

Maria Beatriz Delgado Gomes Santos Vieira

MOBILE MONEY AGENT MANAGEMENT USING
BLOCKCHAIN

Dissertation in the context of the Master in Informatics Engineering, specialization in
Software Engineering, advised by Prof. Luís Macedo and Eng. Marisa Martins, and
presented to the Department of Informatics Engineering of the Faculty of Sciences

and Technology of the University of Coimbra.

July 2022

DEPARTMENT OF INFORMATICS ENGINEERING

Maria Beatriz Delgado Gomes Santos Vieira

Mobile Money Agent Management
using Blockchain

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Luís Macedo and Eng.
Marisa Martins, and presented to the Department of Informatics Engineering of

the Faculty of Sciences and Technology of the University of Coimbra.

July 2022

Acknowledgements

With the internship concluded, it would be impossible not to thank several peo-
ple. Who directly or indirectly contributed and helped me in this phase of my
professional and personal life.

First of all, I would like to thank WIT Software for the opportunity they gave
me to do my internship and the way they welcomed me. To my technical tutor,
João Sousa, for all the support provided, constant monitoring, and concern with
the work being developed. To my supervisor, Marisa Martins, for always being
available to answer any questions I might have. To my business analyst, Jana
Lage, for all the advice and support during this internship. To all of them, I
am grateful for the transmission of knowledge that was very important for my
growth as a professional.

A word of thanks to the teachers of the Department of Informatics Engineering.
For the knowledge and values transmitted during the classes. A special thanks
to Professor Luís Macedo for his guidance in this report development and the
support demonstrated.

A huge thank you to my family, first to my father, who was the person who
believed in me the most and was the proudest. Second, to my mother, for being
my biggest support and safe haven. And to my two older brothers, who were
always there to give me the strength to overcome all obstacles.

And finally, thank my friends, classmates, and childhood friends. For believing
in me more than I believed in myself and their constant concern throughout this
time.

v

Abstract

In a world more technological than ever, it is crucial to remember that technology
is not only about making our lives easier. People born and residing in developing
countries do not have the same ease of access as most people have to the most
basic technologies. The leading reasons for this are the lack of signal coverage
and lack of literacy. Mobile money services intend to narrow this technological
gap, and the purpose is to facilitate financial transactions for those under these
conditions. The present document and internship aim to study the integration
of blockchain technology in a mobile money service. The motivation is not to
implement the mobile money service itself but a new agent rating feature based
on blockchain.

Competitor research was carried out to understand how mobile money services
are designed. From this study, it was possible to conclude that there are no solu-
tions based on blockchain, which makes this internship unique. Due to privacy
issues, the architectural solution is not entirely decentralized. The designed archi-
tecture is hybrid by considering a centralized database that stores users’ personal
and sensitive data. Plus, the information related to the rating feature is stored in
a smart contract on the blockchain.

There are some hurdles in this blockchain-based solution. The most critical im-
pediment is that the user must have some experience and knowledge in blockchain
to be able to do the digital wallet setup before using the application. For future
work, Gas Station Network (GSN) is the solution for this obstacle, removing all
perceptions that there are blockchain mechanisms in the application.

Keywords

Mobile Money, Agents, Clients, Mobile Application, Blockchain, Smart Contracts

vii

Resumo

Num mundo cada vez mais tecnológico, é importante relembrar que a tecnologia
não deve ser apenas usada para facilitar as nossas vidas. As pessoas nascidas e
residentes em países em desenvolvimento não têm a mesma facilidade de acesso
às tecnologias mais básicas. Duas razões principais para isso são a falta de cober-
tura de sinal e o analfabetismo. Os serviços de dinheiro móvel pretendem reduzir
esta lacuna tecnológica e o objetivo é facilitar as transações financeiras para estas
pessoas. O presente documento e estágio visam estudar a integração da tecnolo-
gia blockchain num serviço de dinheiro móvel. A motivação não é implementar o
próprio serviço de dinheiro móvel, mas uma nova funcionalidade de classificação
de agentes baseada em blockchain.

Para entender melhor como é que os serviços de dinheiro móvel são desenhados,
foi realizada uma pesquisa de concorrentes. A partir deste estudo, foi possível
concluir que não existem soluções baseadas em blockchain, o que torna este es-
tágio único. Devido a questões de privacidade, a solução arquitetónica não é to-
talmente descentralizada. A arquitetura projetada é híbrida, pelo que uma base
de dados centralizada armazena os dados pessoais e sensíveis dos utilizadores.
Além disso, as informações relacionadas à funcionalidade de classificação de
agentes, são armazenadas num contrato inteligente na blockchain.

Existem alguns obstáculos nesta solução baseada em blockchain. O impedimento
mais crítico é que o utilizador deve ter alguma experiência e conhecimento prévio
em blockchain. Isto para poder fazer a configuração da carteira digital antes
de utilizar a aplicação. Para trabalho futuro, a Gas Station Network (GSN) é
a solução para este obstáculo, removendo todas as percepções de que existem
mecanismos de blockchain na aplicação.

Palavras-Chave

Dinheiro Móvel, Agentes, Clientes, Aplicação Móvel, Blockchain, Contrato In-
teligente

ix

Contents

1 Introduction 1
1.1 Context . 1
1.2 Goals . 2
1.3 Document Structure . 2

2 State of The Art 5
2.1 Mobile Money . 5

2.1.1 Agents . 6
2.2 Competition . 8

2.2.1 Direct Competitors . 8
2.2.2 Features . 10
2.2.3 Feature Classification . 12
2.2.4 Conclusion . 14

3 Proposed Solution 15
3.1 Blockchain . 15
3.2 Technologies . 16

3.2.1 Backend . 17
3.2.2 Frontend . 20

4 Methodology and Planning 23
4.1 Methodology . 23

4.1.1 Roles . 23
4.1.2 Ceremonies . 24

4.2 Planning . 24
4.2.1 1st Semester . 25
4.2.2 2nd Semester . 26

5 System Description 29
5.1 User Stories . 29

5.1.1 Agents . 30
5.1.2 Clients . 31

5.2 Functional Requirements . 33
5.3 Use Cases . 35

5.3.1 Authentication . 35
5.3.2 Agent user . 35
5.3.3 Client user . 35

5.4 Non-Functional Requirements . 37
5.4.1 Security . 37

xi

Chapter 0

5.4.2 Learnability . 38
5.4.3 Usability . 38
5.4.4 Availability . 38

5.5 Risks . 39
5.6 Software Architecture . 40

5.6.1 Architecture . 40
5.6.2 Context Level . 40
5.6.3 Containers Level . 41
5.6.4 Components Level . 42
5.6.5 Code Level . 44

5.7 Navigation Diagram . 44

6 Development 47
6.1 Process and project organization . 47
6.2 Project Structure . 49

6.2.1 Frontend . 49
6.2.2 Backend . 50

6.3 Developed requirements . 51
6.3.1 Authentication . 52
6.3.2 Agents’ Module . 58
6.3.3 Clients’ Module . 59

6.4 Risks . 63
6.5 Security and Privacy . 64

6.5.1 GDPR . 64
6.6 Future work . 65

6.6.1 Problem . 65
6.6.2 Hypothesis . 66
6.6.3 Comparative analysis (Appendix C) 67
6.6.4 Conclusion . 67

7 Testing 69
7.1 Unit Testing . 69

7.1.1 Web API . 69
7.1.2 Smart Contract . 70
7.1.3 Mobile App . 71

7.2 Usability Testing . 73
7.2.1 Tests . 73
7.2.2 Results . 74

7.3 Conclusions . 75

8 Conclusion 77

Appendix A 1st Semester Planning 85

Appendix B Software Architecture 87

Appendix C Comparative Analysis 89

Appendix D AWS Pricing Calculator 95

xii

Contents

Appendix E Web API Documentation 97

xiii

Acronyms

AML Anti Money Laundering.

CRUD Create, Read, Update and Delete.

DApp Decentralized Application.

ES Epic Stories.

GDPR General Data Protection Regulation.

GPS Global Positioning System.

GSN Gas Station Network.

JVM Java Virtual Machine.

KPI Key Performance Indicator.

KYC Know Your Customer.

MRZ Machine Readable Zone.

OCR Optical Character Recognition.

UI User Interface.

US User Stories.

UX User Experience.

xv

List of Figures

2.1 Mobile Money Agent Shop . 6
2.2 Current M-Pesa Agent Network Structure in Kenya (updated) [7] . 7
2.3 Waynbo, Papersoft . 8
2.4 FieldPro, Optimetriks . 9
2.5 MoMoAgent, MTN . 10

3.1 Blockchain Explained [21] . 15
3.2 Proposed Solution . 16
3.3 Polygon vs Ethereum [37] . 19

4.1 Scrum Lifecycle [43] . 24
4.2 1st Semester Planning . 25
4.3 2nd Semester Planning . 26
4.4 Burndown Chart - Sprint #4 . 27
4.5 Velocity Report Charts - Sprint #3 to #5 27
4.6 Velocity Report Charts - Sprint #6 to #9 28
4.7 Comparison between planned and actual timeline 28

5.1 Use Case - Authentication . 35
5.2 Use Case - Agent Dashboard . 36
5.3 Use Case - Client Dashboard . 36
5.4 Quality Attribute Scenario [47] . 37
5.5 Context Level . 41
5.6 Container Level . 42
5.7 Component Level - Frontend (Agent) 43
5.8 Component Level - Frontend (Client) 43
5.9 Navigation Diagram . 44

6.1 Jira Board . 48
6.2 GitLab Flow . 48
6.3 Frontend Structure . 49
6.4 Ktor Server . 50
6.5 Registration Flow . 53
6.6 Initial screen and connect wallet . 54
6.7 Connect wallet confirmation . 54
6.8 Sign up form . 55
6.9 Smart contract registration . 55
6.10 Sign back in . 56
6.11 Account Settings (Client and Agent) 57

xvii

Chapter 0

6.12 Registration as an agent . 57
6.13 Agent Home . 58
6.14 Performance Dashboard . 59
6.15 Client Home . 60
6.16 Explore Client . 61
6.17 Operation - Assign rating to an agent 62
6.18 Confirmation - Assign rating to an agent 62
6.19 Rating History . 63
6.20 Location Permission . 65
6.21 GSN [50] . 66
6.22 GSN Architecture [50] . 66

A.1 1st Semester - Comparison between planned and actual timeline . . 85

B.1 Component Level - Backend (Agent) 87
B.2 Component Level - Backend (Client) 88

xviii

List of Tables

2.1 Features of Products . 12
2.2 Features classification based on the MoSCoW scale 13

3.1 Blockchain Platform Comparisons 17
3.2 Layer 2 Scaling Solution . 18
3.3 Frontend Platform Comparisons . 20

5.1 Common requirements . 34
5.2 Agents’ requirements . 34
5.3 Clients’ requirements . 34
5.4 Risks . 39

6.1 Developed common requirements 51
6.2 Developed agents’ requirements . 52
6.3 Developed clients’ requirements . 52
6.4 Risks . 63

7.1 Web API Testing . 70
7.2 Smart Contract Testing . 71
7.3 Mobile App Testing - Client Database 71
7.4 Mobile App Testing - Agent Database 72
7.5 Mobile App Testing - API Service . 72
7.6 Expected number of clicks per-task 74
7.7 Real number of clicks per-task . 74

xix

Chapter 1

Introduction

This document was developed and written for the Curricular Internship for the
Master’s Degree in Computer Engineering - Software Engineering - at the Uni-
versity of Coimbra for the academic year 2021/2022. Also, this internship pro-
posal was from the WIT Software company. Professor Luís Macedo from the
Department of Informatics Engineering, and engineer Marisa Martins from WIT
Software, were responsible for guiding this internship.

This first chapter describes the context and motivation of this internship, as well
as the objectives to be achieved. In addition, it presents how the document is
structured.

1.1 Context

"Mobile money services are being deployed rapidly across emerging markets as a
key tool to further the goal of financial inclusion" [1]. WIT Software is a company
already experienced and has worked with mobile money systems. Is aware that
mobile money services are very successful in developing countries due to the lack
of infrastructure to support financial transactions. These services allow to send
and receive money, make bill payments, and withdraw money, and the people
who make it possible are the agents, who can more easily obtain fiat money.

In the context of this internship, WIT Software presented a project involving the
development of a mobile application prototype. This mobile application con-
sists of a Decentralized Application (DApp), which is an app that runs in the
blockchain network. The focus is not to implement the mobile money services
because the company already has developed services to perform those opera-
tions. The key feature of the proposed project is a system to assign a rating to the
agents after any service provided to their clients, based on blockchain technology.
The purpose of WIT Software with this internship is to understand if a solution
based on blockchain would make sense. That’s if the risks and costs associated
with this type of technology are worth it.

The project itself is already challenging due to the complexity of blockchain tech-

1

Chapter 1

nology, and adding it to a mobile application makes it even more defiant. Blockchain
allows for public and unambiguous registration of transactions and enables clients
and agents to register only using their mobile devices. The transparency that the
blockchain offers increases the trust in the agent.

1.2 Goals

As stated above, the intention is to found this mobile app on the mobile money
service theme. However, focusing on the rating given by the clients to the agents.
In this application, agents can check their performance according to the ratings,
and clients can search for agents corresponding to their needs, by rating, or by
distance. The objective of this feature in a mobile money service is to include the
clients in the process and allow them to give their opinion about a service they are
using. At the same time, agents can re-evaluate their performance and improve
their service if clients haven’t been given satisfactory ratings.

The main goal is to have a well-developed prototype that can easily demonstrate
the explored concepts, and that is under the proposed project. This objective only
can be achieved with a well-structured engineering process.

1.3 Document Structure

This document is divided into eight chapters. Each one describes the work car-
ried out under each component. These are:

• The current chapter - Chapter 1 - introduces the project, its context, and the
company that proposed it.

• The second chapter - Chapter 2 - is dedicated to the State of The Art. This
section describes what mobile money and agents are, competitors’ research,
and which of the competitors’ features can be applied to the project.

• The third chapter - Chapter 3 - describes the proposed solution and which
frontend and backend technologies were studied and chosen for the project
development.

