight into the application under monitoring.

Prometheus

Prometheus [98] is an open-source monitoring and alerting toolkit originally built
at SoundCloud and in 2016 joined the CNCF as the second hosted project, af-
ter Kubernetes. Prometheus collects and stores its metrics as time-series data
whereas the name suggests changes are recorded over time. it is a very extensive
solution with an entire monitoring stack around it. Tools like Grafana (https:
//grafana.com/) can be integrated with Prometheus to provide dashboards with
the help of “sidecar” containers that transform service metrics into Prometheus
metrics following a specific format. To monitor services using Prometheus, it is
necessary to expose a Prometheus endpoint which is an HTTP interface that ex-
poses a list of metrics and the current value of the metrics. It is also possible to
write queries in the PromQL language to extract metric information. As depicted
in Figure 2.16, Prometheus is composed of the Prometheus server, which scrapes
and stores time series data; client libraries, for instrumenting application code; a
push gateway, for supporting short-lived jobs special-purpose exporters for ser-
vices like HAProxy, StatsD and Graphite; an alert manager to handle alerts and
integrate them with other tools [98]. It is a toolkit that when combined with other
solutions comprises a powerful monitoring stack.

Figure 2.16: Prometheus architecture from [98].

Falco

Falco [13] is a cloud-based security tool originally developed by Sysdig. Later
was donated as an incubation-level project to the CNCF. Falco claims to be the “de

29

https://grafana.com/
https://grafana.com/

Chapter 2

facto” Kubernetes threat detection engine. It is a container native runtime security
solution that focuses on Intrusion detection and uses the sysdig_probe module to
monitor Linux system calls and collect Kubernetes audit logs to generate alerts
based on a custom rules and macros engine. As depicted in Figure 2.17, Falco
complements the sysdig tool and adds some functionalities such as behavioral
activity monitor whose policies can be defined based on the sysdig filter options
as conditions. The output can be accessed in files, stdout or through a gRPC
API. The configurations and rules are written in YAML files, and a vast set of
rules is already available as part of the open-source initiative. However, Falco
presents some limitations. For example, it is only a monitoring tool and does
not take action on the alarms generated. Another limitation of Falco is that it is
only suitable for detecting point anomalies, such as the occurrence of a certain
event, as starting of a certain application, or the use of an unauthorized system
call, meaning there is no possibility to map contextual or collective anomalies
through the available rules set [99]. Recent approaches and techniques that use
for example collection of system calls are not incorporated in Falco as the rules
defined are based on conditions that system calls have to match. Also, because
Falco is still in an early version (< v1.0) this might indicate that this monitoring
solution is not mature enough for production.

Figure 2.17: Falco architecture from [13].

Enterprise solutions like Sysdig Secure [89] extend Falco by adding out-of-the-
box workflows for security and compliance. Even though the core of the tech-
nology is open-source, these solutions are usually costly as their primary target
audiences are businesses and companies.

KubAnomaly

KubAnomaly [100] is a system developed by a research team from the Cybersecu-
rity Technology Institute, Institute for Information Industry in Taiwan, that pro-

30

Background and Related Work

vides security monitoring capabilities for anomaly detection on the Kubernetes
orchestration platform. Through the use of neural network approaches, they cre-
ated classification models to find abnormal behaviors such as web service attacks
and common vulnerabilities and exposures attacks. KubAnomaly architecture is
depicted in Figure 2.18 and divides the system into three main components: Cen-
ter, Web Portal and Agent Service. The Center component is the main component
of the system and consists of several modules. Its primary purpose is the collec-
tion of data and detection in case a container shows anomaly behavior. It also ex-
poses a REST API so that the Web Portal component can display information and
inform users about the container status. The Agent Service component is used to
collect logs from Docker-based containers. It also supports Kubernetes. The accu-
racy and performance results obtained in the evaluation of KubAnomaly showed
that the accuracy of the proposed model is around 96% for detecting anomaly be-
havior in containers and it is capable of detecting anomalous events such as web
service attacks and CVE attacks originating from different places with a minimal
impact in performance.

Figure 2.18: KubAnomaly architecture from [100].

Kohyarnejadfard et al

Kohyarnejadfard et al [101] propose an anomaly detection framework that re-
duces troubleshooting time and highlights anomalous parts in trace data. It works
by collecting streams of system calls using LTTng [82] and sending the data over
to a machine learning module that reveals anomalous patterns of system calls
based on their execution times and frequency and generates an alarm. Their find-

31

Chapter 2

ings suggest that the framework is an effective tool for automated anomaly de-
tection and they intend to integrate this work as an open-source Trace Compass
extension [101].

Tracee

Tracee [102] is a runtime security and forensics tool for Linux. It is an open-
source project developed by Aqua Security and uses Linux eBPF technology to
trace systems and applications at runtime, and analyze collected events to de-
tect suspicious behavioral patterns based on predefined rules. Tracee is avail-
able as a Docker image that monitors the OS. It is divided into two components,
the Tracee-eBPF and Tracee-Rules. Tracee-eBPF allows to independently run the
eBPF module without involving the detection engine. Tracee-Rules is a rule en-
gine that applies rules over the input and alerts are communicated over stdout,
posted to a webhook or integrated with external systems.

2.5.3 Comparison of Related Systems

In this subsection we compare related systems to µDetector, the monitoring so-
lution to be developed during this dissertation. It is important to mention that
cAdvisor, Heapster, Kubernetes built-in solutions and Prometheus do not use in-
trusion detection techniques and therefore are not included in the comparison.
However, they could be used in the validation phase of this project to collect
important metrics. In order to compare the related system we focused on the
following parameters:

• Open-source. This parameter distinguishes open-source systems from pro-
prietary systems. Open-source systems are usually preferred because the
code is publicly available and it is free to use. Closed-source systems are
difficult to have access to unless we are willing to pay for the product.

• Graphical User Interface (GUI). This parameter distinguishes systems that
have an integrated GUI from the ones that do not. A GUI is usually much
easier to use and could provide some extra visualization that is not available
in simpler interfaces.

• Extensibility. This parameter distinguishes systems that can support and
easily incorporate new algorithms from the ones that do not or have but at
a higher cost. These systems provide a wide range of options from which
the users can choose or even add new techniques.

• Intrusion Detection Approach. This parameter refers to the type of in-
trusion detection approach used to detect abnormal behavior. It can be
anomaly-based, signature-based or both. Anomaly-based techniques can
overcome the limitations of the signature-based approach, which requires
the use of a set of rules, at the cost of relying heavily on the data used dur-
ing the training phase. While anomaly-based techniques can increase the

32

Background and Related Work

number of false positives alarms, signature-based techniques can increase
the number of false-negative alarms.

• Tracing. This parameter identifies the tracing tool used. Tracing tools use
different approaches to collect events from different sources (such as the
Linux kernel or user applications).

The results of the comparison are summarized in Table 2.1 as we can observe.
Most of the systems included in the comparison were open-source due to the
vast information available obtained from articles, blogs and official documenta-
tion. Sysdig Secure [89] uses Falco under the hood and appears in the table as the
most complete solution, however, it is a closed-source product with associated
costs. In addition, both the framework proposed by Kohyarnejadfard et al [101]
and KubAnomaly [100] are still a work in progress and, therefore, are not ready
for production environments. Tracee and Falco both use Signature-based tech-
niques (rules) to detect intrusions and neither provide a GUI. We consider our
tool to be the only one out of the systems presented to guarantee the possibility
of easily incorporating new anomaly detection techniques into the tool. It will be
possible to add a new algorithm at a small cost. This comparison provides some
motivation for the design and development of an alternative solution.

Table 2.1: Comparison of Related Systems.

System Open-source GUI Extensibility Approach Tracing
Kohyarnejadfard et al X Anomaly LTTng

Falco X Signature Sysdig/eBPF
KubAnomaly X X Anomaly Sysdig

Tracee X Signature eBPF
Sysdig Secure X Both Sysdig/eBPF

µDetector X X X Anomaly Sysdig

33

Chapter 3

Requirements Analysis

In this chapter we cover the whole process of requirements gathering. We start by
describing the User Stories and Mockups. Then we present functional and non-
functional requirements and finish with the technical restrictions of the project.

3.1 User Stories

A user story is an agile methodology tool used in project management that pro-
vides users with a more informal and less detailed explanation of a software fea-
ture written from the end user’s perspective, emphasizing communication with
the client. It is a less cumbersome process when compared to traditional methods
such as use case descriptions. Therefore, it was defined that user stories would be
used in the requirements elicitation process because it is a flexible and adaptable
way of linking the user to the requirements.

The template to be used for each user story and corresponding acceptance criteria
is the following:

“As a [type of user], I want to [perform something] so that [I can achieve some
goal].”

“Given [pre-conditions], when [key action], then [draw conclusions].”

For the user story description, we start by identifying the individual that inter-
acts with the system. Then, we describe the action that represents the behavior
of the system and the goal that the individual wants to achieve with the action
performed. Finally, we define acceptance criteria detailing the conditions that the
software product must meet to be accepted by the type of user. Due to the high
number of user stories (i.e. over 20 user stories), the complete list is presented in
Appendix A. Below we present two user stories as an example.

US-1: Configure the detection phase

35

Chapter 3

As a user, I want to configure the detection phase so that I can keep my
application secure by detecting intrusions in real-time.
Acceptance Criteria: Given the user has his application running and the
tool installed, when he runs a command (via CLI or dashboard) to setup the
detection phase and specifies a configuration file containing information
about the application deployment, the desired services to be monitored, the
algorithm to be used, the location to retrieve and store logs and the duration
of the detection phase, then the tool should configure the probes on the
desired services and start monitoring the application for possible intrusions.

US-15: Upload a configuration file
As a user, I want to upload a configuration file to the dashboard so that I
can start monitoring my application via the dashboard
Acceptance Criteria: Given the user is running the tool with the dashboard
mode active, when he clicks the button to upload a file, then he should
be able to choose a JSON file from a specific location and upload it to the
dashboard.

3.2 Mockups

The possibility to develop a Web Dashboard, as an alternative to a CLI, was
planned and discussed since the beginning of this dissertation. Therefore, we
felt the need to draw some mockups to have an overall idea of the software prod-
uct design, space allocation and prioritization of content, functionalities available
and user experience. Figure 3.1 shows the idea for the Web Dashboard, specifi-
cally the main page. In this particular situation, mockups were designed using
low-fidelity representations. Therefore a more adequate term would be “wire-
frame” or “prototype” but we decided to maintain the term “mockups” for sim-
plicity’s sake. The rest of the Mockups appears in the Appendix A along with the
User Stories.

The Mockups divide the Web Dashboard into four main pages: Dashboard, Alarms,
Resources and Help. The Dashboard page shows an overview of the system
such as node information, if any phase is active, expected time and a few more
configurations. It also shows a chart with the alarms generated in real-time and
possibly a list of the latest alarms. The Alarms page shows a list of all the alarms.
The Resources page shows the resources such as pods and services of the clus-
ter. The Help page shows information that allows the user to properly use the
Web Dashboard. A Header with two buttons is available on all pages whose pur-
pose is to configure and add a monitoring phase by providing a JSON file or stop
monitoring.

36

Requirements Analysis

Figure 3.1: Mockup of the dashboard page.

3.3 Functional Requirements

After the user stories have been written, we need to extract the requirements.
Each requirement has a well-defined priority obtained using the MoSCoW method.
This method divides priorities into four categories:

• Must have. Requirements that are necessary to the successful completion
of the project.

• Should have. Requirements that are important but are not necessary to the
project.

• Could have. Requirements that are a good addition to the project but are
considered non-important to the project.

• Won’t have. Requirements that could eventually be added. They are not a
priority right now to the project.

The functional requirements are listed in the Table 3.1, Table 3.2 and Table 3.3.
Each requirement has an identifier, a title in bold followed by a description and
the priority according to the MoSCoW method. In more detail, Table 3.1 presents
the CLI functional requirements, Table 3.2 presents the Web Dashboard functional
requirements and Table 3.3 presents optional requirements that will probably not
be accomplished but are still worth to mention.

37

Chapter 3

Table 3.1: System Functional Requirements - CLI.

Id Title and Description Priority
REQ-1 Start monitoring. The user enters a command to start monitoring

his application specifying a JSON file with configurations that in-
clude the sysdig format and parameters, compression and win-
dow size. The system validates the JSON and starts collecting the
system calls.

Must

REQ-2 Stop monitoring all services. The user enters a command to stop
monitoring all services and the system communicates with the
monitoring agents to stop collecting the system calls.

Must

REQ-3 Inspect the system calls. The user enters a command to start
inspecting the system calls by providing a JSON file that specifies
the type of phase (detection or training), the algorithm to be used
and the duration.

Must

REQ-4 View status. The user enters a command to view the current sta-
tus of the tool. The tool could be idle, collecting (monitoring)
system calls or collecting and analyzing the system calls with the
help of an intrusion detection module that generates alarms. Ad-
ditional information associated with each phase (such as the du-
ration) can be provided.

Must

REQ-5 List alarms. The user enters a command to list alarms and the
system presents the desired list. It should be possible to filter the
alarms by latest (show n latest alarms)

Must

REQ-6 List pods. The user enters a command to list pods of a cluster
and the system presents the desired list along with basic pod
information. It should be possible to view pods from different
namespaces.

Must

REQ-7 List services. The user enters a command to list services of a
cluster and the system presents the desired list along with basic
service information. It should be possible to view services from
different namespaces.

Must

REQ-8 List deployments. The user enters a command to list deploy-
ments of a cluster and the system presents the desired list along
with basic deployment information. It should be possible to view
deployments from different namespaces.

Must

REQ-9 List namespaces. The user enters a command to list namespaces
of a cluster and the system presents the desired list.

Must

REQ-10 List nodes. The user enters a command to list nodes of a cluster
and the system presents the desired list.

