

David Silva de Paiva

FAULT INJECTOR TO VERIFY AND VALIDATE

NANOSATELLITES

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering, advised by Professor Doctor Henrique Santos do Carmo Madeira

and presented to Faculty of Sciences and Technology / Department of Informatics
Engineering.

July of 2022

DEPARTMENT OF INFORMATICS ENGINEERING

David Silva de Paiva

FAULT INJECTOR TO VERIFY AND VALIDATE

NANOSATELLITES

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering, advised by Professor Doctor Henrique Santos do Carmo Madeira and
presented to Faculty of Sciences and Technology / Department of Informatics Engineering.

July of 2022

 ii

 iii

Resumo

CubeSats são pequenos satélites construídos com até 12 unidades na forma de um cubo
de 10cm de borda e peso máximo de 10kg e representam uma tendência emergente na
indústria espacial. Estes satélites são feitos com componentes comercial off-the-shelf
(COTS) para reduzir custos e aproveitar a boa relação desempenho/consumo de energia
superior dos COTS, que é bastante melhor do que a dos componentes equivalentes de
grau espacial, que são concebidos para suportar radiação. Infelizmente, os
componentes COTS são suscetíveis a Single Event Upsets (SEU), que são erros
transitórios causados pela radiação espacial. Os SEU tornam o estudo do impacto de
falhas causadas por radiação espacial uma etapa obrigatória nas fases de Verificação e
Validação (V&V) do desenvolvimento de software para CubeSats, a fim de avaliar
cuidadosamente os pontos fracos que devem ser reforçados através do uso de técnicas
específicas de tolerância a falhas de software. O facto do impacto das falhas ser
fortemente dependente do software executado no hardware COTS sugere que o estudo
do impacto das falhas de radiação deve ser realizado sempre que o software do CubeSat
sofrer uma grande alteração, ou até mesmo uma pequena atualização.

Esta tese apresenta o CubeSatFI, uma plataforma de injeção de falhas para CubeSats
destinada a facilitar a incorporação desta etapa extra no software de Verificação e
Validação do CubeSats. CubeSatFI permite a fácil definição de campanhas de injeção de
falhas que emulam os efeitos da radiação espacial. SEU são emulados de forma realista
através de falhas de bit-flip injetadas nos registos do processador e noutros locais das
placas CubeSat que podem ser alcançadas por boundary-scan, que está disponível nas
placas CubeSat através da porta de acesso de teste JTAG. A execução das campanhas de
injeção de falhas é controlada pela plataforma CubeSatFI de forma totalmente
automatizada.

A eficácia do CubeSatFI é demonstrada com o EDC (Environment Data Collection), uma
payload board que será usado numa constelação de satélites do Instituto Nacional de
Pesquisas Espaciais Brazileiro (INPE), fornecendo uma visão realista sobre o impacto de
falhas no software EDC.

Palavras-Chave

CubeSats, Componentes COTS, Injeção de falhas, Verificação e Valdidação, Erros
Transitórios

 iv

 v

Abstract

CubeSats are small satellites built with up to 12 units of the shape of a cube of 10cm
edge and weight of 10kg maximum and represent an emergent trend in the space
industry. These satellites use commercial off-the-shelf (COTS) components to reduce
cost and take advantage of the superior performance/power consumption ratio of COTS,
which is an order of magnitude better than the equivalent radiation-hardened space-
grade-components. Unfortunately, COTS components are susceptible to Single Event
Upsets (SEU), which are transient errors caused by space radiation. SEU makes the study
of the impact of faults caused by space radiation a mandatory step in the development
of CubeSats software, in order to carefully evaluate weak points that must be
strengthened through the use of specific software fault tolerance techniques. The fact
that the impact of faults is strongly dependent on the software running on the COTS
hardware indicates that the study of the impact of radiation faults must be carried out
every time the CubeSat software has a major change, or even a minor update.

This thesis presents CubeSatFI, a fault injection platform for CubeSats meant to facilitate
the incorporation of this extra step in the Verification and Validation of CubeSats
software. CubeSatFI allows the easy definition of fault injection campaigns that emulate
the effects of space radiation. SEU are emulated realistically through bit-flip faults
injected in the processor registers and in other locations of the CubeSat boards that can
be reached by boundary-scan, which is available in CubeSat boards through JTAG Test
Access Port. The execution of the fault injection campaigns is controlled by the
CubeSatFI platform in a fully automated mode.

The effectiveness of CubeSatFI is demonstrated with the EDC (Environment Data
Collection), a payload system that will be used in a constellation of satellites from the
Brazilian National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais
- INPE), providing a realistic insight on the impact of faults in the EDC software.

Keywords

CubeSats, COTS components, Fault Injection, Verification and Validation, Transient
Errors

 vi

 vii

Acknowledgments
First, I want to thank my parents Fernanda and Amadeu for all the efforts and sacrifices
they have made and continue to make so that I can achieve my goals successfully. None
of this was possible without them. And also, I want to thank my brother Moisés.

I thank the University of Coimbra, in particular the Department of Informatics
Engineering, and the teachers I came across for all the knowledge that they transmitted
to me.

I thank the Center for Informatics and Systems of the University of Coimbra (CISUC) for
the opportunity to carry out the research work presented in this thesis. Special thanks
to my lab colleagues Anamta, Qianying, and Omid. What a wonderful journey by your
side.

I thank National Institute for Space Research of Brazil (INPE) for the opportunity to test
the tool developed on a real satellite.

I thank Professor Henrique Madeira, from the University of Coimbra, for all the
monitoring, dedication, and words of strength and encouragement. Special thanks for
all the support.

I also want to thank the CONASAT team from INPE for welcoming me and supporting my
journey in the last year, especially Doctor José Marcelo and Engineer Raffael Staditte.

I would like to thank my friends for every moment, every night of work during the last
five years, but also for the partying and funny moments. Thanks for all the friendship,
especially during this phase. Special thanks to my dear friends Sara, Margarida, Carina,
Rafael, Francisco, Simão, Tiago, Simão Jr., and Haitham.

 viii

 ix

Contents

Chapter 1 Introduction ... 1

1.1 Context of the project .. 1

1.2 Motivation ... 2

1.3 Objectives .. 3

1.4 Tangible Contributions... 4

1.5 Thesis Structure ... 4

Chapter 2 Background and State of the Art ... 6

2.1 Small satellites and CubeSats .. 6

2.2 Fault Injection for Space Applications ... 10

Xception ... 13

GOOFI : Generic Object-Oriented Fault Injection Tool ... 14

2.3 Software Fault Tolerance Techniques.. 14

Capability Check ... 16

Software Diversity .. 16

Error Detection ... 17

Error Recovery .. 18

2.4 Concluding Remarks .. 19

Chapter 3 CubeSatFI Requirements and Architecture... 20

3.1 Project Restrictions .. 20

3.2 Functional Requirements ... 21

3.3 Non-Functional Requirements ... 24

3.4 Platform Architecture .. 25

3.5 Concluding Remarks .. 28

Chapter 4 CubeSatFI Functional View .. 30

4.1 The Fault Injector ... 30

4.2 Preliminary Experiment ... 34

Environmental Data Collector (EDC) .. 34

Experiment Setup ... 36

Results Analysis .. 37

4.3 Concluding Remarks .. 42

Chapter 5 Integration of Fault Injection in the Software Development Process 44

5.1 Context and Assumptions .. 44

5.2 Enhanced Verification and Validation Steps .. 50

5.3 Concluding Remarks .. 53

Chapter 6 SBCDA Use Case and Results ... 54

 x

6.1 CubeSat CONASAT-1 .. 54

6.2 Application of the Proposed Approach .. 56

6.3 Results Discussion .. 58

6.4 Concluding Remarks .. 65

Chapter 7 Conclusions and Future Work .. 66

7.1 Conclusions .. 66

7.2 Future Work ... 68

References……. .. 72

Appendices… ... 79

Appendix A – CubeSatFI Functional Requirements .. 80

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software………… ... 95

Appendix C - Enhanced software development process for CubeSats to cope with space radiation
faults………….. .. 109

 xi

 xii

List of Abbreviations

ADVANCE
Addressing Verification and Validation Challenges in

Future Cyber-Physical Systems

ALU Arithmetic Logic Unit

CDS CubeSat Design Specification

COTS Commercial off-the-shelf

CPS Cyber-Physical Systems

DDC Data Distribution Center

EDC Environment Data Collector

GPR General Purpose Registers

GP Ground Platforms

JTAG Joint Test Action Group

ICAP Internal Configuration Access Port

INPE
Brazilian National Institute for Space Research (Instituto

Nacional de Pesquisas Espaciais Brazileiro)

IECU Instruction Execution Control Unit

LEO Low Earth Orbit

MMU Memory Management Unit

OBC On-Board Computer

OpenOCD Open On-Chip Debugger

SDC Silent Data Corruption

SEU Single Event Upsets

SoC FPGA System on Chip - Field Programmable Gate Array

SWIFI Software Implemented Fault Injection

SWIFT Software Implemented Fault Tolerance

TAP Test Access Port

V&V Verification and Validation

VALU3S
Verification and Validation of Automated Systems’ Safety

and Security

 xiii

 xiv

List of Figures

Figure 1 - Number of nanosatellites launches per year ... 6

Figure 2 - Common CubeSats Configurations .. 7

Figure 3 - Time-based Fault Injection Workflow .. 22

Figure 4 - Location-based Fault Injection Workflow .. 23

Figure 5 - Legend of the elements used in the use case diagram .. 23

Figure 6 - Use Case Diagram of the High-Level Functional Requirements 24

Figure 7 - CubeSatFI fault injection setup .. 26

Figure 8 - CubeSatFI Architecture ... 27

Figure 9 - AbstactFaultInjectionAlgorithm class ... 28

Figure 10 - Home Page Screen ... 31

Figure 11 - Campaign Definition Screen .. 32

Figure 12 - Campaign Execution Screen ... 33

Figure 13 - Options Screen.. 34

Figure 14 - Brazilian Environmental Data Collection System ... 35

Figure 15 - Photo of the EDC Experimental Setup .. 37

Figure 16 – Impact of faults while EDC decodes messages ... 38

Figure 17 - Impact of faults on the different processor registers .. 40

Figure 18 - Impact of faults regarding bit flip position .. 41

Figure 19 - Impact of faults when injected on the less significant bits of the LR, SP, PC, R7

processor registers ... 42

Figure 20 – CubeSat boards high-level architecture ... 45

Figure 21 – Impact of faults on the Hardware and SO ... 49

Figure 22 - Enhanced verification and validation steps for CubeSats software development

process ... 52

Figure 23 - CONASAT-1 [69] ... 55

Figure 24 - Block diagram of CONASAT-1 Hardware Architecture Overview 56

Figure 25 - Impact of faults distributed by failure modes ... 59

Figure 26 - Impact of faults on the different processor registers - Multiplication of matrices

code .. 60

Figure 27 - Impact of faults on the different processor registers - Multiplication of matrices

code .. 62

Figure 28 - Comparison of the impact of faults distributed by failure modes on all the

software tested before and after being strengthened with SWIFT techniques 64

 xv

 xvi

List of Tables

Table 1 – Formula to calculate confidence intervals for proportions in binomial distributions

 .. 37

Table 2 - UC 1.1: Define experiment information ... 81

Table 3 - UC 1.2: Generate campaign .. 83

Table 4 - UC 1.3: Import fault injection campaign information .. 84

Table 5 – UC 1.0.0: Search fault injection campaign file ... 85

Table 6 - UC 2.1: Start fault injection campaign .. 87

Table 7 - UC 2.2: Pause fault injection campaign .. 88

Table 8 - UC 2.3: Resume fault injection campaign... 89

Table 9 - UC 2.4: Abort fault injection campaign .. 90

Table 10 – UC 2.1.1: List fault injection campaigns ... 91

Table 11 - UC 3.0: Edit fault injection campaign ... 92

Table 12 - UC 4.1: Choose the target system .. 93

Table 13 - UC 4.2: Choose CubeSatFI language ... 94

 xvii

Chapter 1
Introduction

Nowadays, the interest in the development and deployment of CubeSats solutions has
become a trend in the space industry. CubeSats are small satellites built with up to 12
units in the shape of a cube of 10cm edge and weight of 10kg maximum, according to
the CubeSat Design Specification (CDS) – a standard (de facto) for mechanical design and
interfacing for satellites [1].

This thesis presents CubeSatFI, a fault injector platform that aims to help space agencies
and software developer teams with an effective tool to verify and validate CubeSats
software.

This chapter introduces the scope and motivation of this thesis and provides an overview
of the structure of the entire document.

1.1 Context of the project
This thesis was developed in the context of the European H2020 ADVANCE (“Addressing
Verification and Validation Challenges in Future Cyber-Physical Systems”). The scientific
objective of the ADVANCE project is to conceive new approaches to support the
Verification and Validation (V&V) of Cyber-Physical Systems (CPS). It will explore
techniques, methods, and tools applicable to different phases of the system lifecycle,
but always with the final objective of improving the effectiveness and efficacy of the
V&V process 1.

Within the ADVANCE project, a specific partnership was carried out with the Brazilian
National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais - INPE),
which is one of the project partners. In short, INPE aims to empower Brazil in scientific
research and space technologies and is an international reference in research in space
and atmospheric sciences, space engineering, meteorology, and Earth observation
using satellite images and studies of climate change2. Hence, INPE proposed the
development of a tool capable of exhaustively testing the effect of space radiation on
their CubeSats satellites, particularly the effects of space radiation on the behavior of
the software running on the CubeSats boards. Since CubeSats use commercial off-the-
shelf (COTS) components to reduce cost and to seize the superior performance/power
consumption ratio of COTS when compared to traditional radiation-hardened
electronics, the challenge is to emulate the hardware faults caused by space radiation
with the least perturbation possible to the rest of the CubeSat board (target system),
and without compromising the development costs.

1 https://cordis.europa.eu/project/id/823788 (accessed Jan. 20, 2022)
2 http://inpe.br/faq/index.php?pai=1 (accessed Jan. 13, 2022)

https://cordis.europa.eu/project/id/823788
http://inpe.br/faq/index.php?pai=1

Introduction

2

Moreover, this thesis was also developed under the VALU3S (“Verification and
Validation of Automated Systems’ Safety and Security”) project. The VALU3S project
aims to evaluate the state-of-the-art V&V methods and tools, and design a multi-domain
framework to create a clear structure around the components and elements needed to
conduct the V&V process3.

The work developed under this thesis was supported in part by the Grant CISUC-
UID/CEC/00326/2020, funded in part by the European Social Fund, through the Regional
Operational Program Centro 2020, and supported in part by the H2020, Marie-Curie
project ADVANCE (“Addressing Verification and Validation Challenges in Future Cyber-
Physical Systems”), project funded by the VALU3S (“Verification and Validation of
Automated Systems’ Safety and Security”) project, supported by the European
Commission, and in part by European Leadership (ECSEL) Joint Undertaking (JU) under
Grant 876852, and in part by the JU from the European Union's Horizon 2020 Research
and Innovation Programme.

1.2 Motivation
CubeSats are made of commercial off-the-shelf (COTS) components (both hardware and
software). The use of COTS-based systems in mission-critical applications is an
established trend in industry sectors. They offer a real opportunity to reduce
development costs and deployment times, which greatly explains the growing interest
in using COTS components in mission-critical systems. Additionally, COTS components
normally benefit from a large installation base in a multitude of configurations, which is
often considered as an effective “test in the field”.

However, COTS components are not prepared to deal with the demanding space
conditions. In space, high-energy ionizing particles exist as part of the environment and
these particles, often generically called as space radiation, may cause problems in the
electronic circuits of the satellites. This is a well-known fact, well documented by the
scientific community [2]–[6], and is something that space agencies need to have in mind
when it is time to develop and deploy a satellite made of COTS components.

The sensitivity of COTS components to space radiation is the main reason why CubeSats
(and other miniature types of satellites) have been regarded as not adequate for high-
priority and critical missions due to its low reliability [7]. However, the situation is
changing very quickly and the dramatic advantages of CubeSats in terms of cost, weight,
energy and easiness of development and deployment have changed space agencies
plans and private investors, which currently look at CubeSats as a concrete solution for
a wide variety of missions, including critical missions.

The challenge is on how to develop reliable CubeSats, capable of tolerating the stringent
requirements of space missions, despite being made of low cost and radiation sensitive
components. Is it possible to make CubeSats software resistant to space radiation? To

3 https://valu3s.eu/ (accessed Jan. 20, 2022)

https://valu3s.eu/

Introduction

3

help to answer this question, INPE proposed the development of a platform capable of
assessing the behavior of CubeSat software in the presence of radiation. Furthermore,
INPE made available the Environment Data Collector (EDC), a CubeSat payload board for
the Brazilian Environmental Data Collection System that will be used in all the
nanosatellites from the CONASAT project [8]. In this thesis, the EDC payload system will
be used as a realistic example to design and test the fault injection tool and propose a
pragmatic approach to assure that CubeSats software will perform in a reliable manner
in the presence of space radiation.

1.3 Objectives
Taking into account the need to build more reliable CubeSats, this thesis has three main
objectives that are presented in the following paragraphs.

The first objective is concerned with the development of a tool – CubeSatFI - capable of
reproducing the effects of radiation-induced faults in CubeSats boards. Fault injection is
an “old recipe” that can be applied in this new context created by the CubeSats boom.
The goal is not to use this tool to evaluate satellites or their hardware, as it is typically
done by previous fault injection studies. In contrast, this tool aims to be an important
instrument to evaluate the impact of radiation-induced faults on the software that runs
on top of COTS-based CubeSats. A known fact from fault injection studies is that the
impact of transient faults in computer systems is highly dependent on the concrete
software code [9]. Furthermore, this tool intends to be used both in the evaluation of
the impact of transient faults on the software integrity and behavior, as well as in the
evaluation of possible Software-Implemented Fault Tolerance (SWIFT) techniques that
will be subsequently used to make CubeSats software resistant to space radiation.

As already mentioned, COTS components are not prepared to deal with space radiation.
With that in mind, the second objective of this thesis is to prove that the negative impact
caused by space radiation can be mitigated or even tolerated by software-implemented
fault tolerance techniques. SWIFT techniques are known and well documented in the
literature, and the author considers that the use of SWIFT techniques is the right solution
to increase the reliability of CubeSats software without degrading the important
advantages of the COTS-based approach used by these satellites, particularly the low
costs, low weight, and low energy consumption of CubeSats. The CubeSatFI tool will be
used to evaluate the effectiveness of SWIFT techniques in the EDC payload board.

And, last but not least, this thesis aims to formalize the use of fault injection in the
software development process for CubeSats, particularly in the Verification and
Validation phases. Although fault injection is a widely used technique in several
industrial application areas, including in the space domain, the concrete application of
fault injection in the CubeSat industry requires a new perspective and leads to new ways
of using fault injection in the development of CubeSats and, more specifically, in the
software verification and validation phases. As already mentioned, the impact of
transient hardware faults in computer systems is highly dependent on the actual code
running on such systems. When the code changes, the impact of faults could change

Introduction

4

drastically. In the case of CubeSats development, this means that the evaluation of the
impact of radiation-induced faults must be carried out every time the CubeSat software
changes, even when such changes are just a minor update. In other words, this thesis
proposes that fault injection must be included as a mandatory step in the development
of software for CubeSats.

1.4 Tangible Contributions
During the development of the thesis, some key contributions were achieved. The
following paragraphs summarize these contributions:

• CubeSatFI: A fault injection tool to emulate faults caused by single event upsets
in the processor registers of CubeSat boards.

• A scientific paper [10] that presents the CubeSatFI platform and a first real
example of its usage was submitted to the 2021 Latin-American Symposium on
Dependable Computing (LADC) and published in the conference proceedings by
the Institute of Electrical and Electronics Engineers (IEEE) at IEEE Xplore. The
paper can also be found in Appendix B - Fault injection platform for affordable
verification and validation of CubeSats software.

