

Diogo Malheiro Boinas

A Software Tool for Customer Experience
Evaluation in Service Design

MobEthnos

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering, advised by Professor Paulo Rupino da Cunha and presented to
the Department of Informatics Engineering of the Faculty of Sciences and Technology

of the University of Coimbra.

September of 2022

Faculty of Sciences and Technology

Department of Informatics Engineering

A Software Tool for Customer
Experience Evaluation in Service

Design
MobEthnos

Diogo Malheiro Boinas

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering, advised by Professor Paulo Rupino da Cunha and presented to the Department of
Informatics Engineering of the Faculty of Sciences and Technology of the University of Coimbra.

September 2022

This page is intentionally left blank.

Abstract

In this thesis it was proposed to build a software tool with the objective of evaluating
services. This tool consists of a Progressive Web Application (PWA) for service consumers
and a website for service providers. React and React Native frameworks were used for
development. All phases of a software engineering project have been thought out and
executed. Besides the software tool, other important artifacts were generated, such as a
major study about the subject which covered the topics Mobile Ethnography and Service
Design, a requirements document, a software architecture and several test cases.

From the PWA, feedback is collected from service consumers using Mobile Ethnography as
a data collection method. It works like a native mobile application and allows offline use.
In this way, users can submit their experience in real time and in the service environment,
despite not having an internet connection. These two are objectives of Mobile Ethnography.

The website uses Service Design guidelines to be able to evaluate the service fairly. Thus,
it is possible to make, for example, custom journey maps for each user, obtain a map that
dictates the best and worst areas of a service and view some graphs about the service and
consumer actions. This is a great help for service providers as they have the right tools to
carry out the evaluation.

By using the software tool, it is possible to improve services by detecting their weaknesses
due to the data being rich, this is having photos, videos and other important informa-
tion. As this tool is for private use between the customer and the service provider, better
transparency is achieved.

Keywords

Mobile Ethnography; Service Design; Customer Experience Evaluation; Web Development;
Mobile Development.

iii

This page is intentionally left blank.

Resumo

Nesta tese foi proposto construir uma ferramenta de software com o objetivo de avaliar
serviços. Esta ferramenta consiste numa aplicação web progressiva para consumidores de
serviços e um website para fornecedores de serviços. Foram utilizadas as frameworks React
e React Native para o desenvolvimento. Todas as fases de um projeto de engenharia de
software foram pensadas e executadas. Além da ferramenta de software, outros artefatos
importantes foram gerados, tais como um grande estudo sobre o tema que incluiu os temas
Etnografia Móvel e Design de Serviço, um documento de requisitos, uma arquitetura de
software e diversos casos de teste.

A partir da aplicação web progressiva, recolhe-se feedback dos consumidores do serviço
utilizando como método de recolha de dados etnografia móvel. Funciona como uma apli-
cação móvel nativa e permite uma utilização offline. Dessa forma, os utilizadores podem
enviar a sua experiência em tempo real e no ambiente do serviço, mesmo não existindo
uma conexão com a internet. Estes dois são objetivos da etnografia móvel.

O website usa diretrizes de design de serviço para poder avaliar o serviço de forma eq-
uitativa. Desta forma, é possível fazer, por exemplo, customer journey maps para cada
utilizador, obter um mapa que dita as melhores e piores áreas de um serviço e visualizar
alguns gráficos sobre o serviço e ações do consumidor. Esta é uma grande ajuda para os
fornecedores de serviços, porque assim têm as ferramentas certas para fazer a avaliação.

Com uso da ferramenta de software consegue-se melhorar serviços ao detatar os seus pontos
fracos pelo facto de os dados serem ricos, isto é, incluir fotos, vídeos e outra informação
importante. Como esta ferramenta é de uso privado entre o consumidor e o fornecedor do
serviço atinge-se uma melhor transparência.

Palavras-Chave

Etnografia Móvel; Design de Serviço; Avaliação da Experiência do Consumidor; Desen-
volvimento Web; Desenvolvimento Móvel.

v

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Software Development Process and Planning 2
1.4 Report Structure . 8

2 State-Of-The-Art 9
2.1 State-Of-The-Art Procedure . 9
2.2 Service Design . 10
2.3 Mobile Ethnography . 11
2.4 Mobile Ethnography Software Tools . 12
2.5 Technologies to help build the Software Tool 18

2.5.1 Website Front-end . 18
2.5.2 Mobile Application Front-end . 20
2.5.3 Back-end . 21
2.5.4 Hosting . 23

3 Requirements 25
3.1 Requirements Gathering . 25
3.2 Use Case Model . 26
3.3 User Interface Model . 30
3.4 Non-Functional Requirements . 34
3.5 Functional Requirements Prioritisation . 35

3.5.1 Participant Requirements . 35
3.5.2 Researcher Requirements . 35

4 Software Architecture 37

5 Software Development 45
5.1 Back-end Structure . 46

5.1.1 Firebase Authentication . 46
5.1.2 Cloud Firestore . 46
5.1.3 Firebase Storage . 47
5.1.4 Security . 48

5.2 Mobile Application Development . 48
5.2.1 Creation of Files and Installation of Modules 48
5.2.2 Connection to Firebase . 49
5.2.3 Authentication and Navigation . 50
5.2.4 Unauthenticated User Functionalities 52
5.2.5 Authenticated User Functionalities 53
5.2.6 Progressive Web App Requirements 59

5.3 Website Development . 60

vii

Chapter 0

5.3.1 Creation of Files and Installation of Modules 60
5.3.2 Connection to Firebase . 60
5.3.3 Navigation Between Components . 60
5.3.4 Authentication . 61
5.3.5 Unauthenticated User Functionalities 61
5.3.6 Authenticated User Functionalities 62

6 Software Testing 67
6.1 End-To-end Testing . 67
6.2 Usability Testing . 68

6.2.1 Participants . 69
6.2.2 Procedure . 69
6.2.3 Results . 69
6.2.4 Conclusions . 74

6.3 Software Testing Conclusions . 74

7 Conclusion 75

References 78

Appendix A - Use Cases 83

Appendix B - User Interface 99

Appendix C - Testing Results and Descriptions 112

viii

This page is intentionally left blank.

Acronyms

Amazon RDS Amazon Relational Database Service. 22

Amazon S3 Amazon Simple Storage Service. 21, 22

API Application Programming Interface. 21, 23

AWS Amazon Web Services. 9, 21, 22, 23

DEI Department of Informatics Engineering. 20, 23, 45, 75, 76

DOM Document Object Model. 18, 19

GDP Gross Domestic Product. 1, 10

PWA Progressive Web Application. iii, 20, 21, 23, 45, 59, 61, 67, 75, 76, 77

SDK Software Development Kit. 19, 20, 21, 23, 48, 59

UED User Experience Diagram. 26, 30, 31, 33, 76

UI User Interface. 18, 26, 30, 31, 33, 34, 76

UML Unified Modeling Language. 43

VPS Virtual Private Server. 23

x

This page is intentionally left blank.

Glossary

touchpoint is an interaction of a user with a service and includes several information
that helps in qualitative research, such as title, emotion or satisfaction, notes, media,
location, time, and date. As mobile ethnography is user-centered, each user has
several touchpoints regarding a specific service. . xiv, 12, 13, 14, 15, 16, 17, 20, 30,
33, 35, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 69, 70, 73, 74

xii

This page is intentionally left blank.

List of Figures

1.1 First Semester Gantt Chart Estimation . 4
1.2 Actual First Semester Gantt Chart . 5
1.3 Second Semester Gantt Chart Estimation 6
1.4 Actual Second Semester Gantt Chart . 7

2.1 Inside the project page in the Mobile Application. Figure taken from Annex
1. 13

2.2 Inside the create new touch point page in the Mobile Application. Figure
taken from Annex 1. 13

2.3 Example of the QR code to invite participants 14
2.4 Example of the Raw Data functionality. 15
2.5 Example of the Raw Data functionality. 15
2.6 Example of the overview functionality. 16
2.7 Example of the map with the touchpoints 17

3.1 Architecture Sketch . 26
3.2 Context Diagram. 27
3.3 Use Cases Diagram for Signing In and Signing Up. 27
3.4 Use Cases Diagram for Participant Functionalities. 28
3.5 Use Cases Diagram for Researcher Functionalities. 29
3.6 User Experience Diagram of Website . 31
3.7 User Experience Diagram of Mobile Application 32
3.8 Homepage User Interface . 33
3.9 Homepage User Interface. 34
3.10 Project User Interface. 34

4.1 Context Diagram . 38
4.2 Container Diagram . 39
4.3 Progressive Web Application Component Diagram 41
4.4 Single-Page Application Component Diagram 42

5.1 Cloud Firestore Database Schema . 47
5.2 Firebase Storage Folder Structure . 48
5.3 Register Screen of the Mobile Application 53
5.4 Projects Screen of the Mobile Application 54
5.5 Project Screen of the Mobile Application . 56
5.6 Add Touchpoint Screen of the Mobile Application 57
5.7 Successful Internet Connection Notification 57
5.8 Unsuccessful Internet Connection Notification 57
5.9 Structuring of Data for the Touchpoints Array 64

6.1 Log-in test using Selenium IDE . 68

xiv

List of Figures

6.2 Question one . 71
6.3 Question two . 71
6.4 Question three . 72
6.5 Question four . 72
6.6 Question five . 73

1 Sign Up User Interface . 99
2 Dashboard User Interface . 100
3 Create Project User Interface . 101
4 Project Created User Interface . 102
5 View Projects User Interface . 103
6 Project Journeys User Interface . 104
7 Project Map User Interface . 105
8 Project Data User Interface . 106
9 Project Overview User Interface . 107
10 Sign In Interface. 108
11 Sign Up User Interface. 108
12 Settings Interface. 109
13 Add Project User Interface. 109
14 Choose Project User Interface. 110
15 New/Edit Touchpoint User Interface. 110

xv

This page is intentionally left blank.

List of Tables

3.1 Participant Sign Up Use Case Table . 30

6.1 Metrics for each user for each completed task 70
6.2 Expected Number of Clicks for Each Task 70
6.3 Mean Number of Clicks for Each Task . 70

1 Researcher Sign Up Use Case Table . 83
2 Participant Sign In Use Case Table . 84
3 Researcher Sign In Use Case Table . 85
4 Join a New Project Use Case Table . 86
5 Views Project that you are Involved In Use Case Table 86
6 Change Password Use Case Table . 87
7 Delete Account Use Case Table . 87
8 View all touchpoint points submitted Use Case Table 88
9 Edit Touchpoint Use Case Table . 88
10 Edit Touchpoint Use Case Table . 89
11 Leave Project Use Case Table . 90
12 Participant’s Logout Use Case Table . 90
13 Change Password Use Case Table . 91
14 Delete Account Use Case Table . 91
15 Create Project Use Case Table . 92
16 View Own Projects Use Case Table . 92
17 Finalize Projects Use Case Table . 93
18 Finalize Projects Use Case Table . 93
19 View Project Journeys Use Case Table . 94
20 Export Data Use Case Table . 94
21 Manipulate Project Journeys Use Case Table 95
22 Delete Project Use Case Table . 96
23 Show Project Map Use Case Table . 96
24 Show Overview Graph Use Case Table . 97
25 Researcher’s Logout Use Case Table . 97
26 End-to-end testing conclusions . 112
27 Description of Test with ID 1 . 112
28 Description of Test with ID 2 . 113
29 Description of Test with ID 3 . 113
30 Description of Test with ID 4 . 113
31 Description of Test with ID 5 . 113
32 Description of Test with ID 6 . 113
33 Description of Test with ID 7 . 114
34 Description of Test with ID 8 . 114
35 Description of Test with ID 9 . 114

xvii

Chapter 0

36 Description of Test with ID 10 . 114
37 Description of Test with ID 11 . 114
38 Description of Test with ID 12 . 115
39 Description of Test with ID 13 . 115
40 Description of Test with ID 14 . 115
41 Description of Test with ID 15 . 115
42 Description of Test with ID 16 . 115
43 Description of Test with ID 17 . 115
44 Description of Test with ID 18 . 116

xviii

This page is intentionally left blank.

Chapter 1

Introduction

1.1 Motivation

We live in a world where services represent about 65% of Gross Domestic Product (GDP)
according to data from the world bank [6]. GDP is the monetary value of all finished
products and services produced within a country during a certain period of time [20].
Also, according to these data [6], we can see that it is a number that is always increasing.
We have data from 1995 to 2020. By analysing the world bank chart [6] we can reach the
conclusion that the need for services in the current world is indispensable. We can also see
that in developed countries this number is much higher. According to the world bank, in
the United States, the GDP of services is around 77% [7].

According to the book Ethnography, their definition for ethnography is "(...) the study of
people in naturally occurring settings or ‘fields’ by means of methods which capture their
social meanings and ordinary activities, involving the researcher participating directly in
the setting, if not also the activities, in order to collect data in a systematic manner but
without meaning being imposed on them externally." [8].

Mobile ethnography "(...) uses technology-based devices, e.g. smartphones, instead of
traditional ethnographic face-to-face inquiry." [32]. It is based on collecting data using
mobile devices; in this way larger amounts of data can be collected, as opposed to classical
ethnography, which involves having a researcher with the participant directly. This is much
more costly than using a mobile device. In addition, more reliable data can be collected
as the participant does it with a certain anonymity and by himself on his mobile device.

In this dissertation, our main motivation is to apply Mobile Ethnography to the Mobile
Application and to apply service design to the website. By having a Mobile Ethnography
tool that allows customers to express their opinions about a service, researchers can help
to increase the quality of that specific service by using the service design guidelines. With
a software like this, we hope to be able to collect larger amounts and more reliable data.
Another topic of this software is to have everything incorporated in one platform, thus
allowing the researcher to analyse the collected data without having to export it to another
platform.

1

Chapter 1

1.2 Objectives

The main objective in this dissertation is to develop a software tool for customer experience
evaluation. We do customer experience evaluation by using mobile ethnography. Also, this
software is related to service design, in the way that our objective is to help improving
services.

To start this dissertation, a good understanding of service design will be needed. After
learning about this theme, we want to learn about Mobile Ethnography. First, we need
to understand what it is. Then, we need to look for existing tools to help us gather the
requirements for our platform.

This platform will include a website application for researchers and a mobile application
for participants. On the one hand, the mobile application will allow participants to send
data and must work on the Android and iOS operating systems. On the other hand, the
website application will allow for the researcher to analyse the collected data and it has to
work in web browsers.

1.3 Software Development Process and Planning

During the development of the software tool, the methodology to be used will be based
on Scrum [42]. The work to be done will all be made in sprints for the tasks completion.
Scrum is good for teams with a small number of elements, less than 10 participants.

In our case, there is not exactly a development team. This will be done by the author of
this thesis as he is the one to do all the development. We can also say that the Product
Owner will be the advisor of this dissertation, Prof. Paulo Rupino da Cunha, as he was
the one who came up with this project. The main role of a Product Owner is to create an
interaction between the customer and the Development Team [42].

Regarding the main artifacts that represent the Scrum methodology, there exists the Prod-
uct Backlog, the Sprint Backlog and the Product Increment [33]. There also exist other
artifacts such as release burndown charts and release plan, however, they are not as im-
portant as the ones described in the previous sentence [33].

In our particular case, we can have a similar artifact to the Product Backlog, which will
be the software requirements specification document. It will contain all the information
about the requirements to be implemented in the software development phase. Typically,
the Product Backlog contains a list of requirements given by the client and can be changed
as new requirements apply. The element of the team that can change this artifact is the
Product Owner.

Regarding the Sprint Backlog, the tasks will be done in a similar manner, choosing a set of
requirements to be implemented in the following sprint and then testing it and see if it is
alright to go to the next one. What the Sprint Backlog represents is a list of requirements
to be done in the next sprint.

Another part of scrum are the meetings; after each sprint, there is a meeting to assess what
has been done in the previous sprint and to assign tasks for the next sprint. This will be
done in a similar manner; every two weeks there will be a meeting between the advisor
and the author of this dissertation to discuss what has been previously done and what to
do in the next two weeks.

2

Introduction

During this first semester, the scrum methodology will not be applied. To have organization
and estimation of the tasks to be completed, a Gantt chart was made. By doing this, we
can have an idea on what to do, if we are on schedule and get a better feeling for delays
when something goes wrong. It can be seen below in figure 1.1.

3

Chapter 1

Figure 1.1: First Semester Gantt Chart Estimation

4

Introduction

Figure 1.2 shows the real gantt chart. This chart accounts for delays and we can clearly
see in comparison to the one done in beginning that some dates suffered some changes.
This is completely normal, as not everything we estimate will work accordingly.

Figure 1.2: Actual First Semester Gantt Chart

5

Chapter 1

For the second semester an estimation was also made and we can see it below in figure 1.3.

Figure 1.3: Second Semester Gantt Chart Estimation

6

Introduction

In Figure 1.4, we can see the actual Gantt chart of the work done for the second semester.
The difference from the estimation is quite significant. The divisions also include the time
required for the chapter to be written. So, the division of writing the remaining chapters
was removed. We can also see that the time for the development part to be completed
was longer and the building of the software architecture was also added. This delayed
software testing and, consequently, deploying to production was also postponed, despite
taking much less time than anticipated.

Figure 1.4: Actual Second Semester Gantt Chart

7

Chapter 1

1.4 Report Structure

The rest of the document is organised in the following chapters:

• State-of-the-art (Chapter 2) - This chapter will display the knowledge obtained
on the topics needed to produce the software tool in question.

• Requirements (Chapter 3) - This chapter will contain the requirements for the
software tool to develop.

• Software Architecture (Chapter 4) - This chapter will contain the architecture,
done with the C4 model, of the software tool to develop.

• Software Development (Chapter 5) - This chapter will detail the development
stage of this tool.

• Software Testing (Chapter 6) - This chapter will explain and show the tests done
after the tool is developed.

• Conclusion (Chapter 7) - This chapter will detail the whole project and will have
the main conclusions about the project.

Furthermore, some annexes were also built:

• Software Requirements Specification - This annex contains the full specification
of requirements to enrich the respective chapter, Requirements.

• Software Installation - This annex contains a guide for the installation of the
software tool.

8

Chapter 2

State-Of-The-Art

In this chapter, the topics needed to produce the software tool will be presented and we
will get a deeper knowledge about them.

The first section includes the procedure. Here, we can see the process on how to reach the
topics for the rest of the state-of-the-art. The second section includes an explanation of
service design. The third section shows what is mobile ethnography. The fourth section
includes similar software tools to the one to develop and the last section has the chosen
technologies for the software tool to develop.

2.1 State-Of-The-Art Procedure

To do this state-of-the-art, several topics were searched online. The first thing in this
work was to learn how services are designed and evaluated. By taking the course Service
Engineering, it helped to faster learn and comprehend how services work and how they
are designed. After having this knowledge, a service was designed and built to better
internalize the concepts learnt in the course. The service was a car dealership website that
delivered the car to the customer’s door. The technologies used in this service were the
React framework for the front-end and Amazon Web Services (AWS) for the back-end.
Mobile ethnography was also mentioned in this course, allowing us to gain knowledge that
can be applied in this chapter.

The bibliography for Service Engineering was also useful, including the two books, This is
Service Design Thinking [5] and This is Service Design Doing [4]. With these books, we
can gain a deeper understanding of service design itself.

To complement the definition of mobile ethnography, there was a broader search for it.
One of the first steps was doing google searches with the keywords Mobile Ethnography to
have a better the definition of the topic. In addition, ResearchGate and Google Scholar
were also used to find articles related to this topic.

Following this, there was a search for platforms similar to the one to be developed. One
of them, ExperienceFellow, was introduced by the advisor of this dissertation, Prof. Paulo
Rupino da Cunha. It was an example given in the Service Engineering course to teach
concepts about service design and mobile ethnography. To better explain it by the author
of this dissertation, a guide, Annex 1, that is on their website for people to learn how to use
the platform was used. Another software tool, Indeemo, was found by searching for Mobile
Ethnography in Youtube and also helped to better understand about Mobile Ethnography,

9

Chapter 2

due to their videos explaining the theme. In an attempt to explain this platform and
enumerate their functionalities, a contact with them with made was made by email, where
they indicated a link on their website with an overview. However, this was very superficial
and did not explain the functionalities in detail. They did not offer a free trial or a demo.

ExperienceFellow is a very good tool and by having a concise explanation of it will help
in the next chapter to find the requirements and get concrete ideas on what to develop.
More platforms were found by doing a google search with the keywords Mobile Ethnography
Platforms. In result to this, the website [1] was found. However, they were just for very
specific cases, like QualSights, which "is a platform for remote video observation, interviews
and focus groups." [1].

2.2 Service Design

As stated in the Introduction (Chapter 1), services represent 65% of Gross Domestic Prod-
uct (GDP) and most of the employment today in developed countries [6]. Everyone uses
services and the number of available services is always increasing. For example, Netflix is
a service that is highly successful. They went from 400,000 subscribers in 2001 to 209.18
million in 2021 [12]. We can clearly see that the need for services is high in demand.

