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Abstract

Respiratory diseases are among the deadliest in the world. These pathologies are
characterised by Adventitious Respiratory Sounds, such as wheezes and crackles,
throughout the respiratory cycle.

In this thesis, a study was conducted regarding the applicability of Deep Learn-
ing (DL) with the aim of automatically classifying and segmenting these adventi-
tious and normal respiratory sounds present in patients’ respiratory breathing
cycles, mostly wheezes and crackles. Since DL models require large and di-
verse datasets, three datasets were used: Respiratory Sound Database (RSD),
a variation of the RSD not publicly available (RSD New Annotations), and the
HF_Lung_V1 dataset. Several DL architectures such as Convolutional Neural
Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and a combi-
nation of both (CNN-BiLSTM) are evaluated, as well as classical Machine Learn-
ing (ML) such as Linear Discriminant Analysis (LDA), Support Vector Machine
with radial basis function (SVMrbf), and Random Undersampling Boosted Trees
(RUSBoost), in order to evaluate and compare different ML approaches.

In the classification phase, the classical ML approaches described above served
as baseline models to compare against the DL models (CNNs) and to start the
adaptation of this kind of data. These models were replicated from previous
work by our team with the three datasets mentioned above (F1-Score macro of
79.1% in the RSD, F1-Score macro of 68.8% in the RSD New Annotations, and
F1-Score macro of 65.2% in the HF_Lung_V1), as well as a crossing between them
to better understand the capability of these models to generalise, which proved
not to be very successful given their differences in the annotations of the datasets
(F1-Score macro of 39.5% trained with RSD and tested with HF_Lung_V1, and
F1-Score macro of 38.8% trained with the HF_Lung_V1 and tested with RSD -
3-class problem). Also, stratification of the RSD using the same models was per-
formed, in order to better understand which demographic category and record-
ing device achieved better results (F1-Score macro of 81.8% with the AKGC417L
microphone, F1-Score macro of 78.9% in Adults, F1-Score macro of 79.6% in Male
subjects, F1-Score macro of 83.3% subjects with Normal body-mass index, and
F1-Score macro of 85.3% in subjects with Non-Chronic diagnosis).

As for the segmentation phase, two approaches were developed: the first con-
sisted on two CNNs to classify individual frames and, it was used as a baseline
to compare with the second approach; and the second approach was a replica-
tion of one of the models from a cited article, the CNN-BiLSTM, which achieved
better results than the first approach in RSD (F1-Score of 26.8% vs. F1-Score of
22.3% in crackles vs. normal sounds, and F1-Score of 26.5% vs. F1-Score of 41.0%
in wheezes vs. normal sounds) and HF_Lung_V1 (F1-Score of 35.9% vs. F1-Score
of 41.5% in crackles vs. normal sounds, and F1-Score of 26.0% vs. F1-Score of
42.1% in wheezes vs. normal sounds). A crossing between both datasets was
performed to check the capability of these models to generalise, which proved to
be not very successful given their differences in the annotations of the datasets.
Also, a small stratification of the RSD with this last model was performed only
using the recordings of the AKGC417L microphone (F1-Score of 14.7% in crackles
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vs. normal sounds, and F1-Score of 41.6% in wheezes vs. normal sounds).

The proposed solutions for classification and segmentation allowed to advance
to state-of-the-art on this problem, specially using the RSD, although the current
approaches still need to be improved to permit its accurate use on real-world
scenarios.

Keywords

Deep Learning, Machine Learning, Adventitious Respiratory Sounds, Classifica-
tion, Segmentation
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Resumo

As patologias do foro respiratório são das mais mortíferas causas de morte em
todo o mundo. Estas patologias são caracterizadas pela existência de Sons Respi-
ratórios Adventícios, como as sibilâncias e fervores, ao longo do ciclo respiratório.

Nesta tese, é realizado um estudo sobre a aplicabilidade de abordagens de Apren-
dizagem Profunda para classificar e segmentar estes Sons Respiratórios Normais
e Adventícios presentes nos ciclos respiratórios dos pacientes, especialmente as
sibilâncias e os fervores. Como os modelos de Aprendizagem Profunda necessi-
tam de bases de dados grandes e variadas, três bases de dados foram usadas: Res-
piratory Sound Database (RSD), uma variação da RSD que não é pública (RSD New
Annotations) e a base de dados HF_Lung_V1. Vários modelos de Aprendizagem
Profunda como as Convolutional Neural Network (CNN), Bidirectional Long Short-
Term Memory (BiLSTM) e ainda uma combinação de ambos (CNN-BiLSTM) foram
desenvolvidos, assim como modelos de Aprendizagem Computacional clássicos
como Linear Discriminant Analysis (LDA), Support Vector Machine with radial basis
function (SVMrbf ) e Random Undersampling Boosted Trees (RUSBoost), para avaliar
e comparar diferentes modelos de Aprendizagem Computacional.

Durante a fase da classificação, os modelos de Aprendizagem Computacional
clássicos descritos acima apenas foram testados e desenvolvidos para poder com-
parar com os modelos de Aprendizagem Profunda (CNNs) e para iniciar a adap-
tação a trabalhar com este tipo de dados. Estes modelos foram replicados de
um trabalho prévio desenvolvido pela equipa com as três bases de dados acima
mencionados (F1-Score macro de 79.1% na RSD, F1-Score macro de 68.8% na RSD
New Annotations, e F1-Score macro de 65.2% na base de dados HF_Lung_V1), as-
sim como o cruzamentos entre elas para compreender a capacidade destes mode-
los de generalizar, concluindo-se que não são bons nessa tarefa, dada a diferença
nas anotações dos eventos nas base de dados (F1-Score macro de 39.5% treinado
na RSD e testado em HF_Lung_V1, and F1-Score macro de 38.8% treinado em
HF_Lung_V1 e testado na RSD - problema a 3 classes). Para além disso, uma es-
tratificação da RSD usando os mesmos modelos foi feita, para uma melhor com-
preensão de qual categoria demográfica e equipamento usado para gravar con-
segue melhores resultados (F1-Score macro de 81.8% com o microfone AKGC417L,
F1-Score macro de 78.9% nos adultos, F1-Score macro de 79.6% nos homens, F1-
Score macro de 83.3% nos pacientes com índice de massa corporal (IMC) normal,
e F1-Score macro de 85.3% nos pacientes com doenças não crónicas).

Já durante a fase de segmentação, duas abordagens foram desenvolvidas: a primeira
foram duas CNN para classificar frames individualmente e foi usado como base
para poder comparar com a segunda abordagem; e a segunda abordagem foi
a replicação de um dos modelos de um artigo citado, a CNN-BiLSTM, que con-
seguiu melhores resultados que a primeira abordagem na RSD (F1-Score de 26.8%
vs. F1-Score de 22.3% nos fervores vs. sons normais, e F1-Score de 26.5% vs. F1-
Score de 41.0% nas sibilâncias vs. sons normais) e na HF_Lung_V1 (F1-Score de
35.9% vs. F1-Score de 41.5% nos fervores vs. sons normais, e F1-Score de 26.0%
vs. F1-Score de 42.1% nas sibilâncias vs. sons normais). O cruzamento entre estas
bases de dados também foi feito para compreender a capacidade de generalizar
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destes modelos, concluindo-se que não são bons nessa tarefa, dada a diferença
nas anotações dos eventos nas base de dados. Para concluir, uma pequena estrat-
ificação da RSD apenas com os ficheiros que usaram um microfone AKGC417L
também foi feita usando este último modelo (F1-Score de 14.7% nos fervores vs.
sons normais, e F1-Score de 41.6% nas sibilâncias vs. sons normais).

As soluções propostas para a classificação e segmentação permitiram avançar
relativamente ao estado-de-arte sobre este problema, especialmente utilizando
a RSD, embora as abordagens atuais ainda necessitem de ser melhoradas para
permitir a sua utilização em cenários reais.

Palavras-Chave

Aprendizagem Profunda, Aprendizagem Computacional, Sons Respiratórios Ad-
ventícios, Classificação, Segmentação
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Chapter 1

Introduction

In this chapter, the goal is to give the context and motivation to this Master’s
thesis, as well as present its objectives, a small introduction of the approaches
and methods investigated, and some results and contributions, and the outline of
the document.

1.1 Context and Motivation

The number of deaths caused by respiratory diseases RD such as Chronic Ob-
structive Pulmonary Disease (COPD), Lower Respiratory Tract Infection (LRTI)
and Trachea, Bronchus, and Lung Cancer is increasing every year since these are
the third, fourth, and sixth biggest causes of death worldwide, respectively [1], as
illustrated in Figure 1.1. The deaths caused by RD in 2019 in Portugal were 10.9%
of all deaths [2], having a huge impact on the healthcare systems, along with the
COVID-19 disease. Early diagnosis and routine monitoring of patients with res-
piratory problems are very important to prevent the development of more serious
illnesses.

At the moment, since it is the cheapest option and the less intrusive method,
physicians use stethoscopes to auscultate the patients and try to identify any res-
piratory disorder. The results obtained are not always very accurate, since they
depend on the level of hearing ability and expertise of the physician, background
noise, and the patients’ movements. Along with that, to correctly assess a pa-
tient, continuous monitoring is necessary, as hearing for a few seconds might
not be enough to conclude whether a patient produces specific abnormal sounds,
since such a small sample might not be sufficient to detect those sounds. Besides,
with the COVID-19 crisis, the stethoscopes can be a source of transmitting the
virus [3]. This lack of accuracy regarding the auscultation can be surpassed by
automating the processing of analysing the respiratory sounds, using Artificial
Intelligence (AI).

In the past years, some devices that continuously record respiratory sounds have
been developed to attempt to improve the quality of the assessments performed
by physicians, even though that is a time-consuming and hard task. Some Ma-
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Figure 1.1: Top 10 deaths by disease worldwide [1]

chine Learning (ML) models have been developed to help in this process with
some success. The growth of Deep Learning (DL) methods in the past years has
proved to achieve better results in some tasks. Given the potential of DL, it may
be possible to improve the quality of the classification and segmentation and also
help health professionals.

There are two main motivations for this work. Firstly, the need to prevent the de-
velopment of respiratory diseases: the sooner these respiratory pathologies are
detected, the sooner the patients can start their treatment, which leads to a de-
crease in exacerbations, hospitalisations and mortality worldwide. Equally im-
portant is the relevance of the results obtained, by automatic sound classification
and segmentation algorithms. If good results are obtained, it is a good starting
point to create other DL models to segment and classify any type of sound.

1.2 Objectives and Approaches

This dissertation is involved in a European Project called Wearable Electronics
for Effective Lung Monitoring (WELMO) 1, whose main objective is to provide
continuous patient monitoring, for which automatic segmentation and classifi-
cation of adventitious respiratory sounds ARS is a key requirement. WELMO is

1https://cordis.europa.eu/project/id/825572 (Accessed 2022-02-08)
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divided into 2 parts: the creation of a wearable vest that can record respiratory
sounds from various locations and the creation of models to segment and classify
those sounds.

The overall plan for this WELMO Project, in a perfect scenario, is to help physi-
cians to understand the possible respiratory diseases that their patients have as
soon as possible and also allow the patients to start their treatments to give them
a better life.

The main focus of this dissertation is the usage of DL approaches to classify and
segment ARS of the real world (and not unrealistic sounds, e.g., overly simplistic
sounds used in classes to teach students) and achieve the best results possible.
The overall plan for this Master’s Thesis is as follows:

• Critical analysis of the state of the art regarding the segmentation and clas-
sification of ARS

• Critical analysis of the state of the art regarding the usage of DL for segmen-
tation and classification of sounds in general

• Research and development of DL approaches for segmentation and classi-
fication of ARS

• Validation of the models created

To address all the points mentioned above, the workload was divided into var-
ious phases. Firstly, it was necessary to research the main concepts like Respi-
ratory Sounds (RS), ARS and its characteristics, and types of features and DL
models used in this type of problem. All of this is in Chapter 2 with the expla-
nation of some concepts necessary to better understand this thesis and Chapter
3 with a literature review to get the idea of what has been done in this field of
study, and the approaches and models used.

To attain our objectives, one of the most important aspect to take into consid-
eration is the dataset used: it needs to have a great amount of data and be as
diverse as possible. With this in mind, there are two possible datasets that are
going to be used: the Respiratory Sound Database (RSD), introduced in [4], [5],
a re-annotated version of the same database (not available publicly and hereafter
denoted RSD New Annotations) and HF_Lung_V1 ([6]). Both have some advan-
tages and disadvantages, which are discussed in more detail in the beginning of
Chapter 3, Section 3.1.

Regarding the classification task of this thesis, the main goal was to get used to
working with this type of data and be able to fully understand what has been
done by the research team. The reproduction of the models created in the paper
[7] was the main work conducted. Those models had been trained and tested
on the RSD. Hence, the sames models were trained and tested on the RSD New
Annotations database. Also, the same models were tested with the HF_Lung_V1
dataset. In order to evaluate the quality of the models to generalise for any sit-
uation, the datasets were crossed, i.e., trained with one dataset and tested on
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the other. The last experience concerning the classification task was a strati-
fied analysis using the RSD, to try to understand if different population strata or
recording devices alter the results significantly (e.g., the usage of a specific stetho-
scope/microphone to record the sounds). All of these methods, approaches and
results are explained in detail in Chapter 4.

Concerning the segmentation task of this thesis, two approaches were performed.
The first one was using individual frames to segment a file, while the second ap-
proach was a reproduction of one of the models proposed by the authors of the
HF_Lung_V1 in [6]. In the first approach, the models used were developed by
me, with some inspiration from what has been done previously when reproduc-
ing the DL models of [7]. Regarding the second approach, one of the models
presented in that paper is reproduced. Also, a small stratification of the RSD
with this last model was performed (only using the recordings of one of the mi-
crophones). All of these methods, experiments and results are explained in detail
in Chapter 5.

1.3 Results and Contributions

With this thesis, some contributions were done to the scientific community, espe-
cially for the ones working in this field.

Regarding the classification of ARS, the stratification of the RSD was the most
novel contribution, with an article accepted to be presented in the International
Conference on Biomedical and Health Informatics (BHI) 20222, which had an ac-
ceptance rate of 32.7% in 2021. In this experiment, the models of [7] achieved
higher results using specific recording devices (AKGC417L microphone is better
overall), or a specific demographic characteristic can performed better (e.g., Male
subjects).

Concerning the segmentation of ARS, the results obtained in the performed anal-
ysis on the RSD were superior to the state-of-the-art, using the complete dataset
(best result in crackles vs. normal sounds with an F1-Score of 59.8%, and best
result in wheezes vs. normal sounds with an F1-Score of 45.8%) and a portion of
it (best result in crackles vs. normal sounds with an F1-Score of 66.4%, and best
result in wheezes vs. normal sounds with an F1-Score of 58.6%).

1.4 Resources and Planning

All the experiments of this thesis were performed in a server based in Department
of Informatics Engineering, accessed with a Virtual Private Network (VPN). The
hardware of the server is the following:

• Intel Xeon(R) Silver 4214 CPU @ 2.20GHz, 48 cores

2https://bhi-bsn-2022.org/ (Accessed 2022-08-12)
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• 256GB of RAM

• 3 NVIDIA Quadro P5000 GPUs, with 16GB of dedicated memory

• 3 NVIDIA RTX A5000 GPUs, with 24GB of dedicated memory (added later
on)

This server has 12 active users, all working on their Master’s/PhD thesis, which
led to a complicated resource management, meaning some experiments could
have be improved (such as the last model reproduction).

Prior to the start of this work, it was previously planned by the advisers. This
planning can be seen in Figure 1.2a

Figure 1.2b displays the work done in the 1st semester. It suffered some changes
since it was the beginning of the work and then, it was not known its complexity
and the workload of other courses. As so, some of the tasks were developed in
the 2nd semester.

(a) Expected work for the 1st semester

(b) Real work for the 1st semester

Figure 1.2: Working plan in the regarding the 1st semester

Figure 1.3a shows the expected work for the 2nd semester, after the first deadline.
As we can see in that Figure, this thesis was planned to be finished until July
4th. Since an article was written and was not expected, as well as the frequent
server overload, the final deadline was changed to September 5th, as we can see
in Figure 1.3b.
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(a) Expected work for the 2nd semester

(b) Real work for the 2nd semester

Figure 1.3: Working plan in the regarding the 2nd semester

1.5 Outline of the thesis

This dissertation is divided into 6 chapters:

• Chapter 1 - This chapter consists of an introduction to this dissertation, as
well as its motivations, objectives, approaches and workflow.

• Chapter 2 - Some background concepts that are necessary to fully under-
stand this work are presented in this chapter

• Chapter 3 - This chapter presents a critical and comparative analysis of
other works in this area (classification and segmentation), as well as a more
detailed analysis of the most common datasets used in this field

• Chapter 4 - The methods and experiments performed in regard to the clas-
sification task are explained in this chapter

• Chapter 5 - This chapter explains the methods and experiments conducted
in regard to the segmentation task

• Chapter 6 - The conclusion of this thesis and some final comments about
possible future work are addressed in the final chapter of the document
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Background Concepts

This chapter presents the principal and fundamental concepts to understand this
work. Some concepts that are introduced here are regarding Respiratory Sounds,
Machine Learning, and Deep Learning.

2.1 Respiratory Sounds

Respiratory Sounds are defined as being every sound related to breathing, includ-
ing physiological sounds (normal), adventitious, coughing, etc. (Figure 2.1). Ev-
ery RS is produced by air-flow in the respiratory tract, during the inspiration and
expiration phases, and can be recorded in the thorax, trachea or mouth. Normal
respiratory sounds are characterised as non-musical sounds with low-frequency
that are provided by breathing and can be heard over the trachea and chest wall.
Adventitious Respiratory Sounds are abnormal respiratory sounds that are su-
perimposed on breathing sounds. These can be of 2 different types: continuous
ARS (e.g., wheezes) or discontinuous ARS (e.g., crackles) [8]. Depending on their
duration, intensity and location on the respiratory cycle, these can be related with
some kind of respiratory problem. These two specific cases of continuous and
discontinuous ARS are going to be the main focus of this work.

2.1.1 Discontinuous Adventitious Sounds

Crackles are caused by the sudden opening and closing of abnormally closed air-
ways. They are explosive, non-musical and discontinuous. The frequency range
of crackles is bounded by 60 Hz and 2 kHz, but most of their energy is concen-
trated between 60 Hz and 1.2 kHz. Usually, they last less than 20ms and can be
classified as either fine1 or coarse2, depending on their duration and frequency
range (short duration and high frequency vs. longer duration and low frequency,
respectively). Depending on the characteristics of the crackles, they can be used

1https://www.youtube.com/watch?v=LHqqvrm2j6g (Accessed 2022-02-08)
2https://www.youtube.com/watch?v=aSor2XBc9K8 (Accessed 2022-02-08)
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Figure 2.1: Relationship between the terms breath sounds, adventitious sounds,
lung sounds and respiratory sounds [8]

to diagnose various types of lung diseases such as bronchiectasis or pneumonia
[9].

2.1.2 Continuous Adventitious Sounds

Wheezes3 are caused by an interaction between the airway wall and the gas mov-
ing through the airway, causing its oscillation. They are continuous and mu-
sical. The frequency range of wheezes is bounded by 100 Hz and 1000 Hz, or
even higher if measured inside the airways. Usually, they last longer than 80-
100ms. Wheezes can help diagnose various respiratory conditions such as COPD
(in adults), and bronchiolitis (in children) [9]. There are other types of CAS like
stridors and rhonchus. Figure 2.2 represents the spectrogram of normal breath
sounds, wheezes and crackles.
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Figure 2.2: Spectrogram representation of the normal breath sounds, crackles and
wheezes

3https://www.youtube.com/watch?v=T4qNgi4Vrvo (Accessed 2022-02-08)
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2.2 Features

Machine Learning cannot use the raw data, since there usually is too much in-
formation or not useful information, so it is necessary to extract relevant features
that are able to represent the underlying concepts to capture. A good feature
set needs to have features with a strong correlation with the target and low cor-
relation between them (i.e., not have redundant information). Since the feature
engineering process is not the main focus of the thesis, but it is important to give
some contexts about them, in the following sections, it is presented the features
used on the paper [7], which were replicated in this thesis.

2.2.1 Spectral Features

Spectral features are based on the frequency of the signal, and are obtained by
converting the time-based signal, using the Fourier Transform, such as spectral
centroid, spread, skewness, kurtosis, entropy, zero-crossing rate, brightness, etc.
[10]

2.2.2 Mel-Frequency Cepstral Coefficients Features

MFCC describe the spectral shape of the sound. These are calculated by con-
verting the logarithm of the magnitude spectrum to the mel scale (which ap-
proximates the human auditory system’s response more closely than the linearly-
spaced frequency bands) and then computing the Discrete Cosine Transform (DCT).
Since most of the signal information tends to be concentrated in a few low-frequency
components of the DCT, it is typical to extract the first 13 components. [11]

2.2.3 Melodic Features

Melodic features are related to the pitch and describe the melody of the sounds.
These can be computed from the pitch curve that caracterizes the frequencies of
the signal. Pitch (fundamental frequency), voicing and inharmonicity are some
examples of melodic features.

2.3 Deep Learning

Deep Learning is a subset of Machine Learning (ML) that imitates the way hu-
mans gain certain types of knowledge. Whilst classical ML leverage structured,
labelled data to make predictions, i.e., require some type of pre-processing to or-
ganise it into a structured format, DL eliminates some of that data pre-processing,
even though it can also have some data pre-processing. Also, DL algorithms are
stacked in a hierarchy of increasing complexity and abstraction, and ML models

9
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are easier to understand. It is what is behind various things that are present in
our daily life, such as driverless cars (e.g., Tesla) or voice assistants (e.g., Alexa
by Amazon) and they are trying to solve even more complex problems.

These models can achieve results above the state-of-the-art, sometimes surpass-
ing human-level performance [12]. For that, they require large amounts of data
(training examples). As these type of approaches are the main focus of the thesis,
in the following subsections, specific DL models are will be explained in more
detail.

2.3.1 Convolutional Neural Network

Convolutional Neural Network is the state-of-the-art approach for Computer Vi-
sion (CV) (recognition or classification), but it is also used for tasks involving
one-dimension structures, like text (Natural Language Processing), time series
analysis and, as in the case of this work, audio processing.

This model has 3 different types of layers:

• Convolution layer - its function is similar to a filter to detect features, since
there is the dot-product between two tensors. Afterwards, it is usually ap-
plied an activation function (e.g., sigmoid, hyperbolic tangent, rectified lin-
ear unit - ReLU)

• Pooling layer - reduces the size of the input image to reduce the computa-
tional load, memory usage, the number of parameters and also reduces the
possibility of overfit the model (because it reduces drastically the size of the
input)

• Fully Connected layer - a set of neuron applies a linear transformation to
the input vector (the output of the final layer but all its values are in a single
vector) through a weight matrix (also known as feed-forward neural net-
work)

Figure 2.3 shows an example of a CNN architecture.

2.3.2 Recurrent Neural Network

Recurrent Neural Network is a type of network that attempts to model time or
sequence-dependent behaviour by feeding back the output of a neural network
layer at a given instant in time to the input of the same network layer at the
following instant. Figure 2.4 shows the structure of this model. It has many
usages such as NLP in sentiment analysis or language translation, or time series
analysis or even music generation.

10
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Figure 2.3: Example of CNN

Figure 2.4: Example of RNN

2.3.3 Gated Recurrent Unit

GRU is a variant of the RNN which also takes the past into account, but it has
the possibility/ability to neglect or not the past (Reset Gate) and identify/decide
how important that past information is (Update Gate). In Figure 2.5, we can see
in more detail the Recurrent Cell of the GRU model. There is also a variant of
this model that does the same, but takes into account the past and the future. It
is called BiGRU.

2.3.4 Long Short-Term Memory

This model is a variant of the RNN since it can retain "memory" for longer periods
[13]. The core idea is that it is changed slowly, with only minor linear interactions.
The main difference between LSTM and RNN is that the hidden layer has neurons
with memory (Figure 2.6). There is also a variant of this model that takes into
account the past and the future called Bidirectional Long Short-Term Memory
(BiLSTM).

11
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Figure 2.5: GRU Recurrent Cell

Figure 2.6: Example of LSTM

2.4 Evaluation Metrics

A confusion matrix is a table that allows us to evaluate the performance of the
models by classes, in a simplified way. Table 2.1 is an example of a 2-class model.
In this table, we can understand how many instances were predicted correctly
or incorrectly. To do that, we need to define which class is the positive (the one
which we want to take conclusions from) and which is the negative (the rest of
the classes).

True Class
Positive Class Negative Class

Predicted Class Positive Class TP FP
Negative Class FN TN

Table 2.1: Confusion Matrix

Each sample has 4 possible types:

• True Positive (TP) - the sample was correctly predicted as belonging to the
positive class

12
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• False Positive (FP) - the sample is from the negative class and was incor-
rectly classified as being from the positive class

• True Negative (TN) - the sample was correctly predicted as belonging to
the negative class

• False Negative (FN) - the sample is from the positive class and was incor-
rectly classified as being from the negative class

From this table, we can calculate other metrics that can assess better the perfor-
mance of the model. The metrics chosen for evaluating the models are important
since some are preferable in some cases than other (e.g., when the dataset is un-
balanced). In the following subsections, the metrics that were used to assess the
models are explained.

2.4.1 Accuracy

This metric is good to understand how many instances were correctly classified
(positive and negative classes). To notice this metric is not that good for unbal-
anced dataset: if it has 900 samples of normal respiratory sounds and 100 sam-
ples of ARS and the model classifies every samples as being a normal respiratory
sound, its accuracy is 90%, but its performance is not good.

Accuracy = TP+TN
TP+TN+FP+FN

As this metric is not that good for unbalanced datasets, an alternative version of
this metric was created, the Balanced Accuracy.

BalancedAccuracy = ∑ Accuracyo f eachclass
Numbero f classes

2.4.2 Precision

This metric helps us understand how many instances were predicted as being
from the positive class were correctly classified

Precision = TP
TP+FP

2.4.3 Recall or Sensitivity

This metric assesses the number of instances from the positive class that were
correctly classified.

RecallorSensitivity = TP
TP+FN
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2.4.4 Specificity

This metric assesses the number of instances from the negative class that were
correctly classified.

Speci f icity = TN
TN+FP

2.4.5 F1 Score

It is the harmonic mean between the Precision and Recall and because of that, it
is one of the most used metrics. The higher this value is, the better the capability
of the model to predict correctly.

F1Score = TP
TP+ FP+FN

2
= 2·Precision·Recall

Precision+Recall

There is also the F1 Score Macro which calculates the average F1 Score of all
classes in study.

F1ScoreMacro = ∑ F1Scoreo f eachclass
Numbero f classes

2.4.6 Matthews Correlation Coefficient

MCC takes into account all four values of the confusion matrix, and a high value
(close to 1) means that both classes are predicted well, even if the dataset is un-
balanced.

MCC = TP·TN−FP·FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Similar to F1 Score Macro, there is also the MCC Macro, that averages the MCC
of all classes in study

MCCMacro = ∑ MCCo f eachclass
Numbero f classes

2.4.7 Receiver Operating Characteristic Curve

This graph (Figure 2.7) shows the performance of a given model at all classifica-
tion thresholds. This curve plots 2 parameters:

• True Positive Rate (TPR) (also known as Recall)

TPR = TP
TP+FN
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• False Positive Rate (FPR)

FPR = FP
FP+TN

Figure 2.7: ROC Curve

2.4.8 Area Under the ROC Curve

This metric measures the area underneath the entire ROC curve and represents
the degree of separability. The closer to one this value is, the better (Figure 2.8).

Figure 2.8: AUC

2.4.9 Jaccard Index

This metric helps us to understand how similar and diverse two samples sets are.
Usually, it is used for segmentation problems.

JaccardIndex = |A ⋂
B|

|A ⋃
B|

15



Chapter 2

2.4.10 Overlap Coefficient

This metric, as well as the Jaccard Index, is usually used in segmentation prob-
lems and it measures the overlap between 2 finite sets.

OverlapCoe f f icient = |A ⋂
B|

min(|A|,|B|)
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State of the Art

There are a lot of studies regarding the classification of RS and not so many re-
garding the segmentation of RS. In this State of the Art, some papers are described
according to their results, approaches, and datasets used. All these articles were
published in conferences and/or trusted sources. This chapter is divided in 4 sec-
tions: datasets, classification of RS using ML and DL approaches, segmentation
of RS using ML and DL approaches, and their limitations.

3.1 Datasets

3.1.1 Respiratory Sound Database

In the articles [4] and [5], the authors explain how they created a dataset that can
be adopted as the benchmark to this type of problems.
The dataset was created by two independent teams from two countries (Portugal
and Greece). It contains 5.5 hours of respiratory sounds (920 annotated audio
samples) of 126 patients, i.e., 6898 respiratory cycles, where 1864 have crackles,
886 have wheezes and 506 have both (more demographic information on Table
3.1). The authors created a specific was of splitting the data in Train-Test, in order
to standardise the comparison between results among other studies that use this
dataset. It was divided in Train-Test 60/40, with 539/381 audio files per set (mode
information regarding that splitting on Table 3.2).

The team from School of Health Sciences, University of Aveiro, Portugal (ESSUA)
obtained their sounds at Lab3R (Respiratory Research and Rehabilitation Labo-
ratory) and at Hospital Infante D.Pedro. The sounds were collected from 7 chest
locations: trachea, left and right anterior, posterior, and lateral. These respira-
tory sounds were collected from patients of all ages (infants, adults, and elderly
patients) and with various complications, such as Upper Respiratory Tract Infec-
tion (URTI) and Lower Respiratory Tract Infection (LRTI), Chronic Obstructive
Pulmonary Disease (COPD), asthma, pneumonia, bronchiectasis, and bronchioli-
tis. These sounds were recorded with a digital stethoscope (Welch Allyn Mas-
ter Elite Plus Stethoscope Model 5079-400), or seven stethoscopes with a micro-

17



Chapter 3

Number of recordings 920
Sampling frequency (number of recordings) 4 kHz (90); 10 kHz (6); 44.1 kHz (824)

Bits per sample 16
Average recording duration 21.5 s

Number of participants 126: 77 adults, 49 children
Sex 79 male, 46 female (NA: 1)

Age (mean ± standard deviation) 43.0 ± 32.2 years (NA: 1)
Age of adult participants 67.6 ± 11.6 years (NA: 1)
Age of child participants 4.8 ± 4.6 years
BMI of adult participants 227.2 ± 5.4 kg/m2 (NA: 2)

Weight of child participants 21.4 ± 17.2 kg (NA: 5)
Height of child participants 104.7 ± 30.8 cm (NA: 7)

Table 3.1: Demographic Information of RSD (NA: Not Available)

Database Training Set Testing Set
ESSUA AUTH All ESSUA AUTH All

Number of Patients 72 7 79 38 11 49
Number of Recordings 507 32 539 317 64 381

Number of Wheezes 459 42 501 588 61 649
Number of Crackles 1104 111 1215 273 112 385

Number of Crackles + Wheezes 335 28 363 106 37 143
Number of Normal 1740 323 2063 1216 363 1579

Table 3.2: Summary of the Training and Testing sets

phone in the main tube (3 M Littmann Classic II SE) or even seven air-coupled
electret microphones (C 417 PP, AKG Acoustics) located into capsules made of
Teflon. Two respiratory physiotherapists and one medical doctor with experience
in visual-auditory crackle/wheeze recognition annotated the sounds by the pres-
ence/absence of adventitious sounds and identification of the breathing phases,
but the time-consuming task of annotating the sounds was done by one respira-
tory physiotherapist. All the annotations performed by this team were conducted
in the Computerised Lung Auscultation – Sound System (CLASS) proprietary
tool.
The respiratory sounds collected by the team from the Aristotle University of
Thessaloniki (AUTH) were acquired at the Papanikolaou General Hospital in
Thessaloniki and at the General Hospital of Imathia (Health Unit of Naousa),
Greece. The sounds were collected from 6 specific locations (Figure 3.1), from
adult and elderly patients with COPD with comorbidities (heart failure, diabetes,
and hypertension). The annotation process was performed by 3 experienced
physicians (2 pulmonologists and one cardiologist) in Audacity 2.0.6. The an-
notations were the following: normal (respiratory sound), fine crackles, coarse
crackles, wheezing, speech, cough, and artifact.