• The proposal of an enhanced software development process for CubeSats to
cope with space radiation-induced faults. This proposal will be presented in a
scientific paper that will be submitted to the 27th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2022). The current version of the
paper can be found in Appendix C - Enhanced software development process for
CubeSats to cope with space radiation faults.

1.5 Thesis Structure
In addition to this introduction, the thesis is organized in different chapters that are
briefly described in the following paragraphs.

Chapter 2: Background and State of the Art aim to introduce basic concepts related to
small satellites and CubeSats. Furthermore, chapter 2 presents relevant related work on
fault injection for space applications, compares existing fault injection tools for similar
target environments, and presents a brief explanation on software fault tolerance
techniques.

Chapter 3: CubeSatFI Requirements and Architecture presents the CubeSatFI
requirements and architecture.

Chapter 4: CubeSatFI Functional View aims to present the fault injector and demonstrate
the effectiveness of the tool on the Environment Data Collector (EDC) CubeSat board
that will be used on a real space mission.

Introduction

5

Chapter 5: Integration of Fault Injection in the Software Development Process proposes
the enhancement of the software development process for CubeSats to cope with the
space radiation-induced faults.

Chapter 6: SBCDA Use Case and Results demonstrate the proposed integration of fault
injection in the software development process for CubeSats using three different
software applications running in the EDC.

Chapter 7: Conclusions and Future Work concludes the thesis, presents the main
outcomes and results, and highlights possible future work directions.

Chapter 2
Background and State of the Art

This chapter provides basic background concepts on small satellites and CubeSats. In
addition, it presents the state of the art on fault injection for space applications with a
brief presentation of the most relevant fault injectors and fault tolerance techniques
that can be used to develop more reliable software for CubeSats.

2.1 Small satellites and CubeSats
There is a wide variety of small satellite types, which has been almost exclusively used
in low Earth orbits for applications such as Earth observation and remote sensing or
communications. The most common type among small satellites is known as
nanosatellite, which includes satellites with a mass of up to 10 kg. Since 2012, the
number of launches of nanosatellites has grown significantly as shown in Figure 1.

Figure 1 - Number of nanosatellites launches per year 4

This growth in the number of launches is largely due to the popularization of CubeSats.
These satellites follow the CubeSat Design Specification (CDS), which is a standard (de
facto) for mechanical design and interfacing for satellites [1]. CubeSats strongly reduce

4 https://www.nanosats.eu/ (accessed Oct. 29, 2021)

https://www.nanosats.eu/

Background and State of the Art

7

the cost and development time of space projects, increase accessibility to space, and
allow sustained frequent launches. This standard defined the 1U format, a 10cm cube
edge for the satellites, and other formats derived from it, 1.5U, 2U, 3U, 6U, etc. – shown
in Figure 2. Satellite subsystems such as solar panels, antennas, on-board computer,
power system, communication systems, and others started being sold as COTS, and the
standardization of the interface between the satellite and the launcher also simplified
the provision of the launching service.

Figure 2 - Common CubeSats Configurations 5

CubeSats are generally launched into Low Earth Orbits (LEO), at an altitude of up to 600
km. This is mainly due to the small size that limits the energy available in the power
supply and makes it impossible to use high-gain antennas. Launching CubeSats into
higher altitude orbits, such as the geostationary orbit around 36,000 km, would need
high power transmitters to achieve high transmission rates, which is difficult to
accommodate in the CDS standard.

Among the popular CubeSat applications, stand out communication services such as IoT
and Space Internet, remote sensing with the acquisition of images of the Earth and
space, and geolocation.

The CubeSats manufacturing takes special advantage of the use of COTS components
because COTS largely outperforms (in performance, cost, weight, etc.) components that
are qualified for space applications, which open opportunities to develop new space
technologies and carry out space missions in the fastest and cheapest way. The spatial
qualification process slows down components, as the space industry mainly limits the
operating frequency and dynamic use of the processor memory cache to reduce the
inherent risks of radiation suffered in space. COTS components also have the advantage

5 https://www.nasa.gov/content/what-are-smallsats-and-cubesats (accessed Nov. 02, 2021)

https://www.nasa.gov/content/what-are-smallsats-and-cubesats

Background and State of the Art

8

of cost and ease of purchase, eliminating potential embargo issues due to the protected
nature of many space components.

The use of COTS-based systems in space missions is particularly attractive, especially in
the context of CubeSats and nanosatellites where very low cost and very quick
development time are paramount goals. However, in spite of the advantages of COTS
components (low cost, top performance, low energy consumption, readily available for
purchase), the reality is that COTS are not usually designed for the stringent
requirements of space missions. In fact, errors caused by SEU are established as the
major cause of COTS components failures in space [6]. The impact of space radiation
could damage COTS components on a permanent basis, but the most common effect is
to cause transient faults [6] that may lead the software to crash or produce erroneous
results. This means that the actual use of COTS components in space missions must be
preceded by a careful study of the impact of faults caused by space radiation on system
behavior. This is a necessary step, even for Low Earth Orbit (LEO) (and low-risk) CubeSat
missions.

Hardware COTS components used in boards of CubeSats are sensitive to space radiation.
That is a known fact, well documented in the semiconductors data sheets, and
abundantly evaluated by researchers and practitioners, using ground radiation and
methods described in the standard ISO 21980:2020 [2], and even in on-orbit
measurements (e.g., [3], [4]). Space radiation can cause a variety of effects in COTS
microelectronics, ranging from permanent failures to transient faults, depending on the
different sources of space radiation and on the radiation exposure [5]. However,
transient faults caused by SEU are recognized as the major cause of component
malfunctions in space [6], especially in the LEO used by CubeSats. In other words, the
major risk resulting from space radiation in CubeSats is the increased rate of hardware
transient faults that may cause erroneous behavior in the software running on CubeSat
boards.

Obviously, CubeSats boards can be designed to reduce the probability of hardware
transient faults due to SEU. For example, using better COTS components (often called
COTS+ [11]) and/or including some hardware fault tolerance mechanisms in the design
of the boards. But the use of full-fledged hardware fault tolerance (e.g. TMR [12]) would
be prohibitive in terms of power consumption and weight, and in practice CubeSats
boards only have lightweight mechanisms such as memory error detection and
correction. CubeSat proposals with strong fault tolerance mechanisms are rare, but even
the few ones available, such as a recent proposal presented in [13], rely partially on
software fault tolerance techniques [14] (with some support from the COTS hardware
architecture in case of [13]).

Although CubeSats generally use ordinary hardware COTS components (i.e.,
components sensitive to space radiation), typical architectures of CubeSats boards [15]
include several mechanisms to cope with SEU and faults caused by space radiation.
Memory is typically protected through error detection and correction codes, and
communication structures also use error detection and correction provided by the
communication protocols and associated hardware of the communication links.
Memory, in particular, represents a large silicon surface exposed to radiation, which

Background and State of the Art

9

means that protecting memory from transient bit-flip errors due to space radiation is
mandatory.

Fortunately, the protection of memory and communication channels against transient
faults caused by space radiation is relatively easy to achieve at low cost because of the
regular nature of such structures. For example, the use of extended Hamming codes [16]
to assure single error correction and double error detection in the memory just requires
two extra parity bits and is a frequent solution in CubeSat boards. Similarly, the use of
communication protocols and techniques such as forward error correction codes [17]
are effective in dealing with errors caused by transient faults in communication
channels.

The big challenge is to protect the processor(s) of CubeSat boards from the effects of
space radiation. Obviously, the use of space-grade processors that resist space radiation
is not an option for CubeSats, as the cost of such processors is several orders of
magnitude higher than the cost of common COTS processors. But, unfortunately, COTS
processors are not immune to space radiation and, at the same time, the complex
internal structure of processors does not allow the use of affordable data error detection
and correction methods that protect uniform and regular structures such as memories
and communication channels. In other words, existing CubeSat boards can deal with
transient faults caused by space radiation that affect memory and communication, but
the processor represents the major weakness of the reliability of CubeSats.

The obvious solution would be to rely on classic fault-tolerant architectures at the board
level [18] to tolerate faults of the COTS processors in CubeSats. But these techniques
represent a substantial increase of hardware redundancy, with a high negative impact
on the board weight and power consumption. For example, the use of duplicated
processors in CubeSat boards would require a large amount of additional hardware to
deal with the comparison of the two processors, no matter the concrete flavor of fault-
tolerant architecture used in the board design. For example, techniques such as lock-
step dual-processor architectures would require the low-level comparison of the
hardware signals of both processors (and, most likely, can only be used when the
processors are implemented in FPGAs to have access to the internal processor structure
to allow synchronization of signals). Other architectures such as symmetric
multiprocessors (i.e., two or more identical processors sharing a single main memory)
would also need substantial additional hardware and have a negative impact at other
levels (e.g., would require a multiprocessor-aware operating system) [18].

Recent research work (Ph.D. thesis of C. Fuchs, December 2019 [19]) proposes a novel
on-board-computer architecture for very small satellites (<100kg) capable of achieving
high reliability without using radiation-hardened semiconductors, through the
combined use of hardware and software-implemented fault tolerance techniques [19].
However, in spite of this promising research result from C. Fuchs, to the best of the
author’s knowledge, there are no fault-tolerant boards available for CubeSats, especially
boards that can cope with transient faults that affect the processor, which are the major
threat to the reliability of CubeSats.

Background and State of the Art

10

The current situation in the space industry is that, in spite of the growing interest in
CubeSats, this category of miniature satellites is still considered as not adequate for
high-priority and critical missions, and the reason is the low reliability of CubeSats [7].
Data from 178 launched CubeSats show that the 2-year reliability estimation ranges
from 65% to 48% [7]. The detailed analysis of the results presented in [7], concerning
the subsystem identified as the root cause of the failure, shows that the payload
subsystem contributes with modest figures (from 3% to 4%), which make sense in an
analysis focused on failures of CubeSat missions with a strong incidence of DOA (dead-
on-arrival), where the satellite never achieved a detectable functional state. However,
it is possible to speculate that the failure rate in CubeSat payload software could be
much higher, especially considering transient failures in the payload software that,
apparently, has not been considered in [7].

With the ideas presented above, two significant points emerge and need to be
addressed:

• The evaluation of the impact of space radiation in CubeSats should be focused
on the impact of processor faults, as the processor (i.e., the chip) is the key
element of a CubeSat that cannot be protected or replicated without damaging
the main advantages of low cost, low weight, and low energy consumption of
CubeSats. SEU-induced hardware transient faults in the processor directly affect
the software execution, being visible as potentially erroneous behavior of the
CubeSat software with all sort of possible negative consequences.

• The use of software fault tolerance techniques seems the most promising
approach to improve CubeSats reliability and resilience in terms of space
radiation, while keeping the affordable budget, low energy, low mass, and easy
to purchase hardware components of CubeSats.

2.2 Fault Injection for Space Applications
Fault injection consists of “the deliberate insertion of artificial faults in a computer
system or component in order to assess its behavior in the presence of faults and allow
the characterization of specific dependability measures” of the target computer system
[20]. This is a mature technology that has been established as an attractive way of
validating specific fault handling mechanisms and as an effective technique to provide
experimental data for the estimation of fault-tolerant system measures, such as fault
coverage and error detection latency [21], [22].

There is a wide variety of techniques to inject faults in computer systems. First proposals
of fault injection techniques used heavy-ion radiation into processor chips [23], pin-level
fault injection [24], or electromagnetic interference [25]. However, the increased
complexity of computer systems made these techniques nearly impossible to apply, not
only because of the inherent difficulties of controlling the injection process in highly
complex processors but also because of the difficulties in the collection of high-quality
information on the target system behavior after the injection of the faults. In practice,
the initial fault injection techniques have been replaced by the emulation of faults

Background and State of the Art

11

through software mechanisms, which is known as SWIFI (Software Implemented Fault
Injection).

One of the first SWIFI proposals was [26], which was subsequently replaced by more
effective and less intrusive methods such as [20], [21], [23]–[27] that became the
standard de facto in fault injection. The key idea of SWIFI tools is to emulate hardware
faults through software, using very small interruption response routines, with just a few
instructions (or scan-chain debugging resources in [27]) that insert bit-flip errors in very
low-level structures (e.g., processor registers, memory, or busses, among others).

Initially, fault injection techniques only emulated (realistically) hardware faults through
bit-flip and stuck-at-bit fault models. One of the first studies that investigated the
possibility of emulation of software faults (i.e., software bugs) using fault injection tools
was published in [28]. The first practical approach to inject realistic software faults (that
emulates real bugs found in deployed software) was presented in [29]. A relatively
recent survey on software fault injection techniques and tools can be found in [30].
Despite this, the study of software fault injection is out of the scope of this thesis.

Concerning the injection of faults that emulate the effects of SEU, the heavy-ion
methods are in fact a direct injection of real radiation-induced faults [23]. But this
approach was replaced by SWIFI methods [20] since it is very difficult to apply (it requires
a radiation source provided by radioactive material or complex cyclotron facilities) and
cannot be used in modern processors in a controlled manner. SWIFI techniques have
become the dominant fault injection method used by space agencies such as NASA [9]
or ESA [31] for general purpose evaluation of satellite computer systems in faulty
conditions.

Consistent results in fault injection studies show that the impact of transient faults on
the software behavior (i.e., the failure modes observed) is highly dependent on the
actual software under evaluation. In [32], for example, faults injected while the target
system was running quite diverse software, selected from many application areas such
as automotive, telecomm, office, etc., show differences in the percentages of failure
modes observed higher than 70%, depending on the actual software running. In another
work, where injected faults were intended to emulate SEU-induced faults in a NASA
COTS-based payload for scientific data processing onboard the satellite, the differences
observed in the fault impact for the different programs running on the system reached
45% for some failure modes [9].

The fact that the impact of transient faults is highly dependent on the actual software
suggests that fault injection should be a mandatory step in the development of CubeSats
software to evaluate the sensitivity of the CubeSat software to specific failure modes,
especially to failure modes that may affect the CubeSat mission. Even after relatively
minor updates in the CubeSat software that may change the software behavior in the
presence of SEU-induced faults, it is recommended to perform fault injection tests to
(re)validate CubeSat resilience to space radiation. The CubeSatFI platform is intended to
facilitate the integration of fault injection as a mandatory step in the verification and
validation of CubeSats software.

Background and State of the Art

12

Concerning fault injection tools available, in spite of the fact that fault injection is a well-
known technique that was been applied in a broad range of utilization contexts, the
reality is that there are no much fault injection tools readily available. In particular, for
the specific context of fault injection in CubeSat boards and CubeSats applications, to
the best of the author’s knowledge, there are no fault injection tools currently available.
That is the main reason why it was decided to develop a new fault injection tool
specifically targeted to CubeSat board.

CubeSatFI fault injection platform developed and presented in this thesis emulates
hardware transient faults in order to evaluate the CubeSat software resilience against
space radiation-induced faults. CubeSatFI uses SWIFI techniques inspired by [20]
(Xception) and, particularly, it uses the scan-chain method proposed in [27]–[31], [33],
[34].

Concerning the Xception [20] approach, it relies on the use of special CPU debugger
registers to inject the faults with the minimum perturbation on the target system.
However, this approach causes a strong coupling between the fault injection tool and
the target system. In addition, Xception was the first fault injection tool that uses the
interruption-based approach to inject faults with minimal intrusion, at least considering
the intrusion from the point of view of the amount of instructions executed to inject
each fault. CubeSatFI has got some inspiration from the interruption-based approach
used by Xception, even if the execution context is very different and CubeSatFI does not
suffer from the strong coupling effect between the fault injector tool and target system
that is one of the problems of Xception [20].

GOOFI [27] is the most prominent tool of the tool family using the scan-chain approach
and one of the few tools currently under utilization, at least in research contexts, which
makes it a relevant reference for the fault injector tool developed in this thesis.

Scan-chain approaches (see [27], [35]–[38]) has the advantage of using the features
available in the target system for testing purposes to inject faults with minimal
perturbation of the system (other than the injected fault). Since most of the CubeSat
boards include these scan-chain features, the proposed CubeSatFI can be used in most
of the CubeSat satellites.

Another variant of fault injection tools includes the ones that intend to test the
robustness of Field Programmable Gate Arrays (FPGAs) against space radiation and are
briefly presented in [39]. These types of fault injectors are concerned with the
evaluation of the hardware behavior. In contrast, CubeSatFI is concerned with the
sensitivity evaluation against radiation of the software that runs on top of a CubeSat,
making this type of fault injector not relevant to this thesis.

FIRED [40] was proposed to evaluate the dependability of critical systems built on SRAM-
based FPGAs through the emulation of hardware faults by injecting bit-flips in the SRAM
memory cells through the Internal Configuration Access Port (ICAP). The faults injected
by FIRED can produce errors in the design of VHDL (very high-speed integrated circuit
hardware description language) or Verilog modules deployed in the FPGA [40]. The
nature and purpose of FIRE is quite different from the CubeSatFI, which makes FIRE not
particularly relevant for our context.

Background and State of the Art

13

Some other interesting tools, although not well aligned with the goals of the present
thesis, are SEInjector [41] and GRINDER [42]. SEInjector was developed to simulate soft
errors in the registers of x86 target systems allowing to perform fault injection in a
specific code segment. And GINDER was developed thinking on reusability (i.e., the
ability to use the tool on different target systems with the minimum changes possible
on the tool source code) and therefore its architecture is focused on high adaptability
to accommodate new target systems.

Taking into account the context of this thesis, Xception [20] and GOOFI [27] are the
reference tools that have inspired the design and development of CubeSatFI. Xception
is the reference for an interrupted-based approach and GOOFI is the most relevant tool
using boundary-scan. With that in mind, these fault injectors are briefly presented in the
following paragraphs.

Xception

Xception is a fault injection tool and monitoring environment that intends to emulate
transient faults in several processor units of the target system [20]. These units can be
Instruction Execution Control Unit (IECU), General Purpose Registers (GPR), Memory
Management Unit (MMU), among others.

Back to the end of the ’90s, the Xception took advantage of the most advanced
debugging and performance monitoring capabilities available in the microcontrollers of
that time. Hence, the tool was able of emulating transient faults with the minimum
perturbation for the target system. This was accomplished since intrusive techniques
like modifying the application source code, adding software traps in the code, or
executing the application in debugging mode are not used by the Xception tool to
perform the fault injection.

The Xception is composed of several modules which include the main module that
makes available the user interface for fault definition, fault execution, and collection of
the effect produced by the injected faults and runs on a host computer. In addition,
Xception has a module responsible for communicating with the kernel of the target
system. And last, a set of functions that should be called to start the fault injection
campaign.

The tool makes available a set of fault triggers that can be used to emulate transient
faults. It is possible to define a fault that will be injected after a specified time interval
thus making the definition of faults through a time trigger. Spatial triggers are also
available, i.e. the tool allows to inject a fault when some instruction that is stored in a
specific address is fetched or even when some data saved in some address is accessed.
This last one allows to perform inject on reading and inject on writing, i.e., inject a fault
when some data is written or read from a specific address. Finally, the Xception allows
the combination of all these triggers in order to create a diversity fault injection
campaign.

The results obtained at the end of each injection are saved in a file in a spreadsheet
format. Hence can be analyzed using powerful data analysis tools.

Background and State of the Art

14

GOOFI : Generic Object-Oriented Fault Injection Tool

GOOFI (Generic Object-Oriented Fault Injection Tool) is a fault injection tool that aims
to have a user-friendly graphical interface and an architecture capable of
accommodating new target systems and new fault injection techniques [27]. Taking
advantage of the objected-oriented features of the Java language, GOOFI can easily
accommodate new fault injection algorithms or new target systems. Since GOOFI was
developed in Java language and all the data used by them is stored in a portable SQL-
database, it makes the tool maintainable and portable between different host
platforms, which was also an objective of the tool.

