
 

 

 
 
 
 

 
 
 
 
 
 

Guilherme Miguel Matos Costa 
 
 
 
 

GPU PROCESSING OF 3D AUDIO 
 
 
 
 
 
 

Dissertation in the context of the Master in Informatics Engineering, 

specialization in software engineering, advised by Professor Rui Pedro Paiva 

and Doctor Nuno Fonseca presented to the Department of Informatics 

Engineering of the Faculty of Sciences and Technology of the University of 

Coimbra. 
 
 
 

September of 2022 





Faculty of Sciences and Technology

Department of Informatics Engineering

GPU Processing of 3D Audio
Migrate the 3D audio render engine from CPU to GPU

Guilherme Miguel Matos Costa

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering advised by Dr. Nuno Fonseca and Prof. Rui Pedro Paiva and

presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

January 2022





Acknowledgements

First and foremost, I would like to thank my advisor, Nuno Fonseca, for the op-
portunity of being part of the software development team in Sound Particles,
providing inspiration and knowledge during the full-time internship. It was a
very educative and professional experience in a workspace with a group of very
talented and fabulous people. I can leave the internship and say I am a more ma-
ture and developed person, and I can not forget to thank you for the experience.
I would like to thank my advisor, professor Rui Pedro Paiva who supervised this
documentation and helped acknowledge all the mistakes performed while writ-
ing this document and never gave up on helping me .
I cannot also forget to thank Alexandre Frazão for supporting all my encounters
during my software development and helping in all the ways he could so I could
conclude my work.
I want to thank all the people in the Sound Particles company for providing an
excellent experience for my first professional work in the world, full of new beau-
tiful experiences that I would repeat.
I would like to thank my group of friends, BXD-CBR, for supporting me during
the work development and helping me write and review this document.
Finally, I have also to thank my family for all the support they provided on both
the internship and the writing of the thesis, where my father took his time also to
revise the document so it would have fewer errors as possible.

iii





Abstract

As society progresses, the computation power follows it so that we can achieve
new ways of increasing performance in computing software. The use of the
Graphics Card in software development is a perfect example because of its high
thread number so that we can achieve high-performance systems.
This thesis is a part of a curricular internship with the theme "GPU 3D audio pro-
cessing" for the company Sound Particles.
At the moment, the audio processing pipeline is done in Central Processing Unit
(CPU), and the objective of the internship is to migrate this processing to Graph-
ical Processing Unit (GPU) to increase scalability and rendering speed.
The development of this migration was done using the Metal API and developed
in the Objective C language, which is instantiated in the language that the com-
pany’s products use, C++.
Metal Application Programming Interface (API) can be invoked in Swift, Objec-
tive C, and recently with C++17 after Apple released a low-overhead C++ inter-
face. Processing in GPU is done in Metal Shading Language (MSL), which is a
low-level language, developed for API, which is based on the C++14 language,
also known as ISO/IEC JTC1 /SC22/WG21 N4431.
In the first semester, the main focus was an adaptation phase where I addressed
the topics GPU and General-Purpose Computing on Graphics Processing Unit
(GPGPU) and developed prototypes to start development in Metal API and in
Objective-C to handle all dependencies in the new development environment.
In the second semester, the main focus was completing the migration of the audio
engine to GPU, followed by a phase of optimizations and performance measure-
ment.
The render migration was completed with a speedup of 82% compared to the
CPU benchmarks. Due to the prioritization of achieving a better render architec-
ture that would present more promising results, there was not enough time to
conclude it and simultaneity complete quality tests.

Keywords

General Purpose Graphics Processing Unit, Graphical Card Programming, High-
performance computing, Migrate the processing from the CPU into the GPU,
Metal, GPGPU

v





Resumo

À medida que a sociedade avança, o poder computacional acompanha para al-
cançar novas formas de aumentar o desempenho nos “softwares”. O uso da
Placa Gráfica no desenvolvimento de “software”, devido ao seu alto número de
threads, é um exemplo perfeito disso.
Esta tese faz parte do meu estágio curricular com o tema "GPU 3D audio process-
ing" para a empresa Sound Particles.
Agora, a pipeline de processamento de áudio é feito no CPU, sendo o objetivo
do estágio a migração deste processamento para GPU para aumentar a escalabil-
idade e velocidade de renderização.
O desenvolvimento desta migração foi feito utilizando a API "Metal" sendo in-
stanciada na linguagem que os produtos da empresa utilizam, C++.
O Metal API pode ser invocado em Swift, Objective C, e recentemente com C++17,
dado á Apple lançar uma “interface” C++ de baixo overhead, metal-cpp. O pro-
cessamento em GPU é feito em MSL, sendo uma linguagem de baixo nível, desen-
volvida para API Metal, baseada na linguagem C++14, também conhecida como
ISO/IEC JTC1/SC22/WG21 N4431.
No primeiro semestre, o foco principal foi uma fase de adaptação onde abordei os
tópicos GPU e GPGPU, e desenvolvi protótipos para iniciar o desenvolvimento
em Metal API e em Objective-C para lidar com todas as dependências no novo
ambiente de desenvolvimento.
No segundo semestre, o foco principal foi a migração completa do motor de áu-
dio para GPU seguida de uma fase de otimizações e medição de desempenho.
A migração do processo de renderização foi concluído com uma aceleração de
82% em comparação com os valores obtidos pelo CPU. Foi priorizado alcançar
uma arquitetura de renderização mais eficiente para apresentar melhores resul-
stado.No entanto, não existiu tempo para concluir esta nova arquitetura e a tarefa
relacionada com os testes de qualidade não foi completada.

Palavras-Chave

Unidade de Processamento Gráfico de Propósito Geral, Programação em Pla-
cas Gráficas, Computação de Alto Desempenho, Mitigação de Processamento de
CPU para GPU,Metal,GPGPU

vii





Contents

1 Introduction 1
1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives and Approaches . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Results, Contributions, and Limitations of the thesis . . . . . . . . . 5
1.4 Sound Particles software . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 What is a Particle System . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Sound Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Project Planning and Management 9
2.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 First Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Second Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Third Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 First Sound Particles Prototype . . . . . . . . . . . . . . . . . 13
2.2.5 Second Sound Particles Prototype . . . . . . . . . . . . . . . 13

2.3 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Background Check and State of the Art 15
3.1 Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . 15
3.2 Graphical Processing Unit (GPU) . . . . . . . . . . . . . . . . . . . . 16

3.2.1 GPU Programming Limitations . . . . . . . . . . . . . . . . . 17
3.3 GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 What is GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Why use the GPU . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 GPGPU in Modern DAW . . . . . . . . . . . . . . . . . . . . 19
3.3.4 HPC on the GPU . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.5 CPU vs GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.6 Applications for GPGPU . . . . . . . . . . . . . . . . . . . . . 22
3.3.7 Programming Languages . . . . . . . . . . . . . . . . . . . . 25
3.3.8 Comparison of API’s and the API chosen . . . . . . . . . . . 31
3.3.9 Disadvantages of explicit API’s . . . . . . . . . . . . . . . . . 36
3.3.10 GPU new concepts . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.11 Metal API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 System Design 43
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



Chapter 0

5 Implementation 51

6 Results, analysis, and tests 55
6.1 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 First Semester . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 Second Semester . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.1 Functional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.2 Quality Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusions and Future Work 61

x



Acronyms

API Application Programming Interface.

CPU Central Processing Unit.

DAW Digital Audio Workstation.

FLOPS Floating Point Operations per Second.

GPGPU General-Purpose Computing on Graphics Processing Unit.

GPU Graphical Processing Unit.

GUI Graphical User Interface.

HPC High-performance Computing.

MSL Metal Shading Language.

OS Operating System.

TERA 1012 Operations.

xi





List of Figures

1.1 Sound Particles 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Planning for the First Semester . . . . . . . . . . . . . . . . . . . . . 11
2.2 Actual development for the First Semester . . . . . . . . . . . . . . . 11
2.3 Planning for the Second Semester . . . . . . . . . . . . . . . . . . . . 12
2.4 Actual development in the second semester . . . . . . . . . . . . . . 12

3.1 Simplified Architecture of a Multi-Core Central Processing Unit
(CPU) Source:Author . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Typical NVIDIA Graphical Processing Unit (GPU) architecture (a)
NVIDIA’s Fermi architecture. (b)The GPU resources are controlled
by the programmer through the CUDA programming model. . . . 18

3.3 Theoretical Peak Performance for Single Precision Operations . . . 21
3.4 Theoretical Peak Performance for Double Precision Operations . . . 22
3.5 Theoretical Peak Memory Bandwidth . . . . . . . . . . . . . . . . . 23
3.6 Comparison of the execution times between CPU and GPU versions 24
3.7 3D models used in experiments. (a) Armadillo. (b) Happy Buddha.

(c) Brain. (d) Blade. (e) Dragon . . . . . . . . . . . . . . . . . . . . . 24
3.8 Statistics for real-world dataset . . . . . . . . . . . . . . . . . . . . . 25
3.9 Overhead comparison between OpenGL and Metal API . . . . . . . 26
3.10 Vulkan API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 OpenGL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.12 DirectX 12 / Direct3D 12 Feature Levels and Resources . . . . . . . 30
3.13 CUDA tools, libraries, frameworks, and use-cases . . . . . . . . . . 31
3.14 CUDA tools, libraries, frameworks, and use-cases . . . . . . . . . . 32
3.15 Metal Objects Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.16 Metal grid of threads . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Module tree of the sp-core . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Module tree of the sp-engine - Part 1 . . . . . . . . . . . . . . . . . . 47
4.3 Module tree of the sp-engine - Part 2 . . . . . . . . . . . . . . . . . . 48
4.4 Module tree of the sp-engine - Part 3 . . . . . . . . . . . . . . . . . . 49
4.5 Sound Particles Modules . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Diagram of the gpu architecture integration in the Sound Particles
software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 1st Semester Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Baseline Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Description table of the part of rendering with its render times . . . 57

xiii



Chapter 0

6.4 Second part of description table of the part of rendering with its
render times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Graphic of the GPU and CPU render duration . . . . . . . . . . . . 58

xiv



List of Tables

1.1 Time to sum elements by the index of two arrays . . . . . . . . . . . 3

xv





Chapter 1

Introduction

Presently, the importance of digital systems is a fundamental and crucial posi-
tion, and society will always need to achieve more complex operations that need
to be as fast and safe to utilize.
Sound Particles is an audio software company that applies computer graphics
techniques to sound. Sound Particles software can deliver immersive audio soft-
ware capable of generating thousands (even millions) of sounds in a virtual 3D
audio world. [Sound Particles]
Each particle system can be described in a three-dimensional space and is repre-
sented by a point that can have movement or not. Each sound captured by each
microphone is denoted by its gain and delay in decibels so that the system can
compute the interpolation of all particle sounds and present the resulting sound.
The audio rendering engine is responsible for several jobs like computing the re-
sulting sound at a specific frame for a given frame rate for all the particles in the
system and computing the sound interpolation, calculating the position/direc-
tion of each microphone at a given frame, compute the gain and the delay value
for the particle for a specific microphone for each frame, etc.
With the introduction of an audio render engine that is processed in the GPU, we
can achieve a significant increase in performance due to its highly parallelized
capabilities.
As such, the main objective of this work is to migrate the current cpu-based solu-
tion of the Sound Particles software to a gpu-based solution.
To construct this migration, I utilized the Application Programming Interface
(API) Metal, a low-level, low-overhead hardware-accelerated 3D graphic and
compute shader API created by Apple in 2014.
In order to increase the bandwidth between the CPU and the GPU, Apple de-
signed a chip that is the CPU and the GPU together, the Apple M1 chip, , released
in November of 2020 [Wikipedia contributors, 2022a]. At the time of the writ-
ing of this thesis, Apple upgraded the M1 chip, and with the new versions, the
M1 Pro and the M1 Max, that resulted in a larger memory bandwidth value, more
memory capabilities, and better computing power [Malcolm Owen, Oct 30, 2021].

1



Chapter 1

1.1 Motivation and Scope

Today, GPU is a cheaper commodity solution to having a data-parallel co-processor
alongside the CPU [Fleming, 2008] since we can acquire a cheap GPU that sill is
able to deliver a good performance execute compute operations .
For many years, graphic cards have had an increasing position in the current
digital world. They were responsible for displaying images and motion on com-
puter graphics. Today, with the new APIs and the increasing developments on
the General-Purpose Computing on Graphics Processing Unit (GPGPU) topic,
we can almost achieve similar processing capabilities in the GPUs that until now
were developed mainly in the CPUs.
Graphics cards have evolved and can be used in image processing to find simi-
larities and differences in pixels. GPUs can process big data with their thousands
of computational cores and deliver 10–100x application throughput compared to
CPUs alone [Olena, Feb 8, 2018]. In deep learning development, the acceleration
rate is up to 4-5 times, as revealed in some tests [Buber and Diri, 2018].
With a GPU implementation, we can accelerate algorithms that are intensive
tasks. Due to the highly paralyzed capability, the GPU will present impressive
results in the compute time.
To illustrate the GPU parallel efficiency, Table 1.1 shows the time it takes to add
two vectors, the first row is the CPU processing time, and the second row is the
GPU processing time.
The code was written in Objective-C, and the GPU API utilized was Metal, and
the time recorded was after all allocations in a MacBook with a Dual Core 1.3
GHz Intel Core i5 CPU and an Intel HD Graphics 615 1536 MB GPU.

for ( i n t i = 0 ; i < length ; i ++){
r e s u l t [ i ] = b u f f e r [ i ] + b u f f e r 2 [ i ] ;

}
Listing 1.1: CPU/Objective-C Code

kernel void add ( const device f l o a t * a r r 1 [ [ b u f f e r ( 0 ) ] ] ,
const device f l o a t * a r r 2 [ [ b u f f e r ( 1 ) ] ] ,
device f l o a t * r e s u l t [ [ b u f f e r ( 2 ) ] ] ,
u int index [ [ t h r e a d _ p o s i t i o n _ i n _ g r i d ] ] ) {

r e s u l t [ index ] = a r r 1 [ index ] + a r r 2 [ index ] ;
}

Listing 1.2: GPU/Metal Shading Language (MSL)

The task of adding two arrays can be highly parallelized since all operations do
not require elements from previous iterations or future ones, so we can divide it
into a single operation and have each thread perform it.
In the CPU code, the main process iterates the same code for the length of the
array we want to add, but the GPU code is run by all threads that are launched,
obtaining a high-performance improvement when we increase the length of the
numbers we want to process.