18



State of the Art

Figure 3.1: Chest Locations for the Recording of RS of RSD

3.1.2 HF_Lung_V1 Database

In [6], the authors explain how they created a dataset that can also be adopted as
the benchmark to this type of problems.
The dataset was created using two sources: one was used in a datathon in Taiwan
Smart Emergency and Critical Care (TSECC) that has lung sound recordings from
261 patients, while the other source has sound recordings of 18 residents of a
Respiratory Care Ward (RCW) or a Respiratory Care Center (RCC) in Northern
Taiwan (all under mechanical ventilation). From both sources, the patients are all
Taiwanese and aged older than 20 years (more detailed information on Table 3.3).

Subjects from RCW/RCC Subjects from TSECC
Number 18 261

Gender (M/F) 11/7 NA
Age 67.5 (36.7, 98.3) NA

Height (cm) 163.6 (147.2, 180.0) NA
Weight (cm) 62.1 (38.2, 86.1) NA
BMI (kg/m2) 23.1 (15.6, 30.7) NA

Respiratory Diseases
Acute Respiratory Failure 4 (22.2%) NA

Chronic Respiratory Failure 8 (44.4%) NA
Acute Exacerbation of COPD 1 (5.6%) NA

COPD 2 (11.1%) NA
Pneumonia 4 (22.2%) NA

Acute Respiratory Distress Syndrome 1 (5.6%) NA
Emphysema 1 (5.6%) NA

Comorbidities
Chronic Kidney Disease 1 (5.6%) NA

Acute Kidney Injury 3 (16.7%) NA
Chronic Heart Failure 2 (11.1%) NA

Diabetes Mellitus 7 (38.9%) NA
Hypertension 6 (33.3%) NA
Malignancy 1 (5.6%) NA
Arrythmia 1 (5.6%) NA

Cardiovascular Disease 1 (5.6%) NA

Table 3.3: Demographic Information of HF_Lung_V1 (NA: Not Available)

For the recordings, they used 2 different devices: a commercial eletronic stetho-
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scope (Littmann 3200) (TSECC and RCW/RCC) and a customized multichannel
acoustic recording device (HF-Type-1 for short) that supports the connection of
8 eletrect microphones (RCW/RCC)). The 2 devices had a sampling rate of 4000
Hz, 16 bits per sample, recorded in the .wav format, and were collected from 8
specific locations (Figure 3.2).

Figure 3.2: Chest Locations for the Recording of RS of HF_Lung_V1

Regarding the labeling process, the data in the TSECC dataset only had labels in-
dicating whether a CAS or DAS existed, so 2 board-certified respiratory therapists
and one board-certified nurse were recruited to label the start and end points of
inhalation, exhalation, wheeze, stridor, rhonchus, and DAS, using a customized
labeling software. Regarding the labeling process of the data in the RCW/RCC
dataset, there is no information.

In this dataset, the standard audio duration used for inhalation, exhalation, and
adventitious sound detection was 15 s because it contains at least 3 complete
breath cycles, which are adequate for a clinician to reach a clinical conclusion.
In total, this dataset has 9765 recordings of 15 s (40 hours and 41 minutes), where
there are 15606 DAS (crackles) and 13883 CAS (8457 wheezes, 686 stridors, and
4740 rhonchus). Similar to the RSD dataset, the authors also divided the data
in Train-Test to standardise the comparison between results among other studies
that use this dataset. It was divided in Train-Test 80/20, with 7809/1956 audio
files per set (more information regarding that splitting on Table 3.4).
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Training Set Testing Set Total
Recordings

Number of 15s Recordings 7809 1956 9765
Total Duration (min) 1952.25 489 2441.25

Labels
Number of I 27223 6872 34095

Total Duration of I (min) 422.17 105.97 528.14
Mean Duration of I (s) 0.93 0.93 0.93

Number of E 15601 2748 18349
Total Duration of E (min) 248.05 44.81 292.85

Mean Duration of E (s) 0.95 0.98 0.96
Number of C/W/S/R 11464/7027/657/3780 2419/1430/29/960 13883/8457/686/4740

Total Duration of C/W/S/R (min) 160.16/100.71/9.10/50.53 31.01/19.02/0.36/11.63 191.16/119.73/9.46/61.98
Mean Duration of C/W/S/R (s) 0.84/0.86/0.83/0.80 0.77/0.80/0.74/0.73 0.83/0.85/0.83/0.78

Number of D 13794 1812 15606
Total Duration of D (min) 203.59 27.29 230.87

Mean Duration of D (s) 0.89 0.90 0.89

Table 3.4: Summary of the Training and Testing sets (I: Inhalation, E: Exhalation,
W: Wheeze, S: Stridor, R: Rhonchus, C: CAS, D: DAS, S, and R were combined to
form C)

3.1.3 Other relevant datasets

Norwegian Database of Health Conditions and Chronic Diseases (Tromsø 7)

In [14], it is referred the usage of a specific database, the Tromsø 7. This study is
conducted every 6-7 years in the Tromsø municipality to assess the health con-
ditions of the population of that municipality. In 2015-2016, 21083 participants
attended for a first visit to assess their health conditions and from those, 6048
participants (mean age 63.2 and 54.7% female) had their lung sounds recorded.
Those sounds were recorded using an electret microphone (MKE 2-eW Gold,
Sennheiser electronic GmbH & Co. KG) inserted at the tube of a stethoscope,
10cm away from the chest piece. The files were captured in .wav format, at 44100
Hz and recorded at 6 chest locations (Figure 3.3), during 10-15s.

Figure 3.3: Chest Locations for the Recording of RS of Tromsø 7
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Regarding the labeling process, in [14], they divided the dataset in 3 subsets, all
annotated by different persons (physiotherapist/lung sound researcher, a com-
puter scientist with previous experience in detection of wheezes in lung sounds,
and a general practitioner and experienced lung sound researcher). These sounds
were annotated by breathing phases (inhalation and exhalation). The first two
subsets were used in the training part, while the last one was used in the test
part. This dataset will not be used because it is private.

3.2 Classification of Respiratory Sounds

The study conducted on [7] the authors tested 4 machine learning models (LDA,
SVMrbf, RUSBoost, and CNN).
The 3 first models were fed with features extracted from the spectrograms and
some novel acoustic features (spectral features, mel-features, and melodic fea-
tures - reaching a total of 2430 features, because for each feature and event, 5 sta-
tistical moments were calculated: mean, standard deviation, median, minimum
value, and maximum value) and the last one was fed with the spectrogram and
mel spectrogram images.
The dataset used in this study was the RSD but some random generated events
were added in order to increase the realism of the challenge for the models (with
a fixed duration of 50ms and 150ms or variable duration following a Burr distri-
bution - lower than 100ms "otherCrack" or between 100ms and 2s "otherWheez").
They tried 3 approaches on the classification of the ARS: crackles vs. wheezes
vs. others (3 classes), crackles vs. others, and wheezes vs. others. To start the
tests, the authors tried to understand the performance training with fixed dura-
tion events and evaluating the results with a fixed duration and they were great
(best model with 96.9% with 3 classes, 99.6% with crackles vs. others, and 98.6%).
Since the results were almost perfect, they suspected that the models were learn-
ing the duration of the events instead of the characteristics of each type of sound.
To test this, they created a script to generate random events (explained above)
and trained the models with a fixed duration but the testing part was done with a
variable duration. This time, the overall performance decreased (best model with
63.7% with 3 classes, 66.1% with crackles vs. others, and 64.1% with wheezes
vs. others). The final experiment was done with training and testing data with
variable duration and the results were in between the 2 experiments done before
(best model with 81.8% with 3 classes, 87.4% with crackles vs. others, and 73.2%
with wheezes vs. others).

In the article "Influence of Event Duration on Automatic Wheeze Classification"
[15], the approach was to classify wheezes using Linear Discriminant Analysis
(LDA), Linear SVM (SVMlin), Gaussian SVM (SVMrbf), boosted trees (Boost),
and a CNN (using the spectrogram images as input).
The dataset used in this article is RSD, but some random generated events were
added in order to increase the difficulty of the challenge for the models (with a
fixed duration of 150ms or variable duration following a Burr distribution - be-
tween 100ms and 2s).
47 different features (usually used in music information research and wheeze
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classification such as spectral features and mel features) were used in the models
(except CNN) and for each feature, 5 statistical moments (mean, standard devia-
tion, median, minimum value, and maximum value), which means in total were
extracted 235 features.
The first 4 models were trained with 10 different seeds, the parameters were opti-
mized on a validation set containing 25% of the training set and then tested on the
testing set. After that, they were optimized using Bayes optimization. In the case
of the CNN model, they created a based architecture and optimized the parame-
ters using a grid search approach for convolution size, number of convolutional
filters, dropout rate, pooling size, and size of the fully connected layer. They were
trained with a maximum number of 15 epochs, a mini batch of 128, ADAM opti-
mization (adaptative moment estimation), and 10% of the training set was used
for validation during the training phase.
When the events had a fixed duration, the best model had a 96% of accuracy
and when the events had a variable duration, the performance decreased and the
accuracy of the best model was 67.8%.

In [16], the authors tried to classify between various diseases (normal, asthma,
pneumonia, bronchiectasis (BRON), chronic obstructive pulmonary disease (COPD),
and heart failure (HF)) using a CNN and bidirectional LSTM network (CNN +
BDLSTM).
The dataset used in this article was the combination of two datasets: RSD (but
only on 110 instead of all 126 patients) and some recordings gathered by the au-
thors at King Abdullah University Hospital, Jordan University of Science and
Technology, Irbid, Jordan. The second part of the dataset has 301 total recordings
from 103 patients (62 males and 41 females, mean age 50), out of which 35 patients
had no respiratory disease, while 68 of them suffered from one of those diseases
mentioned above. The sounds were recorded using a single-channel electronic
stethoscope (3M Littmann model 3200) placed on either upper, middle, or lower
left/right chest wall locations, and collected and annotated by two professional
thoracic clinicians.
For each signal, 3 preprocessing steps were applied, in the following order: a
one-dimensional discrete wavelet transform function (maximal overlap discrete
wavelet transform - MODWT), a rLOESS displacement removal, and a z-score
normalization with mean value of zero and a standard deviation of one.
The CNN model has a Conv1D layer (3 in total), followed by a Batch Normaliza-
tion layer and a ReLU, except for the last Conv1D layer which is followed first by
a max-pooling layer. After the first two ReLU layers, 30% dropout was added to
prevent overftting of the model. The BDLSTM model has a total of 200 hidden-
units (100 units in each direction) and at the end, a 20% dropout to prevent the
overfitting.
In the end, the authors obtained a 99.62% accuracy, 98.43% sensitivity, and 99.69%
specificity.

Aykanat et al. [17] created 8 different models (4 SVMs and 4 CNNs) to classify
between various ARS, but the relevant one is where they tried to classify between
normal, rhonchus, squeak, stridor, wheeze, rales, bronchovesicular, friction rub,
bronchial, absent, decreased, aggravation, or long expirium duration (basically,
normal respiratory sounds vs. CAS vs. DAS).
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The dataset used was created by them and three hospitals agreed to participate
in their research (Ankara University, Yıldırım Beyazıt University, and Yıldırım
Beyazıt Education and Research Hospital). The stethoscope and the recording
software used were both built and developed by them. In the end, they recorded
respiratory sounds on 1630 patients, from 11 positions from each patient, totalling
17930 audio clips with 10s each.
The features extracted from this dataset were mel frequency cepstral coefficient
(MFCC) for the SVM model and spectrogram using Short-Time Fourier Trans-
form (STFT) for the CNN model. Finally, the results obtained were 76% accuracy,
79% precision, and 74% recall for the CNN and 75% accuracy, 75% precision, and
99% recall for the SVM.

The study done in [18], Acharya et al. proposed a hybrid CNN-RNN model to
perform classification of four different breathing sounds (normal, wheeze, crackle,
and both wheeze and crackle).
The dataset used in this article is RSD and since it has various sampling frequency,
every recording was resampled to 4000Hz. The authors also did some data aug-
mentation techniques such as noise addiction, speed variation, random shifting,
pitch shifting, etc.
Regarding the features, they used Mel-frequency spectrogram with a 60ms win-
dow size with 50% overlap.
Concerning the developed model, they divided it in 3 stages: the CNN part - it
has a batch-normalization layer to start off, then convolutional (always followed
by a ReLU activation function) and max-pooling layers; the BiLSTM part - with
hyperbolic tangent activation function; and classification part - with a dropout
layer of 50% to prevent overfitting, a fully-connected layer with 100 neurons,
and a softmax layer. The model is trained with categorical crossentropy loss and
Adam optimizer.
In the end, the results obtained were 48.63% and 84.14% for sensitivity and speci-
ficity (micro metrics), and 58.47%, 58.01%, and 57.91% for precision, recall and F1
Score, respectively (macro metrics).

The RNN models proposed in [19] are designed to classify four different breath-
ing sounds (normal, wheeze, crackle, and both wheeze and crackle), using the
RSD.
The preprocessing of the sound data is divided in 3 steps: the first is the seg-
mentation of the audio recording in windows with variable size and overlaps;
the second step is the extraction of Mel-Frequency Cepstral Coefficients (MFCCs)
for each window; and the last step is feature normalization (either using Z-score
normalization or Min-max normalization - noting that they have tested the best
normalization method and Z-score achieved better results).
Regarding the RNN models, the authors tried four different models (LSTM, GRU,
BiLSTM, and BiGRU), where the worst model overall was GRU and the best
model overall was LSTM. In summary, the best model obtained a 84% specificity
and 64% sensitivity.
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3.3 Segmentation of Respiratory Sounds

In [20], the idea is to use an attention-based encoder-decoder since it is a better
model to segment audio files rather than a deep learning model.
The database used is private and consists of 15 seconds of audio files from 22
patients (12 men and 10 women). Two types of stethoscopes were used: a dig-
ital stethoscope (Littmann 3200, 3M corp: sampling frequency 2000Hz) and an
anti-noising microphone set (Accursound, Heroic Faith Medical Science Co., Ltd:
sampling frequency 4000Hz). All of the audio files were annotated by experi-
enced respiratory therapists or medical doctors to indicate the period of inspi-
ration, expiration, and adventitious sound at the resolution of a sub-millisecond
range.
The features extracted from the ARS were the spectrogram and the acoustic fea-
tures of the encoder.
The encoder uses a ResNet (transfer learning approach with some variations -
ResNet50, ResNet101, and ResNet152), which converts the spectrogram into a
fixed form. The decoder uses a LSTM for sequence analysis and an attention
mechanism for creating a weighted image so that the model can focus on specific
parts of the spectrogram at each step of time. In the experiment part, they used
a train-test approach (440 recordings for training and 49 recordings for testing)
with a 10-fold cross validation.
In the end, the best model achieved 92% of accuracy and 90% and 93% F1-score
for inspiration and expiration, respectively.

In the article [21], the authors developed a multi-label classification system with
Bidirectional Gated RNN (BiGRNN) to segment (and classify) lung sounds in in-
spiration vs. expiration phases, and normal sound vs crackle sound.
The dataset used is small and private (10 healthy patients and 5 patients with
idiopathic pulmonary fibrosis - IPF), where for each patient, 32 single-channel
sounds of 30s were recorded, with 3 to 8 breathing cycles. The process of labelling
the recordings was done by annotating the temporal onset and offset positions of
the events inspiration, expiration and crackles.
Regarding the feature extraction process, they resampled the data to 16kHz, used
a STFT with a window size of 32ms and 12ms overlap (i.e., frame-shift of 20ms).
After, they extracted two types of features: Mel Frequency Cepstral Coefficients
(MFCCs) (20 static coefficients, 20 delta coefficients, and 20 acceleration coeffi-
cients) and Spectrogram (257-bin log magnitude).
The model used was BiGRNN with two hidden layers with 100 neurons for the
forward and backward layers, respectively. The output layer is divided in two
softmax layers and the activation functions in the hidden layers are rectifier non-
linearities. The model was initialized with orthogonal weights, for optimizing
the cross-entropy error, they used the ADAM function, and a droupout of 50%
applied to the hidden layers. They used 5-fold cross validation with 100 epochs
for the training process with early stop.
In the end, the F1-Score for inspiration, expiration and crackles was 87.0%, 84.6%,
and 72.1%, respectively.

The objective of the investigation done on [14] was to segment lung sounds to
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detect the breathing phases (inspiration and expiration) using a Faster R-CNN.
The dataset used was already explained above in the section 3.1 (Tromsø 7).
The feature used to train the model was the spectrogram with a window size of
4096 samples, with an overlap of 3200 samples, and data points only lower than
2000Hz.
A Faster R-CNN is a model used in object detection and consists of two CNN: a
Region Proposal Network (RPN) that is responsible for identifying potential ob-
jects and its bounding boxes (it used the convolutional layers form the ResNet101
architecture), and a classification network that takes the input image and classi-
fies each segment (background, inspiration or expiration). Since the model cre-
ates bounding boxes in the spectrogram with a certain level of confidence, they
pruned away the one with a confidence level below 50%. After, they needed to
ensure there was no multiple detection for the same breathing phase (more than
50% overlap between them), so it was necessary to remove the one with the low-
est confidence. The final step was to remove the overlaps that still existed, so they
shrunk the bounding boxes in equal amounts until they no longer overlapped.
To evaluate the algorithm, they used two approaches: the first one calculates the
percentage of agreement between each annotator and the model, using the Jac-
card Index (JI), where if it was larger than 0.5 and the boxes were the same class,
they had agreement (this means that this method was not concerned with the ex-
act beginning and end of each cycle); and the second one calculates the Cohen’s
Kappa to understand the level of agreement, taking into account the beginning
and end of each cycle. For the first evaluation method, the average agreement
was 97% and 87% for inspiration and expiration, respectively. And for the second
evaluation method, the average sensitivity was 97% and the average specificity
was 84%.

The framework proposed in [6] is modular and designed to segment and predict
(inhalation, exhalation and ARS) using DL models: LSTM, GRU, BiLSTM, Bi-
GRU, CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU. The framework
is divided in 3 parts: preprocessing, DL-based modeling and postprocessing.
The dataset used was already explained above in the section 3.1 (HF_Lung_V1
database).
For the preprocessing part, the authors started by resampling all the recordings
to 4000 Hz, then applied a high-pass filter (at 80 Hz) to eliminate the heart sound
noise and STFT with Hanning window with a size of 256 and 64 hop length, with-
out additional zero-padding. After this process, a 15s sound signal is transformed
into the corresponding spectrogram. Following the spectrogram extraction, more
features are extracted: MFCCs (20 static coefficients, 20 delta coefficients, and 20
acceleration coefficients) and Energy Summation (four frequency bands). In the
end, a 938 x 193 feature matrix combines all of those above. To conclude, a min-
max normalization is performed on each feature (values between 0 and 1).
The DL models mentioned above can be divided in 2 categories: the ones that
start with CNNs and the ones that do not. The usage of the CNN models can
help extract abstract features first and then feed them to the RNN variants mod-
els. The output of the models that do not start with the CNN have an output of
938 x 1 and the others have an output of 469 x 1 (the "1" value in these outputs
represent if they have inhalation, exhalation or ARS present on the time-segment
or not).
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Regarding the postprocessing phase, the output vector is analyzed where each in-
dex represents a segment. If the interval between x and x + 1 segments is smaller
than 0.5 s, the difference in frequency between their energy peaks is computed
and if that difference was below 25 Hz, they were merged into a single event.
Also, if the duration of an event was shorter than 0.05s, the event was deleted.
The metrics used in this paper are a bit different because they refer to the detec-
tion of segments, meaning they are not evaluated the same way. Firstly, in Figure
3.4, the authors show how they defined the TP, TN, FP, and FN for the segment
detection and the usage of the Jaccard Index (JI) for event detection. Then, the
metrics used those values explained above and for evaluating the performance of
the models (segment detection), the F1 Score is used, while for the evaluation of
the event detection, the ROC and AUC metrics are used, along with the F1 Score.
For CAS, the best model for segment and event dectections was CNN-BiGRU
with an F1 Score of 53.3% and 51.6%, respectively, while for DAS, the best model
for segment detection was CNN-BiLSTM with an F1 Score of 71.2% and for event
detection was BiGRU with an F1 Score of 71.4%.

Figure 3.4: Task definition and evaluation metrics (JI: Jaccard Index)
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3.4 Limitations of the State of the Art

3.4.1 Datasets

From the datasets presented, only the RSD and HF_Lung_V1 are going to be dis-
cussed, since they are the ones publicly available with more data and more in-
formation about them (the Tromsø 7 dataset is private, as mentioned above). Re-
garding these, both have advantages and disadvantages on their side. The RSD
has the advantage that the research team is being using it for a long time, since
they were the ones who created it. The HF_Lung_V1 has more advantages, since
it has more data to work with, has more types of annotations (respiratory cycles
- inhalation and exhalation and more type of CAS). One important problem of
the HF_Lung_V1 dataset is that a large portion of the dataset does not have any
demographic information (TSECC part). Table 3.5 shows the major differences
between both datasets.

RSD HF_Lung_V1
Hours 5h 30min 40h 41min

No. of participants (M/F) 126 (79/46/NA:1) 18 (11/7) + 261 (NA: 261)
No. of recordings 920 9765

Average recording duration 21.5s 15s

Type of ARS annotated Crackles, Wheezes Crackles, Wheezes, Stridors,
Rhonchus, Respiratory Cycles

No. of annotated DAS 1864 15606
No. of annotated CAS 886 13883
No. of breathing cycles 6898 29295

Diseases of the patients
Healthy 26 0
Asthma 1 0
COPD 64 1
URTI 14 0
LRTI 2 0

Bronchiectasis 7 0
Bronchilitis 6 0
Pneumonia 6 4

Acute Respiratory Failure 0 4
Chronic Respiratory Failure 0 8

Acute Exacerbation of COPD 0 1
Acute Respiratory Distress Syndrome 0 1

Emphysema 0 1

Table 3.5: Comparison between RSD and HF_Lung_V1 datasets (NA: Not Avail-
able)

3.4.2 Classification and Segmentation

There are a lot of studies regarding the classification of ARS, and some achieve
very good results but they do not explain everything or they do not do things in
the correct way. In some papers, they try to apply DL approaches with a dataset
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really small and/or without much variety, which is not possible since those types
of models require a large amount of variable data. Other authors achieve "good
results" but they do not explain how those models are created, specially DL mod-
els, lacking information about their structure. It is also noticeable that there are
more papers regarding the classification of ARS than their segmentation, since it
is a more complex task that requires the dataset to have annotations with quality
(e.g. golden annotations), which is a long time-consuming task. Table 3.6 shows
a summary of all the papers mentioned above.
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Table 3.6: Summary of papers presented in State of the Art
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Classification of adventitious events

This thesis was divided into two parts, the classification of adventitious events
and the segmentation of adventitious sounds. In this section, a detailed descrip-
tion of the classification part was made.

Since this task was the first one to be developed, to adapt to work to this kind
of data and models, the first performed taskwas the replication of the results of
the paper [7]. Afterwards, those same models were replicated using the other
datasets, to assess if those models were able to generalise and crossed between
each other (i.e., models trained with one dataset and tested with another dataset).
To conclude this classification task, a stratified analysis of RSD was performed, to
better understand which recording devices/demographic quality achieved better
results. As said before, with the stratification analysis, an article was published
in the International Conference on Biomedical and Health Informatics 2022.

4.1 Dataset

The dataset used is the RSD, explained in Section 3. The data was divided into
Train-Test (TT), as already explained before, but while training the models, a ran-
dom validation set containing 25% of the training set was generated.

The re-annotated data with corrected labels was also used since it had some errors
such as labelling, the start and end points were badly annotated and switched la-
belling files between sound files, and the generation of "other" events is different.
From now on, to simplify, this dataset with the corrected labels is going to be
called RSD New Annotations.

The HF_Lung_V1 Database was also tested, to check if the models developed for
[7] were generalised for other datasets. Since the dataset is divided into contin-
uous (wheezes, stridors, and rhonchus) and discontinuous (crackles) sounds, the
analysis was done using this division. In this dataset, the events "other" based on
the distributions of events were also added, as was done with the RSD.
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4.2 Feature Extraction

The features used for the ML are explained with more detail in Chapter 2, Section
2.2. In the article [7], they are extracted by window (3 window methods - Ham-
ming, Blackman-Harris and rectangular; 6 window sizes - 16ms, 32ms, 64ms,
128ms, 256ms, 512ms with 75% overlap), but in these experiments, only the Ham-
ming window method was used (the window sizes used were the same). In total,
for each window, there are 81 features (25 spectral, 26 MFCC, and 30 melodic
features) and for each feature, five statistics were calculated (mean, standard de-
viation, median, minimum and maximum values), totalling 2430 features fed to
the classifiers.

The features used in the paper for the DL are also extracted by window (3 win-
dow methods - Hamming, Blackman-Harris and rectangular; 3 window sizes -
32ms, 64ms and 128ms with 75% overlap), but this time, the spectrogram and the
mel-spectrogram are extracted. In these experiments, only the Blackman-Harris
window method was used (the window sizes used were the same).

4.3 Feature Selection

Regarding the feature selection process, the Minimum Redundancy Maximum
Relevance (MRMR) was the algorithm chosen. This algorithm ranks the features
that have maximum relevance regarding the target variable and minimum redun-
dancy pertaining to the features that have been selected. For each experiment, 3
subsets of features were selected: 10 best features, 100 best features and all of the
2430 features.

4.4 Classifiers

The models experimented on paper are Linear Discriminant Analysis (LDA),
Random Undersampling Boosted Trees (RUSBoost), Support Vector Machine with
radial basis function (SVMrbf) and Convolutional Neural Network (CNN). All
these classifiers were trained 10 times with different seeds.

For the ML approaches, the hyperparameters were optimized using the Bayesian
Optimization on the validation set explained and the models with the best hy-
perparameters were then applied to the test set. The hyperparameters optimized
were the following:

• Delta for LDA

• Box constraint and kernel scale for SVMrbf

• Number of variables to sample, number of learning cycles, minimum leaf
size, and maximum number of splits for RUSBoost
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For the DL approaches, 3 models were developed:

• A CNN model with dual input configuration that used the spectrogram and
the mel-spectrogram as inputs

• A CNN model with a single input configuration that used the spectrogram
as input

• A CNN model with a single input configuration that used the mel-spectrogram
as input

The architecture of the dual input CNN is represented in Figure 4.1, and the ar-
chitectures of the single input CNNs is the same as represented in the Figure 4.1,
but only considering the respective branch before the concatenation and the fol-
lowing layers. All these CNNs were trained with 30 epochs, with a batch size of
16 and 0.001 learning rate (ADAM optimization algorithm [22]). An early stop
strategy was also used to avoid overfitting during the training phase was also
used (i.e., after 10 consecutive epochs with an increase in the validation loss -
validated in the validation set explained above).

Figure 4.1: Dual Input CNN architecture
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4.5 Results

In this section, the performance of the algorithms is analysed. Each experiment
is composed of 3-classification problems: 3-classes (crackles vs. wheezes vs. oth-
ers), 2-class wheezes (wheezes vs. others), and 2-class crackles (crackles vs. oth-
ers).

The metrics used for the evaluation of the models are explained in Chapter 2,
Section 2.4. For the AUC metric, it was only calculated for the binary cases and for
the multi-class classification, the evaluation was computed in one-vs-all (crackles
vs. the rest, wheezes vs. the rest, and others vs. the rest).

In all the performed comparisons (discussed in the following paragraphs), sta-
tistical significance tests were conducted comparing the best model (according
to the F1-Score macro) with all the others. When comparing the results for dif-
ferent subpopulations, unpaired tests were performed, namely the unpaired t-
test (when the distributions are Gaussian) or the Wilcoxon rank sum test (when
the distributions are non-Gaussian). When comparing the results of different
algorithms in the same subpopulations, paired tests were performed, namely,
the paired T-test (Gaussian distributions) or the Wilcoxon signed rank test (non-
Gaussian distributions). In all cases, the Kolmogorov-Smirnov test was employed
to test for Gaussianity and the threshold for statistical significance was set to p <
0.01. Unless otherwise stated, all the results compared in the paragraphs below
are statistically significant.

4.5.1 Respiratory Sound Database

Table 4.1 displays the results obtained by all the classifiers on the test set for the
3-class problem. Table 4.2 displays the results obtained by all the classifiers on the
test set for the 2-class problem (crackles vs. others). Table 4.3 displays the results
obtained by all the classifiers on the test set for the 2-class problem (wheezes vs.
others).