• The fourth chapter - Chapter 4 - describes the methodology used in this
project and the work plan for the 1st and 2nd semesters.

• The fifth chapter - Chapter 5 - intends to describe the project requirements,
represented in different ways, such as user stories, use cases, and quality at-
tributes. Furthermore, this chapter describes the project risks and the archi-
tecture based on the C4 Model. Finally, a navigation diagram is provided.

• The sixth chapter - Chapter 6 - includes the development component. This
chapter describes the project organization and structure, the developed re-

2

Introduction

quirements, and security and privacy topics. Lastly, it presents the future
work.

• The seventh chapter - Chapter 7 - is dedicated to the testing made to validate
the final product.

• The last chapter - Chapter 8 - intends to draw the conclusions of the intern-
ship.

3

Chapter 2

State of The Art

A good research about the theme and the project the intern is proposing to de-
velop is indispensable. The output should give the adequate knowledge to suc-
ceed and a critical headstart for what is yet to come.

The purpose of this section is to describe what mobile money is, its usage, and its
importance in developing countries. Also, how mobile money is managed and
by whom, i.e., Agents. In the following sections, these topics will be approached
first, and then an overview of existing similar solutions will be made.

2.1 Mobile Money

So, what is money after all? Fiat money, coins, and money bills? Yes, it is but not
only.

"Money is any clearly identifiable object of value that is generally accepted as
payment for goods, services and repayment of debts within a market or which

functions in a manner similar to the legal tender of a country." [2]

Based on that definition, there’s a service of money that allows everyone to send,
receive and store money just by using a mobile phone. That is Mobile Money. It
is an excellent alternative to fiat money and banks because it facilitates financial
transactions, and the users can make transactions anywhere. As WIT Software
company works with these services in Africa, the definition of mobile money is
lightly different from the one stated above. "While mobile money can include
access to e-money, surprisingly most mobile money services are still largely cash-
based with service providers acting as intermediary cash agents. This partially
explains why evolutions in mobile money are expected to contribute to financial
inclusion" [2]. Instead of relying on e-money, the clients need an intermediary to
use the mobile money service, like deposit and withdraw cash.

Mobile Money services have greater importance in developing countries than in
developed countries. Accordingly to the 2017 statistics report, 45.6 percent of

5

Chapter 2

mobile money services are located in Sub-Saharan Africa [3]. Therefore, in devel-
oping countries, this type of service has become very popular because few banks
or infrastructure support financial transactions. Another reason is the lack of sig-
nal coverage and the lack of literacy to deal with complex money services [4]. As
a consequence, people in these places have shown more interest in this service,
as it grants them access to money more easily and quickly. Some examples of the
most well-known mobile money services that are currently active in Africa are:

• M-Pesa, Safaricom and Vodacom (Vodafone Group Unit)

• Airtel Money, Airtel Payments Bank

• Orange Money, Orange S.A.

To have a chance of succeeding in building these services in these countries, the
companies need facilitators that can convert cash, which means someone that can
receive and withdraw physical money. Those are called agents.

2.1.1 Agents

In a simple statement, one can define an agent as someone that makes financial
transitions easier for customers. Mobile Money services need agents mostly to
make operations of cash-in and cash-out, cash-in as an action to credit the user
account by the agent, and cash-out as an action to withdraw physical money from
the user account [5]. Depending on how the operators implement the Mobile
Money service, agents may or may not be the ones that register new customers.
Nevertheless, they are the ones that have direct contact with customers. There-
fore, they will have a role in helping and teaching how these services operate and
how to carry out any transaction. Agents are not exclusive to a mobile money
service. They can work for many - figure 2.1 - is an example of how an agent
shop is.

Figure 2.1: Mobile Money Agent Shop

6

State of The Art

And how are these agents incentivized? They receive a commission for every
transaction made. In practical terms, the more clients they have and extra trans-
actions performed, the more these agents get at the end of the month. Agents
also receive an incentive when performing external services like registering new
customers. Furthermore, an authority (central bank or other financial authority)
normally regulates these agents.

Why is there a need to manage the agents? Agents acquire new clients. What
about recruiting agents? To whom belongs this job? Not everyone can become an
agent. They must have some minimum requirements, and the Aggregator plays
the role of deciding and evaluating who can become an agent of their network.
After this step, agents are trained and onboarded by the respective mobile money
service.

Figure 2.2 helps to understand how an agent network works. This agent network
is of M-Pesa operated by Safaricom in Kenya, which belongs to the Vodafone
Group. M-Pesa means "m-money" in Swahili, started in 2007 in Kenya, and has
evolved its business to more than nine countries [6].

Figure 2.2: Current M-Pesa Agent Network Structure in Kenya (updated) [7]

Starting from the bottom, as stated above, Aggregators select, train, and manage
subagents. Aggregators base their assessment on the agents’ business location,
the size of the customer base, and whether the area is under-supplied by M-
Pesa’s outlets. Subagents can become agents after three months spent with the
Aggregators.

Agents must be able to provide two types of services to their customers: cash-in
and cash-out. This implies that they must have enough float and liquidity to pro-
vide their customers with these needs, first one is the e-money (electronic money)
or physical cash that the agent can access immediately and the second one refers
to the sum of the agent’s e-money and float balance. To ensure that agents have

7

Chapter 2

quick access to these two needs, Superagents, which are usually banks, were in-
troduced. They deposit funds into an M-Pesa trust account and receive e-float,
which they sell to agents and aggregators for a 1% commission.

There are also agent network managers, which are services that Safaricom hires to
monitor agents to check their performance and assure that everything is working
the way it’s supposed to be working. One of M-Pesa’s services to manage its
agents is Waynbo from Papersoft.

2.2 Competition

This section describes which companies and products have similar solutions for
the initial internship problem: "Mobile Money Agent Management using Blockchain".
The intern did not find any solution using blockchain, so this research was fo-
cused only on how companies manage their agents.

2.2.1 Direct Competitors

Waynbo, Papersoft

Figure 2.3: Waynbo,
Papersoft

The first competitor identified is Waynbo, created by Pa-
persoft. This company was founded in 1999 in Portugal
and later expanded to the UK and Mozambique. The pur-
pose was to manage and simplify business processes [8]. It
has grown in recent years in new product development for
financial inclusion in Africa [9].

Waynbo aims to manage a network of agents, offering tools
for tracking agents and their performance. Waynbo is a
"Built for Africa" solution - meaning it has special care with limitations in the
region, such as providing an Offline Mode for zones where the network connec-
tivity is unreliable [10]. This feature can be achieved because the software stores
the data in packs, and when the agent recovers the internet signal, all the data is
uploaded automatically [11].

First, if the applicant fulfills the needed requirements to become an agent, Waynbo
offers an interface for creating agents with different permissions, capturing all
the personal data. This is done by reading the document data and scanning MRZ
(Machine Readable Zone) or QR codes, making this procedure effortless and eas-
ier. Throughout the registration process and to get the new agent onboard, this
service provides Bots on digital channels [12].

This service has data reports associated with each agent, monitoring their perfor-
mance and evaluating their results to keep track of them. Additionally, Waynbo
has control tools like GPS location and an e-form for supervisors to assess the
agents’ skills like a "mystery shopping" program [12]. It is a technique used to
evaluate a product or service, posing as a customer.

8

State of The Art

In this type of service, transparency is a key factor in building a successful Agent
Network. The fact that agents can check their performance and that managers
can track the agents’ transactions supports this transparency concept.

FieldPro, Optimetriks [13]

Figure 2.4: FieldPro,
Optimetriks

The second one is FieldPro, developed by Optimetriks.
Founded in 2015 with the beginning of activities in East
Africa, it is a relatively small company in terms of workers.
However, its presence has been evolving and expanding to
over 30 countries.

FieldPro is a monitoring tool that allows geo-location track-
ing, among many other features.

The first thing to do, to ensure the good behavior of the
system and so that there are no failures, is to populate a database of all the agents
with some information, such as:

• Shop name and an outside/inside picture

• Type of shop

• GPS location

• Shop owner and shop assistant contact details: email address, phone, name

• Unique identifier - agent code or some kind of number that identifies the
business to be used as a primary key

• GPS capture (Geo-mapping)

When a new agent joins the network, the operator must add him with all these
details, and an attribute is assigned to it that is unique so that the field user cannot
create an agent that already exists with that attribute.

Furthermore, agents can have different permissions and restrictions because not
all the agents on the same network operate in the same region and not all have the
same role. So, FieldPro allows defining a structure to filter what each agent can
access, like the activities in his area. Each agent has a unique supervisor that visits
him at least once a month. In these visits, the supervisor will check parameters
like float and cash availability, branding presence of items such as agent code
and street sign, capture some customers feedback, and Compliance with Know
Your Customer (KYC) and Anti Money Laundering (AML) standards. This last
one ensures that agents ask for the customers’ ID when transacting and filling
logbooks.

Supervisors have a list of all the agents they have responsibility for. This list
allows for measuring an important Key Performance Indicator (KPI) - coverage.
Coverage demonstrates the percentage of agents that the supervisor has visited.

9

Chapter 2

The supervisor’s productivity can be measured based on the KPIs registered on
the app of FieldPro.

MoMoAgent, MTN

Figure 2.5: Mo-
MoAgent, MTN

The 3rd competitor is MoMoAgent, developed by MTN.
This company was created in 1994 and established in South
Africa [14]. This mobile operator focuses on mobile and
digital changes. They believe that everyone deserves ac-
cess to better digital devices and better technologies. Es-
sentially they want everyone to get the same chances [15].

MoMoAgent is a mobile application that allows agents to
manage their financial transactions and allows supervisors
to check their agents’ performance.

It’s necessary to meet some requirements before using Mo-
MoAgent, to become an agent. These requirements include
owning a business, having valid documents of identifica-
tion like Passport, Voter ID Card, National IDs, National
Health Insurance Card, SSNIT Biometric Card, and Driver’s License [16] [17].
Another requisite is meeting a capital threshold that depends from place to place.
So, if these requirements check, the potential agent has to go to an MTN outlet to
fill in the application form. Finally, the staff from MTN will analyze and decide if
the potential agent can be a MoMo Agent.

As mentioned above, before using the MoMoAgent mobile application, it’s nec-
essary to be recognized as an agent by MTN. In this application, the agents can
make financial transactions - send and receive money - for their customers, whether
they have a bank account or not [18]. MoMoAgent is a simple mobile application
to use so that any mobile phone can use this service. In addition, it allows fast
transactions because MTN designed this application to run on any network.

2.2.2 Features

With the analysis made of the competitors mentioned before, some features can
be extracted.

The features are:

• Agent registering manually: entering all necessary information, such as
personal and business information, is done manually in the app. Unique
identifier for each agent so that there is no replications of agents with that
attribute.

• Agent registering with OCR (Optical Character Recognition) Scanning:
the process of registering the agent speeds up because the data from doc-
uments is read automatically and also allows scanning MRZ codes (long

10

State of The Art

number at the bottom of the passport) or QR codes. The documents that
can be used for identification are an ID card, passport, voter’s card, military
card and driver’s license [19]. The information retrieved depends on which
document was used, at least the first and last name and the number of the
card are retrieved.

• Different permissions can be defined: this is very helpful to maintain a
certain hierarchy and the restrictions well defined.

• Remote onboarding for Agents: bots are used to onboard the new Agents
which is easier, faster and more efficient. This eliminates errors from man-
ual validation.

• Performance Monitoring: dashboards that allow tracking key metrics of
the agents, checking the most important KPIs. Also, gives insights and use-
ful information to certain decisions. An example could be if an agent has
not been productive as expected and their supervisor can take action.

• Control Monitoring - GPS Location: this makes it possible to know where
is the location of any agents’ activity.

• Control Monitoring - Quality Control: another control tool is the quality
control of the agents with the feature of a special e-form that is available for
supervisors to evaluate agents’ skills.

• Offline Mode: this allows the application to keep on monitoring all the data
of the agents even on Offline Mode.

• Direct Assistance to Agents: each agent has a direct channel on WhatsApp
to facilitate helpdesk communications and assistance.

• Simple Interface: easy to use and designed to be intuitive.

• Documentation section: reserved to each agent, this section is helpful to
organize the information into only one place, allows uploading any kind of
documents so that the user can find it easily.

Table 2.1 presents the products mentioned before and which features one has.

11

Chapter 2

Table 2.1: Features of Products

2.2.3 Feature Classification

Table 2.2 is a cross-table with the classifications given to each competitor’s fea-
ture.

The classification was based on the MoSCoW scale [20].

12

State of The Art

Table 2.2: Features classification based on the MoSCoW scale

Two different features were stated for registering new agents: Agent registering
manually, which is the default mode, and Agent registering with OCR Scanning,
granting a simpler option for registration. In this particular case, the focus is not
the registration process. If that were the case, the OCR Scanning feature would
be a “must-have” as it is not the case, this feature is a “could have”.

The third feature, Different permissions can be defined, will probably not be nec-
essary, and the reason for this will be more detailed in the proposed solution
Section 3.1. However, the main idea is if the agents’ information is public in the
various blocks of blockchain, everyone will be able to see every transaction and
movement of each agent, which means that there is no need to set different access
permissions.

Remote onboarding for agents using bots is a feature that can be classified as a
“could have”. Again not the focus, but it would be nice to have because it allows
removing errors from manual validation.

Having a performance monitoring dashboard is good to have in the application
because it allows the agent to get an overview of how good or bad their work as
an agent has been. Therefore, this feature is considered a “must have”.

There are two features associated with control monitoring, GPS location and qual-
ity control. The first will be classified as a “should have” and the second as a
“could have” because it has no considerable impact if left out. The GPS location
allows to keep track or at least know where the agent is performing his duties.

The eighth feature - Offline Mode - is indisputably a “must have” in any applica-
tion developed for use in developing countries. This is due to the lack of signal
coverage that still exists in some areas.

13

Chapter 2

Having a direct channel to facilitate helpdesk communications and assistance is
good but it involves using another application which is a disadvantage. This
feature will be classified as a “could have”.

The "Simple Interface" feature can be a little subjective but it essentially means
building an application that is intuitive, easy to use so that anyone, even non-
literate, can easily learn and use it. Therefore, this feature is also a "must have".