2



Introduction

Array Length CPU Time (sec-
onds)

GPU Time (sec-
onds)

1000 0.000397 0.000032
10000 0.005924 0.000043
100000 0.042192 0.000120
1000000 0.320999 0.001449
10000000 3.419966 0.007442

Table 1.1: Time to sum elements by the index of two arrays
Source: Author

Currently, the render engine of the Sound Particles software is a multithreaded

3



Chapter 1

CPU implementation, where the producer thread launches one thread per core
in the CPU and then it will divide the workload so that all threads can work in
parallel.
With a new GPU integration, the engine can free some of these threads to process
other work required and have a synergy between the CPU and GPU, working
together.
Since the Sound Particles Software supports a live render and an action-blocking
render. The architecture needs to be designed to work in the two types of render.
The blocking render is the typical render button in the software, which blocks ev-
ery user action until the render process is completed. Since the rendering system
is blocking, we can adjust the payload(number of frames to process in a callback)
to achieve better GPU render times.
The live render is more complicated to adjust the payload since the user always
defines it, and it will be a small payload with a low number of frames to be com-
puted.
That being said, the architecture needs refactoring since it processes from each
particle to each microphone to a block of frames. To achieve an efficient engine, it
will need to process the most particles in a payload for a block of a fixed number
of frames.

1.2 Objectives and Approaches

General-purpose computing on graphics processing units is a term used for using
the graphical processing unit to perform calculations instead of typical graphics
rendering.
Processing data is usually a task made in the Central Processing Unit(CPU) se-
quentially. With a GPU computing integration, we can increase the throughput
of the data processed by using a large amount of GPU cores to parallelize it if the
tasks can be performed.
So far, the GPU is frequently used to process graphical data, but with the GPGPU
concept, we can enhance how we process large amounts of data by separating
this processing of the data into a huge amount of threads.
Currently, the audio renders pipeline of Sound Particles software uses the CPU as
the main source of processing. With the integration of the GPU to the audio ren-
dering engine, the CPU will be free to perform other tasks CPU-intensive tasks.
Presently, the Sound Particles audio engine works parallelly, where a pool of CPU
threads process the data to achieve a good performance in the rendering times.
Due to the complexity of the software, it is also responsible for other tasks like
managing the GUI (Graphical User Interface), binaural processing case it is ac-
tive, the interpolation of the air delay and mixes for the playback, etc.
To accomplish efficient software with the new implementation, the main objective
of this thesis is to develop a system where the GPU makes all the major audio ren-
dering calculations so that the CPU performs all the tasks that it previously did
before and still be utilized to process new features in the software.
This implementation contains some penalties, the most important is that the GPU

4



Introduction

requires specific commands that need to be encoded by the CPU.
Secondly, the GPU can only process data that is in the system, VRAM(Video Ran-
dom Access Memory), so there is the drawback that the data need to be sent to
the GPU, in order to be processed and then sent back to the CPU, which is always
limited by the bandwidth of the motherboard.
Thirdly, historically GPUs are further limited in floating-point precision, with
only the most recent GPUs having full 32-bit IEEE 754 single-precision floats.
Modern GPUs already support double-precision floating-point operations but
present a very noticeable performance drop. For example, the graphics card
GeForce RTX 3090, released on September 24, 2020, has a 1012 Operations (TERA)Floating
Point Operations per Second (FLOPS) capability from 29.28 to 35.58 for single-
precision operations, and a TERAFLOPS power from 0.459 to 0.558 to double-
precision operations, which present a speedup of 63.7 from single-precision to
double-precision operations.

1.3 Results, Contributions, and Limitations of the the-
sis

The work developed in Sound Particles can be divided into two prototypes, the
first one that is just a complete migration of the current engine but performs all
calculations on the GPU step by step, and the second prototype being a more ef-
ficient prototype that utilizes larger kernels so that it does not exist an overhead.
During the migration of the Sound Particles Objective-C bridge to C++ to the
Apple interface, the developer Alexandre Frazão worked alongside me. He im-
plemented a bridge between the interface objects and the C++ since the interface
did not contain an autorelease feature and utilized the C++ garbage collector to
destroy all objects that were not used during the application runtime.
The first prototype principle was utilizing small kernels to perform minor opera-
tions required by the engine, like processing particles and microphone positions
followed by the polar response, etc. This resulted in overhead from constantly
switching from kernel to kernel, affecting the system’s efficiency.
To eliminate this overhead, a second prototype was developed with the intuitive
to replace the first and be a conjunction of all small kernels developed in the first
prototype. Due to a lack of time, this prototype was not completed, and I could
not obtain the benchmark results. That being said, this thesis will revolve around
the first prototype and all the results that revolved around it.

5



Chapter 1

1.4 Sound Particles software

1.4.1 What is a Particle System

In order to describe the Sound Particles software, an explanation of a particle sys-
tem in the sound industry need to be defined. In a system where we have one or
more groups of particles, and each one will emit a sound, the microphones in the
system will capture its sounds, and by counting the speed of sound, the distance,
and all the natural world limitations will reproduce a final sound result.
The particles in these groups can have a vast number of shapes, and the micro-
phones can also be of different types, ambisonics, multichannel, etc..
It is intuitive that to achieve the output sound, we will need to do a tremendous
number of computations.
Currently, the render engine can be simplified to the following steps:

1. Compute particle position

2. Compute microphone position

3. Compute microphone direction

4. Compute pitch change (if changed)

5. Compute polar response for that particle and that microphone

6. Compute attenuation for the polar response

7. Compute sound interpolation

1.4.2 Sound Particles

Sound Particles 2

“Sound Particles” is an audio software company that applies computer graphics
techniques to sound. The software is utilized in top videogame companies (Bliz-
zard, Epic Games, PlayStation) and all major Hollywood studios, being used in
productions such as “Game of Thrones,” “Frozen 2”, “StarWars 9”.” [Sound Par-
ticles]
The software uses computer graphics and visual effects techniques within the
audio segment. It can be compared to an image edition software like Photo-
shop, which is suitable for editing images in 2D, but there are tools like Maya
and Blender that allows edition images within the three-dimensional environ-
ment.
Currently, Sound Particles leading audio software in the market is Sound Parti-
cles 2, where the user can create sounds in virtually any output format to achieve
the desired level of immersion.
It is a Digital Audio Workstation (DAW) introduced in 2016, it is designed to offer

6



Introduction

unique and efficient sound design workflows, increase creativity and reduce the
time needed to create and record complex sound effects in virtual 3D environ-
ments.
The software can simulate any output virtually format possible, providing micro-
phones systems of the following types: mono, stereo, ambisonics, 5.1, 7.1, Dolby
Atmos Beds, Auro 3D, and many more. It also supports batch processing, CGI
and video integration, and binaural monitoring and simulates the doppler effect
if the user desires.
If the user wants to change the system along the time, it is also possible to ran-
domly change the equalizer, the sound pitch, the sound delay, the granular sound,
and particle group movement by creating velocity or acceleration, ... The Figure

Figure 1.1: Sound Particles 2

1.1, we can observe the software with a standard sample template that simulates
multiple spheres composed of tiny particles that radiates sound that is then cap-
tured by a microphone, that by its nature will receive different types of results.
The microphone can be a traditional stereo or a more complex one like a binaural
microphone within all the possibilities of microphone types provided in the soft-
ware.
The software also presents other features like allowing the sound engineer to add
movement modifiers to the particles, simulating the sensation of a moving sound,
among other features.
Initially, the software allowed the power to create immersive sounds with simple
clicks on a button, which evolved into complex sound software that allows the
users to deliver sounds it was not possible before with all the new functionalities.

7



Chapter 1

Sound Particles 3

The Sound Particles 3 is still in development, and by the time this thesis got writ-
ten, it did not get the alpha version released to the public/alpha-testers.
It will revolutionize the Sound Particles 2 interface adding a better graphic user
interface to the user and presenting a bunch of new features, but the most im-
portant to this thesis is the opportunity to change the render system to the GPU,
among other features that are not important to this document.
That being said, the primary purpose of this work is to integrate this version of
Sound Particles by completing the migrating of the render engine to the GPU. So
that we can achieve better-reduced render times than the CPU ones.
The work developed was a complete migration of the render engine to the GPU,
but since the results were around 80% of speedup, it was not enough, so a com-
plete architecture refactoring was needed.
To develop a new render engine, refactoring and tests to verify all results were
needed. These tests need to have a margin of error since the render engine in the
CPU utilizes double as the primary data type, and the Metal API only can utilize
a single precision storage format, like float and half.

1.5 Outline of the thesis

The first chapter of this thesis summarizes the work produced, all results achieved
with the work developed, and a small presentation of the company Sound Parti-
cles and all their products by the time this thesis was written.
The second chapter resolves around the planning of the work that would be done,
followed by the description of the development process and finish with the risks
associated with the work.
The third chapter settles about GPGPU describing it, why it should be used in
current software to achieve better performance in applications, and all the APIs
that can be used to develop general-purpose computing on graphics processing
units.
The fourth chapter is a description of the requirements and the architecture im-
plemented in the prototype, containing the Sound Particles user stories that were
written before my internship started and some that I added.
The fifth chapter explains the implementation to achieve the solution to the prob-
lem proposed in this thesis, providing a detailed perspective on the solution
achieved.
The sixth chapter is a presentation of the results achieved with a complete de-
scription of how the benchmark tests were made and all the quality tests devel-
oped until the moment.
In the seventh chapter, the final chapter, it described a conclusion of the work
developed and all the future work that can be implemented to achieve a more
efficient system.

8



Chapter 2

Project Planning and Management

2.1 Planning

The internship started on October 8, 2021, with my visit to the company’s main
facilities in Leiria, where my advisor Nuno Fonseca presented their software and
the Sound Particles team.
The following weeks, until the beginning of November, were a phase of research
on current technologies and how I use them to implement the engine migration.
During this time, I chose the API that I will utilize during the migration, and I
started making some initial development with the API. The first experiment uti-
lized the chosen API to add all elements of two arrays into a new array.
After this initial testing, the first step was implementing a prototype with some
principles that the Sound Particles Software utilizes, like calculating the length
between two points and developing multithreading to divide the workload be-
tween threads since the workloads are pretty heavy.
After this initial prototype, the following work was on a second prototype, which
involves broader operations that occur in the current engine, for example, to cal-
culate the gain and the delay of each particle (per particle and per microphone
way). However, with the increased workload, some memory difficulties were en-
countered. At this stage, there were some divergences between my approach to
the problem and the tutor vision when I performed more intensive workloads to
the GPU but were not scalable, which also slowed down this development.
The workload was composed of 10 particle groups composed of 1.000.00 particles
each, and compute the gain and the delay to 10 microphones for 60 seconds with
a sample rate of 48 kHz.
During the first semester, the plan was to perform a third prototype that would
be even closer in operations to the current engine. However, the second proto-
type memory management slowed my progression. Therefore, this objective was
not attained.
The full-time work started on February 15, 2022, wherein the first weeks were
to set up the workspace and study all the Sound Particles modules, specifically
the sp-engine and the sp-core described in the System Desing chapter, the fourth
chapter. The following weeks and months were to develop the render migration
to the GPU. When I reached the final part of the render engine, a new phase of

9



Chapter 2

optimizations started since it did not deliver the expected results. In the begin-
ning, there were just small CPU and GPU code optimizations, and it still did not
beat the CPU render duration. So a phase of refactoring the interpolation process
resulted in a GPU render time improvement over the CPU of almost 20%. While
this task was being developed, a testing phase also started where I developed
functional and quality tests for the new engine.
To achieve the desired results of 80% improvement, a new render engine archi-
tecture was required, so on August 8, I started developing it.
This task started with the development of new compute shaders that were a con-
catenation of the previous ones, developed in the first migration, and after it, they
needed a refactoring process since each shader was made to process a single par-
ticle and to achieve the desired results it needed to process a batch of particles for
all microphones in a microphone system.
This task was not completed even with the shaders code finalized, the sp-engine
code not getting concluded to utilize this new architecture, but the most part was
developed.
The following tasks describe the initial planning of the internship:

1. First Semester:

(a) Understanding Sound Particles (knowing the software, what it does,
its internal structure, the building pipeline, etc.)