Classifiers Accuracy F1 Wheeze MCC Wheeze F1 Crackle MCC Crackle F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 62.4 ± 0.1 71.0 ± 0.0 67.8 ± 0.0 75.2 ± 0.1 42.5 ± 0.2 17.2 ± 0.1 14.3 ± 0.3 54.5 ± 0.1 41.5 ± 0.2

LDA_100MRMR 65.5 ± 0.0 72.2 ± 0.1 69.7 ± 0.1 76.8 ± 0.1 47.8 ± 0.1 34.9 ± 0.4 22.5 ± 0.1 61.3 ± 0.2 46.7 ± 0.1
LDA_Full 68.8 ± 0.2 72.2 ± 0.1 69.9 ± 0.1 78.3 ± 0.5 53.1 ± 0.7 48.4 ± 1.2 32.4 ± 0.5 66.3 ± 0.6 51.8 ± 0.4

SVMrbf_10MRMR 65.3 ± 0.8 72.8 ± 0.2 69.4 ± 0.3 76.6 ± 0.6 46.8 ± 1.6 32.0 ± 2.8 22.1 ± 1.9 60.5 ± 1.2 46.1 ± 1.3
SVMrbf_100MRMR 67.9 ± 1.2 68.7 ± 3.0 64.1 ± 3.2 77.3 ± 0.5 50.8 ± 1.5 51.1 ± 3.4 30.4 ± 3.0 65.7 ± 2.3 48.4 ± 2.6

SVMrbf_Full 68.5 ± 0.7 67.2 ± 2.9 62.7 ± 2.8 77.0 ± 1.1 51.9 ± 0.8 55.6 ± 3.9 33.0 ± 2.1 66.6 ± 2.6 49.2 ± 1.9
RUSBoost_10MRMR 64.5 ± 0.9 72.5 ± 0.6 69.9 ± 0.7 74.6 ± 0.8 44.1 ± 1.4 39.6 ± 3.2 21.2 ± 2.5 62.2 ± 1.5 45.1 ± 1.5

RUSBoost_100MRMR 68.4 ± 0.7 73.7 ± 0.6 71.2 ± 0.6 75.6 ± 1.4 50.6 ± 1.4 54.2 ± 3.5 33.3 ± 2.0 67.8 ± 1.8 51.7 ± 1.3
RUSBoost_Full 69.0 ± 0.6 73.5 ± 0.7 70.3 ± 1.1 75.6 ± 0.8 51.5 ± 0.9 57.3 ± 0.8 34.9 ± 1.0 68.8 ± 0.8 52.2 ± 1.0

CNN_dualInput 81.6 ± 0.8 74.5 ± 1.9 70.9 ± 1.9 87.8 ± 0.9 74.6 ± 1.6 75.0 ± 1.1 62.0 ± 1.5 79.1 ± 1.3 69.2 ± 1.7
CNN_Spectrogram 80.2 ± 0.9 72.1 ± 2.9 68.3 ± 3.0 86.9 ± 0.8 72.8 ± 1.5 72.7 ± 2.1 59.5 ± 2.0 77.2 ± 1.9 66.9 ± 2.2

CNN_melSpectrogram 81.4 ± 0.6 74.1 ± 1.7 70.5 ± 1.6 87.9 ± 0.5 74.6 ± 1.1 73.9 ± 1.1 61.3 ± 1.4 78.6 ± 1.1 68.8 ± 1.4

Table 4.1: Performance results obtained with 3-class problem using the RSD

Regarding the ML approaches, the results were quite similar (even with the Bayesian
hyperparameters optimization that has the probabilistic effect on the models).
The DL approaches, on the other hand, were a bit different, because the fully-
connected layers of the models are seed-dependent, i.e., to obtain the same re-
sults, the seeds used were needed. The best model in the 3-class problem was
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Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 68.1 ± 0.2 74.7 ± 0.1 76.9 ± 0.1 27.5 ± 0.6 48.4 ± 0.9 27.5 ± 0.6 62.6 ± 0.5 27.5 ± 0.6

LDA_100MRMR 69.8 ± 0.5 76.0 ± 0.4 76.5 ± 0.2 34.6 ± 1.6 58.0 ± 1.6 34.6 ± 1.6 67.2 ± 0.9 34.6 ± 1.6
LDA_Full 68.6 ± 0.6 73.0 ± 1.4 75.3 ± 1.0 32.3 ± 2.1 56.7 ± 2.5 32.3 ± 2.1 66.0 ± 1.8 32.3 ± 2.1

SVMrbf_10MRMR 68.5 ± 0.3 71.6 ± 0.7 78.5 ± 0.2 27.2 ± 1.0 41.5 ± 1.9 27.2 ± 1.0 60.0 ± 1.0 27.2 ± 1.0
SVMrbf_100MRMR 72.4 ± 0.9 78.6 ± 1.7 78.8 ± 0.8 39.5 ± 2.6 60.0 ± 3.9 39.5 ± 2.6 69.4 ± 2.4 39.5 ± 2.6

SVMrbf_Full 71.0 ± 1.0 77.2 ± 1.3 77.2 ± 1.8 37.8 ± 1.8 59.7 ± 4.8 37.8 ± 1.8 68.4 ± 3.3 37.8 ± 1.8
RUSBoost_10MRMR 69.4 ± 0.5 76.0 ± 0.8 75.7 ± 1.0 34.4 ± 0.9 58.6 ± 1.5 34.4 ± 0.9 67.2 ± 1.2 34.4 ± 0.9

RUSBoost_100MRMR 71.2 ± 0.5 79.7 ± 0.5 76.9 ± 0.8 38.6 ± 0.8 61.5 ± 1.0 38.6 ± 0.8 69.2 ± 0.9 38.6 ± 0.8
RUSBoost_Full 71.2 ± 0.5 79.2 ± 0.9 76.8 ± 0.7 38.9 ± 1.1 62.0 ± 1.0 38.9 ± 1.1 69.4 ± 0.8 38.9 ± 1.1

CNN_dualInput 86.3 ± 0.4 83.5 ± 1.4 89.6 ± 0.2 70.4 ± 0.6 79.6 ± 1.6 70.4 ± 0.6 84.6 ± 0.9 70.4 ± 0.6
CNN_Spectrogram 85.3 ± 0.9 82.1 ± 1.5 89.0 ± 0.7 68.4 ± 1.8 77.8 ± 2.1 68.4 ± 1.8 83.4 ± 1.4 68.4 ± 1.8

CNN_melSpectrogram 87.0 ± 0.7 84.0 ± 1.1 90.3 ± 0.4 72.0 ± 1.4 80.4 ± 1.3 72.0 ± 1.4 85.4 ± 0.8 72.0 ± 1.4

Table 4.2: Performance results obtained with 2-class problem (crackles vs. others)
using the RSD

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 62.4 ± 0.1 62.5 ± 0.2 74.0 ± 0.1 9.3 ± 0.4 32.4 ± 0.5 9.3 ± 0.4 53.2 ± 0.3 9.3 ± 0.4

LDA_100MRMR 56.4 ± 1.6 60.3 ± 1.5 63.1 ± 2.5 11.4 ± 2.1 46.4 ± 1.7 11.4 ± 2.1 54.8 ± 2.1 11.4 ± 2.1
LDA_Full 56.0 ± 1.3 40.8 ± 1.7 62.8 ± 1.5 10.6 ± 3.7 46.0 ± 2.9 10.6 ± 3.7 54.4 ± 2.2 10.6 ± 3.7

SVMrbf_10MRMR 63.4 ± 1.0 63.2 ± 0.8 72.6 ± 1.3 17.5 ± 1.4 44.5 ± 1.6 17.5 ± 1.4 58.6 ± 1.5 17.5 ± 1.4
SVMrbf_100MRMR 66.8 ± 0.9 68.2 ± 1.9 75.0 ± 0.8 25.6 ± 2.7 50.3 ± 3.3 25.6 ± 2.7 62.6 ± 2.0 25.6 ± 2.7

SVMrbf_Full 65.8 ± 1.6 68.0 ± 0.7 73.0 ± 2.4 26.7 ± 2.1 53.2 ± 2.5 26.7 ± 2.1 63.1 ± 2.4 26.7 ± 2.1
RUSBoost_10MRMR 64.6 ± 0.9 67.8 ± 0.7 71.2 ± 1.3 25.7 ± 1.2 53.7 ± 1.1 25.7 ± 1.2 62.4 ± 1.2 25.7 ± 1.2

RUSBoost_100MRMR 64.7 ± 1.1 68.8 ± 1.1 71.8 ± 1.7 25.1 ± 1.4 52.8 ± 1.5 25.1 ± 1.4 62.3 ± 1.6 25.1 ± 1.4
RUSBoost_Full 63.8 ± 1.6 68.6 ± 1.1 70.1 ± 2.5 25.3 ± 2.0 53.9 ± 1.7 25.3 ± 2.0 62.0 ± 2.1 25.3 ± 2.0

CNN_dualInput 72.0 ± 0.9 70.9 ± 1.6 77.6 ± 1.5 40.9 ± 2.4 62.4 ± 2.5 40.9 ± 2.4 70.0 ± 2.0 40.9 ± 2.4
CNN_Spectrogram 73.0 ± 1.5 71.4 ± 1.4 78.6 ± 1.9 42.2 ± 2.4 63.0 ± 2.1 42.2 ± 2.4 70.8 ± 2.0 42.2 ± 2.4

CNN_melSpectrogram 72.5 ± 1.3 70.9 ± 0.5 78.3 ± 1.9 41.1 ± 0.8 62.3 ± 1.0 41.1 ± 0.8 70.3 ± 1.4 41.1 ± 0.8

Table 4.3: Performance results obtained with 2-class problem (wheezes vs. others)
using the RSD

the CNN_dualInput, with F1-Score macro of 79.1% (not statistically significant
against the SVMrbf_Full, p > 0.01). In the 2-class problem (crackles vs. others),
the best model achieved 85.4% F1-Score macro and it was the CNN_melSpectrogram
(not statistically significant with the CNN_Spectrogram, p > 0.01). Finally, in the
last 2-class problem (wheezes vs. others), the best model was the CNN_Spectrogram
with F1-Score macro of 70.8% (not statistically significant with the CNN_melSpectrogram
and SVMrbf_Full, p > 0.01).

4.5.2 Respiratory Sound Database New Annotations

Table 4.4 shows the results obtained for the same classifiers on the test set for the
3-class problem. Table 4.5 shows the results obtained for the same classifiers on
the test set for the 2-class problem (crackles vs. others). Table 4.6 shows the results
obtained for the same classifiers on the test set for the 2-class problem (wheezes
vs. others).
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Classifiers Accuracy F1 Wheeze MCC Wheeze F1 Crackle MCC Crackle F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 49.3 ± 0.5 60.8 ± 0.0 59.6 ± 0.0 57.8 ± 1.7 26.8 ± 3.4 34.7 ± 5.4 6.9 ± 1.4 51.1 ± 2.4 31.1 ± 1.6

LDA_100MRMR 44.4 ± 0.0 61.0 ± 0.0 60.1 ± 0.1 60.6 ± 0.0 34.5 ± 0.0 5.2 ± 0.1 1.1 ± 0.2 42.3 ± 0.0 31.9 ± 0.1
LDA_Full 49.0 ± 0.0 61.7 ± 0.1 62.4 ± 0.1 54.9 ± 0.1 22.2 ± 0.1 38.2 ± 0.3 4.6 ± 0.1 51.6 ± 0.2 29.7 ± 0.1

SVMrbf_10MRMR 55.4 ± 0.7 38.2 ± 15.1 36.2 ± 12.6 59.0 ± 0.4 30.0 ± 0.6 54.1 ± 1.2 14.8 ± 1.8 50.4 ± 5.6 27.0 ± 5.0
SVMrbf_100MRMR 65.3 ± 0.5 57.9 ± 3.7 54.2 ± 3.6 63.4 ± 0.4 41.1 ± 0.4 67.9 ± 0.7 31.5 ± 0.8 63.1 ± 1.6 42.3 ± 1.6

SVMrbf_Full 66.5 ± 6.9 50.9 ± 7.6 48.9 ± 6.7 65.7 ± 2.8 45.2 ± 5.4 67.8 ± 13.9 34.4 ± 10.0 61.5 ± 8.1 42.8 ± 7.4
RUSBoost_10MRMR 53.5 ± 0.8 61.6 ± 0.3 62.2 ± 0.3 59.3 ± 1.2 30.8 ± 1.9 44.7 ± 2.6 14.8 ± 1.5 55.2 ± 1.4 35.9 ± 1.2

RUSBoost_100MRMR 62.6 ± 0.7 63.9 ± 0.9 63.7 ± 0.6 63.5 ± 1.0 40.7 ± 1.5 61.5 ± 1.2 29.1 ± 1.2 63.0 ± 1.0 44.5 ± 1.1
RUSBoost_Full 69.9 ± 2.1 65.3 ± 0.7 64.8 ± 0.6 72.4 ± 2.5 55.5 ± 4.1 68.8 ± 2.8 44.3 ± 4.3 68.8 ± 2.0 54.9 ± 3.0
CNN_dualInput 71.8 ± 1.2 59.9 ± 2.8 56.9 ± 2.4 68.6 ± 1.7 51.7 ± 2.0 75.3 ± 1.7 43.6 ± 2.3 67.9 ± 2.1 50.7 ± 2.2

CNN_Spectrogram 69.2 ± 1.2 53.0 ± 8.3 49.9 ± 7.5 63.4 ± 3.7 47.0 ± 2.4 74.3 ± 1.3 37.8 ± 2.7 63.6 ± 4.4 44.9 ± 4.2
CNN_melSpectrogram 72.2 ± 1.3 59.6 ± 4.3 56.8 ± 3.4 69.3 ± 1.3 52.3 ± 2.1 75.6 ± 1.7 44.4 ± 2.4 68.2 ± 2.4 51.2 ± 2.6

Table 4.4: Performance results obtained with 3-class problem using the RSD New
Annotations

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 60.0 ± 0.1 62.5 ± 0.1 56.2 ± 0.3 19.5 ± 0.2 63.0 ± 0.1 19.5 ± 0.2 59.6 ± 0.2 19.5 ± 0.2

LDA_100MRMR 59.6 ± 0.2 64.0 ± 0.1 58.3 ± 0.2 20.3 ± 0.3 60.7 ± 0.3 20.3 ± 0.3 59.5 ± 0.2 20.3 ± 0.3
LDA_Full 57.3 ± 4.2 59.0 ± 4.9 55.0 ± 7.8 15.7 ± 10.3 59.1 ± 1.6 15.7 ± 10.3 57.0 ± 4.7 15.7 ± 10.3

SVMrbf_10MRMR 60.7 ± 0.4 65.5 ± 0.3 59.8 ± 0.6 22.8 ± 0.3 61.5 ± 1.3 22.8 ± 0.3 60.6 ± 1.0 22.8 ± 0.3
SVMrbf_100MRMR 71.7 ± 0.2 78.3 ± 0.3 68.4 ± 0.3 42.9 ± 0.5 74.5 ± 0.1 42.9 ± 0.5 71.4 ± 0.2 42.9 ± 0.5

SVMrbf_Full 66.8 ± 8.4 73.7 ± 6.9 65.4 ± 3.3 34.9 ± 12.0 65.7 ± 19.3 34.9 ± 12.0 65.6 ± 11.3 34.9 ± 12.0
RUSBoost_10MRMR 67.1 ± 0.5 73.2 ± 0.3 64.5 ± 0.4 34.3 ± 0.7 69.3 ± 0.8 34.3 ± 0.7 66.9 ± 0.6 34.3 ± 0.7

RUSBoost_100MRMR 74.7 ± 1.0 83.1 ± 1.0 72.3 ± 0.8 49.3 ± 1.7 76.7 ± 1.2 49.3 ± 1.7 74.5 ± 1.0 49.3 ± 1.7
RUSBoost_Full 75.4 ± 1.1 83.7 ± 1.5 73.0 ± 1.2 50.8 ± 2.2 77.4 ± 1.3 50.8 ± 2.2 75.2 ± 1.2 50.8 ± 2.2
CNN_dualInput 72.5 ± 1.3 71.5 ± 1.2 66.8 ± 1.7 43.7 ± 2.6 76.4 ± 1.6 43.7 ± 2.6 71.6 ± 1.6 43.7 ± 2.6

CNN_Spectrogram 69.4 ± 3.2 68.7 ± 3.1 63.9 ± 5.5 38.3 ± 5.4 72.9 ± 5.2 38.3 ± 5.4 68.4 ± 5.4 38.3 ± 5.4
CNN_melSpectrogram 72.9 ± 1.2 72.7 ± 1.4 69.4 ± 2.3 45.5 ± 2.7 75.6 ± 1.7 45.5 ± 2.7 72.5 ± 2.0 45.5 ± 2.7

Table 4.5: Performance results obtained with 2-class problem (crackles vs. others)
using the RSD New Annotations

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 60.5 ± 0.8 62.7 ± 1.5 57.6 ± 0.9 20.7 ± 1.6 63.0 ± 0.7 20.7 ± 1.6 60.3 ± 0.8 20.7 ± 1.6

LDA_100MRMR 64.0 ± 0.2 61.4 ± 16.0 59.2 ± 0.1 27.6 ± 0.5 67.8 ± 0.4 27.6 ± 0.5 63.5 ± 0.2 27.6 ± 0.5
LDA_Full 63.5 ± 0.6 32.1 ± 0.8 58.8 ± 0.9 26.5 ± 1.1 67.2 ± 0.7 26.5 ± 1.1 63.0 ± 0.8 26.5 ± 1.1

SVMrbf_10MRMR 65.8 ± 0.9 70.4 ± 1.5 66.4 ± 1.7 32.4 ± 2.1 65.1 ± 1.2 32.4 ± 2.1 65.8 ± 1.4 32.4 ± 2.1
SVMrbf_100MRMR 69.9 ± 0.6 75.6 ± 1.8 67.5 ± 1.4 39.7 ± 1.3 72.0 ± 1.1 39.7 ± 1.3 69.8 ± 1.2 39.7 ± 1.3

SVMrbf_Full 71.0 ± 0.6 77.7 ± 0.9 67.3 ± 1.2 41.9 ± 1.3 73.9 ± 1.1 41.9 ± 1.3 70.6 ± 1.2 41.9 ± 1.3
RUSBoost_10MRMR 64.8 ± 0.9 68.8 ± 0.9 62.8 ± 1.0 29.3 ± 1.7 66.5 ± 0.9 29.3 ± 1.7 64.6 ± 1.0 29.3 ± 1.7

RUSBoost_100MRMR 70.5 ± 1.1 76.1 ± 0.9 69.0 ± 1.6 40.9 ± 2.3 71.8 ± 0.8 40.9 ± 2.3 70.4 ± 1.2 40.9 ± 2.3
RUSBoost_Full 69.3 ± 1.4 75.2 ± 1.3 66.7 ± 1.8 38.3 ± 2.8 71.5 ± 1.1 38.3 ± 2.8 69.1 ± 1.5 38.3 ± 2.8

CNN_dualInput 72.4 ± 1.1 72.1 ± 1.2 69.2 ± 2.2 44.8 ± 2.1 75.0 ± 1.0 44.8 ± 2.1 72.1 ± 1.6 44.8 ± 2.1
CNN_Spectrogram 67.4 ± 2.2 67.1 ± 2.5 62.9 ± 5.5 35.0 ± 4.3 70.7 ± 2.0 35.0 ± 4.3 66.8 ± 3.8 35.0 ± 4.3

CNN_melSpectrogram 71.7 ± 1.2 71.4 ± 1.4 68.5 ± 2.2 43.2 ± 2.5 74.3 ± 0.8 43.2 ± 2.5 71.4 ± 1.5 43.2 ± 2.5

Table 4.6: Performance results obtained with 2-class problem (wheezes vs. others)
using the RSD New Annotations

The best model in the 3-class problem was the RUSBoost_Full, with F1-Score
macro of 68.8%. In the 2-class problem (crackles vs. others), the best model
achieved 75.2% F1-Score macro and it was once again the RUSBoost_Full (not
statistically significant with the LDA_10MRMR and RUSBoost_100MRMR, p >
0.01). Finally, in the last 2-class problem (wheezes vs. others), the best model was
the CNN_dualInput with F1-Score macro of 72.1% (not statistically significant
with the CNN_melSpectrogram, p > 0.01).

4.5.3 HF_Lung_V1 Database

Table 4.7 shows the results obtained for the same classifiers on the test set for the
3-class problem. Table 4.8 shows the results obtained for the same classifiers on
the test set for the 2-class problem (DAS/crackles vs. others). Table 4.9 shows
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the results obtained for the same classifiers on the test set for the 2-class problem
(CAS/wheezes vs. others).

Classifiers Accuracy F1 Continuous MCC Continuous F1 Discontinuous MCC Discontinuous F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 70.5 ± 0.2 50.0 ± 0.5 46.0 ± 0.4 48.9 ± 0.5 36.2 ± 0.6 83.4 ± 0.2 58.3 ± 0.5 60.8 ± 0.4 46.8 ± 0.5
LDA_100MRMR 73.3 ± 0.2 51.7 ± 0.3 45.9 ± 0.5 58.3 ± 0.7 48.1 ± 0.9 84.9 ± 0.1 62.5 ± 0.1 65.0 ± 0.4 52.2 ± 0.5

LDA_Full 60.8 ± 3.8 25.7 ± 22.3 17.1 ± 15.9 14.9 ± 15.9 5.3 ± 11.7 78.8 ± 5.5 35.7 ± 30.9 39.8 ± 14.6 19.4 ± 19.5
SVMrbf_10MRMR 70.9 ± 1.2 50.6 ± 2.1 46.7 ± 1.9 50.7 ± 8.3 40.0 ± 5.2 84.4 ± 1.8 62.1 ± 6.2 61.9 ± 4.1 49.6 ± 4.4

SVMrbf_100MRMR 71.4 ± 1.8 47.9 ± 1.5 42.9 ± 2.3 52.2 ± 11.1 43.0 ± 6.3 85.7 ± 2.3 65.9 ± 7.6 61.9 ± 5.0 50.6 ± 5.4
SVMrbf_Full 62.8 ± 7.8 18.2 ± 23.8 16.0 ± 21.1 21.2 ± 27.5 16.8 ± 22.0 78.0 ± 7.3 26.7 ± 34.7 39.1 ± 19.5 19.8 ± 25.9

RUSBoost_10MRMR 71.5 ± 0.6 54.4 ± 0.9 47.5 ± 1.3 55.7 ± 0.9 45.0 ± 1.2 84.6 ± 0.5 65.6 ± 0.9 64.9 ± 0.8 52.7 ± 1.1
RUSBoost_100MRMR 72.4 ± 0.8 52.3 ± 0.8 46.3 ± 1.2 57.5 ± 1.0 47.5 ± 1.4 85.8 ± 0.8 67.7 ± 1.6 65.2 ± 0.9 53.8 ± 1.4

RUSBoost_Full 70.5 ± 1.7 49.3 ± 2.5 43.2 ± 5.7 54.4 ± 5.0 43.5 ± 6.8 84.7 ± 1.1 65.2 ± 2.9 62.8 ± 2.9 50.6 ± 5.1
CNN_dualInput 72.1 ± 0.7 52.6 ± 1.6 46.8 ± 1.6 55.1 ± 2.1 43.9 ± 2.8 85.5 ± 0.6 66.1 ± 1.6 64.4 ± 1.4 52.3 ± 2.0

CNN_Spectrogram 66.7 ± 1.7 43.4 ± 1.0 37.6 ± 1.9 48.5 ± 1.6 35.0 ± 2.1 83.1 ± 1.5 62.7 ± 1.5 58.3 ± 1.4 45.1 ± 1.8
CNN_melSpectrogram 71.0 ± 1.2 51.0 ± 1.5 46.6 ± 1.7 55.0 ± 1.1 44.1 ± 1.4 84.7 ± 1.0 65.2 ± 1.6 63.6 ± 1.2 52.0 ± 1.6

Table 4.7: Performance results obtained with 3-class problem using the
HF_Lung_V1

Classifiers Accuracy AUC Discontinuous F1 Discontinuous MCC Discontinuous F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 71.0 ± 0.2 67.0 ± 13.8 43.0 ± 0.9 23.7 ± 1.0 80.6 ± 0.1 23.7 ± 1.0 61.8 ± 0.5 23.7 ± 1.0

LDA_100MRMR 85.6 ± 0.0 66.8 ± 40.6 73.2 ± 0.0 63.9 ± 0.0 90.2 ± 0.0 63.9 ± 0.0 81.7 ± 0.0 63.9 ± 0.0
LDA_Full 83.1 ± 2.2 16.6 ± 5.5 65.6 ± 5.5 54.6 ± 6.8 88.8 ± 1.4 54.6 ± 6.8 77.2 ± 3.4 54.6 ± 6.8

SVMrbf_10MRMR 80.0 ± 0.3 84.7 ± 0.1 62.1 ± 0.3 48.8 ± 0.4 86.4 ± 0.2 48.8 ± 0.4 74.2 ± 0.2 48.8 ± 0.4
SVMrbf_100MRMR 86.7 ± 0.6 92.6 ± 0.6 75.2 ± 1.1 66.6 ± 1.5 90.9 ± 0.4 66.6 ± 1.5 83.1 ± 0.8 66.6 ± 1.5

SVMrbf_Full 85.2 ± 5.2 88.5 ± 13.6 61.0 ± 32.2 54.5 ± 28.8 90.5 ± 2.4 54.5 ± 28.8 75.8 ± 17.3 54.5 ± 28.8
RUSBoost_10MRMR 82.8 ± 0.7 90.2 ± 0.4 70.3 ± 0.7 60.0 ± 0.9 87.9 ± 0.6 60.0 ± 0.9 79.1 ± 0.6 60.0 ± 0.9

RUSBoost_100MRMR 86.5 ± 0.6 93.4 ± 0.3 75.6 ± 0.7 62.7 ± 1.0 90.6 ± 0.5 67.2 ± 1.0 83.1 ± 0.6 67.2 ± 1.0
RUSBoost_Full 86.1 ± 1.0 93.3 ± 1.0 75.1 ± 1.6 66.6 ± 2.2 90.4 ± 0.8 66.6 ± 2.2 82.8 ± 1.2 66.6 ± 2.2

CNN_dualInput 85.8 ± 0.8 83.0 ± 1.8 72.8 ± 1.6 63.6 ± 1.9 90.4 ± 0.6 63.6 ± 1.9 81.6 ± 1.1 63.6 ± 1.9
CNN_Spectrogram 83.3 ± 1.7 82.0 ± 0.7 70.1 ± 1.3 59.7 ± 1.7 88.4 ± 1.5 59.7 ± 1.7 79.2 ± 1.4 59.7 ± 1.7

CNN_melSpectrogram 85.3 ± 0.9 83.5 ± 0.8 72.8 ± 1.4 63.3 ± 1.9 89.9 ± 0.7 63.3 ± 1.9 81.4 ± 1.0 63.3 ± 1.9

Table 4.8: Performance results obtained with 2-class problem (DAS/crackles vs.
others) using the HF_Lung_V1

Classifiers Accuracy AUC Continuous F1 Continuous MCC Continuous F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR 77.5 ± 0.1 83.4 ± 0.0 50.1 ± 0.1 41.8 ± 0.1 85.4 ± 0.0 41.8 ± 0.1 67.8 ± 0.0 41.8 ± 0.1

LDA_100MRMR 82.6 ± 0.0 90.4 ± 0.0 64.6 ± 0.0 56.5 ± 0.0 88.4 ± 0.0 56.5 ± 0.0 76.5 ± 0.0 56.5 ± 0.0
LDA_Full 81.2 ± 1.1 17.0 ± 3.0 62.8 ± 4.0 52.9 ± 3.2 87.4 ± 0.6 52.9 ± 3.2 75.1 ± 2.3 52.9 ± 3.2

SVMrbf_10MRMR 78.1 ± 0.3 79.9 ± 2.0 52.6 ± 0.4 43.6 ± 0.9 85.7 ± 0.3 43.6 ± 0.9 69.2 ± 0.4 43.6 ± 0.9
SVMrbf_100MRMR 81.8 ± 1.6 86.8 ± 4.0 62.0 ± 3.7 54.5 ± 4.2 88.0 ± 1.0 54.5 ± 4.2 75.0 ± 2.4 54.5 ± 4.2

SVMrbf_Full 82.0 ± 3.6 90.9 ± 1.4 60.0 ± 15.7 54.6 ± 11.2 88.3 ± 1.9 54.6 ± 11.2 74.2 ± 8.8 54.6 ± 11.2
RUSBoost_10MRMR 79.5 ± 0.8 85.4 ± 1.1 60.8 ± 2.3 48.6 ± 2.2 86.2 ± 0.4 48.6 ± 2.2 73.5 ± 1.3 48.6 ± 2.2

RUSBoost_100MRMR 84.5 ± 0.3 90.2 ± 1.0 69.5 ± 0.9 61.8 ± 0.8 89.6 ± 0.2 61.8 ± 0.8 79.6 ± 0.6 61.8 ± 0.8
RUSBoost_Full 84.0 ± 0.5 89.8 ± 0.9 69.4 ± 1.4 60.5 ± 1.3 89.2 ± 0.4 60.5 ± 1.3 79.3 ± 0.9 60.5 ± 1.3

CNN_dualInput 84.4 ± 0.5 77.1 ± 1.2 69.4 ± 1.8 61.5 ± 1.1 89.5 ± 0.2 61.5 ± 1.1 79.4 ± 1.0 61.5 ± 1.1
CNN_Spectrogram 81.2 ± 0.7 72.2 ± 1.6 61.2 ± 2.7 52.7 ± 1.9 87.6 ± 0.4 52.7 ± 1.9 74.4 ± 1.6 52.7 ± 1.9

CNN_melSpectrogram 83.8 ± 1.0 76.2 ± 1.3 68.0 ± 2.1 59.9 ± 2.6 89.2 ± 0.7 59.9 ± 2.6 78.6 ± 1.4 59.9 ± 2.6

Table 4.9: Performance results obtained with 2-class problem (CAS/wheezes vs.
others) using the HF_Lung_V1

The best model in the 3-class problem was the RUSBoost_100MRMR, with F1-
Score macro of 65.2% (not statistically significant with the RUSBoost_Full, p >
0.01). In the 2-class problem (DAS/crackles vs. others), the best model achieved
75.2% F1-Score macro and it was once again the RUSBoost_100MRMR (not sta-
tistically significant with the CNN_Spectrogram, p > 0.01). Finally, in the last
2-class problem (CAS/wheezes vs. others), the best model was also the RUS-
Boost_100MRMR with F1-Score macro of 79.6% (not statistically significant with
the LDA_Full, CNN_dualInput and CNN_melSpectrogram, p > 0.01).

4.5.4 Comparison between RSD and RSD New Annotations

Since the datasets do not have the same annotations, we cannot compare them
directly. As the dataset with the New Annotations is supposed to have corrected
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labels, it was expected to have better results, but overall, that did not happen.
For the 3-class problem, the best model was the CNN_dualInput with F1-Score
macro of 79.1% and decreased its performance by 11.2%, being surpassed by the
RUSBoost_Full with F1-Score macro of 68.6%. Regarding the 2-class problem
for Crackles, the best model was the CNN_melSpectrogram with F1-Score macro
of 85.4% and decreased its performance by 12.9%, being surpassed by the RUS-
Boost_Full with F1-Score macro of 75.2%.
As for the 2-class problem for Wheezes, the best model was the CNN_Spectrogram
with F1-Score macro of 73.0% and decreased its performance by 4.0%, being out-
performed by the CNN_dualInput with F1-Score macro of 72.1%, surpassing the
best model of the RSD. Even though the overall performance decreased, in gen-
eral, the DL approaches in both datasets achieved better results. Henceforth, the
RSD New Annotations dataset will not be used, since the difference between
these datasets is not much and it is not public, so it is not possible to compare
results with other studies.

4.5.5 Comparison between RSD and HF_Lung_V1 datasets

Regarding the results of training and testing using only one dataset, the results
are similar, but if we analyse carefully the annotations of the HF_Lung_V1, we
can understand that smaller events, such as crackles, are annotated in the same
way as the respiratory cycles, which means these events (that are supposed to
have a short duration) are annotated as having a longer duration.