Must

REQ-11 List algorithms. The user enters a command to list algorithms
available and the system presents the desired list.

Must

REQ-12 List functionalities. The user enters a command to list function-
alities of the tool and the system presents the desired list.

Must

38

Requirements Analysis

Table 3.2: System Functional Requirements - Dashboard.

Id Title and Description Priority
REQ-13 Start monitoring. The user clicks on a button to start monitoring the

application and provides a valid JSON file (using an input file button)
with configurations that include the sysdig format and parameters, com-
pression and window size. The system validates the JSON and starts
collecting the system calls displaying a successful alert.

Must

REQ-14 Stop monitoring all services. The user clicks on a button to stop moni-
toring all services. The system communicates with the monitoring agents
to stop collecting the system calls.

Must

REQ-15 Inspect the system calls. The user clicks on a button to start inspecting
the system calls by providing a JSON file that specifies the type of phase
(detection or training), the algorithm to be used and the duration. The
system starts inspecting the system calls.

Must

REQ-16 List all intrusion detection instances. The user navigates to the dash-
board page and clicks on a button that lists all the intrusion detection in-
stances and presents details such as the id, type of detection, algorithm,
start time, elapsed time and duration.

Must

REQ-17 Stop all intrusion detection instances. The user clicks on a button to
stop all intrusion detection instances without stopping the collection of
the system calls.

Must

REQ-18 Stop specific intrusion detection instances. The user clicks on a button
to stop all intrusion detection instances without stopping the collection
of the system calls.

Could

REQ-19 View general information. The user navigates to the dashboard page
and the system presents information about the system being monitored.
This information includes everything specified in the JSON configura-
tion. If no monitoring is currently taking place then a list of the agents
running on the nodes is presented.

Must

REQ-20 View monitoring statistics. The user navigates to the dashboard page
and the system presents real-time monitoring information that includes
the total number of alarms generated, the total number of systems calls,
their size in bytes and the number of system calls’ batches.

Must

REQ-21 View a graphical representation of the number of system calls over
time. The user navigates to the dashboard page and the system presents
a real-time chart of the number of system calls collected over time.

Must

REQ-22 Export chart. The user navigates to the dashboard page and clicks on the
save chart button that immediately starts the download of the chart as an
image in the Portable Graphics Format (PNG) format.

Should

REQ-23 View latest alarms. The user navigates to the dashboard page and the
system presents a list of the latest five alarms. This list is constantly being
updated.

Should

REQ-24 View alarms. The user navigates to the alarms page and the system
presents a list of all the alarms detected.

Must

REQ-25 Search alarms. The user navigates to the alarms page and an input place-
holder is presented that allows to search for any alarm.

Should

REQ-26 Delete alarms. The user navigates to the alarms page and clicks on a
button to delete the current list of alarms.

Should

REQ-27 Export alarms. The user navigates to the alarms page and clicks on a
button to export the list of alarms as a JSON.

Should

REQ-28 View resources. The user navigates to the resources page and the system
presents a list of all the resources such as pods, services, deployments,
namespaces and nodes.

Should

REQ-29 View Algorithms. The user navigates to the help page and the system
presents a list of all the algorithms supported as well as a short descrip-
tion of how they work.

Should

REQ-30 View Help. The user navigates to the help page and the system presents
information that guides the user on how to use the tool correctly.

Could

39

Chapter 3

Table 3.3: System Functional Requirements - Optional.

Id Title and Description Priority
REQ-31 Submit a monitoring configuration using a form On the

dashboard, the user is presented with a form that he can
complete as an alternative to providing a JSON file. The
system guarantees that the input fields are valid, pro-
vides feedback and starts monitoring the system calls.

Could

REQ-32 Submit an intrusion detection configuration using a
form On the dashboard, the user is presented with a
form that he can complete as an alternative to providing
a JSON file. The system guarantees that the input fields
are valid, provides feedback and starts an intrusion de-
tection instance.

Could

REQ-33 Stop monitoring a specific service. On the CLI the user
enters a command to stop a specific intrusion detection
instance without stopping the collection of the system
calls.

Won’t

REQ-34 Restart a specific pod. On the dashboard the user clicks
on a button associated with a specific pod to restart it and
the system communicates with the cluster to restart the
pod.

Won’t

REQ-35 Download a profile. On the dashboard, after the training
phase of an intrusion detection instance ends, the user
clicks on a button to download a profile with information
from the training and the system starts downloading the
file.

Could

REQ-36 Upload a profile. On the dashboard, the user clicks on
a button to upload a profile (obtained from a training
phase), selects the file, and confirms the choice. The sys-
tem uploads the file and uses it in the detection phase.

Could

40

Requirements Analysis

3.4 Non-Functional Requirements

In this section, we present the Non-Functional Requirements. These correspond
to quality constraints that the system must satisfy and were defined at the early
stages of requirements gathering during the reunions with the client (the super-
visors of this dissertation).

Performance

The tool must not interfere with the performance of the host (node). To achieve
this, we define that the resource usage of the nodes under monitoring, in par-
ticular the CPU and memory usage, must not exceed 10% of the total resources
available. Additionally, when users are interacting with the application, the re-
quest throughput should not be affected by the µDetector tool.

Scalability

The tool must be able to function properly if the number of system calls increases
in a short period and if the number of pods and nodes increases as well, for ex-
ample, an increment of one replica/node to three replicas/nodes. There should
be no impact on the requests throughput of a microservices application that uses
the µDetector tool.

3.5 Technical Restrictions

In this section, we present technical restrictions that were considered in the pro-
posed solution. The technical restrictions listed in Table 3.4 originated from meet-
ings with the client and have an identifier and a description associated.

Table 3.4: Technical restrictions of the project.

Id Description
TR-1 The domain of the solution will focus on microservices

applications.
TR-2 Kubernetes and KubeEdge deployments will only be

considered.
TR-3 The intrusion detection algorithms are based on system

calls. Sysdig will be used as the tool to extract system
calls.

41

Chapter 4

A Tool to Automate Intrusion
Detection in Microservices

This chapter presents µDetector, a monitoring tool that was designed to operate in
cloud and edge environments. We start by presenting the proposed architecture
and then we move to the explanation of the implementation details.

4.1 Proposed Architecture

In this section, we explain the proposed architecture. Diagrams of the initial ar-
chitecture are depicted in Figure 4.1 and Figure 4.2. The former represents a more
generalized view of the µDetector tool and how it interacts with the other systems
and the latter details the functioning of the Intrusion Detection component of the
tool.

The µDetector tool will interact with Kubernetes clusters using different tech-
nologies. When we refer to the Kubernetes cluster, we also include support for
KubeEdge meaning that edge nodes can also be monitored. The communication
between the Edge and the Cloud is made through the KubeEdge components
CloudCore and EdgeCore, as shown in Figure 4.1.

Firstly, to obtain information about the cluster, such as the pods and nodes that
are running on the system, and be able to deploy the sysdig probes in the correct
nodes, it is necessary to run a Daemon on the master node that will communicate
with the tool through REST. Then the user can specify in a JSON file configura-
tions of how the tool should behave when running. For example, the user can
specify the services he wants to monitor, the format in which the system calls
are collected, the size of the window of collection of system calls and whether the
system calls are compressed or not. The configuration file is then validated by the
tool and the instructions are sent to the master node (through the daemon) which
is responsible for communicating with the monitoring agents (also referred to as
“probes"). These monitoring agents will then run an instance of sysdig to retrieve
the system calls and transfer them to the machine that is running the µDetector
tool where they are temporarily stored in a Redis instance for later use by the

43

Chapter 4

Cloud
[Infrastructure]

Master Node

Worker NodeWorker Node

REST

REST

Local
Storage
(Redis)

µDetector
[Software System]

Command-Line
Interface

Web
dashboard

API
Server REST

Websocket

Edge
[Infrastructure]

Edge Node

Websocket

Edge Node

KubeEdge
Cloud Core

KubeEdge
Edge Core

IDS

Users component

Operations component

Communicates with

Agent

Agent

DaemonSyscalls
Handler

Figure 4.1: General Architecture.

IDS module. After the system calls are being monitored (i.e.: extracted from the
worker nodes and transferred to the machine that is running the µDetector tool),
the user can spawn intrusion detection instances by providing a configuration file
in a JSON format. The configuration file requires a type (training or detection),
an algorithm (for example BoSC or STIDE) and a duration (in seconds). When an
Intrusion Detection instance is running, the IDS module is responsible for analyz-
ing the system calls according to a certain algorithm and generating a profile if it
is a training phase or generating alarms if it is the detection phase and anomalous
behavior is detected.

As shown in Figure 4.1, the µDetector tool has two user components that ease the
interaction of the user with the tool and improve the observability of the system.
These are the CLI and the Web Dashboard. The API Server and the IDS are op-
erations components because they do not interact directly with the user and are
responsible instead for the inner workings of the tool.

In depth, the tool is comprised of the following components:

• Master Daemon. This component is deployed on a Master node of the Ku-
bernetes cluster. It works as a proxy which allows the µDetector tool, run-
ning on an external machine, to communicate with the Kubernetes API to
retrieve information about the cluster such as available pods and nodes [103].
Additionally, when a user provides a specific monitoring configuration, the
daemon is responsible for communicating with the monitoring agents in the
worker nodes. It is written in Python using the Flask web framework [62].

44

A Tool to Automate Intrusion Detection in Microservices

• Monitoring Agent. Each Worker node can have a monitoring agent (also
referred to as a “probe”) running in the background whose job is to collect
system calls and transfer them to the external machine that is running the
µDetector tool through Websockets. It is written in Python using the Flask
web framework [62].

• API Server. Provides endpoints that both the interfaces (CLI and Dash-
board) will use to perform actions such as view the resources of the clus-
ter or start and stop monitoring system calls. Communication is achieved
through REST. For example, if the user pretends to list the pods in the clus-
ter, he uses one of the two interfaces available (CLI or the web Dashboard)
and sends a request to the API Server which will then communicate with
the Daemon in the Master node of the cluster to retrieve the list of pods
requested. It is tied together with a system calls handler whose job is to
receive the system calls directly from the worker nodes and store them in
a Redis instance locally. It is written in Python using the Flask web frame-
work [62].

• Intrusion Detection System. This component can have multiple instances
(with different algorithms) and is deployed when the user provides a con-
figuration file in a JSON format. It reads the system calls from the Redis
instance and uses them to detect threats with the help of algorithms such as
BoSC and STIDE. The IDS, as shown in Figure 4.2 is divided in two phases
that the users can choose. The training phase, creates profiles that represent
the baseline behavior of the application, based on the system calls collected.
The detection phase uses the generated profiles to assess in real-time if the
microservices application shows signs of abnormal behavior. In case this
happens, an alarm is generated. It is written in Python.

• Command-Line Interface. Connects the user to the tool and allows them
to interact with it by typing in commands. The main purpose is to provide
a simple interface that provides faster results. It is written in Python using
the Click framework [104].

• Web Dashboard. It is a more appealing alternative to the CLI to aid in the
monitoring of the microservice application. It supports the same functional-
ities and some others, such as visualization of a system calls chart, statistics
and alarms’ information in real-time. It is written using standard HyperText
Markup Language (HTML), Cascading Style Sheets (CSS) and JavaScript.

• Local Storage. A Redis instance is responsible for storing all the information
required to run the tool correctly. This includes the batches of system calls,
the profiles and alarms generated as well as some statistics of the tool and
configuration files.

45

Chapter 4

Figure 4.2: IDS Architecture.

4.2 Implementation

This section describes the implementation details considered during the develop-
ment phase of the application.

Initially, we need a Kubernetes cluster comprised of a master node and several
worker nodes. On the master node, we run the daemon in the background and, to
have access to the Kubernetes REST API we run kubectl in proxy mode since it is
the recommended way according to [103]. On the worker nodes, we need to have
Sysdig [86] installed and then we run the monitoring agents in the background.

The external machine that runs the µDetector tool needs to have a Redis server
configured and the µDetector tool (more specifically the API server) running in the
background. The user can then interact with the tool using the cli.py or accessing
http://localhost:5001.

A general decision that impacts the whole architecture is that, aside from the
front-end of the Dashboard, all the components are written in Python. This was
decided mostly because the intrusion detection module is also written in Python
and, aside from our experience with the language, there are good Python libraries
that make network programming easier (for example AsyncIO), and the compat-
ibility with technologies such as Websockets, Redis and Kubernetes are assured.
Therefore we discarded other language frameworks that are also fit to build web
applications such as the JavaScript framework Node.js. Even though Python is
known for being a slow language, if there is a bottleneck it is on the transfer of

46

http://localhost:5001

A Tool to Automate Intrusion Detection in Microservices

the system calls and this occurs over the network.

Ideally, we planned to develop the dashboard and API Server with the help of the
Django framework, the Master Daemon using Flask and the monitoring agents
using sockets. This would require getting familiar with three different technolo-
gies and would negatively impact the delivery of the project due to time con-
straints. To mitigate this risk, we decided to use Flask as the solution to all these
three APIs because it has no dependencies on external libraries making it a very
suitable lightweight and performant framework that we are already familiarized
with it.

On the front-end side of the Web Dashboard, we chose to use standard HTML,
CSS and JavaScript and keep the application “thin”. This means that JavaScript is
only used to display the information and almost no processing logic is involved
in the frontend. Therefore, we opt out of JavaScript frameworks to reduce the
number of dependencies and keep the application lightweight. Nevertheless, we
use a few JavaScript libraries. This include Bootstrap and jQuery, to make the GUI
more responsive and appealing. eCharts.js is used to build the charts because it is
a powerful and flexible open-source JavaScript visualization library provided by
Apache [105].

Below, we explain each component in greater detail.