As already mentioned, GOOFI can easily accommodate new fault injection algorithms.
The algorithms are built in an abstract class and each algorithm is composed of a set of
calls to abstract methods. These abstract methods are implemented in the target
system’s classes, can be reusable by different fault injection techniques, and represents
the steps of the fault injection. With that in mind, to add a new fault injection algorithm,
the programmer must create a new method that uses the abstract methods as building
blocks in the abstract class.

On another hand, if a programmer needs to use GOOFI with a target system that is not
supported by the current version of the tool, a new class that extends the abstract one
mentioned before must be created and must implement the abstract methods that will
represent the steps of the fault injection to that specific target system. This makes easy
the task of adding new fault injection algorithms and accommodating new target
systems in the tool, allowing the use of GOOFI in various scenarios.

Focused on the fault injection techniques accommodated by GOOFI, the first version of
the tool implements pre-runtime Software Implemented Fault Injection and Scan-Chain
Implemented Fault Injection [27]. On the first one, faults are injected into the target
system before it starts to execute and could be used to improve fault injection efficiency.
In contrast, on the second one, faults are injected via boundary scan-chains and internal
scan-chains that can be found on the modern microcontrollers, allowing to affect
internal components of the integrated circuit and observe and monitoring the behavior
of these target components. In short, GOOFI can inject single or multiple bit-flip faults.

2.3 Software Fault Tolerance Techniques
The use of fault injection tools is very useful to detect patterns of failures in a system.
However, after they have been discovered, the probability of failure must be reduced in
order to get some degree of dependability. Fault prevention techniques, such as code
reviews, model checking, the use of strong-typed programming languages, and
comprehensive software testing, among others, can be applied during the development
phases. But these techniques cannot remove all points of failure in a system, and it is
also impossible to control all variables of the system operation environment due to the
high complexity of real software. With that in mind, fault tolerance techniques have the
very important goal of providing more reliable software using as a basic assumption the
idea that the software (and the system) is not perfect and may fail because of several
reasons. In this context, fault tolerance techniques should detect errors (the

Background and State of the Art

15

consequences of faults) and provide means to tolerate such errors in order to avoid
failures. It is worth mentioning that a failure is a visible manifestation of the component
or system malfunction [12].

Fault prevention techniques can be applied in perfection. However, they cannot control
the effect that space radiation has on the CubeSats. With that in mind, the use of fault
tolerance techniques is inevitable to improve the reliability of such systems. Hardware
fault tolerance techniques are very difficult to accommodate in CubeSats due to the
limitations imposed by the CDS standard [1] (i.e., power consumption, size, weight, etc.).
Hence, Software Implemented Fault Tolerance (SWIFT) can be used to minimize or even
tolerate the induced faults caused by space radiation.

Fault tolerance is defined as the ability of a system to avoid service failures in the
presence of faults [12]. The techniques that support fault tolerance can be divided into
redundancy and error detection, and system recovery. A redundant system can be built
with redundant hardware components that work simultaneously and a mechanism
compares the results produced by the two components and declares an error if they
differ. In addition, the redundancy can be also achieved by software, for example
executing some functionality twice and voting the results to detect discrepancies
(errors), or even to execute the functionality three times to mask the errors (i.e., tolerate
hardware transient faults caused by radiation).

Error detection and system recovery techniques can be another alternative to handle
transient faults, since after the detection of errors due to transient faults the recovery
mechanisms should assure that the system is brought back to a consistent state, so it
can continue delivering its service in a confident way. Error detection can be achieved
by duplication and comparison – in practice with components or software redundancy.
After that, the system recovery can be achieved using backward [43]–[45] or forward
[43]–[45] recovery techniques. In both cases, the goal is to transform the erroneous
state (at the error detection moment) into a new (correct) state from which the system
can operate (in forward recovery), or a full recovery of the system to a state before the
error occurrence (in backward recovery).

As already mentioned, CubeSats are very limited in terms of power consumption and
size, which means that fault tolerance techniques that required more hardware
components do not fit so well to increase the dependability of such systems. However,
SWIFT can be very useful to mitigate or even tolerate the negative impact of SEU-
induced faults in CubeSats boards. Obviously, these techniques are not “silver bullet”.
With that in mind, one of the objectives of the work developed in the context of this
thesis is to demonstrate that these techniques can achieve acceptable levels of
dependability in CubeSats boards made with COTS with lower cost and effort.

Further, some software fault tolerance techniques are briefly explained in more detail
to give some context to the reader.

Consistency Check

Consistency check uses a priori knowledge about the characteristics of the hardware
components, the programming language used to develop the software, limited time to

Background and State of the Art

16

execute some operations, and other features of the system (hardware and software)
and the application to verify its correctness. These verifications are usually implemented
through assertions, which are software instructions that are placed in strategical places
of the code to verify if any consistency property has been violated, leading to an error
detection [43].

This technique can be applied to verify specific points such as data, address, or time
consistency. Data consistency assertions aim to check the range of variables and the
input parameters. Address consistency checks the addresses used by the processor to
fetch instructions or access to data are within the correct addresses ranges for the
different memory segments (i.e., code segment, data segment, stack segment), allowing
for the detection of errors when the processor tries to accesses memory outside the
declared memory segments. Time consistency aims to verify if some operation takes
more time to run than it should, and when this happens, an error is detected.

Watchdog timers are a very popular example of time consistency techniques, which are
normally used to recover the system after a crash. Nowadays, the watchdog timers are
available built-in most microcontrollers [46]. In practice, the watchdog timer is a
hardware timer circuit that must be periodically reset by software [47]. When the
software does not suffer any deviation from its normal behavior, the timer will be reset
before reaches zero. In contrast, if a hardware or software failure causes some deviation
from the software normal behavior, the timer will not be reset and consequently, a
processor interruption will be released. This interruption must be handled and the most
common is to reset the system in order to prevent the delivery of wrong results and,
also, hang situations.

Capability Check

Capability check is a fault tolerance technique implemented by software to assess that
a component has the expected capability to execute its function. Often it is known as
hardware testing[48].

The microprocessors have an internal component responsible to perform all arithmetic
(e.g. Addition, Subtraction, Division, etc.) and logical operations (e.g. AND, OR, XOR,
etc.). This unity is called Arithmetic Logic Unit (ALU) and can be tested in order to assure
that is working well as expected. To do that, some capability check routines can be
performed – for example, some specific instructions are executed with specific data and
the result is compared with the expected one, and if the result differs an error in the
ALU is detected.

Another example of this technique is the execution of some routines to test other
components like memories. In this case, some data is written and read into some
memory zone to ensure that the memories are performing well [49].

Software Diversity

Another fault tolerance technique is based on the execution of several software
modules that are developed independently by different programming teams and the
result of each one is voted. This technique is known as N-Version programming [50] and

Background and State of the Art

17

independent versions of design and code are developed from the same set of
requirements. During the normal function of the system, the different versions are
executed, and the result is voted by another component called voter. This voter must
be capable to detect wrong outputs, preventing the propagation of erroneous values to
the main output [51]. N-Version programming technique aims to prevent the occurrence
of software errors that were been introduced during the development phase. The key
principle of N-Version programming is to rely on team diversity (i.e., each version is
developed by a different team in a totally intimate way) to avoid common mode faults.
In fact, is not likely that different teams commit exactly the same software fault, thus
the voting of the different versions will tend to detect and tolerate all software faults.

However, some researchers proved that the independence assumptions are not held by
this technique [52], [53]. Knight & Leveson [52], [53] also discovered that different
programming teams can make the same mistakes – since some problems are more
difficult than others and humans tend to make the same mistakes in the same way. In
addition to that, this technique represents more cost to the system under development.

A derivation of the previous technique is based on acceptance tests rather than a
comparison of an equivalent version of the same functionality and is known as N-Self-
Checking programming. In addition to the different versions of code, acceptance tests
are performed on the output of each version of code. The voter is switched by a logic
component that chooses the results from one of the programs that pass the acceptance
tests.

Concerning the problem addressed in this thesis, related to the tolerance of transient
hardware faults due to space radiation, the diversity features of N-Version programming
are not particularly relevant, as diversity is totally aligned with the detection/tolerance
of software faults and not transient hardware faults. Nevertheless, the execution of a
given calculation more than one time followed by votation is a basic technique.

Error Detection

As already mentioned, error detection at software execution level is an important
feature of fault tolerance techniques that are supported by the main techniques
presented before and can be divided into two approaches: structural and behavior-
based approaches [43].

The structural approach is mainly achieved by duplication and comparison. In practice,
two or more copies of a software component that may be corrupted are executed and
a mechanism that compares the output produced by each one and declares an error if
the outputs differ – N-version programming is an implementation of this approach
targeting software faults. It is unlikely that two or more copies will be corrupted
together in the same way, making this approach efficient to detect for example SEU
induced faults that corrupt data.

On the other hand, behavior-based approaches [43] are based on the execution of some
routines that checks on the behavior of the target system – consistency and capability
check techniques are based on this approach. The error detection is done by separate

Background and State of the Art

18

mechanisms like routines of code added to system code or hybrid approaches like
watchdog timers that also require some specific hardware.

Both detection approaches can be applied to the development of software that runs on
CubeSats in order to tolerate the effect of SEU-induced faults. With that in mind, the
work developed under this thesis aims to prove that software implementing fault
tolerance techniques should be used to develop CubeSat’s software.

After the detection of an error is mandatory to recover from that erroneous state to
another one that can deliver a confident service. Whit that in mind, some recovery
concepts and techniques are explored follow.

Error Recovery

Error recovery aims to transform a system state that contains one or more errors and
faults into a state without faults that can deliver its service as well as would be expected
[12]. It is possible to divide the error recovery into two groups of techniques. First,
forward recovery [43]–[45] aims to transform the erroneous state into a new one from
which the system can operate and deliver the service with confidence. Second,
backward recovery [43]–[45] brings the system back to a state before the error
occurrence. Techniques from both groups can be combined if the error persists after the
application of one of them.

Forward error recovery requires the assessment of damages caused by the detected
error or error propagation before the detection. An example of this application could be
on a payload board of a CubeSat that occasionally missed the decoding of a message
received from a sensor. The system can recover by skipping that decoding and moving
on to the next message received. However, the risk of ignoring the error should be
always assessed in order to control the error propagation and the well function of the
entire system.

Within backward recovery, checkpointing and recovery blocks are two well-known
techniques. The first one consists of making copies of the system's current state for
possible use in a rollback in the future. These copies should be in stable storage in order
to be available when the system is under the presence of a fault and should periodically
be replaced with recent ones. Due to the few resources available in a CubeSat, this
technique does not fit so well to recover from a fault. The overhead of saving the system
state and the computation time between the checkpointing and the rollback can
compromise the entire system. Despite this, checkpoint and backward recovery are
highly successful in databases and transactional systems in general.

Recovery blocks were described in [54] and a system that uses this fault tolerance
technique is made of blocks that represent various implementations of an algorithm.
Each block contains at least a primary implementation, an alternative to that
implementation, and a component that determines the correctness of the various
implementations of each block which are called acceptance tests. The primary
implementation is the block that is expected to execute without errors. The acceptance
tests are performed at the end of the execution of each alternative in order to evaluate
if that code was executed well. If the acceptance test fails, the state of the system before

Background and State of the Art

19

the first implementation started to be executed is restored and after, an alternative
implementation is executed. In contrast, if the acceptance test pass, any alternative
implementation available is discarded and the system continues the execution after the
recovery block. Finally, these steps are made until an alternative implementation passes
the acceptance tests. If all the alternatives fail the tests, the entire block has a failure,
the algorithm could not be executed, and an error is signaled.

2.4 Concluding Remarks
This chapter starts by giving the reader basic background on small satellites and
CubeSats. They represent an emergent trend and the number of launches of this space
equipment has increased in the last years. With that in mind, making efforts to build
more reliable satellites with the best cost possible is a major concern for the work
developed under this thesis.

After that, the chapter surveys the use of fault injection in space applications. Fault
injection is an attractive way of validating the resilience of space software applications
and solutions. Performing fault injection during the development of such applications
has an important role in the effectiveness validation that software fault tolerance
techniques have when applied to the software that runs on top of such systems. With
that in mind, the CubeSatFI fault injection platform aims to allow CubeSat developers to
define fault injection campaigns that emulate the effects of space radiation, providing
developers’ teams with an effective tool to verify and validate CubeSat software in terms
of SEU-induced faults

Since space systems made with COTS components can be affected by space radiation
[9], it is very important to make the software that runs on top of them, more reliable.
Thereby, software fault tolerance techniques seem the most promising approach to
increase CubeSats resilience in terms of space radiation, while keeping the affordable
budget, low energy, low mass, and easy to purchase hardware components of CubeSats.
In this chapter, some of these techniques are briefly presented. The use of watchdog
timers [14] can help to detect system crashes in order to put the system available again.
Furthermore, the use of consistency routines to verify if the correctness output of
specific software modules can help to detect errors concurrently, during the execution
of the CubeSat software. Finally, replication and execution should be considered as a
baseline SWIFI technique as it can be implemented using only software. Of course,
replicating the entire system probably would have a huge impact on energy
consumption. Instead, replicating just critical modules of software and comparing the
result of them seems a good approach to detect some faults induced by space radiation.

Chapter 3
CubeSatFI Requirements and
Architecture

One of the main objectives of this thesis is concerned with the development of a fault
injector capable of reproducing the effects of hardware transient faults caused by space
radiation in CubeSats boards. With that in mind, in collaboration with INPE, the
CubeSatFI was designed to emulate Single Event Upsets (SEU) caused by space radiation
in an exhaustive and fully automated way. In fact, the CubeSatFI intends to be
compatible with any CubeSat board, once it provides a Joint Test Action Group (JTAG)
interface.

As already mentioned before, this thesis is not only concerned with the development of
a fault injector. In addition, the tool aims to be used in the evaluation of the reliability
of CubeSats software against radiation, allowing developers to detect and cope with the
negative impacts caused by space radiation with Software Implemented Fault Tolerance
(SWIFT), increasing the reliability of CubeSats. Finally, to prove the effectiveness of such
techniques, the CubeSatFI can be used again through the injection of a new campaign
of faults.

This chapter aims to present the requirements and the architecture of the CubeSatFI
fault injector.

3.1 Project Restrictions
INPE placed some technological restrictions that helped in the requirements elicitation.
CubeSatFI must inject the faults using the IEEE 1149.1 standard for boundary-scan [38]
available in CubeSat boards (the target systems of CubeSatFI). In order to abstract the
communication between CubeSatFI and the Joint Test Action Group (JTAG) adapter [55],
the tool must use the open-source library: Open On-Chip Debugger (OpenOCD) [56].

In addition, after the injected faults, the tool should save data to further analysis of the
fault impact on the target system. During the development and testing of the tool, a
payload board – Environment Data Collector (EDC) – from the CONASAT project was
used as example of the target system. The EDC receives radio messages from ground
stations, decodes those messages, and forwards them to the On-Board Computer (OBC)
of the satellite. To simulate this communication between EDC and the OBC, an extra
software component that emulates the OBC was developed, and the messages received
are saved for further analysis.

CubeSatFI Requirements and Architecture

21

3.2 Functional Requirements
The functional requirements aim to describe how CubeSatFI should work. With that in
mind, CubeSatFI functionalities are organized in two groups:

1. Fault injection campaign generation and
2. Fault injection campaign execution.

The fault injection campaign generation allows the user to define controlled
experiments through the specification of the number of faults to inject, type of faults to
be injected, fault trigger conditions, among other things. The data describing each fault
injection campaign is stored in a file and the user should be capable of importing the
information from these files to define new fault injection campaigns.

The fault injection campaign execution controls automatically the fault injection process
(i.e., no user intervention is needed) and executes all the steps required to inject each
fault and collect the relevant data, according to the fault injection workflow. During the
campaign execution, the OpenOCD server is launched on the Host PC and it is
responsible for receiving all the instructions from the CubeSatFI, forwarding them to the
target system through JTAG, and, consequently, receiving the respective responses.

The target system behavior after the injection of each fault is collected and saved in a
file. The information collected depends on the actual scenario in which the target system
is being used and the specific purpose of the fault injection campaign. Since the results
obtained by fault injection depend on the software running on top of COTS, the
collection of results should be defined taking into account the specific functionalities of
the system under testing and the testing objectives. The file with the fault injection
results stored at the end of each campaign could be analyzed using external statistical
tools such as Excel or R. This analysis is a functionality not supported by CubeSatFI.

Faults are described by two groups of parameters, following well-established practice in
the fault injection area:

• Fault type: indicates the exact location of the fault in the target system and the
number of bits affected (single bit-flip or multiple bit-flips). Only bit-flip faults are
considered since this is a well-established fault model for hardware faults
induced by SEU [5], [6].

• Fault trigger: indicates the exact moment/conditions when the fault should be
injected.

On CubeSatFI platform, faults should be injected in any bit of any register of the target
processor, emulating SEU, and radiations bursts through single bit-flip or multiple bit-
flips, respectively. Moreover, triggers should consider two principal domains. The first is
the time domain where the injection of faults occurs randomly in the injection widows
presented in Figure 3. This is the basic method to get the statistical effects of faults
induced by space radiation, as the injected faults are distributed at random in both the
space (i.e., registers and register bits) and time domains. Further, the second domain is
location-based, since faults should be injected when the program executes a given
instruction according to the workflow presented in Figure 4. This second trigger allows

CubeSatFI Requirements and Architecture

22

to design more specific and detailed campaigns to analyze the behavior of the target
system in specific moments (i.e., when specific instructions are executed).

Figure 3 presents the principal steps of the injection workflow for time-based injection.
Resetting the target is the first step of each injection run (an “injection run” can be
defined as a sequence of steps needed to inject a fault and collect results on the impact
of such fault) to assure that the results in each fault are not “contaminated” by the
effects [27], [32] of the previous fault. Once reset the target system, and until the end
of each injection run, there are some important moments depicted in Figure 3 that
require some explanations:

• Start of the Injection Window (T0): From this moment the fault can be injected.
This time indicates the start of a run injection window.

• Injection (Tinj): When the fault is actually injected into the target system. In
time-based fault triggers, this moment is calculated randomly and corresponds
to a time between the T0 and T1.

• End of the Injection Window (T1): The fault can be injected until this moment.
This time indicates the end of the run injection window.

• End of the Injection Run (Tend): Indicates the end of the injection run. The time
between T1 and Tend (Tend -T1) is exclusive to save information about the target
system's behavior after it has worked for some time with the fault.

Figure 3 - Time-based Fault Injection Workflow

The collection of the results is the last step of one injection run and is done after some
time interval to assure that the system works for some time after the injection of the
fault, to be possible to measure the impact of the fault on the target system. This
information depends always on the target system and the software that runs on top of
it. Hence, the software module responsible for the collection of the results impact
should be developed for each target system in specific.

Figure 4 presents the presents the principal steps of the injection workflow for location-
based injection. Similar to the time-based fault injection workflow, the first step consists
of resetting the target system to assure that the results in each fault are not
“contaminated” by the effects of the previous one. After that, a breakpoint is set in a
given location of the code and the target is reset again to assure that the target system
executes all the code until the breakpoint. Hence, when the breakpoint is triggered, the

CubeSatFI Requirements and Architecture

23

fault is injected, and the target system will run with the fault for a period of time. During
this time, data is collected for further analysis of the impact of the fault.

Figure 4 - Location-based Fault Injection Workflow

To describe the high-level functionalities of CubeSatIF mentioned above, a use case
diagram was created. Figure 5 contains the legend of the elements used in the diagram
and Figure 6 shows the high-level use case diagram that summarizes the functional
requirements of CubeSatFI.