Finally, a documentation section for each agent can be very useful to gather in-
formation in a single place, this one is classified as a “should have”.

2.2.4 Conclusion

As stated at the beginning of this chapter, a good state of the art should provide
the necessary tools and a solid basis for any project or work. In addition to now
having a more realistic idea of what mobile money is and who the agents are, it
was also possible to draw some conclusions about what is being done by other
companies regarding the management of mobile money agents.

An important fact is that no solution using blockchain was found, which in itself
makes the solution proposed by this internship unique.

14

Chapter 3

Proposed Solution

This chapter aims to describe the proposed solution for this internship. The first
section explains how blockchain will be used, and then the backend and frontend
technologies are described.

3.1 Blockchain

In its literal interpretation, a blockchain is a chain of several blocks attached (Fig-
ure 3.1). Each block contains the data, the block fingerprint represented by the
hash, and the previous block hash. Preventing data tampering if someone tries
to change the data within a block because, when that happens, the block’s hash
changes meaning the next block will not have the correct previous hash, making
the entire chain invalid.

Figure 3.1: Blockchain Explained [21]

The solution is to have a DApp, a decentralized application, which is an applica-
tion that exists and runs on a blockchain. DApps are open-source, decentralized,
and free from control or interference by an authority [22]. The advantages of de-
veloping a DApp are that there is no downtime even if one node fails, another
node will instantly take over, and censorship-resistant because it’s unlikely that

15

Chapter 3

powerful governments or individuals will take over the network [22]. This DApp
will support the UI for the backend supported by smart contracts that will write
data to the blockchain (Figure 3.2). Smart contracts are like real-life contracts, but
digital, that execute predetermined conditions and provide automation, trans-
parency, and immutability [23]. Automation does not need an intermediary for
transactions, transparency, and immutability because it avoids fraud. There is a
risk with using smart contracts. When deployed to the blockchain, they can never
be changed. If there is a bug, it will remain there.

Figure 3.2: Proposed Solution

Clients and agents can register on the blockchain, and all transactions will be
associated with each user, ensuring the data is immutable. One of the features of
this DApp is the agents’ rating. Clients use the agents’ services and rate them at
the end. In the beginning, new agents may have higher rates which will decrease
as they gain reputation. That way, customers can go to an agent with a better
reputation or an agent that is new and can charge better taxes. This feature is
similar to what happens at the end of a Uber trip. Customers can assign a rating
to the driver. In this case, customers can give the agent a rating at the end of the
transaction, and agents will improve their rating as they complete transactions.

Blockchain allows transparency of the users’ transactions, ensuring the data has
not been tampered with, increasing the agents’ trust since everything is publicly
registered.

3.2 Technologies

In this subsection, all the necessary comparisons will be made to reach a con-
clusion about the backend and frontend technologies to be used in the project
development.

16

Proposed Solution

3.2.1 Backend

This subsection makes all the necessary comparisons to conclude the backend
and frontend technologies used in the project development.

Choosing the backend for this project means selecting a blockchain platform.
Currently, there are several platforms, each with different characteristics and a
differentiating factor between them. Among many, there were four different ones
compared. For the comparison, the intern considered five criteria:

1. Available Information

• Documentation structure and quality

• Available tutorials

2. Ease for a new programmer to get started with this platform

3. Mobile Application Scalability

4. Mobile Application Performance

• How fast can the application answer requests?

5. Transaction Fee

All four blockchains compared, represented by table 3.1, can support decentral-
ized applications (DApp)s and smart contracts. Performance is the time it takes
to add the block to the blockchain, directly related to how many transactions are
possible per second.

Table 3.1: Blockchain Platform Comparisons

The first one - Ethereum - launched in 2015 - is best known for supporting DApps
and smart contracts. Ethereum has a large amount of documentation and avail-
able tutorials that help beginners due to its popularity. Nevertheless, its scalabil-
ity and performance are not the best and are very low compared to many others.

17

Chapter 3

Ethereum’s transaction fee is considered cost-prohibitive because it is so high that
most people can not afford it [24].

Secondly, the Cardano platform - launched in 2017 - offers greater scalability than
Ethereum and is not difficult to learn. However, its smart contracts were only
available in September 2021. Cardano’s transaction fee is considered affordable
[25].

In third and fourth place, Polkadot and Solana. Both launched in 2020 and there-
fore have much less documentation and a smaller community that can help with
questions and errors. The transaction fee of both these two platforms is consid-
ered very low [26][27].

Despite the scalability issue and the prohibitive transaction cost, the Ethereum
network keeps about half of all DApps running on the market. On top of that,
more than 600 000 active users interact with these DApps regularly [28].

Ethereum would be a good choice as a backend technology. The obstacle is the
high transaction fee. However, other Ethereum-based solutions can help increase
scalability and therefore reduce cost. These are called Ethereum Layer 2 scaling
solutions, and the three most popular will be compared. These are Polygon, Ar-
bitrum, and Optimism - Table 3.2.

The primary focus of any Layer 2 scaling solution is to move most transactions
out of the main chain. As a result, transaction speed increases and also reduces
gas fees required for transactions [29].

Table 3.2: Layer 2 Scaling Solution

Polygon, released in 2017 [30], compared to Arbitrum released in May 2021 [31],
and Optimism released in July 2021 [32], has more documentation available be-
cause it had more time to establish and be used by more people. In the scalability
criteria, any one of them [33][34][35] would be good enough.

Sidechains like Polygon and rollups like Optimism and Arbitrum are indepen-
dent blockchains. They have their own set of blocks and Smart Contract envi-
ronments. The main difference between these two types of off-chain protocols
lies in the bridge contract that allows assets to be moved from the main chain
(Ethereum) to another blockchain network. Precisely, it is the trust assumption
that protects the funds held by the bridge contract [36].

18

Proposed Solution

For a sidechain, the bridge contract does not verify the integrity of the other net-
work. Instead depends on a set of parties to attest to its validity. The sidechain
assumes that at least a threshold of parties should have a financial incentive to
remain honest and protect the user funds. On the other hand, in rollups, one set
of parties is responsible for providing the state of the other network to the bridge
contract. The bridge validates and verifies that the other network is not compro-
mised [36]. Rollups can indeed retain Ethereum security but at a cost. Rollups
consume more Ethereum resources, increasing transaction costs in a rollup net-
work in comparison to a sidechain.

Polygon uses Proof of Stake validation instead of Ethereum’s Proof of Work val-
idation, which allows for increasing transaction speed. Also, it is a sidechain
which means that, compared to the rollups Arbitrum and Optimism, Polygon
is cheaper. Since May 2021, the number of daily active users of Ethereum has
decreased, and Polygon users have increased, figure 3.3. Polygon features all
the tools used by developers to create optimized Ethereum instances. Also, this
platform provides an improvement in flexibility for developers and Ethereum’s
security.

Figure 3.3: Polygon vs Ethereum [37]

The difference between Arbitrum and Optimism is how they resolve a dispute in
Layer 2. Both are optimistic rollups, assuming all new additions to the blockchain
are valid unless a network participant challenges within a week. Optimism re-
executes the transaction disputed in Layer 1 (Ethereum) and checks which part
is correct. Arbitrum, on the other hand, continually subdivides the transaction
until the disputed information is so small that it can be sent and resolved quickly
by Layer 1, thus reducing network congestion relative to Optimism [38].

Between the two rollups, the choice would be Arbitrum because it allows more
transactions per second and reduces network congestion. However, transaction
cost rollups can be more expensive than sidechains.

As Polygon is already a well-established and cheaper off-chain protocol and also
one of the technologies used by WIT Software, therefore it was chosen for this
project.

19

Chapter 3

3.2.2 Frontend

This internship aims to develop a mobile app. This section compares four lan-
guages to each other to choose the best one, balancing the advantages and disad-
vantages. Among the possible options, the languages used by WIT Software and
the most popular ones will be compared. They are Java, Kotlin, React Native, and
Flutter (table 3.3).

Table 3.3: Frontend Platform Comparisons

Firstly, comparing the first two - Java and Kotlin - Java was the first and official
language for Android development but has now been replaced by Kotlin. Java
has many tutorials and documentation available, as well as an online community
for support in case of problems. However, for a beginner, Java contains complex
topics like constructors, null pointer exceptions, and concurrency. On the other
hand, the official stable version of Kotlin, released in 2016 by JetBrains, is much
simpler compared to Java for Android App Development [39]. It supports inter-
operability with Java, runs on the JVM (Java Virtual Machine), and removes Java
features such as null pointer exceptions. It is also more concise than Java due to
its type interference and reduces the amount of boilerplate code. In short, Kotlin
is a Java alternative with newer, more modern features, an attractive layout, and
more readable code. On the contrary, Java is faster and more mature [40][39].

Like Kotlin, the third and fourth platforms can build apps for Android and IOS.
React Native was launched in 2015 by Facebook and Flutter in 2017 by Google.
React Native and Flutter are the most popular technologies for cross-platform
software development as they allow only one code base for iOS and Android de-
vices. So apps can be launched faster and on a smaller budget [41]. Both have the
“fast refresh” feature, which means code updates automatically as it is written,
which means fast coding [42]. Flutter uses the Dart Programming Language, and
React Native uses JavaScript. React Native is more established and has a larger
developer community. In terms of programming languages, Dart isn’t as widely
used as JavaScript [42]. However, only if the developer has experience in web
or mobile development and has already used popular React solutions, can they
easily work with React Native.

20

Proposed Solution

Despite the advantages of these two cross-platforms fast coding, and cost sav-
ings of developing just a single code for iOS and Android, they are harder to
learn. Due to the lack of experience in the chosen backend technology, the choice
of the frontend technology has to pay off. This means choosing a platform that is
easier to learn and allows the development of a good application. The choice is
between Java and Kotlin. Even though the Kotlin community is still young and
the learning resources are more limited than Java [39], it is used for Android Ap-
plications Development on WIT Software. For these reasons, the chosen language
was Kotlin.

21

Chapter 4

Methodology and Planning

It is important to emphasize that, in the 1st semester, there was no adoption of a
specific methodology, as the internship was not full-time, and the activities per-
formed did not require constant monitoring.

This chapter describes the methodology adopted for the 2nd semester of this
project and the planning carried out for the first and second semesters. Besides,
the analysis of what happened and was planned in the two semesters is done.

4.1 Methodology

Scrum is the method used, and it is an Agile one. Agile methodologies aim to de-
liver a good product, incremental and frequent delivery of functionalities, enable
constant customer feedback, and make it easier to correct mistakes [43].

Scrum is iterative and works with Sprints, which means splitting the work into
iterations or cycles. (typically two or three weeks). In these sprints, the devel-
opment team develops the tasks of the Sprint Backlog. The Product Backlog
contains the needed tasks to be developed for the project. The product owner
manages and prioritizes the artifact. At the beginning of each sprint, the team
decides which tasks and how many will be in the Sprint Backlog.

4.1.1 Roles

There are three roles in the Scrum Methodology:

• Product Owner: representative of stakeholders and customers who use the
software, has a good perception of the product to be developed. Its princi-
pal responsibility is to prioritize and verify the requirements contained in
the Product Backlog.

• Scrum Master: is the person who leads the team, ensuring that the team
has no problems and securing the project’s success.

23

Chapter 4

• Development Team: the ones responsible for developing and testing the
product’s backlog functionalities.

In this project, Marisa Martins, the advisor to the intern at WIT Software, por-
trays the Product Owner role, João Sousa, the technical tutor of the intern at WIT
Software, the Scrum Master role, and the development team is composed only of
the intern.

4.1.2 Ceremonies

Figure 4.1 represents the Scrum Lifecycle. The Scrum Lifecycle has ceremonies
such as:

• Daily Scrum

• Sprint

• Sprint Planning

• Sprint Review

As previously mentioned, sprints are iterations where the features described in
the Sprint backlog should be done. Sprint planning is the meeting where the team
decides which tasks will be in the Sprint Backlog. The sprint review is a meeting
to review whether the team completed all the issues during the sprint and if there
are any that need to be carried over to the next sprint. Finally, the Daily Scrum
is a 15-minute event for every role of Scrum to improve communication, check
progress, identify issues and promote quick decision-making [44]. Also, if there
are blocking issues that no one on the development team can fix, the Scrum Mas-
ter should find someone to help or even the Product Owner if the issue is related
to the requirement being defined incorrectly.

Figure 4.1: Scrum Lifecycle [43]

4.2 Planning

For each semester, a plan is presented and structured to determine which tasks
need to be done and how long each one will take.

24

Methodology and Planning

4.2.1 1st Semester

The objectives of the first semester were to understand the proposed problem,
research competitors and their solutions, and start preparing the project develop-
ment for the second semester.

The Gantt Chart represented by figure 4.2 is the planning drawn for the first
semester. All Gantt Charts were developed using the teamgantt tool [45].

When the intermediate report delivery date changed due to the Covid-19 pan-
demic, this plan suffered some changes.

Figure 4.2: 1st Semester Planning

To compare the planned timeline with what actually happened, another Gantt
Chart was developed, figure A.1 in appendix A.

In general, the deviations that occurred were always delays. Firstly, the holdbacks
of the state of art module are justified, as there were few competitors, and it was
hard to find them and extract their features as there was not much information
available.

Secondly, the delays related to the “Choose Technologies” module are justified by
the lack of experience in these technologies.

Finally, there were delays in the development plan module due to needing a team
meeting to discuss these matters.

25

Chapter 4

4.2.2 2nd Semester

The 2nd semester is the period in which the project is developed. There is a need
for rigorous planning to achieve success. The semester was divided into two-
week periods (sprints), and the Gantt Chart represents the 2nd-semester plan-
ning, figure 4.3.

At the end of each sprint, the team gathered to do a sprint review and retrospec-
tive. In this meeting, the team evaluated what went well, what did not go so
well, and what we could do to improve. This analysis was beneficial for the next
sprints to improve the team performance.