(b) Understanding the GPU architecture, their development process, and
their tools.

(c) Design and implement a Sound Particles GPU integration architecture

(d) Start migrating audio rendering code from CPU to GPU.

(e) Write the mid-project report

2. Second Semester:

(a) Full migration of the audio rendering code into GPU.

(b) Performance measurement and optimization

(c) Documentation and final report

Since it this initial purpose has information about the average time it took to
perform the tasks. The following diagram presents my interpretation of the sup-
posed planning of the internship/thesis.
We can observe Figure 2.2 that the development of an actual prototype took a
very long time to develop compared to the expected, Figure 2.1, this is caused
because of the heavy conditions that the prototype was submitted, like a sample
rate of 48000 with 1000 particles per group in ten groups with ten microphones,
over 60 seconds.
To develop this robust prototype so that it could handle this amount of workload,
which will need even improve more during the development of the internship,
still represents a small prototype compared to the current Sound Particles soft-
ware.
The GANTT diagram in the Figure 2.4, presents my planning for the second

10



Project Planning and Management

semester, where I will implement the full migration of the audio rendering engine
to the GPU followed by a phase of testing and a phase of making all optimiza-
tions that were not made during the development and finishing with the writing
of the report.

Figure 2.1: Planning for the First Semester

Figure 2.2: Actual development for the First Semester

11



Chapter 2

Figure 2.3: Planning for the Second Semester

Figure 2.4: Actual development in the second semester

2.2 Development Process

2.2.1 First Prototype

This prototype developed was very simple in terms of complexity since the main
objective was to help me to understand the development of code with the Metal
API.
This prototype objective was to process small amounts of data in the GPU and
perform small and the main operations made in the Sound Particles Software,
like subtracting and adding values and calculating the length between two 3D
points.

2.2.2 Second Prototype

The second prototype was a Mini Prototype of 3D particle render, where there
were the concepts of groups of particles and microphones present for each parti-
cle and each microphone at a given time step, the polar response, the gain, and
the delay.

12



Project Planning and Management

Also, to develop an efficient prototype, I developed in this stage a metric system
with the intuitive to present if all the improvements developed during the proto-
type were beneficial or not.

2.2.3 Third Prototype

The third prototype is an even more complex prototype that is meant to be as
similar as possible to the current Sound Particles 3D particle render engine, mak-
ing all the calculations that the actual renderer performs.

2.2.4 First Sound Particles Prototype

Since February 15, 2022, the main focus of the work has been to migrate the ren-
der engine to the GPU, which was achieved on July 23, 2022. Since the speedup
achieved was 82.00%, it was not enough to justify all work developed, so a new
approach was needed.
This prototype can be decomposed into a pack of requests to process sound emit-
ted by the particles for the microphones in the system. This pack comprises a
request for particle position, microphone position, polar response for each parti-
cle for each microphone, sound attenuation, and sound interpolation. To process
each particle and for each microphone for a sample rate, we need five requests to
the GPU, which can create an overhead between the CPU and GPU.

2.2.5 Second Sound Particles Prototype

The development of this prototype was a follow-up to the first one. It just picks
up all the work developed during the render engine and compresses it in only
one request instead of an abundance of them.
That being said, the main focus of this prototype is to create kernels that capsulize
all the small requests into just one big one so that we do not have all the unnec-
essary overhead.
This new architecture consists of deploying threads that follow the number of
particles instead of, like in the first prototype, just launching the number of threads
that were needed for each particle and each microphone. This work implied a
significant change in the render architecture since it was not developed for this
render path.

13



Chapter 2

2.3 Risks

The implementation of this assignment comes with some risks I focused on the
first semester to overcome when I started to migrate the processing to the GPU.
The Following list demonstrates the main risks that were raised in the first semester
of adaptation:

1. GPGPU Programming

(a) No prior experience programming GPGPUs. My only experience was
in the topic of shaders in the Computer Graphics course of the Bachelor
Program on Informatics Engineering, where we programmed texture
shaders in OpenGL.

(b) Mitigation plan: Develop prototypes that improve the complexity over
time to improve my abilities

(c) Probability of occurrence: Average

(d) Impact: High

2. Large Amounts of Data to Process:

(a) A large amount of data to be processed must be computed with high
precision to deliver high-fidelity result sound with an immense immer-
sion so that any error will result in serious problems.

(b) Mitigation plan: Heavy testing after the conclusion and debugging
tools to verify the occurrence of UB(Undefined Behaviour) in the ap-
plication

(c) Probability of occurrence: High

(d) Impact: High

14



Chapter 3

Background Check and State of the
Art

This state of the art resolves around the GPGPU since the main function that will
perform is the migration of data processing from the CPU to the GPU.
Historically, the earliest GPUs were hard to program for anything other than
graphics applications because every operation had to be mapped to an equiva-
lent graphics operation.
In 1987, the British mathematician John Horton Conway became one of the first
examples of general-purpose computing. He developed a cellular automaton us-
ing an early stream processor called a blitter to invoke a special sequence of logi-
cal operations on bit vectors [Wikipedia contributors, 2022b].
With programmable shaders and floating-point support on graphics processors,
this topic became a more popular topic since the graphical cards became more
important and programmable .
In 2001 the E. Scott Larsen and David McAllister performed the “Fast Matrix
Multiplies using Graphics Hardware” article that showed an implementation of
matrix multiplications performed in the GPU and demonstrated the amount of
speedup resulting with it [Larsen and McAllister, 2001].

3.1 Central Processing Unit (CPU)

So far, to process all kinds of data, we mainly utilize the CPU to achieve fast
processing by utilizing its powerful cores, but what is a CPU?
A Central Processing Unit, also known as CPU, is the brain of a computer that
processes all instructions that need to be processed. They can be arithmetic, logic,
and I/O operations specified by a software program.
The CPU can be decomposed as an arithmetic-logical unit(ALU) that performs all
arithmetic and logical operations, the process register that supplies the operants
for the ALU and then stores its result, and the control unit that is responsible for
fetching memory, decoding, and executing the instructions by coordinating the
operations to the ALU, register and other components.

15



Chapter 3

Nowadays, the vast majority of CPUs are multicore processors, which means
that on one single integrated unit, we will have two or more separate processing
units(CPU), so these days the CPU that is composed of multiple separated CPUs
that communicate by the bus interface and L1, L2 and the new L3 cache.
With the new multicore processors, we can achieve parallel computing, and if the
cores also support multithreading, we can improve it even more, as we will be
able to create additional virtual or logical CPUs.

Figure 3.1: Simplified Architecture of a Multi-Core CPU
Source:Author

3.2 Graphical Processing Unit (GPU)

Modern computers come with a Graphical Processing Unit, also known as the
GPU is a specialized electronic circuit designed to rapidly manipulate and alter
memory to accelerate the creation of images in a frame buffer intended for the
display device.
Modern GPUs effectively manipulate computer graphics, image processing, and
other computing operations by utilizing their highly parallel structure.
This structure composes of numerous less powerful cores than the GPU, but their
purpose is to divide the data into chunks, and then each core processes small
chunks of data.
Their initial design was to accelerate the rendering of 3D graphics, but over time
they became more flexible and programmable, enhancing their capabilities to
dramatically accelerate additional workloads in high-performance computing,
deep learning, neural networks, simulations, and more kinds of data process-
ing, also known as General Purpose Graphics Processing Unit(GPGPU).
A single GPU device consists of multiple Processor Clusters (PC) that contain
multiple Streaming Multiprocessors (SM). Each SM accommodates a layer-1 in-
struction cache layer with its associated cores.
Typically, one SM uses a dedicated layer-1 cache and a shared layer-2 cache before
pulling data from global GDDR-5 (or GDDR-6 in newer GPU models) memory.
Its architecture is tolerant of memory latency.

16



Background Check and State of the Art

Compared to a CPU, a GPU works with fewer and relatively small memory cache
layers.
The reason being is that a GPU has more transistors dedicated to computation,
meaning it cares less how long it takes the retrieve data from memory. The po-
tential memory access ‘latency’ is masked as long as the GPU has enough compu-
tations at hand, keeping it busy the potential memory access ‘latency’ is masked
as long as the GPU has enough computations at hand, keeping it busy [VMWare,
2022].
NVIDIA realized the potential of bringing this performance to the larger scientific
community and invested in modifying the GPU to make it fully programmable
for scientific applications.
The typical architecture of an Nvidia GPUs is illustrated in the figure 3.2 with a
description of all its components.

3.2.1 GPU Programming Limitations

Despite the enormous performance of the GPU, it comes with some drawbacks
because they still are simple operations translated that were encoded by the CPU
to be executed by it.
It does not have virtual memory support, privilege levels, I/O support, and other
facilities that a CPU provides for operating a general computer. The main disad-
vantages can be observed in the following list:

1. GPUs are much harder to program than CPUs due to his different and re-
strictive programming model

2. Different workflow between GPU APIs

3. GPU API devices and/or operative systems limitations

4. The data must be repositioned to the GPU to be processed and then sent
back to the CPU, which limits the process

5. Some of the shading languages do not support double-precision numbers,
and the ones that support them execute much slower. For example, the
NVIDIA RTX 3090 in single precision operations has a performance of 35.58
TFLOPS, and in double precision, operations perform at 556.0 GFLOPS.

6. The processing of the GPU must be encoded by the CPU, so for an efficient
system, we must have multiple threads to encode.

7. Kernel errors are very hard to debug since we cannot check variables values
at a running time like in the CPU

8. Memory Management can be tricky to implement and have lower memories
than the CPU

9. Programming in GPU is still an evolving technology

17



Chapter 3

Figure 3.2: Typical NVIDIA GPU architecture
(a) NVIDIA’s Fermi architecture.
(b)The GPU resources are controlled by the programmer through the CUDA pro-
gramming model.

Source: [Hernandez M, 2013]

10. While GPGPU can achieve a 100-250x speedup vs. a single CPU, only em-
barrassingly parallel applications can develop these speedups

11. Nvidia and AMD offer to compete for GPU programming languages that
only work with their products

18



Background Check and State of the Art

3.3 GPGPU

3.3.1 What is GPGPU

GPGPU is becoming an increasingly viable option for acceleration, including in
the audio domain since we have many operations in the background.
The GPU work required mapping of scientific code to matrix operations to ma-
nipulate triangles, and it would require an insane passion and commitment to
using the GPU for another purpose other than rendering graphics. Nowadays,
we have wide options of APIs to choose from, enabling programmers to utilize
the massively parallel power of the GPU for purposes other than graphic render-
ing.

3.3.2 Why use the GPU

Given the GPU parallelism architecture, a code with large loops, especially nested
loops, can be simplified to a single GPU run by partitioning the operations used
into independent tasks that are going to be executed by the blocks of threads. If
we can partition these operations even more, we can execute them cooperatively
in parallel by the threads within the block enabling automatic scalability.

3.3.3 GPGPU in Modern DAW

To express the speedup that could be achieved in a DAW utilizing a gpu render
system, the following subsections would represent the speedup that can be ac-
complished with the change of the render engine device.
Therefore, it will only present the ones with a GPU acceleration for the render
engine, but since there aren’t any DAW’s that support natively a GPU render en-
gine in the macOS operative system I could not present the results. I tested the
following DAW’s to verify if there was a path to only utilize the GPU, but there
were none. I tested the following :

1. FL Studio

2. Apple Logic Pro

3. Steinberg Cubase

4. PreSonus Studio One

5. Bitwig Studio

6. Apple GarageBand

7. Avid Pro Tools

19



Chapter 3

By testing different DAW’s, we can verify that there is no implementation of a
fully gpu render engine, and even Apple’s software, Logic Pro or GarageBand
utilize it.
Accordingly, we can verify that the complexity of the problem being proposed
around this thesis is very high.

3.3.4 High-performance Computing (HPC) on the GPU

The HPC term is the ability to process data and complex data at high speeds.
Normally this term is associated with having a distributed network of computers
that compute data together and using a computer as a cluster. However, we can
also utilize the GPU as the primary computing cluster to compute data.
The Graphical Processing Unit has evolved from a graphical unit into many other
purposes, like high-performance computing(HPC). Since the GPUs originally got
designed to perform the image rendering that is achieved by arithmetic floating-
point operations, we can achieve a similar behavior to process floating-point com-
putations.
Modern GPUs contain hundreds of processing units capable of computing enor-
mous amounts of data at a time, and some of this computing power is not translu-
cent as it should be.
The new PS5 for example is capable of doing 10.28 TERAFLOPS of data, which
means that it can compute 10.28 ∗ 1012 floating-point operations per second. The
main purpose of a PS5 still is to render computing graphics, but we can observe
that we have tremendous power inside it.