API Server

The API Server acts as the middleman between the interfaces (the CLI and Dash-
board) and the Kubernetes cluster. Table 4.1 shows all the endpoints. This com-
ponent has also associated a system calls handler responsible for establishing a
connection with the agents and retrieving the system calls. The transfer of the
system calls occurs over Websockets as was discussed in the section 2.3 of Chap-
ter 2. The system calls are retrieved in 5 seconds (the default value) groups called
batches. Every batch is stored in a Redis instance and, to avoid storing many
batches, a configurable max value limits the number of batches. This way we can
guarantee that only the latest 10 (the default value) batches are stored and keep
the system ready to inspect system calls in real-time. It is also possible for the user
to choose if he wants to compress the system calls using Blosc, a high-performance
compressor optimized for binary data [106], to reduce the size of the data being
transferred over the network. This might cause delays due to the time necessary
to compress but might also improve the transfer of system calls. A compromise
between both these scenarios must be achieved and the responsibility falls to the
user.

47

Chapter 4

Table 4.1: API Server Endpoints

Method URL Description
GET /api Returns the string “The detector

AP”
GET /api/daemon/status Establishes a connection to the

Daemon and returns status code
200

GET /api/daemon/agents Establishes a connection to the
Daemon and returns a JSON
with information about the
nodes and whether they are
running agents or not

POST /api/monitoring/start Establishes a connection to the
Agent and sends a request to
start collecting system calls

POST /api/monitoring/stop Establishes a connection to the
Agent and sends a request to
stop collecting system calls

POST /api/inspecting/start Starts an intrusion detection in-
stance

POST /api/inspecting/stop Stops all intrusion detection in-
stances or a single one if an id is
provided

GET /api/alarms Returns a list of all the alarms
sorted by most recent. It is
also possible to retrieve the lat-
est “N” alarms

DELETE /api/alarms Deletes the list of alarms
GET /api/algorithms Returns a list of the algorithms

available
GET /api/resources/pods Returns information about the

pods of the Kubernetes cluster
GET /api/resources/services Returns information about the

services of the Kubernetes clus-
ter

GET /api/resources/deployments Returns information about the
deployments of the Kubernetes
cluster

GET /api/resources/namespaces Returns information about the
namespaces of the Kubernetes
cluster

GET /api/nodes Returns information about the
nodes of the Kubernetes cluster

GET /api/stats Returns a list of all the statistics
from the monitoring phase

48

A Tool to Automate Intrusion Detection in Microservices

Daemon

The Daemon works as a proxy which allows the µDetector tool to communicate
with the Kubernetes API and the monitoring agents of the worker nodes. It runs
on the master node of the Kubernetes cluster and it is a Flask app written in
Python. It provides 5 REST endpoints:

• /status (GET) - This method always returns 200 and is used to verify that
the connection to the daemon is working.

• /agents (GET)- This method is used to verify if the monitoring agents are
running on the worker nodes. It returns a JSON with information about the
nodes and whether they are running agents or not.

• /start (POST) - This method forwards a POST request to the monitoring
agents on the worker nodes to start collecting system calls.

• /stop (POST) - This method forwards a POST request to the monitoring
agents on the worker nodes to stop the collection of system calls.

• /proxy (Any) - Acts as a proxy and allows the tool to access the Kubernetes
API and retrieve information about the resources of the cluster.

Agents

The monitoring agent (also called “agent” or “probe”) is responsible for collecting
system calls and transferring them through Websockets to an external machine
that is running the µDetector tool. It runs on each worker node of the Kubernetes
cluster and it is a Flask app written in Python. It provides three REST endpoints:

• / (GET) - This method always returns 200 and is used to verify that the
connection to the agent is working.

• /start (POST) - This method spawns a sysdig process with the parameters
from the request data such as filters and args. The system calls collected
by this process are then piped to another process responsible for sending
them over the network using websockets to the µDetector tool. Before they
are sent, the system calls are grouped in batches defined by a configurable
window size which defaults to 5 seconds. This means that every 5 seconds
a batch of system calls is sent through over websockets.

• /stop (POST) - This method stops the sysdig and websocket processes that
were spawned by the agent in the /start method where the purpose is to
stop the collection of system calls.

Intrusion Detection

The intrusion detection component is responsible for analyzing the system calls
collected and creating profiles (training phase) or generating alarms (detection

49

Chapter 4

phase). Every time the user commands a new intrusion detection instance to be
spawned, the API Server spawns a new process that runs the intended algorithm,
the type (training or detection) and the duration. All of the described components
above were implemented during this project. This includes the Intrusion Detec-
tion component but the algorithms were already implemented and it was only
required to modify some parts to be compatible with the tool. This way, the tool
has a folder called algorithms where it is possible to add new algorithms. Each
file corresponds to a new algorithm and the system can detect the file and incor-
porate the algorithm into the tool. This way we can guarantee the extensibility of
the tool since the level of effort required to implement the extension (add more
algorithms) is low. The implemented algorithms were BoSC and STIDE.

Command-Line Interface

The CLI was developed in Python with resort to Click, a Python package that
provides the necessary tools to build a command-line interface [104]. The CLI
provides 7 commands that are explained below:

• status - prints the status of the tool. Whether is monitoring, idle or inspect-
ing system calls

• start - requires a monitoring configuration to be provided and starts the
collection of system calls based on the configuration.

• stop - stops collecting system calls and/or inspecting the system calls

• inspect - requires a configuration to be provided and starts inspecting the
system calls based on the configuration and by deploying an intrusion de-
tection instance

• alarms - prints the alarms generated

• algorithms - prints the algorithms available

• list - prints information about the Kubernetes cluster. Lists information
about the pods, services, deployments, namespaces and nodes of the clus-
ter.

As previously explained, the CLI has fewer functionalities when compared to the
Dashboard because the goal is to provide a simple interface that provides faster
results.

Dashboard

The Dashboard was developed in Python for the backend and HTML, CSS and
JavaScript for the frontend. Additionally, JavaScript libraries such as Bootstrap,
jQuery, Axios, eCharts.js and sweetalert2.js were used. The Dashboard is composed
of 5 pages that follow the common style used in the Dashboard where there is a
side panel on the left. The pages are:

50

A Tool to Automate Intrusion Detection in Microservices

• Dashboard. The main page of the Dashboard presents all information about
the current status of the tool, statistics about the system calls collected in-
cluding a chart with the system calls collected over time, alarms generated
and information about the latest 5 alarms. It also allows the user to start
collecting system calls, stop the collection and deploy intrusion detection
instances by uploading a configuration file. Every 5 seconds, the page re-
freshes the alarms list and the statistics

• Alarms. A page that displays the complete list of alarms generated and
updates it every 5 seconds. The user can search for any alarm by typing in a
search box. It is also possible to download the alarms as JSON file and also
clear the list of alarms.

• Resources. A page that connects to the Kubernetes API and retrieves infor-
mation about the resources of the cluster including pods, services, names-
paces, deployments and nodes.

• Help. A static page with information about the tool such as what it is and
how to deploy it.

• Error. A static page that indicates an error has occurred.

For the backend, the Dashboard uses Flask and Jinja2 template to render the
pages. Requests to the API Server are made to separate the viewing part from
the information part. This way, the Dashboard focus only on retrieving the infor-
mation from the API Server and displaying it to the user. An example is the use
of the JavaScript library Axios to make a request to the endpoint /api/stats that
returns information that is later used by the echarts.js library to build a system
calls graph and present statistics to the user. The Bootstrap and the sweetalert2.js
library help make the dashboard more appealing to the users. Figure 4.3 shows
the dashboard page and its components such as the configuration overview, the
system calls chart, the statistics and the latest alarms. Other screenshots were
omitted due to not being relevant (the dashboard is the most important of all the
pages).

Storage

Redis was chosen as the storage mechanism due to being an in-memory data
structure store that offers a rich set of features. Its ease of use and good docu-
mentation makes it also a very suitable option. Other alternatives such as Mem-
cached and Kafka were also considered. However, Memcached does not provide
support for reliable queues while Redis does. This pattern is important and is
used to store the batches of system calls. Redis is also more powerful, more pop-
ular, and better supported than Memcached [107]. Kafka is usually not as fast as
Redis [108] and for our use case, we need to guarantee the processing of system
calls is not affected by performance.

51

Chapter 4

Figure 4.3: Dashboard page.

52

Chapter 5

Validation and Experimentation

In this chapter, we describe the validation plan we followed to make sure that
the µDetector tool meets the requirements defined in Chapter 3. The solution was
validated in a two-fold process: first, we followed a functional testing approach;
then a more experimental approach that includes performance and scalability
tests. At the end of this chapter, we present and discuss the results obtained.

5.1 Validation Plan

The first approach uses Functional Testing to make sure the functional require-
ments are fulfilled. We deploy the tool along with a Kubernetes cluster that runs
a microservices testbed such as Sock Shop [24]. We then perform the tests accord-
ing to a predefined list that contains the inputs and respective outputs and makes
sure it passes the tests.

The second approach consists of deploying the tool in a microservices setup
where we will use scripts and Locust [109] to collect metrics such as CPU us-
age, memory usage, response times and requests throughput. With the metrics
obtained, we will then make sure that when running the µDetector tool, the per-
formance of the microservices application is not affected and the nodes running
the monitoring agents are not affected.

The complete process is described in the sections below.

It is important to mention that the purpose of this dissertation is not to evaluate
the detection of abnormal behavior in microservices applications but to develop
a tool that supports and automates intrusion detection and the entire process of
the collection of system calls. It is out of the scope of this dissertation and will not
be covered in the validation stage.

53

Chapter 5

5.2 Functional Testing

After the requirements have been defined we planned to prepare test cases to
cover the requirements and make sure they were properly implemented. To
achieve this, we use functional testing which is a kind of black-box testing that is
conducted to confirm that the functionality of an application or system is behav-
ing as expected [110]. After the execution of the test cases has been completed,
we must make sure that all the tests are passed successfully. For each listed (and
implemented) requirement we plan on having at least two tests: one default case
that shows the normal behavior of the application and a negative case that shows
the behavior of the application when something goes unexpected. An example
of a negative case could be when we want to test the upload of a file to a website
and provide an invalid file. The default case associated is to provide a valid file.

Our black-box approach tries to cover the interaction of the user with the tool.
Thus, the tests will initiate through the CLI and the Dashboard which are the
components that the users can interact with. The monitoring agents, the daemon,
and the detector, even though they belong to the tool they do not interact with
the user except when starting or stopping the program which we will also cover.

More detailed tests such as unit tests were not thought of, due to being a very
time-consuming process that usually covers modules individually, while func-
tional testing checks the working of an application against the intended function-
ality described in the system requirement specification [111]. To conduct the tests
we defined the following structure:

• Test ID - to identify the test.

• Requirements Addressed - the requirement IDs that the test covers.

• Case Type - The type of the test. Example: Default, Negative, Equivalence,
Boundary)

• Test Case - Describes how to conduct the test. Refers to the necessary inputs.

• Expected Result - Describes what is the expected output.

We also defined the following test conditions: Sysdig, Docker, Kubernetes and
Redis are prerequisites that were properly installed and configured; the µDetector
tool was configured and points to the right hosts and ports; a Kubernetes cluster
with three worker nodes and a master node was setup where one of the nodes
is running KubeEdge. Sock Shop was the testbed chosen. TeaStore was another
alternative as both are mature testbeds.

The CLI and the Dashboard tests appear in Table 5.2 and Table 5.3, respectively.
Table 5.1 lists tests that do not fit in any the tables mentioned (Table 5.2 and Ta-
ble 5.3).

Even though the optional requirements from Table 3.3 were not implemented due
to being optional and time constraints arise, the tool passed all the tests success-
fully for the requirements that were implemented (from Table 3.1 and Table 3.2).

54

Validation and Experimentation

Table 5.1: General case tests.

Test ID Test Case Expected Result
T_0_1 Send a signal to stop Agent. The Agent exits successfully cleaning up any

child process spawned.
T_0_2 Send a signal to stop Daemon. The Daemon exits successfully cleaning up any

child process spawned.
T_0_3 Send a signal to stop. µDetector

(API Server)
The µDetector exits successfully cleaning up any
child process spawned.

T_0_4 Execute the following valid
command on the master node
“python3 daemon/main.py”

A Flask instance of the daemon starts on the
master node

T_0_5 Execute the following valid
command on one of the
worker nodes “python3
agent/main.py”

A Flask instance of the monitoring agent starts
on the worker node

T_0_6 Execute the following valid
command on the user’s machine
“python3 detector/main.py”

A Flask instance of the API Server starts on the
user’s machine

55

Chapter 5

Table 5.2: Functional Requirements Validation - CLI case tests.

Test ID Requirements
Ad-
dressed

Case Type Test Case Expected Result

T_1_1 REQ-1 Default Case Execute the following valid command “python3 cli.py
start -f monitoring.json”.

A success message and the start
of the collection of the system
calls.

T_1_2 REQ-1 Negative Execute the following valid command “python3 cli.py
start -f monitoring.json” but “detector.py” (entry point
to the API Server) is not running

Error message and the collection
of the system calls does not start.

T_1_3 REQ-1 Negative Execute the following invalid command “python3 cli.py
start”. No file is provided.

Error message and the collection
of the system calls does not start.

T_1_4 REQ-1 Negative Execute the following valid command “python3 cli.py
start -f monitoring.yaml”. The command is valid but the
file provided is not because the file extension is different
from a JSON.

Error message and the collection
of the system calls does not start.

T_1_5 REQ-1 Negative Execute the following valid command “python3 cli.py
start -f monitoring.json” where monitoring.json has an
invalid content.

Error message and the collection
of the system calls does not start.

T_1_6 REQ-2 Default Case Execute the following valid command “python3 cli.py
stop” and agents are collecting system calls.

Success message and the system
calls stop being collected.

T_1_7 REQ-2 Negative Execute the following valid command “python3 cli.py
stop” and agents are not collecting system calls.