Figure 4.3: 2nd Semester Planning

As cited above, the 2nd semester was divided into sprints - 10 sprints. At the
beginning of each sprint, the team used planning poker to estimate the product
backlog tasks of that sprint. The team reached a consensus on the story points
attributed. These points could be:

• 1: 2 to 4 hours

• 2: 4 to 8 hours

• 3: 1 to 2 days

• 5: 3 to 4 days

• 8: 5 to 6 days

After the sprint review and before the retrospective, the team evaluated the burn-
down chart. This chart’s purpose is to show the amount of work the team com-
pleted in the sprint and the total work remaining. Figure 4.4 represents a burn-
down chart of sprint #4.

The red line shows how much work remains in the sprint. The grey line shows the
ideal progress rate. The illustrated sprint went well, and all tasks were concluded
on time.

26

Methodology and Planning

Figure 4.4: Burndown Chart - Sprint #4

In addition, figures 4.5 and 4.6 represent the velocity report of sprints #3 to #9.
This report gives the average amount of work a scrum team completes during a
sprint, measured in story points.

Figure 4.5: Velocity Report Charts - Sprint #3 to #5

The vertical axis displays the estimated story points. The grey line (commitment)
is the total story points estimated for the sprint issues. The green line (completed)
is the actual story points completed at the end of the sprint.

In general, the intern completed the story points committed. In some cases, there
were even more points completed than expected. Only two sprints (#6 and #9)
could not be completed.

27

Chapter 4

Figure 4.6: Velocity Report Charts - Sprint #6 to #9

To compare the 2nd semester planned timeline with what actually happened,
another Gantt Chart was developed, figure 4.7.

Figure 4.7: Comparison between planned and actual timeline

As it happened in the first semester, in the second, the deviations that occurred
were always delays. The must-have requirements took one more sprint than they
should, which caused a chain reaction. It delayed the should-have requirements
and the final testings.

During the various sprints, it was possible to understand the number of story
points the intern could complete due to a better understanding of the project
complexity. It was possible to perceive the pace of work of the intern, and the
graph analysis contributed to this progress.

The delay caused by the must-have requirements was due to some blockers not
being dependent on the intern. Additionally, the intern’s inexperience in the tech-
nologies also contributed to this.

28

Chapter 5

System Description

In this chapter, the first objective is to define the requirements, describe a software
feature from the user point of view - user stories - and then extract functional
requirements from these stories.

Next is to define the use cases based on user stories and extracted requirements
and finally describe four non-functional requirements that were considered es-
sential.

The following is to specify a list of risks for this project and ways to mitigate
them. As the project develops, the intention is to update the risks list.

Finally, the software architecture and navigation diagram are defined.

As commonly in software engineering projects, there was a need to update the
user stories and, consequently, initial requirements and use cases. User stories
and added requirements will be represented with a (*) in front of them.

5.1 User Stories

The purpose of this section is to capture a simplified description of a requirement
[46]. This Agile software development tool allows describing the type of user,
what they want and why.

The user story structure is:

As a [type of user], I want [goal] so that [reason].

User Stories (US) were grouped into Epic Stories (ES), which means epic stories
are larger user stories. To summarize, user stories are grouped by module.

29

Chapter 5

5.1.1 Agents

1. Authentication
ES-1: As an agent, I want to ensure that the application is only used by
authenticated agents so that all the functionality can only be accessed by
authenticated users.

• US-1: Login

– As an agent, I want to login into the platform, so that I can use all
the functionalities.

• US-2: Logout

– As an agent, I want to log out of the platform, so that nobody that’s
not me can access my account.

• US-3: Registration

– As an agent, I want to be able to register, so that I can start my
activity as a mobile money agent.

* Profile Picture

* First and Last Name

* Email

* Phone Number

* Location

• US-4: Cryptographic wallet setup *

– As an agent, I want to be able to associate and configure my Meta-
mask wallet, so that I can use blockchain features like registration
and assign a rating to an agent.

2. Manage personal data
ES-2: As an agent, I want to be able to manage my personal data so that I
can change it whenever I want.

• US-5: Change Password

– As an agent, I want to be able to change my password, so that I can
use the platform securely.

• US-6: Change personal data

– As an agent, I want to change my personal data, so that it is always
correct.

* Profile Picture

* First and Last Name

* Email

* Phone Number

* Location

• US-7: Delete account *

– As an agent, I want to be able to delete my account, so that I can
use erase all my data.

30

System Description

• US-8: Switch roles *

– As an agent, I want to be able to switch to my client account, so
that I can use clients’ features.

3. Main Dashboard
ES-3: As an agent, I want to have all the functionality in one place, so that I
can access it quickly.

• US-9: Rating

– As an agent, I want to be able to see how my agent rating going so
that I can keep up with the good work or improve.

• US-10: Performance Dashboard

– As an agent, I want to be able to see my rating performance by
week, so that I can monitor my activity.

• US-11: Check the balance

– As an agent, I want to be able to see my balance, so that I can
manage it.

• US-12: View recent transactions *

– As an agent, I want to be able to see my most recent transactions,
so that I can keep track of them.

* When

* How Much

* Whom

4. Offline Mode
ES-4: As an agent, I want to be able to perform offline operations, so that I
can stay up to date.

• US-13: Read Operations

– As an agent, I want to be able to view my personal and perfor-
mance information even in offline mode, so that I can stay up to
date.

5.1.2 Clients

1. Authentication
ES-5: As a client, I want to ensure that the application is only used by au-
thenticated clients so that all the functionality can only be accessed by au-
thenticated users.

• US-14: Login

– As a client, I want to login into the platform, so that I can use all
the functionalities.

31

Chapter 5

• US-15: Logout

– As a client, I want to log out of the platform, so that nobody that’s
not me can access my account.

• US-16: Registration

– As a client, I want to be able to register, so that I can start my ac-
tivity as a mobile money client.

* Profile Picture

* First and Last Name

* Email

* Phone Number

• US-17: Cryptographic wallet setup *

– As a client, I want to be able to associate and configure my Meta-
mask wallet, so that I can use blockchain features like registration
and assign a rating to an agent.

2. Manage personal data
ES-6: As a client, I want to be able to manage my personal data so that I can
change it whenever I want.

• US-18: Change Password

– As a client, I want to be able to change my password, so that I can
use the platform securely.

• US-19: Change personal data

– As a client, I want to change my personal data, so that it is always
correct.

* Profile Picture

* First and Last Name

* Email

* Phone Number

• US-20: Delete account *

– As a client, I want to be able to delete my account, so that I can use
erase all my data.

• US-21: Register as an agent *

– As a client, I want to be able to register as an agent, so that I can
start my business.

• US-22: Switch roles *

– As a client, I want to be able to switch to my agent account, so that
I can use agents’ features.

3. Main Dashboard
ES-7: As a client, I want to have all the functionality in one place, so that I
can access it quickly.

32

System Description

• US-23: View rating history
– As a client, I want to be able to see my rating history so that I can

keep track of it.
• US-24: Check the balance *

– As a client, I want to be able to see my balance, so that I can manage
it.

• US-25: View recent transactions *
– As a client, I want to be able to see my most recent transactions, so

that I can keep track of them.

* When

* How Much

* Whom

ES-8: As a client, I want to be able to search agents so that I can give them a
rating.

• US-26: Search agent by location
– As a client, I want to be able to search agents by location so that I

can go to one near me.
• US-27: Search agent by rating

– As a client, I want to be able to search agents by rating so that I can
choose the best one.

• US-28: Search agent by name *
– As a client, I want to be able to search agents by name so that I can

go to one I know.
• US-29: Assign a rating to a specific agent

– As a client, I want to be able to give a rating to the agent, so that I
can give him a review.

4. Offline Mode
ES-9: As a client, I want to be able to perform offline operations, so that I
can stay up to date.

• US-30: Read Operations
– As a client, I want to be able to view my personal and transaction

history even in offline mode, so that I can stay up to date.

5.2 Functional Requirements

Based on the previous section, the functional requirements were extracted. Sub-
sequently, they were evaluated based on the MoSCoW scale [20].

The first table, 5.1, represents common requirements for agents and clients. The
second is the agents’ requirements - 5.2 - and the third table represents the clients’
requirements, 5.3.

33

Chapter 5

Table 5.1: Common requirements

Table 5.2: Agents’ requirements

Table 5.3: Clients’ requirements

34

System Description

5.3 Use Cases

So, based on the user stories and requirements extracted in the two previous sec-
tions, three use cases were designed. There are two different users, one is the
agent and the other is the client.

5.3.1 Authentication

In the following figure, 5.1, it is represented that for users to be able to access the
features they must register, log in and associate their Metamask Wallet.

Figure 5.1: Use Case - Authentication

5.3.2 Agent user

This use case, represented by the figure 5.2, illustrates the functionalities that the
agent user can have access to.

5.3.3 Client user

The last use case, represented by the figure 5.3, illustrates the functionalities that
the client user can have access to.

35

Chapter 5

Figure 5.2: Use Case - Agent Dashboard

Figure 5.3: Use Case - Client Dashboard

36

System Description

5.4 Non-Functional Requirements

In this section, the application’s non-functional requirements are defined, also
known as quality attributes. These are indicators of how well the system satis-
fies stakeholder needs. To well-define a quality attribute, it is helpful to write a
quality attribute scenario.

A quality attribute scenario is composed of six factors, as portraited by figure 5.4.

Figure 5.4: Quality Attribute Scenario [47]

1. Source of Stimulus: this is an entity that can create a stimulus

2. Stimulus: is the action that triggers a response in a system.

3. Artifact: refers to which artifact receives the stimulus. It can be the whole
system or just a part of it.

4. Environment: refers to what kind of environment the stimulus occurs. It
can be working under normal conditions, high latency, or any other state.

5. Response: this is the response of the stimulus.

6. Response Measure: is used to test whether the response was well imple-
mented.

Four quality attributes were defined:

5.4.1 Security

Scenario: Someone trying to access disallowed data

1. Attacker/malicious user

2. Someone tries to access data they don’t have permission to

3. Mobile app

4. Protected System

5. The application must ensure that only authorized users can access it and
block access to those who are not.

6. After the fifth attempt, access is blocked.

37

Chapter 5

5.4.2 Learnability

Scenario: A new user should easily learn how the app works

1. User

2. The new user registers and does not understand how the application works.

3. Mobile app

4. Normal Operation

5. The application should show tips to the user as they explore for the first
time.

6. Given two scenarios, where no tips are provided to the user and another
where tips are present, the average number of clicks for the same operations
in each scenario can be compared.

5.4.3 Usability

Scenario: A user must use the app with ease

1. User

2. A user wants to use the mobile app to perform a task.

3. Mobile app

4. Normal Operation

5. The application must be built in such a way that the user can easily reach
and perform any task.

6. The user must achieve this in a maximum of 3 clicks.

5.4.4 Availability

Scenario: The user performs a task without signal coverage

1. User

2. The user wants to perform a certain task but has no signal coverage.

3. Mobile app

4. Normal Operation

5. The requested task will be performed by accessing the stored data.

6. This should not take longer than 4 seconds.

38

System Description

5.5 Risks

Identifying the risks to a project during its development helps reduce future im-
pacts that can be catastrophic to achieving success. After this identification, a
mitigation plan is defined.

This section enumerates a list of risks that can occur in this project. Each risk is
characterized by an ID, a description, impact, probability, consequences, and a
mitigation plan. These risks are:

• ID_1: Inexperience with blockchain technology

• ID_2: Inexperience with the chosen smart contracts language - Solidity

• ID_3: Low experience in mobile app development

• ID_4: Deployment of smart contracts with bugs

ID Impact Probability Consequences Mitigation Plan

ID_1 High High Initial tasks will
take longer.

Ask the advisor or other
WIT Software members for
help and learn from tutori-
als.

ID_2 High High Initial tasks will
take longer.

Ask the advisor or other
WIT Software members for
help and learn from tutori-
als.

ID_3 Medium Low Initial tasks will
take longer.

Before getting started,
learn from tutorials and
read the documentation.

ID_4 High Medium
The smart con-
tract cannot be
fixed.

More than one person
must review the smart
contract before deploy-
ment.

Table 5.4: Risks

During the development, these risks will be evaluated to understand if they oc-
curred and if the mitigation plan worked.

39

Chapter 5

5.6 Software Architecture

The study and description of the requirements enabled the development of the
software architecture, which followed the C4 Model. The choice was based on the
previous contact and the ease and intuitiveness of building and understanding
this tool.

As with many other software engineering projects, there was a need to update
the initial architecture, which happens when we get a better understanding of
the project as the development begins. All the C4 Model levels were revised,
except for the last one. This one is not mandatory and requires too much detailed
information.

5.6.1 Architecture

As already mentioned, the software architecture was developed based on the C4
Model. So, the architecture was divided into four levels.

1. Context Level

• This level is an overview of the software, who the stakeholders are,
and what other systems will be integrated.

2. Containers Level

• The container level represents which systems, databases, or applica-
tions the software system will use.

3. Components Level

• At the third level of the C4 Model, the container is decomposed into
components, which are mostly abstractions of the codebase.

4. Code Level

• The last level of the C4 Model requires a lot of detail to show how the
code of a single component works.

The following subsections represent the levels of the C4 Model at which the
project architecture is designed.

5.6.2 Context Level

At this level - figure 5.5, it is visible that there are two types of users, a client can
be an agent, and an agent is always a client. In addition, the application interacts
with five external software systems:

40

System Description

Figure 5.5: Context Level

1. Google Maps - is used to show the agents’ location to the clients.

2. Remix - is an IDE for writing, compiling, and deploying smart contracts.

3. M-Pesa Servers - are used to obtain each user’s transaction information.

4. Infura - is a web3 backend provider that allows applications to connect to
the desired blockchain.

5. The last one, the cryptographic wallet (Metamask) - is used to perform
operations on the blockchain by each user. To achieve this, they need to set
up a wallet.

5.6.3 Containers Level

In the second level - figure 5.6 - the software system is decomposed and divided
into five components:

1. Mobile Application - is developed in the Kotlin language.

2. Smart contract - which allows to read and write data in the blockchain and
connects the mobile app to the blockchain by the node provider, Infura.

3. Blockchain - the chosen one was Polygon.

41

Chapter 5

Figure 5.6: Container Level

4. Ktor Server - this server, written in kotlin, allows the application frontend
to make requests to the database.

5. Database - the PostgresSQL database stores all the personal users’ data.

5.6.4 Components Level

To visually facilitate the understanding of the third level, it has been divided into
two: frontend and backend.