Classifiers Accuracy AUC Continuous F1 Continuous MCC Continuous F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR X X X X X X X X

LDA_100MRMR X X X X X X X X
LDA_Full X X X X X X X X

SVMrbf_10MRMR 77.5 ± 5.7 83.0 ± 5.2 65.6 ± 5.5 49.5 ± 9.5 83.1 ± 5.1 49.5 ± 9.5 74.4 ± 5.3 49.5 ± 9.5
SVMrbf_100MRMR 68.8 ± 8.8 81.8 ± 2.0 62.0 ± 3.9 42.5 ± 6.6 72.5 ± 13.3 42.5 ± 6.6 67.2 ± 8.6 42.5 ± 6.6

SVMrbf_Full 70.8 ± 3.1 79.2 ± 3.1 60.1 ± 2.7 40.2 ± 3.8 76.7 ± 4.2 40.2 ± 3.8 68.4 ± 3.4 40.2 ± 3.8
RUSBoost_10MRMR 67.7 ± 2.6 71.9 ± 2.7 54.6 ± 2.2 31.1 ± 4.0 74.9 ± 2.5 31.1 ± 4.0 64.8 ± 2.4 31.1 ± 4.0

RUSBoost_100MRMR 54.1 ± 2.8 76.0 ± 4.0 53.6 ± 1.4 26.8 ± 3.3 54.4 ± 4.8 26.8 ± 3.3 54.0 ± 3.1 26.8 ± 3.3
RUSBoost_Full 74.2 ± 4.6 81.9 ± 2.4 63.7 ± 3.3 45.9 ± 5.9 79.8 ± 4.7 45.9 ± 5.9 71.8 ± 4.0 45.9 ± 5.9

CNN_dualInput 53.5 ± 6.8 61.9 ± 3.2 52.2 ± 1.9 23.8 ± 4.8 53.4 ± 12.5 23.8 ± 4.8 52.8 ± 7.2 23.8 ± 4.8
CNN_Spectrogram 45.5 ± 3.3 54.9 ± 2.6 46.6 ± 2.5 10.2 ± 5.5 43.8 ± 7.0 10.2 ± 5.5 45.2 ± 4.8 10.2 ± 5.5

CNN_melSpectrogram 57.0 ± 3.8 63.1 ± 1.9 52.6 ± 1.7 24.9 ± 3.1 60.2 ± 6.4 24.9 ± 3.1 56.4 ± 4.0 24.9 ± 3.1

Table 4.10: Performance results obtained with 2-class problem (CAS/wheezes vs.
others) with the models trained with the RSD and tested with HF_Lung_V1

Classifiers Accuracy AUC Discontinuous F1 Discontinuous MCC Discontinuous F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR X X X X X X X X
LDA_100MRMR X X X X X X X X

LDA_Full X X X X X X X X
SVMrbf_10MRMR 52.2 ± 7.7 62.2 ± 5.1 41.9 ± 4.5 15.2 ± 7.0 57.9 ± 13.7 15.2 ± 7.0 49.9 ± 9.1 15.2 ± 7.0

SVMrbf_100MRMR 61.0 ± 17.6 78.6 ± 3.4 31.3 ± 17.9 17.2 ± 12.3 64.8 ± 27.9 17.2 ± 12.3 48.0 ± 22.9 17.2 ± 12.3
SVMrbf_Full 37.5 ± 5.4 48.5 ± 6.6 37.1 ± 3.3 2.1 ± 5.7 35.9 ± 15.3 2.1 ± 5.7 36.5 ± 9.3 2.1 ± 5.7

RUSBoost_10MRMR 51.0 ± 5.0 74.3 ± 1.6 47.9 ± 1.7 27.4 ± 2.7 53.4 ± 8.0 27.4 ± 2.7 50.6 ± 4.8 27.4 ± 2.7
RUSBoost_100MRMR 67.6 ± 6.1 78.0 ± 3.7 54.4 ± 3.2 36.9 ± 5.3 74.5 ± 6.8 36.9 ± 5.3 64.4 ± 5.0 36.9 ± 5.3

RUSBoost_Full 62.6 ± 9.4 75.5 ± 6.2 51.3 ± 5.1 32.8 ± 8.8 68.6 ± 10.5 32.8 ± 8.8 60.0 ± 7.8 32.8 ± 8.8
CNN_dualInput 24.7 ± 0.2 50.0 ± 0.1 39.5 ± 0.0 1.0 ± 0.9 0.4 ± 0.5 1.0 ± 0.9 20.0 ± 0.2 1.0 ± 0.9

CNN_Spectrogram 24.6 ± 0.0 50.0 ± 0.0 39.5 ± 0.0 1.0 ± 0.4 0.1 ± 0.1 1.0 ± 0.4 19.8 ± 0.0 1.0 ± 0.4
CNN_melSpectrogram 24.7 ± 0.1 50.0 ± 0.1 39.5 ± 0.1 0.4 ± 2.0 0.5 ± 0.4 0.4 ± 2.0 20.0 ± 0.2 0.4 ± 2.0

Table 4.11: Performance results obtained with 2-class problem (DAS/crackles vs.
others) with the models trained with the RSD and tested with HF_Lung_V1

For both crossing situations, the expected outcome was the same, the decrease of
performance, specially in DAS/crackles, since these are annotated differently in
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Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR X X X X X X X X

LDA_100MRMR X X X X X X X X
LDA_Full X X X X X X X X

SVMrbf_10MRMR 58.6 ± 1.5 60.0 ± 0.4 65.0 ± 2.1 16.1 ± 1.6 49.3 ± 0.6 16.1 ± 1.6 57.2 ± 1.4 16.1 ± 1.6
SVMrbf_100MRMR 57.0 ± 4.6 60.6 ± 1.2 62.0 ± 9.1 14.2 ± 4.6 46.9 ± 9.5 14.2 ± 4.6 54.4 ± 9.3 14.2 ± 4.6

SVMrbf_Full 55.1 ± 4.1 61.9 ± 2.9 57.1 ± 8.4 16.8 ± 3.9 51.9 ± 2.2 16.8 ± 3.9 54.5 ± 5.3 16.8 ± 3.9
RUSBoost_10MRMR 61.8 ± 1.1 61.2 ± 0.4 70.3 ± 1.3 16.6 ± 1.6 46.3 ± 1.2 16.6 ± 1.6 58.3 ± 1.2 16.6 ± 1.6
RUSBoost_100MRMR 57.4 ± 1.2 62.1 ± 1.5 63.2 ± 1.4 15.1 ± 2.5 49.3 ± 1.8 15.1 ± 2.5 56.2 ± 1.6 15.1 ± 2.5

RUSBoost_Full 58.3 ± 1.6 61.0 ± 1.9 65.3 ± 1.5 14.3 ± 3.0 47.8 ± 1.7 14.3 ± 3.0 56.6 ± 1.6 14.3 ± 3.0
CNN_dualInput 56.6 ± 3.5 62.4 ± 1.7 56.1 ± 6.6 25.0 ± 2.6 56.7 ± 1.0 25.0 ± 2.6 56.4 ± 3.8 25.0 ± 2.6

CNN_Spectrogram 58.1 ± 2.9 62.2 ± 1.6 59.9 ± 5.0 24.0 ± 2.8 55.8 ± 1.3 24.0 ± 2.8 57.8 ± 3.2 24.0 ± 2.8
CNN_melSpectrogram 58.3 ± 2.8 64.6 ± 1.5 57.5 ± 5.0 29.5 ± 2.4 58.8 ± 1.0 29.5 ± 2.4 58.2 ± 3.0 29.5 ± 2.4

Table 4.12: Performance results obtained with 2-class problem (CAS/wheezes vs.
others) with the models trained with the HF_Lung_V1 and tested with RSD

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR X X X X X X X X

LDA_100MRMR X X X X X X X X
LDA_Full X X X X X X X X

SVMrbf_10MRMR 46.0 ± 0.7 60.2 ± 2.5 33.2 ± 1.9 12.3 ± 0.8 54.7 ± 0.2 12.3 ± 0.8 44.0 ± 1.0 12.3 ± 0.8
SVMrbf_100MRMR 38.6 ± 2.1 43.6 ± 2.1 15.3 ± 20.1 -2.0 ± 8.3 49.2 ± 7.5 -2.0 ± 8.3 32.2 ± 13.8 -2.0 ± 8.3

SVMrbf_Full 37.7 ± 1.8 42.6 ± 4.4 12.0 ± 18.5 -3.1 ± 8.4 49.8 ± 6.7 -3.1 ± 8.4 30.9 ± 12.6 -3.1 ± 8.4
RUSBoost_10MRMR 56.1 ± 0.7 64.5 ± 2.2 55.6 ± 1.4 21.4 ± 0.6 56.6 ± 0.3 21.4 ± 0.6 56.1 ± 0.8 21.4 ± 0.6

RUSBoost_100MRMR 44.4 ± 5.9 56.5 ± 7.6 31.0 ± 11.7 6.9 ± 10.2 53.2 ± 3.1 6.9 ± 10.2 42.1 ± 7.4 6.9 ± 10.2
RUSBoost_Full 57.3 ± 3.0 67.4 ± 3.5 57.0 ± 4.6 23.2 ± 5.0 57.3 ± 2.4 23.2 ± 5.0 57.2 ± 3.5 23.2 ± 5.0

CNN_dualInput 64.3 ± 2.8 63.9 ± 2.1 69.2 ± 5.8 28.1 ± 3.7 55.5 ± 5.2 28.1 ± 3.7 62.4 ± 5.5 28.1 ± 3.7
CNN_Spectrogram 65.6 ± 1.2 57.5 ± 2.6 76.4 ± 1.7 19.4 ± 4.3 35.0 ± 10.1 19.4 ± 4.3 55.7 ± 5.9 19.4 ± 4.3

CNN_melSpectrogram 66.5 ± 1.9 63.7 ± 4.0 73.4 ± 3.8 28.4 ± 6.0 52.0 ± 10.6 28.4 ± 6.0 62.7 ± 7.2 28.4 ± 6.0

Table 4.13: Performance results obtained with 2-class problem (DAS/crackles vs.
others) with the models trained with the HF_Lung_V1 and tested with RSD

both datasets. For all the following tables in this subsection, the results for the
LDA model are not presented, since so far, this type of model was the one that
achieved the worst results. Regarding the 3-class problem crossing, both tables
are in Appendix A. These results were not sufficiently good, so henceforth, when
crossing these datasets, the 3-class problem comparison will not be performed.

As we can see by the tables 4.11 (models trained with the RSD data and tested
with the HF_Lung_V1 data), whose best model was the RUSBoost_100MRMR
with F1-Score macro of 64.4%, and table 4.13 (models trained with the HF_Lung_V1
data and tested with the RSD data), whose best model was the CNN_melSpectrogram
with F1-Score macro of 62.7%, achieved quite similar results. In contrast, the ta-
bles 4.10 (models trained with the RSD data and tested with the HF_Lung_V1
data), whose best model was the SVMrbf_10MRMR with F1-Score macro of 74.4%,
and table 4.12 (models trained with the HF_Lung_V1 data and tested with the
RSD data), whose best model was the RUSBoost_10MRMR with F1-Score macro
of 58.3%, achieved quite different results (16.1% difference between them).

4.6 Stratification

As the sounds in RSD were collected from subjects of different ages, with various
diseases, Body-Mass Index (BMI), and sex and recorded with different types of
equipment, a stratified analysis of the results of the models was performed to
understand in more detail the behaviour of the models for each subpopulation.
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In the categorization by age, all patients under 18 were considered children, the
others were considered adults. Regarding the BMI categories, they were defined
according to the World Health Organization guidelines [23] and since there were
only three underweight patients, they were included in the normal weight cat-
egory. Concerning the diagnosis category, patients with COPD, asthma, and
bronchiectasis were considered chronic; patients with LRTI, URTI, bronchiolitis,
or pneumonia were considered non-chronic, whereas participants with no dis-
eases were considered healthy. Table 4.14 shows the number of events per class
in each category in the data.

Category Elements F Train F Test C Train C Test W Train W Test OC Train OC Test OW Train OW Test

Equipment

AKG C417L 361 285 5387 2682 749 482 1170 1115 274 257
Littmann 3200 5 5 14 55 28 162 26 297 7 65

Meditron 87 41 273 144 174 81 884 268 198 66
Littmann C2SE 86 0 322 0 222 0 398 0 96 0

Age (years)
Adults (19-93, 67.7±11.6) 493 345 5927 2810 1110 676 2204 1441 510 329
Children (0-18, 4.9.±4.6) 46 30 69 52 63 36 274 180 65 48

Unknown 0 6 0 19 0 13 0 59 0 11

Sex
Male 272 319 2189 2741 728 682 1510 1256 348 292

Female 267 56 3807 121 445 30 968 365 227 85
Unknown 0 6 0 19 0 13 0 59 0 11

BMI

Normal (below 25) 235 91 3913 925 567 115 721 360 179 84
Overweight (25-29.9) 171 189 1216 908 460 437 910 862 207 190

Obese (above 30) 84 65 784 977 76 124 501 219 107 55
Unknown 49 36 83 71 70 49 346 239 82 59

Diagnosis
Chronic (64 COPD, 7 Bronchiectasis, 1 Asthma) 459 351 5899 2829 1085 689 1966 1500 455 340

Non-Chronic (14 URTI, 2 LRTI, 6 Bronchiolitis, 6 Pneumonia) 62 13 77 43 85 36 385 52 90 15
Healthy 18 17 20 9 3 0 127 128 30 33

Table 4.14: Distribution of events in the train and test sets per equipment, age
(range, mean±standard deviation), sex, BMI (range), and diagnosis [F: Files, C:
Annotated Crackles, W: Annotated Wheezes, OC: Annotated Other Crackles,
OW: Annotated Other Wheezes]

From Table 4.14 we can conclude that:

• The test set contains no audio files recorded using the LittC2SE stethoscope

• The subjects with Unknown Age do not have any files in the training set; a
similar situation is observed for patients with Unknown Sex

• For Healthy subjects there are no cases with annotated wheezes and 9 cases
with annotated crackles exist in the test set

• The number of events in each stratification category is not balanced between
classes since the goal of the original splitting was to guarantee a 60/40 par-
tition of the data according to the number of respiratory cycles (per class),
number of patients and number of files

Given the above stratification and the models already trained with the RSD, the
test data were divided into the aforementioned categories, applied to the binary
classification problems (crackles vs. others, and wheezes vs. others) and the 3-
class problem (crackles vs. wheezes vs. others). Healthy subjects were ignored
in the analysis of the results, as their test set did not have annotated wheezes and
only contained 9 crackles. The files with missing data (6 files with no information
regarding age or sex) were also discarded.

Four metrics were used to evaluate the performance of the classification mod-
els: accuracy, area under the curve (AUC), F1-Score, and Matthews Correlation
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Coefficient (MCC). For the binary classification tasks, we calculated the accu-
racy, AUC, MCC, and F1 of the positive class (crackles or wheezes) and macro-
averaged F1 (F1 Macro), considering that the dataset is unbalanced. For the 3-
class problem, we computed the accuracy, the F1 for each class, and F1 Macro.

Table 4.15 shows summarised version of the results for three: SVMrbf with 100
selected features, RUSBoost with all the features, and CNN with dual input, i.e.,
with a combination of spectrogram and Mel spectrogram inputs. In Appendix B,
tables B.1 to B.24 show the results attained by all the models in these categories.

2 class crackles 2 class wheezes 3 class
SVM Boost CNN SVM Boost CNN SVM Boost CNN

Equipment

AKGC417L

Acc 70.3 ± 0.5 68.7 ± 0.6 86.4 ± 0.8 64.2 ± 1.3 60.7 ± 1.3 78.2 ± 0.9 Acc 69.1 ± 0.6 68.4 ± 0.7 84.5 ± 1.0
AUC 62.7 ± 2.5 64.0 ± 1.0 79.5 ± 2.3 59.3 ± 1.5 59.4 ± 1.5 74.5 ± 2.2 F1 C 80.5 ± 0.5 77.9 ± 0.8 90.4 ± 0.8

F1 C/W 79.4 ± 0.8 77.3 ± 0.8 90.9 ± 0.5 73.3 ± 1.9 67.8 ± 2.3 83.8 ± 1.0 F1 W 72.2 ± 2.2 76.8 ± 0.7 83.0 ± 1.5
F1 M 62.8 ± 3.3 63.5 ± 1.2 81.9 ± 1.8 59.3 ± 3.3 58.5 ± 2.6 75.1 ± 2.2 F1 O 38.8 ± 4.3 45.3 ± 1.3 71.9 ± 1.9

MCC M 26.3 ± 3.6 27.2 ± 1.5 66.2 ± 1.8 19.4 ± 2.3 18.1 ± 2.8 51.2 ± 2.2 F1 M 63.8 ± 2.3 66.7 ± 0.9 81.8 ± 1.4

Litt3200

Acc 77.3 ± 6.7 78.2 ± 1.9 90.9 ± 1.3 71.5 ± 3.4 65.2 ± 3.0 51.4 ± 1.8 Acc 55.7 ± 5.9 68.9 ± 1.4 65.1 ± 1.8
AUC 71.2 ± 3.1 67.0 ± 3.4 86.3 ± 0.7 62.4 ± 1.7 62.5 ± 2.2 57.7 ± 3.3 F1 C 9.6 ± 4.8 2.0 ± 3.0 16.1 ± 7.1

F1 C/W 46.7 ± 4.0 42.0 ± 4.8 80.4 ± 2.1 80.7 ± 2.9 73.7 ± 3.0 57.1 ± 2.0 F1 W 62.7 ± 6.3 71.2 ± 2.1 50.1 ± 6.0
F1 M 66.0 ± 4.8 64.3 ± 3.1 87.3 ± 1.5 63.1 ± 2.3 60.9 ± 2.8 50.5 ± 2.7 F1 O 65.0 ± 5.4 78.1 ± 1.4 78.2 ± 1.7

MCC M 36.1 ± 5.1 29.8 ± 5.9 74.7 ± 3.1 27.2 ± 5.5 23.4 ± 4.3 14.0 ± 6.0 F1 M 45.8 ± 5.5 50.4 ± 2.2 48.1 ± 4.9

Meditron

Acc 86.9 ± 1.0 87.7 ± 1.4 85.2 ± 1.5 72.2 ± 3.0 77.4 ± 2.4 79.6 ± 1.8 Acc 70.7 ± 2.5 73.6 ± 1.7 71.6 ± 1.8
AUC 88.6 ± 0.9 86.5 ± 1.8 86.3 ± 0.8 72.6 ± 2.9 78.4 ± 2.2 80.4 ± 1.8 F1 C 56.3 ± 2.5 58.5 ± 5.8 57.5 ± 3.8

F1 C/W 83.5 ± 1.2 82.4 ± 2.2 81.3 ± 1.2 73.0 ± 3.8 77.0 ± 3.1 80.3 ± 2.2 F1 W 59.6 ± 3.3 59.5 ± 1.5 61.5 ± 3.3
F1 M 86.4 ± 1.1 86.5 ± 1.6 84.5 ± 1.4 72.1 ± 3.3 77.4 ± 2.5 79.6 ± 2.0 F1 O 80.8 ± 2.9 84.2 ± 1.3 80.7 ± 1.2

MCC M 74.2 ± 1.9 73.0 ± 3.2 70.4 ± 1.9 45.1 ± 5.5 57.1 ± 3.9 60.5 ± 3.5 F1 M 65.6 ± 2.9 67.4 ± 2.9 66.6 ± 2.8

Age

Adults

Acc 71.5 ± 0.9 69.9 ± 0.6 86.7 ± 0.8 65.6 ± 0.6 61.4 ± 1.6 70.5 ± 1.0 Acc 67.2 ± 0.9 68.1 ± 0.5 81.9 ± 0.8
AUC 66.9 ± 2.3 67.4 ± 0.7 82.5 ± 1.9 59.8 ± 1.6 60.0 ± 1.3 68.7 ± 1.9 F1 C 77.8 ± 0.4 76.0 ± 0.7 88.7 ± 0.8

F1 C/W 79.0 ± 0.8 76.8 ± 0.7 90.5 ± 0.5 75.0 ± 0.7 69.0 ± 2.4 77.0 ± 1.6 F1 W 68.7 ± 2.7 73.9 ± 0.9 74.4 ± 1.9
F1 M 67.1 ± 2.8 67.1 ± 1.0 84.2 ± 1.5 60.0 ± 2.2 58.8 ± 2.3 67.7 ± 2.3 F1 O 45.2 ± 3.6 52.4 ± 0.9 73.5 ± 1.1

MCC M 34.9 ± 3.2 34.3 ± 1.2 70.0 ± 1.7 20.2 ± 2.7 19.0 ± 2.3 36.3 ± 2.9 F1 M 63.9 ± 2.2 67.4 ± 0.8 78.9 ± 1.3

Child

Acc 80.6 ± 1.5 84.4 ± 1.8 82.9 ± 2.1 81.2 ± 3.9 86.9 ± 2.1 86.0 ± 3.2 Acc 77.2 ± 4.2 78.2 ± 1.5 80.6 ± 3.0
AUC 84.2 ± 1.5 80.8 ± 3.4 86.4 ± 1.4 81.6 ± 3.8 86.9 ± 2.5 86.1 ± 3.6 F1 C 65.3 ± 5.1 64.1 ± 4.0 67.1 ± 2.3

F1 C/W 67.7 ± 2.0 68.0 ± 4.3 70.9 ± 2.0 79.4 ± 4.1 84.9 ± 2.9 84.0 ± 4.2 F1 W 72.7 ± 4.9 71.0 ± 2.0 82.8 ± 3.2
F1 M 76.9 ± 1.6 78.9 ± 2.8 79.4 ± 1.9 81.1 ± 4.0 86.7 ± 2.3 85.7 ± 3.6 F1 O 82.4 ± 3.8 83.7 ± 1.4 84.8 ± 3.0

MCC M 58.9 ± 2.8 58.2 ± 5.6 63.4 ± 2.4 62.8 ± 7.6 73.6 ± 4.5 72.3 ± 6.7 F1 M 73.5 ± 4.6 72.9 ± 2.5 78.2 ± 2.8

Sex

Male

Acc 72.0 ± 0.8 70.4 ± 0.7 87.3 ± 0.7 68.7 ± 1.0 64.4 ± 1.9 72.4 ± 1.3 Acc 69.2 ± 0.7 69.4 ± 0.7 82.7 ± 1.0
AUC 66.6 ± 1.8 67.8 ± 0.8 82.4 ± 1.9 62.2 ± 1.6 62.8 ± 1.1 70.4 ± 1.9 F1 C 79.4 ± 0.4 77.1 ± 0.8 89.4 ± 0.9

F1 C/W 79.8 ± 1.0 77.6 ± 0.8 91.2 ± 0.4 77.8 ± 1.0 72.4 ± 2.4 79.2 ± 1.8 F1 W 71.6 ± 2.7 76.9 ± 0.8 76.8 ± 2.1
F1 M 66.8 ± 2.3 67.0 ± 1.0 84.2 ± 1.4 62.2 ± 2.2 61.0 ± 2.1 68.9 ± 2.2 F1 O 46.1 ± 2.9 51.9 ± 0.9 72.7 ± 1.1

MCC M 34.0 ± 2.2 34.4 ± 1.4 69.9 ± 1.6 24.7 ± 2.7 23.9 ± 2.0 38.9 ± 2.6 F1 M 65.7 ± 2.0 68.6 ± 0.8 79.6 ± 1.4

Female

Acc 72.0 ± 5.4 72.9 ± 1.7 80.3 ± 3.1 50.8 ± 4.2 54.6 ± 3.1 66.0 ± 3.4 Acc 55.7 ± 4.5 63.1 ± 1.2 74.6 ± 2.3
AUC 78.3 ± 3.2 76.3 ± 2.3 84.1 ± 1.1 48.0 ± 5.7 46.4 ± 3.3 62.3 ± 1.7 F1 C 49.2 ± 2.4 53.8 ± 2.4 64.2 ± 1.9

F1 C/W 62.0 ± 3.7 60.4 ± 2.3 70.0 ± 2.7 30.8 ± 6.6 24.9 ± 5.6 45.5 ± 2.3 F1 W 29.0 ± 4.9 34.4 ± 3.0 41.7 ± 4.7
F1 M 69.9 ± 4.8 69.9 ± 1.9 77.7 ± 2.8 46.3 ± 5.2 46.1 ± 4.4 60.3 ± 2.9 F1 O 62.9 ± 5.6 72.1 ± 1.3 81.9 ± 2.1

MCC M 49.3 ± 5.3 45.8 ± 3.8 60.5 ± 3.0 -3.5 ± 10.1 -6.7 ± 6.2 22.8 ± 3.1 F1 M 47.0 ± 4.3 53.4 ± 2.2 62.6 ± 2.9

BMI

Normal

Acc 79.0 ± 1.7 80.0 ± 1.4 88.1 ± 1.3 63.0 ± 2.7 63.1 ± 1.7 79.4 ± 2.5 Acc 75.0 ± 0.8 76.9 ± 1.0 87.2 ± 0.9
AUC 65.9 ± 3.7 70.4 ± 1.5 80.2 ± 3.0 61.1 ± 2.8 62.4 ± 1.8 78.1 ± 2.6 F1 C 85.9 ± 0.3 86.7 ± 0.9 92.6 ± 0.6

F1 C/W 86.8 ± 0.8 86.9 ± 1.1 92.3 ± 0.8 69.5 ± 3.0 67.6 ± 1.9 82.9 ± 2.2 F1 W 69.2 ± 2.8 72.2 ± 1.0 82.2 ± 1.7
F1 M 67.7 ± 4.6 72.3 ± 1.8 83.3 ± 2.6 60.9 ± 4.4 62.3 ± 2.3 78.4 ± 2.9 F1 O 41.5 ± 5.0 51.4 ± 2.2 75.1 ± 2.4

MCC M 41.8 ± 6.4 46.6 ± 3.4 69.7 ± 3.4 23.1 ± 5.5 24.8 ± 3.6 57.6 ± 5.1 F1 M 65.5 ± 2.7 70.1 ± 1.4 83.3 ± 1.6

Overweight

Acc 74.2 ± 2.8 75.1 ± 1.2 85.5 ± 1.6 68.3 ± 2.0 64.2 ± 2.4 67.9 ± 2.2 Acc 64.9 ± 1.9 70.3 ± 0.8 78.0 ± 0.7
AUC 73.7 ± 2.9 74.7 ± 1.3 85.3 ± 1.7 59.5 ± 2.6 60.6 ± 2.2 66.9 ± 1.2 F1 C 72.0 ± 0.9 75.5 ± 0.6 83.4 ± 0.9

F1 C/W 78.5 ± 1.4 78.7 ± 0.7 87.0 ± 1.0 78.2 ± 1.4 73.0 ± 2.5 75.0 ± 2.8 F1 W 69.9 ± 1.8 74.0 ± 1.1 70.4 ± 1.7
F1 M 73.0 ± 3.7 74.4 ± 1.5 85.3 ± 1.8 59.9 ± 2.9 59.7 ± 2.9 65.0 ± 2.2 F1 O 52.2 ± 4.3 61.9 ± 1.7 76.0 ± 1.3

MCC M 51.2 ± 4.0 52.0 ± 2.0 72.0 ± 2.5 20.5 ± 5.5 20.3 ± 4.3 31.8 ± 2.2 F1 M 64.7 ± 2.3 70.5 ± 1.1 76.6 ± 1.3

Obese

Acc 59.5 ± 5.3 51.6 ± 3.3 88.1 ± 2.5 59.3 ± 3.3 50.0 ± 4.0 75.0 ± 3.8 Acc 62.9 ± 1.7 54.8 ± 2.2 83.4 ± 2.6
AUC 62.5 ± 3.4 61.7 ± 2.2 79.8 ± 0.8 57.9 ± 1.1 54.7 ± 2.9 72.6 ± 3.7 F1 C 75.5 ± 1.7 62.7 ± 2.8 90.7 ± 1.8

F1 C/W 69.7 ± 5.2 60.6 ± 3.8 92.6 ± 1.8 67.4 ± 4.1 53.6 ± 7.4 81.3 ± 3.3 F1 W 62.8 ± 9.2 74.8 ± 1.9 76.6 ± 4.0
F1 M 53.8 ± 4.2 48.8 ± 2.8 80.1 ± 2.4 56.2 ± 3.0 49.3 ± 5.2 71.7 ± 4.1 F1 O 33.0 ± 2.2 36.0 ± 1.1 61.8 ± 2.6

MCC M 19.6 ± 5.2 18.3 ± 3.4 61.1 ± 4.9 15.0 ± 2.6 9.0 ± 5.5 43.9 ± 7.4 F1 M 57.1 ± 4.4 57.8 ± 1.9 76.4 ± 2.8

Diagnosis

Chronic

Acc 71.9 ± 0.9 70.5 ± 0.6 86.6 ± 0.9 65.6 ± 0.7 61.9 ± 1.6 70.9 ± 1.0 Acc 67.4 ± 0.9 68.4 ± 0.5 81.8 ± 0.9
AUC 67.8 ± 2.1 68.3 ± 0.7 82.7 ± 1.9 60.2 ± 1.6 60.7 ± 1.2 69.3 ± 1.8 F1 C 77.6 ± 0.4 75.9 ± 0.8 88.3 ± 0.9

F1 C/W 79.1 ± 0.8 76.9 ± 0.7 90.4 ± 0.5 74.8 ± 0.7 69.2 ± 2.5 77.3 ± 1.6 F1 W 68.5 ± 2.7 73.6 ± 0.8 74.2 ± 1.9
F1 M 68.1 ± 2.6 67.9 ± 0.9 84.3 ± 1.5 60.3 ± 2.1 59.5 ± 2.3 68.3 ± 2.2 F1 O 47.1 ± 3.4 54.1 ± 0.9 73.9 ± 1.2

MCC M 36.7 ± 3.0 36.0 ± 1.2 70.2 ± 1.8 20.8 ± 2.7 20.4 ± 2.2 37.4 ± 2.7 F1 M 64.4 ± 2.2 67.9 ± 0.8 78.8 ± 1.3

Non-Chronic

Acc 81.6 ± 2.5 80.5 ± 2.6 85.3 ± 3.3 82.4 ± 3.7 84.1 ± 3.6 85.5 ± 4.4 Acc 77.8 ± 3.5 78.2 ± 2.2 84.7 ± 1.7
AUC 82.4 ± 2.5 80.7 ± 2.8 86.0 ± 2.8 80.9 ± 4.0 82.3 ± 2.5 83.5 ± 5.1 F1 C 78.7 ± 3.6 75.4 ± 4.1 84.0 ± 1.7

F1 C/W 81.8 ± 2.4 79.2 ± 3.2 85.4 ± 2.6 87.0 ± 3.0 88.4 ± 3.0 89.6 ± 3.2 F1 W 83.4 ± 4.7 85.8 ± 2.0 90.4 ± 3.0
F1 M 81.6 ± 2.6 80.4 ± 2.8 85.3 ± 3.3 79.5 ± 4.2 81.5 ± 3.5 82.9 ± 5.1 F1 O 73.6 ± 4.1 75.0 ± 2.5 81.6 ± 2.6

MCC M 65.1 ± 4.9 61.3 ± 5.5 72.4 ± 5.0 60.1 ± 7.4 63.5 ± 6.2 66.0 ± 10.1 F1 M 78.6 ± 4.1 78.7 ± 2.9 85.3 ± 2.4

Table 4.15: Results (Acc: Accuracy, C: Crackle, W: Wheeze, O: Other, SVM: SVM-
rbf_100MRMR, Boost: RUSBoost_Full, CNN: CNN_dualInput, M: Macro)

In all the performed comparisons (discussed in the following paragraphs), sta-
tistical significance tests were conducted. When comparing the results for dif-
ferent subpopulations, unpaired tests were performed, namely the unpaired t-
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test (when the distributions are Gaussian) or the Wilcoxon rank sum test (when
the distributions are non-Gaussian). When comparing the results of different
algorithms in the same subpopulations, paired tests were performed, namely,
the paired T-test (Gaussian distributions) or the Wilcoxon signed rank test (non-
Gaussian distributions). In all cases, the Kolmogorov-Smirnov test was employed
to test for Gaussianity and the threshold for statistical significance was set to p <
0.01. Unless otherwise stated, all the results compared in the paragraphs below
are statistically significant.

Looking at Table 4.15, we can observe that, for the three types of classification
problems, the model that obtained the best results overall was the CNN, except
for four cases: Children in wheezes classification, where the Boost performed bet-
ter; Litt3200 stethoscope in wheezes classification, where the SVM outperformed
the CNN; Meditron stethoscope in crackles classification, where the SVM model
also outperformed the CNN; and finally, in the 3-class classification problem,
where the SVM also performed better than the CNN in the Litt3200 and Med-
itron.

For the Equipment category, in wheezes classification, the results are quite sim-
ilar between all 3 stethoscopes/microphones, with a slight advantage for the
AKGC417L microphone (with F1 wheezes of 83.8% in the AKGC417L micro-
phone, maximum F1 wheezes of 80.7% in the Litt3200, and F1 wheezes of 80.3% in
the Meditron). In crackles classification, the results are higher for the AKGC417L
microphone and Meditron, while in the Litt3200, the results are worse (F1 crack-
les of 90.9% in the AKGC417L microphone, F1 crackles of 80.4% in the Litt3200,
and a maximum F1 crackles of 83.5% in the Meditron). In the 3-class problem,
the AKGC417L microphone also achieved better results than the other two (F1
macro of 81.8% in the AKGC417L microphone, a maximum F1 macro of 50.4%
in the Litt3200, and F1 macro of 67.4% in the Meditron). Overall, the AKGC417L
microphone achieved better results, since this microphone is more sensitive, it
has no filters, and its training and test sets are larger than the sets for the other
types of equipment.