Service design has not a clear definition and it is evolving over the time [5]. Everyone has
different opinions about this topic. We can see this in the book This is Service Design
Thinking in the following sentence, "If you would ask ten people what service design is,
you would end up with eleven different answers – at least." (Richard Buchanan, 2001, [5])

As there is no concrete definition to service design, according to Mark Stickdorn in the
book This is Service Design Thinking, there are 5 principles of service design thinking that
can be applied [5]:

1. "User-Centered - Services should be experienced through the customer’s eyes."

2. "Co-creative - All stakeholders should be included in the service design process."

3. "Sequencing - The service should be visualised as a sequence of interrelated ac-
tions."

4. "Evidencing - Intangible services should be visualised in terms of physical arte-
facts."

5. "Holistic - The entire environment of a service should be considered."

As "Services should be experienced through the customer’s eyes" [5], user experience which
"is how a user interacts with and experiences a product, system or service" [50], also im-
pacts the customer satisfaction and consequently the service provider itself. It is important
to have tools that can measure that.

Traditionally, service providers would use questionnaires to measure customer satisfaction,
and we have an example of this in a case study referring to a Walking Quiz, which is
a questionnaire, in the article Thinking and Doing Ethnography in Service Design [39].
According to Oxford Reference, Ethnography is "The scientific study of customs, habits,
and behavior of specified groups of people, usually applied to tribes or clans of people in
nonliterate societies." [36]. We can clearly see that ethnography does not only apply to
service design. However, in our dissertation, we are only going to think about this topic

10

State-Of-The-Art

regarding service design. In our specific case, the main goal is to use mobile ethnography
to collect data and, subsequently, to use service design to help service providers analyse the
collected data. The software tool to develop aims to help improve services; thus, the data
collected will be regarding services and how users interact with them. It will be analysed
by providing tools that follow the five principles of Service Design [5] stated earlier in this
section.

2.3 Mobile Ethnography

Considering the Service Design chapter, it can be said that there are more modern solutions
to classical ethnography. We live in a world where almost everyone in developed countries
has a smartphone [47]. Due to this, the better solution in need is Mobile Ethnography.
Currently, this is not being developed in the way that is needed, there are too few platforms
in a world dominated by services. If a search is made with the keywordsMobile Ethnography
Platforms, we can find some platforms. However, they do not have the popularity or users
needed to make the service design overall better.

Mobile Ethnography is a qualitative research method that relies on using mobile devices
for data collection, and therefore, takes advantage of technology to document, analyse and
derive implications of real-time customer experience [32]. Participants in a project self-
document their experiences in real-time and researchers analyse this data. Researchers can
reach participants by sending notifications as a reminder to collect data or for some kind
of guidance [4].

With mobile ethnography, we can have a larger number of participants in a study, "A
mobile ethnography project might include 10, 100, or even 1,000 participants documenting
their experiences with a brand, product, service, event, or similar." [4]. Also, "Mobile
ethnography works well for longer research over one or a few days, as well as for rather
intimate subject matters people hesitate to talk about with others." [4]. This is good for
sensible topics where a study has to be made or when there is a need for collecting large
amounts of data of each participant.

Mobile Ethnography can have several applications. There are some cases, such as in
tourism, health, and retail research, in which mobile ethnography is applied to do some
studies shown in this article [32].

As the participants self-document their experiences, this has to be analysed later. A
researcher uses a computer for that purpose. We can see that in the studies done in
this article [32], the researchers use computer aided analysis systems, like NVivo. These
computer aided analysis systems are only to analyse the data and they do not do the
collection. However, our goal is to create a software tool that can do the collection and
analysis and be all integrated in one place. This allows the researcher to not having to
waste time in exporting the data to use some other software to analyse the data.

11

Chapter 2

2.4 Mobile Ethnography Software Tools

The two software tools found in a service design context, Indeemo and ExperienceFel-
low, are tools for evaluating customer experience using mobile ethnography. However,
ExperienceFellow was discontinued in March 2021. There are other tools that use Mobile
Ethnography, but they are for different usages rather than Customer Experience Evalu-
ation of services. We are going to talk about the ExperienceFellow tool in this section
and its functionalities to have some context to do the requirements of the software tool
to develop. We also wanted to explain the Indeemo platform, but this was not possible
because the platform is paid and there is no free trial or demo available.

In this section, we focus on the ExperienceFellow platform. This software consists of
having a website for researchers to analyse data and a mobile application for participants
to capture data.

ExperienceFellow Mobile Application

The mobile application is like a diary on the participant’s mobile phone, they give insights
of their experiences to the researchers. Whenever they want, they can add an experience.

When the participant enters the application, he can sign up or sign in. When signed in,
the participant reads the QR code to enter a project.

Imagine that we are entering a hotel and this hotel uses ExperienceFellow to get some
insights to improve their customer satisfaction. The hotel can display their QR code, for
example, at the reception, and when the participant checks in, he or she is informed about
this application, and after downloading and signing up, he can scan the QR code and send
valuable information to the hotel. This uses mobile ethnography, as hotel users will provide
their real-time experience in an ethnographic way. We can see in the next paragraphs how
the participant gives the information and that this is a qualitative research by the data
provided. Also, all data is user-centered, this means that it is related to a user. Mobile
ethnography follows an user-centered approach on the data collection [48]. At the outset,
it follows one of the principles of service design, despite the fact that the data has not yet
been analysed.

Every time the participant wants to give their opinion about something, for example, the
minibar was empty when he first entered the room, they can enter the app, choose that
project and then add a touchpoint. This touchpoint consists of having some parameters:

• Title - It is a name for the touchpoint, in this case, just a brief name.

• Emotion - Rating from 1 to 5 with smiley faces, 1 being the worse and 5 being the
best.

• Notes - In this field, the participant can detail what exactly happened.

• Media - Can add photos or videos of the situation.

• Location - The participant can choose to send his GPS coordinates or not.

Also, in the touchpoint, a timestamp is created automatically to know when that situation
occurred. Returning to the example of the empty minibar, we can illustrate how it works
with a real example:

12

State-Of-The-Art

• Title - Minibar is empty upon check-in.

• Emotion - 2

• Notes - When entering the room, the minibar was empty. This is unacceptable as
it is a very expensive hotel.

• Media - The user would upload a photography of the empty minibar.

• Location - The user can choose to send his GPS coordinates or not.

Figure 2.1: Inside the project page in the
Mobile Application. Figure taken from
Annex 1.

Figure 2.2: Inside the create new touch
point page in the Mobile Application.
Figure taken from Annex 1.

In Figure 2.1, we can see the page in the mobile application where we can add a new touch-
point to a specific project by clicking the new touchpoint button. In this case, the project
is Shopping Mall Quality Check and we can also see the touchpoints already submitted,
Arriving at the shopping center and Searching for this new shop. In Figure 2.2, we can see
the page in the mobile application where we insert the data from the new touchpoint that
we want to save.

Another feature of the application that we have not talked about yet is deferred syncing,
which is the ability to use the app offline. For example, the participant could not have
internet in the hotel, however, he can add the touchpoint that the minibar was empty and
later when a internet connection is available, this information would be uploaded. Also,
the participant can receive push notifications from the hotel, this is a way of reminding
them to use the application.

13

Chapter 2

ExperienceFellow Website

On the website, the researcher or the service provider can sign up or sign in. After signed
in, he can create a project or choose an existing project. Each project is divided in four
stages:

1. Project successfully created and set up;

2. Collecting data;

3. Stop collecting data;

4. Archive Project;

Inside the project, the researcher or service provider has a page to invite participants, here,
each project has a QR code for the participants to enter using the mobile application, this
could be disclosed by email or it could be printed to have it in a paper format.

Figure 2.3: Example of the QR code to invite participants

In Figure 2.3, we can see the project name, the token for the created project and the
respective QR code. On this page, the researcher or service provider can also download
the invitation as a PDF in the blue button.

There is a functionality inside of each project that is the raw data. This data is shown by
having a line of each step that a participant took, the step here is a touchpoint, it shows
the title, the timestamp and the emotion of the touchpoint. This is shown step-by-step
and in order so that we can visualise the journey of each participant. We can also see the
emotions, what is positive and what is negative. Then you can click on top of a touchpoint
and a pop-up will appear with all detailed information.

14

State-Of-The-Art

Figure 2.4: Example of the Raw Data functionality.

In Figure 2.4, we can see the raw data functionality, we can see that each line shows the
data for a specific participant. Each participant has his journey, and we can visualise the
several touchpoints. There is a color for each touchpoint, red indicating a worse rating and
green a better rating. Also, the gender and age are also shown.

There is the perspective functionality as well, here the data can be changed. This page
is similar to the raw data page. However, here, the data can be changed by dragging
the touchpoints to the place that the researcher wants, and blank spaces in the middle
of the touchpoints can be added. The main objective in this page is to compare different
participants and their journeys. You can also add tags to each touchpoint to later on apply
filters on it. The filter can be applied to text, tags, emotions, name, gender or age. This
will only show the touchpoints that can relate to that filter. You can also combine filters.
This will make it easier to find patterns in the data set.

Figure 2.5: Example of the Raw Data functionality.

In Figure 2.5, we can see that by clicking on the top of a touchpoint, we can add filters
and see a more detailed view of it. In this figure, the filters applied were station, safety

15

Chapter 2

and tram stop.

There is also a functionality called the overview. This splits up the data, and now we
enter into a mix of qualitative and quantitative research. In the overview, you can filter
by different tags and then we can split the data by emotion, we can see what the most
negative and the most positive touchpoints are. The touchpoints are represented in small
squares of colour, and if we click on one, it will appear the pop-up of that touchpoint with
all detailed information.

Figure 2.6: Example of the overview functionality.

In Figure 2.6, we can see the overview functionality. This specific case contains the tags
on the vertical axis and the emotions on the horizontal axis. In addition, the researcher
can choose the data he wants in the horizontal and vertical axis.

Another functionality is a map that shows all the touchpoints and we can see the clusters
of good and bad emotions. In this map, each pinpoint has a colour and in the middle of
the pinpoint it shows the colour of their emotions, from red being the worst and green
being the best.

16

State-Of-The-Art

Figure 2.7: Example of the map with the touchpoints

Regarding the functionality to export data, this can be done in three different formats:

1. PDF;

2. Excel;

3. ZIP file that includes the excel file and all photos and videos;

17

Chapter 2

2.5 Technologies to help build the Software Tool

In this section, there will be a study of technologies to build the software tool. We are
going to decide all technical aspects for development of the tool, mainly, the front-end for
both the website and for the mobile application and the back-end. There will be also a
study to decide the hosting of our tool.

2.5.1 Website Front-end

Using Javascript frameworks allows to build highly visual and reactive websites with beau-
tiful designs. According to a stackoverflow survey, which is a platform programmers use to
clarify their doubts, the most popular language is Javascript with a percentage of 69.7% in
2020. In relation to frameworks, there are a lot popular frameworks for building websites,
the most popular according to the survey from stackoverflow is jQuery, followed by React.js
and then Angular [43].

There are a lot of different Javascript frameworks. In the following sections we are going
to compare some of the most popular that are used for web development. The ones that
we are going to compare are jQuery, React.js and Angular.

jQuery

According to their official website, "jQuery is a fast, small, and feature-rich JavaScript
library. It makes things like HTML document traversal and manipulation, event handling,
animation, and Ajax much simpler with an easy-to-use API that works across a multitude
of browsers. With a combination of versatility and extensibility, jQuery has changed the
way that millions of people write JavaScript." [21].

This javascript library is the most popular due to being used in WordPress which is a
low-code platform to build websites [13].

By using a technology like this we are able to manipulate the Document Object Model
(DOM) in a simpler manner, making a more responsive website. The documentation for
this framework is good and very easy to understand. By being the most popular framework
in stackoverflow, the support is also very good.

React.js

According to React’s Wikipedia page, "React.js is a free and open-source front-end JavaScript
library for building user interfaces or User Interface (UI) components. It is maintained by
Facebook and a community of individual developers and companies. React can be used as
a base in the development of single-page or mobile applications. However, React is only
concerned with state management and rendering that state to the DOM, so creating React
applications usually requires the use of additional libraries for routing, as well as certain
client-side functionality." [49].

In terms of libraries, React.js has an abundance of them, they can help the developer
to create a more visual and interactive UI and it also helps for the website routing, for
example, the use of the libraries HashRouter [38] and BrowserRouter [37] that allows for
the user to navigate in the website. Also, there is a library called Redux [19] that allows
for better state management and with that we can spend less resources from our servers

18

State-Of-The-Art

and allow for faster speeds of the website in development. In terms of documentation it is
outstanding, as their official website shows a very visual representation of the code and it
allows to learn this framework very fast in terms of state management for a person already
familiarized with javascript [18]. In terms of support, this framework also shows very
good support as it the second most popular in stackoverflow and the bugs are being fixed
everyday as it is an open-source project and it belongs to one the most popular companies
in the world, Facebook. If we search through their github [16], we can see the React.js
repository and can see their fixes.

This framework is already very well known by the author of this dissertation, as it was
used in several previous projects. The possibility of using this in the development is very
high for the at ease that the author has with this framework. However, this framework
is mainly for the front-end, but there are Software Development Kit (SDK) that can help
the process of developing it all in React.

Another feature is that in React you use JSX which is a syntax extension to Javascript.
It is very straight-forward. "JSX can remind you of a template language, however JSX
comes with the power of Javascript." [17].

Angular

According to Angular’s official website, "Angular is a framework for building interfaces of
application using HTML, CSS and mainly Javascript. Angular is a development platform,
built on TypeScript which is a more robust Javascript built by Microsoft. As a platform,
Angular includes:

• A component-based framework for building scalable web applications

• A collection of well-integrated libraries that cover a wide variety of features, including
routing, forms management, client-server communication, and more

• A suite of developer tools to help you develop, build, test, and update your code"

Like React.js, Angular also relies on components. "Components are the building blocks
that compose an application. Every component as an HTML template that (...)", like
React.js, "(...) lets you alter the rendered DOM using states. Another feature is Depen-
dency Injection, this lets you declare the dependencies of your TypeScript classes without
taking care of their instantiation. Instead, Angular handles the instantiation for you. This
design pattern lets you write more testable and flexible code. Even though understanding
dependency injection is not critical to start using Angular, we strongly recommend it as a
best practice and many aspects of Angular take advantage of it to some degree. There are
also libraries, some of them are first-party libraries, in other words, they are the essential
libraries to build web applications in Angular, they include:

• Angular Router - Advanced client-side navigation and routing based on Angular
components. Supports lazy-loading, nested routes, custom path matching, and more.

• Angular Forms - Uniform system for form participation and validation.

• Angular HttpClient - Robust HTTP client that can power more advanced client-
server communication.

• Angular Animations - Rich system for driving animations based on application
state.

19

Chapter 2

• Angular PWA - Tools for building Progressive Web Applications (PWAs) including
a service worker and Web app manifest.

• Angular Schematics - Automated scaffolding, refactoring, and update tools that
simplify development at large scale."

[28]

Appropriate Technology for Website Front-end

Having all the topics of these frameworks in mind, the technology chosen for the front-end
will be React.js. The author already knows and is proficient in this framework, this is a
plus because the author does not have to learn other frameworks. In addition, React.js is
the framework that has the best documentation and libraries to create a highly visual and
responsive website. Being open source and built by Facebook, it has optimisations such
as using the library Redux [19], which can help reduce resources costs, for example, the
number of reads from the database.

We are going to build our platform based on the ExperienceFellow existing one. One of
the functionalities of this platform requires drag and drop. This is very simple to do in
React.js, we only have to use a library called react-beautiful-dnd [3]. Another feature of
ExperienceFellow is the touchpoint overview, which uses a map to see the clusters of good
and bad satisfaction ratings. In React.js there is a library called google-map-react [27],
which allows us to have access to Google Maps just by having an API Key from Google.
This is also a plus for our website.

2.5.2 Mobile Application Front-end

Regarding the mobile application, we have two choices, a native one or a Progressive Web
Application (PWA). We are going to opt for doing a PWA. The reason for choosing a PWA
over native is the reduction in deployment cost. With a native application, we need to
pay a certain amount to Google’s Play Store and Apple App Store. We do not have those
resources available. However, by having a PWA we only need a server and a domain to
deploy the application, and Department of Informatics Engineering (DEI) provides these.
One of the disadvantages of a PWA is that is slower to respond than a native application.

This application can be built by using a cross-platform framework. This allows to code in
Javascript for example, and then it is rendered into a PWA. This makes development and
testing easier because it is fast to build and deploy the PWA.

Today, there are many cross-platform frameworks that exist. However, if we are going
to use React.js for the website front-end, we could also use React Native for the Mobile
Application. The semantics of the two frameworks are very similar.

Based on the ExperienceFellow application, we need to be able to access the camera, the
location and receive push notifications.

React Native has very good features that can help create a mobile application very fast.
Like React.js, there is a huge amount of libraries that can create highly visual and in-
teractive mobile applications. Also there is a SDK, Expo [14], that has features that are
essential in our Mobile Application. These include:

20

State-Of-The-Art

• Camera- This allows to use the back camera to take photos or videos and to read
QR Codes.

• Location - This allows to use the geolocation information from the device.

• Notifications - This allows to receive push notifications.

This SDK simplifies building our application and also simplifies the testing for the appli-
cation. There is a mobile application that can instantly display the software that we are
developing in real time on the mobile device. When the code is compiled, a QR code is
shown, and inside the application, we point the camera at it. This allows us to test on
different devices in a quick way.

React Native is built by Facebook and it is one of the most popular frameworks to build
cross platform mobile applications [44]. This means that in terms of support and documen-
tation, like React.js, it is very good. The only other platform that has similar popularity
is Flutter. However, it does not allow us to build such beautiful front-ends as it does not
have so many libraries.

By using Expo, we can build our application into a PWA or into a native application for
both iOS and Android. There are only small changes that need to be made in our code
for transforming from a native application to a PWA. These changes are related to the
libraries that we are going to use, as not all work in the PWA.

2.5.3 Back-end

According to data from statista [45], nowadays the cloud computing is the big thing, due
to the smart approach of pay-as-you-go, which allows the owner of the website to only pay
for the resources used. Cloud computing is growing at an exponential level [45]. There are
several services in existence. The two most popular are AWS and Firebase from Google.

AWS

AWS is the cloud service from Amazon, they include a lot of features in their service. As
the author already had worked with AWS, the main features of this application should
have a database and a hosting feature.

For hosting and as the front-end is built in React.js, we could use Amazon Simple Storage
Service (Amazon S3) for static hosting, and with React.js this is enough. Amazon S3 is
offered by AWS and provides object storage through a web service interface. We could
also use this for storage the pictures and videos of the participants of our project.

For using Amazon S3 we also need lambda functions to run code in the back-end. This
is another service from AWS. This service lets you run code on the cloud, like serverless
computing. However, we cannot do it without using another service to send the data from
the front-end to the back-end. The service in question is Amazon API Gateway. It allows
to create RESTful Application Programming Interface (API) and WebSocket API. This
will allow you to directly send data from the front-end to a lambda function and get a
response. Regarding the lambda functions, we can write and read from the databases and
from Amazon S3.

In AWS we have several choices for the database. They are divided by categories that
include

21

Chapter 2

• Relational databases - Amazon Relational Database Service (Amazon RDS) and
Amazon Aurora

• Key-value and document data - Amazon DynamoDB

• Graph databases - Amazon Neptune

• In-memory databases - Amazon ElastiCache

• Search - Amazon Elasticsearch Service

After having some databases, we have to choose which is best for our project. In this case,
there would be a key-value and document database like Amazon DynamoDB that allows
us to divide the data by several people and by several projects that exist on our platform.
Amazon DynamoDB has high-throughput, low-latency reads and writes and an endless
scalability. This is good if we think in terms of having a lot of participants and a lot of
researchers manipulating data.

Finally we can do a cost estimation using AWS calculator [2]. For this, we are going to
suppose a big number of requests from the API, 100000, a considerate amount of data
stored in the database, 1GB, and also 20GB of data stored in the Amazon S3. This would
give us a total amount of roughly 50 dollars per month. As we do not have any money
allocated for this project, AWS is not viable for our project.

Firebase

Firebase is a platform by Google to use in mobile and web applications. The features that
their platform that are interesting for the software tool that we are developing are:

• Firebase Hosting - "Firebase Hosting provides fast and secure hosting for your web
app, static and dynamic content, and microservices." [25].

• Cloud Firestore - "It is a flexible, scalable NoSQL cloud database for mobile, web,
and server development from Firebase and Google Cloud." [23]. Also, it allows for
deferred syncing, which will be a requirement of our Mobile Application.

• Authentication - "Most apps need to know the identity of a user. Knowing a
user’s identity allows an app to securely save user data in the cloud and provide the
same personalized experience across all of the user’s devices. Firebase Authentica-
tion provides backend services, easy-to-use SDKs, and ready-made UI libraries to
authenticate users to your app. It supports authentication using passwords, phone
numbers, popular federated identity providers like Google, Facebook and Twitter,
and more." [22].

• Cloud Storage - "Cloud Storage for Firebase is a powerful, simple, and cost-effective
object storage service built for Google scale. The Firebase SDKs for Cloud Storage
add Google security to file uploads and downloads for your Firebase apps, regardless
of network quality." [26].