Frontend

The two diagrams below, figures 5.7 and 5.8, represent the application’s visual
module. In the normal development of Kotlin and Android, fragments are used
for each screen of the mobile app. And for each fragment, there is a Kotlin con-
troller that implements the features.

42

System Description

Figure 5.7: Component Level - Frontend (Agent)

Figure 5.8: Component Level - Frontend (Client)

43

Chapter 5

Backend

As with the frontend, the backend was divided into agent and client, figures
B.1 and B.2 in appendix B. Furthermore, the interactions of controllers with the
classes and the external software systems are represented.

5.6.5 Code Level

As this level is not mandatory and requires a lot of unnecessary details to under-
stand the software, it was not developed.

5.7 Navigation Diagram

The mobile application navigation diagram is represented in figure 5.9, which
shows the application flow from the user’s perspective.

Figure 5.9: Navigation Diagram

In this navigation diagram, it’s possible to start on the registration screen or login
screen. If the user doesn’t have an account, his path will begin on the registra-

44

System Description

tion screen. On the other hand, if the user already has an account, it can lead to
two different scenarios. The first scenario is if the user is not logged yet into the
device he is using. In this case, it will be redirected to registration to store user
information locally. In the second scenario, the user is already logged into the
device he is using, so he will be redirected to the login screen.

The "Home Client" is the screen where the user can see his balance, his latest
transactions, and the agents near him. He can also explore and search agents
by name, rating, and distance, and choose one to give a rating. In the account
settings, it’s possible to register as an agent or, in case he’s already one to switch
to the agent account. Deleting his account and logging out is also available.

The "Home Agent" is the screen where the user can see his balance, his latest
transactions, and the average rating. He can also see and evaluate his perfor-
mance in the latest months based on the rating obtained. In the account settings,
it’s possible to switch to the client account. Deleting his account and logging out
is also available.

45

Chapter 6

Development

The objective of this chapter is to detail and explain all the steps of the develop-
ment process. It starts by detailing how was the initial setup, the support tools
used, and the work dynamic. Subsequently, clarify the project structure and visu-
ally show the developed functionalities, also a review to understand the features
that were developed for both the users, clients, and agents. Then, topics such as
security and privacy, as well the insurance to comply with General Data Protec-
tion Regulation (GDPR), are addressed. Finally, explain what would be the future
work for this mobile application.

6.1 Process and project organization

To choose the process used for the 2nd semester, the team reached a decision, the
project manager, the scrum master, the business analyst, and the intern. As with
many other software projects, organizing is critical to have a chance to achieve
success. For this purpose, a Jira Software project was set up at the beginning
of the development. This tool allows to keep a record of every sprint, how it
went, and evaluate if the effort was too low or high. In addition, Jira allows
documenting important information that all team members can see. Figure 6.1
represents the Jira Board in one of the final sprints.

This board is divided into three columns for each sprint:

• To do: list of features to address

• In progress: list of features being addressed

• Done: list of features already done

During the sprint, if a task that is in the Done column needs a review, this task
is dragged to the to-do column. At the end of the sprint, if there are unfinished
tasks, these are moved to the next sprint.

47

Chapter 6

Figure 6.1: Jira Board

After the tools were set up and before the code development, the scrum master
created a repository at GitLab for the mobile app. Later on, the scrum master
created another repository for the server-side. Both repositories follow the git-
flow represented by the figure 6.2.

Figure 6.2: GitLab Flow

When the intern completed a task, the scrum master created a merge request to
the "develop" branch. Then, he reviewed the code, and if everything was done
accordingly, he accepted the merge request, and the code written was added to
the "develop" branch. If not and the code needed any improvement, he would
comment on the respective code lines so that it could be solved. Only when the
intern has tested all the features of the "develop" branch can it be merged into the
"master" branch.

48

Development

6.2 Project Structure

If code needs revision or updates, it’s important to maintain a good code struc-
ture. Not just for other developers but for us, who can get back to the project
for updates or add more functionalities. Having and maintaining a clean and
organized code is required to avoid unnecessary delays.

The following subsections present an overview and an explanation of the organi-
zation of the frontend and backend.

6.2.1 Frontend

This subsection represents the application frontend, which is the code developed
in Android Studio in Kotlin. This project has two different User Interface’s (UI’s),
one for agents and the other for clients, but there are mutual screens like the
registration, login and wallet connect.

Figure 6.3: Frontend Structure

The two main folders of the frontend are the
"java" folder and "res" folder. The first one has
the classes to handle users’ requests, and the
second one represents the design that is visi-
ble to the users. "java" folder is divided into
packages to have a clear division between each
component.

/agent_ui: this package holds all the kotlin
classes related to the agent UI.

/client_ui: this package holds all the kotlin
classes related to the client UI.

/connect_wallet: this package holds all the
kotlin classes related to the wallet connection
before the registration. The purpose is to link
the mobile app to the Metamask app and save
the user wallet session.

/data: this package holds the data class that de-
fines the User and its attributes.

/data_transactions_agent and _client: these
packages have the same objective, which is
to store in the local database, the data infor-
mation about the agent and the client, respec-
tively. The agent data stored in the database is
its balance, performance, rating, and transac-
tions. The client data stored in the database is
its balance, rating history, and transactions.

49

Chapter 6

/network_ktor: this package holds the network calls to the server (Ktor Server).

/registration: this package holds all the kotlin classes related to the registration
UI for agents as clients.

/sign_back_in: this package holds all the kotlin classes related to the sign-back-in
UI for agents as clients.

The "res" folder contains all the .xml files, like layout, drawable, font, and colors
files.

6.2.2 Backend

This subsection represents the application backend. The first one to be addressed
is the Ktor server which allows the calls to the user database, and the other is the
smart contract.

Figure 6.4: Ktor Server

Ktor Server (Web API)

In this API, the main files to analyze are the
User.kt, UserRoutes.kt and Application.kt.

User.kt: contains the attributes to perform the
CRUD operations.

Application.kt: is intended to start the server.

UserRoutes.kt: contains the connection to the
database, the different operations, and the
routes to make the calls to this server. This
include GET, POST, and DELETE HTTP meth-
ods.

Smart Contract

The smart contract is a single file, so there is no need to represent it visually. The
smart contract contains the following methods:

• addUser: as the name suggests, this is to add a new user to the smart con-
tract, registering only his public address.

• assignRating: this method is called by the mobile app when a client assigns
a rating to an agent, storing the who, how much, and when for both of them.

50

Development

• getRatingAgent: this method is to get the rating of the public address passed
as an argument.

• getRatingHistoryClient: this method is for the client to see his rating his-
tory.

• getRatingHistoryAgent: this method is for the performance dashboard of
each agent.

6.3 Developed requirements

This section presents three tables to show which requirements were satisfied dur-
ing the project development. The first table is the module for authentication and
management of personal data (table 6.1), then the module for agents (table 6.2),
and, finally, the module for clients (table 6.3).

In addition, the user functionalities aggregated by the layouts of the mobile ap-
plications are described.

Table 6.1: Developed common requirements

51

Chapter 6

Table 6.2: Developed agents’ requirements

Table 6.3: Developed clients’ requirements

The first conclusion is that all the must-have requirements were satisfied. The
second is that only two should-have were left undone, the "forget password" and
the "change personal data" requirements. As there were other significant issues
to address, it was decided as a team that it would not be a big problem if this app
version didn’t meet these two requirements.

6.3.1 Authentication

To be able to use the application and its features, users need to be registered. As
referenced in the navigation diagram, when a user is not registered, their first
registration is always as a client, and only then can they become an agent. If the
user is already logged in to the device his using, the Sign Back In is the screen
presented.

52

Development

Registration

First, this subsection presents a registration flow to understand better the logic
behind the registration, figure 6.5.

Figure 6.5: Registration Flow

In the use case of first registration or registration in a new device, the screens
presented in figure 6.6 are shown. First, the user connects his wallet to use the
blockchain resources (registration or assign rating). Then, the app redirects the
user to the MetaMask app, where a confirmation popup appears, figure 6.7.

Next, as this is the user’s first registration, he enters a new number to store, and,
in this case, he typed a phone number already registered. The user chooses an-
other phone number, which can be seen at the top of the second screen, figure 6.8.
On this screen, the user finishes filling up his personal information. The MSISDN
parameter is a unique number to identify a client and is assigned previously by
the operator.

Finally, the user enters a numeric pin of his choice, and the application redirects
him to the MetaMask app. Here, he accepts the transaction to register in the smart
contract, where a function stores his public address, figure 6.9.

53

Chapter 6

Figure 6.6: Initial screen and connect wallet

Figure 6.7: Connect wallet confirmation

54

Development

Figure 6.8: Sign up form

Figure 6.9: Smart contract registration

55

Chapter 6

Sign back in

The sign-back-in screen is for the users already logged in to the device in use. The
"change account" feature allows you to sign as a client or as an agent (if registered
as one), figure 6.10.

Figure 6.10: Sign back in

Account Settings

The client account settings screen allows the user to perform four different oper-
ations (figure 6.11):

1. Register as an agent / Switch Roles (if agent)

2. See his rating history

3. Logging out of the app

4. Delete his account

The first one is represented by figure 6.12, and the application prompts the user
if he wants to set his current location as his business location. The shortcode
number that represents the agent is assigned automatically in the backend. This
number, like the client MSISDN, is set previously by the operator.

After that, where it was the "register as an agent" operation, it’s now the "switch
roles" operation. The user can switch from client to agent account and vice versa.

The agent account settings screen allows performing almost the same operations,
except for the rating history option (figure 6.11).

56

Development

Figure 6.11: Account Settings (Client and Agent)

Figure 6.12: Registration as an agent

57

Chapter 6

6.3.2 Agents’ Module

This subsection represents the agents’ UI and its functionalities.

Home

The home agent screen has three different components, figure 6.13:

1. Agent balance

2. Agent rating

3. Agent latest transactions

The first is a demonstrative value, and the objective is to represent the balance of
an M-Pesa agent.

The second is the agent rating which is the medium of his latest 300 assigned
ratings. The application obtains this value through the smart contract.

The last component represents the agent’s latest transactions. These transactions
are for demonstrative purposes only, not corresponding to reality.

The application fetches a fixed agent balance and transactions from the M-Pesa
servers.

Figure 6.13: Agent Home

58

Development

Performance Dashboard

The performance feature divides the screen into two components, figure 6.14:

1. Performance dashboard

2. Performance statistics

The former represents the evolution of the rating through the month. For each
day, the average rating is obtained. The latter represents the statistics compared
with the previous month. In the second screen of figure 6.14, it’s possible to con-
clude that in the current month, there were fewer transactions and ratings than
the month before (-33.3%). Also, the average rating decreased by 33.3%. The
"total amount transacted" is a random and demonstrative value.

Figure 6.14: Performance Dashboard

6.3.3 Clients’ Module

This subsection represents the clients’ UI and its functionalities.

Home

The home client screen has three different components, figure 6.15:

59

Chapter 6

1. Client balance

2. Client latest transaction

3. Nearby agents

Such as the agent balance, the client balance is a demonstrative value, and the
objective is to represent the balance of an M-Pesa client.

The second represents the client’s latest transaction. This transaction is for demon-
strative purposes only, not corresponding to reality.

The last component expresses the nearby agents ordered by distance. When the
user clicks on the name of any agent, the map highlights his location. Google
Maps is the tool behind this feature.

Like the agent UI, the application fetches a fixed client balance and transactions
from the M-Pesa servers.

Figure 6.15: Client Home

Explore

The explore screen has four different components:

1. Explore agents directly on the map

2. Search and order agents

60

Development

3. See more information when clicking an agent

4. Assign a rating to an agent

The user can drag around the map to find the agents’ location and click on each
pin to access more information about the agent, figure 6.16.

The second component allows the user to search the agent by name or number
and order agents alphabetically, by rating, or by distance - figure 6.16.

Figure 6.16: Explore Client

When the user clicks on an agent, the application shows more detailed informa-
tion about that agent, figure 6.17. The operation "withdraw at agent" is not done
because there was no need to add this complexity, so when the user clicks it, the
application jumps to the assign rating feature, figure 6.17.

Like the registration feature, the smart contract has the "assign rating" feature.
The client confirms and pays the transaction to write the rating assigned to the
chosen agent, figure 6.18

Rating History

The client has a feature that allows him to check his rating history ordered by the
most recent rating assigned. The user can see each rating and, in each one, to
which agent, how much, and when - figure 6.19.

61

Chapter 6

Figure 6.17: Operation - Assign rating to an agent

Figure 6.18: Confirmation - Assign rating to an agent

62

Development

Figure 6.19: Rating History

6.4 Risks

During the project development, four risks were identified, represented in section
5.5. At this final stage of development, it is possible to conduct a general analysis
of all risks and mitigation strategies.

• ID_1: Inexperience with blockchain technology

• ID_2: Inexperience with the chosen smart contracts language - Solidity

• ID_3: Low experience in mobile app development

• ID_4: Deployment of smart contracts with bugs

ID Impact Probability Occurred
ID_1 High High Yes
ID_2 High High Yes
ID_3 Medium Low No
ID_4 High Medium Yes

Table 6.4: Risks

The first two risks occurred and had the impact expected due to the intern in-
experience in these technologies, which caused an initial delay in the project’s
start. Over time, this impact was minimized since the intern gained experience
and confidence.

63

Chapter 6

The third risk did not occur because the mitigation plan was successful from the
start, the intern understood the Kotlin language and how the Android Studio
flow worked with ease.

The last risk has occurred repeatedly during the project development due to mis-
takes in the smart contract functions or new features added. Subsequently, there
have been delays in development, and before any public release, the smart con-
tract must be thoroughly reviewed and analyzed.

6.5 Security and Privacy

One of the concerns about the blockchain is that the data is immutable, which
means there is no way to delete data once it enters the blockchain. To avoid
dealing with this issue, the architecture adopted by the intern was hybrid. The
data stored in the blockchain are the public wallet address and the ratings as an
agent and a client.