3.3.5 CPU vs GPU

The major difference between the CPU and the GPU is the highly paralyzed ar-
chitecture of the GPU that makes it much more efficient than the CPU to process
data that can be partitioned and processed in parallel.
The GPU design is more focused on processing data rather than data caching and
flow control, so if we have a problem that can be decomposed and processed in
a parallel way, it usually means that, or the same operation is made into every
element which means that we do not need a complex flow control, or the data
is massive and high on arithmetic operations which reduces the need for low la-
tency memory(cache).
An important factor between CPU and the GPU is the quality of the output af-
ter the render process since CPUs have fewer cores when compared to GPUs they
are far more versatile and design to carry out complex instructions sets that allow
the CPU to run almost any algorithm with little effort and provide a better quality
result. This better quality is a response to the speed that the GPU provides due
to modern APIs providing much better results utilizing a single precision storage
format which fails in providing accuracy in the results.
Nowadays, we have a wide variety of applications with one or more elements

20



Background Check and State of the Art

that can be decomposed in a parallel manner, so to achieve high efficiency, we
can use the GPU to perform all the large data arithmetic operations. For exam-
ple, blockchain mining was firstly developed on the CPU, but with its limited
processing speed and high power consumption, it was a very inefficient process.
With the entry of the GPU into mining, we attended an improvement by 800
times compared to the CPU mining.[SHOBHIT SETH, reviewed by ERIKA RA-
SURE, updated at 25 of August in 2021]
We can observe in the figures 3.3 and 3.4 that in terms of performance, GPU sur-

Figure 3.3: Theoretical Peak Performance for Single Precision Operations
Source: [Karl Rupp, Edit, August 18th, 2016]

passes the CPU in all terms except for the Intel Xenon Phi Processor that is mainly
utilized in server workstations since its price is around 12 404,87 euros, compared
the high-end AMD Firepro W9100 graphics card that is around 5 000 euros.
We can also observe that the high-end graphics cards compared to the high-end
CPUs provides better computing power, but there is still the bandwidth problem
that we can observe in the figure 3.5 that, and observe that the powerful proces-
sor Intel Xenon Phis has a similar bandwidth of the presented graphics cards.

21



Chapter 3

Figure 3.4: Theoretical Peak Performance for Double Precision Operations
Source: [Karl Rupp, Edit, August 18th, 2016]

3.3.6 Applications for GPGPU

Neural Networks

As real-life problems grow increasingly complex and demanding, parallel im-
plementations of Machine Learning algorithms become crucial for developing
intelligent real-world applications. In this context, the GPU is particularly well-
positioned to fulfill this need, given its availability, high performance, and rela-
tively low cost.[Lopes and Ribeiro, 2011]
Until now, most machine learning work is mainly done by the CPU. However,
with new research and new implementations, we can verify more satisfying re-
sults by being more efficient due to its massive parallelism potential, by mitigat-
ing this processing to the GPU, since most APIs are also enabling a more straight-
forward way to develop this kind of work in the Graphical Processing Unit, like
NVIDIA CUDA-X AI, Kompute Framework and Vulkan SDK.
The article [Fonseca and Cabral, 2017] presented the benchmarks of creating a
neural network in the GPU, providing then the benchmarks of the CPU for the
same neural network to understand better the benefits of migrating to the GPU.
We can observe in the image 3.6 that the GPU version presents better perfor-

mances and a narrower sample of results that are almost constant in the 30 itera-
tions conducted. So we can conclude that in the Neural Networks topic, the GPU
is a must-have since it presents simultaneity, better performance, and more stable
learning rendering results.

22



Background Check and State of the Art

Figure 3.5: Theoretical Peak Memory Bandwidth
Source: [Karl Rupp, Edit, August 18th, 2016]

The article also presented that the GPU version executes in one-fifth of the time of
the CPU, even if written in a high language like python and runs on a singleGPU,
so if they performed this experiment in a lower language like C or C++ and on
more devices, it would have presented even better results.
A real case of this implementation is the Tesla company, where the per-camera
networks analyze raw images to perform semantic segmentation, object detec-
tion, and monocular depth estimation.
Their birds-eye-view networks take video from all cameras to output the road
layout, static infrastructure, and 3D objects directly in the top-down view.
Its networks learn from the most complicated and diverse scenarios in the world,
iteratively sourced from their fleet of nearly 1M vehicles in real-time.
A full build of Autopilot neural networks involves 48 networks that take 70,000
GPU hours to train.[Telsa]

Geometric Computing

Computational geometry has excellent applications in computer graphics, computer-
aided design, visualization, scientific simulation, etc. [Qi et al., 2019]
In the study [Qi et al., 2019], we can observe that in the figure 3.7, we obtained
better performances, compared with the CGAL and Triangle software, in all 3D
models.
Their experiment was to construct a 2D, 3D Delaunay triangulation and 2D con-

23



Chapter 3

Figure 3.6: Comparison of the execution times between CPU and GPU versions
Source: [Fonseca and Cabral, 2017]

strained Delaunay triangulation for both synthetic and real-world datasets. A
GPU technique can speed up the computing time for predicates by 3 to 4 times,
which we can observe in the Figure 3.14, and can be used as the GPU version of
Shewchuk’s work for other computational geometry problems [Qi et al., 2019].

Figure 3.7: 3D models used in experiments. (a) Armadillo. (b) Happy Buddha.
(c) Brain. (d) Blade. (e) Dragon

Source: [Qi et al., 2019]

24



Background Check and State of the Art

Figure 3.8: Statistics for real-world dataset
Source: [Qi et al., 2019]

Mathematics and Scientific Computing

Currently, GPUs have emerged as the dominant data-parallel coprocessor by
achieving the highest performance (in terms of Tflops) since in scientific data pro-
cessing needs to process a large number of numbers, the GPU can improve the
performance of these challenges and accomplish outstanding performance val-
ues.
Many tests see a speedup compared to the CPU implementation, but they state
their main bottleneck is the reduction check when performing a widening or
emptiness test operation. They state this bottleneck could be alleviated with
random writes, which (scatter) can be done with the vertex processor or with
a GPGPU language such as CUDA or CAL.[Fleming, 2008]
For example, a pseudo-random numbers generator, a GPU implementation re-
vealed, on average, a 26x speedup compared to CPU, which can be seen as a sim-
ple implementation[Fleming, 2008]. The cryptographic algorithm RSA using a
residue number system managed to deliver a speedup of 3 compared to the CPU
processing time but to achieve this speedup, it needs to perform a large number
of parallel exponentiations.[Fleming, 2008]
In the simulation world, the GPPGU is a natural choice as it needs to perform
enormous calculations as they process an enormous set of data that can be eas-
ily translated into the GPU programming style but still presents the drawback to
passing this information back to the CPU to be then presented to the user or the
programmer.
As motherboards improve these values, we always are decaying this drawback,
and if we make these simulations in the new Apple Chip M1, we eliminate this
drawback at.

3.3.7 Programming Languages

Metal

Metal provides a well-optimized platform and low-overhead API to develop three-
dimensional applications using a highly integrated language between graphics
and computer programs.
This API, as developed by Apple, manages to present better results in terms of

25



Chapter 3

efficiency for the entire Apple ecosystem.
Metal is a unified, low-overhead, low-level API for the graphics processing unit.
It is unified because it can be used both for three-dimensional and parallel data
processing.
It is a low-level API because its language is almost designed for direct access to
the GPU. This API is low-overhead because it reduces runtime through multi-
threading and pre-compiled resources.
This API presents outstanding reliability in its programming, with feedback at
each step, and through great help tools, the API Validation and the Shader Vali-
dation.
The API Validation is a tool that checks if the code that calls the Metal API is
incorrect, including errors in the creation of resources, in the encoding of com-
mands and other types of commands.
Shader Validation is a tool that detects “out-of-bounds” memory accesses and at-
tempts to access null textures. It is also responsible for identifying all errors in
the “command buffer.”

Figure 3.9: Overhead comparison between OpenGL and Metal API
Source: [Anandtech]

Vulkan

Vulkan is an Operating System (OS)-independent programming API, supported
on Windows, Linux, and Android, with low overhead and 3D graphics process-
ing.
This API is currently supported on Windows and Linux. However, there is a
translation library for macOS, MoltenVK. This open-source library allows Vulkan
applications to be executed with some limitations since it translated into the
Metal API.
This API is intended to offer better performance, a better balance between CPU
and GPU processing, and is capable of parallel processing.

26



Background Check and State of the Art

As it is the latest low-level API on the market, with the first stable version re-
leased on October 13, 2021, it may have several development flaws.
As it is the latest low-level API on the market, with the first stable version re-
leased on October 13, 2021, it may have several development flaws.
Vulkan is not backward compatible with the most common API utilized in GPU,
OpenGL, although there is a library, Mesa, that is an implementation of OpenGL/-
GLES that runs on top of Vulkan, called Zink.
Vulkan can be described as:

• A Unified API, since it works on both desktop and mobile graphic devices.

• Cross platform due being available on modern operative systems like An-
droid, Linux, BSD Unix, QNX, Nintendo Switch, Raspberry Pi, Stadia, Fuch-
sia, Tizen, Windows 7, 8, 10, and 11 and with the MoltenVK API it also
supports macOS, iOS and tvOS by wrapping over the Metal API.

• Low CPU usage sue the user of batching and other low-level optimizations
to reduce the CPU workload.

• Multi-threaded friendly design since usually GPU APIs do not scale well
on multicores, Vulkan offers to improve scalability on multicore CPUs due
to its modern threading architecture.

• Pre-compiled shaders do not have a long loading screen so that the system
can compile the shader code. These APIs drivers are supported to ingest
shaders already translated into an intermediate binary format called SPIR-
V(Standard Portable Intermediate Representation).

Figure 3.10: Vulkan API
Source: [Gpuopen, 2018]

27



Chapter 3

OpenGL

OpenGL is the most used 2D and 3D programming API in the industry, as it is
one of the oldest. This API is OS independent since it was developed for all op-
erating systems.
OpenGL was designed at the initial stage of graphics processing programming,
being architected as a state machine. This way, its interface differs from the rest
of the APIs.
Although it was released on June 30, 1992, it only released a stable version on
July 31, 2017.
OpenGL is no longer in active development since 2006 OpenGL has been man-
aged by the Khronos Group, which owns Vulkan. The main reason that it is not
being developed is because of its old architecture that does not support modern
GPU capabilities like ray tracing, which is a must in nowadays computer graph-
ics languages.
Being one of the first GPU programming languages have a good advantage, its
documentation, it is very well documented, and since its development is stopped,
it completed.
OpenGL can be instantiated with C, C++, Python, Java, and more, so software
development has various uses.
Figure 3.11 is a diagram of how OpenGL works in the system. The orange rect-
angles represent the system devices. The light color blue is used to represent the
GPU system parts. The green color represents the libraries utilized in the Linux
OS. Finally, the objects represented in navy blue are the application components
that will utilize the API.

28



Background Check and State of the Art

Figure 3.11: OpenGL Architecture
Source: [Wikipedia contributors, 2022c]

DirectX

Microsoft DirectX is a collection of APIs for handling tasks related to multimedia,
especially game programming and video, that only can be used in the Windows
operative system.
The DirectX contains the Microsoft DirectCompute API, which supports running
compute kernels on general-purpose computing on graphics processing units on
Microsoft’s Windows Vista, Windows 7, and later versions.[Wikipedia contribu-
tors, 2019]
The DirectCompute kernel language is very similar to HLSL and is highly iden-
tical to C but in a high-level shader language to achieve good performance.
Since DirectX is a collection of APIs for handling tasks related to multimedia.
An SDK(Software Development Kit) consists of runtime libraries redistributed in
binary form along with its documentation and headers so that it can be an advan-
tage for software development.
Since DirectX, its compatibility is restricted to the Windows OS, but older soft-
ware versions can still be utilized in modern windows versions.

29



Chapter 3

Figure 3.12: DirectX 12 / Direct3D 12 Feature Levels and Resources
Source: [Overclock, 2015]

CUDA

CUDA or Compute Unified Device Architecture is a parallel computing platform
and API that allows software that can be used in GPGPU.
The NVIDIA company developed CUDA, and it was designed to work with pro-
gramming languages such as C, C++, and Fortran but can also be utilized in
Python language for quick development with the Numba compiler.
Since it has, NVIDIA created it, it can only be utilized in their GPU devices, but
since there is a wide variety in modern society with computers with their graph-
ics cars, it would still limit a narrower amount of computers. With Apple’s new
M1 chip, we currently have three primary graphical card providers, NVIDIA,
AMD, and Apple, in the graphics cards market.
CUDA was launched in 2006 with over 150 CUDA-based libraries, SDKs, and
profiling and optimization tools, but they are constantly innovating, and cur-
rently, thousands of GPU-accelerated applications are built on CUDA.
It offers the programmer flexibility and programmability, so it is one of the choices
used for researching and deploying new deep learning and parallel computing al-
gorithms.

30



Background Check and State of the Art

Figure 3.13: CUDA tools, libraries, frameworks, and use-cases
Source: [NVIDIA, 2012]

OpenCL

OpenCL (Open Computing Language) is an open-source framework, parallel
programming of various accelerators in supercomputers, cloud servers, and per-
sonal computers. It dramatically improves the speed and responsiveness of a
broad spectrum of applications in numerous market categories.
It has maintained by the non-profit technology consortium Khronos Group and
can be executed in AMD, ARM, Intel, and NVIDIA devices. With the introduc-
tion of the Metal API, Apple deprecated OpenCL with macOS 10.14, released on
September 24, 2018.
The main difference between OpenGL and OpenCL is that OpenGL enables pro-
gramming to do graphical operations, and OpenCL allows programming to do
the computation in multiple processors.