Success message and the system
calls stop (forcefully) being col-
lected.

T_1_8 REQ-3 Default Case Execute the following valid command “python3 cli.py
inspect -f training.json” and provide a valid inspecting
file. The agents are collecting the system calls.

Success message and the start of
the inspection of the system calls
by deploying an intrusion detec-
tion instance.

T_1_9 REQ-3 Negative Execute the following valid command “python3 cli.py
inspect -f training.json”. inspecting file but no system
calls are being collected.

Error message and no intrusion
detection instance is deployed.

T_1_10 REQ-3 Negative Execute the following valid command “python3 cli.py
inspect -f training.json” where the file has an invalid
structure.

Error message and no intrusion
detection instance is deployed.

T_1_11 REQ-3 Boundary Execute the following valid command “python3 cli.py
inspect -f training.json” but the file content is invalid. In-
valid cases:

1. Duration is not an integer

2. Type is different from “detection” or “training”
(ex.: “abc” instead of “training”)

3. Algorithm is different from the algorithms list (ex.:
“abc” instead of “bosc”)

Error message and no intrusion
detection instance is deployed.

T_1_12 REQ-4 Default Case Execute the following valid command “python3 cli.py
status” and the agents are collecting system calls.

Message with the current status.

T_1_13 REQ-4 Negative Execute the following valid command “python3 cli.py
status” but the “detector.py” (entrypoint to the API
Server) is not running.

Error message.

T_1_14 REQ-5 Default Case Execute the following valid command “python3 cli.py
alarms”.

Complete list of alarms.

T_1_15 REQ-5 Default Case Execute the following valid command “python3 cli.py
alarms -n 5”.

List of the latest 5 alarms.

T_1_16 REQ-5 Equivalence
and Bound-
ary

Execute the following invalid commands: 1. “python3
cli.py alarms -n ”. 2. “python3 cli.py alarms -n -1”.
3. “python3 cli.py alarms -n 9223372036854775808”. 4.
“python3 cli.py alarms -n abc”.

Complete list of alarms.

T_1_17 REQ-
6 to
REQ-10

Default Case Execute the following valid command “python3 cli.py
list –pods”. (Do this for every resource).

List of pods (or other resources)
that exist in the cluster.

T_1_18 REQ-
6 to
REQ-10

Negative Execute the following valid command “python3 cli.py
list –pods” but daemon is not running or connection
fails.

Error message.

T_1_19 REQ-11 Default Case Execute the following valid command “python3 cli.py
algorithms”.

List of algorithms available.

T_1_20 REQ-11 Negative Execute the following valid command “python3 cli.py
algorithms” and the API server is not running.

Error message.

T_1_20 REQ-11 Negative Execute the following valid command “python3 cli.py
algorithms” and the file “algorithms.json” does not ex-
ist

Error message.

T_1_21 REQ-12 Default Case Execute the following valid command “python3 cli.py –
help”.

Message showing the com-
mands available.

T_1_22 REQ-
1 to
REQ-12

Negative Execute an invalid command such as “python3 cli.py
abc”.

Message showing the com-
mands available.

56

Validation and Experimentation

Table 5.3: Functional Requirements Validation - Dashboard case tests.

Test ID Requirement
ID

Case Type Test Case Expected Result

T_2_1 REQ-13 Default Case Go to the dashboard page, click “Start monitoring” but-
ton, click the file input button and choose “monitor-
ing.json” file, click “Continue” (confirm the information
is correct) and click “Start Monitoring”.

A successful alert, the page is refreshed and the agents
start the collection of the system calls.

T_2_2 REQ-13 Negative Go to the dashboard page, click the “Start monitor-
ing” button and the “detector.py” (entrypoint to the API
Server) is not running.

The button is hidden on the server-side from the user and
it is not possible to click it.

T_2_3 REQ-13 Negative Go to the dashboard page, click “Start monitoring” but-
ton, click the file input button and choose an invalid file
extension (eg.: ”monitoring.yaml”). Click “Continue”.

The user is presented with the dashboard page making it
impossible to continue with the start monitoring steps.

T_2_4 REQ-13 Negative Go to the dashboard page, click “Start monitoring” but-
ton, click the file input button, choose “monitoring.json”
file with invalid structure, click “Continue” and “Start
Monitoring”.

An error alert is displayed.

T_2_5 REQ-13 Negative Go to the dashboard page, click the “Start monitoring”
button, click the file input button and choose “monitor-
ing.json” file with invalid sysdig args or format and click
“Continue” and “Start Monitoring”.

An error alert is displayed.

T_2_6 REQ-13 Boundary Go to the dashboard page, click the “Start monitoring”
button, click the file input button and choose “monitor-
ing.json” file with invalid window size (integer not in the
range [1,1000]) and click “Continue” and “Start Monitor-
ing”.

A successful alert is displayed, the page refreshes au-
tomatically and the monitoring starts with the default
value of 5 seconds.

T_2_7 REQ-14 Default Case Go to the dashboard page, make sure the agents are mon-
itoring and then click the “Stop monitoring” button and
then confirm.

A successful alert is displayed, the page refreshes auto-
matically and the agents stop collecting system calls.

T_2_8 REQ-14 Negative Go to the dashboard page, make sure the agents are not
monitoring anything and then click the “Stop monitor-
ing” button and then confirm.

A successful alert is displayed similar to the default case,
the page refreshes and the agents stop forcefully the col-
lection of system calls.

T_2_9 REQ-15 Default Case Go to the dashboard page, make sure the agents are mon-
itoring, then click the “Start inspecting system calls” but-
ton, submit a valid file and confirm.

A successful alert is displayed, the page refreshes au-
tomatically and the intrusion detection instance is de-
ployed.

T_2_10 REQ-16 Default Case Go to the dashboard page and make sure the agents are
monitoring and there is at least one intrusion detection
instance running. Then click the “Manage instances”
button.

A modal appears with a list of all the intrusion detection
instances identified by their id. The user can then expand
each instance to view more information.

T_2_11 REQ-16 Negative Go to the dashboard page, make sure the agents are mon-
itoring and there is no intrusion detection instance run-
ning.

The “Manage instances” button is blocked making it im-
possible for the user to click on the “Manage instances”
button.

T_2_12 REQ-17 Default Case Go to the dashboard page and make sure there is at
least one instance running and then click the “Stop all
instances” button.

A successful message, the page is refreshed and the in-
stance gets deleted.

T_2_13 REQ-18 Default Case Go to the dashboard page, make sure there is at least one
instance running, expand any of the instances and click
the “Stop instances” button.

A successful message, the page is refreshed and the in-
stance gets deleted.

T_2_14 REQ-
19 to
REQ-21

Default Case Go to the dashboard page, make sure the daemon is run-
ning and system calls are being collected.

An overview box with information about the agents run-
ning on the nodes and monitoring information such as
duration and sysdig configurations is displayed. A real-
time graph and statistics of the system calls being mon-
itored are also presented to the user and automatically
refresh the data.

T_2_15 REQ-19
to 21,
REQ-28
to 30

Negative Go to the dashboard page, make sure the daemon is not
running.

An error message appears saying the daemon is not run-
ning or was not detected by the tool.

T_2_16 REQ-
19 to
REQ-21

Negative Go to the dashboard page, make sure the daemon is run-
ning and no system calls are being collected.

An overview box with information about the agents run-
ning on the nodes is displayed.

T_2_17 REQ-22 Default Case Go to the dashboard page, make sure the daemon is run-
ning and system calls are being collected. Click on the
export button that appears on the top right of the system
calls chart.

The download of the graph in the PNG format starts im-
mediately.

T_2_18 REQ-23 Default Case Go to the dashboard page and make sure that at least
one intrusion detection instance is running and generat-
ing alarms.

A partial list in the form of a table with the latest 5
alarms.

T_2_19 REQ-24 Default Case Go to the alarms page and make sure that at least one
intrusion detection instance is running and generating
alarms.

A complete list in the form of a table of all the alarms.

T_2_20 REQ-25 Default Case Go to the alarms page and make sure that at least one
intrusion detection instance is running and generating
alarms. Make sure alarms have been listed in the alarms
table and characters are entered in the search place-
holder. An example is to search for “worker-1” and find
all alarms that contain information about “worker-1”

Table filters the information and presents all entries
where the search text appears.

T_2_21 REQ-26 Default Case Go to the alarms page and make sure that the table con-
tains alarms. Click the delete alarms button.

The table is cleared and appears empty.

T_2_22 REQ-26 Negative Go to the alarms page and make sure that the table con-
tains no alarms. Click the delete alarms button.

The table is cleared and appears empty.

T_2_23 REQ-27 Default Case Go to the alarms page and make sure that the table con-
tains alarms. Click the download alarms button

The download of the alarms.json file starts immediately.
The file contains a JSON list of all the alarms.

T_2_24 REQ-27 Negative
Case

Go to the alarms page and make sure that the table con-
tains no alarms. Click the download alarms button

The download of the alarms.json file starts immediately.
The file contains an empty JSON list.

T_2_25 REQ-28 Default Case Access the web dashboard, navigate to the resources
page and expand the resources tabs (pods, services, . . .).

The user navigates to the resources page and views ta-
bles that describe the resources of the cluster such as
pods and namespaces.

T_2_26 REQ-29
and
REQ-30

Default Case Access the web dashboard and navigate to the help page. The user navigates to the help page and views static
helpful information.

57

Chapter 5

5.3 Non-Functional Requirements Validation

This section describes the whole Non-Functional requirements validation pro-
cess. We will focus on performance and scalability which were the two non-
functional requirements elicited during the requirements phase. Our goal is to
prove the µDetector tool does not interfere with the normal functioning of the
microservices application. We also want to guarantee that when the number of
system calls and resources of the cluster increases, there is no negative impact on
the application. Therefore we started by defining the scenarios which we want to
test and the setup of the environment.

µDetector LocustSockshop
(Kubernetes Cluster)

Figure 5.1: Experimental Setup of the Non-Functional Requirements Validation.

Figure 5.1 shows how we will conduct the tests. In more detail, we have a Kuber-
netes cluster with a variable number of worker nodes (maximum of three worker
nodes) that interacts with the µDetector tool which is running on another ma-
chine. The Kubernetes cluster runs the Sock Shop application while Locust [109],
the load testing tool used to simulate users accessing the application, runs on a
separate machine.

Concerning the experiments, we had to, first, setup a Kubernetes cluster. To
achieve this we used four machines: one Master Node and three worker nodes.
Out of the three worker nodes, two are normal Kubernetes worker nodes and the
other is an Edge node that relies on KubeEdge. With the help of the kubeadm and
kubectl commands we create the cluster and deploy the Sock Shop [24] testbed.
Before deploying the Sock Shop, it is necessary to install a network plugin so that
the pods can communicate with each other. We chose Flannel [112] due to being
easy to configure as it only requires a YAML file.

For the cluster to support Edge nodes, we have to install KubeEdge (keadm more
specifically), initialize the cloudcore service on the master node using keadm init
and retrieve a join token using keadm gettoken. This token was used on the Edge
node together with the command keadm join.

The upload and download speed of the network connection is 1000 Mbit/s on
cable. The specs of the machines are as follows:

• µDetector tool (physical machine) - Apple M1, 8-core with 16GB of RAM.

• Master node (virtual machine) - Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
with 16GB of RAM

• Worker node 1 (virtual machine) - Intel(R) Xeon(R) Gold 6226R CPU @
2.90GHz with 16GB of RAM

58

Validation and Experimentation

• Worker node 2 (virtual machine) - Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz with 8GB of RAM

• Worker node 3 (virtual machine) - Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz with 8GB of RAM

• Locust tool (physical machine) - AMD Ryzen 5 3600 6-Core Processor with
16GB of RAM

To guarantee the properties of performance and scalability we increase the col-
lection of system calls, worker nodes and pod replicas. Then, we monitor the
requests throughput, response times, and CPU and memory usage of the ma-
chines from the cluster (master and worker nodes), and the machine that runs
the µDetector tool. This happens over a period of 30 minutes. We used a standard
configuration of the monitoring of the system calls: we monitor the front-end ser-
vice of the Sock Shop where we collect the system calls in batches of 5 seconds
with syscalls_compression flag set to True. The algorithm for the detection was
BoSC. Table 5.4 depicts the 4 scenarios.

Table 5.4: Experimental Scenarios

1 Worker Node 3 Worker Nodes
Without µDetector Scenario 1 Scenario 2

With µDetector Scenario 3 Scenario 4

Scenarios 1 and 2 serve as stable runs without the µDetector tool, while scenarios
3 and 4 have the µDetector tool running. Scenarios 2 and 4 will have three worker
nodes where one of them is deployed on Edge using KubeEdge. They also have
three replicas of the front-end service instead of one to represent a cluster that was
scaled up. The workload for Scenarios 1 and 3 where there are fewer resources
(only one replica of the front-end service and one Worker node) has a different
and less demanding workload than Scenarios 2 and 4. Figure 5.2 shows the two
workloads used. Scenarios 1 and 3 used the constant-wl and Scenarios 2 and
4 used the variable-wl. The constant-wl workload means there is always a
constant number of users performing requests to the Sock Shop throughout the
duration of the experiment. With the variable-wl workload we try to simulate a
scenario with several high and low intervals of users accessing the Sock Shop to
achieve a better representativity of real-world user workloads.

Results and Discussion

In this subsection, we present and discuss the results obtained during the second
approach of the validation which consists of an experimental campaign where
we evaluate the 4 scenarios previously described.