6.5.1 GDPR

The app must respect the General Data Protection Regulation (GDPR). "All the
rules, restrictions, and requirements placed in the GDPR share the aim of protect-
ing data subjects (or users) and upholding their rights."[48] For those who doesn’t
respect these laws, "the GDPR will levy harsh fines against those who violate its
privacy and security standards, with penalties reaching into the tens of millions
of euros." [49]

The developed mobile app collects users’ data, so there are some user rights [48]
under GDPR that need to be respected.

1. The Right to Rectification

2. The Right to Erasure

3. The Right to Information

The first user right is not respected by the application yet. Those were the two
should-have requirements that were left undone, change personal data and pass-
word. However, the app is not public, so that will be fixed until then.

The application respects the Right to Erasure (Right to be forgotten). The user can
delete his account and all his data with it. Although blockchain data cannot be
deleted, there is no relation between the public address and the users’ personal
information.

The last crucial right to mention is the Right to Information. The app needs to
access users’ locations, so in the first user login, the app shows a dialog to ask for
user consent - figure 6.20.

64

Development

Figure 6.20: Location Permission

6.6 Future work

As for future work, there is an important aspect to be addressed regarding the
technical setup of the digital wallet required to use the application. This section
is divided into four topics:

1. Problem

2. Hypothesis

3. Comparative analysis between blockchain and a traditional database (Ap-
pendix C)

4. Conclusion

6.6.1 Problem

When building an application of any kind, an application with a backend sup-
ported by blockchain or not, we want a sustainable business model so that we
can gain users. Without any tools or code, if a client uses a feature that needs a
transaction, he needs to have ETH or MATIC (Polygon Network) to pay for gas
fees. This forces users to have prior knowledge of crypto wallets and understand
the blockchain concept, which can be an obstacle to users’ adherence.

65

Chapter 6

6.6.2 Hypothesis

Gas Station Network’s [50] primary goal is to solve this problem.

Figure 6.21: GSN [50]

“GSN is a network of servers — called relayers — that are waiting to execute
transactions. Each relayer gets paid for every transaction put on the blockchain.
Relayers are incentivized to behave correctly and not cheat.” [51]

Figure 6.22 represents the GSN architecture.

Figure 6.22: GSN Architecture [50]

• Client: interacts with a feature that requires a blockchain method, which
triggers sending the meta transaction to the relay server.

• Relay servers:

– Meta-transaction: relay server sends user’s transaction and pays them-
selves for the gas cost. So, the user only signs the message containing
information about a transaction they would like to execute and this is
sent to the relay server.

66

Development

– First, the relay server checks if it will get refunded by the Paymaster
contract, and only then does the relay server pays for gas.

• Paymaster Contract:

– Control and gas refund logic

– Gas tank of ETH in the RelayHub which has the power to refund relay
server for gas fees

– Business logic to decide whether to accept or reject a meta transaction

• TrustedForwarder Contract:

– This contract verifies the signature and nonce of the original sender
(user)

• Recipient contract:

– _msgSender() – gets the original sender that signed the meta transac-
tion request

• RelayHub:

– RelayHub connects users running clients, relay servers, and paymas-
ters so that participants don’t need to know about or trust each other.

6.6.3 Comparative analysis (Appendix C)

6.6.4 Conclusion

Based on the comparative analysis made in Appendix C, conclusions can be
drawn.

Despite the cost charged to the operators, GSN removes all the technical setup for
the users. The operators can gain from the relay server when other DApps need
it by defining the cost of each executed transaction.

Comparing the price values of the blockchain and an AWS Database, it is clear
that, from a financial point of view, the option for blockchain may not offer the
best conditions. The blockchain price calculated may be inflated because the
smart contract functions can be improved and optimized so that the price of trans-
acting with each method doesn’t cost so much.

The question of value arises again because the blockchain offers features that a
traditional database does not, which is harder to measure for this specific use
case. Blockchain ensures better security, data integrity, immutability, and trans-
parency. It is crucial to understand what we value more, the business model or
the assurance of data integrity.

67

Chapter 7

Testing

This chapter describes the software tests performed on the mobile app. It is the
evaluation of the application to verify that it does what it should do.

Software testing is indispensable because it prevents bugs, reduces development
costs, and improves performance [52]. Although testing costs money, problems
found early in testing can save companies millions.

There are many types of software testing techniques that can be performed on a
product. The first section of this chapter presents the unit testing for three differ-
ent components. These components include the smart contract, the mobile app,
and the web API. Next, the second section describes the usability testing and its
conclusions.

7.1 Unit Testing

Unit testing is a type of test that aims to validate a small component of an appli-
cation. Regarding the smart contract and web API, all components were tested.
On the other hand, only a few application parts were tested in the mobile app,
prioritizing which were most valuable due to the time available.

Each test is represented by:

• ID: test ID

• Description: the purpose of the test

• Expected outcome: what the test should return

• Result: what the test actually returns - Pass (P) and Fail (F)

7.1.1 Web API

As mentioned in the previous chapters, this server allows the application fron-
tend to make requests to the database. The tested methods are described in

69

Chapter 7

the API Documentation represented by appendix E. Table 7.1 represents and de-
scribes the done unit tests. The database was previously populated with users
with client accounts and with client and agent accounts.

Table 7.1: Web API Testing

7.1.2 Smart Contract

The smart contract has four different functions related to rating operations. The
tests were performed in the Remix IDE, which has a testing tool besides the writ-
ing, compiling, and deployment tools.

Table 7.2 represents and describes the done unit tests on the smart contract.

70

Testing

Table 7.2: Smart Contract Testing

7.1.3 Mobile App

The unit tests performed on the mobile app were restricted to three components.
The first was to the local database of a client account, represented by table 7.3.
The second was to the local database of an agent account, represented by table
7.4. Both of these tests were to perform CRUD (Create, Read, Update, Delete)
operations. The final and third were to the unit components that interacted with
the API methods, represented by table 7.5.

Table 7.3: Mobile App Testing - Client Database

71

Chapter 7

Table 7.4: Mobile App Testing - Agent Database

Table 7.5: Mobile App Testing - API Service

72

Testing

7.2 Usability Testing

Usability testing is a type of test that aims to validate how well a user can com-
plete a task in an application. These tests allow assessing two non-functional re-
quirements described in Section 5.4. The learnability and usability requirements.

The core elements of these tests are [53]:

• Facilitator: the intern assumes the role of administering tasks to the partic-
ipant.

• Tasks: provided by the facilitator.

• Participant: performs the tasks and gives feedback to the facilitator.

Typically, participants should belong to the target user group or have experience
in the application being tested. It is not possible to have target users because
the target market is not within reach of the intern. The users chosen by the in-
tern were five [54] software engineering students. The intern had to explain the
concept precisely because none of them had experience in this topic.

7.2.1 Tests

First, the intern explained to each user that they needed to create a metamask
wallet to perform smart contract functions (registration and rating). The intern
was responsible for creating this for each user. Then, the intern asked users to
perform the following tasks:

1. Register in the mobile application

2. Search an agent by name

3. Check his client account balance

4. Check agents around him

5. Find an agent on the map

6. Assign a rating to an agent

7. Check rating history

8. Register as an agent

9. Log out of the application

10. Log in to the mobile application as an agent

11. Check his agent account rating

73

Chapter 7

12. Check his agent account transactions

13. Check his agent performance over the past month

14. Switch to the client account

15. Delete his account

The intern registered the clicks that took each user to perform the tasks.

7.2.2 Results

Table 7.6 represents the expected number of clicks for each task.

Table 7.6: Expected number of clicks per-task

In the definition of the quality attribute (subsection 5.4.3), the maximum of clicks
defined was three. However, as the table represents, there are two tasks where
that cannot be possible to perform in three clicks max - tasks 1 and 6. The intern
did not provide any tips to the users, only when asked.

Table 7.7 shows the number of clicks of each user when performing the required
tasks.

Table 7.7: Real number of clicks per-task

In general, the users corresponded to the expectations. In task 1, only one user
deviated from the expected number of clicks because he had to repeat the con-
nection to the wallet due the metamask app didn’t open.

For the task of assigning a rating to an agent - task 6 - two users (users 1 and
4) did not understand where they could do that. Because when a user clicks on

74

Testing

an agent, the button has the text "Withdraw at agent". Withdraw is an operation
performed by clients when they want to cash out money from their accounts.
However, the rating is assigned directly without performing that operation.

Three users first went to the home screen when they were asked to perform task
7. And only then, when they couldn’t find the rating history on the home screen,
did they go to the account screen.

The register as an agent button is located on the account settings screen. When a
user clicks it, the app shows a popup to register the client as an agent and asks if
he wants to define his current location as his business location. User 4 thought he
could determine another location later, so he clicked on the cancel button, but the
application doesn’t allow users to register without a business location. Therefore,
this user had to repeat the steps.

Finally, in task 10, users 2 and 5 went to the correct component to change the ac-
count to log in. However, they didn’t understand if this action got any response,
so they went back to clicking the change account button.

7.3 Conclusions

Concerning the unit testing, the tests performed helped fix defects found during
the analysis of the test results. This type of test was made before the usability
testing, so there were no bugs in the application.

Regarding usability testing, the usability quality attribute is respected by the ap-
plication. The variations were not far from what the intern defined and expected
- three clicks per task. The app respects the learnability quality attribute. The in-
tern did not apply the defined response, which was the app showing hints. Even
so, problems encountered by users in some tasks are related to how the UI/UX is
designed.

The intern performed the usability testing later than expected. Consequently, the
issues found in this phase have not been fixed but will be in the next version of
the application.

The features that need improvements are:

• Change the location of the rating history feature. This new location could
be in the user’s bottom navigation or the home screen.

• When the client wants to register as an agent, allow him to target another
business location than the current one.

• On the login screen, define feedback that makes it possible to understand
what type of account the user is logging in to the application.

75

Chapter 8

Conclusion

The project presented by WIT Software and consequently the subject of this in-
ternship was the merge of mobile money services and blockchain. The main ob-
jective was to understand how the blockchain could be integrated by developing
a rating functionality for agents of mobile money services. The process to reach
results and conclusions regarding this problem went through several stages and
steps. First, the state of the art allowed the intern to understand better how mo-
bile money services operate. Defining a methodology also helped to keep all
progress organized. The definition of requirements, use cases, and architecture
was fundamental in the steps before development. The development itself is one
of the most important, as it allowed a better understanding of the project and
deliberation about details that the intern did not consider before. And finally,
testing, which mainly allowed the intern to find some usability issues.

The first step was the writing of the SoA, allowing an in-depth study of how mo-
bile money services currently work. Although this study was not of much help
regarding blockchain, it did help to understand how competitors design these
services. Therefore, this study was a great help for the functional and usability
component of the mobile application (frontend).

The next step was to understand how the intern could design the solution and
the technologies to develop it. Initially, the proposed solution was based only on
the blockchain, without having any centralized service, raising some security and
privacy issues. These issues had to be evaluated in the second semester during
the development. Regarding technologies, these were chosen in the first semester
and remained until the end. The selected technologies were not a problem due to
the rigorous study done by the intern.

The definition of the methodology adopted in the development and the plan-
ning helped maintain an organized project. The Scrum methodology was helpful
when some changes had to be performed in the project architecture and, conse-
quently, in the development. Because Scrum bases its methodology on iterations,
it allowed the intern to make these changes without redoing the entire project.

The last step before development was the requirements study, use cases, and ar-
chitecture. The description of the system was well explained and defined, so the

77

Chapter 8

result of this phase provided an excellent basis for development.

The development is one of the most crucial phases. First, the work tools (Jira and
Git) allowed constant support and proximity between the intern and the WIT
Software team. Regarding the developed features, they were almost all finalized.
The intern could not finish those because the team considered that there was more
important work to do, the future work. The problem raised in the description of
the future work is related to the fact that users have to do all the technical setup
related to the blockchain before using the application. The intern addressed this
issue at a very advanced stage of the project. Therefore there was no time for any
implementation. This future work is very critical for the next phase of this project.
It allows users to use a complex technology like blockchain without realizing they
are using it. It is possible to have all the benefits that blockchain offers without
prior knowledge of this technology.

The last stage of development, testing, allowed the intern to find errors in the
main components on which the unit test was done. Before usability testing, the
intern resolved these issues. The intern noticed UI/UX problems after the results
of the usability tests. In the next phase of the project, these problems will be
solved.

As a final consideration of the objective of the internship, is this solution plau-
sible for the target users? It depends on the value given to a blockchain-based
solution and the benefits offered, despite the associated costs. When analyzing
the final product, it is noticeable that as it is, at the moment, it will not be very
appealing to the users. The technical setup they go through is a negative point for
using the application. However, when the solution described in the future work
is implemented, the user will no longer be aware of the blockchain mechanisms
involved in the application.

78

References

[1] Professor Rajiv Lal and Ishan Sachdev. Mobile money services - design and
development for financial inclusion. In Mobile Money Services - Design and
Development for Financial Inclusion, Harvard Business School, July, 2015.

[2] David Shrier, German Canale, and Alex Pentland. Mobile money. In Mobile
Money Payments: Technology Trends, Massachusetts Institute of Technology,
2017.

[3] GSM. Mobile money percentage. In State of the Mobile Money Industry in
Sub-Saharan Africa, GSM Association, 2017.

[4] Key trends in the African Mobile Economy. https://pt.slideshare.net/
ATBN/key-trends-in-the-african-mobile-economy, 2016. [Online; ac-
cessed 18 November 2021].

[5] GSM. Mobile money definitions. In Mobile Money Definitions, GSM Associa-
tion, 2017.

[6] M-Pesa. https://www.vodafone.com/about-vodafone/what-we-do/
consumer-products-and-services/m-pesa. [Online; accessed 24 Novem-
ber 2021].

[7] T. Riley and A. Kulathunga. Agent network structure in kenya. In Bringing
E-money to the Poor: Successes and Failures, 2017.

[8] Papersoft Initial Page. https://papersoft-dms.com/. [Online; accessed 24
November 2021].

[9] Papersoft. https://papersoft-dms.com/about-us/. [Online; accessed 24
November 2021].