3.3.8 Comparison of API’s and the API chosen

In order to migrate the audio render engine in Sound Particles to the GPU, it will
need a API that is up to date with the technological market. Given the large per-
centage of the company’s users that use the macOS OS, the choice of API to adopt
must allow this operative system, at least.
At the moment, only OpenGL can run natively on all operating systems (Win-
dows, macOS, and Linux). However, it remains an outdated API in today’s
world.
Vulkan is a highly recent language, which released its stable version in October
2021 and can be seen as too recent an API for mitigating the enormous power
needed to migrate the current Sound Particles engine to the GPU.
Metal, despite being an API closed to the Apple ecosystem, is a low-level lan-
guage that has great processing efficiency and excellent documentation.

31



Chapter 3

Figure 3.14: CUDA tools, libraries, frameworks, and use-cases
Source: [NVIDIA, 2012]

CUDA will limit the use of the engine by a significant window(only NVIDIA de-
vices), so only users with this kind of graphics card would be able to run this
optimization to the engine so that it will be discarded as a viable option.
DirectX is also eliminated for the same reasons as the CUDA, but this time it only
can be utilized in the Windows operative system.
In the end, we only have two viable APIs on the table, Vulkan and Metal, being
both the most utilized API to develop GPGPU software.
The following table demonstrates the main factors of choice that are crucial in
order to choose the more indicated API to be utilized in Sound Particles:

32



Background Check and State of the Art

lightgrayAPI’s List
API

Name
OS Efficiency Documenta-

tion of the
api

GPU Debugging Offline
Kernel

Compila-
tion

Vulkan Linux,
BSD
Unix,
Win-
dows,
ma-
cOS,

This API is ready
to be utilized
in large-scale
applications
due to its high
modernity and
performance ren-
der benchmarks.
“Experiments
5 and 6 prove
that OpenGL ES
cannot keep up
with Vulkan’s per-
formance when
power is not a
concern.” [Lujan
et al., 2019]

Excellent
documen-
tation
with
sample
code from
Khronos-
Group

Vulkan offers a wide va-
riety of debugging tools
to the developer who
has a better knowledge
of his mistakes and how
to fix them. It provides
RenderDoc, which is
a frame-capture-based
graphics debugger.
NVIDIA Nsight allows
the developer to build
and debug integrated
GPU kernels and native
CPU code and inspect
the GPU and memory
state. Arm Perfdoc is a
cross-platform Vulkan
layer that checks Vulkan
applications for recom-
mended API usage on
Arm Mali devices. The
AMD Radeon™ GPU
Profiler is a ground-
breaking low-level
optimization tool that
provides detailed in-
formation on Radeon™
GPUs.

Yes

33



Chapter 3

Metal macOS Metal is a very op-
timized API that
should be utilized
for all applications
developed for iOS
and OS X. It is
one of the most
efficient API ’s in
the market due to
its low overhead
and its high ef-
ficiency with Ap-
ple chips. “It has
been shown that
Metal API gives
less time render-
ing for the datasets
used in the im-
plementation than
OpenGL ES. " [Ab-
dallah et al., 2015]

Good
documen-
tation,
simple ex-
amples for
more com-
plex fea-
tures, and
WWDC’s
(Apple
World-
wide
Devel-
opers
Confer-
ence)
videos
with ex-
planations
and live
demon-
strations

Xcode provides a suite
of tools that enable the
developer to inspect,
debug, and profile the
application developed
by recording the Metal
API calls and gener-
ating a GPU frame
capture. The frame
capture feature is a
snapshot of every Metal
command and data
buffer the GPU used to
render each call. Each
frame capture delivers
the commands, shader
code, and GPU perfor-
mance.

Yes

OpenGL Linux,
BSD
Unix,
Win-
dows,
ma-
cOS,

This API got dep-
recated in June
2018, so it should
be only utilized as
a last resort due
to its portability
and completed
documentation. It
was not designed
to modern GPU
capabilities.

Completed
due dep-
recation
with a
wide va-
riety of
examples

gDEBugger is a pow-
erful OpenGL and
OpenGL ES debugger
and profiler, delivering
one of the most intuitive
OpenGL development
toolkits for graphics
application developers.
It helps the developer
save precious debug-
ging time and boost
the application’s per-
formance. It traces the
application activity on
top of the OpenGL API
to provide the necessary
data to find bugs and
optimize application
rendering performance.

No

34



Background Check and State of the Art

DirectX Windows
and
Linux

DirectX is the
most widely used
graphics API due
to all major video
game providers
developing their
games in Win-
dows. Since
DirectX 12 was re-
leased, few articles
have described
its performance.
“This is a simple
fact that DirectX 12
is brand-new, and
it will take time
for developers and
graphics vendors
to optimize their
use of it.” [Aaron
Klotz, 2022]

Well doc-
umented,
offering
regularly
updated
documen-
tation and
helpful
developer
commu-
nities,
providing
a starting
guide but
confus-
ing to
discover
critical
compo-
nents.

We need an editor to
use the debugging
app, and developers
can use Visual Studio
and the Windows 8
SDK to debug DirectX
apps remotely. The
Windows 8 SDK in-
cludes components that
support DirectX devel-
opment and provide
error checking with
parameters. Effect-
Compiler Tool is an
offline executable tool
for compiling HLSL
shaders for all the re-
spective versions of
Direct3D.DxDiag helps
us identify problems
related to audio, dis-
play, video, and any
other multimedia appli-
cations with required
features running on our
computer.

Yes

CUDA Nvidia
graph-
ics
cards

CUDA is widely
used due to its
high portability
with NVIDIA
cards, and since
the NVIDIA com-
pany developed
it, it has delivered
the best perfor-
mance possible for
its video cards. “It
improves perfor-
mance by up to
50% on the Intel-
Volta/Pascal-PCI-
E platform but
brings little benefit
to the Power9-
Volta-NVLink
platform.” [Chien
et al., 2019]

Good
documen-
tation
with a
wide va-
riety of
tips and
examples

CUDA-GDB is the pri-
mary debugging tool
that supports debug-
ging of both 32 and
64-bit CUDA C/C++
applications. It pro-
vides complete control
over the execution of
the CUDA application,
including breakpoints
and single-stepping. It
provides the analysis of
variables, read/write
memory, and registers
and inspects the GPU
state when the applica-
tion is suspended.

Yes

35



Chapter 3

OpenCL Linux,
Win-
dows,
ma-
cOS

OpenCL is dep-
recated, so its
performance will
not increase and
is stable, and
for this reason,
like OpenGL, it
should be utilized
only as a last
resource since
its architecture
does not support
modern GPU
capabilities “Ex-
perimental results
on an AMD/ATI
HD5850 GPU for a
set of commonly-
used benchmarks
show that we
achieve 2.1X 6.7X
speedup con-
cerning the
un-optimized
versions ...” [Zhu
et al., 2012]

Poor
Docu-
mentation
and not
easy for
beginners

gDEBugger CL is a de-
bugging tool equivalent
to the OpenGL tool but
for OpenCL. This tool
enables the developer to
locate parallel comput-
ing performance bottle-
necks, edit and con-
tinue OpenCL kernels
“on the fly,” and break
on OpenCL errors, func-
tion calls, and memory
leaks.

No

Metal will be the API of choice, as it benefits the company users so much since
with is highly efficient compared to the rest and has an extensive portfolio of
documentation. A large percentage of the Sound Particles software utilizes the
macOS operative system, and with Apple’s new M1 chip it eliminates all the cost
of having to transfer the data from the CPU to the GPU to be processed and then
be transferred back to the CPU to be utilized in the software.

3.3.9 Disadvantages of explicit API’s

• Hard to understand since it requires a deep knowledge of GPU;

• Hard to use since the application is a driver ;

• Hard to be portable, due the API limitations;

• Hard not to explode since incorrect usage leads to Undefined Behaviour
(UB).

36



Background Check and State of the Art

3.3.10 GPU new concepts

Pipeline

A computer graphics pipeline is a conceptual model that describes what steps a
graphics system needs to perform to render the commands encoded by the CPU.
However, graphics application programming interfaces (APIs) such as Direct3D
and OpenGL were developed with the intuition to unify similar steps and to con-
trol the graphics pipeline of a given hardware accelerator.
These APIs abstract the underlying hardware and keep the programmer away
from writing code to manipulate the graphics hardware accelerators.
Frequently, most of the pipeline steps are implemented in hardware, which al-
lows for special optimizations. The term “pipeline” stands in a similar sense to
the pipeline in processors: the individual steps of the pipeline run in parallel as
long as any given job has what it needs.

Command Buffers

Command buffers are the primary mechanism for sending commands from the
CPU to be executed on the GPU. Command buffers consist of a container that
stores encoded commands for the GPU to perform.
In a multithreaded app, it is advisable to break jobs that need to be accomplished
into subtasks that can be encoded separately.
So we need to create a command buffer for each render job. Then, if we need to
establish the execution order, we need to synchronize the command buffers’ en
queue since the pipeline queue follows a FIFO methodology.
The command queue automatically schedules and executes these command buffers
as they become available.
By following the best practices described below, we can achieve performance
gains on both the CPU and the GPU by maximizing parallelism, avoiding bot-
tlenecks, and reducing idle times on the GPU.

• Embrace the responsibility for achieving and controlling GPU/CPU paral-
lelism, so do not expect that the API performs magic in achieving the best
parallelism possible;

• Develop a multithreaded application to split the workload between all CPU
threads;

• Initialize, the command queue and all buffers required to the application
at startup so that the application does not suffer from the cost of creating
them;

• In the main GPGPU API ’s like Metal, Vulkan, and CUDA, we can overlap
graphics or compute work;

• Compute and graphics workloads can be scheduled together, and we can
use fences (Semaphores in GPGPU) to synchronize the workloads;

37



Chapter 3

• Do not wait until the end of the frame to submit the command buffer to
the GPU. It might result in stopping the parallelism between the CPU and
GPU, instead create an asynchronous task to utilize the command buffer
result after it has concluded;

• Do not create too many CPU threads, since it can lead to insolvency in the
CPU resources.

3.3.11 Metal API

In Figure 3.15, we can observe the Metal objects hierarchy since all of its objects
depend on the object above in the hierarchy.
The following sections are a brief description of the most important objects that

Figure 3.15: Metal Objects Hierarchy
Source: Author

will be utilized during the render engine migration.

MTLDevice

This is an abstraction of the physical GPU that will consume the rendering and
compute commands. This is the go-to object to do anything in the Metal API since
all objects the application interacts with come from this object.

38



Background Check and State of the Art

MTLFunction

It is an object that represents a public shader function in a Metal library. There
are two kinds of shaders in the MSL. In compute operations, we utilize a compute
function (also known as a compute kernel), which performs a parallel calculation
using a grid of threads. If the task is to render graphics, we will utilize the vertex
and fragment shaders.

MTLLibrary

The MTLLibrary is an object that contains all the Metal shaders compiled into a
single library. We will use this to fetch our required shader functions to define a
pipeline state.

MTLBuffer

A resource that stores data in a format that the application defines can be used
only with the MTLDevice that created it. It can contain the following scalar data
types: bool,int8_t,uint8_t,int16_t,uint16_t,int32_t,uint32_t,int64_t,uint64_t. It can
also contain Vector Data Types: bool, char, short, int, long, uchar, ushort, uint,
ulong, half, and float. This resource can have four different types of storage mode
options:

• MTLStorageModeShared: The resource is stored in system memory and is
accessible to both the CPU and the GPU.

• MTLStorageModePrivate: The resource is in the GPU and can only be ac-
cessed by it.

• MTLStorageModeManaged: The CPU and GPU may maintain separate
copies of the resource, and any changes must be explicitly synchronized.

• MTLStorageModeMemoryless: The resource’s contents can be accessed
only by the GPU and only exist temporarily during a render pass.

MTLCommandQueue

This object stores all the commands and allows the application to control the exe-
cution of all commands in a first-come-first-serve(FIFO) order. This also includes
the operative system command buffers to render graphics for the display.

MTLCommandBuffer

This object stores translated hardware commands ready for consumption by the
GPU. This container contains data for GPU computation. Data is encoded (so that

39



Chapter 3

the GPU can read them) and added to Command Buffers by Command Encoders.
Buffers can be enqueued (append) or committed (append and execute) to the
Command Queue.

MTLCommandEncoder

This object is responsible for translating rendering and compute commands into
hardware commands. While a command encoder is active, it has the exclusive
right to append commands to its command buffer. Once it finishes encoding
commands, call the endEncoding method to complete the command encoder if it
is necessary to create a new command encoder to write further commands into
the same command buffer.

MTLRenderEncoder

The object for encoding commands for a render pass is primarily used in graphics
rendering.

MTLComputeCommandEncoder

An object for encoding commands in a compute pass is utilized for all computa-
tions needed for the application.

MTLBlitEncoder

It is an encoder for memory copying, filtering, and filling commands. It is the
main encode utilized in all memory management operations in the system, es-
pecially with private GPU buffers, since the CPU can not access these buffers
created in the GPU.

MTLParallelRenderCommandEncoder

This object consists of a multiheaded operation for a batch of MTLRenderEn-
coder, that splits up a single render pass so that it can be simultaneously encoded
from multiple threads

GPU Thread Grid

To launch the GPU threads, the CPU needs to encode how many threads it will
be launched with the method “dispatchThreadgroups:threadsPerThreadgroup:”.
This command will launch with two variables, both a three dimensions integer
containing the three dimensions “threadgroupsPerGrid”, and Metal will try to fit

40



Background Check and State of the Art

as many threads as possible so that it will not need to launch unused threads.
The figure 3.16 we can observe the new threads, so we need, if possible, to launch
a multiple of the “maxThreadsperThreadGroup” device variable and try not to
go above or below it.