Figure 5 - Legend of the elements used in the use case diagram

In short, the “Actor” represents the user, or the users of the system described on the
use case diagram. The “System” can be the system that is described by use cases or an
external system that communicates with the described one. The “Interaction”
represents a liaison between an actor and a use case. Hence, a “Cloud Use Case” is a
summary of a functionality that can be divided into a set of “Sea/Fish Use Case” that
represents a user goal. Finally, the different use cases can have dependencies between
them. An “Include” dependency is the invocation of a use case by another one. In
contrast, an “Extend” dependency is an alternate course of the base use case.

CubeSatFI Requirements and Architecture

24

Figure 6 - Use Case Diagram of the High-Level Functional Requirements

The use cases represented in Figure 6 are described in detail in Appendix A – CubeSatFI
Functional Requirements.

3.3 Non-Functional Requirements
Functional requirements define how the system should work. In contrast, non-
functional requirements define constraints that affect how the system should perform.
In fact, a system can work if non-functional requirements are not met, but maybe it
cannot meet the stakeholder’s expectations and the business needs.

CubeSatFI Requirements and Architecture

25

In order to meet the project needs, two main non-functional requirements arise –
compatibility, and modifiability –, and are explained following.

Concerning compatibility, CubeSatFI intends to be compatible with a wide set of
processors and not limited to performing fault injection just on one specific target
processor, allowing the use of the tool in a wide range of CubeSats projects. To
accomplish that CubeSatFI will use the IEEE 1149.1 standard for boundary-scan available
in most modern processors used on CubeSats. If CubeSats boards have the JTAG port,
they are compatible with CubeSatFI. For example, ARM Cortex-M36 and ARM Cortex-
M47 not only have a JTAG port, but they also have the same registers map, which means
that CubeSatFI can be used on both without any modification. These two processors are
used in the Environment Data Collector (EDC) payload board and on the On-Board
Computer (OBC) of the CONASAT CubeSat, respectively.

On another hand, modifiability should be contemplated on CubeSatFI to be easy to
accommodate new target systems, fault types, fault triggers, and other features like
other idioms. This can be achieved using an oriented-objected language to take
advantage of some characteristics of these type of languages, such as inheritance and
polymorphism. Abstract classes and interfaces should be used to define the steps of the
fault injection and concrete classes should extend them and implement their defined
methods. These implementations are different taking into account different targets,
fault types, and triggers, which allows modifying the fault injector to a specific need.

Since the CubeSatFI is being developed in the context of international projects, already
referred in the introduction of this document, and the main stakeholder of the
application is INPE, there was a clear requirement for the tool to be multi-language,
Portuguese and English. This requirement was handled in a more general way, as
CubeSatFI can be easily extended to other languages, in addition to the Portuguese and
English.

3.4 Platform Architecture
Figure 7 shows the CubeSatFI fault injector setup. The Host PC runs the injection tool
that uses the OpenOCD [56] to communicate with the target system and perform the
injection of the faults using the IEEE 1149.1 standard for boundary-scan [55] available in
CubeSat boards. The CubeSatFI running on the host PC uses the debugging and
boundary-scan features available through the JTAG adapter [55] to get access to the
processor registers and other internal structures via the JTAG Test Access Port (TAP) of
the target system.

6https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-
model/core-registers (accessed Jan. 22, 2022)
7 https://developer.arm.com/documentation/dui0553/b (accessed Jan. 22, 2022)

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers
https://developer.arm.com/documentation/dui0553/b

CubeSatFI Requirements and Architecture

26

Figure 7 - CubeSatFI fault injection setup

The basic idea to perform fault injection using the IEEE 1149.1 standard for boundary-
scan consists of using JTAG commands through OpenOCD to interrupt the normal
execution of the program running on the target system and to get a copy of the internal
state of the processor and other internal data included in the scan chain of the target
system. Then, one or more bits of such internal state can be corrupted (according to the
fault models described above) and the internal state is put back again, including the
error caused by the emulated fault. After that, the normal execution of the software is
resumed and the impact of the emulated fault in the target system is evaluated. The
fault injection algorithm is discussed further on in more detail. This approach has already
been used successfully to inject faults [27] and has the advantage of using the features
available in the target system for testing purposes to inject faults with minimal
perturbation of the system (other than the injected fault). Since most of the CubeSat
boards include JTAG and TAP port, the proposed CubeSatFI can be used in most of the
CubeSat satellites.

Hence, the Java programming language was chosen to develop the CubeSatFI fault
injector in order to take advantage of the object-oriented properties allowing the easy
modifiability of the tool (i.e., adding new fault types, new fault triggers, new target
systems, new languages, among others). Taking into account the user interface, the
JavaFX Framework8 was used in the development of the graphical interface, once it
allows the development of modern, clean, and user-friendly applications, including
desktop applications.

Figure 8 presents a diagram that illustrates the CubeSatFI architecture. As already
mentioned, the fault injector runs on a host computer that is also responsible to
simulate any device that is part of the CubeSat ecosystem in order to get a test

8 https://openjfx.io/ (accessed Jan. 18, 2022).

https://openjfx.io/

CubeSatFI Requirements and Architecture

27

environment closer to the real one (e.g., the simulation of a ground station that
sends/receives messages to and from the CubeSat). Besides, the tool intents to support
the addition of new fault types and target systems troughs the use of object-oriented
properties of the Java programming language. Jointly, the graphical user interface (GUI)
must be adapted to accommodate new fault types or target systems. The GUI interacts
with the two main components, briefly explained below:

• Campaign Generation Component: Controls all the generation process of the
campaigns by receiving the inputs from the GUI, generating the faults, and saving
them into a file.

• Campaign Execution Component: Controls all the fault injection process by
reading the faults from a file, initializing the OpenOCD server, and controlling the
injection of each fault.

Figure 8 - CubeSatFI Architecture

To add new fault types, the programmer must create a new Fault class that inherits the
AbstractFault class (Figure 8) and implement the abstract methods that will be used on
that fault type. In fact, the programmer just needs to implement the abstract methods
used by that fault type. Likewise, the same situation is applied when the programmer
wants to add a new target system to CubeSatFI. The programmer must create a
TargetSystem class that inherits AbstactFaultInjectionAlgorithm and implement the

CubeSatFI Requirements and Architecture

28

abstract methods used by the fault injection algorithms on that specific target (If the
target system is different but have the same registers map, is not necessary to
implement a new target system). The abstract methods work as building blocks which
means that the fault injection algorithms are built through the combination of different
abstract methods. Figure 9 shows two fault injection algorithms available and defined
in the AbstractFaultInjectionAlgorithm class. Both are constructed with abstract
methods that are further implemented in the concrete TargetSystem classes. Each
target system implements a version of each step of the fault injection algorithm.

Figure 9 - AbstactFaultInjectionAlgorithm class

3.5 Concluding Remarks
This chapter presents to the reader the project restrictions, the requirements, and the
architecture of the CubeSatFI. CubeSatFI intends to be a fault injector compatible with
all types of CubeSat boards, provided they have JTAG Boundary Scan. With that in mind,
the communication with the JTAG interface is supported by the JTAG adapter and the
OpenOCD library.

In addition, the tool was designed to support the addition of new fault types and target
systems. Therefore, the programmer should inherit an abstract class and implement
concrete methods that compose the new fault type or the steps for the fault injection
algorithms on a specific target system respectively. Taking advantage of the object-

CubeSatFI Requirements and Architecture

29

oriented properties of the Java language allows to modify and adapt the tool in order to
accommodate new fault types and target systems in an easy and efficient way.

The next chapter presents the fault injector and all its functionalities.

Chapter 4
CubeSatFI Functional View

CubeSatFI aims to be used for verification and validation of software that runs on top of
CubeSat boards allowing the easy definition of fault injection campaigns that emulate
the effects of space radiation.

This chapter presents the CubeSatFI main screens and functionalities. In addition,
presents a preliminary experiment and a correspondent analysis of the results obtained
on a fault injection campaign performed on a payload board from the CONASAT project
[8].

4.1 The Fault Injector
Figure 10 shows the home page screen that contains a table with the history of the last
generated fault campaigns. The user can select one of them and execute the fault
injection campaign by clicking on the central button “Execute” or the user can click on
the left-hand button “Edit” if they intend to edit some parameter of the campaign.
Furthermore, the user can add a fault campaign record to the history table by clicking
on the button “Search”. A window will be open, and the user just needs to find and
select the intended fault campaign configuration file.

CubeSatFI intends to be a clean and intuitive tool concerning its usability. With that in
mind, a vertical menu is always visible as shown in the screen presented in Figure 10 and
the selected page is highlighted in a lighter color. The user can also change the language
in which the tool is presented by clicking on the buttons at the bottom of the menu
(“EN” to choose English or “PT” to choose Portuguese). On the other pages, the user
cannot change the language of the tool. This last functionality is only available on the
home page.

CubeSatFI Functional View

31

Figure 10 - Home Page Screen

Figure 11 shows the campaign definition screen where the fault injection campaigns are
defined. In the current version of CubeSatFI, the user can define fault injection
campaigns that emulate SEU affecting processor registers of the processor of the target
CubeSat board. On the central area of the form shown in Figure 11, the user defines the
experiment name, description, number of faults to be injected in the campaign, number
of bitflips per fault, the seed to use in the random number generation (this is important
to decide whether the experiment is reproducible or not), and the name of the person
responsible for the fault injection campaign. On the right-hand side of the form, the user
defines the masks to apply to the target processor registers that define the register
and/or registers that can be selected to inject faults and the bits inside each register that
can be affected by the faults. At the bottom on the right-hand side of the form, the user
selects the fault triggers (in time or location domain) and defines the timing for the
different moments of the fault injection workflow, as defined in Figure 3, or defines the
location where the fault is injected. After providing all this data, the user can click on the
button “Generate Experiment” to ask CubeSatFI to generate the description of the
faults, which are stored in a file with all the information about the injection campaign.

CubeSatFI Functional View

32

Figure 11 - Campaign Definition Screen

The button “Import Experiment” allows the user to select a file describing a fault
injection campaign previously defined and loads such file. After loading the file (or after
defining a new fault injection campaign), the user can always change any of the
parameters that define the fault injection campaign, or can select the execution of a
“Golden Run” at the bottom of the central part of the screen. The golden run simply
runs the workload one or more times to record the correct behavior of the target
system. In practice, the golden run is similar to a fault injection run, with the capital
difference that no fault is injected. The behavior of the target system recorded during
the execution of the golden run will be used later on to evaluate the failure modes of
the target system after each injection run.

After defining a fault injection campaign, the user can select “Execute Experiment” on
the left-hand side menu in order to start a fault injection campaign. As already
mentioned, this step is fully automatic, follows the workflow presented in Figure 3, and
is totally controlled by the CubeSatFI. The central window in Figure 12 displays
contextual information about the fault injection process, namely the number of the fault
currently being injected. During the execution of the fault injection campaign, the user
can simply pause the fault injection process by clicking on the button “Pause” (the
system will suspend the fault injection process after completing the fault currently being
injected). To resume the injection process, later on, the user should click on the "Start"
button. The user can also abort the fault injection campaign by clicking on the button
“Abort”.

CubeSatFI Functional View

33

Figure 12 - Campaign Execution Screen

Concerning the usability of the tool, a menu with the main features of the CubeSatFI is
always present on the left-hand side of the screen as already mentioned. The feature
currently selected is highlighted in a lighter color, making it easy to identify the selected
functionality. Furthermore, to improve the user’s experience, tooltips are available in
most fields and buttons. These messages are displayed whenever the user puts the
mouse over them and an example is shown in Figure 11 in the bottom right-hand corner
of the form.

Figure 13 shows the options screen where the user can adjust the settings of the
CubeSatFI. The current version of the tool only made available the option of selecting
the current target system. Once selected the target system, the CubeSatFI will always
assume that target on the generation and execution of fault injection campaigns. In the
future, other configurations can be added to the tool, but for now, the selection of the
target system is the only one that is necessary.

CubeSatFI Functional View

34

Figure 13 - Options Screen

4.2 Preliminary Experiment
In an effort to present CubeSatFI to the scientific community an article [10] that presents
the CubeSatFI, and a first real example of its usage was submitted and accepted to the
2021 Latin-American Symposium on Dependable Computing (LADC) and published in the
conference proceedings by the Institute of Electrical and Electronics Engineers (IEEE) at
IEEE Xplore. The paper can also be found in Appendix B - Fault injection platform for
affordable verification and validation of CubeSats software.

In this preliminary experiment, the Environmental Data Collector (EDC)9 was selected as
the target system for this experiment. The EDC is a CubeSat payload for the Brazilian
Environmental Data Collection System that is going to be used in all the nanosatellites
from the CONASAT project [8].

Environmental Data Collector (EDC)

The EDC is a multi-user RF receiver for a satellite message forwarding system. These
systems offer sensor data transmission services in remote areas, such as environmental
monitoring, wildlife tracking, vessel tracking, among others, with the lowest structural
cost.

These systems consist of ground platforms (GP), a satellite constellation, one or more
receive stations (RS) and a data distribution center (DDC). The GPs transmit local sensor
data through periodic messages, coded in RF burst transmissions. The satellite relays the
received GP messages to a RS, when possible. Finally, the RSs transmits the GP messages
to the DDC, which provides the cloud service for the system users. In this context, the

9 http://www.inpe.br/nordeste/projetos/edc.php (accessed Nov. 25, 2021).

http://www.inpe.br/nordeste/projetos/edc.php

CubeSatFI Functional View

35

EDC is the satellite payload that receives and decodes the GP messages. It does not have
a transmitter. Therefore, the satellite onboard computer (OBC) must read the received
message from the EDC and forward them to an RS multiplexing the data in one of its
telemetry channels. Figure 14 illustrates the Brazilian Environmental Data Collection
System described above, to which the EDC belongs.

Figure 14 - Brazilian Environmental Data Collection System

The EDC has a RF-Front-End unit that digitalizes the received RF signal and a processing
unit that configures the RF-Front-End at system startup, decodes the received GP
signals, and provides the interface with the OBC through a serial port. Besides the
decoded messages, the EDC also provides housekeeping information to the OBC, such
as supply current and voltage sensor measures, elapsed time since the last system reset,
and others. The processing unit is implemented in an SoC FPGA (System on Chip - Field
Programmable Gate Array), which has an internal hardwire microcontroller based on a
Cortex-M3 processor. The signal decoding processing is splitted between the FPGA
(hardware) and the processor (software), while the OBC interface and RF-Front-End
configuration are fully implemented in software. The EDC software runs on top of the
multi-task based FreeRTOS real-time operating system10.

When the EDC is turned on, the OBC initializes it by sending the Real-Time Clock. A
housekeeping frame must be requested for checking the temperature, electrical
current, and electrical voltage sensors. This frame also indicates if the RF-Front-End
configuration was successful. After this verification, signal decoding must be enabled,
which starts disabled by default.

The OBC must periodically request the status of the decoded message buffer, in order
to request the reading of the GP packages, if there are any messages. These packages

10 https://www.freertos.org/RTOS.html (accessed Nov. 30, 2021).

https://www.freertos.org/RTOS.html

CubeSatFI Functional View

36

have a variable length and are composed of a tag RTC time the message was received, a
code that indicates an error in the decoding process, the frequency and amplitude of
the received signal, the message length, the variable-length GP message, and a
checksum byte, at each reading of a GP package, the OBC must send a command to
remove the package from the buffer, allowing the reading of another package. For
telemetry, it is expected to send a housekeeping frame followed by a sequence of GP
packages.

Experiment Setup

The goal of this first experiment is to demonstrate the use of CubeSatFI to evaluate the
impact of SEU-induced faults in the EDC CubeSat board. With that in mind, a fault
injection campaign with 2000 faults injected at random has been defined, since the
space radiation tends to affect the board in a random way. Faults are injected into any
register of the processors, selected at random, and within the selected register for a
given fault, the bit of the register affected by the fault was also selected at random. All
the faults are single bit-flip faults, as this model is widely accepted as a realistic
emulation of SEU faults. The trigger of each fault is also defined at random within the
injection window (see Figure 3). The injection window interval was defined as between
2 and 4 seconds.

After the end of the injection window, the target system will be running to evaluate the
effects of the fault for a period of 6 seconds. The messages decoded by the EDC are
saved in a file (obviously, in some cases the injected fault causes the EDC to crash, and
the message decoding is interrupted).

Figure 15 shows a photo of the EDC experimental setup used to demonstrate the
utilization of the proposed CubeSatFI fault injection platform. In addition to the
elements already described for the target system (the EDC), the setup also includes the
RF generator to emulate the communication with the satellite, a serial/USB convertor,
the power supply, and the host computer (the PC) that runs the CubeSatFI and the
OpenOCD.

CubeSatFI Functional View

37

Figure 15 - Photo of the EDC Experimental Setup

Results Analysis

Figure 16 shows the general impact of faults (i.e., failure modes) while EDC decodes
messages from the point of view of the satellite onboard computer (OBC). The
confidence intervals (shown in the numeric values in each bar of the chart) are
calculated for 95% of confidence, using confidence intervals for proportions in binomial
distributions (Bernoulli trials) – the formula is presented in Table 1.

𝑝 ± 𝑧√
𝑝(1 − 𝑝)

𝑛
 𝑤ℎ𝑒𝑟𝑒 𝑝 =

𝑥

𝑛

𝑥 → 𝑃𝑜𝑟𝑝𝑜𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑜𝑑𝑒 ; 𝑛 → 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒; 𝑧 → 𝑓𝑟𝑜𝑚 𝑍 𝑡𝑎𝑏𝑙𝑒

Table 1 – Formula to calculate confidence intervals for proportions in binomial distributions

The classification of failure modes was made based on the results obtained and includes
the following failure mode types:

• No effect: The fault had no visible impact on the system, which means that EDC
continues to work normally, and all the messages are well decoded and sent
correctly to the OBC.

CubeSatFI Functional View

38

• Blocked: The system blocks and stops sending decoded messages to the OBC.
The only way to remove the target system from this failure mode is through a
hard reset.

• Wrong results: The system sends messages with wrong information. The target
system needs a hard reset after entering this failure mode.

• Hang & Wrong results: After the injection, the system hangs for a moment, and
after a while starts o sending messages with wrong information. Needs a hard
reset to leave this failure mode.

Figure 16 – Impact of faults while EDC decodes messages

The results in Figure 16 show that most of the faults (84.1%) had no effect on the
behavior of the software running on the EDC. This result is not surprising if it is
considered the inherent redundancy existing in computer systems and in software.
Furthermore, this high percentage of “no effect” faults have been consistently observed
in many fault injection studies (e.g., [20], [22], [32], [57]), including in a fault injection
study done with a COTS-based payload system from a NASA project [9]. The more
detailed analysis presented further on (about Figure 17 results) explains (at least in part)
this very high percentage of “No impact”.

The analysis of the other failure modes shown in Figure 16 also shows some interesting
results. A very small percentage of faults caused wrong results (0.05%). Since the
messages have a well-defined format, these wrong results are easy to detect. In other
words, failure modes that represent silent data corruption (SDC) were not observed,
which consists of erroneous results that are often not possible to detect and do
represent a serious risk.

The percentage of faults that crash the EDC software (“Blocked” failure mode) is also
quite small (2.4%). In previous fault injection experiments reported in the literature

CubeSatFI Functional View

39

(e.g., in [9]), this type of failure mode appeared in a much higher percentage of faults.
One possible reason to explain the low percentage of “Blocked” failure modes in this
experiment could be the fact that the EDC runs a very simple real-time operating system
(FreeRTOS), since crashes are often caused by operating system crashes.

Still in the results shown in Figure 16, 13.45% of the faults, the EDC shows a strange
behavior, starting by not responding at all and then, after some time, starts to send
messages with wrong values. A full understanding of this behavior would need a deeper
analysis to identify the software idiosyncrasy that originates this behavior (and maybe
find a way to make the software more robust in these particular cases). Although a
detailed analysis of the results was not carried out in order to try to explain this failure
mode, it is worth noting that CubeSatFI records the exact program location affected by
the fault (the value of the Program Counter when the fault was injected), allowing the
detailed analysis of the fault effect at low levels of the object code.