[10] Feature Waynbo - Offline Mode. https://waynbo.com/use-cases/
agent-network-management-software/. [Online; accessed 24 November
2021].

[11] Feature Waynbo - Offline Mode Explanation. https://waynbo.com/
customer-onboarding-kyc-compliance/. [Online; accessed 24 November
2021].

[12] Features Waynbo. https://waynbo.com/agent-management/. [Online; ac-
cessed 24 November 2021].

79

https://pt.slideshare.net/ATBN/key-trends-in-the-african-mobile-economy
https://pt.slideshare.net/ATBN/key-trends-in-the-african-mobile-economy
https://www.vodafone.com/about-vodafone/what-we-do/consumer-products-and-services/m-pesa
https://www.vodafone.com/about-vodafone/what-we-do/consumer-products-and-services/m-pesa
https://papersoft-dms.com/
https://papersoft-dms.com/about-us/
https://waynbo.com/use-cases/agent-network-management-software/
https://waynbo.com/use-cases/agent-network-management-software/
https://waynbo.com/customer-onboarding-kyc-compliance/
https://waynbo.com/customer-onboarding-kyc-compliance/
https://waynbo.com/agent-management/

Chapter 8

[13] FieldPro. https://fieldproapp.com/managing-a-mobile-money-agent-network.
[Online; accessed 24 November 2021].

[14] MTN Page. https://www.mtn.com/who-we-are/. [Online; accessed 24
November 2021].

[15] MTN Values. https://www.mtn.com/who-we-are/values/. [Online; ac-
cessed 24 November 2021].

[16] Documents of Identification for MoMoAgent. https://www.youtube.com/
watch?v=YJj5_W0e6XQ. [Online; accessed 24 November 2021].

[17] Documents of Identification for MoMoAgent 2. https://www.youtube.com/
watch?v=uXAqHsgpDOM. [Online; accessed 24 November 2021].

[18] MoMo Agents. https://posbusiness.com.ng/2021/08/28/
momo-agent-everything-you-need-to-know/. [Online; accessed 24
November 2021].

[19] Documents of Identification for Waynbo. https://www.youtube.com/
watch?v=YH8Ely8IAVc. [Online; accessed 24 November 2021].

[20] MoSCoW Prioritization. https://www.productplan.com/glossary/
moscow-prioritization/. [Online; accessed 15 December 2021].

[21] Blockchain Explained. https://www.youtube.com/watch?v=SSo_EIwHSd4.
[Online; accessed 16 December 2021].

[22] Wei Cai, Zehua Wang, Jason B. Ernst, Zhen Hong, Chen Feng, and Vic-
tor C.M. Leung. Decentralized applications. In Decentralized Applications:
The Blockchain-Empowered Software System, Natural Sciences and Engineering
Research Council of Canada, 2018.

[23] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena.
Smart contract. In An Overview of Smart Contract and Use cases in Blockchain
Technology, IISC, Bengaluru, 2018.

[24] Ethereum Transaction Fee. https://decrypt.co/84866/
ethereum-gas-fees-have-risen-2300-since-june. [Online; accessed
21 December 2021].

[25] Cardano Transaction Fee. https://cryptoslate.com/
cardano-ada-average-transaction-fees-are-up-1500-in-a-year/.
[Online; accessed 21 December 2021].

[26] Polkadot Transaction Fee. https://wiki.polkadot.network/docs/
learn-transaction-fees. [Online; accessed 21 December 2021].

[27] Solana Transaction Fee. https://solberginvest.com/blog/
how-much-are-solana-fees/. [Online; accessed 21 December 2021].

[28] Ethereum Statistics. https://www.gemini.com/cryptopedia/
ethereum-blockchain-smart-contracts-dapps. [Online; accessed 21
December 2021].

80

https://fieldproapp.com/managing-a-mobile-money-agent-network
https://www.mtn.com/who-we-are/
https://www.mtn.com/who-we-are/values/
https://www.youtube.com/watch?v=YJj5_W0e6XQ
https://www.youtube.com/watch?v=YJj5_W0e6XQ
https://www.youtube.com/watch?v=uXAqHsgpDOM
https://www.youtube.com/watch?v=uXAqHsgpDOM
https://posbusiness.com.ng/2021/08/28/momo-agent-everything-you-need-to-know/
https://posbusiness.com.ng/2021/08/28/momo-agent-everything-you-need-to-know/
https://www.youtube.com/watch?v=YH8Ely8IAVc
https://www.youtube.com/watch?v=YH8Ely8IAVc
https://www.productplan.com/glossary/moscow-prioritization/
https://www.productplan.com/glossary/moscow-prioritization/
https://www.youtube.com/watch?v=SSo_EIwHSd4
https://decrypt.co/84866/ethereum-gas-fees-have-risen-2300-since-june
https://decrypt.co/84866/ethereum-gas-fees-have-risen-2300-since-june
https://cryptoslate.com/cardano-ada-average-transaction-fees-are-up-1500-in-a-year/
https://cryptoslate.com/cardano-ada-average-transaction-fees-are-up-1500-in-a-year/
https://wiki.polkadot.network/docs/learn-transaction-fees
https://wiki.polkadot.network/docs/learn-transaction-fees
https://solberginvest.com/blog/how-much-are-solana-fees/
https://solberginvest.com/blog/how-much-are-solana-fees/
https://www.gemini.com/cryptopedia/ethereum-blockchain-smart-contracts-dapps
https://www.gemini.com/cryptopedia/ethereum-blockchain-smart-contracts-dapps

References

[29] Best Ethereum Layer 2 Solutions. https://101blockchains.com/
ethereum-layer-2-solutions/. [Online; accessed 27 December 2021].

[30] Polygon Launch. https://zebpay.com/blog/
the-rise-of-polygon-matic/. [Online; accessed 28 December 2021].

[31] Arbitrum Launch. https://www.benzinga.com/money/what-is-arbitrum/.
[Online; accessed 28 December 2021].

[32] Optimism Launch. https://beincrypto.com/
optimism-deems-original-mainnet-launch-timeline-too-ambitious/.
[Online; accessed 28 December 2021].

[33] Polygon Scability. https://www.makeuseof.com/what-is-polygon-matic/.
[Online; accessed 28 December 2021].

[34] Arbitrum Scability. https://forkast.news/
why-arbitrum-rollups-dominating-ethereum-scaling/. [Online; ac-
cessed 28 December 2021].

[35] Optimism Scability. https://crypto.writer.io/p/
a-quick-dive-into-optimistic-ethereum. [Online; accessed 28 De-
cember 2021].

[36] Sidechains vs Rollups. https://blog.infura.io/
offchain-protocols-sidechains-and-rollups/. [Online; accessed 28
December 2021].

[37] Polygon vs Ethereum. https://www.makeuseof.com/
what-is-polygon-matic/. [Online; accessed 28 December 2021].

[38] Arbitrum vs Optimism. https://www.benzinga.com/money/
what-is-arbitrum/. [Online; accessed 28 December 2021].

[39] Top Programming Languages for Android App
Development. https://www.geeksforgeeks.org/
top-programming-languages-for-android-app-development/. [Online;
accessed 27 December 2021].

[40] The 10 Best Programming Languages to Learn for An-
droid App Development. https://blog.back4app.com/
best-programming-language-to-learn-for-android-apps/. [Online;
accessed 27 December 2021].

[41] React Native vs Flutter. https://nix-united.com/blog/
flutter-vs-react-native/. [Online; accessed 27 December 2021].

[42] React Native vs Flutter in 2021. https://www.thedroidsonroids.com/blog/
flutter-vs-react-native-what-to-choose-in-2021. [Online; accessed 27
December 2021].

[43] Agile Principles. https://www.digite.com/agile/agile-methodology/
#agile-principles. [Online; accessed 3 January 2022].

81

https://101blockchains.com/ethereum-layer-2-solutions/
https://101blockchains.com/ethereum-layer-2-solutions/
https://zebpay.com/blog/the-rise-of-polygon-matic/
https://zebpay.com/blog/the-rise-of-polygon-matic/
https://www.benzinga.com/money/what-is-arbitrum/
https://beincrypto.com/optimism-deems-original-mainnet-launch-timeline-too-ambitious/
https://beincrypto.com/optimism-deems-original-mainnet-launch-timeline-too-ambitious/
https://www.makeuseof.com/what-is-polygon-matic/
https://forkast.news/why-arbitrum-rollups-dominating-ethereum-scaling/
https://forkast.news/why-arbitrum-rollups-dominating-ethereum-scaling/
https://crypto.writer.io/p/a-quick-dive-into-optimistic-ethereum
https://crypto.writer.io/p/a-quick-dive-into-optimistic-ethereum
https://blog.infura.io/offchain-protocols-sidechains-and-rollups/
https://blog.infura.io/offchain-protocols-sidechains-and-rollups/
https://www.makeuseof.com/what-is-polygon-matic/
https://www.makeuseof.com/what-is-polygon-matic/
https://www.benzinga.com/money/what-is-arbitrum/
https://www.benzinga.com/money/what-is-arbitrum/
https://www.geeksforgeeks.org/top-programming-languages-for-android-app-development/
https://www.geeksforgeeks.org/top-programming-languages-for-android-app-development/
https://blog.back4app.com/best-programming-language-to-learn-for-android-apps/
https://blog.back4app.com/best-programming-language-to-learn-for-android-apps/
https://nix-united.com/blog/flutter-vs-react-native/
https://nix-united.com/blog/flutter-vs-react-native/
https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2021
https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2021
https://www.digite.com/agile/agile-methodology/#agile-principles
https://www.digite.com/agile/agile-methodology/#agile-principles

Appendix

[44] Daily Scrum. https://www.scrum.org/resources/
what-is-a-daily-scrum. [Online; accessed 3 January 2022].

[45] Team Gantt. https://www.teamgantt.com/. [Online; accessed 13 January
2022].

[46] User Stories. https://searchsoftwarequality.techtarget.com/
definition/user-story. [Online; accessed 12 January 2022].

[47] Quality Attribute Scenario. https://tinyurl.com/39zc8632. [Online; ac-
cessed 5 January 2022].

[48] GDPR Regulation. https://www.privacypolicies.com/blog/
gdpr-eight-user-rights/. [Online; accessed 23 June 2022].

[49] GDPR. https://gdpr-info.eu/. [Online; accessed 23 June 2022].

[50] Gas Station Network. https://docs.opengsn.org/. [Online; accessed 23
June 2022].

[51] Gas Station Network Definition. https://blog.openzeppelin.com/
gsn-the-ultimate-ethereum-onboarding-solution/. [Online; accessed 23
June 2022].

[52] Software Testing. https://www.ibm.com/topics/software-testing. [On-
line; accessed 26 June 2022].

[53] Usability Testing 101. https://www.nngroup.com/articles/
usability-testing-101/. [Online; accessed 26 June 2022].

[54] Test Users. https://www.nngroup.com/articles/how-many-test-users//.
[Online; accessed 26 June 2022].

82

https://www.scrum.org/resources/what-is-a-daily-scrum
https://www.scrum.org/resources/what-is-a-daily-scrum
https://www.teamgantt.com/
https://searchsoftwarequality.techtarget.com/definition/user-story
https://searchsoftwarequality.techtarget.com/definition/user-story
https://tinyurl.com/39zc8632
https://www.privacypolicies.com/blog/gdpr-eight-user-rights/
https://www.privacypolicies.com/blog/gdpr-eight-user-rights/
https://gdpr-info.eu/
https://docs.opengsn.org/
https://blog.openzeppelin.com/gsn-the-ultimate-ethereum-onboarding-solution/
https://blog.openzeppelin.com/gsn-the-ultimate-ethereum-onboarding-solution/
https://www.ibm.com/topics/software-testing
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/how-many-test-users//

Appendices

83

Appendix A

1st Semester Planning

Figure A.1: 1st Semester - Comparison between planned and actual timeline

85

Appendix B

Software Architecture

Figure B.1: Component Level - Backend (Agent)

87

Appendix B

Figure B.2: Component Level - Backend (Client)

88

Appendix C

Comparative Analysis

89

Appendix C - Comparative analysis

This analysis aims to compare the cost to the operator using blockchain (using GSN)
or an AWS Relational Database.

Blockchain

First, it's fundamental to get an idea of how much the smart contract functions cost
[1] – table 1. The goal is to calculate prices based on the target users.

Per-User Registration Assign Rating
Transaction fee 0.00489288 MATIC 0.01027644 MATIC
Transaction fee (€) 0.0028 € 0.0058 €

Table 1: Cost of the smart contract functions

Then, there are two options: run our relay server or use other relay servers
available in the network.

Option 1:

“Without significant transaction volume you won't necessarily get a super
impressive interest rate, but you will get paid to support decentralization while taking
little to no risk. Minimal resources are required to run a relay server so your costs will
be low. For example, GCP does not charge you for running a single micro instance.”
[2]

Meaning that by using Google Cloud Platform and their free tier usage [3][4], it
could be possible to use our relay server for our smart contract, we wouldn’t pay
anything, but in case of failure, we will look for other relay servers in the network.

Option 2:

If there is a need, it is necessary to pay an extra fee to the other relay servers,
+60% per function [5]. However, we can also set this for other dapps to use our relay
server and profit from it.

Both options can happen, option one as the first resort, but as already mentioned,
option two in case of failure of option 1.

The target users of M-Pesa (Kenya) are currently 2.5 million [6], so this comparison is
based on these numbers. Also, the average daily operations are 30,063 [6].

Table 2 represents how much the smart contract functions would cost for these
numbers.

90

2.5M Registration Assign Rating Assign Rating
(Monthly)

Transaction fee (€) 0.0028 € 0.0058 € --

Personal relay
server

2 500 000 x
0.0028 = 7 000€

30 063 x 0.0058 =
174.4 €

174.4 x 30 =
5232€

Table 2: Cost of the smart contract functions with users

The registration only would happen once, both for agents and clients, and if all clients
assigned a rating to the agent would have a medium daily cost of 174,4€. These
values are the max it could cost (with our relay server) because the assumption is that
all the currently active users would adhere to this. Also, the assumption is that at the
end of each operation, the clients assign a rating always.