When we look at the Age of the subjects, in wheezes classification, Children’
achieved better results than Adults (with F1 wheezes of 84.9% in Children using
the Boost model and F1 wheezes of 77.0% in Adults using the CNN model). Even
though the Boost achieved better results than the CNN in wheezes classification
in Children, the difference was not statistically significant (p > 0.01). In crackles
classification, the reverse occurs, with Adults outperforming Children (with F1
crackles of 90.5% in Adults and F1 crackles of 70.9% in Children). Regarding
the 3-class problem, Adults once again outperformed Children (with F1 macro of
78.9% and F1 macro of 78.2%, respectively).

Regarding the Sex category, Male subjects achieved superior results in wheezes
classification than Female subjects (F1 wheezes of 79.2% in Males and F1 wheezes
of 45.5% in Females). In the classification of crackles, the same occurs, Male sub-
jects also achieved superior results than Female Subjects (F1 crackles of 91.2% in
Males and F1 crackles of 70.0% in Females). As for the 3-class classification prob-
lem, even though there is still an advantage for the Male subjects, the difference
is lower (F1 macro of 79.6% in Males and F1 macro of 62.6% in Females). Even

42



Classification of adventitious events

though Female subjects have a large number of annotated crackles in the training
set, these differences can be explained by the unbalanced data in both crackles
and wheezes in Female subjects between train and test sets. Overall, the results
on the classification of crackles were superior to the results on the classification of
wheezes, as there are more annotated crackles in both training and test sets than
wheezes.

Regarding the BMI category, in the classification of wheezes, Obese and Nor-
mal BMI subjects achieved better results than Overweight BMI subjects (with F1
wheezes of 81.3% in Obese BMI subjects, F1 wheezes of 82.9% in Normal BMI
subjects, and maximum F1 wheezes of 78.2% in Overweight BMI subjects). In the
crackles classification, Obese and Normal BMI subjects achieved better results
than Overweight BMI subjects (with F1 crackles of 92.6% in Obese BMI subjects,
F1 crackles of 92.3% in Normal BMI subjects, and F1 crackles of 87.0% in Over-
weight BMI subjects - except for the Obese and Normal CNNs where p > 0.01). In
the 3-class problem, Obese and Overweight BMI subjects achieved similar results
(in terms of F1 macro, with 76.4% and 76.6%, respectively), while the Normal BMI
subjects achieved superior results (with F1 macro of 83.3% - except for the Obese
and Normal CNNs, where p > 0.01). Overall, crackles classification achieved
better results than wheezes classification, maybe due to having more annotated
crackles than wheezes in the training set, which benefits the CNN model.

In the Diagnosis category, the subjects with a Non-Chronic diagnosis achieved
better results in the wheezes classification than the subjects with a Chronic diag-
nosis (F1 wheezes of 89.5% and F1 wheezes of 77.3%, respectively). In the clas-
sification of crackles, the reverse occurs and the subjects with Chronic diagnosis
surpassed the subjects with Non-Chronic diagnosis (F1 crackles of 90.4% and F1
crackles of 85.4%, respectively). As for the 3-class classification problem, the same
as the wheezes classification happened: the subjects with Non-Chronic diagnosis
once again achieved better results than those with Chronic diagnosis (F1 macro
of 85.3% and F1 macro of 78.8%, respectively). Regarding crackles classification,
that difference may be explained by the fact that the AKGC417L microphone has
more sensibility than any other equipment, and in the training set of the subjects
with Non-Chronic diagnosis, there are only files where the equipment used were
the LittC2SE and Meditron (less sensibility in general), while in the training set
of the subjects with Chronic diagnosis, most of the files were recorded using the
AKGC417L microphone.
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Segmentation of adventitious events

As explained before, this thesis was divided into two parts, the classification of
adventitious events and the segmentation of adventitious sounds. In this section,
a detailed description of the segmentation part was made.

Segmentation of ARS is a complex task, especially the post-processing analysis
since the first part is the same as the already explained classification of ARS. As a
consequence of that, only the binary problems are going to be evaluated (crack-
les vs. normal sounds, and wheezes vs. normal sounds).

Regarding the segmentation, two approaches were tested:

• CNN model to classify individual frames

• RNN/LSTM model to classify a group of frames

Usually, between these two approaches, the one that can achieve better results is
the second one, since it takes into account the past and the future at any given
point, while the first approach only assesses each frame individually.

5.1 Dataset

One of the datasets used is the RSD, explained in Section 3.1. The data was di-
vided into Train-Test (TT), as already explained before, but while training the
models, a random validation set containing 25% of the training set was gener-
ated.

The HF_Lung_V1 Database was also used and also explained in Section 3.1. Since
this dataset is divided into continuous (wheezes, stridors, and rhonchus) and
discontinuous (crackles) sounds, the analysis was done using this division. Also,
a random validation set containing 25% of the training set was generated.

In both datasets, in contrast to the classification problem, no events "other" were
added, since in this case, we cannot correctly replicate the characteristics of the
events in analysis. To surpass this problem, in the first approach, a parameter
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was passed to the models to have the classifier heavily weigh the few examples
of the event that are available. The second approach, since it was a replication, it
was not done anything regarding the unbalanced data.

In the second approach, the RSD only using the AKGC417L files is going to be
used. Henceforth, this dataset will be denominated by RSD_AKGC417L.

5.2 Segmentation using individual frame classifica-
tion

As explained before, this approach is will consist in creating a CNN model to clas-
sify individual frames, without any relation to the previous or the next frames.

5.2.1 Feature Extraction

Unlike the classification problem, no ML models were tested, since overall they
achieved worst results than the DL models in classification.

The features for the DL models are extracted by window (3 window methods -
Hamming, Blackman-Haris and rectangular; 3 window sizes - 32ms, 64ms and
128ms with 75% overlap), and the spectrogram and the mel-spectrogram used.
In these experiments, only the Blackman-Haris window method was used (the
window sizes used were the same).

5.2.2 Classifiers

All the classifiers in which the RSD was dataset chosen were trained 10 times with
different seeds, whilst when the HF_Lung_V1 dataset was chosen were trained 5
times with different seeds, since the size difference is quite significant and there
are some computational limitations. Also due to computational limitations and
size differences between datasets, when the HF_Lung_V1 dataset was used to
train the model, the 32ms window size was not used.

For the DL approaches, 2 models were developed:

• A CNN model with single input configuration that used the spectrogram as
input (Figure 5.1a)

• A CNN model with single input configuration that used the mel-spectrogram
as input (Figure 5.1b)
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(a) Spectrogram
(b) Mel-Spectrogram

Figure 5.1: CNNs architecture using Spectrogram as input (left) and using Mel-
Spectrogram as input (right)

All these CNNs were trained with 30 epochs, with a batch size of 32 and 0.001
learning rate (ADAM optimisation algorithm [22]). It also used a model check-
point that saves the one with the lowest validation loss to avoid overfitting during
the training phase.
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5.2.3 Post-processing

The post-processing analysis is similar to the one used in [6] and the metrics used
for the evaluation of the models are explained in subsection 2.4. Starting this
process, the probability of the frames is converted to an integer value (0 as being
a normal sound frame or 1 as being an event sound frame) with three different
thresholds: 0.25, 0.5 and 0.75. Next, sequential frames with the same classifica-
tion are aggregated into an event and then compared with the real annotations
(the energy peaks were not computed as it was in the article), using the Jaccard In-
dex and Overlap Coefficient. Although JI is widely used for segmentation tasks,
OC metric is more relevant for this problem, as JI is insensitive to the length of the
segments [24], but the results for both metrics are going to be presented, in pair
with 3 metrics (Recall, Precision, and F1-Score). Also, for a better understand-
ing of the performance of the models, the results for the individual frames are
presented with the same metrics.

5.2.4 Results

HF_Lung_V1 Database

Table 5.1 displays the results obtained by all the classifiers on the test set for the 2-
class problem (DAS vs. normal sounds). Table 5.2 displays the results obtained by
all the classifiers on the test set for the 2-class problem (CAS vs. normal sounds).
The following tables do not have results when the window size is 32ms, due to
computational limitations.

Recall_Mel Precision_Mel F1-Score_Mel Recall_Spec Precision_Spec F1-Score_Spec
Class_0.25_64ms 96.7 ± 2.2 5.9 ± 0.4 11.2 ± 0.7 96.8 ± 2.0 5.8 ± 0.2 10.9 ± 0.4
Class_0.5_64ms 75.7 ± 5.6 10.2 ± 1.2 17.9 ± 1.7 69.4 ± 10.4 11.8 ± 2.3 19.9 ± 2.6

Class_0.75_64ms 11.7 ± 6.2 25.1 ± 3.0 14.6 ± 5.0 9.1 ± 9.0 25.4 ± 2.7 11.0 ± 7.7
Class_0.25_128ms 96.9 ± 0.7 6.2 ± 0.2 11.6 ± 0.3 96.4 ± 1.8 6.0 ± 0.3 11.2 ± 0.5
Class_0.5_128ms 75.4 ± 2.1 11.8 ± 0.5 20.3 ± 0.7 68.2 ± 8.7 13.0 ± 2.2 21.6 ± 2.7

Class_0.75_128ms 14.6 ± 3.9 27.3 ± 1.5 18.6 ± 3.0 9.3 ± 5.9 26.7 ± 2.1 12.7 ± 5.8
Seg_JI_0.25_64ms 24.3 ± 2.4 0.7 ± 0.1 1.4 ± 0.2 25.2 ± 1.8 0.9 ± 0.1 1.7 ± 0.2
Seg_JI_0.5_64ms 9.8 ± 2.5 0.4 ± 0.0 0.8 ± 0.1 9.0 ± 3.7 0.4 ± 0.1 0.8 ± 0.2

Seg_JI_0.75_64ms 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.1
Seg_JI_0.25_128ms 32.0 ± 2.6 1.0 ± 0.0 1.9 ± 0.1 30.5 ± 3.5 1.1 ± 0.1 2.2 ± 0.1
Seg_JI_0.5_128ms 21.9 ± 2.0 1.1 ± 0.0 2.1 ± 0.1 18.9 ± 5.1 1.1 ± 0.1 2.1 ± 0.1

Seg_JI_0.75_128ms 0.5 ± 0.3 0.1 ± 0.1 0.2 ± 0.1 0.4 ± 0.5 0.1 ± 0.1 0.2 ± 0.2
Seg_Over_0.25_64ms 89.8 ± 1.1 2.6 ± 0.3 5.1 ± 0.6 89.4 ± 0.8 3.0 ± 0.3 5.9 ± 0.5
Seg_Over_0.5_64ms 97.1 ± 1.0 4.2 ± 0.8 8.0 ± 1.5 97.5 ± 1.0 5.3 ± 1.9 9.9 ± 3.4
Seg_Over_0.75_64ms 91.6 ± 6.0 22.6 ± 3.9 35.9 ± 4.5 78.4 ± 16.4 23.7 ± 3.8 35.8 ± 4.7

Seg_Over_0.25_128ms 90.8 ± 0.6 2.8 ± 0.2 5.4 ± 0.4 91.0 ± 0.6 3.4 ± 0.6 6.5 ± 1.0
Seg_Over_0.5_128ms 96.8 ± 0.3 4.8 ± 0.3 9.2 ± 0.6 97.2 ± 1.1 5.9 ± 1.5 11.1 ± 2.7

Seg_Over_0.75_128ms 85.9 ± 4.3 22.4 ± 1.9 35.5 ± 2.1 70.3 ± 16.9 24.6 ± 3.3 35.3 ± 2.4

Table 5.1: Performance results of CNN on DAS vs. normal sounds problem using
the HF_Lung_V1 (Class: Classification, Seg_JI: Segmentation with JI, Seg_OC:
Segmentation with OC, 0.25/0.5/0.75: Threshold, 32/64/128ms: Window size,
*_Mel: CNN with mel-spectrogram as input, *_Spec: CNN with spectrogram as
input)
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Recall_Mel Precision_Mel F1-Score_Mel Recall_Spec Precision_Spec F1-Score_Spec
Class_0.25_64ms 94.7 ± 2.5 6.9 ± 0.2 12.8 ± 0.4 94.9 ± 4.1 6.8 ± 0.5 12.7 ± 0.8
Class_0.5_64ms 59.1 ± 7.0 11.8 ± 0.7 19.5 ± 0.9 63.3 ± 10.8 11.0 ± 1.4 18.6 ± 1.6

Class_0.75_64ms 16.6 ± 2.6 23.7 ± 1.8 19.3 ± 1.6 19.4 ± 4.0 20.0 ± 2.3 19.2 ± 1.6
Class_0.25_128ms 93.5 ± 3.8 7.1 ± 0.4 13.1 ± 0.7 92.7 ± 2.2 7.2 ± 0.2 13.4 ± 0.4
Class_0.5_128ms 56.6 ± 6.5 12.4 ± 1.2 20.2 ± 1.5 51.1 ± 6.7 14.1 ± 0.9 22.0 ± 0.5

Class_0.75_128ms 20.7 ± 3.7 25.1 ± 4.2 22.3 ± 2.0 19.3 ± 3.4 27.7 ± 2.8 22.4 ± 1.7
Seg_JI_0.25_64ms 26.3 ± 4.8 0.9 ± 0.1 1.8 ± 0.2 22.4 ± 6.4 0.9 ± 0.1 1.8 ± 0.3
Seg_JI_0.5_64ms 6.5 ± 1.2 0.4 ± 0.0 0.8 ± 0.1 8.2 ± 3.4 0.5 ± 0.1 0.9 ± 0.1

Seg_JI_0.75_64ms 2.2 ± 0.1 0.4 ± 0.0 0.7 ± 0.0 2.0 ± 0.5 0.3 ± 0.0 0.5 ± 0.1
Seg_JI_0.25_128ms 30.5 ± 4.2 1.5 ± 0.3 2.9 ± 0.5 32.2 ± 1.0 1.5 ± 0.1 2.8 ± 0.1
Seg_JI_0.5_128ms 13.7 ± 2.0 1.0 ± 0.0 1.9 ± 0.1 13.2 ± 2.5 1.1 ± 0.1 2.1 ± 0.2
Seg_JI_0.75_128ms 6.1 ± 0.8 1.3 ± 0.2 2.1 ± 0.2 6.0 ± 1.2 1.5 ± 0.1 2.3 ± 0.2

Seg_Over_0.25_64ms 91.3 ± 1.0 3.3 ± 0.4 6.3 ± 0.8 93.1 ± 1.8 4.0 ± 1.1 7.7 ± 2.1
Seg_Over_0.5_64ms 98.0 ± 0.4 6.3 ± 0.6 11.7 ± 1.1 97.7 ± 1.0 5.8 ± 1.2 10.9 ± 2.1

Seg_Over_0.75_64ms 90.7 ± 3.7 14.3 ± 1.2 24.6 ± 1.8 93.8 ± 2.5 13.0 ± 2.0 22.7 ± 2.9
Seg_Over_0.25_128ms 92.7 ± 0.5 4.5 ± 0.5 8.5 ± 0.9 93.0 ± 0.3 4.1 ± 0.2 7.9 ± 0.3
Seg_Over_0.5_128ms 98.0 ± 0.4 7.1 ± 0.8 13.3 ± 1.4 97.8 ± 0.3 8.1 ± 1.0 14.9 ± 1.7

Seg_Over_0.75_128ms 83.6 ± 6.1 15.5 ± 2.9 26.0 ± 4.0 79.6 ± 6.2 16.8 ± 1.9 27.7 ± 2.2

Table 5.2: Performance results of CNN on CAS vs. normal sounds problem using
the HF_Lung_V1 (Class: Classification, Seg_JI: Segmentation with JI, Seg_OC:
Segmentation with OC, 0.25/0.5/0.75: Threshold, 32/64/128ms: Window size,
*_Mel: CNN with mel-spectrogram as input, *_Spec: CNN with spectrogram as
input)

After analysing the tables, we can understand that the results are quite low (better
performance when the OC is used), even before the post-processing in the classi-
fication of the individual frames. Regarding the DAS vs. normal sounds, the best
results were attained when the threshold was 0.75, using the OC, a window size
of 64ms, and the mel-spectrogram as input, with an F1-Score of 35.9%. Concern-
ing the CAS vs. normal sounds, the best results were attained when the threshold
was 0.75, using the OC, a window size of 128ms, and the spectrogram as input,
with an F1-Score of 27.7%. Both of these tables help us better understand the dif-
ference between the 2 metrics OC and JI since the difference between results is
significant. Given the lower overall results with this approach, also these results
are just going to be used as a baseline for the next approach.

RSD

Table 5.3 displays the results obtained by all the classifiers on the test set for the
2-class problem (crackles vs. normal sounds). Table 5.4 displays the results ob-
tained by all the classifiers on the test set for the 2-class problem (wheezes vs.
normal sounds).
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Recall_Mel Precision_Mel F1-Score_Mel Recall_Spec Precision_Spec F1-Score_Spec
Class_0.25_32ms 97.2 ± 1.6 1.4 ± 0.0 2.8 ± 0.1 98.1 ± 1.9 1.3 ± 0.0 2.6 ± 0.0
Class_0.5_32ms 79.8 ± 11.1 2.4 ± 0.6 4.6 ± 1.1 84.4 ± 13.0 2.0 ± 0.6 3.9 ± 1.1

Class_0.75_32ms 31.4 ± 17.2 4.5 ± 2.5 7.7 ± 4.1 13.8 ± 11.9 3.8 ± 3.1 5.9 ± 4.8
Class_0.25_64ms 93.4 ± 4.9 1.6 ± 0.1 3.2 ± 0.3 96.4 ± 1.4 1.4 ± 0.1 2.8 ± 0.1
Class_0.5_64ms 70.2 ± 8.4 3.9 ± 0.5 7.4 ± 0.8 77.3 ± 5.6 3.2 ± 0.7 6.1 ± 1.2

Class_0.75_64ms 38.0 ± 9.8 7.6 ± 0.8 12.5 ± 1.0 41.6 ± 4.8 7.1 ± 0.9 12.1 ± 1.2
Class_0.25_128ms 94.4 ± 2.3 1.5 ± 0.1 2.9 ± 0.3 96.6 ± 3.3 1.3 ± 0.2 2.7 ± 0.4
Class_0.5_128ms 74.7 ± 8.8 3.0 ± 0.4 5.7 ± 0.8 82.1 ± 17.0 2.6 ± 1.5 4.9 ± 2.8

Class_0.75_128ms 36.0 ± 14.8 5.4 ± 0.9 8.8 ± 0.5 24.3 ± 21.3 3.7 ± 3.3 6.2 ± 5.3
Seg_JI_0.25_32ms 12.9 ± 7.0 0.5 ± 0.2 0.9 ± 0.4 7.2 ± 6.0 0.4 ± 0.3 0.7 ± 0.6
Seg_JI_0.5_32ms 35.7 ± 17.9 1.1 ± 0.6 2.1 ± 1.1 25.1 ± 20.5 0.7 ± 0.6 1.4 ± 1.2

Seg_JI_0.75_32ms 27.3 ± 14.4 2.4 ± 1.3 4.5 ± 2.3 12.6 ± 10.6 2.0 ± 1.6 3.4 ± 2.8
Seg_JI_0.25_64ms 19.0 ± 5.3 0.7 ± 0.2 1.3 ± 0.4 15.4 ± 1.2 0.8 ± 0.1 1.5 ± 0.2
Seg_JI_0.5_64ms 48.3 ± 2.1 3.2 ± 0.6 5.9 ± 1.1 48.0 ± 2.9 2.4 ± 0.7 4.6 ± 1.3

Seg_JI_0.75_64ms 38.2 ± 7.6 7.5 ± 0.8 12.4 ± 1.1 41.2 ± 3.3 7.2 ± 0.9 12.2 ± 1.1
Seg_JI_0.25_128ms 11.6 ± 3.5 0.5 ± 0.1 1.0 ± 0.2 10.7 ± 9.5 0.5 ± 0.4 0.9 ± 0.8
Seg_JI_0.5_128ms 32.3 ± 3.1 2.4 ± 0.7 4.5 ± 1.3 25.9 ± 21.5 2.2 ± 2.4 4.1 ± 4.2

Seg_JI_0.75_128ms 25.9 ± 7.2 6.4 ± 1.4 9.8 ± 1.0 21.6 ± 18.2 4.6 ± 4.0 7.4 ± 6.2
Seg_Over_0.25_32ms 97.2 ± 1.5 10.0 ± 13.3 15.8 ± 18.8 95.8 ± 4.2 17.3 ± 15.7 26.5 ± 22.0
Seg_Over_0.5_32ms 94.1 ± 3.4 9.5 ± 13.5 15.0 ± 19.3 93.8 ± 5.4 16.1 ± 16.6 24.4 ± 23.7
Seg_Over_0.75_32ms 59.0 ± 30.3 5.2 ± 2.9 9.4 ± 5.1 28.8 ± 24.0 4.3 ± 3.5 7.5 ± 6.1
Seg_Over_0.25_64ms 92.6 ± 3.9 3.3 ± 0.2 6.4 ± 0.4 94.0 ± 1.9 4.6 ± 1.1 8.8 ± 2.0
Seg_Over_0.5_64ms 80.5 ± 6.7 5.1 ± 0.6 9.6 ± 1.1 85.8 ± 3.9 4.2 ± 0.8 7.9 ± 1.5
Seg_Over_0.75_64ms 51.7 ± 11.5 9.8 ± 0.9 16.3 ± 1.2 55.8 ± 5.3 9.5 ± 1.0 16.2 ± 1.3

Seg_Over_0.25_128ms 89.5 ± 2.3 3.9 ± 0.3 7.6 ± 0.5 94.7 ± 4.8 16.7 ± 15.4 25.7 ± 21.8
Seg_Over_0.5_128ms 71.1 ± 7.3 5.0 ± 0.6 9.4 ± 0.9 82.7 ± 15.9 17.3 ± 14.4 26.8 ± 20.5

Seg_Over_0.75_128ms 36.1 ± 13.7 8.2 ± 0.7 12.8 ± 0.9 26.0 ± 22.5 5.3 ± 4.4 8.5 ± 7.0

Table 5.3: Performance results of CNN on crackles vs. normal sounds problem us-
ing the RSD (Class: Classification, Seg_JI: Segmentation with JI, Seg_OC: Segmen-
tation with OC, 0.25/0.5/0.75: Threshold, 32/64/128ms: Window size, *_Mel:
CNN with mel-spectrogram as input, *_Spec: CNN with spectrogram as input)

Recall_Mel Precision_Mel F1-Score_Mel Recall_Spec Precision_Spec F1-Score_Spec
Class_0.25_32ms 88.3 ± 2.0 7.1 ± 0.3 13.2 ± 0.4 89.4 ± 2.6 6.9 ± 0.3 12.7 ± 0.5
Class_0.5_32ms 56.9 ± 4.0 9.9 ± 0.4 16.8 ± 0.4 57.1 ± 3.9 9.7 ± 0.4 16.6 ± 0.5

Class_0.75_32ms 21.0 ± 3.7 11.0 ± 0.2 14.3 ± 0.7 22.4 ± 6.0 10.9 ± 0.3 14.5 ± 0.9
Class_0.25_64ms 84.6 ± 2.5 7.7 ± 0.3 14.1 ± 0.5 90.1 ± 4.1 7.2 ± 0.5 13.2 ± 0.8
Class_0.5_64ms 50.3 ± 3.8 11.6 ± 0.6 18.8 ± 0.6 59.6 ± 5.0 11.4 ± 0.4 19.0 ± 0.4

Class_0.75_64ms 21.1 ± 2.9 14.3 ± 0.7 17.0 ± 0.7 27.7 ± 3.3 14.5 ± 0.6 19.0 ± 0.9
Class_0.25_128ms 85.7 ± 2.5 8.1 ± 0.4 14.8 ± 0.7 89.7 ± 4.0 7.8 ± 0.8 14.3 ± 1.2
Class_0.5_128ms 54.9 ± 3.8 13.4 ± 0.4 21.6 ± 0.5 61.6 ± 5.4 13.7 ± 1.5 22.3 ± 1.5

Class_0.75_128ms 28.3 ± 3.4 17.5 ± 0.7 21.5 ± 1.2 34.1 ± 4.0 18.9 ± 1.5 24.2 ± 1.3
Seg_JI_0.25_32ms 11.5 ± 1.7 0.4 ± 0.0 0.7 ± 0.1 11.8 ± 2.1 0.4 ± 0.0 0.7 ± 0.1
Seg_JI_0.5_32ms 3.8 ± 0.6 0.3 ± 0.0 0.5 ± 0.1 3.4 ± 0.8 0.2 ± 0.0 0.5 ± 0.1

Seg_JI_0.75_32ms 1.1 ± 0.1 0.1 ± 0.0 0.3 ± 0.0 1.0 ± 0.2 0.1 ± 0.0 0.2 ± 0.0
Seg_JI_0.25_64ms 15.5 ± 1.3 0.7 ± 0.0 1.3 ± 0.1 21.3 ± 3.5 0.7 ± 0.0 1.4 ± 0.0
Seg_JI_0.5_64ms 6.3 ± 0.4 0.6 ± 0.0 1.0 ± 0.0 8.5 ± 0.7 0.7 ± 0.0 1.2 ± 0.0

Seg_JI_0.75_64ms 3.3 ± 0.4 0.6 ± 0.1 1.0 ± 0.2 3.7 ± 0.1 0.6 ± 0.1 1.1 ± 0.1
Seg_JI_0.25_128ms 26.1 ± 1.8 1.4 ± 0.1 2.6 ± 0.1 31.1 ± 1.9 1.4 ± 0.1 2.7 ± 0.2
Seg_JI_0.5_128ms 15.6 ± 2.0 1.6 ± 0.2 3.0 ± 0.3 17.9 ± 1.9 1.9 ± 0.1 3.4 ± 0.2

Seg_JI_0.75_128ms 8.2 ± 1.0 1.8 ± 0.1 3.0 ± 0.2 9.9 ± 1.2 2.3 ± 0.3 3.7 ± 0.4
Seg_Over_0.25_32ms 95.4 ± 0.4 3.1 ± 0.3 6.0 ± 0.5 94.9 ± 0.3 2.9 ± 0.3 5.7 ± 0.6
Seg_Over_0.5_32ms 94.4 ± 0.4 6.3 ± 0.4 11.8 ± 0.7 94.9 ± 0.3 6.4 ± 0.6 11.9 ± 1.1
Seg_Over_0.75_32ms 91.7 ± 1.6 10.5 ± 0.6 18.9 ± 1.0 91.4 ± 0.7 10.8 ± 0.9 19.3 ± 1.4
Seg_Over_0.25_64ms 93.6 ± 1.0 4.0 ± 0.4 7.6 ± 0.6 94.6 ± 0.4 3.3 ± 0.5 6.3 ± 1.0
Seg_Over_0.5_64ms 91.9 ± 0.7 7.6 ± 0.6 14.0 ± 1.0 93.1 ± 0.9 6.9 ± 0.6 12.8 ± 1.0
Seg_Over_0.75_64ms 84.9 ± 2.8 12.9 ± 0.9 22.4 ± 1.3 87.1 ± 2.4 12.5 ± 1.0 21.9 ± 1.4

Seg_Over_0.25_128ms 94.2 ± 1.6 4.8 ± 0.3 9.2 ± 0.6 94.7 ± 0.9 4.1 ± 0.5 7.9 ± 0.9
Seg_Over_0.5_128ms 88.5 ± 1.9 8.7 ± 0.4 15.8 ± 0.6 90.2 ± 1.5 8.9 ± 1.2 16.1 ± 1.9

Seg_Over_0.75_128ms 76.8 ± 3.2 14.8 ± 1.0 24.8 ± 1.3 78.8 ± 2.8 16.0 ± 2.1 26.5 ± 2.8

Table 5.4: Performance results of CNN on wheezes vs. normal sounds prob-
lem using the RSD (Class: Classification, Seg_JI: Segmentation with JI, Seg_OC:
Segmentation with OC, 0.25/0.5/0.75: Threshold, 32/64/128ms: Window size,
*_Mel: CNN with mel-spectrogram as input, *_Spec: CNN with spectrogram as
input)
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As well as using the HF_Lung_V1, we can understand that the results are quite
low (better performance when the OC is used), even before the post-processing
in the classification of the individual frames. Regarding the crackles vs. normal
sounds, the best results were attained when the threshold was 0.5, using the OC,
a window size of 128ms, and the spectrogram as input, with an F1-Score of 26.8%.
However, for the combination of all the parameters, overall, the best results were
obtained when the threshold was 0.75 and the window size of 64ms, which is
expected, since these events are short are the models classify almost everything
as being an event, so a higher threshold controls better which is considered an
event or not. Concerning the wheezes vs. normal sounds, the best results were
attained when the threshold was 0.75, using the OC, a window size of 128ms, and
the spectrogram as input, with an F1-Score of 26.5%, which is also expected, since
these events are longer and, similarly to the previous models, almost everything
is classified as being an event, so a higher threshold controls better which is con-
sidered an event or not. Given the lower overall results with this approach, these
results are just going to be used as a baseline for the next approach.

5.3 Segmentation using sequential frame classifica-
tion

In this approach, the architecture of the model used was a replication of one of
the models on the paper [6].

5.3.1 Feature Extraction

Regarding the feature extraction, all the recordings were resampled to 4000 Hz,
then applied a high-pass filter (at 80 Hz) to eliminate the heart sound noise, and
STFT with Hanning window with a size of 256ms and 64ms hop length, without
additional zero-padding. After this process, a 15s sound signal is transformed
into the corresponding spectrogram. Following the spectrogram extraction, more
features are extracted: MFCCs (20 static coefficients, 20 delta coefficients, and 20
acceleration coefficients) and Energy Summation (four frequency bands). In the
end, a 938 x 193 feature matrix combines all of those above. To conclude, a min-
max normalization is performed on each feature (values between 0 and 1). Since
most of the files of RSD and RSD_AKGC417L are longer than 15s, the files were
divided into 15s chunks with 75% overlap, and if necessary, a zero-padding was
added to the feature matrix in order to keep the size constant. In contrast, the
HF_Lung_V1 has almost every recording with 15s, so the sounds longer than 15s
were discarded (similarly to the [6]), and the recordings with shorter than 15s
were also discarded. Also, the recordings with no events were discarded in the
training and test sets in the datasets.
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5.3.2 Classifiers

All the classifiers in both datasets were trained with a single seed, due to some
computational limitations.

The model used was a CNN-BiLSTM with some parameters slightly different,
also due to computational limitations (Figure 5.2) (e.g., in the article, this same
model has 6,959,809 parameters in total, while this replicated model has 2,987,746
parameters in total).

In [6], a 5-fold Cross Validation was used, but once again due to computational
limitations, it was used a Train-Test approach was used with a 25% random val-
idation set. These classifiers were trained with 100 epochs, with a batch size of
16 and a 0.0001 learning rate (ADAM optimisation algorithm [22]). It also used
a model checkpoint that saves the one with the lowest validation loss during the
training phase, and an early stop strategy (i.e., after 50 consecutive epochs with
an increase in the validation loss) to avoid overfitting.

5.3.3 Post-processing

The post-processing analysis is similar to the one used in [6] and the metrics
used for the evaluation of the models are explained in subsection 2.4. As there
are going to be common segments between these 15s chunks in the RSD and
RSD_AKGC417L, an approach was used to turn the output of each chunk of each
file into a single output array, explained in Figure 5.3. Even though in Figure 5.3,
the final values are calculated with the average, the median is also going to be
tested. This process is not performed in the HF_Lung_V1, as most of the files
have 15s.