• Cloud Functions - "Cloud Functions for Firebase is a serverless framework that
lets you automatically run backend code in response to events triggered by Firebase
features and HTTPS requests. Your JavaScript or TypeScript code is stored in
Google’s cloud and runs in a managed environment. There’s no need to manage and
scale your own servers." [24].

22

State-Of-The-Art

Firebase has a free tier, which can be enough for an internal project at DEI. In terms
of authentication and registration, we can have an unlimited amount of users. For cloud
firestore, there is a total amount of 1GB for the database, 50000 reads per day, and 20000
writes per day. For cloud storage, there is a total amount of 5GB, to surpass this limitation,
image compression can be done to reduce the amount of space spent. If the storage exceeds
5GB, each extra GB is 0.0026$, which is a very reduced amount.

With the available SDK for React.js and React Native, Firebase is a very good solution
to our project as it can less time to integrate some features such as, deferred syncing and
it is very simple to do user authentication. Also, the need for middleware, for example an
API using Express.js, is almost none.

PostgreSQL

PostgreSQL is a "open source object-relational database". One of the main advantages of
this database is that is open source, this means that are no costs associated with it. The
only cost would be the hosting platform. However, DEI has their own cloud servers. One
of the drawbacks of this application is difficulty to set up. An API has to be created. For
creating it, we could use Express.js, which uses Node.js as the language. Another drawback
is the difficulty of doing deferred syncing, we would have to do some more coding to reach
the same level of Firebase.

Also, functions like sign-up and sign-in have to be coded, and user data has to be encrypted
in the database. Firebase already does all of this automatically. Another feature that is
not available is the storage, we would have to store every image in the server and this is
complicated to set up in comparison to firebase, as firebase already gives a download link
when we upload a photography or video to the storage.

Appropriate Technology for Back-end

Looking for the stated technologies, the better option in the author’s opinion is Firebase,
he also has used it in the past and has features like deferred syncing that are already
implemented when the SDK is used. This is optimal for our mobile application. Also,
Cloud Firestore is very scalable as a database, which can be good for us when the software
to develop reaches a large number of users. Also, it has a free-tier that AWS does not
have, which can be good for developing before putting our software tool to production.

As said in the PostgreSQl section, sign-up, sign-in and storage are simpler to do in Firebase
and makes the database GDPR compliant due to the automatic encryption of user data.

2.5.4 Hosting

For hosting our website and PWA, we can also rely on DEI Cloud. This is service in from
the department that includes a Virtual Private Server (VPS) with limited quota. Each
machine has 4GB of RAM, 4 Virtual CPUs and 100GB of storage. This is good for our
project as it does not have any costs. The downside of using this technology is the difficulty
to set up the server.

23

This page is intentionally left blank.

Chapter 3

Requirements

In this chapter, requirements for the software tool were collected. Several methods were
used. For functional requirements, the methods used include a use case model, a user
interface model and a MoSCoW prioritisation. Also, non-functional requirements were
thought and the most appropriate for our software tool were chosen. In addition, a separate
document was written. This document is an Annex with the name Software Requirements
Specification and has the full requirements for this project. It contains the following
chapters:

1. Introduction - In this chapter, the purpose of the application and the risk is stated.

2. Overall Description - This chapter shows a more detailed description of the prod-
uct to be developed.

3. Specific Requirements - This chapter contains the Specific Requirements, starting
with a Use Case Model that contains a Context Diagram, Use Cases Diagrams and
Use Cases. Then, the User Interface Model was done, it includes User Experience
Diagrams and the User Interface of the product. Finally, the Non Functional Re-
quirements were stated and explained. To sum up this chapter, a list of all functional
requirements was made with the MoSCoW prioritisation method applied to each one.

3.1 Requirements Gathering

The first step to reach the requirements for the software tool to developed was doing a
study about the topics of this thesis, this includes mobile ethnography and service de-
sign. Subsequently, there was a search for similar tools on the market, and the functional
requirements were taken from there.

With functional requirements in mind, there was a comprehensive thinking about the
architecture and how everything is correlated. The research done in the state of the art
served as a basis for this rationale. In Figure 3.1., we can see a sketch of how the software
will be architected:

25

Chapter 3

Figure 3.1: Architecture Sketch

The architecture shown here is just a rationale for how the software tool will work. Further
ahead, a complete architecture will be made using the C4 Model. Afterwards, we went with
more detail, separating it into two distinct areas, mobile and web, analysing the details of
each area. To add to this, there was an analysis of users and possible constraints.

Since we already had all the necessary information about the software to develop, it was
time to start on the specific requirements. For this, we started with a context diagram to
identify the actors of our system. They are the participant and the researcher.

The next step was to advance to the requirements for each actor. For this several use cases
diagrams were made. With this, we can state all requirements. After having all of them,
we described each one with a use case.

The follow-up of having all the specific requirements is the design of the UI. The first step
taken was developing an User Experience Diagram (UED) for the mobile application and
for the web application. This will help us to develop our interfaces into a coeherent design.
By having an UED, the screens of the applications were easier to develop as we have all
the information of each screen already stated. The design of the screens may not be final;
however, they are an indication of what we are going to develop.

Finally, the non-functional requirements were discussed with the thesis advisor, and the
most appropriate were chosen for our project.

3.2 Use Case Model

In this section, actors, use cases, and their relationships will be presented. We want to
know how different users behave with regard to the system, with the purpose of solving
any problem. The actors will have goals that can not always be fulfilled. We also have the
interactions between the user and the system. Having this, we could know how to reach
the goals. In the use cases diagrams, we can visually see what the goals are. Simplifying
the final solution, which are the use cases themselves.

In Figure 3.2, the context diagram can be seen. It represents the interaction between the
actors and the system. Our primary actors are the participant and the researcher and can

26

Requirements

be seen on the left side of Figure 3.2. The system is displayed on the right side.

Figure 3.2: Context Diagram.

After having the context diagram, the use cases diagrams were made with the intention of
showing the functionalities of our software with regard to each actor. In Figures 3.3, 3.4
and 3.5, we can see the functionalities that are related to each of the actors.

Figure 3.3: Use Cases Diagram for Signing In and Signing Up.

27

Chapter 3

Figure 3.4: Use Cases Diagram for Participant Functionalities.

28

Requirements

Figure 3.5: Use Cases Diagram for Researcher Functionalities.

29

Chapter 3

With the diagrams made and the functionalities defined and related to each of the actors,
the next step is doing the use cases for each functionality. In Table 3.1, an example of a use
case can be seen. In this example, a new participant saw the application on the internet
and he wants to sign up on it.

Name Participant Sign Up
ID 01
Primary Actor Participant not registered on the System
Level Blue

Description The participant makes an account on the system,
inserting his personal data

Pre-condition The participant is not registered and has the application
installed on his device

Basic path

1: The participant opens the application
2: The participant selects the Sign Up option
3: The participant Inserts the personal data
4: The participant accepts the legal terms and conditions
5: The Participant selects the Sign Up option
6: The System verifies the data
7: The System validates the data
8: The System adds the new participant

Alternative path

6.a: The System finds an error in the participant data
6.b: The System informs the participant about the error
(email already exists or password too weak)
7.a: The system notifies to change the personal data

Post-condition Participant is registered and he is redirected to
the Choose Project page

Frequency Medium

Table 3.1: Participant Sign Up Use Case Table

The rest of the use cases can be seen in Appendix A - Use Cases or in the Annex with the
name Software Requirements Specification. Each of the functionalities represented in the
use cases diagrams is detailed as in Table 3.1.

3.3 User Interface Model

To aid in the development of the UI, the first step was to build a UED. This will help us
to develop our interfaces into a coeherent design. We can see in the UED the main focus
areas, in other words, the several screens of our applications. We correlated the various
focus areas to also understand navigation in our application. In each focus area, we can see
how the user interacts with the application and also the types of data that are used. User
Data is related to any type of data from the user of the application, email, and password
in our case. Project Data is all of the data related to project in a broader sense, name
of the project, token, etc. Touchpoint Data is the specific data for each project, and it is
more detailed than Project Data. It includes the several touchpoints of each project.

In Figure 3.6 , the UED for the website can be seen. In this diagram, the several screens
for the website can be seen and have the necessary information to help in the design. The
connections between the screens are also displayed to help in the navigation between them.

30

Requirements

Figure 3.6: User Experience Diagram of Website

In Figure 3.7, the UED for the mobile application can be seen. It follows the same logic as
the diagram in Figure 3.6. With these two diagrams we have the rationale to start creating
the UI.

31

Chapter 3

Figure 3.7: User Experience Diagram of Mobile Application

32

Requirements

For the creation of the UI, a tool called inVision was used. This tool allowed to use
preexisting libraries with already created modules such as login forms and buttons and
allowed to drag and drop the modules and create the screens. In Figure 3.8, we can see
an example of a website screen. This screen refers to the homepage. We can see the login
form and the buttons that take to the forget password and register screen. It can also be
seen how the screen correlates to UED in terms of buttons, inputs and the navigation.

Figure 3.8: Homepage User Interface

In Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9 from Appendix B - User Interface and in the Annex
with the name Software Requirements Specification, the rest of the screens for the website
can be seen.

In Figures 3.9 and 3.10, two examples of screens can be seen for the mobile application.
They are the homepage and the project screen. The homepage screen is the first screen
shown when an user enters the application for the first time. The project screen shows the
touchpoints already submitted to that project, there is also a button for an user to leave
the project and he can click on a button to add a new touchpoint which navigates to a
different screen, the New Touchpoint Screen which is Figure 15 from Appendix B - User
Interface. The rest of the screens made for the mobile application can be seen in Figures
10, 11, 12, 13, 14 and 15 from Appendix B - User Interface or in the Annex with the name
Software Requirements Specification.

33

Chapter 3

Figure 3.9: Homepage User Interface. Figure 3.10: Project User Interface.

3.4 Non-Functional Requirements

The Non Functional Requirements of this project should provide the ability to make this
software tool better for the end user. In order to reach these requirements, several discus-
sions were taken with the advisor of this thesis and the most adequate ones were chosen.

The first and most important non-functional requirement should be usability. It consists
of having a simple to use UI. The UI was made with this in mind. With usability testing,
we will see if this requirement is accomplished.

Another non-functional requirement is scalability. With this requirement, we do not want
to have a decrease in performance by having a class of 200 students using the application
at the same time. Firebase already provides scalability, their database is indexed in a way
to not have drops in performance.

Availability is also important. Deferred Syncing is already automatically implemented in
the Firebase software development kit and provides availability, allowing participants to
use the application even when an Internet connection is not available.

34

Requirements

3.5 Functional Requirements Prioritisation

This section presents a list of requirements for the participant and the researcher. It
contains the name of the requirement, the use case ID, and the MoSCoW prioritisation
method for each one.

MoSCoW prioritisation divides the requirements into four specific priorities:

• Must Have - Mandatory requirements needed for the project to work.

• Should Have - Not mandatory, but adds relevant value to the project.

• Could Have - Nice to have, but if not implemented will have a small impact on the
project.

• Will Not Have - Not to be implemented at this specific time, but can be imple-
mented in the future.

3.5.1 Participant Requirements

1. Sign Up - ID: 01 - Must Have

2. Sign In - ID: 03 - Must Have

3. Join a New Project - ID: 05 - Must Have

4. View Projects that you are Involved in - ID: 06 - Must Have

5. Change Password - ID: 07 - Must Have

6. Delete Account - ID: 08 - Must Have

7. View all Touchpoints Submitted - ID: 09 - Must Have

8. Edit Touchpoint - ID: 10 - Must Have

9. Add New Touchpoint - ID: 11 - Must Have

10. Leave Project - ID: 12 - Must Have

11. Logout - ID: 13 - Must Have

3.5.2 Researcher Requirements

1. Sign Up - ID: 02 - Must Have

2. Sign In - ID: 04 - Must Have

3. Change Password - ID: 14 - Must Have

4. Delete Account - ID: 15 - Must Have

5. Create Project - ID: 16 - Must Have

6. View Own Projects - ID: 17 - Must Have

7. Finalize Projects - ID: 18 - Should Have

35

Chapter 3

8. Archive Projects - ID: 19 - Should Have

9. View Project Journeys - ID: 20 - Must Have

10. Export Data - ID: 21 - Could Have

11. Delete Project - ID: 23 - Must Have

12. Manipulate Project Journeys - ID: 22 - Must Have

13. Show Project Map - ID: 24 - Should Have

14. Show Overview Graph - ID: 25 - Could Have

15. Logout - ID: 26 - Must Have

36

Chapter 4

Software Architecture

This chapter describes the software architecture. We use the C4 model to visualise it.
This model "(...) is an ‘abstraction-first’ approach to diagramming software architecture,
based upon abstractions that reflect how software architects and developers think about
and build software" [9]. The hierarchy of the C4 Model is divided in four levels, Context,
Containers, Components and Code. In our project we will only use Context, Containers
and Components levels. The level Code will not be used due to being a rapidly changing
environment and also to have more freedom to create the components when the platform
is being developed. Another reason to not deepen our architecture even further is the fact
that the complexity is not extremely high for our Components and if we need to generate
the Code Diagrams for the Components, a lot of tools can do it after the system is complete.

A good sentence to understand the C4 Model is the following: "A software system is
made up of one or more containers (web applications, mobile apps, desktop applications,
databases, file systems, etc), each of which contains one or more components, which
in turn are implemented by one or more code elements (e.g. classes, interfaces, objects,
functions, etc)." [9]. Here, we can clearly see the division of the four levels of this model.

Starting with the first level of the C4 Model, Context Diagram, we can see the system
as a whole which provides readability for all technical and non-technical people, inside
and outside the organization. Regarding the architecture of our system, we included the
actors, User and Service Provider or Researcher, the Software Systems, both internal and
external and the relationships between them. We can visualise Google’s Firebase as an
external software system and Costumer Experience Evaluation as an internal software
system. Google’s Firebase is a Backend-as-a-service and provides ready-made APIs for
helping in developing our software faster. Figure 4.1. shows the visualisation of the Context
Diagram of the architecture:

37

Chapter 4

Figure 4.1: Context Diagram

The second level of the C4 Model is the Container Diagram. This one displays more detail
about the software systems of the Context Diagram and also shows some more distributions
across the system. However, it is still very high-level. The intended audience for this level is
"Technical people inside and outside of the software development team; including software
architects, developers and operations/support staff." [9].

Regarding our software tool, we can see the two main components that will be made,
the progressive web application and the single-page application. We can also see another
container called Web Application, which will serve the latter. Also, the mobile application
container will serve the progressive web application. The technologies for these containers
are also shown in this diagram. For the progressive web application, we will use React
Native and JavaScript, for the single-page application, we will use React.js and JavaScript,
and for the Servers (Web Application and Mobile Application) we will use Nginx.

The bottom layer of our Container Diagram shows how Google’s Firebase works. We have
several micro-services: Firebase Authentication, Cloud Firestore and Cloud Storage. They
communicate with our applications via HTTPS and provide APIs with functions already
done to deal with the several functionalities needed in our components. Each one of these
micro-services has a storage or a database in the cloud. Figure 4.2. shows the Container
Diagram for our architecture:

38

Software Architecture

Figure 4.2: Container Diagram

39

Chapter 4

The third level of the C4 Model is the Component Diagram. It shows the details of the
Containers and is intended for the developers and for the software architects of the system.
This level is not mandatory in the C4 model. However, having it creates value in our
architecture by having an organisation for the various components to develop and to have
a better documentation. It will also help to apply the scrum methodology by facilitating
the division of work into several tasks prior to development.

Our architecture is organised into two main containers. The single-page application and the
mobile application. These Containers are the only ones to be decomposed into Components
as they are the ones to be developed using the technologies chosen in the state-of-the-art.

First, we have the Progressive Web Application Component Diagram. It shows a Controller
for the authentication, which uses Firebase Authentication and it is done with a React
Hook. We also have the several Components of the application, each one represents a screen
of our Mobile Application. The technology for each one of these Components is React
Native and JavaScript. These screens have been defined in the Software Requirements
Specification document in Annex 2 and we have an abridged version in the previous chapter,
Chapter 3 - Requirements. After this explanation of the Components, we can now describe
the relationships. For these ones, we can see how each Component is using Google’s
Firebase services and how they connect using HTTPS via their ready-made APIs. There
are several services of Google’s Firebase and it is explicit in the architecture visualisation
the functionalities of each Component in relation to the specific service in Firebase. One
Component can use more than one service from Google’s Firebase. We can also visualise
that the only actor displayed in this diagram is the user, as he is the one to use the Mobile
Application.

Second, we have the Single-Page Application Component Diagram. The organisation of
this is similar to that of the mobile application. We decompose it into several screens of our
application. There is a difference in this one, we do not have an authentication controller.
The control for the authentication is done inside each Component, thus allowing to only
go to the pages where authentication is needed if the researcher or the service provider
is authenticated. This is because of the different libraries for navigation in React.js and
React Native. In React.js we use React Router which allows us for creating different routes
each one corresponding to a different component. In React Native we use React Navigation
which allows us to have stacks of several components where the user can navigate and by
having an authentication controller we can select what is the stack to load. We can also see
the different actor, Researcher or Service Provider, regarding the single-page application
container.

Figure 4.3. shows the progressive web application component diagram, and Figure 4.4.
shows the single-page application component diagram. These ones will help us to pave the
way into development.

40

Software Architecture

Figure 4.3: Progressive Web Application Component Diagram

41

Chapter 4

Figure 4.4: Single-Page Application Component Diagram

42

Software Architecture

To conclude, the C4 model will help organise the development of our project. It will allow
us to have a better explanation of our components and how they connect to the various
services that our application uses. This will make our development faster, more concise
and easier to understand by other technical people, i.e. software engineers, developers,
software architects, etc. If someone wants to improve this project, he will be doing it
with a quicker pace. One way to further complement our architecture is to use an Unified
Modeling Language (UML) diagram. It is a better way to represent the use of external
services. In the development chapter, we will explain in detail these external services, how
they work with the front-end, and how they are structured.

43

This page is intentionally left blank.

Chapter 5

Software Development

In this chapter, everything about the development of our software tool will be detailed.
The development process uses three environments:

• Development - This environment is on the computer of the author of this thesis.
Any code updates will not affect the final product until this process is deployed
into the production environment. GitHub will also be used for version control and to
send code updates to staging. The website and the mobile application will run on the
computer of the author of the thesis. For the mobile application, we will simulate a
device using Chrome DevTools and will allows us to simulate a device in the browser.
Preliminary testing will be done in development in an attempt to minimise bugs in
the next environment.

• Staging - This environment is for more extensive testing, and all testers will use it. It
is not on the local machine, but instead on a remote server, and the mobile application
can be downloaded into the testers’ devices. Regarding the website, GitHub will be
used for automatic deploying it on the Firebase Hosting service. For this, a workflow
was made on GitHub that allows for an automatic deployment whenever a push
action is made. For the mobile application, we will deploy the PWA using Netlify.
This service has free servers available and all that is needed is putting the files of the
PWA, i.e., after the project has been built by Expo, on the server. With this, testers
can install the app on their device for a close to production experience.

• Production - This environment is for when all testing is done and we are ready to
launch our software tool to the public. The website and the PWA will be served on
a server from DEI. The mobile application can be installed on the users’ devices.

45

Chapter 5

5.1 Back-end Structure

In this section, the Firebase structure for the various services will be explained. These
include authentication, the Firestore database and Firebase storage.

5.1.1 Firebase Authentication

This service from Firebase is used to to register, log-in, and recover the password of all
users of our software tool. Using the libraries provided by Firebase, more specifically
firebase/auth, the user uses the email address and password to register. After this, a user
will be created with a unique identifier that will later be used to store data related to
him in the database. In addition, the log-in functionality is also available by using the
corresponding libraries. In conclusion, the password recovery functionality will also be
ready to use after the user has registered. By calling the appropriate function of the
libraries, the user will receive an email asking him to enter a new password. The body of
the email can be edited in the Firebase console according to our needs.

5.1.2 Cloud Firestore

Cloud Firestore is a NoSql, document-oriented database. It is used to store all the text
data and links of photos and videos. The structure for this is divided into three main
collections:

1. Participants - It has a document for each participant and also controls the log-in
functionality. Only allows participants to log in on the mobile application. Each
document is made up of user id, birth date, gender, and name. In addition, it
contains a collection of projects in which each user is involved.

2. Researchers - It has a document for each researcher and also controls the log-
in functionality. Only allows researchers to log-in into the web application. Each
document is composed of the user id.

3. Projects - It has a document for each project containing the name, the researcher
id, and the terms for that particular project. Inside each document, it contains three
collections:

(a) tags - It has a document for each tag added by the researchers to the project.

(b) touchpoints - It has a document for each touchpoint added by a participant.
Inside each document it contains all the information regarding the touchpoint.

(c) users - It has a document with the id of the participant to know what users are
inside that project.

In figure 5.1., a schema for the database can be seen, where the yellow boxes represent
collections and the blue boxes represent documents inside the collection. Note that a doc-
ument can have collections associated with it and a collection is comprised of documents.