Figure 5.3 and Figure 5.4 show, respectively, the system calls collected and the
requests throughput for each scenario over 30 minutes. For simplicity’s sake, we
omit the failed requests because there were none in each scenario. Therefore only
the successful requests are shown in Figure 5.4. As we can observe, the system

59

Chapter 5

Time (in seconds)

us
er

s

0

2

4

6

8

10

0 500 1000 1500

variable-wl constant-wl

Locust workloads

Figure 5.2: Locust workloads. Scenarios 1 and 3 used the constant-wl and Scenar-
ios 2 and 4 used the variable-wl.

calls graph follows the same trend as the requests throughput graph. This is to be
expected and in Scenario 3, the µDetector tool ended up collecting fewer system
calls (around 50 000 system calls per second) due to having a different and less
demanding workload. In Scenario 4, there was a peak of around 130 000 system
calls per second and the workload was heavier (more system calls being collected
per second) than in Scenario 3. Nevertheless, the tool was able to deal with the
increasing number of system calls, pods and nodes and there was no negative
impact on the requests - 0 failed requests. We also collected the response times
for the 50% (median) and 95% percentile. Scenarios 1 and 3 had a slightly lower
response time, inferior to 10ms, as we can observe in Figure 5.5. This can be
explained due to the workload being less demanding in both scenarios as they
also have only one Worker node. This means that the tool was able to deal with
the increase in system calls, pods and worker nodes.

Figure 5.6 depicts the CPU usage in the µDetector machine, the master node ma-
chine and the first worker node machine. We decided not to show the CPU usage
for the second and third worker nodes to not overwhelm the reader since the re-
sults are similar to the first worker node. As we can observe, for the µDetector
machine, the CPU usage floated around the 10% and 30% for all the scenarios.
Therefore with or without the µDetector tool monitoring system calls, we can de-
duce that performance is not affected on the machine that runs the tool. For the
Master node machine we can observe a similar behavior but this time the CPU
usage varies between 4% and 10%. This is expected, as this machine is only run-
ning a daemon that is idle during the monitoring of the system calls and only
takes action if a command is provided by the user.

For the worker node machine, we can already observe differences. From Scenar-
ios 1 and 3 to Scenarios 2 and 4, the CPU usage drops less than 10%. This happens
due to the scaling of the worker nodes taking place in Scenarios 2 and 4 - we have
the pods of the Sock Shop application split across different nodes, therefore, the

60

Validation and Experimentation

N
um

be
r o

f s
ys

te
m

 c
al

ls

0

50000

100000

150000

Scenario 3 Scenario 4

System calls collected

0 500 1000 1500

Figure 5.3: System calls collected

Time (in seconds)

N
um

be
r o

f r
eq

ue
st

s

0

50

100

150

200

0 500 1000 1500

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Requests Throughput

Figure 5.4: Requests Throughput

Time (in seconds)

R
es

po
ns

e
tim

e
(in

 m
ill

is
ec

on
ds

)

0

25

50

75

100

125

0 500 1000 1500

Scenario 1 Scenario 2 Scenario 3
Scenario 4

Median Response Time

Time (in seconds)

R
es

po
ns

e
tim

e
(in

 m
ill

is
ec

on
ds

)

0

25

50

75

100

125

0 500 1000 1500

Scenario 1 Scenario 2 Scenario 3
Scenario 4

95% Percentile Response Time

Figure 5.5: Median Response Time and 95% Percentile Response Time

61

Chapter 5

load each node has to deal with, decreases in these scenarios. Nevertheless, if we
sum all the work done by the worker nodes in Scenarios 2 and 4 it is still higher
than in Scenarios 1 and 3 (as expected) where there is only one worker node, due
to a heavier workload. Another difference we can see is that from Scenario 1 to
Scenario 3 and from Scenario 2 to Scenario 4, there is an increase of around 5%
of CPU usage. Most likely, this has to do with the monitoring agents that are
running in the background and collecting the system calls. This increase in CPU
usage is expected and represents the cost of using the µDetector tool. We consider
this to be a low value and that the tool performs well on the worker nodes having
a low impact on the system.

We also collected the memory usage. The results appear in Figure 5.7 and are
similar to the CPU usage in the sense that the memory usage for the µDetector
machine and the Master machine is almost the same in every scenario. The only
difference is in the worker nodes where the memory usage increases a maximum
of 7% and is stable across the entire 30-minute experiment. Again, we consider
this to be the cost of having the tool running on the worker nodes and that, never-
theless, it performs well according to the stipulated requirements and therefore,
the impact on the system is acceptable.

62

Validation and Experimentation

TIme (in seconds)

P
er

ce
nt

ag
e

0

10

20

30

40

250 500 750 1000 1250 1500 1750

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CPU Usage - µDetector machine

Time (in seconds)

P
er

ce
nt

ag
e

0

2

4

6

8

10

12

250 500 750 1000 1250 1500 1750

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CPU Usage - Master node machine

Time (in seconds)

P
er

ce
nt

ag
e

0

5

10

15

20

25

250 500 750 1000 1250 1500 1750

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CPU Usage - worker-1 node machine

Figure 5.6: CPU Usage - µDetector machine (first graph), CPU Usage - Master
node machine (second graph) and CPU Usage - worker-1 node machine.

63

Chapter 5

Time (in seconds)

P
er

ce
nt

ag
e

0

20

40

60

80

250 500 750 1000 1250 1500 1750

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Memory Usage - µDetector machine

Time (in seconds)

P
er

ce
nt

ag
e

0

2

4

6

8

10

250 500 750 1000 1250 1500 1750

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Memory Usage - Master node machine

Time (in seconds)

P
er

ce
nt

ag
e

0

5

10

15

20

250 500 750 1000 1250 1500 1750

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Memory Usage - worker-1 node machine

Figure 5.7: Memory Usage - µDetector machine (first graph), Memory Usage -
Master node machine (second graph) and Memory Usage - worker-1 node ma-
chine (third graph)

64

Chapter 6

Project Management

Project management aims to ensure that a project meets all the requirements
within its time and cost constraints. This chapter explains all the details related to
the project management of this dissertation. Specifically, the methodology used
during the entire dissertation, the work plan for both semesters and how it went,
and a risk assessment.

6.1 Methodology

At the start of a software project, there may not be clearly defined goals and it
is usually too soon to create a strict plan to follow. Project management involves
dealing with change, and given the nature of this dissertation and the state-of-the-
art technologies utilized (such as Kubernetes), requirements are subject to change.
Therefore, traditional software development methodologies which are based on
predefined stages of the software development life cycle become a fallible choice.

The Agile Methodology [113] tries to address the issues of traditional methodolo-
gies by encouraging flexible responses to change. For that reason, we decided to
follow an Agile approach, using concepts and elements of different Agile frame-
works but with a particular focus on the Scrum framework. Scrum is a framework
that allows iterative and incremental development by dividing the project into di-
verse time-boxes called Sprints [114]. In Scrum, there is a Product Backlog that
contains a prioritized list of features to be developed in time slots of two weeks
(this period may vary) called Sprints. Sprints start with a meeting to choose the
items from the backlog that the developers intend to deliver at the end of each
Sprint. This is a very flexible methodology that we ended up following during
this dissertation.

65

Chapter 6

6.2 Work Plan

During the first semester, informal meetings were held with the two supervisors
where we decided what tasks should be executed for the next two weeks until
the next meeting. We tried to follow the actual plan depicted in the first half
of Figure 6.1 as a Gantt chart. However, there were some setbacks as we can
observe in Figure 6.2. The COVID measures lead to remote meetings and the
extension of the deadline for the intermediate report by one week. The writing of
the intermediate report started early to line up with the background and related
work analysis. The requirements took longer than expected due to indecision
and inexperience in such a task. Nevertheless, we were able to complete the
established plan and acquire valuable insight into project management.

In the second semester, we defined Sprints based on the defined requirements.
Every possible change or setback forced us to a new arrangement of the require-
ments and tasks which we redefined at the beginning of each Sprint. The second
half of Figure 6.1 shows the Gantt chart of the expected work plan for the second
semester. The second half of Figure 6.2 shows the Gantt chart of the actual work
plan for the second semester. As expected, the plan did not go exactly according
to Figure 6.1. Unforeseen problems occurred and we had to constantly adapt.
Some tasks took longer than expected but we were able to compensate for other
tasks. Nevertheless, the requirements were fulfilled, the tool was implemented
and validated successfully and the project was completed in time.

6.3 Risk Assessment

The early identification of risks allows us to anticipate future setbacks and come
up with a mitigation plan to assure the project goes down the expected path.
Therefore, it is a technique that should be used in software projects and is de-
scribed in this section. To have a clear understanding of the evolution of risks we
decided to include only the initial iteration of risks and the final iteration. Every
month we would update the risks accordingly. Table 6.1 identify and describe
the risks that could prevail in the project during the first months (September and
October). Table 6.2 refers to the end of the first semester (January) and Table 6.3
refers to the final months of this dissertation (June and July). For each identi-
fied risk there is a corresponding ID, Description and Mitigation Plan. Each
risk also has a corresponding Impact and Likelihood, both on a scale of Low,
Medium and High. When it comes to the Impact, Low means that the risk will
not have a significant impact and can probably be ignored; Medium means there
is a greater impact that can be managed with some effort; High means there is
a large impact that can cause, for example, delays and therefore needs to be ad-
dressed with some degree of priority. When it comes to the Likelihood, Low
means there is a chance of less than 40% of happening at least one time during
the project; Medium means there is a chance between 40% and 70% of happening
at least one time during the project; and High means there is a chance of higher
than 70% of happening at least one time during the project. Figure 6.3 depicts a

66

Project Management

1. State-of-the-Art

1.1. Basic Concepts

1.2. Related Work

2. Requirements

2.1. User Stories

2.2. Requirements

3. Architecture

3.1. Initial architecture

3.2. Validation of

4. Intermediate Report

5. Development

5.1. Initial Setup

5.2. Kubernetes Daemon

5.3. Monitoring Agent

5.4 Setup of a dummy IDS

5.5 API Server

5.6 CLI

5.7 Web Dashboard

5.4 Connection with the IDS

5.8 Final touches

6. Validation

6.1 Initial Validation

6.2 Check Requirements

6.3 KubeEdge Adaptation

6.4 Experimental Scenario

7. Writing

7.1 Write Documentation

7.2. Write a paper or technical

7.3. Write the final report

Figure 6.1: Gantt chart for the expected work plan. Grey bars represent a ma-
jor chapter and orange bars represent smaller task. Each bar has a number that
corresponds to the duration in days.

67

Chapter 6

1. State-of-the-Art

1.1. Basic Concepts

1.2. Related Work

2. Requirements

2.1. User Stories

2.2. Requirements

3. Architecture

3.1. Initial architecture

3.2. Validation of

4. Intermediate Report

5. Development

5.1. Initial Setup

5.2. Kubernetes Daemon

5.3. Monitoring Agent

5.4 Setup of a dummy IDS

5.5 API Server

5.6 CLI

5.7 Web Dashboard

5.4 Connection with the IDS

5.8 Final touches

6. Validation

6.1 Initial Validation

6.2 Check Requirements

6.3 KubeEdge Adaptation

6.4 Experimental Scenario

7. Writing

7.1 Write Documentation

7.2. Write a paper or technical

7.3. Write the final report

Figure 6.2: Gantt chart for the actual work plan. Grey bars represent a major
chapter and orange bars represent smaller task. Each bar has a number that cor-
responds to the duration in days.

68

Project Management

visual representation of the risks at the beginning of the first semester, end of the
first semester/beginning of the second semester, and end of the second semester,
to better assist in the decision-making process. It also depicts the risks that were
completely mitigated or that do not pose a threat to the success of the project
anymore. Those risks were removed from the Tables as they were completely
mitigated.

At the end of each phase, risks were partially mitigated which we can observe
through the decrease in the level of likelihood and impact when comparing Ta-
ble 6.1 with Table 6.2 and Table 6.3. By using the proper mitigation techniques
we can reduce the impact and likelihood of the risks to a point where the success
of the dissertation is not compromised such as completely mitigating a risk or
reducing the impact and likelihood until the risk reaches the “green zone” on the
matrix. Risks R-2, R-4, R-5, R-6, R-7 and R-9 were considered to be completely
mitigated at the end of the project as they did not pose a threat to the success of
the project anymore according to our analysis. R-1, R-3 and R-8 were partially
mitigated. These were harder to deal with, however, we can still consider the
project to be successful as the impact of these risks on the project was arguably
low.

69

Chapter 6

Table 6.1: Risk Assessment for the project at the beginning of the first semester.

Id Description Mitigation Plan Impact Likelihood
R-1 Requirements are too broad. It

is necessary specific knowledge
and experience in requirements
gathering to conceptualize the
solution. The requirements may
be too vague to work with and
affect the decision making pro-
cess and development.

Talk to the client, under-
stand the users needs
and get a clear vision
of the project. Rede-
fine and be more spe-
cific in the user stories
but not too much as it
might give little to no
maneuver options in the
development phase.

Medium High

R-2 Lack of resources. If the nec-
essary resources are unavailable
some objectives could not be at-
tainable. For example, a real
scenario where there is a Ku-
bernetes cluster requires many
hosts. This could be hard to
provide and demonstrate the
project in a real-case scenario
where scalability is fundamen-
tal.

Design the proposed
solution to be scalable
but make use of a small
number of resources
such as three hosts (a
master, a worker and an
“outside” machine).

Medium Medium

R-3 Lack of experience and com-
plexity of the technology.
The project requires knowl-
edge about designing web
dashboards and working with
complex emerging technologies
(such as Kubernetes). This
could present a steep learn-
ing curve that could cause
unexpected delays in the devel-
opment phase and changes in
the requirements.

Extensive research and
practice with the tech-
nology before the devel-
opment phase starts.

Medium High

R-4 Poor estimation. Lack of experi-
ence in planning the duration of
tasks causing unaccounted de-
lays.

Apply estimation tech-
niques. Frequently up-
date the estimations.

High High

R-5 Poor planning of the submis-
sion of the article. The article
might not be submitted in time
for the proper conference (that is
still to be defined).