Google's free tier is limited by time, not by instance. It's possible to use the free e2-
micro instance until the number of hours is equal to the current month [3]. Initially,
this is a good solution because we are still attracting customers. Therefore, the
availability of this solution is practically 100%, so in the initial phase, it will not be
necessary to use other relay servers.

By increasing requests and users, other options could be seen to host the relay
server, either with the operator's servers or using other services.

Relational Database - Amazon RDS:

The comparison with blockchain will be an Amazon Relational Database due to the
ease of use and low prices. The database is relational because of the data that needs
to be stored.

Amazon RDS offers a free tier (12 months) [7]: this include 750h per month of database
usage and 20GB of memory.
After 12 months, or if the plan needs to be scaled up during the first year, estimates
should be made. The result of this can give an idea of what instances are necessary
and how many.

Storage:

• Registration: varchar (n) – pubAddress (42bytes)

• Assign Rating (x2) - a client assigns a rating to an agent (writing operation on
client rating history and agent rating history)

o varchar (n) – pubAddress (42bytes)
o int – howMuch (4 bytes)
o varchar (n) – date (34 bytes)

91

Registration (only once):
 2 500 000 users x 42 bytes = 105 000 000 = 0.1GB

Assign Rating (daily):
 30 063 daily operations x 2 x (42 + 4 + 34) = 4 810 080 bytes = 0.0045GB

Based on these values, there is no need for much storage because the daily storage
calculated is 0.0045GB.

Reading operations:

24h per day → reading operations = 86 400sec

If each user, logs at least once:

Agent UI (2 requests):
• 1 request of rating
• 1 request of performance dashboard (rating)

Client UI (2 requests):

• 1 request of rating history
• 1 request (agents rating - explore screen)

Assuming that of 2 500 000 users:

• 2 252 131 are clients only (90.1%)
• 247 869 are clients and agents (9.9%) [8]

Based on these values, it’s possible to estimate an average TPS – table 3.

 Clients (only) - TPS Agents and Clients - TPS

Client (2 252 131 users x 2 requests) /
86 400 sec = 52.13 TPS

(247 869 users x 2 requests) / 86
400sec = 5.74 TPS

Agent -- (247 869 users x 2 requests) / 86
400sec = 5.74 TPS

Total
52.13 TPS 11.5 TPS

63.6 TPS

Table 3: Transactions Per Second (TPS) – reading operations

Writing Operations (Assign Rating):

30 063 operations per day → 12h (working hours) = 43 200sec

(30 063 x 2) / 43 200 = 1.39 TPS + support for bursts

92

Total

Reading Operations Writing Operations

63.6 TPS 1.39 TPS

65 TPS

Table 4: Transactions Per Second (TPS) – Total

From the results of the calculations, a price can be estimated in the AWS Pricing
Calculator - Appendix D – represented by the table 5.

Per-month Blockchain AWS RDS

Cost 5232 € 237.88 USD = 226.48 €

Performance
(Read and Write
Operations)

2 second or less [9] Less than 1 second [10]

Table 5: Price comparation

93

References

[1] Convert Matic to Euro. https://br.beincrypto.com/converter/matic-network-to-eu.
[Online; accessed 22 June 2022].

[2] Running a Relay Server for Fun and Profit. https://docs.opengsn.org/relay-
server/tutorial.html#relays-as-an-investment. [Online; accessed 22 June 2022].

[3] Google Cloud – Free Tier usage. https://cloud.google.com/free/docs/gcp-free-
tier#free-tier-usage-limits. [Online; accessed 22 June 2022].

[4] Google Cloud – Compute Engine. https://cloud.google.com/compute. [Online;
accessed 22 June 2022].

[5] GSN Relay Servers. https://relays.opengsn.org/#maticMainnet. [Online; accessed
22 June 2022].

[6] WIT Software Internal Report (May 2022). [accessed 22 June 2022].

[7] Amazon RDS. https://aws.amazon.com/free/?nc2=h_ql_pr_ft&all-free-tier.sort-
by=item.additionalFields.SortRank&all-free-tier.sort-
order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*al
l. [Online; accessed 22 June 2022].

[8] Active M-Pesa Agents. https://techweez.com/2021/10/13/m-pesa-agents-up-by-
43-percent-as-the-mobile-money-platform-gains-3-4-million-new-users/. [Online;
accessed 22 June 2022].

[9] Polygon transactions. https://permission.io/blog/polygon-faqs/. [Online; accessed
22 June 2022].

[10] AWS IOPS. https://aws.amazon.com/rds/postgresql/features/. [Online;
accessed 22 June 2022].

94

Appendix D

AWS Pricing Calculator

95

23/06/2022, 11:24 AWS Pricing Calculator

https://calculator.aws/#/estimate 1/1

Estimate summary

Detailed Estimate

Name Group Region Upfront cost Monthly cost

Amazon RDS for
PostgreSQL

No group
applied

EU (Ireland) 0.00 USD 237.88 USD

Description: Estimation
Config summary: Storage volume (General Purpose SSD (gp2)), Storage amount (20 GB per
month), Nodes (2), Instance Type (db.t3.medium), Utilization (On-Demand only) (100
%Utilized/Month), Deployment Option (Multi-AZ), Pricing Model (OnDemand)

Amazon RDS for
PostgreSQL

No group
applied

EU (Ireland) 0.00 USD 237.88 USD

Description: AWS Estimation
Config summary: Storage volume (General Purpose SSD (gp2)), Storage amount (20 GB per
month), Nodes (2), Instance Type (db.t3.medium), Utilization (On-Demand only) (100
%Utilized/Month), Deployment Option (Multi-AZ), Pricing Model (OnDemand)

Acknowledgement

AWS Pricing Calculator provides only an estimate of your AWS fees and doesn't include any taxes that might apply.

Your actual fees depend on a variety of factors, including your actual usage of AWS services. Learn more .

Contact your AWS representative:
https://aws.amazon.com/contact-us/

Export date: 23/06/2022 Language: English

Estimate title: My Estimate

Estimate URL: https://calculator.aws/#/estimate?
id=87b50cb7a3b60cbb38caafbdcd37dcb145b35299

Upfront cost

0.00 USD

Monthly cost

475.76 USD

Total 12 months
cost

5,709.12 USD

Includes upfront cost

Select your cookie preferences

We use cookies and similar tools to enhance your experience, provide our services, deliver relevant
advertising, and make improvements. Approved third parties also use these tools to help us deliver
advertising and provide certain site features.

Customize

Accept all
96

Appendix E

Web API Documentation

97

API	Database

Curl Java Android Obj-C JavaScript C# PHP Perl Python

Schema

checkCompositeKey
Checks	if	wallet	logged	matches	phone	number

API	and	SDK	Documentation
Version:	1.0.0

This	is	a	server	for	accessing	user	data	information.

Users

Usage	and	SDK	Samples

Parameters
Path	parameters
Name Description
pubAddress* String

the	pubAddress	that	needs	to	be	fetched.
Required

phoneNumber* Integer	(int32)
the	phoneNumber	that	needs	to	be	compared.
Required

Responses
Status:	200	-	OK

▼ 	{	[]
Required:	MSISDN,firstName,lastName,phoneNumber,pin,pubAddress
pubAddress: string

example:	0x5742fg32v3ja5D
phoneNumber: integer	(int32)

example:	987654321
firstName: string

example:	John
lastName: string

example:	Nanjala
pin: integer	(int32)

example:	1111
MSISDN: string

example:	99M992342
shortCodeAgentID: string

example:	SH3141515
locationLat: string

/user/compositeKey/{pubAddress}/{phoneNumber}

GET

curl	-X	GET	"https://localhost:8080/user/compositeKey/{pubAddress}/{phoneNumber}"

98

Curl Java Android Obj-C JavaScript C# PHP Perl Python

checkPassword
Checks	login	of	user

Curl Java Android Obj-C JavaScript C# PHP Perl Python

checkPhoneNumber
Checks	if	phone	number	is	already	taken

example:	37.4219506
locationLong: string

example:	-122.078
additionalInfoClient: string
additionalInfoAgent: string

}

Status:	400	-	Empty	response

This	is	used	to	check	user	password

Usage	and	SDK	Samples

Parameters
Path	parameters
Name Description
pubAddress* String

the	pubAddress	that	needs	to	be	fetched.
Required

encryptedPass* String
the	encryptedPass	that	needs	to	be	compared.
Required

Responses
Status:	200	-	success

Status:	400	-	no	match

This	is	used	to	new	users	who	enter	a	phone	number

Usage	and	SDK	Samples

/user/checkPassword/{pubAddress}/{encryptedPass}

GET

curl	-X	GET	"https://localhost:8080/user/checkPassword/{pubAddress}/{encryptedPass}"

/user/phoneNumber/{phoneNumber}

GET

99

Curl Java Android Obj-C JavaScript C# PHP Perl Python

createUser
Create	user

Parameters
Path	parameters
Name Description
phoneNumber* Integer	(int32)

the	phoneNumber	that	needs	to	be	fetched.
Required

Responses
Status:	200	-	success

Status:	400	-	no	match

This	is	used	in	registration

Usage	and	SDK	Samples

Parameters
Body	parameters
Name Description
userItem ▼ 	{	[]

Required:	MSISDN,firstName,lastName,phoneNumber,pin,pubAddress
pubAddress: string

example:	0x5742fg32v3ja5D
phoneNumber: integer	(int32)

example:	987654321
firstName: string

example:	John
lastName: string

example:	Nanjala
pin: integer	(int32)

example:	1111
MSISDN: string

example:	99M992342
shortCodeAgentID: string

example:	SH3141515
locationLat: string

example:	37.4219506
locationLong: string

example:	-122.078
additionalInfoClient: string
additionalInfoAgent: string

}

curl	-X	GET	"https://localhost:8080/user/phoneNumber/{phoneNumber}"

/user

POST

curl	-X	POST	"https://localhost:8080/user"

100

Curl Java Android Obj-C JavaScript C# PHP Perl Python

deleteUser
Delete	user

Curl Java Android Obj-C JavaScript C# PHP Perl Python

Schema

getAgents
Returns	agents	in	database

Responses
Status:	200	-	OK

User	wants	to	delete	account

Usage	and	SDK	Samples

Parameters
Path	parameters
Name Description
pubAddress* String

The	pubAddress	that	needs	to	be	deleted
Required

Responses
Status:	200	-	OK

Search	for	agents

Usage	and	SDK	Samples

Parameters
Responses
Status:	200	-	OK

▼ [[]

/user/{pubAddress}

DELETE

curl	-X	DELETE	"https://localhost:8080/user/{pubAddress}"

/user/agents

GET

curl	-X	GET	"https://localhost:8080/user/agents"

101

Curl Java Android Obj-C JavaScript C# PHP Perl Python

Schema

getUserByName
Get	user	by	pubAddress

undefined
]

Status:	400	-	empty	list

get	the	object	user	without	pin	parameter

Usage	and	SDK	Samples

Parameters
Path	parameters
Name Description
pubAddress* String

the	pubAddress	that	needs	to	be	fetched.
Required

Responses
Status:	200	-	OK

▼ 	{	[]
Required:	MSISDN,firstName,lastName,phoneNumber,pin,pubAddress
pubAddress: string

example:	0x5742fg32v3ja5D
phoneNumber: integer	(int32)

example:	987654321
firstName: string

example:	John
lastName: string

example:	Nanjala
pin: integer	(int32)

example:	1111
MSISDN: string

example:	99M992342
shortCodeAgentID: string

example:	SH3141515
locationLat: string

example:	37.4219506
locationLong: string

example:	-122.078
additionalInfoClient: string
additionalInfoAgent: string

}

/user/{pubAddress}

GET

curl	-X	GET	"https://localhost:8080/user/{pubAddress}"

102

Curl Java Android Obj-C JavaScript C# PHP Perl Python

updateUser
Update	user

Status:	400	-	Empty	response

This	is	used	when	client	register	as	an	agent

Usage	and	SDK	Samples

Parameters
Body	parameters
Name Description
userItem ▼ 	{	[]

Required:	MSISDN,firstName,lastName,phoneNumber,pin,pubAddress
pubAddress: string

example:	0x5742fg32v3ja5D
phoneNumber: integer	(int32)

example:	987654321
firstName: string

example:	John
lastName: string

example:	Nanjala
pin: integer	(int32)

example:	1111
MSISDN: string

example:	99M992342
shortCodeAgentID: string

example:	SH3141515
locationLat: string

example:	37.4219506
locationLong: string

example:	-122.078
additionalInfoClient: string
additionalInfoAgent: string

}

Responses
Status:	200	-	OK

Suggestions,	contact,	support	and	error	reporting;
Information	URL:	https://helloreverb.com	(https://helloreverb.com)
Contact	Info:	maria.vieira@wit-software.com	(maria.vieira@wit-software.com)

/user/update

POST

curl	-X	POST	"https://localhost:8080/user/update"

103

	Introduction
	Context
	Goals
	Document Structure

	State of The Art
	Mobile Money
	Agents

	Competition
	Direct Competitors
	Features
	Feature Classification
	Conclusion

	Proposed Solution
	Blockchain
	Technologies
	Backend
	Frontend

	Methodology and Planning
	Methodology
	Roles
	Ceremonies

	Planning
	1st Semester
	2nd Semester

	System Description
	User Stories
	Agents
	Clients

	Functional Requirements
	Use Cases
	Authentication
	Agent user
	Client user

	Non-Functional Requirements
	Security
	Learnability
	Usability
	Availability

	Risks
	Software Architecture
	Architecture
	Context Level
	Containers Level
	Components Level
	Code Level

	Navigation Diagram

	Development
	Process and project organization
	Project Structure
	Frontend
	Backend

	Developed requirements
	Authentication
	Agents' Module
	Clients' Module

	Risks
	Security and Privacy
	GDPR

	Future work
	Problem
	Hypothesis
	Comparative analysis (Appendix C)
	Conclusion

	Testing
	Unit Testing
	Web API
	Smart Contract
	Mobile App

	Usability Testing
	Tests
	Results

	Conclusions

	Conclusion
	Appendix 1st Semester Planning
	Appendix Software Architecture
	Appendix Comparative Analysis
	Appendix AWS Pricing Calculator
	Appendix Web API Documentation