Figure 3.16: Metal grid of threads
Source: [Apple, a]

41





Chapter 4

System Design

4.1 Requirements

The following requirement is some user stories made by the Sound Particles com-
pany and adapted since they were a draft. Furthermore, I added the missing user
stories required to the system:

1. User Storie 21.1 GPU LIST: As a dev, I want a class that manages the avail-
able GPUs and their information.

2. User Storie 21.2 RANDOM DATA: As a dev, I want to have random data
available in the GPU

3. User Storie 21.3 AUDIO DATA: As a software programmer, I want to have
all audio stream data available by the GPU.

4. User Storie 21.4 SYSTEM DATA: As a software programmer, I want to
have all groups and microphone system information in the GPU.

5. User Storie 21.5 RENDER DATA: As a software programmer, I want all
render data to be available on the GPU.

6. User Storie 21.6 RENDER METAL: As a software programmer, I want to
create a path to render audio with Metal.

7. User Storie 21.7 RENDER METAL: As a software programmer, I want to
update the render settings with user preferences like buffer size, frame rate,
sound velocity, etc.

8. User Storie 21.8 RENDER METAL: As a software programmer, I want to
test the GPU audio result.

9. User Storie 21.9 RENDER METAL: As a software programmer, I want to
test the GPU audio result.

43



Chapter 4

4.2 Architecture

When I started migrating the render engine to the GPU, a small but fundamental
part was already developed.
The bridge from Sound Particles and the Metal API was already developed. The
particle-to-microphone polar response was developed for all the microphones,
except for the ambisonics type microphone type, although this development was
in Objective-C++, a mix between Objective C and C++. This means that part of
the code was developed in Objective C, like the direct calls to the GPU, but data
types and flow were developed. The best way to describe it is a C++ code that
all direct calls to Metal were made in Objective-C because it was the only option
since they did not utilize Swift.
The first months, the main focus was to be comfortable around the sp-engine,
render engine, and sp-core.After the first month, I started to migrate the current
work to C++ since Apple released a version of pre-compiled Metal headers in
C++. This provided an implementation more in sequence with the rest of the
code since it is written in C++, providing better workflow.
After this migration, I started to migrate the rest of the render operations like
computation of particle position, microphone position, sound attenuation, and
interpolation. Since so far, the only part being processed in the GPU was the po-
lar response, throughout the migration, minor adjustments to the current archi-
tecture were required but not groundbreaking since the initial goal was to follow
the work that was already developed.
When the render engine migration was completed, the results were insufficient,
so the architecture needed a complete refactoring process to achieve the impres-
sive results that the GPU is known for, referred to in the State of Art of this work.
To achieve these results and still utilize the GPU in the live render, the render
engine throughput needed to stop processing a particle for a specific microphone
at a time and increase the payload to the maximum possible particles at a time
for given frame size.
The Figure includes the command “addCompletedHandler” this command Ap-
ple describes its function as “Registers a block of code that Metal calls immedi-
ately after the GPU finishes executing the commands in the command buffer.”
[Apple, b]. It was utilized mainly after the interpolation task to copy the result
buffer from the GPU to the CPU buffer. It creates a temporary thread to execute
the block of code inside, which is released after completion.
The Figure 4.1 is a tree image of the sp-core for a better understanding of all its
operations. The figures 4.2, 4.3 and 4.4 are an illustration of the sp-engine tree
representing its functionalities and importance to the Sound Particles software.

The image 4.5 shows the Sound Particles architecture indicating its modules and
the Juce module, an open-source, cross-platform C++ application framework.
JUCE is the one who makes the bridge between the generic Graphical User In-
terface (GUI) of C++ for the native GUI of each operating system. It is also used
to accomplish the abstraction of each audio driver (from CoreAudio + Windows
Drivers), and also, at this moment, it is the one that deals with the Sound Particles
filesystem.
To summarize, Sound Particles utilizes JUCE as an API to abstract everything na-

44



System Design

Figure 4.1: Module tree of the sp-core

45



Chapter 4

tive between Windows and macOS.
In the image 4.1, we can observe the importance of the sp-core since it contains all
functions required by the application and is represented as one of the most promi-
nent objects in the diagram. We can observe as well that all the audio modules are
connected to the sp-engine because the computing process of the resulting sound
will need the audio samples provided by the user, so it is one of the essential
modules in the system.

46



System Design

Figure 4.2: Module tree of the sp-engine - Part 1

47



Chapter 4

Figure 4.3: Module tree of the sp-engine - Part 2

48



System Design

Figure 4.4: Module tree of the sp-engine - Part 3

49



Chapter 4

Figure 4.5: Sound Particles Modules

50



Chapter 5

Implementation

The starting weeks of development mainly focused on studying the render engine
and core, all the data types used, and all operations made by the engine to reach
the audio result.
The Sound Particles render engine is multithread where it has a pool of render
threads, one per CPU core, that will process a render job. This render job is for all
microphones in a microphone system to process the particles in a particle group,
but it will only process a batch of particles per job. This means that each render
job will only process particles from 64 to 64, which means that if its first particle
to process is particle 0, the next one is 64, followed by 128 until it reaches the end
of the particle number in the group.
In the Sound Particles software, two crucial modules will get refactored, the sp-
engine and the sp-core. The sp-engine contains the render engine. The sp-core
is the module that combines all the common functionality among all types of
applications: serialization, file IO, networking, security, concurrency, and generic
algorithms/structures in the parts with more mathematical computation. The sp-
core contains a CPU thread that will wait for the requests from the sp-engine and
will encode and commit the GPU, and when the render is concluded, this thread
is released.
After this study, the development started step-by-step. The following list shows
the order of the task development:

1. Create necessary buffers required by the GPU and all the CPU datatypes
like CPU buffers in the application startup and all the other queues and
devices.

2. Migration of the current objective C++ bridge to the Apple C++ bridge.

3. Compute particle position according to its group type (Circle, Square, Rect-
angle, Taurus, ...)

4. Compute microphone position

5. Compute microphone direction

6. Finalize the polar response since the ambisonics microphone type was not
being executed in the GPU

51



Chapter 5

7. Calculate particle position for each frame if movement exists in the group

8. Compute sound attenuation

9. Compute sound interpolation

10. Compute pitch processing in the audio

11. Refactor of the render architecture to achieve better results

It is also notorious but not mentioned in the list that there was a constant refac-
toring to the CPU code to integrate the new tasks added to the render path.
The migration until the polar response for the Ambisonics microphone was very
straightforward since it was a complete match between the CPU and GPU pro-
gramming approach.
The Ambisonics polar response needed refactoring due to GPU architecture re-
strictions like eliminating the while loop and reducing the number of ifs condi-
tions.
One of the final parts of the render system is partitioning the sound frames into
audio blocks and processing the interpolation for each one.
For a more efficient system, wider frame size was needed during the interpola-
tion process since the block frame size was concise, so a full frame size was sent
to the GPU, and after its completion, the frames were divided into the blocks,
which after needed to be sent to the audio mixer process.
The kernels written got also got rewritten several times so that they could achieve
better results, like using packed_floats3 instead of the typical float3 for positions.
Hence, it simultaneously diminishes memory allocations and increases efficiency
slightly.
This first implementation is simply a part-by-part migration of the operations
that the CPU render engine needs to execute to achieve the resulting sound. So
for each step, a GPU request was made, totaling five requests per render job (par-
ticle position, microphone position, and direction, if required a pitch processing,
polar response for type of microphone, and a final one for attenuation and inter-
polation).
This first GPU render implementation did not deliver the desired outcome, a 30
% of the CPU render time, and only resulting in 82%. This difference can be ex-
plained by the render engine job architecture restrictions like the render mixer
expected a specific frame size to process its job, and it will only process a specific
amount of particles, the mixer process did not get migrated to the GPU, and the
GPU calls were high with short kernels.
To achieve the desired outcome, a new architecture needed to be implemented
from scratch that still follows the CPU engine limitations described above, en-
capsulating the maximum number of kernels possible to diminish the overhead.
The implementation of this second architecture resulted in the biggest refactor to
the engine developed since it completely changed the rendering course.
Firstly, if there exists a pitch modification in the audio, encode a request to the
GPU to process it and change the audio buffer accordingly.
Secondly, encodes a request that processes a batch of particles in a particle group,
then process all microphones in a microphone system its position and direction,

52



Implementation

and then compute the polar response and the attenuation.
After it encodes a request that will process the sound interpolation and after it
is submitted to the GPU, the CPU will create the audio blocks so that after its
completion, it only need to separate the audio sample per block and send it to the
audio mixer thread.
This implementation resulted in only two kernels to render the audio in the GPU
one that calculates a batch of particles in the particle group and for all micro-
phones process the sound until the interpolation, the second kernel will only
process the last part of the interpolation. The only reason it could not be a single
kernel to render is that the final part of the interpolation can utilize previous or
forward values, and since each thread will process its frame parallelly, it can con-
flict with other threads. The CPU implementation does not have this issue since it
processes the frames sequentially, and if it performs or utilizes a previous value,
it is already calculated.
To better understand the architecture developed for the GPU integration in the
Sound Particles software, Figure 5.1 is a diagram of how the data is passed be-
tween modules and the GPU. In the Figure, the round rectangles represent the
system devices, the CPU and the GPU. The straight rectangles represent the sys-
tem modules, the sp-engine, and the sp-core. The arrows represent the direction
of how the data is passed between the modules and system devices.

53



Chapter 5

Figure 5.1: Diagram of the gpu architecture integration in the Sound Particles
software

Source: Author

54



Chapter 6

Results, analysis, and tests

6.1 Results and analysis

6.1.1 First Semester

In the first semester, the work developed was the prototypes, and to obtain only
the render results, the benchmark testing started only when the render process
started until it ended, eliminating all variables initialization in the system.
The figure 6.1 demonstrates that the results achieved were auspicious since it
processed in a single shader all the particles in the system(all particle groups at
once). Since I was instructed to change it because it will not scale well in a large
number of particles in the system, this phase was concluded with a revision of
the architecture developed to achieve a better scaling architecture.

6.1.2 Second Semester

In the second semester, one of the first steps, after I started the development,
was to develop two benchmark tests for the CPU render time and another for the
gpu. Figure 6.2 represents the baseline tests made: Four types of microphones
systems(stereo, ambisonics, a microphone system with six microphones(5.1), and
a microphone system with eight microphones(7.1); With a particle emitter that
emits ten particles per second for a duration of one hundred seconds that will
make a sound that lasts five seconds, a particle group with one thousand particles
that will radiate a sound that lasts five seconds and finally a particle group with
ten thousand particles that will cast a sound that lasts one second; And presents
the respective initial results for each render engine as well.
The figures 6.3 and 6.4 present all the versions developed during the internship
and display the render duration at each step in seconds.
The figure 6.5 represents a graphical image of how the GPU render time changed
each version of the render engine migration.
The sixth version was just a test to verify the added time if the sp-core thread

55



Chapter 6

Figure 6.1: 1st Semester Results
Source: Author

waited for the command buffer to be completed, to check how much the system
would increase if it happened, and it just increased in the order of the 8%. We
can observe an increase in the thirteen versions of the GPU render time. In more
detail, this was already justified in the implementation chapter, but it is because
the sample size sent to the GPU was concise, creating a hefty overhead.
The final version, the eighteen, we can observe still is not the best, and the fif-
teen presented the best results due to the interpolation calculations not worth the
migration to the GPU with the tests performed. The difference is not significant,
and with some more optimizations, it could be passed the fifteen versions, but
the new architecture implementation was chosen instead.
In the appendices ?? is a Google Sheet where I saved all the benchmarks and all
the figures and graphs referred to in the previous paragraph.

6.2 Tests

6.2.1 Functional Tests

The functionality tests were kept short since it only implemented integration test-
ing, like checking if the device is detected in the system and if the application can
create its main objects like the command queue, command Buffers, command en-
coders, etc.
In total, there were developed a total of w functionality tests since they were not
the main focus of testing with GPU integration and were put to the side for the

56



Results, analysis, and tests

Figure 6.2: Baseline Tests
Source: Author

Figure 6.3: Description table of the part of rendering with its render times
Source: Author

last task to be completed.

57



Chapter 6

Figure 6.4: Second part of description table of the part of rendering with its render
times

Source: Author

Figure 6.5: Graphic of the GPU and CPU render duration
Source: Author

6.2.2 Quality Tests

The quality tests were the main focus of the testing part of the internship, since
one of the objectives of the internship was to migrate the render engine to the
GPU and still deliver the same sound fidelity.
Due to Metal API not supporting double precision values for its operations, the
testing needed a little deviation error acceptance. So in order to thoroughly test
the render system, there was a need to test all paths possible and verify its out-
come.
The first tests were mainly focused on testing all types of particle group ren-
ders process for all microphone systems types possible to be simulated in the

58



Results, analysis, and tests

Sound Particles software, the monotype, the ambisonics type, and the multichan-
nel type. So to test all these combinations, a bunch of tests was created that only
changed the microphone type or the microphone type.
It was not developed all the heavy testing of the GPU, checking all the paths that
were fragile in the system like changing the system properties, like the micro-
phone or the group type or the buffer size, during the live render, closing the
application suddenly, removing the graphics card unexpectedly from the com-
puter, changing GPU device at render process, etc.
So, in total, there were developed twenty-nine tests to test the new render engine
that tested different kinds of microphones system with particle groups of differ-
ent dimensions or particle emitters.
It was also required to test if the new GPU render architecture adapts to the
changes in the system, which means that if a sound is added or removed to the
system, a buffer with its sound is created or destroyed, respectively if a parti-
cle group suffers a change in type the system should follow it and adapt to its
change.