Investigate possible
conferences and plan
ahead of time for an
appropriate date

High Medium

R-6 Relying on novel techniques
and approaches of intrusion
detection. The tool to be devel-
oped relies on techniques that
are still being researched and in-
vestigated.

Abstract from the ap-
proaches as much as
possible and be aware of
possible limitations.

High Low

70

Project Management

Table 6.2: Risk Assessment for the project at the end of the first
semester/beginning of the second semester.

ID Description Mitigation Plan Impact Likelihood
R-1 Requirements are too broad. It

is necessary for specific knowl-
edge and experience in require-
ments gathering to conceptualize
the solution. The requirements may
be too vague to work with and affect
the decision-making process and de-
velopment.

Talk to the client, under-
stand the users’ needs
and get a clear vision
of the project. Rede-
fine and be more spe-
cific in the user stories
but not too much as it
might give little to no
maneuver options in the
development phase.

Low Medium

R-2 Lack of resources. If the neces-
sary resources are unavailable some
objectives could not be attainable.
For example, a real scenario where
there is a Kubernetes cluster re-
quires many hosts. This could be
hard to provide and demonstrate the
project in a real-case scenario where
scalability is fundamental.

Design the proposed
solution to be scalable
but make use of a small
number of resources
such as three hosts (a
master, a worker and an
“outside” machine).

Medium Low

R-3 Lack of experience & complexity of
the technology. The project requires
knowledge about designing web
dashboards and working with com-
plex emerging technologies (such as
Kubernetes and Django). This could
present a steep learning curve that
could cause unexpected delays in
the development phase and changes
in the requirements.

Extensive research and
practice with the tech-
nology before the devel-
opment phase starts.

Medium Medium

R-4 Poor estimation. Lack of experience
in planning the duration of tasks
causing unaccounted delays.

Apply estimation tech-
niques. Frequently up-
date the estimations.

Medium High

R-7 Difficulty in streaming system
calls. Research and tests conducted
showed that the number of system
calls to be collected could be huge.
This could present an obstacle to the
efficient streaming of system calls
over the network impacting the
performance of the devised solution

Find an alternative solu-
tion such as transferring
batches of system calls
over the network. Use a
high-performance com-
munication technology.

High Medium

R-8 Poor definition of the validation
plan. A poor definition may cause
delays in the experiments and the re-
sults might not be relevant.

Extensive research
on experimentation
methodologies, acquire
insight from previous
work, and run small
tests

Medium High

R-9 Slow implementation. Unexpected
errors or challenges could arise dur-
ing implementation leading to de-
lays in the project

Prioritize tasks and fo-
cusing on the most im-
portant ones. Also, allo-
cate a chunk of time to
unaccounted problems.

High High

71

Chapter 6

Table 6.3: Risk Assessment for the project at the end of the second semester.

ID Description Mitigation Plan Impact Likelihood
R-1 Requirements are too broad. It

is necessary for specific knowl-
edge and experience in require-
ments gathering to conceptual-
ize the solution. The require-
ments may be too vague to work
with and affect the decision-
making process and develop-
ment.

Talk to the client, under-
stand the users’ needs
and get a clear vision
of the project. Rede-
fine and be more spe-
cific in the user stories
but not too much as it
might give little to no
maneuver options in the
development phase.

Low Low

R-3 Lack of experience & com-
plexity of the technology.
The project requires knowl-
edge about designing web
dashboards and working with
complex emerging technolo-
gies (such as Kubernetes and
Django). This could present a
steep learning curve that could
cause unexpected delays in
the development phase and
changes in the requirements.

Extensive research and
practice with the tech-
nology before the devel-
opment phase starts.

Low Low

R-8 Poor definition of the valida-
tion plan. A poor definition
may cause delays in the exper-
iments and the results might not
be relevant.

Extensive research
on experimentation
methodologies, acquire
insight from previous
work, and run small
tests

Medium Medium

72

Project Management

Medium High Critical

Low Medium High

Low Low Medium

Low Medium High

High

Medium

Low

R-3

R-1

Li
ke

lih
o

o
d

Impact

Completely Mitigated Risks at the end of the second semester: R-2, R-4, R-5, R-6, R-7, R-9

R-8

R-4

R-3

R-2

R-1

R-7

R-9

R-8

R-4

R-3

R-2

R-1

R-6

R-5

Completely Mitigated Risks at the end of the first semester: R-5, R-6

Completely Mitigated Risks at the beginning of the project: None

Beginning of the
first semester

End of the first semester/Beginning
of the second semester

End of the second
semester

Figure 6.3: Risk Exposure Matrix.

73

Chapter 7

Conclusion

In recent years, cloud-computing adoption has been increasing rapidly as we
have witnessed a massive adoption of containers and microservices throughout
organizations worldwide [3]. Their goal is to quickly build and deploy robust
applications to answer the increasing customers’ demand and generate more
profit. Container Orchestrators, such as Kubernetes [6], have gained consider-
able attention and have become the de facto platforms used to manage applica-
tions with a large number of containers. The functionalities they provide im-
prove the development and deployment phases, and reduce infrastructure costs
through automation, allowing businesses to grow quicker. However, security
concerns arise with these emerging technologies and the need to monitor and
keep microservices-based applications safe is of the utmost importance [10]. The
lack of tools that help keep these systems secure motivates organizations to come
up with new solutions and approaches.

In this work, we presented µDetector, an intrusion detection tool for microser-
vices applications. µDetector supports the techniques previously developed by
our research group and incorporates them into a tool that users can leverage to
monitor their application and improve the observability of their system. It works
by deploying monitoring agents on Kubernetes and KubeEdge applications to
collect systems calls from their nodes. Afterward, it transfers the system calls
to an intrusion detection module that generates alarms in the presence of abnor-
mal behavior. The users can then interact with the tool through a CLI or a Web
Dashboard. The validation of the tool focused on functional testing and an ex-
perimental campaign that shows that the µDetector tool fulfills its capabilities.

For future work, we could add more functionalities such as the download of the
intrusion detection profiles created and the addition of new algorithms. We could
also provide support for other orchestration platforms. Additionally, we could
leverage a stronger validation plan and focus on making the whole system calls
collection process more efficient.

The µDetector tool presented itself as a further step in strengthening container
security and microservices applications in cloud environments through the use
of state-of-the-art intrusion detection techniques.

75

References

[1] Martin Fowler and James Lewis. Microservices. https://martinfowler.
com/articles/microservices.html, 2014. Accessed: 2021-10-09.

[2] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrating to
cloud-native architectures using microservices: An experience report, 2015.

[3] Cloud Native Computing Foundation. Cncf survey 2019. https://www.
cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf, 2019.
Accessed: 2021-11-28.

[4] VMWare. Why use containers vs. vms? https://www.vmware.com/topics/
glossary/content/vms-vs-containers.html. Accessed: 2022-01-10.

[5] IBM Cloud Team. Containers vs. virtual machines (vms): What’s the differ-
ence? https://www.ibm.com/cloud/blog/containers-vs-vms. Accessed:
2022-01-10.

[6] Kubernetes. https://kubernetes.io/. Accessed: 2021-11-28.

[7] Apache mesos. http://mesos.apache.org/. Accessed: 2021-11-28.

[8] Docker swarm. https://docs.docker.com/engine/swarm/. Accessed:
2021-11-28.

[9] Snyk. Kubernetes security: Common issues and best practices. https:
//snyk.io/learn/kubernetes-security/. Accessed: 2022-01-10.

[10] Murugiah Souppaya, John Morello, and Karen Scarfone. Application con-
tainer security guide, 2017.

[11] Charles Owen-Jackson. What does the rise of edge comput-
ing mean for cybersecurity? https://www.kaspersky.com/blog/
secure-futures-magazine/edge-computing-cybersecurity/31935/. Ac-
cessed: 2022-01-10.

[12] K A Scarfone and P M Mell. Guide to intrusion detection and prevention
systems (IDPS), 2007.

[13] Falco. The falco project. https://falco.org/, 2021. Accessed: 2021-12-28.

[14] Service-oriented development on NetKernel- patterns, processes & prod-
ucts to reduce system complexity | CloudEXPO. https://web.archive.
org/web/20180520124343/http://www.cloudcomputingexpo.com/node/
80883. Accessed: 2021-10-09.

77

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf
https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf
https://www.vmware.com/topics/glossary/content/vms-vs-containers.html
https://www.vmware.com/topics/glossary/content/vms-vs-containers.html
https://www.ibm.com/cloud/blog/containers-vs-vms
https://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/engine/swarm/
https://snyk.io/learn/kubernetes-security/
https://snyk.io/learn/kubernetes-security/
https://www.kaspersky.com/blog/secure-futures-magazine/edge-computing-cybersecurity/31935/
https://www.kaspersky.com/blog/secure-futures-magazine/edge-computing-cybersecurity/31935/
https://falco.org/
https://web.archive.org/web/20180520124343/http://www.cloudcomputingexpo.com/node/80883
https://web.archive.org/web/20180520124343/http://www.cloudcomputingexpo.com/node/80883
https://web.archive.org/web/20180520124343/http://www.cloudcomputingexpo.com/node/80883

Chapter 7

[15] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:
Yesterday, today, and tomorrow. In Manuel Mazzara and Bertrand Meyer,
editors, Present and Ulterior Software Engineering, pages 195–216. Springer
International Publishing, 2017. Accessed: 2021-10-09.

[16] Mike Loukides Swoyer, Steve. Microservices adoption in 2020. https:
//www.oreilly.com/radar/microservices-adoption-in-2020/, 2020. Ac-
cessed: 2021-10-09.

[17] Chris Richardson. Pattern: Circuit breaker. https://microservices.io/
patterns/reliability/circuit-breaker.html, 2018. Accessed: 2021-10-
22.

[18] Mike Jacobs and Ed Kaim. What are microservices? https://docs.
microsoft.com/en-us/devops/deliver/what-are-microservices, 2021.
Accessed: 2021-10-21.

[19] Atlassian. What is devops? https://www.atlassian.com/devops. Ac-
cessed: 2021-10-21.

[20] Josh Evans. Mastering chaos - a netflix guide to microservices. https:
//www.infoq.com/presentations/netflix-chaos-microservices/, 2016.
Accessed: 2021-10-21.

[21] Alon Girmonsky. Microservices vs monolith at different stages of the sdlc.
https://up9.com/microservices-monolith-sdlc, 2020. Accessed: 2022-
01-05.

[22] Dmitriy Konstantynov. Microservices use cases. https://alpacked.io/
blog/microservices-use-cases/, 2020. Accessed: 2021-10-21.

[23] DescartesResearch. Teastore. https://github.com/DescartesResearch/
TeaStore, 2021. Accessed: 2021-10-09.

[24] Weaveworks. Sock shop : A microservice demo application. https://
github.com/microservices-demo/microservices-demo, 2021. Accessed:
2021-10-09.

[25] FudanSELab. Train ticket: A benchmark microservice system. https://
github.com/FudanSELab/train-ticket, 2021. Accessed: 2021-10-09.

[26] Joakim von Kistowski, Simon Eismann, Norbert Schmitt, Andre Bauer, Jo-
hannes Grohmann, and Samuel Kounev. TeaStore: A Micro-Service Refer-
ence Application for Benchmarking, Modeling and Resource Management
Research. In 2018 IEEE 26th International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
pages 223–236. IEEE, 2018.

[27] Weaveworks. Sock shop: A microservice demo application. https://
microservices-demo.github.io/, 2017. Accessed: 2021-10-09.

78

https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://microservices.io/patterns/reliability/circuit-breaker.html
https://microservices.io/patterns/reliability/circuit-breaker.html
https://docs.microsoft.com/en-us/devops/deliver/what-are-microservices
https://docs.microsoft.com/en-us/devops/deliver/what-are-microservices
https://www.atlassian.com/devops
https://www.infoq.com/presentations/netflix-chaos-microservices/
https://www.infoq.com/presentations/netflix-chaos-microservices/
https://up9.com/microservices-monolith-sdlc
https://alpacked.io/blog/microservices-use-cases/
https://alpacked.io/blog/microservices-use-cases/
https://github.com/DescartesResearch/TeaStore
https://github.com/DescartesResearch/TeaStore
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://microservices-demo.github.io/
https://microservices-demo.github.io/

References

[28] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun
Zhao. Benchmarking microservice systems for software engineering re-
search. In Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark
Harman, editors, Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May
27 - June 03, 2018, pages 323–324. ACM, 2018.

[29] Nane Kratzke. About microservices, containers and their underestimated
impact on network performance, 03 2015.

[30] Rani Osnat. A brief history of containers: From
the 1970s till now. https://blog.aquasec.com/
a-brief-history-of-containers-from-1970s-chroot-to-docker-2016,
2020. Accessed: 2022-01-10.

[31] Michael Kerrisk. chroot(2) — linux manual page. https://man7.org/
linux/man-pages/man2/chroot.2.html, 2021. Accessed: 2022-01-10.

[32] Michael Kerrisk. cgroups(7) — linux manual page. https://man7.org/
linux/man-pages/man7/cgroups.7.html, 2021. Accessed: 2022-01-10.

[33] D2iQ. A brief history of containers. https://d2iq.com/blog/
brief-history-containers, 2018. Accessed: 2022-01-10.

[34] Docker. Empowering app development for developers. https://www.
docker.com/. Accessed: 2022-01-10.

[35] IBM Cloud Education. Containerization. https://www.ibm.com/cloud/
learn/containerization, 2021. Accessed: 2022-01-10.

[36] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay. Con-
tainers and virtual machines at scale: A comparative study. In Proceedings
of the 17th International Middleware Conference, Middleware ’16, New York,
NY, USA, 2016. Association for Computing Machinery.

[37] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Container Security: Is-
sues, Challenges, and the Road Ahead. IEEE Access, 7:52976–52996, 2019.