46

Software Development

Figure 5.1: Cloud Firestore Database Schema

5.1.3 Firebase Storage

Firebase Storage is a cloud storage service that allows to store static content. In our case, it
will store photographs and videos related to the touchpoints. Using the libraries provided
by Firebase, we can upload the content and subsequently a link for it is provided. The link
is then stored in the Cloud Firestore database.

The structure of the folders is very straightforward. We have a folder called projects which
will store all the data relative to the projects. Inside this folder, we have a folder to each
project and inside each project folder, we have a folder for each user. Thus, allowing a
simpler process if we want to eliminate all data from an user or a project. In Figure 5.2.,
we can see the folder structure in more detail. Note that the folder that contains all the
projects can have an unlimited number of them and a folder of a project can have an
unlimited number of users.

47

Chapter 5

Figure 5.2: Firebase Storage Folder Structure

5.1.4 Security

Regarding the security of these Firebase services, some rules were written to try to remove
unwanted users. For Firebase authentication, there can only be new 100 users per hour
using the same IP address. This protects our project from misuse and malicious users.
We reached this number due to one IP address of a company can have many of users
but generally not more than 100, it is just an estimate. Also, this number can always be
changed. For the firestore database and firebase storage, a rule was written to only allow
reads and writes from authenticated users. In this way, even if users have the API keys,
they cannot delete and write data from the database unless they are authenticated.

5.2 Mobile Application Development

In this section, the development of the mobile application will be explained in every step
of the process.

5.2.1 Creation of Files and Installation of Modules

The first step taken in the mobile application was to create all the files and install all
the modules in order to start the development. First, Node.js and npm should already be
installed on the computer. Then, expo SDK was installed with the following command in
the terminal:

npm i n s t a l l −−g l oba l expo−c l i

48

Software Development

After the installation, the project was created with the following command:

expo i n i t mobethnos

As the project has been created, we will analyse it and explain the various parts of it.
Going to the root of the project, we can see a file called App.js, this is the starting page
for the application. A file called app.json can also be seen, which contains some API keys
and project information such as names, icons, and splash images. The file structure will
be divided in three main directories:

• components - Includes all the screens of our application.

• config - It has the configuration to connect our application to the back-end.

• assets - It stores the static content of the application, i.e., the images required for
the screens.

Regarding other directories, we also have node_modules, this one contains all the modules
installed via npm, in other words, the open source libraries for React Native.

5.2.2 Connection to Firebase

To connect our application to Firebase, the first step taken was to create a new project on
Google’s Firebase console. After this, a set of API keys was given to us. In the config folder
of our project, we created a file called firebase.js that contains the configuration. Prior to
that, the libraries for Firebase were installed. Also, for deferred syncing and for working
offline seamlessly, we added one function of Firebase library, enableIndexedDbPersistence(),
it persists and caches data from the Cloud Firestore database. The configuration file looks
like this; however, the API keys shown here are substituted with the symbol #:

import { i n i t i a l i z eApp } from ’ f i r e b a s e /app ’ ;
import { enableIndexedDbPers i s tence , g e tF i r e s t o r e }
from ’ f i r e b a s e / f i r e s t o r e ’ ;

const f i r e b a s eCon f i g = {
apiKey : "#######################################" ,
authDomain : "mobethnos . f i r eba s eapp . com" ,
p r o j e c t I d : "mobethnos" ,
storageBucket : "mobethnos . appspot . com" ,
messagingSenderId : "############" ,
appId : "#:############:web:######################" ,
measurementId : "#−#########"

} ;

const app = i n i t i a l i z eApp (f i r e b a s eCon f i g) ;

const f s = g e tF i r e s t o r e ()
const db = enable IndexedDbPers i s tence (f s) ;

export default app ;

49

Chapter 5

5.2.3 Authentication and Navigation

Regarding the navigation, a library called React Navigation [15] allowed us to simplify it.
Looking at how it works, we can have multiple stacks of components to render given a
condition. By using a listener from the Firebase Authentication library we can see the
authentication status and render the matching stack. To listen for this a new React Hook
was created, the following code shows how this hook works.

First, we have the hook itself to listen to the status of the user and then return it.

import React , { useState } from ’ r ea c t ’ ;
import { getAuth , onAuthStateChanged } from ’ f i r e b a s e /auth ’ ;

const auth = getAuth () ;

export func t i on useAuthent i cat ion () {
const [user , s e tUser] = useState (" load ing ") ;

React . u s eE f f e c t (() => {
const unsubscribeFromAuthStatusChanged = onAuthStateChanged (

auth , (user) => {
i f (user) {

se tUser (user) ;
} else {

setUser (undef ined) ;
}

}) ;

return unsubscribeFromAuthStatusChanged ;
} , []) ;

return {
user

} ;
}

Second, we have the component that will render the stack corresponding to the user status,
the UserStack is the authenticated one and the AuthStack is the unauthenticated one.
The hook made previously will return the user status to this component. In addition, this
component will be called on App.js, which is the first component to be rendered in the
application.

import React from ’ r ea c t ’ ;
import { Ac t i v i t y I nd i c a t o r } from ’ react−nat ive ’
import { useAuthent i cat ion } from ’ . / useAuthent i cat ion ’ ;
import UserStack from ’ . / UserStack ’ ;
import AuthStack from ’ . / AuthStack ’ ;

export default f unc t i on RootNavigation () {
const { user } = useAuthent i cat ion () ;

i f (user == " load ing "){

50

Software Development

return <Act i v i t y I nd i c a t o r s t y l e={{po s i t i o n : ’ abso lu t e ’ ,
j u s t i f yCont en t : ’ c en t e r ’ , a l i g n S e l f : ’ c en t e r ’ , l e f t : 0 ,
r i g h t : 0 , top : 0 , bottom : 0}}/>

}
else {
return user ? <UserStack /> : <AuthStack/>

}
}

Finally, we have the components containing all the screens of the navigation, the AuthStack
and the UserStack mentioned above. In the UserStack, we have all the the components
with the functionalities for an authenticated user. These include viewing all projects,
adding a new project, seeing, adding, and editing touchpoints, and a settings component
that contains the functionality to change password, delete account, and logout. We can
see the code for the UserStack in the following.

import React from ’ r ea c t ’ ;
import { Navigat ionConta iner } from ’ @react−nav igat i on / nat ive ’ ;
import { createNat iveStackNav igator } from
’ @react−nav igat i on / nat ive−s tack ’ ;

import Pro j e c t s from ’ . / Pro j e c t s ’ ;
import AddProject from ’ . / AddProject ’ ;
import Se t t i ng sSc r e en from ’ . / Se t t i ng sSc r e en ’ ;
import Pro j ec tSc reen from ’ . / Pro j e c tSc reen ’ ;
import TouchpointScreen from ’ . / TouchpointScreen ’ ;
import EditTouchpoints from ’ . / EditTouchpoints ’ ;

const Stack = createNat iveStackNav igator () ;

export default f unc t i on UserStack () {
return (

<Navigat ionContainer>
<Stack . Navigator>

<Stack . Screen name="Pro j e c t s "
component={Pro j e c t s } . . . / >

<Stack . Screen name="AddProject "
component={AddProject } . . . / >

<Stack . Screen name=" Se t t i n g s "
component={Se t t i ng sSc r e en } . . . / >

<Stack . Screen name="Pro j e c t "
component={Pro j ec tSc reen } . . . / >

<Stack . Screen name="Touchpoint"
component={TouchpointScreen } . . . / >

<Stack . Screen name="Edit "
component={EditTouchpoints } . . . / >

</Stack . Navigator>
</Navigat ionContainer>

) ;
}

In the AuthStack, we have the functionalities regarding the unauthenticated user. These

51

Chapter 5

include the home screen, the login, the registration, and the password recovery. We can
see the code for the AuthStack in the following.

import React from ’ r ea c t ’ ;
import { Navigat ionConta iner } from ’ @react−nav igat i on / nat ive ’ ;
import { createNat iveStackNav igator } from
’ @react−nav igat i on / nat ive−s tack ’ ;

import Login from ’ . . / components/Login ’ ;
import Reg i s t e r from ’ . . / components/ Reg i s t e r ’ ;
import HomeScreen from ’ . . / components/HomeScreen ’ ;
import PasswordRecuperation from ’ . / PasswordRecuperation ’ ;

const Stack = createNat iveStackNav igator () ;

export default f unc t i on AuthStack () {
return (

<Navigat ionContainer>
<Stack . Navigator in it ia lRouteName=’Home ’>

<Stack . Screen name="Home"
component={HomeScreen} . . . />

<Stack . Screen name="Login"
component={Login} . . . / >

<Stack . Screen name="Reg i s t e r "
component={Reg i s t e r } . . . / >

<Stack . Screen name="PasswordRecuperation "
component={PasswordRecuperation } . . . / >

</Stack . Navigator>
</Navigat ionContainer>

) ;
}

5.2.4 Unauthenticated User Functionalities

The unauthenticated user functionalities are the log-in, the registration, and the password
recovery. In this subsection, we are going to explain how these functionalities work.

The registration screen consists of a set of inputs. These inputs include name, birth date,
sex, email address, and password. Figure 5.3. shows the screen for this functionality. The
other unauthenticated functionalities follow the same logic as the register screen. They
have a set of inputs and subsequently they are sent to the back-end by Firebase’s functions.

52

Software Development

Figure 5.3: Register Screen of the Mobile Application

When a user fills in the input on this screen and clicks the register button, it will sign up
the user with the appropriate function and subsequently write this data in the database.
It also marks this user as a participant. Thus, not allowing one to log-in as a researcher.
If a user is already registered, the system warns the user and doesn’t let him register.

Regarding the log-in functionality, the user enters the email address and password. When
clicking the log-in button, the system logs the user in using the appropriate function from
the libraries. If the account associated with the user that is trying to log-in is a researcher
one, the system sends a warning and logs the user out.

The password recovery functionality comprises an input for the user’s email address. When
clicking the button to recover the password, the system sends an email to the user to
change his password. This works by calling the Firebase library function, sendPasswor-
dResetEmail(), and defining the email to send to the user in the Firebase console. After
the user has changed his password, he can log-in with the new one immediately afterwards.

5.2.5 Authenticated User Functionalities

The authenticated user functionalities are the essence of our application. These include
seeing all projects, adding and leaving a project, adding, editing, and eliminating touch-
points, and also changing password and deleting the account.

53

Chapter 5

Functionalities for the Screen that Contains all Projects

When a user logs in, the first screen that he sees has the projects that he is a participant
in. The functionalities are: seeing all the projects, a button to go to the screen to add a
new one, and a button to go to the settings screen. It also has a functionality to submit
touchpoints to the database that were uploaded when the user was offline. In Figure
5.4., we can see the screen that contains these functionalities. In this particular case, it
contains two projects: Projeto Teste and Projeto Ativo. We can also see that there are no
touchpoints that were submitted offline.

Figure 5.4: Projects Screen of the Mobile Application

To get all the projects in which a user participates, we call a function in the useEffect to
go to the back-end to fetch these data. The useEffect is a hook for React, this hook tells
the component to do something when the screen renders. It can be used to fetch data or
update the DOM. Every time we need to get something when the screen renders we use
this hook.

Regarding the function to get the projects, the collection of the projects for the logged
in user is read from the database and afterwards the data for each project is read. If the
status of the project is active, we add the data of the project to an array. The data include
the name and id of the project. We then set that array as the state for the projects so that
we can pass it to the flatlist containing all the projects. For setting the state, we created
a new state called projects in the beginning of the component with the useState hook.
This allows us to have a function with an initial value that can be changed and later used
in the render of the component. This hook works just like a global variable. Also, when
the screen is rendered, the projects are always updated. If the user clicks on a project,

54

Software Development

it goes to the screen where he has all the information submitted to the project that will
be explained later. It does so by using the React Navigation library. The name and id of
the project and the user id are also passed to the screen of each project. We can see an
example of how it works in the following code snippet:

<TouchableOpacity . . . onPress={() => sync ing ?
setShowAlert (true) :
nav igat i on . nav igate (" Pro j e c t " ,
{ name : item . name , id : item . id , user_id : uid })
}>

. . .
</TouchableOpacity>

The TouchableOpacity corresponds to a button, which in this case shows the project. The
syncing state is related to the functionality of deferred syncing which will be explained
ahead.

In order to navigate to the screens to add a new project and settings, the React Navigation
library is used. The navigate function is called, which derives from the navigation called
from the props. These props are defined in the Stack for the navigation. Props are used
to pass data between components and from parent to child components.

Lastly, the function to submit the touchpoints that a user has submitted while offline
works by using Localbase. It works like firestore database with a key and value but uses
IndexedDB from the browser. For a more detailed explanation of Localbase, we can see
the Github page [11] of the creator regarding this library. Another library, NetInfo [10],
allows to see if the user is connected to the internet. If this is true, the touchpoints in
this offline database are written in the firestore database and the static content, photos
and videos, uploaded to firebase storage. When uploading to the back-end is being done,
the user cannot leave this screen and, if he tries, is warned about losing information about
the touchpoints. In the previous code snippet, a state called syncing could be seen. It
indicates if the content is being uploaded from the offline to the online database.

Functionalities For the Screen For Each Project

The screen for each project contains the functionalities to view all the touchpoints sub-
mitted, leave the project, and navigate to the screen to add a new touchpoint. In Figure
5.5., this screen can be seen. In this Figure, three touchpoints are provided as an example:
Touchpoint 1, Touchpoint 2 and Touchpoint 3. These are in descending order in terms of
time. This means that we can first see the most recent and then the latter.

55

Chapter 5

Figure 5.5: Project Screen of the Mobile Application

Starting with navigation functionalities, such as going to the screen to add a new touchpoint
and going to each touchpoint screen, the React Navigation library is used in a similar
manner to what was explained above. For going to the screen of each touchpoint, the data
regarding to the touchpoint is passed on to it by using React Navigation.

Then, we have the functionality to see all the touchpoints submitted. Similarly to the one
on the Projects screen where we could see all projects, this one is also inside a useEffect
hook. Inside this hook, there is a function to fetch the touchpoints of a particular user in
a particular project. After getting them, we sort them by descending order, set the state,
and pass it on to the corresponding Flatlist.

Finally, to leave the project, the user clicks the button and a function for this is called.
Inside this function, all photos and videos of this user in this project are deleted by going
to that specific folder in the firebase storage. After this is done, all the documents in the
firestore database that connect this user to this project are also deleted. The system then
redirects the user to the screen that contains all projects.

56

Software Development

Adding a Touchpoint

In this functionality, we can add a new touchpoint to a specific project. Each one contains
a title, satisfaction, notes, and then optional photos, videos, and location. In Figure 5.6,
the screen can be seen regarding this functionality.

Figure 5.6: Add Touchpoint Screen of the Mobile Application

When the user clicks on the save button, the system checks if network connection is avail-
able by using NetInfo library. The system also shows a small notification in the bottom
of the screen warning the user if he has internet connection or not. This can be seen in
Figures 5.7 and 5.8.

Figure 5.7: Successful Internet Connec-
tion Notification

Figure 5.8: Unsuccessful Internet Con-
nection Notification

In this functionality, there are two distinct parts. If the user has internet connection,
the data is saved in firebase storage and firestore database. If not, it is saved using the
Localbase offline database.

Starting with the on-line part, when the user clicks the save button, photos and videos are
stored in firebase storage. Subsequently, a link for each one is retrieved. Afterwards, the

57

Chapter 5

data for each touchpoint and the links are written in the database.

Moving now to the offline part, we create a new collection in Localbase called touchpoints,
where we add an object containing all the data submitted. Photos and videos are stored
in base64 format. When this is done, the data is saved offline and when the user enters the
application again with network connection the touchpoint is submitted as stated above in
Functionalities for the Screen that Contains all Projects.

Some libraries from Expo were used, expo-image-picker to get photos and videos and expo-
location to get the location. Another library called moment was also used to get the current
timestamp.

Edit Touchpoint

The edit touchpoint functionality has the same information as adding a new one; however,
the user cannot edit the location where it was submitted, or if he did not add the location,
he cannot add it posteriorly.

When the user opens the touchpoint screen, he can click on notes, satisfaction, and title to
edit it. By doing so, a modal will be opened, and then he can insert the new information
and save it. All the information will be saved in a useState hook, which will allow to imme-
diately update after the change is made. This speeds up the front-end by showing instant
updates. After the user has saved the information inserted in the modal, the corresponding
state is updated and the system uses firestore libraries to update the information in the
database.

Regarding photos and videos, if the user deletes one of them, this content will be deleted
from the firebase storage and then from the database. After this is done, the state will be
updated by removing the content. For adding static content, the logic is the same as when
adding a new photo or video while adding a new touchpoint. First, the content is stored in
firebase storage and a link is retrieved. Then, the link is stored in the firestore database.

Finally, the user can delete a touchpoint. When this happens, the static content is firstly
deleted from firebase storage using the corresponding links and, afterwards, the data of
this touchpoint is deleted from the database. Finally, the system redirects the user to the
project screen using the React Navigation library.

Functionalities for the Settings Screen

In the settings screen, the user can change the password, delete the account and log-out.

To change the password, the user has to enter his password, the new password, and confirm
this new password. When the user clicks the change button, the system re-authenticates
the user and retrieves a credential using the firebase auth libraries. This function is asyn-
chronous and has a try catch inside. If something goes wrong, there is an alert inside the
catch that will warn the user. So if the firebase auth library can not authenticate the user,
an alert will be made and the function will warn the user. If all goes correct and the user
chooses a strong password according to firebase auth parameters, the password is changed.
If the password is not strong enough, the system will warn the user.

To delete the account, the user has to enter his password. It works with a credential,
re-authentication, and a try catch, like the function to change password. However, in this
case, all user data will be deleted. To do so, we first loop through all projects of the user to

58

Software Development

delete the user data related to the project. Inside this loop, we are going to each firebase
storage folder corresponding to the project that is being looped with the user id. The path
to the storage looks like this:

r e f (s torage , ‘ p r o j e c t s /${document . data () . p r o j e c t I d }/${uid } ‘) ;

Inside this folder we are going to delete all the content. Then, we are going to delete
all the touchpoints corresponding to the user, by going to the appropriate location in the
firestore database. In the final part inside the loop, we go to the projects collection inside
the participant document and delete it and also, delete the user from the users collection
inside the project document. This loop is done for all projects. After all projects have been
deleted, we delete the document corresponding to the user in the participants collection
and finally delete the user using the firebase auth libraries. As there is no user signed-in,
the React Navigation library will render the stack corresponding to the unauthenticated
functionalities.

5.2.6 Progressive Web App Requirements

For a PWA to work as intended and to be installed on the users’ devices, there are three
requirements that must be met [35].

The first one is that the website must have a web manifest file. This requirement is
automatically met using Expo SDK. When the website is built, it automatically creates
this for the website. The manifest allows the system to know several details, such as splash
screen, the icon and name for the PWA.

The second one is that the website must run be served using HTTPS. It "provides a layer
of security and trust between the application and the browser" [35].

The third one is that the website must register a service worker. "The service worker
provides the extensible backbone for event-driven functionality to execute on a separate
thread from the user interface." [35]. To create the service worker, @expo/webpack-
config and workbox were used. First, we need to run expo customize:web to create
the webpack.config.js file. Then, using the expo tutorials, we created the file service-
worker.js, which is the service worker itself. The code to create it is provided by Expo
in the following link https://github.com/expo/examples/blob/master/with-workbox/
src/service-worker.js. To create the functions to posteriorly register the service worker,
the file serviceWorkerRegistration.js was created and the code is also provided by expo
in the following link https://github.com/expo/examples/blob/master/with-workbox/
src/serviceWorkerRegistration.js. Finally, in the body of the App.js file, we register
the service worker by calling the appropriate function from serviceWorkerRegistration.js
which in our case is the register() function.

59

https://github.com/expo/examples/blob/master/with-workbox/src/service-worker.js
https://github.com/expo/examples/blob/master/with-workbox/src/service-worker.js
https://github.com/expo/examples/blob/master/with-workbox/src/serviceWorkerRegistration.js
https://github.com/expo/examples/blob/master/with-workbox/src/serviceWorkerRegistration.js

Chapter 5

5.3 Website Development

In this section, the development of the website will be explained in every step of the process.

5.3.1 Creation of Files and Installation of Modules

To create the website, the process is similar to that of creating the mobile application. The
requirements are the same; however, instead of using npm, we are going to use yarn, which
is another package manager. The other requirement is that Node.js needs to be installed
on the computer.

To create the project, the following command was typed in the terminal:

npx create−react−app mobethnos

With this we can start developing our project as we now have all the files and modules for
a blank React.js website.

5.3.2 Connection to Firebase

To connect the website to Firebase, the process is similar to the one in the Mobile Ap-
plication due to the frameworks being very similar, practically the same. The difference
from the Mobile Application is that the firebase.js file is placed inside the components
folder instead of creating a separate folder. Another difference was that we did not include
the enableIndexedDbPersistence() function as a consequence of the requirements that state
that the website does not need to work offline.

5.3.3 Navigation Between Components

For the navigation between components, a library called react-router-dom was used. It
allows to assign a path to a component. Therefore, to navigate between pages, which are
some of the components of the website, functions from this library were used.