59





Chapter 7

Conclusions and Future Work

So far, the development provided a better knowledge of how to program in Graph-
ical Processing Unit (GPU) and their programming directives like handling the
GPU memory and ending the commands that the GPU need to execute the ker-
nel shader functions.
The state of the art provided a better understanding of the current technolo-
gies/Application Programming Interface (API) that exist to program in the GPU
and all the use cases that exist in the world that utilize it to deliver better per-
formances and better parallelism between the Central Processing Unit (CPU) and
the GPU, while the GPU is handling significant data operations the CPU is han-
dling all the user interface processing, coordinate the GPU work and other usual
jobs .
The experiences and the prototype development represent a big fundament in the
document’s writing since it provided a better knowledge of all requirements and
processing that will need to exist to utilize the GPU to make all the computations
that I wanted to perform.
At an initial stage, the future work will be to handle multiple GPUs to compute
assignments since the Metal API provides a digital barrier between all different
GPU devices if the duration of the internship will not be able to perform this stage
of work.
The work developed, in my opinion, was a success considering its serious dif-
ficulty of implementation and since there is not in the current market any gpu
render engine system so, for an internship concluding a prototype that provided
better results than the CPU.
The results, in my opinion, could achieve better results if the new prototype was
concluded and could dramatically increase the render velocity.

61





References

Aaron Klotz. Intel confirms poor arc gpu dx11 performance
is a work in progress. https://www.tomshardware.com/news/
poor-dx11-performance-arc-gpus-constant-work-in-progress, 2022.
[Online; accessed 3-September-2022].

Yassmin Abdallah, Abdelaziz Abdelhamid, Taha Elarif, and Abdel-Badeeh M.
Salem. Comparison between opengl es and metal api in medical volume visu-
alisation. In 2015 IEEE Seventh International Conference on Intelligent Computing
and Information Systems (ICICIS), pages 156–160, 2015. doi: 10.1109/IntelCIS.
2015.7397213.

Anandtech. Opengl 4.4, opencl 2.0, opencl 1.2 spir
announced. https://www.anandtech.com/show/7161/
khronos-siggraph-2013-opengl-44-opencl-20-opencl-12-spir-announced/
2. [Online; accessed 4-September-2022].

Apple. Calculating threadgroup and grid sizes. https://developer.apple.
com/documentation/metal/compute_passes/calculating_threadgroup_and_
grid_sizes?language=objc, a. [Online; accessed 4-September-2022].

Apple. Instance method addcompletedhandler:. https://
developer.apple.com/documentation/metal/mtlcommandbuffer/
1442997-addcompletedhandler?language=objc, b. [Online; accessed 4-
September-2022].

Ebubekir Buber and Banu Diri. Performance analysis and cpu vs gpu comparison
for deep learning. pages 1–6, 10 2018. doi: 10.1109/CEIT.2018.8751930.

Steven Chien, Ivy Peng, and Stefano Markidis. Performance evaluation of ad-
vanced features in cuda unified memory. In 2019 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC), pages 50–57, 2019. doi:
10.1109/MCHPC49590.2019.00014.

Robert Fleming. General purpose programming on modern graphics hardware.
volume 1, pages 1–5, 2008. doi: 10.1109/i-PACT44901.2019.8960106.

Alcides Fonseca and Bruno Cabral. Prototyping a gpgpu neural network for
deep-learning big data analysis. Big Data Research, 8:50–56, 2017.

Gpuopen. V-ez brings “easy mode” to vulkan. https://gpuopen.com/
v-ez-brings-easy-mode-vulkan/, 2018. [Online; accessed 4-September-2022].

63

https://www.tomshardware.com/news/poor-dx11-performance-arc-gpus-constant-work-in-progress
https://www.tomshardware.com/news/poor-dx11-performance-arc-gpus-constant-work-in-progress
https://www.anandtech.com/show/7161/khronos-siggraph-2013-opengl-44-opencl-20-opencl-12-spir-announced/2
https://www.anandtech.com/show/7161/khronos-siggraph-2013-opengl-44-opencl-20-opencl-12-spir-announced/2
https://www.anandtech.com/show/7161/khronos-siggraph-2013-opengl-44-opencl-20-opencl-12-spir-announced/2
https://developer.apple.com/documentation/metal/compute_passes/calculating_threadgroup_and_grid_sizes?language=objc
https://developer.apple.com/documentation/metal/compute_passes/calculating_threadgroup_and_grid_sizes?language=objc
https://developer.apple.com/documentation/metal/compute_passes/calculating_threadgroup_and_grid_sizes?language=objc
https://developer.apple.com/documentation/metal/mtlcommandbuffer/1442997-addcompletedhandler?language=objc
https://developer.apple.com/documentation/metal/mtlcommandbuffer/1442997-addcompletedhandler?language=objc
https://developer.apple.com/documentation/metal/mtlcommandbuffer/1442997-addcompletedhandler?language=objc
https://gpuopen.com/v-ez-brings-easy-mode-vulkan/
https://gpuopen.com/v-ez-brings-easy-mode-vulkan/


Chapter 7

Cecilia JM Hernandez M, Guerrero GD. Accelerating fibre orientation estimation
from diffusion weighted magnetic resonance imaging using gpus. 2013.

Karl Rupp. Cpu, gpu and mic hardware characteris-
tics over time. https://www.karlrupp.net/2013/06/
cpu-gpu-and-mic-hardware-characteristics-over-time/, Edit, August
18th, 2016. [Online; accessed 21-January-2022].

E. Larsen and David McAllister. Fast matrix multiplies using graphics hardware.
pages 43– 43, 12 2001. ISBN 1-58113-293-X. doi: 10.1109/SC.2001.10049.

Noel Lopes and Bernardete Ribeiro. GPUMLib: An Efficient Open-Source GPU
Machine Learning Library. pages 355–362, 2011.

Michael Lujan, Michael Baum, Dayuan Chen, and Ziliang Zong. Evaluating the
performance and energy efficiency of opengl and vulkan on a graphics render-
ing server. In 2019 International Conference on Computing, Networking and Com-
munications (ICNC), pages 777–781, 2019. doi: 10.1109/ICCNC.2019.8685588.

Malcolm Owen. Compared: M1 vs m1 pro and m1 max. https://appleinsider.
com/articles/21/10/30/compared-m1-vs-m1-pro-and-m1-max, Oct 30, 2021.
[Online; accessed 17-January-2022].

NVIDIA. What is cuda? https://blogs.nvidia.com/blog/2012/09/10/
what-is-cuda-2/, 2012. [Online; accessed 4-September-2022].

Olena. Gpu vs cpu computing: What to choose? https://medium.com/altumea/
gpu-vs-cpu-computing-what-to-choose-a9788a2370c4, Feb 8, 2018. [Online;
accessed 18-January-2022].

Overclock. Directx 12 / direct3d 12 feature levels
and resources. https://www.overclock.net/threads/
directx-12-direct3d-12-feature-levels-and-resources.1567968/, 2015.
[Online; accessed 5-September-2022].

Meng Qi, Ke Yan, and Yuanjie Zheng. Gpredicates: Gpu implementation of ro-
bust and adaptive floating-point predicates for computational geometry. IEEE
Access, 7:60868–60876, 2019. doi: 10.1109/ACCESS.2019.2911641.

SHOBHIT SETH, reviewed by ERIKA RASURE. Gpu usage in
cryptocurrency mining. https://www.investopedia.com/tech/
gpu-cryptocurrency-mining/, updated at 25 of August in 2021. [Online;
accessed 20-January-2022].

Sound Particles. Sound particles. https://www.soundparticles.com. [Online;
accessed 21-January-2022].

Telsa. Artificial intelligence and autopilot. https://www.tesla.com/AI. [Online;
accessed 18-January-2022].

VMWare. Exploring the gpu architecture. https://core.vmware.com/resource/
exploring-gpu-architecture#section1, 2022. [Online; accessed 21-January-
2022].

64

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://appleinsider.com/articles/21/10/30/compared-m1-vs-m1-pro-and-m1-max
https://appleinsider.com/articles/21/10/30/compared-m1-vs-m1-pro-and-m1-max
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://medium.com/altumea/gpu-vs-cpu-computing-what-to-choose-a9788a2370c4
https://medium.com/altumea/gpu-vs-cpu-computing-what-to-choose-a9788a2370c4
https://www.overclock.net/threads/directx-12-direct3d-12-feature-levels-and-resources.1567968/
https://www.overclock.net/threads/directx-12-direct3d-12-feature-levels-and-resources.1567968/
https://www.investopedia.com/tech/gpu-cryptocurrency-mining/
https://www.investopedia.com/tech/gpu-cryptocurrency-mining/
https://www.soundparticles.com
https://www.tesla.com/AI
https://core.vmware.com/resource/exploring-gpu-architecture#section1
https://core.vmware.com/resource/exploring-gpu-architecture#section1


References

Wikipedia contributors. Directcompute — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=DirectCompute&oldid=
895110029, 2019. [Online; accessed 20-January-2022].

Wikipedia contributors. Apple m1 — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Apple_M1&oldid=1064052900, 2022a.
[Online; accessed 17-January-2022].

Wikipedia contributors. General-purpose computing on graphics processing
units — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/
index.php?title=General-purpose_computing_on_graphics_processing_
units&oldid=1066876703, 2022b. [Online; accessed 21-January-2022].

Wikipedia contributors. Opengl — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=OpenGL&oldid=1108194788, 2022c.
[Online; accessed 4-September-2022].

Junfeng Zhu, Gang Chen, and Baifeng Wu. Gpgpu memory estimation and opti-
mization targeting opencl architecture. In 2012 IEEE International Conference on
Cluster Computing, pages 449–458, 2012. doi: 10.1109/CLUSTER.2012.9.

65

https://en.wikipedia.org/w/index.php?title=DirectCompute&oldid=895110029
https://en.wikipedia.org/w/index.php?title=DirectCompute&oldid=895110029
https://en.wikipedia.org/w/index.php?title=Apple_M1&oldid=1064052900
https://en.wikipedia.org/w/index.php?title=Apple_M1&oldid=1064052900
https://en.wikipedia.org/w/index.php?title=General-purpose_computing_on_graphics_processing_units&oldid=1066876703
https://en.wikipedia.org/w/index.php?title=General-purpose_computing_on_graphics_processing_units&oldid=1066876703
https://en.wikipedia.org/w/index.php?title=General-purpose_computing_on_graphics_processing_units&oldid=1066876703
https://en.wikipedia.org/w/index.php?title=OpenGL&oldid=1108194788
https://en.wikipedia.org/w/index.php?title=OpenGL&oldid=1108194788




Appendices

67





Appendix A

69



Mic_Type
Stereo
CPU

Stereo
GPU

Ambisonics
CPU

Ambisonics
GPU 5,1 CPU 5,1 GPU 7,1,2 CPU 7,1,2 GPU TOTAL 

Percentual differences Message Runs per Test
Particle Emiter 10 p/s for 100 sec Audio:5 sec Movement Type: No RandomPitch: No 4,989 4,08 12,854 10,53 9,214 11,87 15,336 18,98

Segundos

CPU GPU
Particle Emiter 10 p/s for 100 sec  Audio:5 sec Movement Type: Yes RandomPitch: No 4,999 6,62 14,301 12,52 11,316 14,63 17,62 21,77 V0 808,752 1 070,91 132,42% Initial version 5

Particle Emiter 10 p/s for 100 sec  Audio:5 sec Movement Type: No RandomPitch: Yes
8,58

16,15
16,226

19,72
13,548

21,63
20,166

29,02 V1 808,752 1090,427 134,83%
All shared buffers to 
managed/ all sync 

sistems
1

Particle Emiter 10 p/s for 100 sec  Audio:5 sec Movement Type: Yes RandomPitch: Yes 9,326 18,46 18,021 22,46 15,25 24,86 22,501 31,70 V2 808,752 1079,228 133,44% Changed bridge to Apple 
official bridge 1