Figure 17 shows the failure modes observed for the faults injected in each processor
register. Two observations are quite evident:

a) faults injected in the registers Program Counter (PC), Stack Pointer (SP), Link
Register (LR), and R7 have a strong impact on the EDC software, and

b) faults injected in many general-purpose registers (e.g., R1, R2, R4, R5, R6, R8, R9,
R10, R11, R12) have no impact at all.

The PC, SP, and LR are special registers of the processor, therefore it is expected that
any fault injected into one of these registers will cause the system to perform an
incoherent behavior or even completely block the system. This is not a surprising result.

However, the fact that faults in many general registers have no impact is much more
interesting. It means that the software running on the EDC rarely uses those registers or
does not use them at all. This could be explained considering the way the C compiler
(the EDC software was developed in C language) translates the source code into object
code, which tends to use some preferential registers. In Figure 17 we can observe that
among general-purpose registers, it seems that the compiler mainly used register R7
(and also a bit R0 and R3), as faults injected in other general-purpose registers had no
effect. Obviously, this is highly dependent on the actual source code and also on the
compiler optimization switches. This is also the reason why the susceptibility of CubeSat
boards to SEU-induced faults is highly dependent on the actual software running on the
target system: if the software running on the EDC was more complex or the compiler
switches are different, the percentage of “No effect” could drop dramatically.

CubeSatFI Functional View

40

Figure 17 - Impact of faults on the different processor registers

Results shown in Figure 17 provide “food for thought” and give some room for
speculations/observations. Clearly, the impact of SEU-induced faults is very dependent
on the actual software and Figure 17 shows an important reason for that, which is
related to the way the processor resources (especially the registers) are used by the
software. This suggests that fault injection campaigns should be executed as a routine
procedure during the software development process, as part of the software verification
and validation strategy. Even small changes in the software (or in the compiler switches)
that lead to a different utilization of the processor registers by the object code could
have a considerable impact on the software resilience in the presence of faults caused
by space radiation.

Another observation from Figure 17 (related to the fact that the compiler often uses just
a few processor general registers) is that we can see the “free” registers as useful
resources to develop software fault-tolerant techniques. Given the nature of SEU (i.e.,
it is caused by a single particle that causes normally a one-bit flip), if software fault
tolerance techniques do not use the same registers used by the original software, the
effectiveness of such software fault tolerance mechanisms could be much higher.

CubeSatFI Functional View

41

Figure 18 shows the breakdown of the failure mode results according to different bits
affected by the faults. A clear conclusion is that when the faults affect the 16 less
significant bits groups ([1-8] and [9 -16]), the impact of faults is much higher than for the
other bit positions. On average, when the faults are injected in the 16 less significant
bits of the registers, the target system behaves outside the expected behavior (i.e.,
failure modes showing abnormal behavior) in about 20% of the faults. On the other
hand, when the fault was injected in the first 8 most significant bits group ([17-24]), we
observed that, on average, 87.55% of the faults have no impact on the target system. A
similar result was observed for faults injected in the last 8 most significant bits group
([25-32]), as 91.68% of the faults had no impact on the target system behavior. In short,
looking at the faults injected in the EDC system is possible to conclude that faults
injected in the less significant bits lead to much more drastic wrong behavior in the
system than faults injected in the second half of the 16 most significant bits.

Figure 18 - Impact of faults regarding bit flip position

The fact that the CubeSatFI allows one to choose the precise bits and registers to be
affected, opens the possibility to design more focused experiments and, consequently,
evaluate in more detail specific erroneous behavior of the software running on the
target system. Considering the data collected with the experiment presented before, it
was decided to perform a second fault injection campaign of 1000 faults with random
time fault triggers, in order to evaluate the EDC software behavior when the faults are

CubeSatFI Functional View

42

injected on the less significant bits of the registers that show high fault impact. Figure
19 shows the results of the faults injected on the less significant bits of the LR, SP, PC,
and R7 processor registers and shows that the less significant bits of these registers have
a strong negative impact on the EDC behavior in the presence of faults. Faults injected
in the less significant bits of the registers PC and R7, on average, cause more than 90%
of wrong results, while the registers LR and SP show 68% and 75%, respectively.

Figure 19 - Impact of faults when injected on the less significant bits of the LR, SP, PC, R7 processor

registers

The reported experiment showed that the CubeSatFI can effectively identify weak points
of the target system concerning the impact of SEU caused by space radiation. These
weak points are related to structural (i.e., hardware) aspects of the target systems, but
the reported results also show that CubeSatFI has a great potential to help to improve
the resilience of the software running on CubeSats.

4.3 Concluding Remarks
The CubeSatFI functionalities and screens are presented in this chapter. CubeSatFI
intends to be a practical tool to design fault injection experiments for CubeSats
considering this dual utilization part of the software verification and validation process
and as a tool to evaluate the effectiveness of software-implemented fault tolerance
techniques.

Hence, it is presented a real use case of fault injection in the Environmental Data
Collector (EDC). The results show the failure modes observed and demonstrate the type
of fine-grain analysis that can be done with the fault injection results obtained with
CubeSatFI, showing the potential of the proposed fault injection platform.

CubeSatFI Functional View

43

In the next chapter, it is presented an enhanced software development process for
CubeSats to cope with space radiation faults that takes advantage of the use of the
CubeSatFI.

Chapter 5
Integration of Fault Injection in the
Software Development Process

Besides the other objectives already mentioned before, this thesis also aims to propose
a set of structured steps (and tools to support such steps) to enhance the classic
software development process used in CubeSats, focusing particularly on the
Verification and Validation (V&V) phase.

As already explained above, CubeSats are made of COTS components (both standard
hardware and software) that are not prepared to deal with the harsh conditions of space
missions. In particular, space radiation tends to cause potentially frequent SEUs that
originate transient hardware faults in the CubeSats boards. Since existing CubeSats
boards are unable to mask or tolerate such faults, the alternative is to add software
mechanisms to tolerate the effects of transient faults caused by space radiation.

It is worth mentioning that existing CubeSats boards normally include error detection
and correction in the memory and in communication channels, but do not have any
other mechanism to avoid or mitigate transient faults affecting the processor. Such
faults cannot be tolerated in existing CubeSats, which is an important reason why
CubeSats are considered not reliable enough for critical or even important missions.

This thesis proposes the systematic use of software-implemented fault tolerance
(SWIFT) mechanisms to tolerate or mitigate the effects of the hardware transient faults
due to SEUs. These faults mainly affect the processor (because memory and
communication in CubeSat boards are protected by a simple parity bits mechanism) and
cause erroneous behavior in the software, which is precisely the problem addressed by
SWIFT techniques. Since the impact of transient faults on the software behavior is highly
dependent on the software code and data, the proposal is to include fault injection as a
systematic and mandatory step of the CubeSats software lifecycle process, which allows
a precise and on-demand use of SWIFT.

This proposal will be presented in a scientific paper that will be submitted at the 27th
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2022). The
current version of the paper can be found in Appendix C - Enhanced software
development process for CubeSats to cope with space radiation faults.

This chapter aims to present the proposal of an enhanced software development
process for CubeSats.

5.1 Context and Assumptions
The proposed approach uses fault injection as an integral part of the development
environment for CubeSats software and includes three high-level steps:

Integration of Fault Injection in the Software Development Process

45

a) Sensitivity evaluation (verification) of the software in the presence of faults
caused by space radiation;

b) Enhance the software with targeted software-implemented fault tolerance
(SWIFT) mechanisms; and

c) Validation of the effectiveness of the SWIFT mechanisms to confirm that the
software is immune to space radiation faults.

These added steps to the V&V process must be carried out during CubeSat software
development, as well as every time the CubeSat software has an update, to ensure that
the impact of faults caused by space radiation is tolerated by the CubeSat software.

CubeSat boards high-level architecture can be divided into three different layers as
shown in Figure 20. The hardware layer is the physical part of the CubeSat composed of
several components, such as the onboard computer, payload boards, solar panels, RF
antennas, among others. The layer above is the system software that includes the
operating system (e.g., FreeRTOS11, eCos12, among others) and, depending on the
specific board, may include other software elements such as drivers and software
designed to deal with specific sensors or actuators. For example, the system software
may also include software developed by the board manufacturer, such as the software
that controls the orientation and altitude of the satellite. The CubeSat application
software aiming to perform different types of tasks is developed to run on top of this
system software.

Figure 20 – CubeSat boards high-level architecture

At the hardware layer, CubeSats boards use regular COTS components but the boards
include several mechanisms to cope with the rough conditions of space missions [15].
Although made of COTS components, CubeSat boards are mechanically ruggedized with
layers of resin coating for mechanical and thermal protection. Additionally, memory is
protected with error detection and correction bits, as well as communication channels

11 https://www.freertos.org/RTOS.html (accessed Jun. 21, 2022).
12 https://www.ecoscentric.com/ecos/index.shtml (accessed Jun. 21, 2022).

https://www.freertos.org/RTOS.html
https://www.ecoscentric.com/ecos/index.shtml

Integration of Fault Injection in the Software Development Process

46

are also protected with error detection and correction mechanisms (e.g., CRC and parity
checks) provided by the communication protocols and associated hardware of the
communication links. Memory, in particular, must be protected against transient bit-flip
errors due to space radiation as the memory chips represent a large silicon area exposed
to radiation, making SEU in memory very frequent.

Fortunately, the protection of uniform hardware structures such as the memory and the
communication channels is very simple and is in fact a common practice in standard
COTS hardware boards for all sort of applications. CubeSats simply take advantage of
available standard solutions such as extended Hamming codes [16] for single error
correction and double error detection in the memory and forward error correction
codes [17] used to deal with errors caused by transient faults in communication
channels. These mechanisms are well aligned with the CubeSat “philosophy” of low cost,
low energy consumption, and low weight.

Protecting the processor from the SEU effects is a much more complex task because the
processor is not a regular and simple structure such as the memory. The use of space-
grade processors that resist to space radiation is not an option for CubeSats, as the cost
of such processors is several orders of magnitude higher than the cost of common COTS
processors. The obvious solution would be to adapt classic fault-tolerant architectures
with massive levels of redundancy, as the ones used in large-scale satellites [58] or in
the aircraft industry [59], [60]. Unfortunately, these well-proven solutions are not an
option for CubeSats, even if designed around COTS components, as they are expensive,
heavy, and require high power consumption. Classic architectures used in avionics and
in large satellites would require pairs of duplicated processors and the inherent
hardware logic to compare/vote the results from the different signals, which would ruin
the simplicity and low cost of CubeSats.

The current situation is that there are no fault-tolerant CubeSat boards available from
manufacturers that solve the problem of transient hardware faults in the processor at
the hardware layer, as represented in Figure 20.

A recent research work (Ph.D. thesis of C. Fuchs, December 2019 [19])) proposes a novel
on-board-computer architecture for very small satellites (<100kg), promising high
reliability without using radiation-hardened semiconductors. This proposal uses a
combination of hardware and software-implemented fault tolerance techniques. In
terms of the high-level architecture shown in Figure 20, the architecture proposed in
[19] tolerates transient faults due to SEU using a clever combination of solutions at the
hardware layer and at the system software layer. However, in spite of this promising
research result [19], there are no fault-tolerant CubeSats boards commercially available
and CubeSats have remained as very low-cost small satellites for non-critical low earth
orbit (LEO) missions.

One important advantage of classic fault-tolerant techniques applied at a low
architectural level (e.g., triple modular redundancy [49]) is that these techniques
provide a reasonable transparent solution for the development of software applications
on top of a fault-tolerant architecture. That is, the developer of application software

Integration of Fault Injection in the Software Development Process

47

does not need to worry about possible transient faults, as they are tolerated at the lower
levels of the hardware layer or by the system software [61], [62].

Since there are no fault-tolerant CubeSats boards currently available (and they are not
likely to appear in the near future because of the high cost, energy consumption, and
weight imposed by hardware fault tolerance), it means that possible solutions for the
transient processor faults due to SEU are not transparent for the developer of software
applications for CubeSats. This is obviously a clear assumption for any proposal that
attempts to solve the problem of transient processor faults in CubeSats through the use
of SWIFT techniques, which also includes the approach proposed in the present thesis.
The developer of CubeSat applications must be aware that the application may be
affected by transient processor faults and deal with the SWIFT techniques needed to
tolerate such faults. Naturally, the development of CubeSat applications will become
more complex, as the application software needs to deal with both the functional
aspects and the SWIFT techniques, but this is the price to pay to assure the required
reliability for CubeSat applications running on simple and low-cost non-fault-tolerant
boards.

The development of a software components that implement the skeleton of software
fault-tolerant techniques is out of the scope of the work developed under this thesis.
However, in the context of a future industrial application of the proposed steps, it will
be crucial to have a library of SWIFT methods to be used/adapted to each particular
situation, in order to simplify and accelerate the development of CubeSat software
capable of tolerating the hardware transient faults caused by space radiation. Of course,
those techniques should be tailored to the specific software under development, as
mentioned before, but a general skeleton or code (e.g., a voter that compares two
inputs and signs if they differ) that can be reused could be made available in the form of
reusable components available for the software development teams. This will reduce
the time necessary to adopt SWIFT techniques into the code under development,
making it easier and cheaper to apply the approach proposed in this thesis.

The application of SWIFT techniques at the software application level to tolerate
hardware transient faults caused by SEU, as proposed in the present technique, relies
on two assumptions:

a) The system software, and specifically the operating system of the CubeSat board,
is operating properly after the transient fault, allowing the correct processing of
SWIFT techniques at the application level; or

b) Possible malfunctions (errors) caused by the fault can be detected by the error
detection mechanisms available in the CubeSat board, so the board can be
restarted to re-establish a correct state to run the SWIFT techniques and tolerate
the fault.

This means that in the worst-case scenario (bullet b)) when an error is detected or the
system crashes as a consequence of the transient fault, the base layers of the CubeSat
(i.e, hardware and operating system) should be able to recover the system to a state
from which it can operate properly (forward recovery [43]–[45]). To assure this, a key

Integration of Fault Injection in the Software Development Process

48

feature of the hardware layer and the system software layer of the CubeSat board is the
effectiveness of the error detection mechanisms available on the board.

There is a wide range of error detection mechanisms compatible with the low cost, low
energy consumption, and low weight required by CubeSats boards. Unfortunately, most
of the CubeSats boards currently available have just a few error detection mechanisms.

As mentioned, all CubeSats boards have error detection of two bits errors and correction
of one bit in memory using extended Hamming code [16]. The correction of one-bit error
is fully transparent, as it is processed at the hardware level, and in case of detection of
errors in two bits (no correction), the error must be handled by the system software (in
general, the action is to reset the system as these errors are mostly caused by transient
faults due to SEU, and they disappear after reset).

Another very relevant error detection mechanism that also exists in all CubeSat boards
is the watchdog timer (WDT) [46] that detects deviations of the correct software
behavior that changes its timing features (most frequently, WDT are used to detect
crashes). WDT can be controlled (i.e., refreshed periodically) by the system software,
which makes the error detection transparent to the application software, or can be
periodically refreshed by the application software. Other types of simple error detection
mechanisms are associated with the memory management units of the CubeSat board
and allow the detection of erroneous memory access behavior (e.g., instruction fetch
outside the code segments, read/write in memory areas not available, etc.). More
sophisticated (and also more effective) error detection mechanisms such as signature
monitoring [63], [64], are in general not available in CubeSat boards.

Given the relevance of the assumptions mentioned above (bullets a) and b)) for the
approach proposed in this thesis, the author decided to perform a preliminary
experiment to evaluate these assumptions in faulty scenarios. The goal is to evaluate
the probability of the CubeSat board (hardware layer and system software) to behave
correctly after a fault, in such a way that SWIFT techniques can be applied to tolerate
the faults. It is clear that SWIFT techniques can only be applied if the operating system
is working properly.

A campaign of 10000 faults, selected at random in the space and time domains (to
emulate accurately the random effects of space radiation), was injected into the EDC
board from an INPE satellite. For this experiment, the EDC (target system) was not
running any real software application. Instead, the EDC was just running the real-time
operating system (FreeRTOS) and, a “dummy” task that blinked a LED light and refresh
the watchdog timer counter. The idea was to evaluate the impact of faults in the system
software (mainly the FreeRTOS), to evaluate whether the operating system is running
properly after the fault or not.

The results obtained are presented in Figure 21. The confidence intervals (shown in the
numeric values in each bar of the chart) are calculated for 95% of confidence, using
confidence intervals for proportions in binomial distributions (Bernoulli trials) – the
formula was presented above in Table 1.

The classification of the failure modes was made based on the results obtained and
includes the following failure mode types:

Integration of Fault Injection in the Software Development Process

49

• No Effect/OS OK: The fault had no visible impact on the system. The operating
system continues to work normally as expected.

• Error detection (WDT): The fault crashes the operating system, but the watchdog
timer detected this erroneous situation and restart the system. After restarting,
the system is working normally again.

• OS CRASH: The system crashes after being affected and the watchdog timer
cannot detect it.

Figure 21 – Impact of faults on the Hardware and SO

The results show that most of the faults did not affect (80.38%) the operating system,
which means that the operating system continues operating properly, as expected.
Besides, 18.78% of the faults activate the watchdog timer, assuring that after a crash
the operating system can restart and back operating properly again. These two values
together (99.16%) show that the hardware layer and system software layers meet the
assumptions described above (both a) and b)) and SWFIT techniques can be effectively
applied at the software application layer. This means that software developers can
develop applications on top of COTS boards and use SWFIT techniques to tolerate
processor transient faults due to SEU at the software application level. It is worth noting
that in this experiment the error detection available in the target system (EDC board)
was only the WDT. Even so, the percentage of cases observed in which the proposed
approach could not work is reduced to 0.84%. Obviously, the inclusion of additional
error detection mechanisms on the board could reduce even further this percentage.

A final word is about the software development approaches used to develop software
applications for CubeSats and software assurance practices. In general, CubeSats
software applications are developed using the classic waterfall development process

 0.3 0,

 . 0.

0. 0.
0.00

 0.00

20.00

30.00

 0.00

 0.00

 0.00

 0.00

 0.00

90.00

 00.00

No E ect OS O Error detec on (DT) OS CRASH

Failure ode

Impact of faults on the Hardware and SO

Integration of Fault Injection in the Software Development Process

50

[65] and applying the well-known V-model [65], [66] on top of it. This means that
verification and validation (V&V) activities are a common practice in CubeSats software
application development, which means that the three additional steps (basically V&V
steps) proposed in this thesis will be easily integrated. As already mentioned, the use of
SWFIT techniques could be largely facilitated in real projects through the availability of
a library of pre-developed SWIFT methods to be reused and adapted to each new
CubeSat application.

Regarding software assurance practices, simulation and testing are the most common
activities to verify and validate CubeSats software, according to a survey conducted at
NASA Ames Research Center [65]. However, even those activities do not receive due
attention on CubeSats projects, as an intensive program of verification and validation
cannot be accommodated into the limited budget of such projects. Despite this,
according to the same survey [65], an emerging trend relies on the use of model-based
design methods due to their capability to automate the creation of detailed software
design from high-level graphical inputs, and then use automatic code generation to
create the code. Although, this type of modelling/software development requires
expertise on the part of the developer of the tool used. The definition of requirements
for generating the model is fundamental for the fidelity of this model to the desired
implementation. Both the correction of bugs found in the tests and the integration of
designed modules must be done at a high level, hand-codes are not allowed to
guarantee the reliability of the designed model.

The use of rigid verification and validation techniques is not a trend in current CubeSats
software development due to the time and budget constraints of such projects. This
includes the crucial verification of the possible effects of space radiation-induced faults.