To assign the components to paths, they were imported to the App.js file and assigned to
a Route, which we can see in the following code snippet as an example:

<Router>
<Routes path="/" element={<App />}>

<Route index element={<WelcomeScreen />} />
<Route path=" forgetpassword "

element={<ForgetPasswordScreen/>}/>
<Route path=" r e g i s t e r " element={<Reg i s t e rSc r e en/>}/>
<Route path="home" element={<Homepage/>}/>
<Route path=" c r e a t e p r o j e c t "

element={<CreatePro jec tScreen/>}/>
<Route path=" v i ewpro j e c t s "

element={<ViewProjectScreen/>}/>
<Route path=" p r o j e c t " element={<Pro j ec tSc reen/>}/>

</Routes>
</Router>

60

Software Development

In this example, the first screen corresponds to the component called WelcomeScreen which
has the path "/" due to having the index prop and the path "/" being defined in the Routes
component. Then, we can see more screens related to other components. For instance, we
have the CreateProject component that has the path "/createproject".

5.3.4 Authentication

As the navigation with react-router-dom differs from React Navigation, the way compo-
nents are loaded is different. When we enter on the website, the WelcomeScreen component
is always rendered. Then the user can log-in; if he does so, the react-router-dom library
redirects to the Homepage component. However, if the user tries to enter the compo-
nents that need authentication and he isn’t authenticated, the system will automatically
redirect to the WelcomeScreen component. This works with a useEffect inside each au-
thenticated component. First, a state for the user with an empty object is defined, then,
in the useEffect a function to get the user status is called:

async func t i on getAuthStatus () {
const unsubscr ibe = await onAuthStateChanged (auth ,

(cu r r en tu s e r) => {
setUser (cu r r en tu s e r) ;

}) ;

r e turn () => {
unsubscr ibe () ;

} ;
}

This is a function that will define the status of the user. Lastly, in the render part, if the
user state is null or undefined, the Navigate function from react-router-dom is called to
render the WelcomeScreen. Else, it renders the corresponding screen. An example can be
seen with the following code:

i f (! user) {
re turn <Navigate to="/" />;

} e l s e {
re turn (. . .)

}

5.3.5 Unauthenticated User Functionalities

The unauthenticated user functionalities are similar to those of the mobile application,
except for the addition of a button that redirects the user to the PWA link. These func-
tionalities are log-in, registration, and password recovery.

In the log-in, a function is called that signs the user with the email and password. We
used a function from Firebase auth library called signInWithEmailAndPassword(). After
the user logs-in with success, the system verifies in the database if the user is indeed a
researcher. If not, the system warns the user that he is a participant and does not let him
log-in. This was a decision taken after the requirements. This is because in the future, if
we need to commercialise our tool and researchers need to pay a subscription, a id from
the authentication can be associated with a stripe id, for example. Stripe is a service that

61

Chapter 5

allows payments and can be implemented in a commercialized version of our product [46].
If he is indeed a researcher, the system redirects to the homepage of the authenticated
functionalities.

Regarding the registration, the user only needs to enter his email, password and confirm
it. Unlike the mobile application, the system does not need to save additional information
about the researcher as the name, age or gender of the researchers is not relevant to the
analysis of a service. After the registration is successful, a document with the id of the
researcher is inserted in the researchers collection in the Firestore database. This will
prevent the researcher to log-in with the same account in the mobile application. This
was a decision taken, as mentioned above, thinking about the future commercialisation of
the tool and so, separate the accounts from researchers and participants by different users’
emails.

To recover the password, the researcher only needs to enter his email, and subsequently
an email will be sent to his address to redefine his password. This works the same way as
for the mobile application. A function sendPasswordResetEmail() will be called with the
user’s email, and the back-end treats this automatically.

5.3.6 Authenticated User Functionalities

The authenticated user functionalities of this website are divided into several components.
When the researcher logs-in, he has a homepage where he can change his password and
delete his account. Other functionalities in the same dashboard include the creation of a
project and seeing all the projects. The projects are divided by their status. When the
user clicks on the project, he can see the journey maps, the maps, an overview, can add
tags, delete the project, and customise the touchpoints to their needs by adding tags as
stated in the requirements.

Dashboard functionalities

Starting with the password change and the deletion of the account functionality, in terms
of code, is equal to that of the mobile application. The system re-authenticates the user
with the current password and a credential is retrieved to subsequently call the function to
change password or to delete the account. To change the password, we used the function
updatePassword() from the Firebase auth library. To delete the account, we first loop
through the several projects of the user. Inside this, we are going to go through all users
of the project one by one. Then, we delete all static content from storage and delete the
project document inside the participants collection in the document of each user. After
going through all project users, we are still inside the loop of the projects. Here, we
are going to delete the collections of touchpoints, tags, and users, and finally, delete the
document of the project inside the projects collection. Then, moving out of all loops, we
delete the document corresponding to the researcher account in the researchers collection
and finally, delete the user using the firebase/auth library.

Create a project

For creating a project, a user has to insert the project name and the terms of the project,
which can be a project description and what will the data be used to. For the terms of
the project, we used a library called Mantine [31]. This library provides components with

62

Software Development

very good usability and ease of implementation. In the Mantine library, we chose the
RichTextEditor, which allows to create rich text by just using the component and pass the
value of it to a state to later store in the database. To add to the database, the function
from the firestore library is used and we define the status of the project as active. After
the project is created, a QR code can be downloaded, and we can also see the token of the
project on the screen. This token will serve as a way for participants to enter the project.
This can be by inserting it on the proper input or by scanning the QR code. The QR
code was created using the react-qr-code library, the value of which being the token of the
project.

Viewing and Selecting Projects

Regarding the projects, they are divided into active, finalized and archived. To do this
division, we used another component from Mantine, called Accordion. This provides win-
dows for each project and can be opened when the user clicks on them. To open a project,
the user just needs to click on top of them in the screen and will automatically redirect the
user to the page of the project. The library react-router-dom was used to pass the project
id to the component of the project itself. We did that by surrounding each element of the
project with the Link component from the library. Each link leads to the path "/project",
and the project id is passed on to it by using the prop called state.

Functionalities in each Project Page

Inside each project page, we have a dashboard that is controlled by tabs. For this, we used
a component from Mantine called Tabs. Each tab has a corresponding component. To
find which project is to be loaded, the useLocation() function from the react-router-dom
is used. Inside the location, we can check the value of state and retrieve it.

First, we have the Journey Map. This component contains a mix of libraries. For drag-
and-drop, react-beautiful-dnd was used. For the elements of the screen, Mantine was used.
In addition, Material UI and other libraries like Google Maps, React Player were also used.
When the page renders, we get all the touchpoints and users of a specific project. When
we load the touchpoints, we do it in a way that each user has their touchpoints. In figure
5.9., we can see the structure of the created array:

Our array will contain an object for each user. This object will contain the name, the age,
the gender, the user id, and an array for the touchpoints of each user. It should be noted
that this array of touchpoints is sorted by the order defined in the database coming from
the drag-and-drop functionality or by the timestamp. Also, if the array containing all the
touchpoints of the user is empty, the object will not be added to the array containing all
the objects of each user.

When using the react-beautiful-dnd, we surrounded the container that includes all the drag-
and-drop zones with a DragDropContext component. When a drag event ends, a function,
dragEndHandler(), is called. Each container that includes the array of the touchpoints of
each user is a Droppable component. This Droppable component as has a droppableId,
which is the id of the user. Each element inside this Droppable component is a touchpoint
which is surrounded by a Draggable component where we pass a key and a draggableId.
These correspond to the id of the touchpoint. Also, an index is passed which is the position
of the touchpoint in the array. In the function dragEndHandler(), we have a source and a
destination. If the destination is null or if the droppableId of the source and destination

63

Chapter 5

Figure 5.9: Structuring of Data for the Touchpoints Array

is different, then nothing happens, and the touchpoint will return to the initial position.
If this does not happen, we are going to the array that contains all the objects of all the
users, find the user and then change the order of the array accordingly. After that, we take
the array of touchpoints of the user that we changed and create a new variable called order
in the database in the document of each touchpoint. The order variable in the document
of each touchpoint corresponds to the index of that element in the array.

Furthermore, the user has the option to add blank spaces between the touchpoints. These
blank spaces are treated in the same way as touchpoints in the database. However, they
will only contain the order of the array and the user id. When the researcher clicks on the
button to add the blank space, there is a creation of a new object that contains the order
and the user id. This object is added to the array of touchpoints of that particular user at
the correct index. Afterwards, we add a new element to the touchpoints collection inside
the project document containing the user id and the order. The whitespaces can also be
deleted. To achieve this, the inverse of adding a whitespace is done. We delete the object
from the array of touchpoints for each user and then delete it from the database.

The last aspect from the journey map component in our project is the hability to see the
detailed information regarding each touchpoint. For this, we used a Drawer component of
the Mantine library. We can see the title, satisfaction, notes, location, photos, and videos
from the touchpoints. To fulfill this functionality, we used a state with an object. When
the researcher double clicks on a touchpoint, the information of it is passed on to the object
in this state.

64

Software Development

Visualizing in the Map

This functionality allows the researcher to visualize all the touchpoints in the map and
filter them by satisfaction and by user. For this, several markers were custom made by
using an SVG example as a base and then the colour was changed in the component. To
use google maps, a library called google-map-react was installed and an API key in google
maps console was created. Moreover, the markers take longitude and latitude, which are
defined when the data is fetched at the beginning. There is also a Drawer component from
Mantine when the researcher clicks the markers. In contrast to the journey maps where
we have all the data from the touchpoints from the phase where the data is fetched, when
a researcher clicks on a Marker, first we read the data from the database and then pass it
to the state.

Overview

In the overview, the researcher can see numbers corresponding to the amount tags, the
amount of users with a particular satisfaction, participants, and genders. These are shown
in tables which have customized horizontal and vertical axis. The process in this case is
having predefined table headers when the user selects the desired options, and subsequently,
the data of the table is read from the database and passed on to a state to put in the table.

Settings of each Project

The settings of each project are divided into adding tags, visualising and deleting tags,
deleting the project, and changing the status of the project.

To add tags, the researcher just writes the name and the tag is added to the tags collection
in the database. The system only allows for a researcher to add up to ten tags, this comes
from a limitation from Firestore library, where the array-contains in a query only allows
for up to 10 elements in the array.

In the following section, the researcher can see all the tags and can click on the x button
to delete them. To do this, the tag is deleted from the tags collection, then we get all the
touchpoints and run the arrayRemove() function on all the touchpoints to remove the tag
from that touchpoint. Finally, the state containing the tags is updated.

To delete the project, we first loop through all participants in the project and delete all
data in the Firebase storage regarding each one. Then, we delete the document inside the
projects collection of the participant that connects the participant to this project and get
out of the loop. Afterwards, we delete the tags, touchpoints and participants collections
and finally, delete the project document inside the projects collection.

In the final section of the settings, we can change the status of the project. To achieve
this, the researcher selects the desired status, and the field in the document of the project
is changed to that state.

65

This page is intentionally left blank.

Chapter 6

Software Testing

Software testing is the phase in which we check whether the developed project complies
with the requirements and does not have defects. The main goal in this chapter is to
guarantee users a quality product.

Testing can be divided into black box and white box testing. "Black Box Testing is a
software testing method in which the functionalities of software applications are tested
without having knowledge of internal code structure, implementation details and internal
paths." [29]. "White Box Testing is software testing technique in which internal structure,
design and coding of software are tested to verify flow of input-output and to improve
design, usability and security." [30].

Regarding our project, we are going to focus mainly on black box testing in order to test
the functionalities and try to encounter any defects in our code. The techniques that will
be used are end-to-end testing for the Web application and usability testing for the PWA.
White box testing was already made in the development phase, and techniques such as
unit testing are particularly difficult to apply as our code has asynchronous functions that
read and write from the database. These functions don’t have an input and consequently
they don’t return any value, thus not having an measurable output. Most functions work
with states and by updating the correspondent state.

6.1 End-To-end Testing

End-To-End Testing is a software testing method that "tests the functionality and per-
formance of an application under product-like circumstances and data to replicate live
settings." [41]. The goal of this method is to simulate real user scenarios from beginning to
end. The tool we are going to use to ensure the implementation of this method is Selenium
IDE [40]. It allows us to write tests without any code and then execute them all at once.
In addition, tests can be exported to JavaScript.

The plan to fulfil this method is to look at the requirements and test them by simulating
the user actions to achieve a particular one. Also, all user actions need to be simulated,
such as providing an input wrong information, for example, a non registered user email or
a wrong password for an already registered account. In Figure 6.1, an example of a test
can be seen corresponding to a correct log-in.

67

Chapter 6

Figure 6.1: Log-in test using Selenium IDE

In the figure shown above, there is a table with three columns: command, target, and
value. Command is where the type of action desired is defined; this can be an open, a
click, a type, for example. Target is where the command is concluded; this can be an URL,
an id, for example. Value is an input for the target or a the return value of a function
defined in the target, this can be any type of text. In this particular case, the test simulates
that the user should open the website, then click on the field to enter the email, type the
email, click on the field to enter the password and then type it. Lastly, the test simulates
that the user should click on the sign-in button and the page where the URL with the
path defined as /home should load. The green ticks show whether the test was successful.
If it failed at some stage, it would appear as a red tick at that specific stage. The full list
of the tested used cases can be seen in Table 1 in Appendix B. Additionally, the following
tables in Appendix B show the description of the various tests made.

To achieve the tests shown successfully, some modifications to the code had to be made,
such as adding identifiers to inputs and buttons to allow Selenium to identify them. All of
these tests passed, some not on the first attempt, but it implied only small modifications
like sanitising error messages, that is, changing the texts in the alert prompts due to the
firebase error messages being too large for the alert prompt too handle. As can be seen in
Table 1 from Appendix B, some tests had to be done by hand due to being difficult and
time consuming to do with automation because of functionalities like drag-and-drop and
some ids being hard to reach. This is largely because of the use of libraries like Mantine
for the front-end. When some identifier was passed to a Mantine component, Selenium
could not find it, or it took too much time, i.e. more than 30 seconds, to find it.

6.2 Usability Testing

After the author of this thesis had fully developed the mobile application, some tests were
performed to ensure that the functionalities were indeed working. After this stage, we
are ready to let some real users try the application and give their opinion on whether the
application is usable or not. In addition, with the real user’s opinion, more improvements
can be made with the conclusions taken.

68

Software Testing

6.2.1 Participants

The participants in this test are of a variety of ages. The range is between twenty-two
and fifty-nine years old. Three people of this test are used to working with software
development, are young and have knowledge in using mobile applications. Two users are
older and they only use mobile applications for messages and social media. In this way, we
can see how different users with different experience in technologies can reach the proposed
goals. There was a decision to make the target audience any user of services.

By doing some research, the ideal number of users should be five to "get close to user
testing’s maximum benefit-cost ratio." [34]. With this in mind, we are going to use five
people for usability testing of our mobile application.

6.2.2 Procedure

In usability testing, the test should be performed in a calm environment without distrac-
tions in order to the user understand the tasks to be attained. To start the test, the
objective of it and the project was explained to the user. Afterwards, the user signed a
consent form saying that test is voluntary and will be used to improve the application by
the information provided. The installation of the application was guided by the author
and it will not count to the test.

The test procedure consists of nine tasks:

1. Register in the application;

2. Enter the project with the provided QR Code;

3. Submit a new touchpoint in the project with random information, but adding at
least a photo, a video and GPS location;

4. Edit the submitted touchpoint title to "This is a test";

5. Turn off all the internet sources from the mobile device and close the application;

6. Re-do step 3 with the internet connection turned off;

7. Turn on internet connection again and check if the touchpoint is being saved online;

8. Change the password for your account;

9. Logout from the application;

For each of the tasks, the author took notes on how many clicks the user took to reach that
specific task. After the procedure was completed, the users responded to some questions
and wrote some conclusions on what can be improved.

6.2.3 Results

The results of this test were measured by the number of clicks to reach a specific task. In
Table 6.1, the results can be seen for each user.

69

Chapter 6

PPPPPPPPPUsers
Tasks 1 2 3 4 5 6 7 8 9

User 1 11 3 14 4 4 14 4 7 1
User 2 10 5 12 3 3 13 2 6 2
User 3 10 3 12 3 3 13 4 5 1
User 4 10 3 13 4 3 12 2 5 1
User 5 15 3 12 4 4 13 2 5 1

Table 6.1: Metrics for each user for each completed task

In Table 6.2, the expected number of clicks for each task can be seen. This number helps
us to draw some conclusions about the results of the tests. Task 4 can have 3 or 4 clicks
due to having only Wi-Fi or having both Wi-Fi and mobile data on.

Tasks 1 2 3 4 5 6 7 8 9
Expected number of Clicks 10 3 12 3 or 4 3 12 2 5 1

Table 6.2: Expected Number of Clicks for Each Task

In Table 6.3, we can see what is the mean number of clicks for each task. By having this
table, we can see which task has some kind of big discrepancy from the expected number of
clicks in Table 6.2. For a big discrepancy, we are going to consider three clicks of difference.
Note that the mean shown in this table is a rounded number.

Tasks 1 2 3 4 5 6 7 8 9
Mean number of Clicks 11 3 13 4 3 13 3 6 1

Table 6.3: Mean Number of Clicks for Each Task

As the tables above show, the test achieved quality results, all tasks were completed and
the discrepancy is not very high between the mean number of clicks and the expected
number of clicks. The tasks that differ are 1, 3, 6, 7 and 8.

Regarding task 1, this differs from the expected number because user 5 had some extra
clicks on inserting the date of birth. For the rest of the users results are normal and the
behaviour was as expected.

Regarding task 3, the behaviour was also as expected. However, user 1 has some extra
clicks due to wanting to change the notes and the title before submitting. This is a very
large task, but the test results show that the screen is well designed and intuitive. This
analogy also applies to task 6 which has the same screen.

Regarding task 7, some users showed difficulty finding in the application the screen where
the touchpoints submitted offline were syncing to the online database.

Regarding task 8, user 1 made a mistake when inserting his current password and two
extra clicks were necessary to achieve this task.

70

Software Testing

Questionnaire Answers

The questionnaire had some questions which were answered in a linear scale from 0 to 10
and a question with a yes, no and maybe. The first question is whether the application is
easy to use. Figure 6.2 shows the results for this question.

Figure 6.2: Question one

As can be seen, the majority of users chose option 8, which means that we made an
application easy to use, achieving one of our goals.

The second question asks the user if it was simple to enter a project. Figure 6.3 shows the
results for this question.

Figure 6.3: Question two

Option number 9 was chosen by all users. Having this number signifies that users liked
the functionality; therefore, it can be concluded that it is very straightforward to enter a
new project.

The third question asks the user if he would use the application in a real-life scenario.
Figure 6.4 shows the results.

71

Chapter 6

Figure 6.4: Question three

The pie chart shows that 60% of the users said yes and 40% maybe. By not having any
answer with no, it can be concluded that users would use it in a real-life scenario.

The fourth question asks the user if he feels the application design is appealing. Figure
6.5, shows the results.

Figure 6.5: Question four

By only having high numbers, 7, 8 and 9, we can conclude that the design is appealing,
therefore achieving another one of our goals which states that the User Interface needs to
be intuitive and straightforward.

The answers to the last question asking if the application worked well without internet
connection can be seen in Figure 6.6.

72

Software Testing

Figure 6.6: Question five

It can be seen that the functionality of not having internet has worked for some users
but others did not understand how the application worked without having an internet
connection. Therefore, there is room for improvement in this area.

Overall, all the functionalities worked in the desired manner except for the deferred syn-
chronisation, as users did not understand how it worked. They completed all the tasks,
which meant that the test was completed with success.

Sugestions

After all responses, users had the opportunity to write their own suggestions. Only one
user did not have any suggestions. The suggestions were the following:

• Getting into the project is easy, but the page is a bit confusing, having a place to
put the token and another to scan the QR code.

• Greater user interaction through more suggestive warning messages whenever an
action was taken or an error occurred.

• Improve the colour scheme; black is too dark; maybe a dark grey will achieve a similar
effect but a bit more appealing. Regarding the functioning of the platform, I have
no suggestions.

• The application took a long time to save the submitted touchpoint offline, but oth-
erwise it worked fine.

73

Chapter 6

6.2.4 Conclusions

To a large extent, the tests were successful due to users completing all tasks with a low
degree of difficulty. The only problem was with task 7 where users did not know where
to find the screen for the syncing part, but having gone back to the main screen of the
application was then obvious for them.

All the participants of this test perceived the application objective and the majority would
later use it in a real-life scenario. However, by the user suggestions we can still have
room for improvement regarding the user interface in terms of color and there is also some
confusion in some inputs. In addition, more alerts are needed to warn users of their actions
or if errors occurred.

Lastly, we can say that our application follows a good path in terms of usability despite
having some suggestions to improve it. For future development into a more robust version,
some of this suggestions can be taken into account and be used to improve the application.