Following that conversion to a single array per file, the probability of the frames
is converted to an integer value (0 as being a normal sound frame or 1 as being
an event sound frame) with three different thresholds: 0.25, 0.5 and 0.75. Next,
sequential frames with the same classification are aggregated into an event and
then compared with the real annotations, using the Jaccard Index and Overlap
Coefficient. Although JI is widely used for segmentation tasks, OC metric is more
relevant for this problem, as JI is insensitive to the length of the segments [24], but
the results for both metrics are going to be presented, in pair with 3 metrics (Re-
call, Precision, and F1-Score). Also, for a better understanding of the performance
of the models, the results for the individual frames are presented with the same
metrics.

5.3.4 Results

Given that the chunks without events were discarded and the recordings longer
and shorter than 15s in the HF_Lung_V1 dataset, the training and test sets are
smaller. Table 5.5 shows the difference between using the full datasets against
the discarded mentioned files in the number of chunks of all sets.
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Figure 5.2: Replication of CNN-BiLSTM of [6]
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Figure 5.3: Beginning of post-processing for files with more than 15s [25]

Dataset #Original Wheezes & Crackles /CAS & DAS #Wheezes/CAS #Crackles/DAS
HF_Lung_V1 Train 5856 2278 2306

HF_Lung_V1 Validation 1953 760 769
HF_Lung_V1 Test 1956 661 368

RSD Train 1445 669 714
RSD Validation 482 224 239

RSD Test 1176 511 469
RSD_AKGC417L Train 812 310 342

RSD_AKGC417L Validation 271 104 114
RSD_AKGC417L Test 855 291 333

Table 5.5: Distribution of annotated events in the training, validation and test sets
before and after the removal of the files (#: Number of annotated events of)

HF_Lung_V1 Dataset

Table 5.6 displays the results obtained by the classifier on the test set for the 2-
class problem (DAS vs. normal sounds). Table 5.7 displays the results obtained
by the classifier on the test set for the 2-class problem (CAS vs. normal sounds).
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Recall Precision F1-Score
Class_0.25 87.8 51.5 64.9
Class_0.5 60.0 68.3 63.9
Class_0.75 19.4 80.5 31.3

Seg_JI_0.25 48.2 18.2 26.4
Seg_JI_0.5 28.7 28.1 28.4

Seg_JI_0.75 5.8 23.9 9.4
Seg_OC_0.25 97.0 30.9 46.9
Seg_OC_0.5 91.0 55.4 68.9

Seg_OC_0.75 69.1 78.8 73.6

Table 5.6: Performance results of CNN-BiLSTM on DAS vs. normal sounds prob-
lem using the HF_Lung_V1 (Class: Classification, Seg_JI: Segmentation with JI,
Seg_OC: Segmentation with OC, 0.25/0.5/0.75: Threshold)

Recall Precision F1-Score
Class_0.25 34.7 65.0 45.2
Class_0.5 21.0 78.0 33.1
Class_0.75 12.1 86.5 21.3

Seg_JI_0.25 23.2 27.0 25.0
Seg_JI_0.5 17.0 45.0 24.6

Seg_JI_0.75 9.9 54.2 16.8
Seg_OC_0.25 68.3 52.1 59.1
Seg_OC_0.5 45.8 68.8 55.0

Seg_OC_0.75 31.4 79.0 44.9

Table 5.7: Performance results of CNN-BiLSTM on CAS vs. normal sounds prob-
lem using the HF_Lung_V1 (Class: Classification, Seg_JI: Segmentation with JI,
Seg_OC: Segmentation with OC, 0.25/0.5/0.75: Threshold)

When comparing the results obtained from the replication and the results at-
tained in the article, the values that can be compared are Class_0.5 and Seg_JI_0.5.
Regarding the DAS vs. normal sounds, the results of the article are superior (F1-
Score of 71.2% in Class_0.5 and F1-Score of 70.8% in Seg_JI_0.5, 7.3% and 42.4%,
respectively). Regarding the CAS vs. normal sounds, the results of the article
are superior (F1-Score of 47.9% in Class_0.5 and F1-Score of 46.4% in Seg_JI_0.5,
14.8% and 21.8%, respectively). As explained before, as this model was replicated
with the available information from the article and still it was simplified due to
computational limitations, the results are lower. Also, since the post-processing
method has some simplifications since energy peaks are not analysed.

Regarding the DAS vs. normal sounds, the best results were attained when the
threshold was 0.75 and using the OC (F1-Score of 73.6%). Concerning the CAS
vs. normal sounds, the best results were attained when the threshold was 0.25
and using the OC (F1-Score of 59.1%).
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RSD

Table 5.8 displays the results obtained by the classifier on the test set for the 2-class
problem (crackles vs. normal sounds). Table 5.9 displays the results obtained by
the classifier on the test set for the 2-class problem (wheezes vs. normal sounds).

Recall Precision F1-Score
Class_Average_0.25 65.7 43.3 52.2
Class_Average_0.5 46.9 55.6 50.9

Class_Average_0.75 27.7 66.1 39.0
Class_Median_0.25 65.5 43.6 52.4
Class_Median_0.5 46.9 55.5 50.8

Class_Median_0.75 27.6 65.7 38.9
Seg_JI_Average_0.25 49.2 36.7 42.0
Seg_JI_Average_0.5 37.0 49.1 42.2

Seg_JI_Average_0.75 22.2 57.6 32.1
Seg_JI_Median_0.25 50.9 36.3 42.4
Seg_JI_Median_0.5 38.8 48.5 43.1

Seg_JI_Median_0.75 23.5 56.4 33.2
Seg_OC_Average_0.25 72.0 45.9 56.1
Seg_OC_Average_0.5 57.3 59.9 58.6

Seg_OC_Average_0.75 38.8 70.3 50.0
Seg_OC_Median_0.25 74.7 45.6 56.6
Seg_OC_Median_0.5 60.2 59.4 59.8

Seg_OC_Median_0.75 41.3 69.5 51.8

Table 5.8: Performance results of CNN-BiLSTM on crackles vs. normal sounds
problem using the RSD (Class: Classification, Seg_JI: Segmentation with JI,
Seg_OC: Segmentation with OC, Average/Median: Post-processing method to
aggregate the predictions for files longer that 15s, 0.25/0.5/0.75: Threshold)

After analysing the tables, we can understand that the results are reasonably good
(a better performance when the OC is used), even before the post-processing in
the classification of the individual frames. Regarding the crackles vs. normal
sounds, the best results were attained when the threshold was 0.5, using the OC
and the median to aggregate the chunks (F1-Score of 59.8%), even though the
difference to the same model but using the average is small (F1-Score of 58.6%,
1.2% difference). Concerning the wheezes vs. normal sounds, the best results
were attained when the threshold was 0.25, using the OC and the average to
aggregate the chunks (F1-Score of 45.8%), but once again the difference to the
same model but using the median is small (F1-Score of 45.0%, 0.8% difference).
This advantage for the crackles vs. normal sounds can be explained by the larger
training set that it has, since a larger dataset benefits better this type of model.
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Recall Precision F1-Score
Class_Average_0.25 51.1 28.0 36.1
Class_Average_0.5 34.6 28.2 31.1

Class_Average_0.75 21.2 27.4 23.9
Class_Median_0.25 50.8 28.3 36.4
Class_Median_0.5 34.7 28.7 31.4
Class_Median_0.75 21.5 28.1 24.3

Seg_JI_Average_0.25 16.2 10.4 12.7
Seg_JI_Average_0.5 13.2 11.5 12.3

Seg_JI_Average_0.75 9.4 9.7 9.5
Seg_JI_Median_0.25 17.7 10.0 12.7
Seg_JI_Median_0.5 15.1 11.2 12.9

Seg_JI_Median_0.75 10.8 9.4 10.1
Seg_OC_Average_0.25 71.0 33.8 45.8
Seg_OC_Average_0.5 55.4 35.2 43.0

Seg_OC_Average_0.75 40.0 31.5 35.3
Seg_OC_Median_0.25 75.4 32.1 45.0
Seg_OC_Median_0.5 64.4 34.9 45.3

Seg_OC_Median_0.75 48.9 32.0 38.7

Table 5.9: Performance results of CNN-BiLSTM on wheezes vs. normal sounds
problem using the RSD (Class: Classification, Seg_JI: Segmentation with JI,
Seg_OC: Segmentation with OC, Average/Median: Post-processing method to
aggregate the predictions for files longer that 15s, 0.25/0.5/0.75: Threshold)

RSD tested on files that were recorded with the AKGC417L microphone

In the previous chapter, a stratified analysis was performed to better understand
which demographic/equipment achieved better results. Regarding the equip-
ment, the AKGC417L microphone was the one that achieved the better results
(especially in the 2-class problem crackles vs. normal sounds where the highest
F1-Score was achieved), due to its higher sensibility than any other equipment
and less filtering, but also due to the larger training and test sets. For that rea-
son and since it is the most important category in the available stratification, a
CNN-BiLSTM model was tested only using the files that were recorded with the
AKGC417L microphone.

Table 5.10 displays the results obtained by the classifier on the test set for the
2-class problem (crackles vs. normal sounds). Table 5.11 displays the results ob-
tained by the classifier on the test set for the 2-class problem (wheezes vs. normal
sounds).
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Recall Precision F1-Score
Class_Average_0.25 65.0 53.6 58.8
Class_Average_0.5 46.8 67.0 55.1
Class_Average_0.75 28.4 78.1 41.7
Class_Median_0.25 64.9 53.7 58.8
Class_Median_0.5 46.9 67.1 55.2

Class_Median_0.75 28.4 78.1 41.7
Seg_JI_Average_0.25 52.2 45.5 48.6
Seg_JI_Average_0.5 40.1 61.1 48.4

Seg_JI_Average_0.75 26.0 72.1 38.2
Seg_JI_Median_0.25 51.9 45.4 48.5
Seg_JI_Median_0.5 40.0 61.1 48.3

Seg_JI_Median_0.75 25.9 72.1 38.1
Seg_OC_Average_0.25 74.8 54.5 63.1
Seg_OC_Average_0.5 61.7 70.7 65.9

Seg_OC_Average_0.75 43.6 81.2 56.8
Seg_OC_Median_0.25 74.8 54.5 63.0
Seg_OC_Median_0.5 61.7 70.8 66.0
Seg_OC_Median_0.75 43.5 81.2 56.6

Table 5.10: Performance results of CNN-BiLSTM on crackles vs. normal sounds
problem tested only on the RSD files recorded with the AKGC417L microphone
(Class: Classification, Seg_JI: Segmentation with JI, Seg_OC: Segmentation with
OC, Average/Median: Post-processing method to aggregate the predictions for
files longer that 15s, 0.25/0.5/0.75: Threshold)

Recall Precision F1-Score
Class_Average_0.25 43.1 53.6 47.8
Class_Average_0.5 27.4 57.5 37.1
Class_Average_0.75 15.9 56.3 24.7
Class_Median_0.25 42.9 53.6 47.7
Class_Median_0.5 27.4 57.6 37.2

Class_Median_0.75 15.8 56.4 24.7
Seg_JI_Average_0.25 21.6 20.5 21.0
Seg_JI_Average_0.5 14.4 23.8 17.9

Seg_JI_Average_0.75 8.8 23.1 12.8
Seg_JI_Median_0.25 21.5 20.4 21.0
Seg_JI_Median_0.5 14.4 23.8 17.9

Seg_JI_Median_0.75 8.9 23.2 12.8
Seg_OC_Average_0.25 71.5 46.0 56.0
Seg_OC_Average_0.5 58.5 55.9 57.2

Seg_OC_Average_0.75 40.9 58.1 48.0
Seg_OC_Median_0.25 71.2 46.0 55.9
Seg_OC_Median_0.5 58.5 55.9 57.1
Seg_OC_Median_0.75 40.7 58.1 47.9

Table 5.11: Performance results of CNN-BiLSTM on wheezes vs. normal sounds
problem tested only on the RSD files recorded with the AKGC417L microphone
(Class: Classification, Seg_JI: Segmentation with JI, Seg_OC: Segmentation with
OC, Average/Median: Post-processing method to aggregate the predictions for
files longer that 15s, 0.25/0.5/0.75: Threshold)
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After analysing the tables, we can understand that the results are good (a better
performance when the OC is used), even before the post-processing in the clas-
sification of the individual frames. Regarding the crackles vs. normal sounds,
the best results were attained when the threshold was 0.5, using the OC and the
median to aggregate the chunks (F1-Score of 66.0%), even though the difference
to the same model but using the average is almost zero (F1-Score of 65.9%, 0.1%
difference). Concerning the wheezes vs. normal sounds, the best results were at-
tained when the threshold was 0.5, using the OC and the average to aggregate the
chunks (F1-Score of 57.2%), but once again the difference to the same model but
using the median is almost zero (F1-Score of 57.1%, 0.1% difference). This advan-
tage for the crackles vs. normal sounds can be explained by the larger training
set that it has, since a larger dataset benefits better this type of model.

RSD only using the files that were recorded with the AKGC417L microphone

In the previous chapter, a stratified analysis was performed to better understand
which demographic/equipment achieved better results. Regarding the equip-
ment, the AKGC417L microphone was the one that achieved the better results
(especially in the 2-class problem crackles vs. normal sounds where the highest
F1-Score was achieved), due to its higher sensibility than any other equipment
and less filtering, but also due to the larger training and test sets. For that reason
and since it is the most important category in the available stratification, a CNN-
BiLSTM model was trained and tested only using the files that were recorded
with the AKGC417L microphone.

Table 5.12 displays the results obtained by the classifier on the test set for the
2-class problem (crackles vs. normal sounds). Table 5.13 displays the results ob-
tained by the classifier on the test set for the 2-class problem (wheezes vs. normal
sounds).

After analysing the tables, we can understand that the results are reasonably good
(a better performance when the OC is used), even before the post-processing in
the classification of the individual frames. Regarding the crackles vs. normal
sounds, the best results were attained when the threshold was 0.5, using the OC
and the average to aggregate the chunks (F1-Score of 66.4%), even though the
difference to the same model but using the median is almost zero (F1-Score of
66.3%, 0.1% difference). Concerning the wheezes vs. normal sounds, the best
results were attained when the threshold was 0.5, using the OC and the median to
aggregate the chunks (F1-Score of 58.6%), even though the difference to the same
model but using the average is almost zero (F1-Score of 58.4%, 0.2% difference).
This difference between crackles vs. normal sounds and wheezes vs. normal
sounds results can be explained by the larger train, validation and test sets.

Also, these results are slightly higher than the results of the model trained with
RSD and tested with the RSD files recorded with the AKGC417L microphone.

59



Chapter 5

Recall Precision F1-Score
Class_Average_0.25 66.0 54.4 59.6
Class_Average_0.5 47.2 69.6 56.3

Class_Average_0.75 26.6 79.8 39.9
Class_Median_0.25 66.0 54.4 59.6
Class_Median_0.5 47.3 69.5 56.3

Class_Median_0.75 26.8 79.9 40.2
Seg_JI_Average_0.25 54.7 44.0 48.7
Seg_JI_Average_0.5 41.4 61.6 49.5

Seg_JI_Average_0.75 25.2 73.2 37.5
Seg_JI_Median_0.25 54.9 44.0 48.9
Seg_JI_Median_0.5 41.4 61.6 49.5
Seg_JI_Median_0.75 25.4 73.3 37.7

Seg_OC_Average_0.25 77.2 52.6 62.5
Seg_OC_Average_0.5 62.5 70.8 66.4

Seg_OC_Average_0.75 41.3 81.7 54.9
Seg_OC_Median_0.25 77.1 52.5 62.5
Seg_OC_Median_0.5 62.4 70.8 66.3

Seg_OC_Median_0.75 41.6 81.8 55.2

Table 5.12: Performance results of CNN-BiLSTM on crackles vs. normal sounds
problem using the RSD_AKGC417L (Class: Classification, Seg_JI: Segmenta-
tion with JI, Seg_OC: Segmentation with OC, Average/Median: Post-processing
method to aggregate the predictions for files longer that 15s, 0.25/0.5/0.75:
Threshold)

Recall Precision F1-Score
Class_Average_0.25 34.8 56.0 42.9
Class_Average_0.5 23.5 60.7 33.9

Class_Average_0.75 14.4 60.7 23.3
Class_Median_0.25 34.9 56.1 43.0
Class_Median_0.5 23.6 60.8 33.9

Class_Median_0.75 14.4 60.7 23.3
Seg_JI_Average_0.25 16.0 15.1 15.6
Seg_JI_Average_0.5 10.7 18.7 13.6

Seg_JI_Average_0.75 7.5 18.4 10.7
Seg_JI_Median_0.25 16.1 15.2 15.6
Seg_JI_Median_0.5 10.6 18.8 13.5
Seg_JI_Median_0.75 7.5 18.4 10.6

Seg_OC_Average_0.25 70.5 44.0 54.2
Seg_OC_Average_0.5 60.3 56.6 58.4

Seg_OC_Average_0.75 49.4 59.8 54.1
Seg_OC_Median_0.25 70.5 44.1 54.3
Seg_OC_Median_0.5 60.5 56.9 58.6

Seg_OC_Median_0.75 49.4 59.7 54.1

Table 5.13: Performance results of CNN-BiLSTM on wheezes vs. normal sounds
problem using the RSD_AKGC417L (Class: Classification, Seg_JI: Segmenta-
tion with JI, Seg_OC: Segmentation with OC, Average/Median: Post-processing
method to aggregate the predictions for files longer that 15s, 0.25/0.5/0.75:
Threshold)
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Comparison between RSD and HF_Lung_V1 datasets

Tables 5.14 and 5.15 display the results obtained by the model when trained with
the RSD and tested with HF_Lung_V1 dataset for both 2-class problems. Tables
5.16 and 5.17 display the results obtained by the model when trained with the
RSD and tested with HF_Lung_V1 dataset for both 2-class problems.

Recall Precision F1-Score
Class_0.25 13.8 43.7 21.0
Class_0.5 6.8 40.5 11.7
Class_0.75 2.7 35.1 5.0

Seg_JI_0.25 0.1 0.1 0.1
Seg_JI_0.5 0.0 0.0 0.0

Seg_JI_0.75 0.0 0.0 0.0
Seg_OC_0.25 94.2 43.0 59.0
Seg_OC_0.5 82.8 40.6 54.5

Seg_OC_0.75 57.8 36.8 45.0

Table 5.14: Performance results obtained with 2-class problem (DAS/crackles
vs. normal sounds) with the model trained with the RSD and tested with
HF_Lung_V1 (Class: Classification, Seg_JI: Segmentation with JI, Seg_OC: Seg-
mentation with OC, 0.25/0.5/0.75: Threshold)

Recall Precision F1-Score
Class_0.25 57.4 39.9 47.1
Class_0.5 37.9 45.9 41.5
Class_0.75 21.4 52.8 30.4

Seg_JI_0.25 25.3 10.8 15.1
Seg_JI_0.5 17.4 10.8 13.3

Seg_JI_0.75 8.9 9.1 9.0
Seg_OC_0.25 90.8 30.3 45.5
Seg_OC_0.5 83.1 36.6 50.8

Seg_OC_0.75 68.5 43.6 53.3

Table 5.15: Performance results obtained with 2-class problem (CAS/wheezes
vs. normal sounds) with the model trained with the RSD and tested with
HF_Lung_V1 (Class: Classification, Seg_JI: Segmentation with JI, Seg_OC: Seg-
mentation with OC, 0.25/0.5/0.75: Threshold)
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Recall Precision F1-Score
Class_Average_0.25 75.4 7.7 14.0
Class_Average_0.5 45.4 8.9 14.8
Class_Average_0.75 8.7 5.4 6.6
Class_Median_0.25 75.3 7.7 14.0
Class_Median_0.5 45.6 8.8 14.8

Class_Median_0.75 9.3 5.4 6.8
Seg_JI_Average_0.25 3.3 1.8 2.3
Seg_JI_Average_0.5 1.8 2.1 2.0

Seg_JI_Average_0.75 1.0 2.0 1.3
Seg_JI_Median_0.25 3.2 1.5 2.1
Seg_JI_Median_0.5 2.2 2.3 2.2

Seg_JI_Median_0.75 0.9 1.7 1.2
Seg_OC_Average_0.25 41.6 18.7 25.8
Seg_OC_Average_0.5 20.3 19.3 19.8

Seg_OC_Average_0.75 7.7 13.6 9.8
Seg_OC_Median_0.25 44.7 17.8 25.4
Seg_OC_Median_0.5 22.5 19.3 20.7
Seg_OC_Median_0.75 8.6 13.5 10.5

Table 5.16: Performance results obtained with 2-class problem (DAS/crackles vs.
normal sounds) with the model trained with the HF_Lung_V1 and tested with
RSD (Class: Classification, Seg_JI: Segmentation with JI, Seg_OC: Segmentation
with OC, Average/Median: Post-processing method to aggregate the predictions
for files longer that 15s, 0.25/0.5/0.75: Threshold)

Recall Precision F1-Score
Class_Average_0.25 45.8 40.3 42.9
Class_Average_0.5 26.4 45.9 33.5
Class_Average_0.75 13.3 51.1 21.1
Class_Median_0.25 45.4 40.4 42.8
Class_Median_0.5 26.3 46.3 33.5

Class_Median_0.75 13.1 51.2 20.9
Seg_JI_Average_0.25 16.8 17.1 17.0
Seg_JI_Average_0.5 10.4 21.6 14.0

Seg_JI_Average_0.75 4.8 18.1 7.6
Seg_JI_Median_0.25 20.1 16.6 18.2
Seg_JI_Median_0.5 12.3 21.1 15.6

Seg_JI_Median_0.75 5.8 18.2 8.8
Seg_OC_Average_0.25 47.1 36.6 41.2
Seg_OC_Average_0.5 30.5 44.8 36.3

Seg_OC_Average_0.75 20.4 48.1 28.6
Seg_OC_Median_0.25 55.8 35.6 43.4
Seg_OC_Median_0.5 38.4 45.4 41.6
Seg_OC_Median_0.75 25.2 49.2 33.4

Table 5.17: Performance results obtained with 2-class problem (CAS/wheezes vs.
normal sounds) with the model trained with the HF_Lung_V1 and tested with
RSD (Class: Classification, Seg_JI: Segmentation with JI, Seg_OC: Segmentation
with OC, Average/Median: Post-processing method to aggregate the predictions
for files longer that 15s, 0.25/0.5/0.75: Threshold)
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As already explained, the events in the HF_Lung_V1 dataset are annotated in
the same way as the respiratory cycles, meaning the crackles, which have a short
duration, are having a longer duration. Overall, when the models were trained
with the RSD and tested with HF_Lung_V1, the results were higher for both 2-
class problems than when the opposite was tested. As expected, the best results
for all combinations were achieved with the OC. For the results of the model
trained with the RSD and tested with HF_Lung_V1, the results on the 2-class
problem DAS/crackles vs. normal sounds, the best result was achieved with
a 0.25 threshold with 59.0% of F1-Score, while the best results on the other 2-
class problem were achieved with a 0.75 threshold with 53.3% of F1-Score, but
when the models were trained with the HF_Lung_V1 and tested with RSD, the
best result was achieved in the 2-class problem CAS/wheezes vs. normal sounds
using a 0.5 threshold with median, with 43.4% of F1-Score, while the other 2-class
problem achieved using a 0.25 threshold with average, with 25.8% of F1-Score.
Regarding the DAS/crackles vs. normal sounds, the results are better than the
CAS/wheezes vs. normal sounds, but none of these models performed well
enough to consider them good at generalising for anything dataset, especially
due to the different types of annotations.

Comparison between RSD and RSD_AKGC417L

When comparing Tables 5.8 and 5.12 and their best results, using the RSD_AKGC417L
on the 2-class problem crackles vs. normal sounds is better. The best model us-
ing the full RSD achieved an F1-Score of 59.8%, while the best model using the
RSD_AKGC417L achieved an F1-Score of 66.4%, with a 6.6% difference. Figure
5.4 shows the output of both models. When comparing Tables 5.9 and 5.13 and
their best results, using the RSD_AKGC417L on the 2-class problem wheezes vs.
normal sounds is better. The best model using the full RSD achieved an F1-Score
of 45.8%, while the best model using the RSD_AKGC417L achieved an F1-Score
of 58.6%, with a 12.8% difference. Figure 5.5 shows the output of both models.

This overall advantage for the RSD_AKGC417L microphone can be explained
by the quality of the recordings, even though the train, validation and test sets
are smaller than the RSD. Also, given the lower number of recordings with the
others stethoscopes, as these type of models require larger amount of data to
correctly learn the characteristics of those recordings, the model cannot produce
good results. With this experiment, it was proved that the files recorded using
the AKGC417L microphone in the RSD can produce better results due to the
higher quality of the recordings, meaning the number of samples in the training
set of each recording is important to be large.

5.4 Comparison between both approaches

When comparing both approaches, only the segmentation metric (JI or OC) and
thresholds (0.25, 0.5 and 0.75) can be compared, since these parameters are the
only thing in common between both approaches. Starting by comparing the
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(a) Best model output for CNN-BiLSTM with average as aggregation of chunks
method and threshold of 0.5 using the RSD_AKGC417L

(b) Best model output for CNN-BiLSTM with median as aggregation of chunks
method and threshold of 0.5 using the RSD

Figure 5.4: Best models output on crackles vs. normal sounds using the
RSD_AKGC417L and RSD datasets
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(a) Best model output for CNN-BiLSTM with median as aggregation of chunks
method and threshold of 0.5 using the RSD_AKGC417L

(b) Best model output for CNN-BiLSTM with average as aggregation of chunks
method and threshold of 0.25 using the RSD

Figure 5.5: Best models output on wheezes vs. normal sounds using the
RSD_AKGC417L and RSD datasets
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results of the CNN and CNN-BiLSTM on CAS vs. normal sounds using the
HF_Lung_V1, the best results on both approaches was using the OC, but the CNN
achieved higher results using the 0.75 threshold since this model classifies almost
every frame as having an event. Figure 5.6 shows a graphical representation of
the output for the same file of the best combination of parameters for the models
of each approach. Figure 5.6a shows that quite a lot of the frames are classified
as having an event, while Figure 5.6b shows that most of the frames have a lower
probability of having an event, and some of the real events are not detected (re-
ducing the number of FN, increasing the Recall, and consequently, the F1-Score),
but when the model thinks there is an event presented, it has a high degree of
confidence.

When comparing the results of the CNN and CNN-BiLSTM on CAS vs. normal
sounds using the HF_Lung_V1, the best models on both approaches is also using
the OC, but once again, the CNN achieved higher results using the 0.75 thresh-
old, since this model classifies almost every frame as having an event. Figure
5.7 shows a graphical representation of the output for the same file of the best
combination of parameters for the models of each approach. Figure 5.7a shows
that quite a lot of the frames are classified as having an event, while Figure 5.7b
shows that most of the frames have a lower probability of having an event, and
some of the real events are not detected (reducing the number of FN, increasing
the Recall, and consequently, the F1-Score), but when the model thinks there is
an event presented, it has a high degree of confidence.

The next comparison is between the results of the CNN and CNN-BiLSTM on
crackles vs. normal sounds using the RSD. In this case, the best results on both
approaches were attained with the OC and using a 0.5 threshold and the CNN
achieved higher results than the CNN-BiLSTM (F1-Score of 26.8% vs. F1-Score
of 22.3%, respectively). Figure 5.8 shows a graphical representation of the output
for the same file of the best combination of parameters for the models of each ap-
proach. Figure 5.8a shows that quite a lot of the frames are classified as having an
event, while Figure 5.8b shows that most of the frames have a lower probability
of having an event, and some of the real events are not detected (reducing the
number of FN, increasing the Recall, and consequently, the F1-Score), but when
the model thinks there is an event presented, it has a high degree of confidence.

Finally, the last comparison is between the results of the CNN and CNN-BiLSTM
on wheezes vs. normal sounds using the RSD. The best combination of param-
eters was using the OC but 0.5 threshold in the CNN-BiLSTM and 0.75 in the
CNN, as this last model classifies almost every frame as having an event. Figure
5.9 shows a graphical representation of the output for the same file of the best
combination of parameters for the models of each approach. Figure 5.9a shows
that quite a lot of the frames are classified as having an event, while Figure 5.9b
shows that most of the frames have a lower probability of having an event, and
some of the real events are not detected (reducing the number of FN, increasing
the Recall, and consequently, the F1-Score), but when the model thinks there is
an event presented, it has a high degree of confidence.
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(a) Best model output for CNN with mel-spectrogram as input, threshold of 0.75
and window size of 64ms

(b) Best model output for CNN-BiLSTM with threshold of 0.75

Figure 5.6: Best models output on DAS vs. normal sounds using the HF_Lung_V1
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(a) Best model output for CNN with spectrogram as input, threshold of 0.75 and
window size of 128ms

(b) Best model output for CNN-BiLSTM with threshold of 0.25

Figure 5.7: Best models output on CAS vs. normal sounds using the HF_Lung_V1
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(a) Best model output for CNN with spectrogram as input, threshold of 0.5 and
window size of 128ms

(b) Best model output for CNN-BiLSTM with median as aggregation of chunks
method and threshold of 0.5

Figure 5.8: Best models output on crackles vs. normal sounds using the RSD
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(a) Best model output for CNN with spectrogram as input, threshold of 0.75 and
window size of 128ms

(b) Best model output for CNN-BiLSTM with average as aggregation of chunks
method and threshold of 0.25

Figure 5.9: Best models output on wheezes vs. normal sounds using the RSD
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Conclusions and Future Work

This chapter concludes the thesis, summarising all the work done so far, as well
as proposing suggestions for possible future work in this field of study.

6.1 Conclusions

Respiratory pathologies are a big concern within the medical community. This
thesis aims to apply deep learning DL approaches to segment and classify ad-
ventitious respiratory sounds ARS. Since the final goal is quite broad, the thesis
was divided into major problems: classification of ARS and segmentation of ARS.

There are more studies regarding the classification of ARS than the segmentation
of ARS. All the studies presented in Chapter 3 have at least one usage of a DL
approach, which suggests the power that these type of models can achieve.

Two datasets were employed throughout this thesis: RSD and HF_Lung_V1 (three
if we consider the RSD New Annotations, although it is quite similar to the RSD).
These datasets have different advantages in each of them, one has a large amount
of data, while the other has more information regarding the demographic in-
formation, meaning a more detailed analysis can be performed (and was per-
formed, with the acceptance of the article "Classification of Adventitious Respi-
ratory Sound Events: A Stratified Analysis"). Both datasets were very important
for this thesis but both have some negative aspect that is going to be addressed
in the following section since it is something that can be improved for possible
future work.

Regarding the classification of ARS, multiple models were trained. The classical
Machine Learning approaches, even though they are out of the scope of this the-
sis, were important to help understand how the DL models can achieve better re-
sults. Overall, CNNs achieve the best results, but are not good enough to be used
in a real scenario, as the results can be improved to be more accurate. The strat-
ified analysis performed in the RSD demonstrated that some characteristics help
achieve better results in this task, such as sounds recorded with the AKGC417L
microphone, as well as the recordings of Male and Normal BMI subjects.
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Concerning the segmentation of ARS, only DL models were trained, with 2 dif-
ferent approaches. Performing segmentation of ARS with the classification of
individual frames proved to be a weak approach, since each frame is evaluated
individually, without checking memory information, e.g., any relation between
previous and next frames. Therefore, so it was used as a baseline to compare
with the model used in the second approach. In contrast, the segmentation of
ARS with sequential frames achieved better results, as in this approach, the rela-
tion between the past and the future is taken into account. Since it was created
taking into account the longer annotations of the HF_Lung_V1 dataset, shorter
events such as the crackles of the RSD had some difficulties in correctly classi-
fying them. For every model tested, the segmentation metric that achieved the
best results was always the OC, due to its less strict nature. The influence of the
threshold depends on the average value of the predictions for each frame, i.e., if
the model classifies most of the frames as containing an event, a higher threshold
produces better results, whilst if a model does not have that much confidence in
the classification of the frames, a lower threshold will be beneficial. Regarding
the aggregation of chunks and the usage of average or median, the difference is
not significant in most cases.