5.2 Enhanced Verification and Validation Steps
The proposal focuses on enhancing the verification and validation of CubeSats software
through a set of additional steps. These steps are intended to be the least intrusive
possible on the software development life cycle used by the companies, space agencies,
and other institutions that are developing CubeSats. Since budget and time are
constraints that must be considered, expensive software verification and validation
activities are impossible to accommodate in such projects.

 The proposed steps require a fault injection tool, but such tools are readily available at
low cost, such as the tool CubeSatFI [10], which can be easily integrated into the
software development process of CubeSats without significantly increasing the cost of
such projects. Moreover, the proposed approach when used in the early stages of the
software development life cycle cannot only find weak points caused by space radiation-
induced faults, but also can be useful to find software bugs not discovered during
integration testing activities. Figure 22 illustrates the proposed additional steps. More
specifically, our proposal does not change the previous phases of the existing software
development process, but simply adds additional V&V steps after the integration test
step, which is always part of the process, no matter the flavor of the software
development process used by the CubeSat developer. The proposed steps assume that

Integration of Fault Injection in the Software Development Process

51

a fault injector tool such as CubeSatFI [10] capable of injecting transient faults similar to
the ones caused by SEU is available:

Step 1 - Evaluate the software sensitivity to space radiation: After integration testing
the software is subject to a comprehensive fault injection campaign to evaluate the
impact of SEU on the CubeSat behavior. Faults are injected into the processor registers
of the target board using a random distribution (both in space - registers- and time),
since space radiation tends to affect the processor randomly. This will allow to
understand the behavior of the target software in the presence of space radiation that
affects the processor of the board where the software is running.

Step 2 - Strengthen the software with tailored software-implemented fault tolerance
(SWIFT) techniques: The results obtained in the previous step must be analyzed and the
impact of the faults on the target software should be categorized into failure modes.
According to the failure modes obtained, it should be decided to add additional SWIFT
techniques to the code to avoid failure modes such as silent data corruption (erroneous
output results with no error detection) or to recover the software after crash failure
modes. This decision should be taken considering the available resources of the target
system and the budget available to implement these techniques. Many SWIFT
techniques can be used (see, for example, chapter 5 of [67] or the classic ichael Lyu’s
book [68]), from simple re-execution and voting to self-checking software. If the target
system has enough resources, it is extremely recommended to add SWIFT techniques to
increase fault coverage as much as possible. Obviously, that includes additional SWIFT
techniques in the CubeSat software after a first version of the software has been through
integration testing could be problematic. For fault-masking techniques such as software
re-execution and voting [67], [68], the task of adding this technique to existing software
is relatively easy. But for other SWIFT techniques such as algorithm-based fault
tolerance [68], the existing software must be largely refactored to incorporate the
SWIFT technique. With that in mind, adopting these proposed steps in the early stages
of software development is quite recommended.

Step 3 - Validate the effectiveness of the SWIFT techniques: After the software is
strengthened with additional SWIFT techniques, it must be submitted to regression
testing (using a test suite developed in earlier stages of the software development
lifecycle) to assure that the functional requirements (and also non-functional
requirements such as response time) are still met. The validation of the effectiveness of
SWIFT is then performed through a fault injection campaign similar to the one run in
step 1. That is, the process enters the cycle proposed in Figure 22 until the desired
software resilience in the presence of transient faults is achieved. The objective is to
evaluate the effectiveness of SWIFT techniques in the mitigation or toleration of
transient faults such as the ones induced by space radiation.

Integration of Fault Injection in the Software Development Process

52

Figure 22 - Enhanced verification and validation steps for CubeSats software development process

The proposed steps should be included in the software development process used in the
CubeSat development project. If the project follows the classic V-Model, the proposed
steps should be included after the integration testing phase (right-side of the V). If the
CubeSat project follows an agile process, the proposed steps should be performed each
time that the software has a considerable increment. Since the impact of SEU-induced
faults depends on the actual software that is running on the CubeSat, every time the
software changes, it is crucial to perform the proposed additional V&V steps. In fact,
these steps are quite inline with test-driven development (TDD) used in agile
development processes, where the software requirements are converted into test cases
and each software increment aims to pass the new set of test cases. After the test pass,
the code is refactored, and the test suite is run again to assure that no existing
functionality is broken. This cycle is repeated for each new functionality. Similarly, to
TDD, when the CubeSat software has a major or even a minor change, the proposed
V&V steps should be executed to evaluate the resilience against SEU-induced faults, and
the software is considered fully developed when it meets the safety and dependable
requirements to tolerate space radiation.

Integration of Fault Injection in the Software Development Process

53

5.3 Concluding Remarks
This chapter presents a set of steps to enhance the software development process for
CubeSats to cope with space radiation faults. The proposed solution intends to be
applied to the software application developed on top of the COTS components (both
hardware and software) made available by the manufacturers. Before the adoption of
the proposed steps, an evaluation of the COTS components resilience must be done to
assure that after being affected by a fault, these components can continue to operate
as expected. The focus of the proposed steps is on the software applications that run on
top of these components.

The key idea of the proposed solution is to use fault injection to emulate transient faults
caused by space radiation and analyze their impact on CubeSat software. In addition,
tailored software-implemented fault tolerance techniques must be added to the
software under test, aiming to tolerate or even mitigate the effect of space radiation-
induced faults. To finalize, the effectiveness of such techniques must be evaluated with
a new fault injection campaign. In short, the proposed steps can be summarized in the
following points:

1. Evaluation of the software sensitivity to space radiation;
2. Strengthen the software with tailored software-implemented fault tolerance

(SWIFT) techniques;
3. Validate the effectiveness of the SWIFT techniques.

This chapter also discussed the context and assumptions required for the proposed
approach, and showed through a simple controlled experiment that such assumptions
are easily met in current CubeSat boards, considering that the EDC board from INPE is
representative of most CubeSat boards. Is not worth mentioning that an important
aspect for the actual application of the proposed approach is the availability of fault
injector tools such as CubeSatFI as part of the software development environment to
allow the execution of fault injection campaigns in an easy and automatic way (and at
low cost).

Chapter 6
SBCDA Use Case and Results

This chapter demonstrates the proposed approach using three different embedded
software running in the Environment Data Collector (EDC) CubeSat board, which is part
(payload) of a constellation of satellites being developed by the Brazilian National
Institute for Space Research (INPE). The following use case provides a realistic insight on
the effectiveness of the steps proposed in the previous chapter.

6.1 CubeSat CONASAT-1
The Brazilian Environmental Data Collection System (SBCDA) has operated since 1993
after the launch of the SCD-1 data collection satellite. The SBCDA aims to collect data
such as wind speed, rainfall, temperature indices, wildlife observation, among others. In
addition to the SCD-1, the system is currently supported by the SCD-2, CBERS-4, and
CBERS-4A satellites (much larger than CubeSats), which carry on board an analog
transponder that relays the signals from the data collection platforms (DCP) to the
receiving stations (RS) on the ground.

The EDC – presented previously in Chapter 5 – is a new payload developed to meet the
demand for a signal receiver CubeSat-compatible to provide onboard signal processing.
The EDC design uses COTS components which gives it a low-cost, however, it makes the
EDC system less reliable than the analog transponder. By offering onboard processing,
the EDC is capable of expanding the SBCDA systems service coverage. The development
of this payload is convergent with the CONASAT project [69], which aims to launch a
constellation of low-cost nanosatellites to renew and expand the Brazilian data
collection system.

CONASAT-1 - Figure 23 - is the first satellite in a constellation of low-cost nanosatellites
based on COTS components. CONASAT-1 is based on a CubeSat platform with a size of
1U, i.e., this satellite has a cubic shape with edges of 10 centimeters. CONASAT-1 uses
the hardware platform developed by the EnduroSat company13. The CONASAT project
team is responsible for developing the flight software for the onboard computer (OBC),
and together with the EDC team, carrying out the integration of the satellite with this
payload. In addition to the OBC and the EDC, the CONASAT-1 hardware architecture
comprises two UHF antennas, a UHF transceiver, an electrical power system (EPS), and
a battery pack. Figure 24 illustrates the hardware architecture in block diagram level
described.

13 https://www.endurosat.com/ (accessed Jun. 24, 2022)

https://www.endurosat.com/

SBCDA Use Case and Results

55

Figure 23 - CONASAT-1 [69]

The UHF antenna - Payload is dedicated to receiving signals from DCPs and is connected
to the EDC, while the UHF antenna - TMTC is used for communication with the RSs and
is connected to the UHF transceiver. The UHF transceiver is the subsystem responsible
for receiving and transmitting the telecommand (TC) and telemetry (TM), respectively.
The EPS subsystem supplies power to the entire platform through six solar panels and
several voltage converters. The platform also has a battery pack with a capacity of 10.2
Wh. The OBC is responsible for configuring, controlling, and commanding the operation
of the subsystems. The telecommands received from an RS are decoded in the OBC to
control the subsystems onboard the satellite. The OBC is also responsible for monitoring
the overall health of the satellite. A health assessment can be performed in several ways,
depending on the subsystem being assessed. Telemetry sensors are used to verify that
the parameters of a given subsystem are acceptable (such as temperature or voltage
level). Telemetry data collected from each subsystem is also stored for transmission to
an RS. The OBC acts as the I2C bus master for transmitting commands to the EPS
subsystems, UHF antennas, and UHF transceiver. The flight software implements in the
OBC a routine of commands and requests to control the data processed by the EDC. This
is performed through a UART communication interface. With the payload data in hand,
the OBC uses the USART interface to transfer it to the UHF transceiver. The UHF
transceiver transmits through the UHF antenna TMTC at the frequency of 462 MHz.
While the beacons are transmitted by the same antenna at the frequency of 435 MHz.
The UHF transceiver is configured for a baud rate of 9600 bits per second.

SBCDA Use Case and Results

56

Figure 24 - Block diagram of CONASAT-1 Hardware Architecture Overview

6.2 Application of the Proposed Approach
Aiming to demonstrate the effectiveness of the proposed approach in the software
development process for CubeSats, three different embedded software applications
have been deployed on the EDC board that will be used on CONASAT-1 CubeSat. The
three embedded software applications (for testing purposes only) are:

• Matrices: It is a program that computes the result of the multiplication of two
matrices 30 times and at the end of each run, calculates a cyclic redundancy
check (CRC) for the result of the multiplication. After the 30 runs, calculate a final
CRC of the 30 CRCs previously calculated. In this experiment, the program uses
two 30x30 integer matrices.

• PI: Computes the value of π using the Leibniz formula. In this experiment, the
program computed the π using 0000 terms.

• Fibonacci: It is a recursive program that computes the sequence of Fibonacci and
sums the calculated elements. In this experiment, the program computed the
sum of the first 30 elements of the Fibonacci sequence.

It is worth mentioning that these payload software applications do not correspond to
the software payload that is going to fly in the future CubeSats from INPE. However,
they run on top of the real software running on the EDC board, namely the FreeRTOS
operating system and all the software needed for exchanging messages between the
EDC board and the OBC board. In practice, the three payload software applications

SBCDA Use Case and Results

57

developed have been designed to impose a considerable processing load on the EDC
board and reproduce the case of payload software that takes a considerable amount of
time to execute.

The fault injection (for the software sensitivity evaluation step) was performed using
CubeSatFI, the fault injection tool presented in this thesis that takes advantage of the
modern features of the actual microcontrollers by injecting faults in a fully automated
way through the JTAG interface.

The target of the injected faults is the registers of the processor of the EDC board. As
discussed before (in Chapter 2), the processor is the main weak point for the reliability
of CubeSats boards in the presence of space radiation. In the ODC board, memory is
protected with single error correction and double error detection parity codes, and the
message exchange between the EDC and OBC boards is also protected with error
detection mechanisms.

The fault injection campaigns consist of 200014 faults. All faults are single bit-flips faults,
as this model is broadly accepted as a realistic simulation of SEU faults. With that in
mind, the register affected by each fault was selected randomly (among all the processor
registers) and the bit of the register affected by the faults was also selected at random.
The trigger of each fault is also randomly defined within an injection window (i.e., within
a time interval defined by the tester). The injection window interval was defined as
between 2 and 4 seconds after resetting the CubeSat to assure that each fault is injected
into the system without having the effects of previous faults.

At the end of the injection window, the target system will be running for a period of 26
seconds to collect data for further analysis of the effects of the fault. The results
produced by each software application are sent to the host computer that is executing
the CubeSatFI through the UART interface of the EDC payload board. The results of the
campaigns are saved in a file to further analysis.

These campaigns with randomly injected faults (both in the register space and in time)
are appropriated to emulate the effects of transient faults caused by SEU, as space
radiation tends to affect the processor in a random way. It was decided to keep the
single bit-flip model and not to include faults injected in multiple bits of registers
because these multiple bits faults (caused by space radiation bursts) tend to cause a
drastic impact on the software and are easy to detect, and consequently are easy to
handle.

It is worth noting that due to the random nature of the injection process, the injected
faults may affect either the payload software application or the EDC software, namely
the FreeRTOS operating system and the software used for exchanging messages
between EDC board and the OBC board, which represents a realistic scenario for SEU
faults. However, the EDC board and the existing software are quite resistant to SEU
faults, as shown previously in Figure 21.

14 More faults are being injected to increase the confidence of the results presented. Those results will be
presented in a scientific article. Due to time constraints, they are not presented in this thesis.

SBCDA Use Case and Results

58

The process was applied following the three additional V&V steps of the proposed
approach:

1. Sensitivity evaluation by applying the fault injection campaigns (one campaign
for each payload software) to the original software (i.e., without specific SWIFT
techniques, unless some error detection techniques, such as watchdog timer,
that are available in the EDC board).

2. Strengthen of the payload software with a simple SWIFT technique that consists
of r-execution of the payload software and voting of the results.

3. Validation of the effectiveness of the SWIFT technique through the fault injection
campaigns.

The next subsection presents and discusses the results.

6.3 Results Discussion
Figure 25 shows the general impact of faults in the three scenarios of running the
payload applications on the EDC board, corresponding to step 1, before the
implementation of SWIFT techniques and considering the 2000 faults injected in each
case.

Based on the results obtained from the experiment the failures were classified according
to the following failure modes:

• No effect: The fault had no visible impact on the system, which means that the
CubeSat continues to work normally, and the expected results are received by
the onboard computer.

• Silent data corruption (SDC): The fault had no visible impact on the system.
However, the results sent are incorrect.

• System crash and restart (WDT): The system crashes and the watchdog timer
(WDT) is activated. After the WDT activation, the system is restarted and goes
back to working properly.

• System crash and do not restart: The system crashes, remaining in that failure
mode without WDT activation.

• Erratic behavior: The system sends wrong information repeatedly that can be
detected by the mechanisms available in the CubeSat.

SBCDA Use Case and Results

59

Figure 25 - Impact of faults distributed by failure modes

Considering the failure modes presented above, “silent data corruption (SDC)” is the
worst of all and represents a serious risk since the faults that lead to this failure mode
are impossible to detect. The code control flow is not affected, instead, the system
produces an erroneous result impossible to be detected, which means that SWIFT
techniques must be considered to avoid the serious failures caused by these faults. In
contrast, when the system crashes and it is detected by the WDT, the system is restarted
and back again to work as expected, ensuring system reliability. It is worth mentioning
that CubeSat boards are in fact cyber-physical systems and, in real scenarios the CubeSat
software applications do not have a comprehensive state that needs to be recovered,
such as the case of data-oriented (e.g., database) applications. This is the reason why
forward recovery after reset is in general adequate to resume the correct operation.

The “system crash and do not restart” failure mode can be easily managed with external
mechanisms such as a Heartbeat system that must receive a signal periodically from the
CubeSat payload system. If the signal is not received means that the system is in a
blocked situation after a crash and must be forced to restart. Faults that lead to an
“erratic behavior” failure mode can also be easily detected by the onboard computer
that should restart the EDC board. This is due to the communication protocol between
the EDC and the onboard computer of the CubeSat.

The high percentage of faults that have no impact (“No effect” failure mode) in three
payload application scenarios is quite normal and corroborates previous fault injection
experiments reported in the literature (e.g., [9]). This percentage varies between 66%
and 76% depending on the software under test. The reason for such results can be
justified by the intrinsic redundancy existing in computer systems and software.

Analyzing in more detail the failure mode distribution for the different processor
registers, Figure 26 shows that some processor registers are not affected at all by the

SBCDA Use Case and Results

60

injected faults. The reason is that these registers (e.g., R5, R6, R8, R9, R10, R11, R12) are
not used by the code. Of course, these situations vary according to the actual software
that is being executed in the CubeSat. Furthermore, the way the software uses the
available resources of the processor is defined by the C compiler switches during the
compilation phase (the EDC firmware and the codes used in this experiment are
developed in the C language). In fact, the result of fault injection campaigns can be quite
different if the code is compiled with different compilation switches, as this can
influence the behavior and performance of the software in execution. Also, the fact that
a big number of registers are normally not used by the compiler opens some possibilities
to implement extra SWIFT mechanisms.

Figure 26 - Impact of faults on the different processor registers - Multiplication of matrices code

To minimize the impact of the transient faults caused by space radiation, the “plain-
vanilla” version of the SWIFT technique known as re-execution and voting [67], [68] was
added to the three payload software. In practice, the code is executed twice, and the
result is voted in order to decide if it is trustable or not. If the two results differ, the code

SBCDA Use Case and Results

61

is re-executed and compared with the two previous results. In the end, if the third run
does not match either of the previous two, a message of error is sent to the output. In
contrast, if the result matches one of the first two, it means that one execution was
affected by the space radiation, but the others can be considered trustable.

Figure 27 shows the distribution of the faults according to the different failure modes in
each processor register after the application of the software fault tolerance technique
explained above. The results show that the re-execution and the voting can almost
eliminate the impact of faults that cause SDC on the general registers of the processor
that are being used by the code (e.g., R0, R1, R2, R3, R4, R7). On R0 and R7 the silent
data corruption is totally tolerated, turning these registers immune to this type of failure
mode. Also, in the R0, the simple technique of re-executing and voting turns this register
immune to space radiation as this register presents a percentage of 00 of “No effect”.
Positively, in the other registers the percentage of “No effect” exceeds 80%, ensuring
the reliability of the CubeSat against space radiation.

Also, in Figure 27 we can see that the simple software fault tolerance technique used in
the multiplication of matrices code just mitigates the effect of faults that leads to SDC
on the special registers of the processor (e.g., PC, SP, LR). Looking at the other failure
modes, it is possible to see that the results did not change too much. This phenomenon
is expected since these registers are special registers of the processor, which means that
any fault injected into one of these registers can lead the system to an incoherent
behavior or even block the entire system. To strengthen these registers and increase the
percentage of “No effect”, more sophisticated error detection mechanisms must be
added to the software under development (e.g., self-checking routines).

SBCDA Use Case and Results

62

Figure 27 - Impact of faults on the different processor registers - Multiplication of matrices code

Figure 28 compares the impact of faults considering the three application scenarios
before and after the payload applications have been strengthened with the re-execution
and voting SWIFT technique. Additionally, the analysis considers only the faults that
affected the registers that are being used by the software under test (since faults
injected in registers that are not used always lead to “No effect” failure mode). As
mentioned before, the impact of transient faults is dependent on the actual software
that runs on top of the CubeSat and looking at the two graphics in Figure 28, it is possible
to see that the sensibility to space radiation varies according to the software running on
the EDC board. The multiplication of matrices is the most sensible code, presenting a
percentage of “No effect” that almost reaches 2 without any software fault tolerance
technique and 59% with a simple re-execution and voting. However, the simple software
fault tolerance technique increases the resistance of all the software and in the
particular case of the multiplication matrices code, increases the resistance to “silent
data corruption” by more than .