[38] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing.
Computer Security Division, Information Technology Laboratory, National, 2011.

[39] The Linux Foundation. Open container initiative. https://
opencontainers.org/. Accessed: 2021-11-28.

[40] Cloud native computing foundation. https://www.cncf.io/. Accessed:
2021-11-28.

[41] Docker. Docker overview. https://docs.docker.com/get-started/
overview/, 2021. Accessed: 2021-10-16.

[42] Kubernetes. What is kubernetes? https://kubernetes.io/docs/
concepts/overview/what-is-kubernetes/, 2021. Accessed: 2021-10-10.

79

https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://man7.org/linux/man-pages/man2/chroot.2.html
https://man7.org/linux/man-pages/man2/chroot.2.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://d2iq.com/blog/brief-history-containers
https://d2iq.com/blog/brief-history-containers
https://www.docker.com/
https://www.docker.com/
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization
https://opencontainers.org/
https://opencontainers.org/
https://www.cncf.io/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Chapter 7

[43] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. Large-scale cluster management at google with
borg. In Proceedings of the Tenth European Conference on Computer Systems,
pages 1–17. ACM, 2015. Accessed: 2021-10-09.

[44] Red Hat. What is container orchestration? https://www.redhat.com/en/
topics/containers/what-is-container-orchestration, 2019. Accessed:
2021-10-10.

[45] Kubernetes. Kubernetes pods. https://kubernetes.io/docs/concepts/
workloads/pods/, 2021. Accessed: 2021-10-10.

[46] Kubernetes. Kubernetes components. https://kubernetes.io/docs/
concepts/overview/components/, 2021. Accessed: 2021-10-10.

[47] KubeEdge. Kubeedge. https://kubeedge.io/, 2021. Accessed: 2022-01-10.

[48] KubeEdge. Why kubeedge. https://kubeedge.io/en/docs/kubeedge/,
2020. Accessed: 2022-01-10.

[49] Docker. How nodes work. https://docs.docker.com/engine/swarm/
how-swarm-mode-works/nodes/, 2020. Accessed: 2021-10-11.

[50] Diego Ongaro and John Ousterhout. In search of an understandable con-
sensus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’14, page 305–320, USA, 2014.
USENIX Association.

[51] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:
A platform for fine-grained resource sharing in the data center. In 8th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
11), Boston, MA, March 2011. USENIX Association.

[52] Mesosphere. Marathon. https://mesosphere.github.io/marathon/,
2018. Accessed: 2021-10-11.

[53] Nomad by hashicorp. https://www.nomadproject.io/. Accessed: 2021-
11-28.

[54] Adrian Todorov. Why you should take a look at nomad be-
fore jumping on kubernetes. https://atodorov.me/2021/02/27/
why-you-should-take-a-look-at-nomad-before-jumping-on-kubernetes/,
2021. Accessed: 2021-10-16.

[55] Hashicorp. Architecture. https://www.nomadproject.io/docs/
internals/architecture, 2018. Accessed: 2021-10-16.

[56] TutorialsPoint. What is a socket? https://www.tutorialspoint.com/
unix_sockets/what_is_socket.htm, 2022. Accessed: 2022-01-06.

[57] WHATWG. Html standard. https://html.spec.whatwg.org/multipage/
web-sockets.html, 2022. Accessed: 2022-01-15.

80

https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubeedge.io/
https://kubeedge.io/en/docs/kubeedge/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://mesosphere.github.io/marathon/
https://www.nomadproject.io/
https://atodorov.me/2021/02/27/why-you-should-take-a-look-at-nomad-before-jumping-on-kubernetes/
https://atodorov.me/2021/02/27/why-you-should-take-a-look-at-nomad-before-jumping-on-kubernetes/
https://www.nomadproject.io/docs/internals/architecture
https://www.nomadproject.io/docs/internals/architecture
https://www.tutorialspoint.com/unix_sockets/what_is_socket.htm
https://www.tutorialspoint.com/unix_sockets/what_is_socket.htm
https://html.spec.whatwg.org/multipage/web-sockets.html
https://html.spec.whatwg.org/multipage/web-sockets.html

References

[58] MDN contributors. The websocket api (websockets). https://
developer.mozilla.org/en-US/docs/Web/API/WebSockets_API, 2021. Ac-
cessed: 2022-01-15.

[59] Ian Fette and Adam Barth. The websocket protocol. https://datatracker.
ietf.org/doc/draft-abarth-thewebsocketprotocol/, 2011. Accessed:
2022-01-11.

[60] Miguel Grinberg. Flask-socketio. https://flask-socketio.readthedocs.
io/en/latest/, 2018. Accessed: 2022-01-04.

[61] Sylvain Hellegouarch. ws4py - a websocket package for python. https:
//ws4py.readthedocs.io/en/latest/, 2018. Accessed: 2022-01-04.

[62] Pallets. Welcome to flask’s documentation. https://flask.
palletsprojects.com/en/2.0.x/, 2021. Accessed: 2022-01-04.

[63] Django Software Foundation. The web framework for perfectionists with
deadlines. https://www.djangoproject.com/, 2022. Accessed: 2022-01-04.

[64] Falcon Project. The falcon web framework. https://github.com/
falconry/falcon, 2021. Accessed: 2022-01-04.

[65] B.J. Nelson. Remote procedure call. XEROX PARC CSL-81-
9, 1981. http://www.bitsavers.org/pdf/xerox/parc/techReports/
CSL-81-9_Remote_Procedure_Call.pdf, Accessed: 2022-01-10.

[66] gRPC Authors. A high performance, open source universal rpc framework.
https://grpc.io/, 2022. Accessed: 2022-01-04.

[67] CloudAMQP. What is message queuing? https://www.cloudamqp.com/
blog/what-is-message-queuing.html, 2019. Accessed: 2022-01-04.

[68] Inc. VMware. Messaging that just works — rabbitmq. https://www.
rabbitmq.com/, 2021. Accessed: 2022-01-04.

[69] ZeroMQ authors. Zeromq. https://zeromq.org/, 2021. Accessed: 2022-
01-04.

[70] Dejan Skvorc, Matija Horvat, and Sinisa Srbljic. Performance evaluation of
websocket protocol for implementation of full-duplex web streams. pages
1003–1008, 05 2014.

[71] Rebecca Bace and Peter Mell. Intrusion detection systems. Special Publica-
tion (NIST SP), National Institute of Standards and Technology, Gaithers-
burg, MD, 2001.

[72] Arkadiusz Warzynski and Grzegorz Kolaczek. Intrusion detection systems
vulnerability on adversarial examples. 2018 Innovations in Intelligent Sys-
tems and Applications (INISTA), pages 1–4, 2018.

[73] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and
Muttukrishnan Rajarajan. A survey of intrusion detection techniques in
cloud. Journal of Network and Computer Applications, 36(1):42–57, 2013.

81

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://datatracker.ietf.org/doc/draft-abarth-thewebsocketprotocol/
https://datatracker.ietf.org/doc/draft-abarth-thewebsocketprotocol/
https://flask-socketio.readthedocs.io/en/latest/
https://flask-socketio.readthedocs.io/en/latest/
https://ws4py.readthedocs.io/en/latest/
https://ws4py.readthedocs.io/en/latest/
https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/
https://www.djangoproject.com/
https://github.com/falconry/falcon
https://github.com/falconry/falcon
http://www.bitsavers.org/pdf/xerox/parc/techReports/CSL-81-9_Remote_Procedure_Call.pdf
http://www.bitsavers.org/pdf/xerox/parc/techReports/CSL-81-9_Remote_Procedure_Call.pdf
https://grpc.io/
https://www.cloudamqp.com/blog/what-is-message-queuing.html
https://www.cloudamqp.com/blog/what-is-message-queuing.html
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://zeromq.org/

Chapter 7

[74] OSSEC PROJECT TEAM. Ossec - world’s most widely used host intrusion
detection system - hids. https://www.ossec.net/, 2022. Accessed: 2022-
01-11.

[75] Cisco. Snort - network intrusion detection & prevention system. https:
//www.snort.org/, 2021. Accessed: 2022-01-04.

[76] Jean-Philippe Lang. Overview - prelude siem - unity 360. https://www.
prelude-siem.org/, 2017. Accessed: 2022-01-04.

[77] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy, 04
2000.

[78] José Eduardo Ferreira Flora. Container-level Intrusion detection for multi-
tenant environments. PhD thesis, Universidade de Coimbra, 2019.

[79] Dae Ki Kang, Doug Fuller, and Vasant Honavar. Learning classifiers for
misuse and anomaly detection using a bag of system calls representation.
In Proceedings from the Sixth Annual IEEE System, Man and Cybernetics In-
formation Assurance Workshop, SMC 2005, Proceedings from the 6th An-
nual IEEE System, Man and Cybernetics Information Assurance Workshop,
SMC 2005, pages 118–125, 2005. 6th Annual IEEE System, Man and Cy-
bernetics Information Assurance Workshop, SMC 2005 ; Conference date:
15-06-2005 Through 17-06-2005.

[80] Yihua Liao and Rao Vemuri. Use of k-nearest neighbor classifier for intru-
sion detection. Computers & Security, 21:439–448, 10 2002.

[81] Wun-Hwa Chen, Sheng-Hsun Hsu, and Hwang-Pin Shen. Application of
svm and ann for intrusion detection. Comput. Oper. Res., 32(10):2617–2634,
oct 2005.

[82] The LTTng Project. Lttng: an open source tracing framework for linux.
https://lttng.org/, 2018. Accessed: 2022-01-10.

[83] SystemTap. Systemtap. https://sourceware.org/systemtap/, 2021. Ac-
cessed: 2022-01-10.

[84] Michael Kerrisk. strace - trace system calls and signals. https://man7.org/
linux/man-pages/man1/strace.1.html, 2021. Accessed: 2021-12-28.

[85] Loris Degioanni. Sysdig vs dtrace vs strace: A
technical discussion. https://sysdig.com/blog/
sysdig-vs-dtrace-vs-strace-a-technical-discussion/, 2014. Ac-
cessed: 2021-12-28.

[86] Michael Kerrisk. sysdig - the definitive system and process troubleshoot-
ing tool. https://man7.org/linux/man-pages/man8/sysdig.8.html, 2021.
Accessed: 2021-12-28.

[87] The Linux Foundation. ebpf. https://ebpf.io/, 2021. Accessed: 2022-01-
10.

82

https://www.ossec.net/
https://www.snort.org/
https://www.snort.org/
https://www.prelude-siem.org/
https://www.prelude-siem.org/
https://lttng.org/
https://sourceware.org/systemtap/
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://sysdig.com/blog/sysdig-vs-dtrace-vs-strace-a-technical-discussion/
https://sysdig.com/blog/sysdig-vs-dtrace-vs-strace-a-technical-discussion/
https://man7.org/linux/man-pages/man8/sysdig.8.html
https://ebpf.io/

References

[88] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and
Mauricio Vásquez Bernal. Creating complex network services with ebpf:
Experience and lessons learned. In 2018 IEEE 19th International Conference
on High Performance Switching and Routing (HPSR), pages 1–8, 2018.

[89] Sysdig. Cloud & container security platform & solutions - sysdig. https:
//sysdig.com/products/secure/, 2021. Accessed: 2021-12-28.

[90] Inc. Palo Alto Networks. Solution overview. https:
//docs.paloaltonetworks.com/prisma/prisma-cloud/
prisma-cloud-reference-architecture-compute/objectives/
solution_overview.html, 2022. Accessed: 2022-01-11.

[91] Google. cadvisor. https://github.com/google/cadvisor, 2021. Accessed:
2021-12-29.

[92] Kubernetes. Heapster. https://github.com/kubernetes-retired/
heapster, 2018. Accessed: 2021-12-29.

[93] Kubernetes. Heapster deprecation timeline. https://github.com/
kubernetes-retired/heapster/blob/master/docs/deprecation.md,
2018. Accessed: 2021-12-29.

[94] Kubernetes. Kubernetes metrics server. https://github.com/
kubernetes-sigs/metrics-server, 2021. Accessed: 2021-12-29.

[95] Kubernetes. Kubernetes dashboard. https://github.com/kubernetes/
dashboard, 2021. Accessed: 2021-12-29.

[96] Kubernetes. kube-state-metrics. https://github.com/kubernetes/
kube-state-metrics, 2021. Accessed: 2021-12-29.

[97] Kubernetes. Configure liveness, readiness and startup probes.
https://kubernetes.io/docs/tasks/configure-pod-container/
configure-liveness-readiness-startup-probes/, 2021. Accessed:
2021-12-29.

[98] Prometheus. Overview - prometheus. https://prometheus.io/docs/
introduction/overview/, 2021. Accessed: 2021-12-29.

[99] Gantikow et al. Rule-based security monitoring of containerized work-
loads, 2019.

[100] Chin-Wei Tien, Tse-Yung Huang, Chia-Wei Tien, Ting-Chun Huang, and
Sy-Yen Kuo. KubAnomaly: Anomaly detection for the docker or-
chestration platform with neural network approaches, 2019. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/eng2.12080.

[101] Iman Kohyarnejadfard, Daniel Aloise, Michel R. Dagenais, and Mahsa
Shakeri. A framework for detecting system performance anomalies using
tracing data analysis. Entropy, 23(8), 2021.

83

https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-reference-architecture-compute/objectives/solution_overview.html
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-reference-architecture-compute/objectives/solution_overview.html
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-reference-architecture-compute/objectives/solution_overview.html
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-reference-architecture-compute/objectives/solution_overview.html
https://github.com/google/cadvisor
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster/blob/master/docs/deprecation.md
https://github.com/kubernetes-retired/heapster/blob/master/docs/deprecation.md
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/

Appendix

[102] Aqua Security. Tracee: Runtime security and forensics using ebpf. https:
//aquasecurity.github.io/tracee/v0.6.5/, 2022. Accessed: 2022-01-11.