This dissertation proved that DL can achieve good results in classification and
segmentation of ARS, but it is still a challenging task, and this thesis is a good
step in the direction to improving the current results.

6.2 Future Work

Since this is a complex work and there is plenty of room for improvement, there
are many research opportunities. In the following paragraphs, some ideas for a
possible future work are going to be suggested.

The first and major suggestion for a possible future work is the creation of new
datasets/improvement of the ones that already exist since this is a key issue in
these studies. The datasets used in this thesis (RSD and HF_Lung_V1) are quite
good and both of them have their advantages and disadvantages, but one neg-
ative aspect common to both datasets is the quality of the annotations (lack of
golden annotations). In the HF_Lung_V1, the annotated crackles/DAS, which
are supposed to be quite short in duration, have on average 0.89s, while the
wheezes/CAS on average have a longer duration than the annotated crackles/DAS
(0.85s), and that is not corrected in reality; whilst in the RSD, some of the annota-
tions are not accurate. Also, in the HF_Lung_V1 dataset, there is a lack of demo-
graphic information, which was good to know in the RSD, because it allowed us
to better comprehend which characteristics achieve better results. Since the split-
ting of RSD currently available was done according to the number of respiratory
cycles and the number of events on each set, a new splitting can be created based
on the demographic information to try to balance the number of events between
categories and sets to achieve a more balanced partition of the data in both sets.
Regarding the creation of new datasets, a wider variety of diseases/comorbidities
and events could be present/annotated. The ones already present in the datasets
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used are already diverse, but more diversity could be helpful in achieving the
final goal of this problem. Also, more events could be present/annotated to have
diversity in the datasets, e.g., fine and coarse crackles.

Concerning the features extraction, trying other new features that have not been
experimented could have achieved better results than the ones attained like dif-
ferent window sizes accordingly to the events that are being classified/segmented;
or another pre-processing method could be beneficial to achieve better results,
such as have a denoising phase on the recordings. In conclusion, the more help
the models have, the better results could be achieved.

In the classification of ARS, the DL models proved to be better than the classi-
cal ML approaches, but none of the DL models testes take into account the past
and/or the future, like the CNN-BiLSTM used in the segmentation task.

In the segmentation of ARS, after the classification of the frames is done, the for-
mation of the segments has other alternatives that can improve the results, such
as using a threshold for aggregating the segments (e.g., a minimum of 5 consecu-
tive frames with the same classification - even though it depends on the window
size and the events in study), as well as other types of segmentation metrics (e.g.,
Dice Coefficient).
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Appendix A

Results for the 3-class problem
trained with RSD and tested with
HF_Lung_V1 and vice-versa

Classifiers Accuracy F1 Continuous MCC Continuous F1 Discontinuous MCC Discontinuous F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR X X X X X X X X X

LDA_100MRMR X X X X X X X X X
LDA_Full X X X X X X X X X

SVMrbf_10MRMR 33.6 ± 1.6 43.3 ± 0.6 17.3 ± 1.3 1.2 ± 0.8 1.1 ± 1.8 27.6 ± 3.9 4.7 ± 1.5 24.0 ± 1.8 7.7 ± 1.5
SVMrbf_100MRMR 47.9 ± 3.2 47.7 ± 1.0 26.5 ± 1.9 0.5 ± 1.6 0.1 ± 2.6 57.6 ± 4.4 31.6 ± 4.7 35.3 ± 2.3 19.4 ± 3.1

SVMrbf_Full 55.4 ± 6.3 51.9 ± 3.8 33.0 ± 5.8 0.1 ± 0.1 -0.2 ± 0.5 66.6 ± 7.9 31.3 ± 7.0 39.5 ± 3.9 21.5 ± 4.4
RUSBoost_10MRMR 25.1 ± 0.8 39.3 ± 0.1 -3.6 ± 2.9 0.1 ± 0.1 -0.1 ± 0.5 3.2 ± 3.4 -1.6 ± 2.5 14.2 ± 1.2 -1.8 ± 2.0

RUSBoost_100MRMR 27.1 ± 2.2 40.2 ± 0.6 5.8 ± 4.0 0.0 ± 0.0 -0.1 ± 0.3 8.6 ± 7.5 7.9 ± 4.4 16.3 ± 2.7 4.5 ± 2.9
RUSBoost_Full 34.4 ± 5.8 42.9 ± 2.3 15.9 ± 6.6 0.0 ± 0.0 0.0 ± 0.0 28.6 ± 15.0 20.4 ± 6.4 23.8 ± 5.8 12.1 ± 4.3

CNN_dualInput 31.3 ± 5.2 0.1 ± 0.1 -1.5 ± 0.5 29.4 ± 4.0 2.0 ± 7.2 39.9 ± 12.9 11.7 ± 2.5 23.1 ± 5.7 4.1 ± 3.4
CNN_Spectrogram 29.0 ± 6.8 1.5 ± 2.2 -1.4 ± 2.2 32.2 ± 2.2 8.5 ± 4.1 30.4 ± 16.9 8.2 ± 3.0 21.4 ± 7.1 5.1 ± 3.1

CNN_melSpectrogram 33.7 ± 6.8 0.2 ± 0.2 -0.6 ± 1.4 26.6 ± 4.7 -2.3 ± 6.7 45.2 ± 18.2 12.0 ± 3.3 24.0 ± 7.7 3.0 ± 3.8

Table A.1: Performance results obtained with 3-class problem with the models
trained with the RSD and tested with HF_Lung_V1

Classifiers Accuracy F1 Wheeze MCC Wheeze F1 Crackle MCC Crackle F1 Other MCC Other F1 Macro MCC Macro
LDA_10MRMR X X X X X X X X X

LDA_100MRMR X X X X X X X X X
LDA_Full X X X X X X X X X

SVMrbf_10MRMR 44.3 ± 8.1 24.1 ± 3.8 8.8 ± 8.2 51.5 ± 16.5 17.3 ± 7.6 40.8 ± 11.8 12.6 ± 9.8 38.8 ± 10.7 12.9 ± 8.5
SVMrbf_100MRMR 28.5 ± 6.2 17.7 ± 3.2 -3.0 ± 13.4 1.3 ± 1.2 -16.6 ± 2.1 47.6 ± 9.1 7.1 ± 1.5 22.2 ± 4.5 -4.2 ± 5.7

SVMrbf_Full 33.3 ± 7.2 7.7 ± 12.7 1.9 ± 17.3 2.4 ± 5.1 -3.6 ± 5.5 49.5 ± 8.7 1.4 ± 2.2 19.9 ± 8.8 -0.1 ± 8.3
RUSBoost_10MRMR 30.4 ± 1.9 18.5 ± 1.1 -5.2 ± 3.2 35.5 ± 1.1 10.9 ± 1.0 38.2 ± 3.5 15.9 ± 2.2 30.7 ± 1.9 7.2 ± 2.1

RUSBoost_100MRMR 29.5 ± 3.1 17.2 ± 1.8 -6.7 ± 4.8 21.9 ± 6.7 1.2 ± 4.5 47.2 ± 4.0 18.5 ± 3.9 28.8 ± 4.2 4.3 ± 4.4
RUSBoost_Full 35.7 ± 6.4 18.8 ± 4.0 -0.9 ± 8.5 26.1 ± 10.2 1.6 ± 6.6 53.4 ± 4.9 22.9 ± 5.1 32.8 ± 6.4 7.9 ± 6.7

CNN_dualInput 36.9 ± 6.8 8.5 ± 2.3 -9.1 ± 8.5 18.2 ± 16.3 -4.9 ± 14.1 57.3 ± 0.7 23.7 ± 2.4 28.0 ± 6.4 3.2 ± 8.3
CNN_Spectrogram 27.2 ± 9.0 6.8 ± 2.5 -24.9 ± 15.4 15.1 ± 9.8 -7.9 ± 8.6 48.5 ± 9.9 19.3 ± 4.5 23.5 ± 7.4 -4.5 ± 9.5

CNN_melSpectrogram 29.3 ± 3.6 7.4 ± 1.8 -17.9 ± 7.8 1.7 ± 0.9 -19.8 ± 1.1 57.1 ± 2.0 25.2 ± 4.0 22.1 ± 1.6 -4.2 ± 4.3

Table A.2: Performance results obtained with 3-class problem with the models
trained with the HF_Lung_V1 and tested with RSD
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Complete results of the stratification
of RSD

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 68.9 ± 0.8 72.1 ± 0.7 72.3 ± 0.5 47.4 ± 1.2 64.7 ± 1.3 47.4 ± 1.2

LDA_100MRMR 83.6 ± 1.4 83.2 ± 1.9 80.7 ± 2.3 66.8 ± 3.3 85.7 ± 1.0 66.8 ± 3.3
LDA_Full 83.6 ± 4.4 84.1 ± 5.5 81.5 ± 6.8 68.0 ± 10.2 85.0 ± 3.0 68.0 ± 10.2

SVMrbf_10MRMR 74.9 ± 1.5 76.1 ± 2.1 74.2 ± 2.7 52.4 ± 4.4 75.4 ± 1.7 52.4 ± 4.4
SVMrbf_100MRMR 81.2 ± 3.9 81.6 ± 3.8 79.4 ± 4.1 62.8 ± 7.6 82.7 ± 3.8 62.8 ± 7.6

SVMrbf_Full 77.0 ± 4.6 77.4 ± 5.1 74.7 ± 5.8 54.4 ± 10.1 78.9 ± 3.9 54.4 ± 10.1
RUSBoost_10MRMR 80.8 ± 2.6 81.0 ± 2.5 78.7 ± 2.7 61.8 ± 5.1 82.5 ± 2.6 61.8 ± 5.1

RUSBoost_100MRMR 85.0 ± 2.6 85.0 ± 2.9 82.8 ± 3.4 69.8 ± 5.2 86.7 ± 2.2 69.8 ± 5.2
RUSBoost_Full 86.9 ± 2.1 86.9 ± 2.5 84.9 ± 2.9 73.6 ± 4.5 88.4 ± 1.7 73.6 ± 4.5

CNN_dualInput 86.0 ± 3.2 86.1 ± 3.6 84.0 ± 4.2 72.3 ± 6.7 87.4 ± 2.9 72.3 ± 6.7
CNN_Spectrogram 77.3 ± 6.2 79.4 ± 5.3 78.4 ± 4.3 60.1 ± 8.8 75.7 ± 8.8 60.1 ± 8.8

CNN_melSpectrogram 88.3 ± 3.3 88.3 ± 3.0 86.7 ± 3.4 76.6 ± 6.3 89.6 ± 3.2 76.6 ± 6.3

Table B.1: Stratification for Children (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 70.1 ± 1.1 78.5 ± 0.6 58.4 ± 0.8 47.5 ± 1.0 76.6 ± 1.2 47.5 ± 1.0

LDA_100MRMR 85.2 ± 1.6 84.9 ± 1.1 71.9 ± 1.4 63.7 ± 1.7 89.9 ± 1.3 63.7 ± 1.7
LDA_Full 77.0 ± 1.6 75.3 ± 8.3 56.7 ± 11.0 44.8 ± 12.3 84.1 ± 1.3 44.8 ± 12.3

SVMrbf_10MRMR 69.4 ± 1.4 78.3 ± 0.9 58.0 ± 1.1 47.1 ± 1.4 76.0 ± 1.4 47.1 ± 1.4
SVMrbf_100MRMR 80.6 ± 1.5 84.2 ± 1.5 67.7 ± 2.0 58.9 ± 2.8 86.1 ± 1.2 58.9 ± 2.8

SVMrbf_Full 81.8 ± 3.0 85.0 ± 2.0 69.2 ± 3.2 60.7 ± 4.2 87.0 ± 2.5 60.7 ± 4.2
RUSBoost_10MRMR 83.3 ± 2.7 83.2 ± 2.5 69.2 ± 4.0 59.9 ± 5.3 88.6 ± 2.0 59.9 ± 5.3

RUSBoost_100MRMR 86.8 ± 1.9 84.5 ± 2.5 73.2 ± 3.6 65.0 ± 4.7 91.3 ± 1.3 65.0 ± 4.7
RUSBoost_Full 84.4 ± 1.8 80.8 ± 3.4 68.0 ± 4.3 58.2 ± 5.6 89.7 ± 1.2 58.2 ± 5.6

CNN_dualInput 82.9 ± 2.1 86.4 ± 1.4 70.9 ± 2.0 63.4 ± 2.4 87.8 ± 1.8 63.4 ± 2.4
CNN_Spectrogram 80.7 ± 2.4 85.5 ± 1.9 68.7 ± 2.6 60.8 ± 3.4 86.1 ± 2.0 60.8 ± 3.4

CNN_melSpectrogram 81.4 ± 2.3 86.2 ± 1.9 69.6 ± 2.9 62.0 ± 3.8 86.6 ± 1.9 62.0 ± 3.8

Table B.2: Stratification for Children (crackles vs. others)
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Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 61.8 ± 0.1 51.4 ± 0.2 74.2 ± 0.1 3.4 ± 0.4 26.8 ± 0.7 3.4 ± 0.4

LDA_100MRMR 54.4 ± 1.6 52.8 ± 1.1 62.8 ± 2.4 5.3 ± 2.1 40.8 ± 2.0 5.3 ± 2.1
LDA_Full 53.3 ± 1.6 52.2 ± 2.6 61.5 ± 1.0 4.1 ± 4.9 40.6 ± 3.5 4.1 ± 4.9

SVMrbf_10MRMR 62.1 ± 1.1 55.6 ± 0.9 72.5 ± 1.2 11.6 ± 1.8 38.9 ± 1.9 11.6 ± 1.8
SVMrbf_100MRMR 65.6 ± 0.6 59.8 ± 1.6 75.0 ± 0.7 20.2 ± 2.7 44.9 ± 3.7 20.2 ± 2.7

SVMrbf_Full 64.3 ± 1.4 61.2 ± 1.3 72.5 ± 2.2 21.9 ± 2.2 48.7 ± 2.9 21.9 ± 2.2
RUSBoost_10MRMR 62.8 ± 0.9 60.8 ± 0.6 70.6 ± 1.3 20.7 ± 1.1 49.2 ± 1.2 20.7 ± 1.1

RUSBoost_100MRMR 62.6 ± 1.0 59.7 ± 0.9 71.0 ± 1.6 18.8 ± 1.6 47.2 ± 1.9 18.8 ± 1.6
RUSBoost_Full 61.4 ± 1.6 60.0 ± 1.3 69.0 ± 2.4 19.0 ± 2.3 48.5 ± 2.2 19.0 ± 2.3

CNN_dualInput 70.5 ± 1.0 68.7 ± 1.9 77.0 ± 1.6 36.3 ± 2.9 58.3 ± 3.0 36.3 ± 2.9
CNN_Spectrogram 72.4 ± 1.8 70.5 ± 1.4 78.7 ± 2.1 40.0 ± 2.5 60.6 ± 1.9 40.0 ± 2.5

CNN_melSpectrogram 71.0 ± 1.2 68.6 ± 0.8 77.7 ± 1.8 36.5 ± 0.9 58.1 ± 1.5 36.5 ± 0.9

Table B.3: Stratification for Adults (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 67.8 ± 0.2 60.2 ± 0.4 77.5 ± 0.1 22.9 ± 0.7 43.5 ± 0.9 22.9 ± 0.7

LDA_100MRMR 68.6 ± 0.3 64.4 ± 0.9 76.5 ± 0.2 29.1 ± 1.5 52.6 ± 1.6 29.1 ± 1.5
LDA_Full 67.9 ± 0.5 64.1 ± 1.4 75.8 ± 0.8 28.2 ± 2.2 52.3 ± 2.5 28.2 ± 2.2

SVMrbf_10MRMR 68.3 ± 0.3 57.7 ± 0.7 79.1 ± 0.2 20.6 ± 1.1 34.5 ± 2.1 20.6 ± 1.1
SVMrbf_100MRMR 71.5 ± 0.9 66.9 ± 2.3 79.0 ± 0.8 34.9 ± 3.2 55.2 ± 4.7 34.9 ± 3.2

SVMrbf_Full 70.0 ± 1.0 66.5 ± 2.4 77.3 ± 1.8 33.4 ± 2.5 55.0 ± 5.7 33.4 ± 2.5
RUSBoost_10MRMR 68.3 ± 0.5 64.9 ± 0.7 75.8 ± 1.0 29.7 ± 0.9 53.7 ± 1.6 29.7 ± 0.9

RUSBoost_100MRMR 69.8 ± 0.6 66.9 ± 0.7 76.9 ± 0.8 33.5 ± 0.9 56.5 ± 1.3 33.5 ± 0.9
RUSBoost_Full 69.9 ± 0.6 67.4 ± 0.7 76.8 ± 0.7 34.3 ± 1.2 57.4 ± 1.2 34.3 ± 1.2

CNN_dualInput 86.7 ± 0.8 82.5 ± 1.9 90.5 ± 0.5 70.0 ± 1.7 77.9 ± 2.4 70.0 ± 1.7
CNN_Spectrogram 85.7 ± 0.9 81.6 ± 1.6 89.7 ± 0.8 67.6 ± 1.9 76.5 ± 2.1 67.6 ± 1.9

CNN_melSpectrogram 87.3 ± 0.6 83.4 ± 1.1 90.9 ± 0.4 71.3 ± 1.4 79.2 ± 1.3 71.3 ± 1.4

Table B.4: Stratification for Adults (crackles vs. others)

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 44.8 ± 0.5 39.3 ± 0.4 57.3 ± 0.7 -20.1 ± 0.6 21.8 ± 0.5 -20.1 ± 0.6

LDA_100MRMR 50.5 ± 4.0 53.6 ± 2.2 55.6 ± 6.1 6.8 ± 4.1 43.2 ± 2.7 6.8 ± 4.1
LDA_Full 43.6 ± 4.2 48.0 ± 5.4 47.4 ± 3.5 -3.7 ± 10.3 39.3 ± 5.2 -3.7 ± 10.3

SVMrbf_10MRMR 47.9 ± 1.7 48.8 ± 1.7 55.2 ± 2.5 -2.3 ± 3.1 37.5 ± 2.2 -2.3 ± 3.1
SVMrbf_100MRMR 59.3 ± 3.3 57.9 ± 1.1 67.4 ± 4.1 15.0 ± 2.6 44.9 ± 1.8 15.0 ± 2.6

SVMrbf_Full 56.1 ± 1.6 55.7 ± 2.3 64.1 ± 2.1 10.5 ± 4.3 43.1 ± 3.5 10.5 ± 4.3
RUSBoost_10MRMR 49.6 ± 0.9 54.0 ± 1.1 53.7 ± 2.2 7.6 ± 2.1 44.4 ± 1.6 7.6 ± 2.1

RUSBoost_100MRMR 52.2 ± 1.8 55.6 ± 1.3 57.5 ± 3.1 10.4 ± 2.5 45.2 ± 1.7 10.4 ± 2.5
RUSBoost_Full 50.0 ± 4.0 54.7 ± 2.9 53.6 ± 7.4 9.0 ± 5.5 45.0 ± 3.0 9.0 ± 5.5

CNN_dualInput 75.0 ± 3.8 72.6 ± 3.7 81.3 ± 3.3 43.9 ± 7.4 62.0 ± 4.8 43.9 ± 7.4
CNN_Spectrogram 75.8 ± 2.5 70.7 ± 2.3 82.7 ± 2.3 42.6 ± 4.6 59.3 ± 3.4 42.6 ± 4.6

CNN_melSpectrogram 74.6 ± 3.3 71.5 ± 2.2 81.1 ± 3.2 42.6 ± 5.1 60.6 ± 2.9 42.6 ± 5.1

Table B.5: Stratification for Obese (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 56.8 ± 0.5 51.8 ± 0.4 69.3 ± 0.6 2.8 ± 0.6 27.1 ± 0.5 2.8 ± 0.6

LDA_100MRMR 51.9 ± 1.3 59.1 ± 0.6 61.8 ± 1.8 14.2 ± 1.0 34.9 ± 0.5 14.2 ± 1.0
LDA_Full 53.1 ± 2.9 60.1 ± 4.6 63.1 ± 2.5 15.8 ± 7.2 35.7 ± 3.8 15.8 ± 7.2

SVMrbf_10MRMR 68.4 ± 1.5 53.4 ± 0.7 79.9 ± 1.2 6.2 ± 1.3 25.7 ± 0.9 6.2 ± 1.3
SVMrbf_100MRMR 59.5 ± 5.3 62.5 ± 3.4 69.7 ± 5.2 19.6 ± 5.2 37.8 ± 3.2 19.6 ± 5.2

SVMrbf_Full 53.0 ± 9.1 57.3 ± 2.4 62.8 ± 9.4 11.9 ± 4.6 33.5 ± 1.9 11.9 ± 4.6
RUSBoost_10MRMR 49.9 ± 3.8 55.4 ± 0.8 60.2 ± 4.9 8.5 ± 1.2 31.9 ± 0.7 8.5 ± 1.2

RUSBoost_100MRMR 51.3 ± 3.7 60.8 ± 1.4 60.5 ± 4.3 17.0 ± 2.1 36.4 ± 1.2 17.0 ± 2.1
RUSBoost_Full 51.6 ± 3.3 61.7 ± 2.2 60.6 ± 3.8 18.3 ± 3.4 37.0 ± 1.8 18.3 ± 3.4

CNN_dualInput 88.1 ± 2.5 79.8 ± 0.8 92.6 ± 1.8 61.1 ± 4.9 67.6 ± 2.9 61.1 ± 4.9
CNN_Spectrogram 86.2 ± 2.5 78.6 ± 1.2 91.4 ± 1.8 56.0 ± 4.0 64.1 ± 2.9 56.0 ± 4.0

CNN_melSpectrogram 88.9 ± 2.4 79.1 ± 1.5 93.3 ± 1.7 62.5 ± 5.3 68.0 ± 3.2 62.5 ± 5.3

Table B.6: Stratification for Obese (crackles vs. others)
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Complete results of the stratification of RSD

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 65.6 ± 0.2 51.9 ± 0.3 77.8 ± 0.1 4.9 ± 0.8 23.1 ± 1.1 4.9 ± 0.8

LDA_100MRMR 53.1 ± 1.5 51.0 ± 1.2 62.5 ± 2.0 1.8 ± 2.2 37.1 ± 2.0 1.8 ± 2.2
LDA_Full 52.6 ± 0.4 50.9 ± 1.5 61.8 ± 1.0 1.7 ± 2.8 37.3 ± 2.5 1.7 ± 2.8

SVMrbf_10MRMR 65.6 ± 1.3 56.1 ± 0.8 76.5 ± 1.3 13.3 ± 1.7 35.8 ± 2.1 13.3 ± 1.7
SVMrbf_100MRMR 68.3 ± 2.0 59.5 ± 2.6 78.2 ± 1.4 20.5 ± 5.5 41.5 ± 4.4 20.5 ± 5.5

SVMrbf_Full 66.1 ± 2.3 61.4 ± 2.1 75.0 ± 2.7 22.4 ± 4.0 46.6 ± 3.8 22.4 ± 4.0
RUSBoost_10MRMR 66.0 ± 1.4 61.9 ± 0.9 74.7 ± 1.5 22.9 ± 1.8 47.8 ± 1.4 22.9 ± 1.8

RUSBoost_100MRMR 65.0 ± 1.2 59.6 ± 1.0 74.4 ± 1.5 18.8 ± 1.7 44.1 ± 2.2 18.8 ± 1.7
RUSBoost_Full 64.2 ± 2.4 60.6 ± 2.2 73.0 ± 2.5 20.3 ± 4.3 46.4 ± 3.2 20.3 ± 4.3

CNN_dualInput 67.9 ± 2.2 66.9 ± 1.2 75.0 ± 2.8 31.8 ± 2.2 54.9 ± 1.6 31.8 ± 2.2
CNN_Spectrogram 70.1 ± 1.7 68.4 ± 0.9 77.1 ± 2.1 34.9 ± 1.7 56.5 ± 1.2 34.9 ± 1.7

CNN_melSpectrogram 68.8 ± 1.3 66.2 ± 0.9 76.4 ± 1.9 31.0 ± 1.3 53.6 ± 1.5 31.0 ± 1.3

Table B.7: Stratification for Overweight (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 67.2 ± 0.6 66.4 ± 0.6 75.0 ± 0.3 40.8 ± 0.9 52.5 ± 1.3 40.8 ± 0.9

LDA_100MRMR 71.9 ± 1.3 71.3 ± 1.3 77.2 ± 0.8 47.6 ± 2.1 63.3 ± 2.3 47.6 ± 2.1
LDA_Full 70.4 ± 1.9 69.8 ± 2.0 75.8 ± 0.8 43.9 ± 2.7 61.5 ± 4.3 43.9 ± 2.7

SVMrbf_10MRMR 63.7 ± 0.9 62.8 ± 0.9 73.4 ± 0.4 35.9 ± 1.4 42.7 ± 2.4 35.9 ± 1.4
SVMrbf_100MRMR 74.2 ± 2.8 73.7 ± 2.9 78.5 ± 1.4 51.2 ± 4.0 67.4 ± 6.0 51.2 ± 4.0

SVMrbf_Full 74.2 ± 3.5 73.8 ± 3.6 78.1 ± 1.6 50.5 ± 5.1 68.0 ± 7.8 50.5 ± 5.1
RUSBoost_10MRMR 73.5 ± 1.3 73.0 ± 1.3 77.8 ± 0.7 49.3 ± 1.9 67.1 ± 2.6 49.3 ± 1.9

RUSBoost_100MRMR 74.5 ± 1.1 74.1 ± 1.1 78.5 ± 0.6 51.2 ± 1.7 68.8 ± 2.1 51.2 ± 1.7
RUSBoost_Full 75.1 ± 1.2 74.7 ± 1.3 78.7 ± 0.7 52.0 ± 2.0 70.0 ± 2.2 52.0 ± 2.0

CNN_dualInput 85.5 ± 1.6 85.3 ± 1.7 87.0 ± 1.0 72.0 ± 2.5 83.6 ± 2.5 72.0 ± 2.5
CNN_Spectrogram 84.0 ± 1.9 83.7 ± 2.0 86.0 ± 1.2 69.7 ± 2.8 81.4 ± 2.9 69.7 ± 2.8

CNN_melSpectrogram 85.6 ± 1.4 85.4 ± 1.4 87.2 ± 1.0 72.4 ± 2.4 83.7 ± 1.9 72.4 ± 2.4

Table B.8: Stratification for Overweight (crackles vs. others)

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 65.3 ± 0.2 60.4 ± 0.3 75.4 ± 0.1 27.5 ± 0.6 41.0 ± 0.6 27.5 ± 0.6

LDA_100MRMR 61.9 ± 0.5 59.7 ± 0.4 69.2 ± 1.0 20.2 ± 0.8 50.1 ± 1.6 20.2 ± 0.8
LDA_Full 64.5 ± 4.2 62.1 ± 4.4 71.6 ± 3.4 25.5 ± 9.1 52.6 ± 5.9 25.5 ± 9.1

SVMrbf_10MRMR 63.6 ± 1.0 60.3 ± 1.3 72.0 ± 0.7 22.8 ± 2.4 47.6 ± 2.9 22.8 ± 2.4
SVMrbf_100MRMR 63.0 ± 2.7 61.1 ± 2.8 69.5 ± 3.0 23.1 ± 5.5 52.2 ± 5.8 23.1 ± 5.5

SVMrbf_Full 66.1 ± 1.4 64.9 ± 1.0 71.2 ± 2.4 30.3 ± 2.1 58.5 ± 2.0 30.3 ± 2.1
RUSBoost_10MRMR 64.7 ± 2.1 63.6 ± 2.2 69.9 ± 1.9 27.4 ± 4.4 57.4 ± 3.0 27.4 ± 4.4

RUSBoost_100MRMR 64.6 ± 1.3 63.3 ± 1.7 69.9 ± 1.3 26.9 ± 3.2 56.7 ± 2.9 26.9 ± 3.2
RUSBoost_Full 63.1 ± 1.7 62.4 ± 1.8 67.6 ± 1.9 24.8 ± 3.6 56.9 ± 2.7 24.8 ± 3.6

CNN_dualInput 79.4 ± 2.5 78.1 ± 2.6 82.9 ± 2.2 57.6 ± 5.1 73.9 ± 3.5 57.6 ± 5.1
CNN_Spectrogram 77.4 ± 2.5 75.5 ± 3.0 81.9 ± 1.8 53.5 ± 5.1 69.9 ± 4.7 53.5 ± 5.1

CNN_melSpectrogram 76.3 ± 1.8 74.0 ± 2.3 81.2 ± 1.0 51.0 ± 3.7 67.8 ± 3.7 51.0 ± 3.7

Table B.9: Stratification for Normal (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 78.8 ± 0.2 64.2 ± 0.3 86.9 ± 0.1 41.6 ± 0.5 44.9 ± 0.8 41.6 ± 0.5

LDA_100MRMR 79.4 ± 0.4 68.7 ± 1.2 86.7 ± 0.1 44.3 ± 1.5 54.7 ± 2.1 44.3 ± 1.5
LDA_Full 78.3 ± 4.0 68.9 ± 2.6 85.6 ± 3.2 43.2 ± 8.3 55.3 ± 4.2 43.2 ± 8.3

SVMrbf_10MRMR 74.6 ± 0.6 56.1 ± 1.2 84.8 ± 0.3 24.5 ± 3.0 23.5 ± 3.6 24.5 ± 3.0
SVMrbf_100MRMR 79.0 ± 1.7 65.9 ± 3.7 86.8 ± 0.8 41.8 ± 6.4 48.6 ± 8.4 41.8 ± 6.4

SVMrbf_Full 80.1 ± 2.2 69.1 ± 5.3 87.2 ± 1.0 45.8 ± 8.6 54.0 ± 12.2 45.8 ± 8.6
RUSBoost_10MRMR 78.2 ± 0.6 68.3 ± 1.7 85.7 ± 0.3 41.6 ± 2.3 54.0 ± 3.0 41.6 ± 2.3

RUSBoost_100MRMR 80.6 ± 1.1 70.3 ± 2.2 87.4 ± 0.6 47.8 ± 3.5 57.4 ± 4.0 47.8 ± 3.5
RUSBoost_Full 80.0 ± 1.4 70.4 ± 1.5 86.9 ± 1.1 46.6 ± 3.4 57.6 ± 2.5 46.6 ± 3.4

CNN_dualInput 88.1 ± 1.3 80.2 ± 3.0 92.3 ± 0.8 69.7 ± 3.4 74.3 ± 4.3 69.7 ± 3.4
CNN_Spectrogram 87.8 ± 1.2 79.7 ± 2.7 92.1 ± 0.7 68.8 ± 3.0 73.6 ± 3.9 68.8 ± 3.0

CNN_melSpectrogram 88.7 ± 0.6 80.5 ± 1.5 92.6 ± 0.4 71.3 ± 1.6 75.3 ± 2.0 71.3 ± 1.6

Table B.10: Stratification for Normal (crackles vs. others)
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Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 39.4 ± 0.6 50.8 ± 1.2 39.1 ± 1.0 1.6 ± 2.5 39.7 ± 0.3 1.6 ± 2.5

LDA_100MRMR 50.9 ± 2.3 45.0 ± 0.7 25.7 ± 0.9 -9.0 ± 1.2 63.2 ± 2.8 -9.0 ± 1.2
LDA_Full 51.7 ± 4.3 45.7 ± 3.1 26.2 ± 3.7 -7.7 ± 5.7 63.9 ± 4.3 -7.7 ± 5.7