SBCDA Use Case and Results

63

Focusing on the effectiveness of the re-execution and voting implemented on the three
software, it is concluded that even the simplest software fault tolerance technique can
increase the reliability of the CubeSat. The results presented in Figure 28 show that the
“silent data corruption” failure mode becomes residual, after the introduction of the re-
execution and voting, on all the software under test. In fact, the percentage of “silent
data corruption” on the software that does the calculation of the PI is 0 , proving that
such software is immune to faults that lead to this type of failure mode. Nevertheless,
in the other two codes, we still have some occurrences of SDC, since the technique
applied is two simple and even the voter can be affected. However, with a more
sophisticated technique (e.g., duplicated voter) the results can be even better.

SBCDA Use Case and Results

64

Figure 28 - Comparison of the impact of faults distributed by failure modes on all the software tested

before and after being strengthened with SWIFT techniques

In addition to the software fault tolerance technique added to the software, the EDC
board includes a watchdog timer (WDT). This error detection mechanism is present in
all CubeSats boards and plays a very important role in detecting system crashes. Looking
at Figure 28, it is possible to observe that most failures that lead to system crashes are
detected by the watchdog timer (i.e., the failures are classified as “System crash and
restart (DT)”). This means that after the system crash is detected by the WDT, the
system is restarted and back to work as expected, assuring the availability of the system.
Taking advantage of the WDT together with the software fault tolerance technique

SBCDA Use Case and Results

65

added to the embedded software, it is possible to make the CubeSats almost immune
to SEU faults.

6.4 Concluding Remarks
This chapter presents a use case of the application of the proposed approach using the
Environmental Data Collector (EDC), a CubeSat payload board for the Brazilian
Environmental Data Collection System (SBCDA) that will be used on all CubeSats from
the CONASAT-project. Three embedded software were deployed on the EDC board and
submitted to an intensive fault injection campaign aiming to evaluate their sensibility to
space radiation.

As expected, the results show that the impact caused by the faults is different according
to the software under test. After the distribution of the impact of the faults according
to different failure modes, it was possible to observe that all the software under test
present a high percentage of “silent data corruption”, which represents the worst failure
mode caused by space radiation-induced faults, as the fault had no apparent impact on
the system but, the results produced are wrong. However, after applying a SWIFT re-
execution and voting technique, the occurrence of this failure mode drops to residual
values. In fact, in one of the payload applications tested, this failure mode is totally
avoided.

This use case, testify the effectiveness of the proposed steps, as well as of the error
detection mechanisms and SWIFT techniques.

Chapter 7
Conclusions and Future Work

With all the work presented above in this thesis, it is necessary to carry out a balance
and a retrospective of the work accomplished. Therefore, this chapter aims to present
these points. In addition, some points of future work that can be carried out are
presented.

7.1 Conclusions
This thesis proposes CubeSatFI, a fault injection platform for CubeSat satellites. These
satellites use commercial off-the-shelf (COTS) hardware components, which are
susceptible to Single Event Upsets (SEU) caused by space radiation. The high rate of
hardware transient faults in CubeSats represents an important risk. CubeSatFI allows
the easy definition of fault injection campaigns that emulate SEU-induced faults in
CubeSat boards, providing effective means to carefully identify the impact of SEU faults
and identify possible weak points in CubeSat software.

Although fault injection is a widely used technique in several industrial application areas,
including in the space domain, the concrete application of fault injection in the CubeSat
industry requires a new perspective and leads to new ways of using fault injection in the
development of CubeSats and, more specifically, in the software verification and
validation phases. The big difference is that while transient hardware faults are relatively
rare in other critical sectors (e.g., automotive, railway, medical devices, etc.), or even in
large satellites that use highly expensive radiation-hardened semiconductors, in
CubeSat boards, the transient hardware faults due to SEU are very frequent. This means
that processor transient hardware faults should be considered as a “normal” input due
to the fact the COTS semiconductors (particularly the processor) are not prepared to
cope with space radiation.

A key idea is grounded on the fact that the impact of transient hardware faults in
computer systems is highly dependent on the actual code running on such systems.
When the code changes, the impact of faults could change drastically. In the case of
CubeSats development, this means that the evaluation of the impact of SEU-induced
faults must be carried out every time the CubeSat software has a major change or even
a minor update. In other words, the goal is not to protect the hardware of the CubeSat
boards (that would be very expensive, as discussed before) but the real goal is to make
the software running on CubeSat boards capable of tolerating processor transient
faults due to SEU. This way, the use of fault injection (as a testing technique) must be a
mandatory step in the development of software for CubeSats to evaluate the sensitivity
of the software to the effects of processor transient faults, as well as evaluate the
effectiveness of the software techniques used to tolerate the faults.

Conclusions and Future Work

67

Another key idea is that the negative impact of SEU-induced faults in CubeSats boards
should be mainly mitigated or even tolerated by software-implemented fault tolerance
techniques applied at the software application level. Although this approach has the
disadvantage of imposing an extra task to the CubeSats developer of software
applications, as it is necessary to take care of the functional aspects of the software and
also implement the most adequate SWIFT technique to tolerate processor transient
faults due to space radiation, it has the great advantage of being immediately available
to be used with the existing CubeSat boards and, above all, it does not have any negative
impact on the cost and weight of the CubeSat boards, nor significant impact on the
energy consumption.

The use of SWIFT techniques at the CubeSat application level represents a second and
very important reason to use fault injection as a key approach to evaluate the
effectiveness of such software techniques designed to make CubeSat software more
resilient to SEU. If those software techniques are meant to tolerate processor transient
faults, the most effective way to test them (and evaluate their effectiveness) is simply
injecting such faults.

With that in mind, this thesis proposes an enhanced software development process for
CubeSats to cope with space radiation faults. In short, the proposed solution can be
summarized in the following steps:

1. Evaluation of the software sensitivity to space radiation;

2. Strengthen the software with tailored software-implemented fault tolerance
(SIFT) techniques;

3. Validate the effectiveness of the SIFT techniques.

The proposed solution intends to be easy to adopt in the software development life
cycle used by companies, space agencies, and other institutions that are developing
CubeSats. The use of fault injection (using available fault injectors, such as CubeSatFI) is
a very effective approach to categorize the failure modes caused by transient faults due
to SEU, allowing the measurement of the expected (probability of) occurrence of
dangerous failure modes such as “silent data corruption”. To mitigate or even tolerate
critical failure modes, tailored software-implemented fault tolerance (SWIFT)
techniques must be added to the CubeSat software under test. Hence, the software
must again be submitted to a fault injection campaign aiming to evaluate the
effectiveness of the SWIFT techniques. Following these steps, regression tests should be
run to assure that the software functionalities are still working as expected. As
mentioned before, these added steps must be performed every time the software has
an update, or even a minor change, to evaluate the CubeSat resistance capability against
space radiation.

Aiming to demonstrate the effectiveness of the proposed solution, this thesis also
presents a use case of the application of the proposed enhanced verification and
validation steps proposed using the Environmental Data Collector (EDC), a Cubesat
payload board for the Brazilian Environmental Data Collection System (SBCDA) that will
be used on all CubeSats from the CONASAT-project.

Conclusions and Future Work

68

Results show that the impact caused by the faults is different according to the software
under test (which is normal, as the error propagation phenomena and the translation of
the erroneous behavior caused by faults into critical failure modes depend on the
intrinsic characteristics of the code). Besides, all software tested presents a considerably
high percentage of "silent data corruption", which represents the worst failure mode
caused by space radiation-induced faults, as the fault had no apparent impact on the
system but, the results produced are wrong. By applying a SWIFT re-execution and
voting technique, we can reduce the occurrence of this failure mode to residual values.
In fact, in one of the payload applications tested, this failure mode is totally avoided,
turning the CubeSat immune to space radiation for this critical failure mode.

To conclude, detection fault mechanisms (e.g, watchdog timers, and others) and SWIFT
techniques can dramatically increase CubeSats reliability without requiring any change
in the current CubeSats boards, making the proposed enhanced software development
process (as well as the CubeSatFI) a promising approach to the development of reliable
solutions for CubeSats missions.

7.2 Future Work
Nowadays, the interest in the development and deployment of CubeSats is a clear trend
in the space industry. Therefore, increasing the reliability of such satellites is a key
concern to increase the lifetime and resistance of CubeSats against space radiation. This
thesis and the work developed under it, address this problem with a fault injector and a
set of steps to enhance the traditional software development lifecycle in CubeSats.
Despite this, a set of future work directions can be addressed to further improve the
research results already achieved.

First, and the obvious next step is to apply the developed fault injection tool and
proposed approach to the onboard computer of the CONASAT-1 satellites. This is
dependent on the timing of the CONASAT-1 project and is planned as the next step in
the context of the ADVANCED project (which ends in 2024), as soon as the onboard
computer board and the software are available testing.

Second, the CubeSatFI fulfills the INPE needs right now, through the emulation of single
event upsets caused by space radiation into the registers of the processor according to
time and location triggers. Despite this, in the future, the tool can be expanded to
include new fault triggers, new fault types, and new target systems. In fact, CubeSatFI
architecture is prepared to accommodate such expansion.

Third, the proposed enhanced steps require the implementation of software-
implemented fault tolerance techniques on the software application that run on top of
the hardware and software made available by CubeSat boards manufacturers. The use
case presented in Chapter 6 shows the effectiveness of one of those techniques after
being implemented in three different embedded payload software. However, an
industrial application of the proposed steps will require the development of a software
component that implements the skeleton of the most common software-implemented
fault tolerance techniques to keep the effort of implementation less as possible. Is not
worth mentioning, that the development of this component is completely out of the

Conclusions and Future Work

69

context of this thesis. In fact, an extended version of the proposed steps including the
software component that implements the techniques mentioned above can be
addressed in the future.

Finally, the application of the approach proposed in this thesis should be the starting
point to fully redefine the software development approaches used in the CubeSat
industry. In fact, although the approach proposed in this thesis can be easily
adapted/integrated into the software development methods currently used by
CubeSats software developers (and actually this thesis proposes such integration), the
author anticipates that the need to make CubeSat software truly fault-tolerant (because
faults are very common in CubeSats) should lead to a totally new software development
approach for CubeSats. Key elements such as fault injector tools and libraries of reusable
SWIFT components should be considered as integral elements of the software
development process from the first steps. Additionally, system software (particularly the
operating system) of CubeSat boards should be equipped with additional error detection
methods and SWIFT techniques, in order to provide a fault-resilient platform for the
development of CubeSat applications.

References

[1] California Polytechnic State University, “CubeSat Design Specification (U – 12U),
REV 14, CP-CDS-R ,” 20 .

[2] ISO, ISO 21980:2020, “Space systems — Evaluation of radiation effects on
Commercial-Off-The-Shelf (COTS) parts for use on low-orbit satellites.” ISO/TC
20/SC 14 Space systems and operations, first edition, 2020.

[3] S. Shimhanda and T. urase, “On-orbit Measurements of Radiation Effects on
Commercial-Off-The- Shelf (COTS) Hardware for Small Satellites.” Jan. 20 9.

[4] R. G. Alia et al., “Simplified SEE Sensitivity Screening for COTS Components in
Space,” IEEE Transactions on Nuclear Science, vol. 64, no. 2, pp. 882–890, Feb.
2017, doi: 10.1109/TNS.2017.2653863.

[5] D. Sinclair and J. Dyer, “SSC 3-IV-3 Radiation Effects and COTS Parts in
SmallSats,” Proceedings of the 2013 Small Satellite Conference, 2013.

[6] R. Ecoffet, “Spacecraft Anomalies Associated with Radiation Effects,” RADECS
2013 Short Course Proceedings, Chap. VIII, 2013.

[7] . Langer and J. Bouwmeester, “Reliability of CubeSats – Statistical Data,
Developers’ Beliefs and the ay Forward,” Proceedings of the AIAA/USU
Conference on Small Satellites, SSC16-X-2, Jun. 2016.

[8] . P. Queiroz, S. . Dias, J. . Duarte, and . . Carvalho, “Uma solução para o
sistema Brasileiro de coleta de dados Ambientais baseada em nanossatélites,”
HOLOS, vol. 7, no. 0, pp. 132–142, Dec. 2018, doi: 10.15628/holos.2018.6307.

[9] H. adeira, R. R. Some, F. oreira, D. Costa, and D. Rennels, “Experimental
evaluation of a COTS system for space applications,” Proceedings of the 2002
International Conference on Dependable Systems and Networks, pp. 325–330,
2002, doi: 10.1109/DSN.2002.1028916.

[10] D. Paiva, J. M. Duarte, R. Lima, M. Carvalho, F. Mattiello-Francisco, and H.
 adeira, “Fault injection platform for affordable verification and validation of
CubeSats software,” in 2021 10th Latin-American Symposium on Dependable
Computing (LADC), 2021, pp. 1–11. doi: 10.1109/LADC53747.2021.9672584.

[11] T. Zednicek, “Commercial versus COTS+ versus Qualified Passive Components in
Space Applications,” ESA Space Passive Component Days, Jan. 2016.

[12] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and
taxonomy of dependable and secure computing,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004, doi:
10.1109/TDSC.2004.2.

[13] C. M. Fuchs, N. M. Murillo, A. Plaat, E. van der Kouwe, D. Harsono, and T. P.
Stefanov, “Fault-Tolerant Nanosatellite Computing on a Budget,” 2018 18th

References

73

European Conference on Radiation and Its Effects on Components and Systems,
RADECS 2018, Sep. 2018, doi: 10.1109/RADECS45761.2018.9328685.

[14] T. ilfredo, “Software Fault Tolerance: A Tutorial,” NASA Langley Technical
Report Server, 2000.

[15] F. Davoli, C. ourogiorgas, . archese, A. Panagopoulos, and F. Patrone, “Small
satellites and CubeSats: survey of structures, architectures, and protocols,” Int.
Journal of Satellite Communications and Networking, Sep. 2018.

[16] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms.
John Wiley and Sons, 2005. doi: 10.1002/0471739219.

[17] Z. Yuan and X. Zhao, “Introduction of forward error correction and its
application,” 2012 2nd International Conference on Consumer Electronics,
Communications and Networks, CECNet 2012 - Proceedings, pp. 3288–3291,
2012, doi: 10.1109/CECNET.2012.6201904.

[18] D. J. Sorin, Fault Tolerant Computer Architecture. Morgan and Claypool
Publishers, 2009.

[19] C. . Fuchs, “Fault-tolerant satellite computing with modern semiconductors,”
Ph.D. dissertation, Leiden University, 2019.

[20] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A technique for the
experimental evaluation of dependability in modern computers,” IEEE
Transactions on Software Engineering, vol. 24, no. 2, pp. 125–136, 1998, doi:
10.1109/32.666826.

[21] J. Arlat et al., “Fault Injection for Dependability Validation,” IEEE Transactions on
Software Engineering, vol. 16, no. 2, pp. 166–182, Feb. 1990, doi:
10.1109/32.44380.

[22] R. . Iyer, “Experimental Evaluation,” Proc. 25th International Symposium on
Fault-Tolerant Computing, FTCS-25, Pasadena, California, no. special issue, pp.
115–132, 1995.

[23] U. Gunneflo, J. arlsson, and J. Torin, “Evaluation of error detection schemes
using fault injection by heavy-ion radiation,” 1989 The Nineteenth International
Symposium on Fault-Tolerant Computing. Digest of Papers, pp. 340–347, Jun.
1989.

[24] H. adeira, . Rela, F. oreira, and J. Silva, “RIFLE: A General Purpose Pin-Level
Fault Injector,” in Proc. First European Dependable Computing Conference, Oct.
1994, pp. 199–216.

References

74

[25] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and J. Reisinger,
“Application of Three Physical Fault Injection Techniques to the Experimental
Assessment of the ARS Architecture,” in Proceedings of the Fifth IFIP Working
Conf. Dependable Computing for Critical Applications, DCCA-5, 1995, pp. 150–
151.

[26] G. A. anawati, N. A. anawati, and J. A. Abraham, “FERRARI: A tool for the
validation of system dependability properties,” FTCS 1992 - 22nd Annual
International Symposium on Fault-Tolerant Computing, pp. 336–344, 1992, doi:
10.1109/FTCS.1992.243567.

[27] J. Aidemark, J. Vinter, P. Folkesson, and J. arlsson, “GOOFI: Generic object-
oriented fault injection tool,” Proceedings of the International Conference on
Dependable Systems and Networks, pp. 83–88, 2001, doi:
10.1109/DSN.2001.941394.

[28] J. Christmansson and R. Chillarege, “Generation of an error set that emulates
software faults based on field data,” Proceedings - Annual International
Conference on Fault-Tolerant Computing, pp. 304–313, 1996, doi:
10.1109/FTCS.1996.534615.

[29] J. A. Durães and H. S. adeira, “Emulation of software faults: A field data study
and a practical approach,” IEEE Transactions on Software Engineering, vol. 32,
no. 11, pp. 849–867, Nov. 2006, doi: 10.1109/TSE.2006.113.

[30] R. Natella, D. Cotroneo, and H. S. adeira, “Assessing Dependability with
Software Fault Injection,” ACM Computing Surveys (CSUR), vol. 48, no. 3, Feb.
2016, doi: 10.1145/2841425.

[31] N. Silva, . Vieira, and D. Ricci, “Consolidated View on Space Software
Engineering Problems-An Empirical Study,” DASIA 2015-DAta Systems in
Aerospace, 2015.

[32] B. Sangchoolie, . Pattabiraman, and J. arlsson, “An Empirical Study of the
Impact of Single and Multiple Bit-Flip Errors in Programs,” IEEE Transactions on
Dependable and Secure Computing, 2020, doi: 10.1109/TDSC.2020.3043023.

[33] A. Pereira, H. adeira, and A. de Paula, “Experimental Validation of the Error
Detection Mechanisms of the On-board Computer of the SSR Brazilian Satellite,”
(in Portuguese) VII Symposium on Fault Tolerant Computing, SCTF-7, 1997.

[34] D. di Leo, F. Ayatolahi, B. Sangchoolie, J. arlsson, and R. Johansson, “On the
Impact of Hardware Faults – An Investigation of the Relationship between
 orkload Inputs and Failure ode Distributions,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

References

75

Notes in Bioinformatics), vol. 7612 LNCS, pp. 198–209, 2012, doi: 10.1007/978-
3-642-33678-2_17.

[35] M. Portela-García, C. López-Ongil, M. García-Valderas, and L. Entrena, “A rapid
fault injection approach for measuring SEU sensitivity in complex processors,”
Proceedings - IOLTS 2007 13th IEEE International On-Line Testing Symposium, pp.
101–106, 2007, doi: 10.1109/IOLTS.2007.9.

[36] M. Portela-García, C. López-Ongil, . García Valderas, and L. Entrena, “Fault
injection in modern microprocessors using on-chip debugging infrastructures,”
IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 2, pp. 308–
314, 2011, doi: 10.1109/TDSC.2010.50.

[37] . Ebrahimi, A. ohammadi, A. Ejlali, and S. G. iremadi, “A fast, flexible, and
easy-to-develop FPGA-based fault injection technique,” Microelectronics
Reliability, vol. 54, no. 5, pp. 1000–1008, May 2014, doi:
10.1016/J.MICROREL.2014.01.002.

[38] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection Techniques,” The
International Arab Journal of Information Technology, vol. 1, pp. 171–186, Jul.
2004.

[39] R. . Tawfeek, . G. Egila, Y. Alkabani, and I. . Hafez, “Fault injection for FPGA
applications in the space,” Proceedings of ICCES 2017 12th International
Conference on Computer Engineering and Systems, vol. 2018-January, pp. 390–
395, Jan. 2018, doi: 10.1109/ICCES.2017.8275338.