[103] Kubernetes. Access clusters using the kubernetes api. https://
kubernetes.io/docs/tasks/administer-cluster/access-cluster-api/,
2022. Accessed: 2022-06-06.

[104] Pallets. Welcome to click — click documentation (8.1.x). https://click.
palletsprojects.com/, 2014. Accessed: 2022-06-06.

[105] Apache Software Foundation. Apache echarts. https://echarts.apache.
org/en/index.html, 2022. Accessed: 2022-01-04.

[106] The Blosc Developers. What is blosc? https://www.blosc.org/pages/
blosc-in-depth/, 2014. Accessed: 2022-06-09.

[107] Itamar Haber. Why redis beats memcached for
caching. https://www.infoworld.com/article/3063161/
why-redis-beats-memcached-for-caching.html, 2017. Accessed:
2022-06-09.

[108] Assad Mahmood. Kafka vs redis pub-sub, differences which
you should know. https://blog.containerize.com/2021/04/09/
kafka-vs-redis-pub-sub-differences-which-you-should-know/, 2021.
Accessed: 2022-06-09.

[109] Locust. Locust. https://locust.io/, 2020. Accessed: 2022-01-08.

[110] softwaretestinghelp. Complete functional testing guide with its
types and example. https://www.softwaretestinghelp.com/
guide-to-functional-testing/, 2022. Accessed: 2022-06-20.

[111] softwaretestinghelp. The differences between unit testing, integration
testing and functional testing. https://www.softwaretestinghelp.com/
the-difference-between-unit-integration-and-functional-testing/,
2022. Accessed: 2022-06-20.

[112] flannel io. flannel. https://github.com/flannel-io/flannel, 2022. Ac-
cessed: 2022-06-06.

[113] Beck et al. Manifesto for agile software development. http://
agilemanifesto.org/, 2001. Accessed: 2022-01-05.

[114] Scrum.org. What is scrum? https://www.scrum.org/resources/
what-is-scrum, 2022. Accessed: 2022-01-05.

84

https://aquasecurity.github.io/tracee/v0.6.5/
https://aquasecurity.github.io/tracee/v0.6.5/
https://kubernetes.io/docs/tasks/administer-cluster/access-cluster-api/
https://kubernetes.io/docs/tasks/administer-cluster/access-cluster-api/
https://click.palletsprojects.com/
https://click.palletsprojects.com/
https://echarts.apache.org/en/index.html
https://echarts.apache.org/en/index.html
https://www.blosc.org/pages/blosc-in-depth/
https://www.blosc.org/pages/blosc-in-depth/
https://www.infoworld.com/article/3063161/why-redis-beats-memcached-for-caching.html
https://www.infoworld.com/article/3063161/why-redis-beats-memcached-for-caching.html
https://blog.containerize.com/2021/04/09/kafka-vs-redis-pub-sub-differences-which-you-should-know/
https://blog.containerize.com/2021/04/09/kafka-vs-redis-pub-sub-differences-which-you-should-know/
https://locust.io/
https://www.softwaretestinghelp.com/guide-to-functional-testing/
https://www.softwaretestinghelp.com/guide-to-functional-testing/
https://www.softwaretestinghelp.com/the-difference-between-unit-integration-and-functional-testing/
https://www.softwaretestinghelp.com/the-difference-between-unit-integration-and-functional-testing/
https://github.com/flannel-io/flannel
http://agilemanifesto.org/
http://agilemanifesto.org/
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum

Appendices

85

Appendix A

User Stories and Mockups

This appendix contains a template and a list of user stories created to extract the
requirements for this project. It also contains the complete mockups designed for
the Web Dashboard component of the tool. The template to be used for each user
story and corresponding acceptance criteria is the following:

“As a [type of user], I want to [perform something] so that [I can achieve some
goal].”

“Given [pre-conditions], when [key action], then [draw conclusions].”

For the user story description, we start by identifying the individual that inter-
acts with the system. Then, we describe the action that represents the behavior
of the system and the goal that the individual wants to achieve with the action
performed. Finally, we define acceptance criteria detailing the conditions that
the software product must meet to be accepted by the type of user. Immedi-
ately below, we describe the user stories according to the template. Note that the
word “monitoring” and “detection and training phase” are used interchangeably.
Also, US stands for user story and the series of related and interdependent stories
makes up an epic represented as ES. Epics are useful to group related User Sto-
ries and keep the ideas organized. A number every epic and user story follows
to keep track of the listing.

ES-1: As a user, I want to provide configurations so that I can run the tool and
monitor my Kubernetes cluster.

US-1: Configure the detection phase
As a user, I want to configure the detection phase so that I can keep
my application secure by detecting intrusions in real-time.
Acceptance Criteria: Given the user has his application running and
the tool installed, when he runs a command (via CLI or dashboard) to
setup the detection phase and specifies a configuration file containing
information about the application deployment, the desired services to
be monitored, the algorithm to be used, the location to retrieve and

87

Appendix A

store logs and the duration of the detection phase, then the tool should
configure the probes on the desired services and start monitoring the
application for possible intrusions.

US-2: Configure the training phase
As a user, I want to configure the training phase so that I can train an
algorithm to recognize intrusions on my application.
Acceptance Criteria: Given the user has his application running and
the tool installed, when he runs a command (via CLI or dashboard) to
setup the training phase and specifies a configuration file containing
information about the application deployment, the desired services to
be trained, the algorithm to be used, the location to retrieve and store
logs and the duration of the training phase, then the tool should con-
figure the probes on the desired services and start collecting data to
train the specified algorithm.

US-3: Configure monitoring for Edge Nodes
As a user, I want to configure either the training or the detection phase
on Edge Nodes so that I can incorporate the monitoring capabilities of
the tool in a microservices application that leverages Edge Computing.
Acceptance Criteria: Given the user has his application running and
the tool installed, when he runs a command (via CLI or dashboard) to
setup the training or the detection phase and specifies a configuration
file, then the tool should configure the probes on the desired services
that are running on the edge nodes.

ES-2: As a user, I want to perform basic and auxiliary operations that support
the main purpose of the tool with the help of a CLI so that I can use the tool
properly and take advantage of the tool’s functionalities for my microser-
vices application.

US-4: Stop detection/training on all services
As a user, I want to stop collecting data and detecting intrusions on all
services so that I can stop monitoring my application.
Acceptance Criteria: Given the user is running the training phase or
detection phase on his application, when he runs a stop command,
then the tool should stop the detection/training phase on all services
that are being monitored.

US-5: List alarms
As a user, I want to see a list of alarms detected by the algorithms so
that I know the application is behaving correctly.
Acceptance Criteria: Given the user is monitoring his application with
the tool, when he runs a command to list the alarms, then the tool
displays a list of alarms detected.

US-6: List resources of the cluster
As a user, I want to view a list of the cluster’s resources, so that I can
retrieve information without accessing the master node.
Acceptance Criteria: Given the user is running his application and the
tool’s daemon is running, when he enters a command specifying the

88

User Stories and Mockups

type of resource (such as available nodes, namespaces, deployments,
services and pods), then a list should be displayed to the user.

US-7: List algorithms
As a user, I want to know which intrusion detection algorithms are
available so that I am aware of the alternatives provided by the tool.
Acceptance Criteria: Given the user has the tool installed, when he
runs a command to list the algorithms, then a list with all the intrusion
detection algorithms supported by the tool should be displayed.

US-8: List functionalities of the tool
As a user, I want to know the functionalities that the tool provides, so
that I can choose the functionality that I want to use.
Acceptance Criteria: Given the user has installed the tool, when he
enters a specific help command, then a list of the tool’s functionalities
and corresponding description is shown to the user.

US-9: Access the dashboard
As a user, I want to access a dashboard in a web page so that I can get
an overview of the metrics collected.
Acceptance Criteria: Given the user has the tool installed and his ap-
plication is running, when he enters a command where he specifies a
port, then he should be able to access localhost on a browser and a web
dashboard is presented at the address localhost:port.

US-10: Stop detection/training on a specific service
As a user, I want to stop collecting data and detecting intrusions on a
specific service that is being monitored so that I can stop monitoring
part of my application.
Acceptance Criteria: Given the user is running the training phase or
detection phase on his application, when he runs a stop command,
then the tool should stop the detection/training phase on a specific
service that is being monitored.

US-11: View object detailed info
As a user, I want to view detailed information about a specific object,
so that I can get an overview of the object without needing to access
the cluster.
Acceptance Criteria: Given the user is running his application and the
tool’s daemon is running, when he enters a specific command by spec-
ifying a given Kubernetes object, then information related to the object
is presented.

US-12: Erase logs
As a user, I want to erase logs, so that I can free up space in my disk.
Acceptance Criteria: Given the user has logs about the data collected
on his machine, when he enters a specific command, then the logs col-
lected are deleted.

US-13: Restart pod automatically
As a user, I want to restart automatically the pod that is being attacked
so that I can mitigate and prevent further damage to the system.
Acceptance Criteria: Given the user has explicitly defined a config-
uration to automatically restart pods that are under attack, when the

89

Appendix A

tool is monitoring his application and an intrusion is detected, then
the affected pod is restarted automatically and a warning message is
displayed to the user.

US-14 Execute a command in a running container
As a user, I want to be able to execute a command in a running con-
tainer so that I can interact with the container and eventually perform
debugging.
Acceptance Criteria: Given the user is running his application, when
he enters a command that specifies a container, then he should be able
to execute a command in the container through the CLI (similar to
kubectl exec command).

ES-3: As a user, I want to have a dashboard so that I can interact with a graphic
interface instead of using a CLI.

US-15: Upload a configuration file
As a user, I want to upload a configuration file to the dashboard so
that I can start monitoring my application via the dashboard
Acceptance Criteria: Given the user is running the tool with the dash-
board mode active, when he clicks the button to upload a file, then
he should be able to choose a JSON file from a specific location and
upload it to the dashboard.

US-16: View information about the cluster
As a user, I want to view information about the cluster on the dash-
board so that I can have an overview of the cluster.
Acceptance Criteria: Given the user is running the tool with the dash-
board mode active, when he accesses an “overview” tab, then he should
be able to view general information about the system.

US-17: View monitored services
As a user, I want to view the services being monitored on the dash-
board so that I can keep track of the application behavior.
Acceptance Criteria: Given the user is running the tool with the dash-
board mode active, when he accesses the web dashboard and accesses
the “monitoring” tab, then he should be able to view the services be-
ing monitored and time-related information (such as current time, start
and end time of the monitoring, duration of the monitoring).

US-18: View alarms
As a user, I want to view, on the dashboard, the alarms generated by
detecting intrusions on the dashboard so that I can keep track of the
application behavior.
Acceptance Criteria: Given the user is running the tool with the dash-
board mode active, when he accesses the “alarms” tab, then he should
be able to view the alarms generated and the affected services and
pods.

US-19: View algorithms
As a user, I want to know, via the dashboard, which intrusion detection
algorithms are available so that I am aware of the alternatives provided

90

User Stories and Mockups

by the tool.
Acceptance Criteria: Given the user is running the tool with the dash-
board mode active, when he clicks a help button to list the algorithms,
then a list with all the intrusion detection algorithms supported by the
tool should be displayed.

US-20: View graphical representation of the number of alarms over time
As a user, I want to view the number of alarms over time as a graphical
representation so that I can keep track of the application behavior.
Acceptance Criteria: Given the user is running the tool with the dash-
board mode active, when he accesses the “alarms” tab, then he should
be able to view the number of alarms over time represented as a chart.

US-21: Export information
As a user, I want to export information (such as logs generated by
alarms) so that I can store the information for future analysis and en-
sure accountability.
Acceptance Criteria: Given the user is running the tool with the dash-
board mode active, when he chooses the option to export information,
then the information collected should be saved in the desired directory.

US-22: Stop detection/training
As a user, I want to stop collecting data and detecting intrusions the
tool via dashboard so that I can stop monitoring my application.
Acceptance Criteria: Given the user is running the training phase or
detection phase on his application, when he selects an option to stop
the tool on the web dashboard, then the tool should stop the detec-
tion/training phase.

US-23: Restart pod
As a user, I want to be able to restart a pod that is being attacked so
that I can mitigate and prevent further damage to the system.
Acceptance Criteria: Given the user is running the tool with the dash-
board mode active, when he navigates to the restart pod section and
selects a pod, then the selected pod should be restarted and visual con-
firmation should be displayed to the user.

The complete mockups designed for the Web Dashboard component of the tool
are shown here.

91

Chapter 7

Figure A.1: Mockup of the dashboard page.

Figure A.2: Mockup of the alarms page.

92

User Stories and Mockups

Figure A.3: Mockup of the resources page.

Figure A.4: Mockup of the help page.

93

	Introduction
	Contributions
	Document Structure

	Background and Related Work
	Microservices Architecture
	Microservices vs Monolithic Applications
	Microservices Setups

	Containers
	Definition
	Docker
	Kubernetes
	KubeEdge
	Docker Swarm
	Apache Mesos/Marathon
	Nomad

	Communication Mechanisms
	TCP Sockets
	Websockets
	REST
	RPC
	Message Queues
	Comparison of communication mechanisms

	Intrusion Detection Systems
	Detection Target
	Detection Approach
	Anomaly Detection Algorithms

	Monitoring
	Tracing Solutions
	Monitoring Solutions
	Comparison of Related Systems

	Requirements Analysis
	User Stories
	Mockups
	Functional Requirements
	Non-Functional Requirements
	Technical Restrictions

	A Tool to Automate Intrusion Detection in Microservices
	Proposed Architecture
	Implementation

	Validation and Experimentation
	Validation Plan
	Functional Testing
	Non-Functional Requirements Validation

	Project Management
	Methodology
	Work Plan
	Risk Assessment

	Conclusion
	Appendix User Stories and Mockups