SVMrbf_10MRMR 45.9 ± 1.2 50.5 ± 2.1 36.6 ± 2.5 0.9 ± 3.7 52.7 ± 2.5 0.9 ± 3.7
SVMrbf_100MRMR 50.8 ± 4.2 48.0 ± 5.7 30.8 ± 6.6 -3.5 ± 10.1 61.7 ± 3.8 -3.5 ± 10.1

SVMrbf_Full 53.0 ± 2.3 49.5 ± 4.2 31.3 ± 6.0 -1.0 ± 7.4 64.1 ± 3.0 -1.0 ± 7.4
RUSBoost_10MRMR 54.2 ± 2.6 49.6 ± 3.2 31.1 ± 4.4 -0.8 ± 5.8 65.6 ± 2.5 -0.8 ± 5.8

RUSBoost_100MRMR 49.8 ± 1.4 42.3 ± 2.0 21.5 ± 3.6 -14.0 ± 3.7 63.0 ± 1.8 -14.0 ± 3.7
RUSBoost_Full 54.6 ± 3.1 46.4 ± 3.3 24.9 ± 5.6 -6.7 ± 6.2 67.3 ± 3.1 -6.7 ± 6.2

CNN_dualInput 66.0 ± 3.4 62.3 ± 1.7 45.5 ± 2.3 22.8 ± 3.1 75.1 ± 3.5 22.8 ± 3.1
CNN_Spectrogram 63.7 ± 4.1 63.2 ± 1.9 47.2 ± 1.7 23.7 ± 3.7 72.2 ± 4.4 23.7 ± 3.7

CNN_melSpectrogram 64.4 ± 4.0 63.8 ± 1.7 47.8 ± 1.8 24.7 ± 3.3 72.8 ± 4.4 24.7 ± 3.3

Table B.11: Stratification for Females (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 54.9 ± 1.0 68.0 ± 0.8 51.0 ± 0.7 33.2 ± 1.4 58.2 ± 1.3 33.2 ± 1.4

LDA_100MRMR 61.5 ± 1.6 65.1 ± 1.5 48.3 ± 1.5 26.1 ± 2.7 69.3 ± 1.7 26.1 ± 2.7
LDA_Full 58.8 ± 2.2 61.6 ± 3.0 44.4 ± 4.0 20.3 ± 5.1 66.9 ± 3.6 20.3 ± 5.1

SVMrbf_10MRMR 49.1 ± 1.4 64.1 ± 1.3 47.9 ± 1.0 27.4 ± 2.5 50.3 ± 1.9 27.4 ± 2.5
SVMrbf_100MRMR 72.0 ± 5.4 78.3 ± 3.2 62.0 ± 3.7 49.3 ± 5.3 77.7 ± 5.8 49.3 ± 5.3

SVMrbf_Full 72.6 ± 6.7 78.0 ± 3.7 62.2 ± 4.4 49.1 ± 6.1 78.2 ± 7.3 49.1 ± 6.1
RUSBoost_10MRMR 64.7 ± 2.4 69.2 ± 1.3 52.5 ± 1.4 33.4 ± 2.3 71.8 ± 2.7 33.4 ± 2.3

RUSBoost_100MRMR 70.7 ± 2.0 74.1 ± 1.9 57.9 ± 2.1 42.0 ± 3.3 77.5 ± 1.9 42.0 ± 3.3
RUSBoost_Full 72.9 ± 1.7 76.3 ± 2.3 60.4 ± 2.3 45.8 ± 3.8 79.4 ± 1.5 45.8 ± 3.8

CNN_dualInput 80.3 ± 3.1 84.1 ± 1.1 70.0 ± 2.7 60.5 ± 3.0 85.3 ± 2.9 60.5 ± 3.0
CNN_Spectrogram 78.3 ± 3.5 84.2 ± 1.7 69.0 ± 2.9 59.8 ± 3.4 83.2 ± 3.3 59.8 ± 3.4

CNN_melSpectrogram 80.9 ± 2.2 85.9 ± 1.3 71.5 ± 2.2 63.0 ± 2.8 85.6 ± 2.0 63.0 ± 2.8

Table B.12: Stratification for Females (crackles vs. others)

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 65.1 ± 0.1 53.5 ± 0.3 76.8 ± 0.1 8.0 ± 0.7 29.5 ± 0.9 8.0 ± 0.7

LDA_100MRMR 57.3 ± 1.9 55.7 ± 1.0 66.1 ± 2.5 10.6 ± 1.9 42.1 ± 1.7 10.6 ± 1.9
LDA_Full 56.1 ± 1.2 54.8 ± 2.0 65.0 ± 1.1 8.8 ± 3.7 41.2 ± 2.7 8.8 ± 3.7

SVMrbf_10MRMR 65.1 ± 1.2 58.1 ± 0.9 75.1 ± 1.2 16.4 ± 1.8 41.2 ± 1.8 16.4 ± 1.8
SVMrbf_100MRMR 68.7 ± 1.0 62.2 ± 1.6 77.8 ± 1.0 24.7 ± 2.7 46.6 ± 3.4 24.7 ± 2.7

SVMrbf_Full 66.8 ± 1.8 63.3 ± 1.2 75.1 ± 2.3 25.5 ± 2.0 49.4 ± 2.3 25.5 ± 2.0
RUSBoost_10MRMR 65.4 ± 1.1 63.2 ± 1.0 73.5 ± 1.4 24.9 ± 1.7 50.0 ± 1.4 24.9 ± 1.7

RUSBoost_100MRMR 66.1 ± 1.2 62.9 ± 1.0 74.5 ± 1.6 24.5 ± 1.6 49.2 ± 1.8 24.5 ± 1.6
RUSBoost_Full 64.4 ± 1.9 62.8 ± 1.1 72.4 ± 2.4 23.9 ± 2.0 49.6 ± 1.7 23.9 ± 2.0

CNN_dualInput 72.4 ± 1.3 70.4 ± 1.9 79.2 ± 1.8 38.9 ± 2.6 58.5 ± 2.5 38.9 ± 2.6
CNN_Spectrogram 73.8 ± 2.1 71.5 ± 1.4 80.4 ± 2.2 41.4 ± 2.6 60.1 ± 1.9 41.4 ± 2.6

CNN_melSpectrogram 73.1 ± 1.7 70.6 ± 0.6 80.0 ± 2.1 39.7 ± 0.9 58.9 ± 0.9 39.7 ± 0.9

Table B.13: Stratification for Males (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 69.5 ± 0.1 61.2 ± 0.4 79.0 ± 0.1 24.6 ± 0.6 44.5 ± 0.8 24.6 ± 0.6

LDA_100MRMR 70.4 ± 0.3 66.1 ± 1.0 78.2 ± 0.3 31.9 ± 1.6 53.6 ± 1.6 31.9 ± 1.6
LDA_Full 69.6 ± 0.6 65.5 ± 1.3 77.5 ± 0.9 30.6 ± 1.9 52.9 ± 2.0 30.6 ± 1.9

SVMrbf_10MRMR 70.7 ± 0.3 58.9 ± 0.7 80.9 ± 0.2 23.2 ± 1.2 36.9 ± 2.0 23.2 ± 1.2
SVMrbf_100MRMR 72.0 ± 0.8 66.6 ± 1.8 79.8 ± 1.0 34.0 ± 2.2 53.7 ± 3.6 34.0 ± 2.2

SVMrbf_Full 70.4 ± 1.6 66.3 ± 2.0 78.0 ± 2.2 32.7 ± 1.9 53.5 ± 4.6 32.7 ± 1.9
RUSBoost_10MRMR 69.6 ± 0.7 66.2 ± 0.7 77.2 ± 1.1 31.6 ± 0.9 54.0 ± 1.3 31.6 ± 0.9

RUSBoost_100MRMR 70.7 ± 0.7 67.7 ± 0.5 78.0 ± 0.9 34.4 ± 0.8 56.1 ± 1.0 34.4 ± 0.8
RUSBoost_Full 70.4 ± 0.7 67.8 ± 0.8 77.6 ± 0.8 34.4 ± 1.4 56.3 ± 1.1 34.4 ± 1.4

CNN_dualInput 87.3 ± 0.7 82.4 ± 1.9 91.2 ± 0.4 69.9 ± 1.6 77.2 ± 2.3 69.9 ± 1.6
CNN_Spectrogram 86.2 ± 1.0 81.5 ± 1.5 90.4 ± 0.9 67.4 ± 2.1 75.8 ± 1.8 67.4 ± 2.1

CNN_melSpectrogram 87.8 ± 0.6 83.2 ± 1.1 91.5 ± 0.4 70.9 ± 1.4 78.4 ± 1.3 70.9 ± 1.4

Table B.14: Stratification for Males (crackles vs. others)
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Complete results of the stratification of RSD

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 82.4 ± 0.0 73.9 ± 0.0 88.3 ± 0.0 54.8 ± 0.0 64.0 ± 0.0 54.8 ± 0.0

LDA_100MRMR 81.8 ± 2.6 82.6 ± 1.8 86.0 ± 2.6 61.9 ± 3.6 73.3 ± 2.1 61.9 ± 3.6
LDA_Full 83.7 ± 8.6 81.1 ± 5.4 87.8 ± 7.7 64.0 ± 14.3 74.4 ± 8.6 64.0 ± 14.3

SVMrbf_10MRMR 80.0 ± 4.2 76.7 ± 3.5 85.5 ± 3.7 53.7 ± 7.5 67.0 ± 4.9 53.7 ± 7.5
SVMrbf_100MRMR 82.4 ± 3.7 80.9 ± 4.0 87.0 ± 3.0 60.1 ± 7.4 72.0 ± 5.4 60.1 ± 7.4

SVMrbf_Full 76.7 ± 6.5 74.5 ± 4.9 82.6 ± 5.6 48.0 ± 11.4 64.2 ± 6.7 48.0 ± 11.4
RUSBoost_10MRMR 82.2 ± 4.5 81.9 ± 5.5 86.7 ± 3.4 60.7 ± 10.2 72.8 ± 6.8 60.7 ± 10.2

RUSBoost_100MRMR 84.5 ± 3.7 84.4 ± 3.1 88.4 ± 3.2 66.1 ± 6.4 76.3 ± 4.4 66.1 ± 6.4
RUSBoost_Full 84.1 ± 3.6 82.3 ± 2.5 88.4 ± 3.0 63.5 ± 6.2 74.5 ± 4.0 63.5 ± 6.2

CNN_dualInput 85.5 ± 4.4 83.5 ± 5.1 89.6 ± 3.2 66.0 ± 10.1 76.2 ± 7.0 66.0 ± 10.1
CNN_Spectrogram 84.5 ± 3.3 77.6 ± 5.7 89.6 ± 2.0 61.0 ± 9.6 69.0 ± 10.2 61.0 ± 9.6

CNN_melSpectrogram 86.3 ± 2.9 84.8 ± 3.7 90.1 ± 2.2 68.2 ± 6.8 77.7 ± 4.7 68.2 ± 6.8

Table B.15: Stratification for Non-Chronic (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 77.1 ± 2.2 78.6 ± 2.0 79.0 ± 1.5 59.4 ± 3.3 74.6 ± 3.2 59.4 ± 3.3

LDA_100MRMR 83.9 ± 0.9 84.4 ± 0.8 83.5 ± 0.7 68.6 ± 1.5 84.3 ± 1.2 68.6 ± 1.5
LDA_Full 74.1 ± 5.4 74.3 ± 6.7 71.0 ± 12.7 49.9 ± 11.8 75.4 ± 2.4 49.9 ± 11.8

SVMrbf_10MRMR 74.3 ± 1.8 76.1 ± 1.6 77.1 ± 1.2 55.2 ± 2.7 70.8 ± 2.6 55.2 ± 2.7
SVMrbf_100MRMR 81.6 ± 2.5 82.4 ± 2.5 81.8 ± 2.4 65.1 ± 4.9 81.3 ± 2.7 65.1 ± 4.9

SVMrbf_Full 82.4 ± 3.1 83.3 ± 2.9 82.8 ± 2.5 67.0 ± 5.4 82.0 ± 3.8 67.0 ± 5.4
RUSBoost_10MRMR 79.9 ± 3.3 80.3 ± 3.3 79.3 ± 3.3 60.6 ± 6.5 80.4 ± 3.4 60.6 ± 6.5

RUSBoost_100MRMR 82.5 ± 3.3 82.7 ± 3.2 81.5 ± 3.4 65.2 ± 6.5 83.5 ± 3.2 65.2 ± 6.5
RUSBoost_Full 80.5 ± 2.6 80.7 ± 2.8 79.2 ± 3.2 61.3 ± 5.5 81.6 ± 2.4 61.3 ± 5.5

CNN_dualInput 85.3 ± 3.3 86.0 ± 2.8 85.4 ± 2.6 72.4 ± 5.0 85.1 ± 4.0 72.4 ± 5.0
CNN_Spectrogram 82.9 ± 2.4 84.0 ± 2.3 83.6 ± 2.1 68.9 ± 4.4 82.3 ± 2.9 68.9 ± 4.4

CNN_melSpectrogram 84.1 ± 2.8 85.2 ± 2.7 84.6 ± 2.6 70.9 ± 5.2 83.5 ± 3.2 70.9 ± 5.2

Table B.16: Stratification for Non-Chronic (crackles vs. others)

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 62.0 ± 0.1 52.0 ± 0.1 74.1 ± 0.1 4.6 ± 0.2 28.1 ± 0.4 4.6 ± 0.2

LDA_100MRMR 54.2 ± 1.6 53.1 ± 1.1 62.1 ± 2.4 5.9 ± 2.0 41.8 ± 1.8 5.9 ± 2.0
LDA_Full 53.1 ± 1.6 52.5 ± 2.5 60.9 ± 1.0 4.7 ± 4.7 41.5 ± 3.3 4.7 ± 4.7

SVMrbf_10MRMR 62.5 ± 1.0 56.4 ± 0.8 72.6 ± 1.2 13.2 ± 1.6 40.4 ± 1.7 13.2 ± 1.6
SVMrbf_100MRMR 65.6 ± 0.7 60.2 ± 1.6 74.8 ± 0.7 20.8 ± 2.7 45.8 ± 3.4 20.8 ± 2.7

SVMrbf_Full 64.9 ± 1.3 62.0 ± 1.4 72.8 ± 2.1 23.4 ± 2.2 49.9 ± 2.9 23.4 ± 2.2
RUSBoost_10MRMR 63.2 ± 0.8 61.5 ± 0.7 70.8 ± 1.3 22.0 ± 1.2 50.2 ± 1.2 22.0 ± 1.2

RUSBoost_100MRMR 63.0 ± 1.0 60.4 ± 0.8 71.1 ± 1.6 20.2 ± 1.4 48.4 ± 1.7 20.2 ± 1.4
RUSBoost_Full 61.9 ± 1.6 60.7 ± 1.2 69.2 ± 2.5 20.4 ± 2.2 49.7 ± 2.0 20.4 ± 2.2

CNN_dualInput 70.9 ± 1.0 69.3 ± 1.8 77.3 ± 1.6 37.4 ± 2.7 59.2 ± 2.8 37.4 ± 2.7
CNN_Spectrogram 72.7 ± 1.7 71.0 ± 1.4 78.8 ± 2.0 40.9 ± 2.5 61.4 ± 2.0 40.9 ± 2.5

CNN_melSpectrogram 71.4 ± 1.2 69.3 ± 0.7 77.9 ± 1.8 37.7 ± 0.8 59.2 ± 1.3 37.7 ± 0.8

Table B.17: Stratification for Chronic (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 67.9 ± 0.2 60.9 ± 0.4 77.4 ± 0.1 24.4 ± 0.6 45.0 ± 0.8 24.4 ± 0.6

LDA_100MRMR 69.0 ± 0.4 65.3 ± 0.9 76.6 ± 0.2 31.0 ± 1.5 54.3 ± 1.6 31.0 ± 1.5
LDA_Full 68.1 ± 0.6 64.7 ± 1.4 75.7 ± 0.8 29.5 ± 2.2 53.7 ± 2.5 29.5 ± 2.2

SVMrbf_10MRMR 68.5 ± 0.3 58.6 ± 0.6 79.0 ± 0.2 22.9 ± 1.0 36.8 ± 1.9 22.9 ± 1.0
SVMrbf_100MRMR 71.9 ± 0.9 67.8 ± 2.1 79.1 ± 0.8 36.7 ± 3.0 57.0 ± 4.3 36.7 ± 3.0

SVMrbf_Full 70.4 ± 1.0 67.3 ± 2.2 77.4 ± 1.8 35.0 ± 2.1 56.6 ± 5.2 35.0 ± 2.1
RUSBoost_10MRMR 68.7 ± 0.5 65.7 ± 0.7 75.9 ± 1.0 31.3 ± 0.9 55.2 ± 1.6 31.3 ± 0.9

RUSBoost_100MRMR 70.3 ± 0.6 67.8 ± 0.6 77.0 ± 0.8 35.3 ± 0.9 58.1 ± 1.2 35.3 ± 0.9
RUSBoost_Full 70.5 ± 0.6 68.3 ± 0.7 76.9 ± 0.7 36.0 ± 1.2 58.9 ± 1.1 36.0 ± 1.2

CNN_dualInput 86.6 ± 0.9 82.7 ± 1.9 90.4 ± 0.5 70.2 ± 1.8 78.2 ± 2.4 70.2 ± 1.8
CNN_Spectrogram 85.6 ± 0.9 81.8 ± 1.6 89.6 ± 0.7 67.9 ± 1.9 76.9 ± 2.1 67.9 ± 1.9

CNN_melSpectrogram 87.3 ± 0.6 83.6 ± 1.1 90.8 ± 0.4 71.6 ± 1.4 79.6 ± 1.3 71.6 ± 1.4

Table B.18: Stratification for Chronic (crackles vs. others)
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Chapter 6

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 62.7 ± 0.2 61.2 ± 0.2 69.0 ± 0.1 23.4 ± 0.4 53.1 ± 0.4 23.4 ± 0.4

LDA_100MRMR 64.1 ± 2.1 66.0 ± 1.8 58.8 ± 3.9 34.1 ± 3.1 68.1 ± 1.1 34.1 ± 3.1
LDA_Full 61.0 ± 3.6 63.0 ± 3.0 54.6 ± 7.6 27.9 ± 5.0 65.6 ± 1.4 27.9 ± 5.0

SVMrbf_10MRMR 68.8 ± 1.8 68.6 ± 1.7 71.4 ± 2.2 37.3 ± 3.5 65.7 ± 2.2 37.3 ± 3.5
SVMrbf_100MRMR 72.2 ± 3.0 72.6 ± 2.9 73.0 ± 3.8 45.1 ± 5.5 71.2 ± 2.7 45.1 ± 5.5

SVMrbf_Full 74.4 ± 2.5 74.5 ± 2.4 75.7 ± 2.6 48.9 ± 4.8 72.8 ± 2.5 48.9 ± 4.8
RUSBoost_10MRMR 77.5 ± 1.8 77.6 ± 1.9 78.8 ± 1.8 55.1 ± 3.7 75.9 ± 2.1 55.1 ± 3.7

RUSBoost_100MRMR 78.1 ± 2.0 78.8 ± 1.8 78.3 ± 2.4 57.6 ± 3.5 77.8 ± 1.7 57.6 ± 3.5
RUSBoost_Full 77.4 ± 2.4 78.4 ± 2.2 77.0 ± 3.1 57.1 ± 3.9 77.8 ± 1.8 57.1 ± 3.9

CNN_dualInput 79.6 ± 1.8 80.4 ± 1.8 80.3 ± 2.2 60.5 ± 3.5 78.8 ± 1.8 60.5 ± 3.5
CNN_Spectrogram 75.2 ± 3.4 74.5 ± 4.1 78.3 ± 2.0 49.6 ± 7.4 70.6 ± 6.0 49.6 ± 7.4

CNN_melSpectrogram 81.3 ± 2.1 82.2 ± 2.3 81.9 ± 1.7 64.0 ± 4.7 80.6 ± 2.5 64.0 ± 4.7

Table B.19: Stratification for Meditron (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 74.0 ± 1.0 79.4 ± 0.8 72.4 ± 0.8 57.0 ± 1.4 75.5 ± 1.1 57.0 ± 1.4

LDA_100MRMR 86.7 ± 2.2 86.7 ± 1.6 82.1 ± 2.4 71.9 ± 4.0 89.4 ± 2.0 71.9 ± 4.0
LDA_Full 76.4 ± 2.2 74.7 ± 1.1 67.1 ± 1.6 49.5 ± 2.7 81.4 ± 2.7 49.5 ± 2.7

SVMrbf_10MRMR 73.7 ± 1.0 78.6 ± 1.0 71.6 ± 1.0 55.2 ± 1.9 75.5 ± 1.1 55.2 ± 1.9
SVMrbf_100MRMR 86.9 ± 1.0 88.6 ± 0.9 83.5 ± 1.2 74.2 ± 1.9 89.2 ± 0.9 74.2 ± 1.9

SVMrbf_Full 86.4 ± 2.0 88.0 ± 1.6 82.8 ± 2.1 73.1 ± 3.3 88.7 ± 1.8 73.1 ± 3.3
RUSBoost_10MRMR 84.7 ± 1.8 85.2 ± 1.4 79.9 ± 1.9 68.2 ± 3.2 87.6 ± 1.6 68.2 ± 3.2

RUSBoost_100MRMR 89.3 ± 0.9 88.4 ± 1.0 84.8 ± 1.3 76.6 ± 1.9 91.7 ± 0.7 76.6 ± 1.9
RUSBoost_Full 87.7 ± 1.4 86.5 ± 1.8 82.4 ± 2.2 73.0 ± 3.2 90.5 ± 1.0 73.0 ± 3.2

CNN_dualInput 85.2 ± 1.5 86.3 ± 0.8 81.3 ± 1.2 70.4 ± 1.9 87.7 ± 1.6 70.4 ± 1.9
CNN_Spectrogram 84.2 ± 2.4 86.1 ± 1.8 80.8 ± 2.3 69.5 ± 3.7 86.5 ± 2.4 69.5 ± 3.7

CNN_melSpectrogram 85.0 ± 2.3 86.9 ± 2.0 81.7 ± 2.4 71.1 ± 4.0 87.3 ± 2.1 71.1 ± 4.0

Table B.20: Stratification for Meditron (crackles vs. others)

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 70.2 ± 0.3 52.3 ± 0.2 81.8 ± 0.2 8.2 ± 0.8 16.9 ± 0.6 8.2 ± 0.8

LDA_100MRMR 43.6 ± 4.3 48.8 ± 2.7 47.8 ± 6.4 -2.4 ± 5.2 38.3 ± 1.5 -2.4 ± 5.2
LDA_Full 46.6 ± 9.9 51.6 ± 7.4 50.5 ± 12.7 2.4 ± 13.8 40.9 ± 5.4 2.4 ± 13.8

SVMrbf_10MRMR 67.8 ± 4.7 59.2 ± 2.6 77.7 ± 4.5 19.6 ± 6.3 40.9 ± 3.2 19.6 ± 6.3
SVMrbf_100MRMR 71.5 ± 3.4 62.4 ± 1.7 80.7 ± 2.9 27.2 ± 5.5 45.4 ± 1.7 27.2 ± 5.5

SVMrbf_Full 68.8 ± 3.9 63.5 ± 4.4 77.5 ± 3.2 26.4 ± 9.0 48.2 ± 6.5 26.4 ± 9.0
RUSBoost_10MRMR 67.8 ± 1.6 64.0 ± 1.6 76.3 ± 1.4 26.5 ± 3.1 49.5 ± 2.1 26.5 ± 3.1

RUSBoost_100MRMR 65.1 ± 4.0 61.5 ± 2.7 74.0 ± 3.9 21.7 ± 5.5 46.6 ± 2.7 21.7 ± 5.5
RUSBoost_Full 65.2 ± 3.0 62.5 ± 2.2 73.7 ± 3.0 23.4 ± 4.3 48.1 ± 2.5 23.4 ± 4.3

CNN_dualInput 51.4 ± 1.8 57.7 ± 3.3 57.1 ± 2.0 14.0 ± 6.0 43.9 ± 3.3 14.0 ± 6.0
CNN_Spectrogram 57.5 ± 3.6 62.8 ± 2.8 63.7 ± 4.5 23.0 ± 5.0 48.4 ± 2.6 23.0 ± 5.0

CNN_melSpectrogram 52.6 ± 3.8 56.3 ± 2.5 59.5 ± 5.5 11.3 ± 4.6 42.0 ± 2.5 11.3 ± 4.6

Table B.21: Stratification for Litt3200 (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 54.2 ± 0.6 62.0 ± 0.4 33.4 ± 0.3 17.5 ± 0.7 65.1 ± 0.7 17.5 ± 0.7

LDA_100MRMR 69.9 ± 0.9 55.1 ± 3.1 25.5 ± 4.0 8.4 ± 4.7 81.1 ± 0.8 8.4 ± 4.7
LDA_Full 63.3 ± 10.1 47.7 ± 5.1 15.0 ± 8.6 -4.1 ± 8.7 75.6 ± 8.5 -4.1 ± 8.7

SVMrbf_10MRMR 52.7 ± 2.5 65.4 ± 0.8 35.7 ± 0.6 22.7 ± 1.1 62.6 ± 3.0 22.7 ± 1.1
SVMrbf_100MRMR 77.3 ± 6.7 71.2 ± 3.1 46.7 ± 4.0 36.1 ± 5.1 85.3 ± 5.5 36.1 ± 5.1

SVMrbf_Full 78.6 ± 6.3 70.7 ± 2.5 47.2 ± 5.0 36.2 ± 6.4 86.4 ± 4.9 36.2 ± 6.4
RUSBoost_10MRMR 63.6 ± 1.7 64.9 ± 1.7 36.4 ± 1.4 21.9 ± 2.4 74.5 ± 1.7 21.9 ± 2.4

RUSBoost_100MRMR 74.5 ± 0.6 64.2 ± 1.8 37.5 ± 2.2 23.7 ± 2.8 84.0 ± 0.3 23.7 ± 2.8
RUSBoost_Full 78.2 ± 1.9 67.0 ± 3.4 42.0 ± 4.8 29.8 ± 5.9 86.6 ± 1.3 29.8 ± 5.9

CNN_dualInput 90.9 ± 1.3 86.3 ± 0.7 80.4 ± 2.1 74.7 ± 3.1 94.1 ± 0.9 74.7 ± 3.1
CNN_Spectrogram 87.6 ± 1.6 84.2 ± 1.0 75.0 ± 2.3 67.0 ± 3.3 91.7 ± 1.2 67.0 ± 3.3

CNN_melSpectrogram 91.7 ± 1.1 86.9 ± 0.8 81.8 ± 1.8 76.8 ± 2.7 94.6 ± 0.8 76.8 ± 2.7

Table B.22: Stratification for Litt3200 (crackles vs. others)
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Complete results of the stratification of RSD

Classifiers Accuracy AUC Wheeze F1 Wheeze MCC Wheeze F1 Other MCC Other
LDA_10MRMR 60.1 ± 0.0 51.7 ± 0.2 72.1 ± 0.1 4.0 ± 0.4 29.7 ± 0.7 4.0 ± 0.4

LDA_100MRMR 58.8 ± 1.4 55.5 ± 0.7 67.6 ± 2.3 10.9 ± 1.2 42.9 ± 2.7 10.9 ± 1.2
LDA_Full 57.1 ± 1.0 54.2 ± 1.0 65.8 ± 2.4 8.2 ± 1.9 41.8 ± 3.0 8.2 ± 1.9

SVMrbf_10MRMR 61.0 ± 0.4 55.3 ± 0.9 71.2 ± 0.4 11.0 ± 1.6 39.5 ± 2.0 11.0 ± 1.6
SVMrbf_100MRMR 64.2 ± 1.3 59.3 ± 1.5 73.3 ± 1.9 19.4 ± 2.3 45.3 ± 4.6 19.4 ± 2.3

SVMrbf_Full 63.2 ± 1.8 60.6 ± 0.4 70.9 ± 2.8 21.0 ± 0.7 49.4 ± 2.1 21.0 ± 0.7
RUSBoost_10MRMR 61.0 ± 1.1 59.6 ± 0.8 68.2 ± 1.8 18.5 ± 1.5 49.4 ± 1.5 18.5 ± 1.5

RUSBoost_100MRMR 61.9 ± 0.8 59.2 ± 1.4 70.0 ± 1.2 18.0 ± 2.5 47.7 ± 2.7 18.0 ± 2.5
RUSBoost_Full 60.7 ± 1.3 59.4 ± 1.5 67.8 ± 2.3 18.1 ± 2.8 49.1 ± 2.8 18.1 ± 2.8

CNN_dualInput 78.2 ± 0.9 74.5 ± 2.2 83.8 ± 1.0 51.2 ± 2.2 66.3 ± 3.4 51.2 ± 2.2
CNN_Spectrogram 77.8 ± 1.7 74.2 ± 1.6 83.4 ± 1.7 50.2 ± 3.0 66.0 ± 2.5 50.2 ± 3.0

CNN_melSpectrogram 78.0 ± 0.8 74.1 ± 1.7 83.7 ± 0.7 50.3 ± 2.3 65.9 ± 2.6 50.3 ± 2.3

Table B.23: Stratification for AKGC417L (wheezes vs. others)

Classifiers Accuracy AUC Crackle F1 Crackle MCC Crackle F1 Other MCC Other
LDA_10MRMR 68.7 ± 0.1 58.2 ± 0.4 79.0 ± 0.1 18.3 ± 0.7 38.2 ± 1.0 18.3 ± 0.7

LDA_100MRMR 68.0 ± 0.2 61.1 ± 1.1 77.5 ± 0.2 22.3 ± 1.8 44.7 ± 1.9 22.3 ± 1.8
LDA_Full 68.2 ± 1.0 61.9 ± 0.5 77.4 ± 1.2 23.8 ± 0.7 46.3 ± 1.2 23.8 ± 0.7

SVMrbf_10MRMR 69.4 ± 0.2 54.5 ± 0.5 80.7 ± 0.2 12.6 ± 1.1 26.0 ± 1.9 12.6 ± 1.1
SVMrbf_100MRMR 70.3 ± 0.5 62.7 ± 2.5 79.4 ± 0.8 26.3 ± 3.6 46.2 ± 5.7 26.3 ± 3.6

SVMrbf_Full 68.7 ± 1.2 62.5 ± 2.9 77.6 ± 2.0 25.0 ± 4.0 46.1 ± 7.8 25.0 ± 4.0
RUSBoost_10MRMR 68.3 ± 0.7 63.5 ± 1.0 77.0 ± 1.1 26.2 ± 1.2 48.9 ± 1.8 26.2 ± 1.2

RUSBoost_100MRMR 68.9 ± 0.6 63.7 ± 1.0 77.6 ± 0.8 26.9 ± 1.4 49.1 ± 2.0 26.9 ± 1.4
RUSBoost_Full 68.7 ± 0.6 64.0 ± 1.0 77.3 ± 0.8 27.2 ± 1.5 49.6 ± 1.5 27.2 ± 1.5

CNN_dualInput 86.4 ± 0.8 79.5 ± 2.3 90.9 ± 0.5 66.2 ± 1.8 72.9 ± 3.0 66.2 ± 1.8
CNN_Spectrogram 85.4 ± 0.9 78.7 ± 2.1 90.2 ± 0.8 63.7 ± 2.0 71.4 ± 2.7 63.7 ± 2.0

CNN_melSpectrogram 87.1 ± 0.5 80.7 ± 1.0 91.4 ± 0.4 67.9 ± 1.3 74.8 ± 1.3 67.9 ± 1.3

Table B.24: Stratification for AKGC417L (crackles vs. others)
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