Particle Group with 1000 Audio:5 sec Movement Type: No RandomPitch: No
3,09

3,78
12,112

9,81
8,479

11,55
14,168

18,31 V3 808,752 1078,725 133,38%
Implemented a Opac 

Pointer to work with SP 
software

1

Particle Group with 1000 Audio:5 sec Movement Type: Yes RandomPitch: No

4,794

6,1

13,815

11,80

10,627

13,88

16,256

20,67 V4 808,752 1078,061 133,30%

Moved the copy mic to 
outside the particle 

processing loop with 
new and free 

implementation

1

Particle Group with 1000 Audio:5 sec Movement Type: No RandomPitch: Yes
7,546

14,55
15,99

18,11
12,32

19,78
18,285

26,68 V5 808,752 1068,457 132,11%
Moved the copy mic to 

outside the particle 
processing loop

1

Particle Group with 1000 Audio:5 sec Movement Type: Yes RandomPitch: Yes
8,549

16,88
17,54

21,08
14,458

23,44
20,57

29,73 V6 808,752 1134,777 140,31%
GPU Processing new 

Arquitecture with 
waituntilcomplete

1

Particle Group with 10000 Audio:1 sec Movement Type: No RandomPitch: No
5,96

7,66
24,246

19,40
17,342

23,22
28,299

36,33 V7 808,752 1067,286 131,97%
GPU Processing new 

Arquitecture with 
waituntilcomplete

1

Particle Group with 10000 Audio:1 sec  Movement Type: Yes RandomPitch: No
9,115

11,26
27,429

23,38
20,469

26,97
32,509

41,21 V8 808,752 1064,941 131,68%
GPU Processing new 
Arquitecture without 

waituntilcomplete
5

Particle Group with 10000 Audio:1 sec  Movement Type: No RandomPitch: Yes 15,457 27,85 31,839 35,39 24,917 38,82 36,691 52,44 V9 808,752 1036,102 128,11% Mic and Particle Position 
with waituntilcomplete 10

Particle Group with 10000 Audio:1 sec  Movement Type: Yes RandomPitch: Yes

16,983

31,98

35,461

40,52

28,614

45,09

40,575

58,24 V10 808,752 965,352 119,36%

Mic and Particle Position 
without 

waituntilcomplete and 
attenuation compute on 

GPU

5

V1

4,067 10,986 12,559 19,715 V11 808,752 860,495 106,40%

V10, if the operation isn't 
supported in the GPU, 
compute it in the CPU 
and send it to the GPU 
without mic directions in 

GPU and remove 
creation of pipelinestate 

in every call

5

6,591 13,539 15,089 22,148 V12 808,752 847,841 104,83% Mic Directions 
Processing 5

16,333 20,12 21,94 29,084 V13 808,752 1075,771 133,02%
VBAP Polar Response 

and full interpolation 
migration

1

18,353 22,55 24,989 32,151 V14 808,752 1046,263 129,37% Particles Movement in 
GPU 1

3,705 10,117 11,88 19,057 23/06/22 V15 808,752 663,214 82,00% Refactor of Interpolation 
Process 5

6,157 12,287 14,128 21,45 V16 808,752 773,23 95,61% Audio in GPU and Pitch 
Processing 3

14,83 18,038 21,178 26,964 V17 808,752 687,818 85,05% Audio in GPU and Pitch 
Processing 3

16,828 21,163 23,726 30,325 V18 808,752 674,557 83,41% Process all Microphones 
at once 3

7,821 19,802 25,166 37,784
12,106 24,024 27,51 41,765
28,012 35,569 38,705 54,007
31,974 40,545 44,532 59,058

V2

4,213 10,699 12,246 19,247
6,828 13,339 14,811 21,82
16,255 19,77 22,05 28,563
18,785 22,401 24,083 31,889
3,667 10,003 11,749 18,451
6,033 12,218 14,125 20,872
14,959 18,53 20,325 26,735
17,049 21,159 23 30,105
7,968 19,456 24,7 36,893
12,242 23,699 27,083 40,906
27,991 35,198 39,002 53,482
32,017 40,213 44,275 58,124

V3

4,199 10,682 12,22 19,189
6,784 13,311 14,782 21,668

16,271 19,891 21,798 29,136
19,053 22,352 24,494 32,026

4,663 10,003 11,848 18,41
6,157 12,264 14,472 20,87

15,204 18,391 20,251 27,087
16,963 20,375 23,182 30,223

7,91 19,27 24,713 36,832
12,041 23,603 26,881 40,665
27,852 35,31 38,173 52,745
31,875 40,221 44,213 58,202

V4

4,255 10,847 12,365 19,266
6,758 13,46 14,944 21,796

16,744 20,124 22,872 28,872 Lagrange 6-point, 5th-order optimal 32x z-form implementation6-point, 3rd-order Hermite z-form implementationNo ifs b4 lagrange no ifs and no getnext,,,, No audioParticle No Update FloatsandInts bufferAtt and Inter in CPU Diff1 Diff2 Diff3 Diff4 Diff5 Diff6
18,37 22,55 25,247 31,704 5,509 5,378 5,324 5,374 5,325 5,335 2,775 0,131 0,185 0,135 0,184 0,174 2,603
3,682 10,028 11,688 18,582 5,338 5,403 5,321 5,32 5,38 5,38 2,441 -0,065 0,017 0,018 -0,042 -0,042 2,962

6,09 12,109 13,82 20,975 16,917 17,066 17,475 16,324 5,706 17,455 16,383 -0,149 -0,558 0,593 11,211 -0,538 0,683
14,53 18,37 19,955 26,73 16,714 17,346 17,063 16,606 5,778 17,591 16,281 -0,632 -0,349 0,108 10,936 -0,877 1,065

16,654 21,081 23,029 30,052 4,623 4,505 4,48 4,391 4,432 4,33 2,37 0,118 0,143 0,232 0,191 0,293 2,135
7,593 19,472 24,643 37,137 4,479 4,477 4,431 4,396 4,452 4,462 2,223 0,002 0,048 0,083 0,027 0,017 2,254

11,888 23,701 27,48 40,932 15,454 15,607 16,312 15,13 5,053 16,779 15,269 -0,153 -0,858 0,324 10,401 -1,325 0,338
27,596 35,142 38,32 53,063 SUM 69,034 69,782 70,406 67,541 36,126 71,332 57,742 -0,748 -1,372 1,493 32,908 -2,298 12,04
31,927 39,887 43,811 57,92

V5

4,018 10,693 12,2 19,054
6,541 13,331 14,745 21,586

16,091 20 21,513 28,609



V5

18,564 22,467 24,522 31,773
3,749 10,039 11,85 18,37
6,112 12,042 14,005 20,708

14,618 17,934 19,813 27,11
16,514 20,954 22,815 29,241

7,619 19,436 24,65 36,485
12 23,41 26,931 40,371

27,387 35,024 37,852 52,563
31,572 40,009 43,645 57,922

V6

5,269 12,07 14,158 23,14
7,174 14,321 16,319 25,074

15,985 20,857 21,941 32,333
18,256 23,425 26,308 34,415

4,574 11,002 12,848 21,021
6,586 12,865 14,767 23,194

14,577 19,042 20,652 29,562
16,559 20,646 23,761 31,696

8,299 19,689 24,878 38,469
12,177 24,253 27,558 41,966
27,935 36,28 39,644 57,804
31,733 40,867 45,94 62,888

V7

4,035 10,524 12,178 19,089
6,563 13,095 14,811 21,504

15,746 19,629 22,143 29,085
18,345 22,427 24,486 32,817

3,635 9,911 11,647 18,293
5,966 11,965 13,965 20,749

14,271 17,945 19,574 26,769
16,508 20,836 23,511 29,411

7,522 19,013 24,451 36,534
11,697 23,245 26,917 40,383
27,312 34,707 38,164 52,807
31,644 39,734 44,04 57,683

V8

4,078 10,352 12,155 18,862
6,799 12,546 14,711 21,866

16,1 19,695 21,364 28,72
18,375 22,491 25,194 31,498

3,833 9,577 11,546 18,316
6,175 11,845 13,983 20,791

14,358 18,054 19,705 26,539
16,647 20,832 22,97 29,722

7,573 18,967 23,436 36,231
11,364 23,135 27,283 40,889
27,419 35,046 38,612 52,05
31,721 39,926 44,113 57,477

V9

4,078 10,352 12,155 18,862
6,799 12,546 14,711 21,866

16,1 19,695 21,364 28,72
18,375 22,491 25,194 31,498

5,029 10,413 11,763 13,034
3,833 9,577 11,546 18,316

15,162 19,525 20,663 21,285
16,647 20,832 22,97 29,722

8,768 20,156 20,732 25,676
11,364 23,135 27,283 40,889
29,328 37,98 40,509 41,922
31,721 39,926 44,113 57,477

V10

4,078 10,352 12,155 18,862
6,799 12,546 14,711 21,866

16,1 19,695 21,364 28,72
18,375 22,491 25,194 31,498

2,856 5,105 6,5 11,303
3,833 9,577 11,546 18,316

14,197 15,87 16,284 20,415
16,647 20,832 22,97 29,722

5,401 10,059 12,825 21,695
11,364 23,135 27,283 40,889
26,94 30,184 31,631 39,93

31,721 39,926 44,113 57,477

V11

3,49 6,319 8,911 14,997
6,036 8,883 11,644 17,644

15,883 17,634 19,263 24,866
18,37 20,286 22,481 28,041
2,843 5,15 6,12 10,725
5,175 7,694 10,341 14,551

14,297 15,931 16,518 20,563
16,746 18,863 20,47 25,177

5,596 10,353 11,771 20,954
9,797 14,087 19,316 28,162

27,295 30,608 31,342 40,095
31,483 35,568 39,187 48,969

V12

3,644 6,268 8,864 14,309
6,139 8,754 11,478 16,976

15,512 17,678 19,204 24,16
17,691 20,025 22,211 27,068

2,778 5,257 6,003 10,526
5,278 7,53 10,112 14,215

13,969 15,78 16,286 20,226
16,23 18,543 20,363 24,915
5,441 10,08 11,82 20,553
9,616 14,105 19,384 27,476

26,495 30,742 31,1 39,242
30,927 35,653 39,113 48,102

V13

4,878 9,258 11,829 20,842
6,303 10,833 13,828 21,921



V13

15,581 19,369 21,808 31,357
18,02 22,36 25,111 33,079
4,629 9,028 11,715 29,278
5,768 9,781 12,575 19,739

13,348 16,952 18,851 32,649
17,077 20,92 23,86 30,42

8,209 16,168 21,196 53,456
10,027 15,315 21,228 33,541

26,24 32,197 35,935 63,672
32,463 39,115 44,972 59,07

V14

5,62 10,672 13,218 27,327
5,741 10,698 13,412 27,294
15,32 17,86 20,5 36,557

15,475 17,836 20,61 33,635
4,662 8,911 11,211 24,078
4,663 9,018 11,184 24,216
13,95 17,069 19,208 30,736

13,878 17,12 18,992 29,986
9,253 16,183 20,293 45,224
8,334 16,04 20,69 45,071
26,34 32,793 36,622 64,187

26,405 33,013 36,819 58,339

V15

2,484 4,629 5,385 9,548
2,477 4,628 5,341 9,55

16,369 17,87 18,118 21,21
16,278 17,82 18,187 21,029

1,789 3,349 3,687 6,51
1,798 3,364 3,73 6,493

14,862 16,476 16,764 19,432
14,92 16,603 16,733 19,267
2,977 5,691 6,116 10,984
2,971 5,677 6,142 11,004
28,06 31,143 31,473 36,769

28,129 31,047 31,804 36,527

V16

2,493 4,589 7,574 22,297
2,497 4,583 7,575 22,302

7,8 11,965 14,412 29,676
7,959 12,196 14,884 29,856
1,803 3,302 6,246 19,76

1,8 3,298 6,223 19,619
17,086 24,626 27,479 40,555
17,156 28,041 27,008 39,862

2,991 5,621 11,114 36,575
2,986 5,624 11,097 36,564
8,427 11,796 18,643 48,079
8,465 11,78 18,645 48,301

V17

2,48 4,468 7,565 22,079
2,488 4,454 7,568 22,032
3,405 5,446 8,946 24,567
3,386 5,449 8,892 24,567
1,785 3,129 6,237 19,686
1,761 3,119 6,213 19,782

16,025 19,028 22,092 36,852
16,097 18,956 22,154 36,995

2,949 5,183 11,055 36,516
2,945 5,172 11,039 36,593
7,948 10,928 17,865 47,4
7,967 10,948 17,871 47,736

V18

2,167 3,54 6,871 20,36
2,178 3,547 6,85 20,286
3,131 4,612 8,505 22,766
3,132 4,591 8,449 22,779
1,765 3,121 6,512 19,522
1,749 3,094 6,492 19,495

16,134 19,048 22,297 36,486
16,075 19,161 22,341 36,265

2,904 5,194 11,681 36,21
2,908 5,182 11,75 36,154
7,971 10,939 18,674 47,205
7,967 10,951 18,659 46,887


	Introduction
	Motivation and Scope
	Objectives and Approaches
	Results, Contributions, and Limitations of the thesis
	Sound Particles software
	What is a Particle System
	Sound Particles

	Outline of the thesis

	Project Planning and Management
	Planning
	Development Process
	First Prototype
	Second Prototype
	Third Prototype
	First Sound Particles Prototype
	Second Sound Particles Prototype

	Risks

	Background Check and State of the Art
	Central Processing Unit (CPU)
	Graphical Processing Unit (GPU)
	gpu Programming Limitations

	gpgpu
	What is gpgpu
	Why use the gpu
	gpgpu in Modern daw
	hpc on the gpu
	cpu vs gpu
	Applications for gpgpu
	 Programming Languages
	Comparison of api's and the api chosen
	Disadvantages of explicit api's
	gpu new concepts
	Metal api


	System Design
	Requirements
	Architecture

	Implementation
	Results, analysis, and tests
	Results and analysis
	First Semester
	Second Semester

	Tests
	Functional Tests
	Quality Tests


	Conclusions and Future Work