6.3 Software Testing Conclusions

By doing End-To-End and Usability testing, an evaluation of the developed products can be
performed. Overall, both products achieved what was expected. All functionalities worked
as intended and some even exceeded the testers expectations, for example, reading the QR
code for entering a project. Only one functionality, deferred syncing, was not accepted
as expected. However, the functionality worked in the correct format. The problem here
is that the approach to this solution was not the best. There are ways to correct this
problem. The implication of this problem is that the users can not leave the screen while
the touchpoints are syncing. Other testers did have more suggestions, more suggestive
warning messages, however, they did not state clearly what they wanted. So, in order to
achieve this suggestion, when an action is taken, the application should respond in any
way and the texts could be improved. The implications of this problem are based on the
user being lost in their actions in the application.

With these tests, we can conclude that there is no need for changes in this iteration of
the platform. In a future version, some design changes can be made, mainly changing the
colour scheme and changing the way deferred syncing is done. Instead of doing it in a
component, the optimal solution would be to do it in the service worker. Also, there is a
need to perform more tests in the mobile application with respect to warning messages.
This is for having a sense of the users opinions in relation to the warning messages and do
the adequate changes.

74

Chapter 7

Conclusion

The theme of this thesis was proposed by Department of Informatics Engineering (DEI)
and the main objective was to develop a tool for evaluating services. To achieve this,
a Progressive Web Application (PWA) and a Website were developed. With the PWA,
feedback is collected from service users using mobile ethnography as a data collection
method. The Website uses service design guidelines to be able to evaluate the service
fairly. The data being evaluated is collected from the PWA. The development followed a
scrum-based methodology. In the first semester, a study was carried out on the subject of
this thesis, this included mobile ethnography, service design and a search for similar tools
to the one developed. There was also a study on what technologies should be applied to
it, there was a gathering of requirements and tasks where planned according to the time
available for the whole project. In the second semester, there was a refinement of the
architecture and a focus on development and testing.

The first step taken in this project was to study services and what they represent. This
serves as context on what was developed. Subsequently, there was a study on Service
Design that helped later in the requirements for the Website. Then, there was a study
on Mobile Ethnography to gain more knowledge to apply it later to the requirements of
the PWA. Lastly, there was some research to find some similar tools in the market to get
a sense of what will be needed for the functional requirements and connect them to the
research done of Mobile Ethnography and Service Design.

The second step was to study the technologies. As the author’s knowledge with the React
framework was already good, this was chosen to develop both the PWA and the web
application. There was also a study for other technologies to gather information and see if
it was beneficial despite the time spent learning a new technology. The conclusion for this
problem is that is not beneficial and the other technologies have greater learning curves.
For the back-end, Firebase was the chosen technology. This is related to the fact that
integrating it with React is a simple process and by having a No-SQL document-oriented
database, it has good scalability. Also, it has more services like authentication and a
storage without needing a physical server.

Following this study, a document was prepared with the requirements specification. To
achieve the requirements, there was a study done in the state-of-the-art in which similar
tools to the one developed were found and helped gathering the requirements. There was
a focus on use cases to represent functional requirements. These contain some relevant
information on how a user will reach this functionality and the frequency of use. The
MoSCoW method was also applied to functional requirements to prioritize them. The
non-functional requirements were gathered by having discussions with the advisor of this

75

Chapter 7

thesis and decided which were the most adequate for the tool. After having all the require-
ments specified, there was a need to design some mock-ups. First, an User Experience
Diagram (UED) for both the PWA and web application was done in order to assign the
requirements to each screen and how the navigation would work, making it a coherent
design. Then, using a tool called inVision, the mock-ups were designed to help save time
in the development phase.

In order to draw solutions from the requirements to our software system, we have imple-
mented a software architecture. For this, the C4 model was used. It also helped in the
development phase, allowing to see the how the back-end connects to the front-end and
dividing the several screens into components.

The development stage started with the creation of the project files and the set up of
the development and staging environments. As development progressed, the author tested
each functionality before developing the next one, this was also an attempt to minimize
bugs in the staging environment. All the "Must Have" and "Should Have" requirements
were implemented. One of the requirements "Could Have" was not, due to not being
strictly necessary for this project as there is no need to export data in this first version
of the product. This makes this project achieve the threshold of success as it met all the
minimum conditions.

After the development was completed, we proceeded to testing to evaluate whether the
functionalities are indeed well developed or not. The first method was end-to-end testing,
using both automated and manual testing. This was a success, as all tests passed with
minimum changes. These changes were changing some ids to inputs and button in order for
Selenium to read them. The second method was usability testing. Some suggestions were
made and all users performed the tasks presented in an efficient manner. This usability
testing made it clear that the non-functional requirement usability with the metric of
having a simple to use User Interface (UI) is fulfilled.

The next step was set up the development environment. For this stage, both applications
front-end were served on DEI internal servers. For the back-end, it is served from google’s
servers. The front-end server for the PWA needed to be served with https. To achieve
this goal, let’s encrypt certbot was used. Also, both servers are serving the front-end using
nginx.

Several challenges occurred during the development of this project. One of them was
managing the time needed for developing two different products, the PWA and the web
application. The focus of development could not be on one product at a time, as to test
some functionalities, they needed to be concluded on the web application as well as on the
PWA. So, going back and forth between the two applications code could be complicated
sometimes, due to losing the focus on what was being developed and therefore hinder the
efficiency of development and being more prone to make mistakes. Another challenge was
configuring the API keys for Google maps and integrating them into our code in the PWA,
as they would only work after the project was built. This made testing in the development
environment more laborious.

For future progress of the tool, some testers suggested better offline syncing, as they did
not understand how that functionality worked. The solution to offline syncing was doing
the syncing part in the initial screen, this is not the optimal solution as the user can not
leave that screen until all is synced. In the future, it could be done on the service worker for
better navigation and a more seamless experience. This way, users could use the app while
syncing. Another improvement could be made to the web application, such as loading the
content of a page. The current version is missing some feedback in that particular part.

76

Conclusion

The solution is to show more feedback to end users by using spinners while content is
loading. Also, the PWA does not show the archived and finalized projects. In the next
version, showing them can be a good improvement.

Doing this thesis was a rewarding experience due to putting into practice software engi-
neering skills thought during the degree. It was also a chance to gain more experience
on the various steps of a software engineering project while performing mobile and web
development.

77

References

[1] 10 platforms for mobile ethnography. https://www.insightplatforms.com/
10-platforms-for-mobile-ethnography/. Accessed on October 2021.

[2] Amazon. Aws calculator. https://calculator.aws/. Acessed on December 2021.

[3] Atlassian. react-beautiful-dnd library. https://github.com/atlassian/
react-beautiful-dnd. Accessed on November 2021.

[4] Several Authors. This is service design doing. https://www.
thisisservicedesigndoing.com. Accessed on October 2021.

[5] Several Authors. This is service design thinking. http://
thisisservicedesignthinking.com. Accessed on October 2021.

[6] The World Bank. Services, value added (% of gdp). https://data.worldbank.
org/indicator/NV.SRV.TOTL.ZS?end=2020&start=1995&view=chart. Accessed on
October 2021.

[7] The World Bank. Services, value added (% of gdp) - united states. https://data.
worldbank.org/indicator/NV.SRV.TOTL.ZS?locations=US. November on October
2021.

[8] John D. Brewer. Ethnography. Open University Press, 2000.

[9] Simon Brown. C4 model. https://c4model.com/. Accessed on March 2022.

[10] React Native Community. React native net info. https://github.com/
react-native-netinfo/react-native-netinfo. Accessed on May 2022.

[11] Danny Connell. Localbase. https://github.com/dannyconnell/localbase. Ac-
cessed on May 2022.

[12] Brian Dean. Netflix subscriber and growth statistics: How many people watch netflix
in 2021? https://backlinko.com/netflix-users. Accessed on October 2021.

[13] WordPress Engine. jquery versions in wordpress. https://wpengine.com/support/
including-a-different-jquery-version-in-wordpress. Accessed on November
2021.

[14] Expo. Expo sdk. https://expo.dev/. Accessed on October 2021.

[15] Expo, Software Mansion, and Callstack. React navigation. https://
reactnavigation.org/. Accessed on May 2022.

[16] Facebook. React.js github. https://github.com/facebook/react. Accessed on Oc-
tober 2021.

78

https://www.insightplatforms.com/10-platforms-for-mobile-ethnography/
https://www.insightplatforms.com/10-platforms-for-mobile-ethnography/
https://calculator.aws/
https://github.com/atlassian/react-beautiful-dnd
https://github.com/atlassian/react-beautiful-dnd
https://www.thisisservicedesigndoing.com
https://www.thisisservicedesigndoing.com
http://thisisservicedesignthinking.com
http://thisisservicedesignthinking.com
https://data.worldbank.org/indicator/NV.SRV.TOTL.ZS?end=2020&start=1995&view=chart
https://data.worldbank.org/indicator/NV.SRV.TOTL.ZS?end=2020&start=1995&view=chart
https://data.worldbank.org/indicator/NV.SRV.TOTL.ZS?locations=US
https://data.worldbank.org/indicator/NV.SRV.TOTL.ZS?locations=US
https://c4model.com/
https://github.com/react-native-netinfo/react-native-netinfo
https://github.com/react-native-netinfo/react-native-netinfo
https://github.com/dannyconnell/localbase
https://backlinko.com/netflix-users
https://wpengine.com/support/including-a-different-jquery-version-in-wordpress
https://wpengine.com/support/including-a-different-jquery-version-in-wordpress
https://expo.dev/
https://reactnavigation.org/
https://reactnavigation.org/
https://github.com/facebook/react

References

[17] Facebook. React.js jsx. https://reactjs.org/docs/introducing-jsx.html. Ac-
cessed on October 2021.

[18] Facebook. React.js website. https://reactjs.org/. Accessed on November 2021.

[19] Facebook. Redux. https://redux.js.org/. Accessed on October 2021.

[20] Jason Fernando. What is gross domestic product (gdp)? https://www.
investopedia.com/terms/g/gdp.asp. Accessed on June 2022.

[21] OpenJS Foundation. What is jquery? https://jquery.com/. Accessed on October
2021.

[22] Google. Firebase authentication. https://firebase.google.com/docs/auth. Ac-
cessed on October 2021.

[23] Google. Firebase cloud firestore. https://firebase.google.com/docs/firestore.
Accessed on October 2021.

[24] Google. Firebase cloud functions. https://firebase.google.com/docs/functions.
Accessed on October 2021.

[25] Google. Firebase hosting. https://firebase.google.com/docs/hosting. Accessed
on October 2021.

[26] Google. Firebase storage. https://firebase.google.com/docs/storage. Accessed
on October 2021.

[27] Google. google-map-react library. https://www.npmjs.com/package/
google-map-react. Accessed on November 2021.

[28] Google. What is angular? https://angular.io/guide/what-is-angular. Accessed
on October 2021.

[29] Thomas Hamilton. What is black box testing? techniques, example types. https:
//www.guru99.com/black-box-testing.html. Accessed on June 2022.

[30] Thomas Hamilton. What is white box testing? techniques, example types. https:
//www.guru99.com/white-box-testing.html. Accessed on June 2022.

[31] Mantine. Mantine library. https://mantine.dev/. Accessed on May 2022.

[32] Birgit Muskat, Matthias Muskat, and Anita Zehrer. Qualitative interpretive mobile
ethnography. Anatolia, 2017.

[33] NTask. Scrum artifacts | what are they how to incorporate them in agile framework?
https://www.ntaskmanager.com/blog/scrum-artifacts/. Accessed on November
2021.

[34] Jakob Nielsen on Nielsen Norman Group. How many test users in a usability study?
https://www.nngroup.com/articles/how-many-test-users/. Accessed on June
2022.

[35] O’Reilly. Pwa technical requirements. https://www.oreilly.
com/library/view/progressive-web-application/9781787125421/
e89ac7bb-8251-41ed-ad3f-6ed793a73b9d.xhtml. Accessed on May 2022.

[36] Oxford. Definition of ethnography. https://www.oxfordreference.com/view/10.
1093/oi/authority.20110803095759601. Accessed on October 2021.

79

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/
https://redux.js.org/
https://www.investopedia.com/terms/g/gdp.asp
https://www.investopedia.com/terms/g/gdp.asp
https://jquery.com/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/functions
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/storage
https://www.npmjs.com/package/google-map-react
https://www.npmjs.com/package/google-map-react
https://angular.io/guide/what-is-angular
https://www.guru99.com/black-box-testing.html
https://www.guru99.com/black-box-testing.html
https://www.guru99.com/white-box-testing.html
https://www.guru99.com/white-box-testing.html
https://mantine.dev/
https://www.ntaskmanager.com/blog/scrum-artifacts/
https://www.nngroup.com/articles/how-many-test-users/
https://www.oreilly.com/library/view/progressive-web-application/9781787125421/e89ac7bb-8251-41ed-ad3f-6ed793a73b9d.xhtml
https://www.oreilly.com/library/view/progressive-web-application/9781787125421/e89ac7bb-8251-41ed-ad3f-6ed793a73b9d.xhtml
https://www.oreilly.com/library/view/progressive-web-application/9781787125421/e89ac7bb-8251-41ed-ad3f-6ed793a73b9d.xhtml
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095759601
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095759601

Chapter

[37] React Router. Browserrouter. https://reactrouter.com/web/api/BrowserRouter.
Accessed on October 2021.

[38] React Router. Hashrouter. https://reactrouter.com/web/api/HashRouter. Ac-
cessed on October 2021.

[39] Fabian Segelström, Bas Raijmakers, and Stefan Holmlid. Thinking and doing ethnog-
raphy in service design. IASDR: Rigor and Relevance in Design, 1–10, 2009.

[40] Selenium. Selenium ide. https://www.selenium.dev/selenium-ide/. Accessed on
June 2022.

[41] SmartBear. Combine api and ui testing for confidence at every layer of your applica-
tion. https://smartbear.com/solutions/end-to-end-testing/. Accessed on June
2022.

[42] Apoorva Srivastava, Sukriti Bhardwaj, and Shipra Saraswat. Scrum model for ag-
ile methodology. 2017 International Conference on Computing, Communication and
Automation (ICCCA).

[43] StackOverflow. 2020 developer survey. https://insights.stackoverflow.com/
survey/2020. Accessed on October 2021.

[44] Statista. Cross-platform mobile frameworks used by software developers world-
wide from 2019 to 2021. https://www.statista.com/statistics/869224/
worldwide-software-developer-working-hours/. Accessed on November 2021.

[45] Statista. Total size of the public cloud computing market from 2008 to 2020. https:
//www.statista.com/statistics/510350/worldwide-public-cloud-computing/.
Accessed on November 2021.

[46] Stripe. Stripe official | payment processing platform for the internet. https://stripe.
com/en-pt. Accessed on June 2022.

[47] Ash Turner. How many smartphones are in the world? https://www.bankmycell.
com/blog/how-many-phones-are-in-the-world. Accessed on October 2021.

[48] Wikipedia. Mobile ethnography. https://en.wikipedia.org/wiki/Mobile_
ethnography. Accessed on August 2022.

[49] Wikipedia. React (javascript library). https://en.wikipedia.org/wiki/React_
(JavaScript_library). Accessed on October 2021.

[50] Wikipedia. User experience. https://en.wikipedia.org/wiki/User_experience.

80

https://reactrouter.com/web/api/BrowserRouter
https://reactrouter.com/web/api/HashRouter
https://www.selenium.dev/selenium-ide/
https://smartbear.com/solutions/end-to-end-testing/
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/510350/worldwide-public-cloud-computing/
https://www.statista.com/statistics/510350/worldwide-public-cloud-computing/
https://stripe.com/en-pt
https://stripe.com/en-pt
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://en.wikipedia.org/wiki/Mobile_ethnography
https://en.wikipedia.org/wiki/Mobile_ethnography
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://en.wikipedia.org/wiki/User_experience

Appendices

81

This page is intentionally left blank.

Appendix A - Use Cases

Researcher Sign Up

A researcher was told about the application by a friend and he wants to sign up on it.

Name Researcher Sign Up
ID 02
Primary Actor Researcher not registered on the System
Level Blue

Description The researcher makes an account on the system,
inserting his personal data

Pre-condition The researcher is not registered

Basic path

1: The researcher goes to the system’s website
2: The researcher selects the Sign Up option
3: The researcher inserts the personal data
4: The participant accepts the legal terms and conditions
5: The Participant selects the Sign Up option
6: The System verifies the data
7: The System validates the data
8: The System adds the new researcher

Alternative path

6.a: The System finds an error in the researcher data
6.b: The System informs the researcher about the error
(email already exists or password too weak)
7.a: The system notifies to change the personal data

Post-condition Researcher is registered and he is redirected to
the Dashboard page

Frequency Medium

Table 1: Researcher Sign Up Use Case Table

83

Appendix A - Use Cases

Participant Sign In

A participant wants to sign in.

Name Participant Sign In
ID 03
Primary Actor Participant
Level Blue
Description The participant signs in inserting his personal data
Pre-condition The participant is already registered on the system

Basic path

1: The participant opens the application
2: The participant selects the Sign In option
3: The participant inserts the personal data
(email and password)
4: The participant selects the Sign In option
5: The System verifies the data

Alternative path
5.a: The System finds an error in the user data
(email doesn’t exist or wrong password)
5.b: The System informs the user about the error

Post-condition Participant is signed in and he is redirected to
the Choose Project page

Frequency Medium

Table 2: Participant Sign In Use Case Table

84

Researcher Sign In

A researcher wants to sign in.

Name Researcher Sign In
ID 04
Primary Actor Researcher
Level Blue
Description The researcher signs in inserting his personal data
Pre-condition The researcher is already registered on the system

Basic path

1: The researcher goes to the system’s website
3: The researcher inserts the personal data
(email and password)
4: The researcher selects the Sign In option
5: The System verifies the data

Alternative path
5.a: The System finds an error in the user data
(email doesn’t exist or wrong password)
5.b: The System informs the user about the error

Post-condition Researcher is logged in and he is redirected to
the Choose Project page

Frequency Medium

Table 3: Researcher Sign In Use Case Table

85

Appendix A - Use Cases

Join a New Project

A participant enters a flight and sees the QR code to enter the airline’s project. Now, he
wants to join this project to give his insights to the airline.

Name Join a New Project
ID 05
Primary Actor Participant
Level Blue
Description The participant joins a new project
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the Add Project option
3: The participant scans the QR Code
4: The participant selects the Add option
5: The System inserts the participant in that project

Alternative path 3.a: The participant enters the token for the project
Post-condition Participant is redirected to the Choose Projects page
Frequency Medium

Table 4: Join a New Project Use Case Table

View Projects that you are Involved In

A participant wants to see the projects that he has entered.

Name View Projects that you are Involved In
ID 06
Primary Actor Participant
Level Blue
Description The participant wants to see the projects that he has entered
Pre-condition The participant is already registered and signed in on the system

Basic path 1: The participant opens the application
2: The participant sees all the projects he has previous entered

Post-condition Participant sees all projects that he is involved in
Frequency High

Table 5: Views Project that you are Involved In Use Case Table

86

Change Password

A participant wants to change his password.

Name Change Password
ID 07
Primary Actor Participant
Level Blue
Description The participant wants to change his password
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the settings option
3: The participant inserts his current password
4: The participant inserts his new password
5: The participant inserts his new password for confirmation
6: The participant selects the change password option
7: The system changes the participant’s password

Alternative path 7.a: The system informs the participant to choose another
password (inserted password is too weak)

Post-condition Participant’s password is changed
Frequency Low

Table 6: Change Password Use Case Table

Delete Account

A participant wants to delete his account.

Name Delete Account
ID 08
Primary Actor Participant
Level Blue
Description The participant wants to delete his account
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the settings option
3: The participant selects the delete account option
4: The participant inserts his password
5: The system informs the participant about the successful
deletion

Alternative path 5.a: The system informs the participant that his password is
wrong

Post-condition Participant’s account is deleted
Frequency Low

Table 7: Delete Account Use Case Table

87

Appendix A - Use Cases

View all touchpoint points submitted

A participant wants to see all the touchpoints submitted for a particular project.

Name View All Touchpoints Submitted
ID 09
Primary Actor Participant
Level Blue

Description The participant wants to see all the touchpoints
submitted for a project

Pre-condition The participant is already registered and signed in
on the system

Basic path

1: The participant opens the application
2: The participant selects the project he wants
to see the touchpoints
3: The participant views all touchpoints submitted

Alternative path None

Post-condition Participant is on the project page and views all the touchpoints
he submitted for a particular project

Frequency High

Table 8: View all touchpoint points submitted Use Case Table

Edit touchpoint

A participant wants to change the photo for a specific touchpoint.

Name Edit Touchpoint
ID 10
Primary Actor Participant
Level Blue
Description The participant wants to change the photo for a touchpoint
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the project we wants to change the
touchpoint
3: The participant selects the specific touchpoint
4: The participant selects the add photo option
5: The participant selects the new photo in his device
6: The participant selects the save option

Alternative path None

Post-condition Touchpoint is modified with success and the participant is
redirected to the choose touchpoints page

Frequency Low

Table 9: Edit Touchpoint Use Case Table

88

Add New Touchpoint

A participant wants to add a new touchpoint.