[40] J. L. Nunes, T. Pecserke, J. C. Cunha, and M. Zenha-Rela, “FIRED - Fault Injector
for Reconfigurable Embedded Devices,” Proceedings - 2015 IEEE 21st Pacific Rim
International Symposium on Dependable Computing, PRDC 2015, pp. 1–10, Jan.
2016, doi: 10.1109/PRDC.2015.43.

[41] X. eng, Z. Shao, J. Xu, Q. Tan, N. Zhang, and H. Zhang, “SEInjector: A dynamic
fault injection tool for soft errors on x ,” 2017 International Conference on
Computer Systems, Electronics and Control, ICCSEC 2017, pp. 1492–1495, Aug.
2018, doi: 10.1109/ICCSEC.2017.8446693.

[42] S. inter, T. Piper, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo, “GRINDER:
On Reusability of Fault Injection Tools,” Proceedings - 10th International
Workshop on Automation of Software Test, AST 2015, pp. 75–79, Jul. 2015, doi:
10.1109/AST.2015.22.

[43] L. L. Pullum, Software Fault Tolerance Techniques and Implementation. USA:
Artech House, Inc., 2001.

References

76

[44] M. Yang, G. Hua, Y. Feng, and J. Gong, Fault-Tolerance Techniques for Spacecraft
Control Computers. 2017. doi: 10.1002/9781119107392.

[45] S. Mukherjee, Architecture Design for Soft Errors. 2008. doi: 10.1016/B978-0-12-
369529-1.X5001-0.

[46] N. urphy, “ atchdog Timers,” in Embedded Systems Programming, 2000, p.
112.

[47] . S. Hefny and H. H. Amer, “Design of an improved watchdog circuit for
microcontroller-based systems,” Proceedings of the International Conference on
Microelectronics, ICM, vol. 2000-January, pp. 165–168, 1999, doi:
10.1109/ICM.2000.884831.

[48] V. B. Prasad, “Fault tolerant digital systems,” IEEE Potentials, vol. 8, no. 1, pp. 17–
21, 1989, doi: 10.1109/45.31576.

[49] C. H. Stapper, V. K. Jain, and V. K. Jain, Defect and Fault Tolerance in VLSI Systems,
1st ed., vol. 2. New York, NY: Springer, 1990. doi: https://doi.org/10.1007/978-
1-4757-9957-6.

[50] Liming Chen and A. Avizienis, “N-VERSION PROGRAMMINC: A FAULT-
TOLERANCE APPROACH TO RELlABlLlTY OF SOFT ARE OPERATlON,” Aug. 99 ,
doi: 10.1109/FTCSH.1995.532621.

[51] V. Bharathi, “N-Version programming method of Software Fault Tolerance: A
Critical Review,” National Conference on Nonlinear Systems & Dynamics, pp.
173–176, 2003.

[52] J. C. night and N. G. Leveson, “An experimental evaluation of the assumption of
independence in multiversion programming,” IEEE Transactions on Software
Engineering, vol. SE-12, no. 1, pp. 96–109, Jan. 1986, doi:
10.1109/TSE.1986.6312924.

[53] J. C. Knight and N. G. Leveson, “A reply to the criticisms of the night & Leveson
experiment,” ACM SIGSOFT Software Engineering Notes, vol. 15, no. 1, pp. 24–
35, Jan. 1990, doi: 10.1145/382294.382710.

[54] B. Randell, “System Structure for Software Fault Tolerance,” IEEE Transactions
on Software Engineering, vol. SE-1, no. 2, pp. 220–232, 1975, doi:
10.1109/TSE.1975.6312842.

[55] IEEE, “IEEE Standard for Test Access Port and Boundary-Scan Architecture,” IEEE
Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444, May 2013, doi:
10.1109/IEEESTD.2013.6515989.

References

77

[56] OpenOCD, “Open On-Chip Debugger: OpenOCD User’s Guide,” 2022.
https://openocd.org/doc/pdf/openocd.pdf (accessed Jul. 04, 2022).

[57] D. L. Domenicoand, F. Ayatolahi, B. Sangchoolie, J. Karlsson, and R. Johansson,
“On the Impact of Hardware Faults – An Investigation of the Relationship
between orkload Inputs and Failure ode Distributions,” in Computer Safety,
Reliability, and Security, 2012, pp. 198–209.

[58] H. P. Zima, . L. James, and P. L. Springer, “Fault-tolerant on-board computing
for robotic space missions,” Concurrency and Computation: Practice and
Experience, vol. 23, no. 17, pp. 2192–2204, Dec. 2011, doi: 10.1002/CPE.1768.

[59] D. Briere and P. Traverse, “Airbus A320 A330 3 0 electrical flight controls a
family of fault-tolerant systems,” Digest of Papers - International Symposium on
Fault-Tolerant Computing, pp. 616–623, 1993, doi: 10.1109/FTCS.1993.627364.

[60] Y. C. Yeh, “Safety critical avionics for the primary flight controls system,”
AIAA/IEEE Digital Avionics Systems Conference - Proceedings, vol. 1, 2001, doi:
10.1109/DASC.2001.963311.

[61] T. C. Bressoud, “TFT: A software system for application-transparent fault
tolerance,” Digest of Papers - 28th Annual International Symposium on Fault-
Tolerant Computing, FTCS 1998, vol. 1998-January, pp. 128–137, 1998, doi:
10.1109/FTCS.1998.689462.

[62] B. Hasircioglu, Y.-A. Pignolet, and T. Sivanthi, “Transparent Fault Tolerance for
Real-Time Automation Systems,” Proceedings of the 1st International Workshop
on Internet of People, Assistive Robots and Things, pp. 7–12, 2018, doi:
10.1145/3215525.3215538.

[63] . ilken and J. P. Shen, “Continuous Signature onitoring: Low-Cost
Concurrent Detection of Processor Control Errors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 6, pp. 629–
641, 1990, doi: 10.1109/43.55193.

[64] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random additive
signature monitoring for control flow error detection,” IEEE Transactions on
Reliability, vol. 66, no. 4, pp. 1178–1192, Dec. 2017, doi:
10.1109/TR.2017.2754548.

[65] S. A. Jacklin, “Survey of Verification and Validation Techniques for Small Satellite
Software Development,” Space Tech Expo Conference, May 2015.

[66] B. . Boehm, “Guidelines for verifying and validating software requirements and
design specification,” In Proceedings of the European Conference on Applied

References

78

Information Technology of the International Federation for Information
Processing (Euro IFIP), vol. 1, pp. 711–719, 1979.

[67] I. Koren and C. M. Krishna, Fault-Tolerant Systems, 2nd ed. Elsevier, 2020.

[68] M. R. Lyu, Software Fault Tolerance, 1st Edition. John Wiley & Sons Ltd, 1995.

[69] A. C. R. Alves, S. M. Dias, K. I. P. de M. Queiroz, M. J. M. de Carvalho, and J. M. L.
Duarte, “CONASAT-0: VISÃO GERAL DO NANOSSATÉLITE DESENVOLVIDO,” 20 9.
doi: 10.29327/2CAB2019.224823.

Appendices

Appendix A – CubeSatFI Functional Requirements

Appendix A – CubeSatFI Functional
Requirements

Define experiment information

Primary Actor: User Use Case ID: 1.1

Scope: Fault injection campaign generation

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• The user must be in the Definition Campaign screen (after selecting the option
in the navigation menu).

• The intended target system must be previously selected on the tool options
page.

Minimal Guarantee:

• The system notifies the user if some field was not defined as expected.

Success Guarantee:

• The data is validated, and the campaign can be generated.

Main Success Scenario:

1. The system presents the Definition Campaign screen.
2. The user inserts the information related to the fault injection campaign:

campaign name, short description, number of faults to generate, number of
bitflips per fault, and the name of the person responsible for the campaign on
proper fields.

3. The system presents the registers map of the target processor.
4. The user inserts select the target registers that want to affect by selecting the

exact bit positions that want to affect (i.e., bit flipping).
5. The system presents the triggers definition options.
6. The user selects the time-based trigger option.
7. The system presents the fields for insertion of three different moments (start

of the injection window, end of the injection window, and end of the injection
run).

Appendix A – CubeSatFI Functional Requirements

81

8. The user defines the three moments.
9. The system validates all the data.

Extensions:

2.a. In addition to the information described on point 2, the user also defines
a seed (to be used on pseudo-random number generation).
6.a. The user selects the spatial-based trigger.

- 6.a.1. The system presents the fields for insertion of a range of
memory addresses and a moment (that represents the end of the
injection run).
- 6.a.2. The user defines the range and the moment.
- 6.a.2. The use case continues on point 9 of the main success scenario.

Table 2 - UC 1.1: Define experiment information

Appendix A – CubeSatFI Functional Requirements

82

Generate campaign

Primary Actor: User Use Case ID: 1.2

Scope: Fault injection campaign generation

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• The user must be on the Definition Campaign screen.

• The intended target system must be previously selected on the tool options
page.

• All the mandatory fields must be filled with the respective information.

Minimal Guarantee:

• The system notifies the user if some error occurs during the generation of the
campaign.

Success Guarantee:

• The campaign is generated, and all the data is saved for further execution.

Main Success Scenario:

1. The user generates a faulty campaign.
2. The system presents a saving location window.
3. The user chooses the location to save the campaign.
4. The system saves the faults on a .csv file and the campaign configuration on a

.json file. Informs the user with a success message.

Extensions:

1.a. The user generates a Golden Run campaign.
2.a. The user aborts the campaign generation by moving to another screen.

- 2.a.1. The system asks for confirmation of abort and informs the user
that all the data will be lost.
- 2.a.2. The user confirms that wants to abort the campaign generation.
- 2.a.3. The system discards all the data and moves to the screen
pretended.

2.b. The user aborts the campaign generation by moving to another screen.

Appendix A – CubeSatFI Functional Requirements

83

- 2.a.1. The system asks for confirmation of abort and informs the user
that all the data will be lost.
- 2.a.2. The user wants to continue the campaign generation.
- 2.a.3. The system maintains all the data and the user can continue the
campaign generation.

Table 3 - UC 1.2: Generate campaign

Appendix A – CubeSatFI Functional Requirements

Import fault injection campaign information

Primary Actor: User Use Case ID: 1.3

Scope: Fault injection campaign generation

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• The user must be in the Definition Campaign screen (after selecting the option
in the navigation menu).

• The intended target system must be previously selected on the tool options
page.

Minimal Guarantee:

• The system notifies the user if some error occurs during the information
importation.

Success Guarantee:

• The information is loaded, and the fields of the Definition Campaign screen are
filled.

Main Success Scenario:

1. The user decides to import an existent configuration.
2. Use Case 1.0.0 is done at this point.
3. The system fields the corresponding fields with the information read from the

configuration file.

Table 4 - UC 1.3: Import fault injection campaign information

Appendix A – CubeSatFI Functional Requirements

85

Search fault injection campaign file

Primary Actor: User Use Case ID: 1.0.0

Scope: Fault injection campaign generation

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• To choose a fault injection campaign file is mandatory the existence of one file.

Minimal Guarantee:

• The system notifies the user if some error occurs during the information
importation (for example, wrong file format).

Success Guarantee:

• The information is loaded without errors.

Main Success Scenario:

1. The user decides to search for an existent configuration.
2. The system presents a select location window.
3. The user chooses the file location of the campaign.
4. The system read the campaign configuration from a JSON file.

Table 5 – UC 1.0.0: Search fault injection campaign file

Appendix A – CubeSatFI Functional Requirements

86

Start fault injection campaign

Primary Actor: User Use Case ID: 2.1

Scope: Fault injection campaign execution

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• A fault injection campaign must be defined and generated before.

• The user must select a fault injection campaign from a list of campaigns or
search for an existent one.

• The correct target system must be selected before.

Minimal Guarantee:

• If an error occurs the user is notified and all the data until that moment is
saved. Any data is lost.

Success Guarantee:

• The information is loaded without errors.

Main Success Scenario:

1. The system presents the configurations of the fault injection campaign.
2. The user selects the USB interface to collect data.
3. The user starts the campaign.
4. The system initiates and establishes communication with the OpenOCD server

and shows the execution screen.
5. The system prints information about the fault that is currently being injected

and repeats this until the end of the campaign.

Extensions:

2.a. The user refreshes the list of USB interfaces available.

- 2.a.1. The system refreshes the list of USB interfaces available.

- 2.a.2. The user selects the USB interface to collect data.

4.a. The system notifies the user that an error occurs during the initiation of
the OpenOCD server.

Appendix A – CubeSatFI Functional Requirements

87

5.a. The system notifies the user that an error occurs during the injection of a
fault. All data is saved, and the next fault is injected.
5.b. The system notifies the user that an error occurs with the communication
with the OpenOCD server. All data is saved until that moment is saved, and
the campaign is aborted.

Table 6 - UC 2.1: Start fault injection campaign

Appendix A – CubeSatFI Functional Requirements

88

Pause fault injection campaign

Primary Actor: User Use Case ID: 2.2

Scope: Fault injection campaign execution

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• A fault injection campaign must be already running.

Minimal Guarantee:

• If an error occurs the user is notified and all the data until that moment is
saved. Any data is lost.

Success Guarantee:

• The fault injection campaign is paused right after finishing the injection of the
current fault.

Main Success Scenario:

1. The user intends to pause the fault injection campaign.
2. The system waits until the end of the injection of the fault that is currently

being injected. After that, pause the injection of faults and give feedback to
the user.

Extensions:

2.a. An error occurs and the system notifies the user. All data is saved until
that moment is saved, and the campaign is aborted.

Table 7 - UC 2.2: Pause fault injection campaign

Appendix A – CubeSatFI Functional Requirements

89

Resume fault injection campaign

Primary Actor: User Use Case ID: 2.3

Scope: Fault injection campaign execution

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• A fault injection campaign must be paused.

Minimal Guarantee:

• If an error occurs the user is notified and all the data until that moment is
saved. Any data is lost.

Success Guarantee:

• The fault injection campaign is resumed, and the next fault started to be
injected.

Main Success Scenario:

1. The user intends to resume the fault injection campaign.
2. The system starts the injection of faults again.

Extensions:

2.a. An error occurs and the system notifies the user. All data is saved until
that moment is saved, and the campaign is aborted.

Table 8 - UC 2.3: Resume fault injection campaign

Appendix A – CubeSatFI Functional Requirements

90

Abort fault injection campaign

Primary Actor: User Use Case ID: 2.4

Scope: Fault injection campaign execution

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• A fault injection campaign must be paused.

Minimal Guarantee:

• If an error occurs the user is notified and all the data until that moment is
saved. Any data is lost.

Success Guarantee:

• The fault injection campaign is resumed, and the next fault started to be
injected.

Main Success Scenario:

1. The user intends to abort the fault injection campaign.
2. The system asks for confirmation.
3. The user confirms.
4. The system waits until the current fault is injected. After that, aborts the

campaign and backs to the home page. All the data until that moment is saved.

Extensions:

3.a. The user does not confirm the abortion.

 - 2.a.1. The system continues with the fault injection campaign.

Table 9 - UC 2.4: Abort fault injection campaign

Appendix A – CubeSatFI Functional Requirements

91

List fault injection campaigns

Primary Actor: User Use Case ID: 2.1.1

Scope: Fault injection campaign execution

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• The system must be on the home page.

Minimal Guarantee:

• If it does not exist any history of campaigns previously generated, the user is
informed.

Success Guarantee:

• The system presents a list of the last fault injection campaigns generated.

Main Success Scenario:

1. The system reads the last fault injection campaigns generated from a file.
2. The system put the list of faults on the screen.

Extensions:

2.a. The system put a message on the screen, adverting that does not exist any
campaigns history previously generated.

Table 10 – UC 2.1.1: List fault injection campaigns

Appendix A – CubeSatFI Functional Requirements

92

Edit fault injection campaign

Primary Actor: User Use Case ID: 3.0

Scope: Fault injection campaign generation

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• The system must present a list of fault injection campaigns previously
generated.

Minimal Guarantee:

• If an error occurs the user is notified.

• The campaign data is validated.

Success Guarantee:

• The user edits a campaign previously generated and, the details changed are
validated by the system, and a new campaign can be generated.

Main Success Scenario:

1. The user chooses one campaign to edit.
2. The system loads the data of the campaign previously selected and presents

the data to the user.
3. The user changes one or more details of the campaign.
4. The system validates all the data.

Table 11 - UC 3.0: Edit fault injection campaign

Appendix A – CubeSatFI Functional Requirements

93

Choose target system

Primary Actor: User Use Case ID: 4.1

Scope: CubeSatFI Configuration

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• The system must be on the configuration screen.

• The target systems (CubeSat board) available must be available in a
configuration file.

Minimal Guarantee:

• The user only can select available target systems.

Success Guarantee:

• After the selection of the target system, the system will always assume that
target system.

Main Success Scenario:

1. The system reads the available targets from a configuration file and presents
them.

2. The user selects one target system.
3. The system updates the current target system option on the configuration file.

Table 12 - UC 4.1: Choose the target system

Appendix A – CubeSatFI Functional Requirements

94

Choose CubeSatFI language

Primary Actor: User Use Case ID: 4.2

Scope: CubeSatFI Configuration

Level: Sea

Stakeholders and Interests:

• INPE: The main interest stakeholder in the development of the tool, aiming to
use it in the development of their CubeSats.

• CubeSat Practitioners: Can build more reliable CubeSat software applications.

Preconditions:

• The system must be on the configuration screen.

• The target systems (CubeSat board) available must be available in a
configuration file.

Minimal Guarantee:

• The user only can select available target systems.

Success Guarantee:

• After the selection of the target system, the system will always assume that
target system.

Main Success Scenario:

1. The system reads the available targets from a configuration file and presents
them.

2. The user selects one target system.
3. The system updates the current target system option on the configuration file.

Table 13 - UC 4.2: Choose CubeSatFI language

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

95

Appendix B - Fault injection platform
for affordable verification and
validation of CubeSats software

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

96

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

97

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

98

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

99

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

100

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

101

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

102

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

103

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

104

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

105

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

106

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

107

Appendix B - Fault injection platform for affordable verification and validation of CubeSats
software

108

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

Appendix C - Enhanced software
development process for CubeSats to
cope with space radiation faults

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

110

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

111

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

112

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

113

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

114

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

115

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

116

Appendix C - Enhanced software development process for CubeSats to cope with space
radiation faults

117

	Chapter 1 Introduction
	1.1 Context of the project
	1.2 Motivation
	1.3 Objectives
	1.4 Tangible Contributions
	1.5 Thesis Structure

	Chapter 2 Background and State of the Art
	2.1 Small satellites and CubeSats
	2.2 Fault Injection for Space Applications
	Xception
	GOOFI : Generic Object-Oriented Fault Injection Tool

	2.3 Software Fault Tolerance Techniques
	Capability Check
	Software Diversity
	Error Detection
	Error Recovery

	2.4 Concluding Remarks

	Chapter 3 CubeSatFI Requirements and Architecture
	3.1 Project Restrictions
	3.2 Functional Requirements
	3.3 Non-Functional Requirements
	3.4 Platform Architecture
	3.5 Concluding Remarks

	Chapter 4 CubeSatFI Functional View
	4.1 The Fault Injector
	4.2 Preliminary Experiment
	Environmental Data Collector (EDC)
	Experiment Setup
	Results Analysis

	4.3 Concluding Remarks

	Chapter 5 Integration of Fault Injection in the Software Development Process
	5.1 Context and Assumptions
	5.2 Enhanced Verification and Validation Steps
	5.3 Concluding Remarks

	Chapter 6 SBCDA Use Case and Results
	6.1 CubeSat CONASAT-1
	6.2 Application of the Proposed Approach
	6.3 Results Discussion
	6.4 Concluding Remarks

	Chapter 7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References
	Appendices
	Appendix A – CubeSatFI Functional Requirements
	Appendix B - Fault injection platform for affordable verification and validation of CubeSats software
	Appendix C - Enhanced software development process for CubeSats to cope with space radiation faults