Name Add New Touchpoint
ID 11
Primary Actor Participant
Level Blue
Description The participant wants to add a new touchpoint
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the project we wants to add the
touchpoint
3: The participant selects the new touchpoint option
4: The participant enters the title
5: The participant selects the satisfaction
6: The participant writes a small description in the notes section
7: The participant selects the save option

Alternative path

6.a: The participant selects the Add Photo Option
6.b: The participant selects the photo in his device
6.1.a: The participant selects the Add Video Option
6.1.b: The participant selects the video in his device
6.2: The participant selects the option for allowing the
geolocation position

Post-condition Touchpoint is submitted and the participant is redirected to
the choose touchpoints page

Frequency Normal

Table 10: Edit Touchpoint Use Case Table

89

Appendix A - Use Cases

Leave Project

A participant wants to leave a project.

Name Leave Project
ID 12
Primary Actor Participant
Level Blue
Description The participant wants to leave a project
Pre-condition The participant is already registered and signed in on the system

Basic path
1: The participant opens the application
2: The participant selects the project we wants to leave
3: The participant selects the leave option

Alternative path None

Post-condition Participant is removed from the project and is redirected to
the choose project page

Frequency Low

Table 11: Leave Project Use Case Table

Participant’s Logout

A participant wants to log out of the application.

Name Participant’s Logout
ID 13
Primary Actor Participant
Level Blue
Description The participant wants to logout from the application
Pre-condition The participant is already registered and signed in on the system

Basic path
1: The participant opens the application
2: The participant selects the settings option
3: The participant selects the logout option

Alternative path None

Post-condition Participant is signed out of the application and is redirected to
the homescreen page

Frequency Low

Table 12: Participant’s Logout Use Case Table

90

Change Password

A researcher wants to change his password.

Name Change Password
ID 14
Primary Actor Researcher
Level Blue
Description The researcher wants to change his password
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher inserts his current password
3: The researcher inserts his current password
4: The researcher inserts his new password
5: The researcher inserts his new password for confirmation
6: The researcher selects the change password option
7: The system changes the researcher’s password

Alternative path 7.a: The system informs the participant to choose another
password (inserted password is too weak)

Post-condition Researcher’s password is changed
Frequency Low

Table 13: Change Password Use Case Table

Delete Account

A researcher wants to delete his account.

Name Delete Account
ID 15
Primary Actor Researcher
Level Blue
Description The researcher wants to delete his account
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the delete account option
3: The researcher inserts his password
4: The system informs the researcher about the successful
deletion

Alternative path 7.a: The system informs the researcher that his password
is wrong

Post-condition Researcher’s account is deleted
Frequency Low

Table 14: Delete Account Use Case Table

91

Appendix A - Use Cases

Create Project

A researcher wants to create a new project.

Name Create Project
ID 16
Primary Actor Researcher
Level Blue
Description The researcher wants to create a new project
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the create project option
3: The researcher inserts the name of the project and the
legal terms
4: The researcher selects the create project option
5: The system creates the new project

Alternative path None

Post-condition Researcher is redirected to project created page and the
project token and QR Code is displayed

Frequency Normal

Table 15: Create Project Use Case Table

View Own Projects

A researcher wants to view his own projects.

Name View Own Projects
ID 17
Primary Actor Researcher
Level Blue
Description The researcher wants to view his own projects
Pre-condition The researcher is already registered and signed in on the system

Basic path 1: The researcher opens the website
2: The researcher selects the view projects option

Alternative path None

Post-condition Researcher is redirected to view projects page and
all the projects are displayed

Frequency High

Table 16: View Own Projects Use Case Table

92

Finalize Projects

A researcher wants to finalise a project to not collect more data.

Name Finalize Projects
ID 18
Primary Actor Researcher
Level Blue
Description The researcher wants to finalize a project
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the finalize option of the specific
project

Alternative path None
Post-condition Project is moved from the active to the finalized section
Frequency Normal

Table 17: Finalize Projects Use Case Table

Archive Projects

A researcher wants to archive a project because all of the data is analysed.

Name Archive Projects
ID 19
Primary Actor Researcher
Level Blue
Description The researcher wants to archive a project
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the archive option of the specific
project

Alternative path None
Post-condition Project is moved from the finalized to the archived section
Frequency Normal

Table 18: Finalize Projects Use Case Table

93

Appendix A - Use Cases

View Project Journeys

A researcher wants to analyze the project journey of a specific project.

Name View Project Journeys
ID 20
Primary Actor Researcher
Level Blue
Description The researcher wants to analyze a project journeys
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page

Alternative path None
Post-condition Project journeys are displayed
Frequency High

Table 19: View Project Journeys Use Case Table

Export Data

A researcher wants to export data from a specific project.

Name Export Data
ID 21
Primary Actor Researcher
Level Blue
Description The researcher wants to export data from a project
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the export data option

Alternative path None
Post-condition Data is downloaded in CSV format
Frequency Low

Table 20: Export Data Use Case Table

94

Manipulate Project Journeys

A researcher wants to re-organize the order of the project journeys of the several partici-
pants for comparison.

Name Manipulate Project Journeys
ID 22
Primary Actor Researcher
Level Blue

Description The researcher wants to to re-organize the order of the
project journeys

Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the data option
6: The researcher selects the Add option to enter an
empty space between touchpoints
7: The researcher drags and drops a touchpoint to certain
location
8: The researcher selects the save changes option

Alternative path None
Post-condition The new organization of data is saved in the database
Frequency High

Table 21: Manipulate Project Journeys Use Case Table

95

Appendix A - Use Cases

Delete Project

A researcher wants to delete a project.

Name Export Data
ID 23
Primary Actor Researcher
Level Blue
Description A researcher wants to delete a project
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the Delete Project option
6: The researcher inserts his password
7: The system deletes the project

Alternative path 7.a: The password inserted his wrong
Post-condition Project is deleted from the database
Frequency Low

Table 22: Delete Project Use Case Table

Show Project Map

A researcher wants to see the map showing all the touchpoints.

Name Show Project Map
ID 24
Primary Actor Researcher
Level Blue
Description The researcher wants to see the map showing all the touchpoints
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the Map option

Alternative path None
Post-condition The researcher is redirected to the Map Page
Frequency High

Table 23: Show Project Map Use Case Table

96

Show Overview Graph

A researcher wants to see the overview graph.

Name Show Overview Graph
ID 25
Primary Actor Researcher
Level Blue
Description The researcher wants to see the overview graph
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the Overview option

Alternative path None
Post-condition The researcher is redirected to the Overview Page
Frequency High

Table 24: Show Overview Graph Use Case Table

Researcher’s Logout

A researcher wants to logout from the website.

Name Researcher’s Logout
ID 26
Primary Actor Researcher
Level Blue
Description The researcher wants to logout from the website
Pre-condition The researcher is already registered and signed in on the system

Basic path 1: The researcher opens the website
2: The researcher selects the logout option

Alternative path None

Post-condition Researcher is signed out of the website and is redirected
to the homepage

Frequency Normal

Table 25: Researcher’s Logout Use Case Table

97

This page is intentionally left blank.

Appendix B - User Interface

Figure 1: Sign Up User Interface

99

Appendix B - User Interface

Figure 2: Dashboard User Interface

100

Figure 3: Create Project User Interface

101

Appendix B - User Interface

Figure 4: Project Created User Interface

102

Figure 5: View Projects User Interface

103

Appendix B - User Interface

Figure 6: Project Journeys User Interface

104

Figure 7: Project Map User Interface

105

Appendix B - User Interface

Figure 8: Project Data User Interface

106

Figure 9: Project Overview User Interface

107

Appendix B - User Interface

Figure 10: Sign In Interface. Figure 11: Sign Up User Interface.

108

Figure 12: Settings Interface. Figure 13: Add Project User Interface.

109

Appendix B - User Interface

Figure 14: Choose Project User Inter-
face.

Figure 15: New/Edit Touchpoint User
Interface.

110

This page is intentionally left blank.

Appendix C - Testing Results and Descriptions

Appendix C - Testing Results and Descriptions

ID Test Status Tool
1 Change Password With Correct Credentials Pass Selenium IDE
2 Change Password With Wrong Password Pass Selenium IDE
3 Create a Project Pass Selenium IDE
4 Delete Account Pass Selenium IDE
5 Delete Account With Wrong Password Pass Selenium IDE
6 Login With Correct Credentials Pass Selenium IDE
7 Login With Participant Account Pass Selenium IDE
8 Login With Wrong Email Pass Selenium IDE
9 Login With Wrong Password Pass Selenium IDE
10 Register Pass Selenium IDE
11 Register With Participant Account Pass Selenium IDE
12 Drag Touchpoint to Correct Place Pass Done By The Author
13 Drag Touchpoint to Wrong Place Pass Done By The Author
14 Filter By All Satisfactions In Map Pass Done By The Author
15 Filter By User In Map Pass Done By The Author
16 Add New Tag To A Project Pass Done By The Author
17 Add Tag To A Touchpoint Pass Done By The Author
18 Delete Tag From Project Pass Done By The Author

Table 26: End-to-end testing conclusions

ID Description

1

Click on Button To Change Password
Click on Current Password field
Type Current Password
Click on New Password field
Type New Password
Click on New Password Confirmation field
Type New Password
Click on Change Password Button
Assert Alert "Password Changed Successfully"

Table 27: Description of Test with ID 1

112

ID Description

2

Click on Button To Change Password
Click on Current Password field
Type Wrong Current Password
Click on New Password field
Type New Password
Click on New Password Confirmation field
Type New Password
Click on Change Password Button
Assert Alert "The current password is wrong"

Table 28: Description of Test with ID 2

ID Description

3

Click on Name of Project field
Type the name of the project
Click on Create Project Button
Assert window.location.href=url/project

Table 29: Description of Test with ID 3

ID Description

4

Click on Delete Account Section
Click on Delete Account Button
Click on Enter Password field
Type Current Password
Click on Delete Account Button
Assert window.location.href=url/

Table 30: Description of Test with ID 4

ID Description

5

Click on Delete Account Section
Click on Delete Account Button
Click on Enter Password field
Type Wrong Current Password
Click on Delete Account Button
Assert alert "The password is wrong"

Table 31: Description of Test with ID 5

ID Description

6

Click on email field
Type current email
Click on password field
Type current password
Click on sign in button
Assert window.location.href=url/home

Table 32: Description of Test with ID 6

113

Appendix C - Testing Results and Descriptions

ID Description

7

Click on email field
Type email of a participant account
Click on password field
Type password
Click on sign in button
Assert alert "This is a participant account"

Table 33: Description of Test with ID 7

ID Description

8

Click on email field
Type email of a non existent account
Click on password field
Type password
Click on sign in button
Assert alert "User not found"

Table 34: Description of Test with ID 8

ID Description

9

Click on email field
Type current email
Click on password field
Type wrong password
Click on sign in button
Assert alert "Wrong password"

Table 35: Description of Test with ID 9

ID Description

10

Click on sign up button
Click on email field
Type email
Click on password field
Type password
Click on sign up button
Assert window.location.href=url/home

Table 36: Description of Test with ID 10

ID Description

11

Click on sign up button
Click on email field
Type email for a participant account
Click on password field
Type password
Click on sign up button
Assert alert "Email already in use"

Table 37: Description of Test with ID 11

114

ID Description

12

Click and Drag touchpoint
Drop it in the same row
Reload the page
Visualize if it is in the same place

Table 38: Description of Test with ID 12

ID Description

13

Click and Drag touchpoint
Drop it in the different row
Visualize if it is in the initial dragging place
Reload the page
Visualize if it is in the initial place

Table 39: Description of Test with ID 13

ID Description

14 Click on a satisfaction checkbox
Visualize in the map if all touchpoints correspond to the correct spot

Table 40: Description of Test with ID 14

ID Description

15
Click on a satisfaction checkbox
Select a user in the dropdown box
Visualize if all touchpoints of that user correspond to the correct spot

Table 41: Description of Test with ID 15

ID Description

16

Click on Add Tags to Project
Add tag with the name Test Tag
Click on Tags
Visualize if the tag Test Tag is show

Table 42: Description of Test with ID 16

ID Description

17

Double Click in a Touchpoint
Click on the dropdown with the name tags
Select teste tag
Reload the page
Visualize if tag is shown in that touchpoint

Table 43: Description of Test with ID 17

115

Appendix C - Testing Results and Descriptions

ID Description

18

Click on Tags
Click on X button of a Tag
Click the button Yes
Click on Journey Maps Button
Double Click on a Touchpoint that had the deleted tag
Visualize if tag is not shown

Table 44: Description of Test with ID 18

116

This page is intentionally left blank.

Software Requirements Specification
for

A software tool for customer experience evaluation

Prepared by Diogo Boinas

University of Coimbra
Dissertation in the context of the Master in Informatics Engineering

Specialization in Software Engineering advised by Prof. Paulo Rupino da Cunha

Coimbra, 5. September 2022

i

Contents

Revision History 1

1 Introduction 2

1.1 Purpose . 2

1.2 Intended Audience . 2

1.3 Intended Use . 2

1.4 Product Scope . 2

1.5 Risk Definition . 3

2 Overall Description 4

2.1 Product Perspective . 4

2.1.1 System Interfaces . 4

2.1.2 Interfaces . 4

2.1.3 Hardware Interfaces . 5

2.1.4 Software Interfaces . 5

2.1.5 Memory Constraints . 5

2.2 Product Functions . 6

2.3 User Characteristics . 7

2.4 Constraints . 7

3 Specific Requirements 8

3.1 Use Cases Model . 8

3.1.1 Context Diagram . 8

3.1.2 Use Cases Diagram . 9

3.1.3 Use Cases . 12

3.2 User Interface Model . 25

3.2.1 User Experience Diagram . 26

3.2.2 User Interface . 28

3.3 Non Functional Requirements . 37

3.4 Requirements List . 38

Chapter 0: Contents ii

3.4.1 Participant Requirements . 38

3.4.2 Researcher Requirements . 38

1

Revision History

Revision Date Author(s) Description
1.0 19.11.2021 B. Diogo Chapter 1 - Introduction, Chapter 2 - Overall Description
1.1 20.12.2021 B. Diogo Chapter 3- Specific Requirements
1.2 29.12.2021 B. Diogo Full Document Revision

2

Chapter 1

Introduction

In this chapter, we are going to provide an overview of the requirements document.

1.1 Purpose

The purpose of this document is to build mobile application and a web application, and this document will
present the requirements for both.

1.2 Intended Audience

At first the intended audience of this software will be the students of the Department of Informatics Engineering
at University of Coimbra, more concretely the students taking the course of Service Engineering that will be
the first ones to test the platform. This software will be build for the Master in Informatics Engineering
dissertation and advised by Prof. Paulo Rupino da Cunha.

1.3 Intended Use

The intended use of this platform will be for the students of Service Engineering learn with a hands-on approach
about the themes: Mobile Ethnography and Service Design.

1.4 Product Scope

The product scope of this platform will be to do Mobile Ethnography. It will consist in a website for the
researchers to create projects, collect and gather data and finally analyse it. It will also have a mobile
application that will be used by the participants and then they can send their behaviour, opinions, etc through
the application for the researcher to later analyse it. Benefits of this software is that ethnographers can have an
all in one system, not having to use several softwares to do their studies. Another benefit is the reduced cost,
and also the time spent, comparing this platform to one-on-one ethnography. Here, the researcher basically
just has to create a project and publicize it to have success. On a one-to-one research, the researcher has to
go along with the participant all the time. This is time consuming and costly.

Chapter 1: Introduction 3

1.5 Risk Definition

There is no risk associated with this product, however if we can’t make all the requirements stated in this
document it can become a risk of the thesis that is being developed can’t reach success in the implementation
part. However, it could be continued by another student next year.

4

Chapter 2

Overall Description

In this chapter, we are going to describe the general factors that affect the product and its requirements.

2.1 Product Perspective

2.1.1 System Interfaces

Starting with the backend, there will be a cloud-based database, Cloud Firestore, that stores the following
information:

1. User Data - It serves to store information about the user, if they are participants or researchers, their
name and age.

2. Collected Data - It serves to store information about the collected data about each user for each
project.

There will also be a storage part in the cloud that will serve to store pictures and videos.

Moving on now to the frontend, there will be a progressive web application to collect data, that will be built
for the purpose of working in Android and IOS using a cross-platform framework, React Native. There will
also be a website to analyse data, that will be built using React.js.

2.1.2 Interfaces

In this section, we will show how the system works. Having the website (web application), the progressive web
application (mobile app) and the backend (firebase). The following figure, 2.1, will show the system in a brief
perspective.

Chapter 2: Overall Description 5

Figure 2.1: Interface of the system

In this figure, we can see the several participants in the left side, there are three in this case, but there can be
much more. They are sending the data to the cloud firestore, that is a NoSQl database, that is in the cloud.
Thee cloud in question is Firebase from Google. We can also see the storage part, that is also in the cloud.
This storage will contain all the pictures and videos from the participants. Finally, we can see in the right side
of the figure the researchers, he collects data to later analyse it.

The mobile application and the web application are Graphical User Interfaces. Firebase is as PaaS (Platform
as a Service) and includes cloud firestore that is a database and cloud storage that is a storage in the cloud.

2.1.3 Hardware Interfaces

The mobile application has to work in all recent iPhones and in the most recent android phones. So there will
need to be attention to detail for example in cases where the screen has a different shape, like the iPhone X.
To sum up, it has to be responsive for almost all mobile phones.

The web application also has to be responsive, to work seamlessly in all computer devices. This is 16:9 and
16:10 in the majority of computer monitors.

2.1.4 Software Interfaces

As a design choice, we will be using Google’s Firebase and to connect with both of our applications we will
use their SDK (Software Development Kit).

2.1.5 Memory Constraints

There are no memory constraints in this case, due to being a pay-as-you-go platform. We just have to pay
attention to the number of reads and writes, and optimize it. If we need more memory or speed, we can always
have it.

Chapter 2: Overall Description 6

2.2 Product Functions

This software will have two distinct areas:

• Website Application

• Mobile Application

In this section we are going to do a summary of the major functions that the software will perform in a high
level.

Website Application

The website application will be for researchers, this means, the person that is collecting the data for later
analysing it. The researcher can sign up on the website and then, to access the functionalities of the software
tool, it has to sign in.

After signing in, the researcher can create a new project, and then he receives a QR code to send to the
participants and invite them to join the specific project. Also, the researcher can view his projects, can finalize
and archive them. Another functionality is that when the researcher clicks on the project, he enters the project
page.

After entering the project page, the researcher can view the data collected filtered by the different participants.
The project page is divided in three different functions, data that is the first page shown when the researcher
enters the project, map that shows a map with the location of the different touchpoints collected and the
overview where the researcher can manipulate the data. After the data is manipulated, the data page shows
the data already manipulated.

The researcher can also export the data in the data page to CSV format.

Mobile Application

The application will be for participants who want to join any project. They can sign up and sign in.

After signing in, the participant can scan a QR code and enter a project. Inside the project, the participant
can submit touchpoints. The touchpoint includes:

• Title - It is a name for the touchpoint, in this case just a brief name.

• Emotion - Rating from 1 to 5 with smiley faces, 1 being the worse and 5 being the best.

• Notes - In this field, the participant can detail what exactly happened.

• Media - Can add photos or videos of the situation.

• Location - The participant can choose to send his GPS coordinates or not.

Chapter 2: Overall Description 7

2.3 User Characteristics

The users who will use this software tool are two types of users. One type of user will be the general public.
These users are the ones who will use the mobile application. They can be people who do not have any
experience with new technologies, so the front-end has to be intuitive and straightforward. The other type of
user will be someone who works for a company and is in charge of analysing the data collected. A user guide
will be provided on the website so that these types of users can learn all the functionalities.

2.4 Constraints

In order to comply to regulatory policies, this software tool has to comply to GDPR. We have to make sure
this is achieved before putting the software in a production environment. If this isn’t accomplished, large fines
can be applied.

There are other limitations, such as hardware. We are going to host the website in DEI virtual private servers.
These servers have a limit on the amount of storage, the number of cores of the processor, and the ram memory.
If we have too many users, this is a constraint and can make the website slow to load or even crash.

By using cloud firestore database, we also have to write security rules to prevent attacks to the database.

8

Chapter 3

Specific Requirements

3.1 Use Cases Model

In this chapter, the actors, use cases and their relationships will be presented. We want to know how different
users behave with regard to the system, with the purpose of solving any problem. The actors will have goals
that can not always be fulfilled. We also have the interactions between the user and the system. Having this,
we could know how to reach the goals. In the use cases diagram, we can visually see what the goals are.
Simplifying the final solution, which are the use cases themselves.

3.1.1 Context Diagram

This diagram presents the interaction between the primary actors on the left side and the system. There are
no external actors; however, if they existed, they would be presented on the right side of the system.

Figure 3.1: Context Diagram.

Chapter 3: Specific Requirements 9

3.1.2 Use Cases Diagram

The following diagrams will show several functionalities for the actors of our applications.

Figure 3.2: Use Cases Diagram for Signing In and Signing Up.

Chapter 3: Specific Requirements 10

Figure 3.3: Use Cases Diagram for Participant Functionalities.

Chapter 3: Specific Requirements 11

Figure 3.4: Use Cases Diagram for Researcher Functionalities.

Chapter 3: Specific Requirements 12

3.1.3 Use Cases

In this section of the use cases, we will describe the behaviour of the primary actors regarding the functionalities
presented in the various use cases diagrams.

Participant Sign Up

A new participant saw the application on the internet and he wants to sign up on it.

Name Participant Sign Up
ID 01
Primary Actor Participant not registered on the System
Level Blue
Description The participant makes an account on the system, inserting his personal data
Pre-condition The participant is not registered and has the application installed on his device

Basic path

1: The participant opens the application
2: The participant selects the Sign Up option
3: The participant Inserts the personal data (email and password)
4: The participant accepts the legal terms and conditions
5: The Participant selects the Sign Up option
6: The System verifies the data
7: The System validates the data
8: The System adds the new participant

Alternative path

6.a: The System finds an error in the participant data
6.b: The System informs the participant about the error
(email already exists or password too weak)
7.a: The system notifies to change the personal data

Post-condition Participant is registered and he is redirected to the Choose Project page
Frequency Medium

Table 3.1: Participant Sign Up Use Case Table

Chapter 3: Specific Requirements 13

Researcher Sign Up

A researcher was told about the application by a friend and he wants to sign up on it.

Name Researcher Sign Up
ID 02
Primary Actor Researcher not registered on the System
Level Blue
Description The researcher makes an account on the system, inserting his personal data
Pre-condition The researcher is not registered

Basic path

1: The researcher goes to the system’s website
2: The researcher selects the Sign Up option
3: The researcher inserts the personal data (email and password)
4: The participant accepts the legal terms and conditions
5: The Participant selects the Sign Up option
6: The System verifies the data
7: The System validates the data
8: The System adds the new researcher

Alternative path

6.a: The System finds an error in the researcher data
6.b: The System informs the researcher about the error
(email already exists or password too weak)
7.a: The system notifies to change the personal data

Post-condition Researcher is registered and he is redirected to the Dashboard page
Frequency Medium

Table 3.2: Researcher Sign Up Use Case Table

Chapter 3: Specific Requirements 14

Participant Sign In

A participant wants to sign in.

Name Participant Sign In
ID 03
Primary Actor Participant
Level Blue
Description The participant signs in inserting his personal data
Pre-condition The participant is already registered on the system

Basic path

1: The participant opens the application
2: The participant selects the Sign In option
3: The participant inserts the personal data (email and password)
4: The participant selects the Sign In option
5: The System verifies the data

Alternative path 5.a: The System finds an error in the user data (email doesn’t exist or wrong password)
5.b: The System informs the user about the error

Post-condition Participant is signed in and he is redirected to the Choose Project page
Frequency Medium

Table 3.3: Participant Sign In Use Case Table

Researcher Sign In

A researcher wants to sign in.

Name Researcher Sign In
ID 04
Primary Actor Researcher
Level Blue
Description The researcher signs in inserting his personal data
Pre-condition The researcher is already registered on the system

Basic path

1: The researcher goes to the system’s website
3: The researcher inserts the personal data (email and password)
4: The researcher selects the Sign In option
5: The System verifies the data

Alternative path 5.a: The System finds an error in the user data (email doesn’t exist or wrong password)
5.b: The System informs the user about the error

Post-condition Researcher is logged in and he is redirected to the Choose Project page
Frequency Medium

Table 3.4: Researcher Sign In Use Case Table

Chapter 3: Specific Requirements 15

Join a New Project

A participant enters a flight and sees the QR code to enter the airline’s project. Now, he wants to join this
project to give his insights to the airline.

Name Join a New Project
ID 05
Primary Actor Participant
Level Blue
Description The participant joins a new project
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the Add Project option
3: The participant scans the QR Code
4: The participant selects the Add option
5: The System inserts the participant in that project

Alternative path 3.a: The participant enters the token for the project
Post-condition Participant is redirected to the Choose Projects page
Frequency Medium

Table 3.5: Join a New Project Use Case Table

View Projects that you are Involved In

A participant wants to see the projects that he has entered.

Name View Projects that you are Involved In
ID 06
Primary Actor Participant
Level Blue
Description The participant wants to see the projects that he has entered
Pre-condition The participant is already registered and signed in on the system

Basic path 1: The participant opens the application
2: The participant sees all the projects he has previous entered

Post-condition Participant sees all projects that he is involved in
Frequency High

Table 3.6: Views Project that you are Involved In Use Case Table

Chapter 3: Specific Requirements 16

Change Password

A participant wants to change his password.

Name Change Password
ID 07
Primary Actor Participant
Level Blue
Description The participant wants to change his password
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the settings option
3: The participant inserts his current password
4: The participant inserts his new password
5: The participant inserts his new password for confirmation
6: The participant selects the change password option
7: The system changes the participant’s password

Alternative path 7.a: The system informs the participant to choose another password
(inserted password is too weak)

Post-condition Participant’s password is changed
Frequency Low

Table 3.7: Change Password Use Case Table

Delete Account

A participant wants to delete his account.

Name Delete Account
ID 08
Primary Actor Participant
Level Blue
Description The participant wants to delete his account
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the settings option
3: The participant selects the delete account option
4: The participant inserts his password
5: The system informs the participant about the successful deletion

Alternative path 5.a: The system informs the participant that his password is wrong
Post-condition Participant’s account is deleted
Frequency Low

Table 3.8: Delete Account Use Case Table

Chapter 3: Specific Requirements 17

View all touchpoint points submitted

A participant wants to see all the touchpoints submitted for a particular project.

Name View All Touchpoints Submitted
ID 09
Primary Actor Participant
Level Blue
Description The participant wants to see all the touchpoints submitted for a project
Pre-condition The participant is already registered and signed in on the system

Basic path
1: The participant opens the application
2: The participant selects the project we wants to see the touchpoints
3: The participant views all touchpoints submitted

Alternative path None

Post-condition Participant is on the project page and views all the touchpoints he submitted
for a particular project

Frequency High

Table 3.9: View all touchpoint points submitted Use Case Table

Edit touchpoint

A participant wants to change the photo for a specific touchpoint.

Name Edit Touchpoint
ID 10
Primary Actor Participant
Level Blue
Description The participant wants to change the photo for a touchpoint
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the project we wants to change the touchpoint
3: The participant selects the specific touchpoint
4: The participant selects the add photo option
5: The participant selects the new photo in his device
6: The participant selects the save option

Alternative path None
Post-condition Touchpoint is modified with success and the participant is redirected to the choose touchpoints page
Frequency Low

Table 3.10: Edit Touchpoint Use Case Table

Chapter 3: Specific Requirements 18

Add New Touchpoint

A participant wants to add a new touchpoint.

Name Add New Touchpoint
ID 11
Primary Actor Participant
Level Blue
Description The participant wants to add a new touchpoint
Pre-condition The participant is already registered and signed in on the system

Basic path

1: The participant opens the application
2: The participant selects the project we wants to add the touchpoint
3: The participant selects the new touchpoint option
4: The participant enters the title
5: The participant selects the satisfaction
6: The participant writes a small description in the notes section
7: The participant selects the save option

Alternative path

6.a: The participant selects the Add Photo Option
6.b: The participant selects the photo in his device
6.1.a: The participant selects the Add Video Option
6.1.b: The participant selects the video in his device
6.2: The participant selects the option for allowing the geolocation position

Post-condition Touchpoint is submitted and the participant is redirected to the choose touchpoints page
Frequency Normal

Table 3.11: Edit Touchpoint Use Case Table

Leave Project

A participant wants to leave a project.

Name Leave Project
ID 12
Primary Actor Participant
Level Blue
Description The participant wants to leave a project
Pre-condition The participant is already registered and signed in on the system

Basic path
1: The participant opens the application
2: The participant selects the project we wants to leave
3: The participant selects the leave option

Alternative path None
Post-condition Participant is removed from the project and is redirected to the choose project page
Frequency Low

Table 3.12: Leave Project Use Case Table

Chapter 3: Specific Requirements 19

Participant’s Logout

A participant wants to logout from the application.

Name Participant’s Logout
ID 13
Primary Actor Participant
Level Blue
Description The participant wants to logout from the application
Pre-condition The participant is already registered and signed in on the system

Basic path
1: The participant opens the application
2: The participant selects the settings option
3: The participant selects the logout option

Alternative path None
Post-condition Participant is signed out of the application and is redirected to the homescreen page
Frequency Low

Table 3.13: Participant’s Logout Use Case Table

Change Password

A researcher wants to change his password.

Name Change Password
ID 14
Primary Actor Researcher
Level Blue
Description The researcher wants to change his password
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher inserts his current password
3: The researcher inserts his current password
4: The researcher inserts his new password
5: The researcher inserts his new password for confirmation
6: The researcher selects the change password option
7: The system changes the researcher’s password

Alternative path 7.a: The system informs the participant to choose another password
(inserted password is too weak)

Post-condition Researcher’s password is changed
Frequency Low

Table 3.14: Change Password Use Case Table

Chapter 3: Specific Requirements 20

Delete Account

A researcher wants to delete his account.

Name Delete Account
ID 15
Primary Actor Researcher
Level Blue
Description The researcher wants to delete his account
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the delete account option
3: The researcher inserts his password
4: The system informs the researcher about the successful deletion

Alternative path 7.a: The system informs the researcher that his password is wrong
Post-condition Researcher’s account is deleted
Frequency Low

Table 3.15: Delete Account Use Case Table

Create Project

A researcher wants to create a new project.

Name Create Project
ID 16
Primary Actor Researcher
Level Blue
Description The researcher wants to create a new project
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the create project option
3: The researcher inserts the name of the project and the legal terms
4: The researcher selects the create project option
5: The system creates the new project

Alternative path None

Post-condition Researcher is redirected to project created page and the project token
and QR Code is displayed

Frequency Normal

Table 3.16: Create Project Use Case Table

Chapter 3: Specific Requirements 21

View Own Projects

A researcher wants to view his own projects.

Name View Own Projects
ID 17
Primary Actor Researcher
Level Blue
Description The researcher wants to view his own projects
Pre-condition The researcher is already registered and signed in on the system

Basic path 1: The researcher opens the website
2: The researcher selects the view projects option

Alternative path None

Post-condition Researcher is redirected to view projects page and
all the projects are displayed

Frequency High

Table 3.17: View Own Projects Use Case Table

Finalize Projects

A researcher wants to finalise a project to not collect more data.

Name Finalize Projects
ID 18
Primary Actor Researcher
Level Blue
Description The researcher wants to finalize a project
Pre-condition The researcher is already registered and signed in on the system

Basic path
1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the finalize option of the specific project

Alternative path None
Post-condition Project is moved from the active to the finalized section
Frequency Normal

Table 3.18: Finalize Projects Use Case Table

Chapter 3: Specific Requirements 22

Archive Projects

A researcher wants to archive a project because all of the data is analyzed.

Name Archive Projects
ID 19
Primary Actor Researcher
Level Blue
Description The researcher wants to archive a project
Pre-condition The researcher is already registered and signed in on the system

Basic path
1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the archive option of the specific project

Alternative path None
Post-condition Project is moved from the finalized to the archived section
Frequency Normal

Table 3.19: Finalize Projects Use Case Table

View Project Journeys

A researcher wants to analyze the project journey of a specific project.

Name View Project Journeys
ID 20
Primary Actor Researcher
Level Blue
Description The researcher wants to analyze a project journeys
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page

Alternative path None
Post-condition Project journeys are displayed
Frequency High

Table 3.20: View Project Journeys Use Case Table

Chapter 3: Specific Requirements 23

Export Data

A researcher wants to export data from a specific project.

Name Export Data
ID 21
Primary Actor Researcher
Level Blue
Description The researcher wants to export data from a project
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the export data option

Alternative path None
Post-condition Data is downloaded in CSV format
Frequency Low

Table 3.21: Export Data Use Case Table

Manipulate Project Journeys

A researcher wants to re-organize the order of the project journeys of the several participants for comparison.

Name Manipulate Project Journeys
ID 22
Primary Actor Researcher
Level Blue
Description The researcher wants to to re-organize the order of the project journeys
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the data option
6: The researcher selects the Add option to enter an empty space
between touchpoints
7: The researcher drags and drops a touchpoint to certain location
8: The researcher selects the save changes option

Alternative path None
Post-condition The new organization of data is saved in the database
Frequency High

Table 3.22: Manipulate Project Journeys Use Case Table

Chapter 3: Specific Requirements 24

Delete Project

A researcher wants to delete a project.

Name Export Data
ID 23
Primary Actor Researcher
Level Blue
Description A researcher wants to delete a project
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the Delete Project option
6: The researcher inserts his password
7: The system deletes the project

Alternative path 7.a: The password inserted his wrong
Post-condition Project is deleted from the database
Frequency Low

Table 3.23: Delete Project Use Case Table

Show Project Map

A researcher wants to see the map showing all the touchpoints.

Name Show Project Map
ID 24
Primary Actor Researcher
Level Blue
Description The researcher wants to see the map showing all the touchpoints
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the Map option

Alternative path None
Post-condition The researcher is redirected to the Map Page
Frequency High

Table 3.24: Show Project Map Use Case Table

Chapter 3: Specific Requirements 25

Show Overview Graph

A researcher wants to see the overview graph.

Name Show Overview Graph
ID 25
Primary Actor Researcher
Level Blue
Description The researcher wants to see the overview graph
Pre-condition The researcher is already registered and signed in on the system

Basic path

1: The researcher opens the website
2: The researcher selects the view projects option
3: The researcher selects the specific project
4: The system redirects to the project page
5: The researcher selects the Overview option

Alternative path None
Post-condition The researcher is redirected to the Overview Page
Frequency High

Table 3.25: Show Overview Graph Use Case Table

Researcher’s Logout

A researcher wants to logout from the website.

Name Researcher’s Logout
ID 26
Primary Actor Researcher
Level Blue
Description The researcher wants to logout from the website
Pre-condition The researcher is already registered and signed in on the system

Basic path 1: The researcher opens the website
2: The researcher selects the logout option

Alternative path None
Post-condition Researcher is signed out of the website and is redirected to the homepage
Frequency Normal

Table 3.26: Researcher’s Logout Use Case Table

3.2 User Interface Model

To aid the development of the User Interface (UI), the first step was to build a User Experience Diagram
(UED). This will help us to develop our interfaces into a coeherent design. We can see in the UED the main
focus areas, in other words, the several screens of our applications. We correlated the various focus areas to
also understand navigation in our application. In each focus areas, we can see how the user interacts with the
application, and also the types of data that are used. User Data is related to every type of data from the user
of application, email, and password in our case. Project Data is all of the data related to project in a broader
sense, name of the project, token, etc. Touchpoint Data is the specific data of each project, and it is more
detailed than Project Data. It includes the several touchpoints of each project.

Chapter 3: Specific Requirements 26

3.2.1 User Experience Diagram

Web Application UED

Figure 3.5: User Experience Diagram of Website

Chapter 3: Specific Requirements 27

Mobile Application UED

Figure 3.6: User Experience Diagram of Mobile Application

Chapter 3: Specific Requirements 28

3.2.2 User Interface

Web Application

Figure 3.7: Homepage User Interface

Figure 3.8: Sign Up User Interface

Chapter 3: Specific Requirements 29

Figure 3.9: Dashboard User Interface

Figure 3.10: Create Project User Interface

Chapter 3: Specific Requirements 30

Figure 3.11: Project Created User Interface

Figure 3.12: View Projects User Interface

Chapter 3: Specific Requirements 31

Figure 3.13: Project Journeys User Interface

Figure 3.14: Project Map User Interface

Chapter 3: Specific Requirements 32

Figure 3.15: Project Data User Interface

Figure 3.16: Project Overview User Interface

Chapter 3: Specific Requirements 33

Mobile Application

Figure 3.17: Homepage User Interface. Figure 3.18: Sign Up User Interface.

Chapter 3: Specific Requirements 34

Figure 3.19: Sign In Interface. Figure 3.20: Choose Project User Interface.

Chapter 3: Specific Requirements 35

Figure 3.21: Settings Interface. Figure 3.22: Add Project User Interface.

Chapter 3: Specific Requirements 36

Figure 3.23: Project User Interface. Figure 3.24: New/Edit Touchpoint User Interface.

Chapter 3: Specific Requirements 37

3.3 Non Functional Requirements

The Non Functional Requirements of this project should provide the ability to make this software tool fast
and intuitive to use.

The first and most important non-functional requirement should be usability. It consists of having a simple to
use User Interface. The UI was made with this in mind. Also, the researcher requirements will have a User
Manual to help explain all the procedures to use all the functionalities of the website in a simpler way.

Another non-functional requirement is scalability. With this requirement, we do not want to have a decrease
in performance by having a class of 200 students using the application at the same time. Firebase already
provides scalability, their database is indexed in a way to not have drops in performance.

Availability is also important. Deferred Syncing is already automatically implemented in the Firebase software
development kit and provides availability, allowing participants to use the application even when an Internet
connection is not available.

Chapter 3: Specific Requirements 38

3.4 Requirements List

This chapter will present a list of requirements for the participant and researcher. It will contain the name of
the requirement, the use case ID, and the MoSCoW prioritization method for each one.

MoSCoW prioritisation divides the requirements into four specific priorities.

• Must Have - Mandatory requirements needed for the project to work.

• Should Have - Not mandatory, but adds relevant value to the project.

• Could Have - Nice to have, but if not implemented will have a small impact on the project.

• Will Not Have - Not to be implemented at this specific time, but can be implemented in the future.

3.4.1 Participant Requirements

1. Sign Up - ID: 01 - Must Have

2. Sign In - ID: 03 - Must Have

3. Join a New Project - ID: 05 - Must Have

4. View Projects that you are Involved in - ID: 06 - Must Have

5. Change Password - ID: 07 - Must Have

6. Delete Account - ID: 08 - Must Have

7. View all Touchpoints Submitted - ID: 09 - Must Have

8. Edit Touchpoint - ID: 10 - Must Have

9. Add New Touchpoint - ID: 11 - Must Have

10. Leave Project - ID: 12 - Must Have

11. Logout - ID: 13 - Must Have

3.4.2 Researcher Requirements

1. Sign Up - ID: 02 - Must Have

2. Sign In - ID: 04 - Must Have

3. Change Password - ID: 14 - Must Have

4. Delete Account - ID: 15 - Must Have

5. Create Project - ID: 16 - Must Have

6. View Own Projects - ID: 17 - Must Have

7. Finalize Projects - ID: 18 - Should Have

8. Archive Projects - ID: 19 - Should Have

9. View Project Journeys - ID: 20 - Must Have

10. Export Data - ID: 21 - Could Have

11. Delete Project - ID: 23 - Must Have

Chapter 3: Specific Requirements 39

12. Manipulate Project Journeys - ID: 22 - Must Have

13. Show Project Map - ID: 24 - Should Have

14. Show Overview Graph - ID: 25 - Could Have

15. Logout - ID: 26 - Must Have

This page is intentionally left blank.

Guia de instalação da Aplicação Web Progressiva

Android

1. Aceder ao website mobethnos.dei.uc.pt

2. Carregar no botão para instalação

3. Carregar no botão instalar

4. Deve aparecer a seguinte linha a dizer “MobEthnos adicionado a Aplicações” e em
vez de ter um botão para instalar, deve aparecer o ícone a da aplicação

5. Depois é só aceder ao menu das Aplicações e utilizar como se fosse uma aplicação
móvel nativa

iOS

1. Aceder ao website mobethnos.dei.uc.pt por via do Safari

2. Carregar no botão “Share”

3. Carregar no botão “Add to Homescreen”

4. Carregar no botão “Add”

5. A aplicação deverá aparecer no Ecrã Inicial

	Introduction
	Motivation
	Objectives
	Software Development Process and Planning
	Report Structure

	State-Of-The-Art
	State-Of-The-Art Procedure
	Service Design
	Mobile Ethnography
	Mobile Ethnography Software Tools
	Technologies to help build the Software Tool
	Website Front-end
	Mobile Application Front-end
	Back-end
	Hosting

	Requirements
	Requirements Gathering
	Use Case Model
	User Interface Model
	Non-Functional Requirements
	Functional Requirements Prioritisation
	Participant Requirements
	Researcher Requirements

	Software Architecture
	Software Development
	Back-end Structure
	Firebase Authentication
	Cloud Firestore
	Firebase Storage
	Security

	Mobile Application Development
	Creation of Files and Installation of Modules
	Connection to Firebase
	Authentication and Navigation
	Unauthenticated User Functionalities
	Authenticated User Functionalities
	Progressive Web App Requirements

	Website Development
	Creation of Files and Installation of Modules
	Connection to Firebase
	Navigation Between Components
	Authentication
	Unauthenticated User Functionalities
	Authenticated User Functionalities

	Software Testing
	End-To-end Testing
	Usability Testing
	Participants
	Procedure
	Results
	Conclusions

	Software Testing Conclusions

	Conclusion
	References
	Appendix A - Use Cases
	Appendix B - User Interface
	Appendix C - Testing Results and Descriptions

