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Abstract

Music has become a key aspect of the everyday life for most individuals, this industry

is constantly growing and from there comes the need to develop systems that can auto-

mate the organisation and partitioning of music pieces in different categories. For years

researchers have attempted to determine perceived emotion from music with the aid of

Classical Machine Learning (ML) algorithms, providing us good yet not great state of the

art results of 77.1% F1-Score in Lyrics-based Music Emotion Recognition (LMER) and

67.4% F1-Score in Lyrics Emotion Variation Detection (LEVD).

Deep Learning (DL) approaches have become popular in the LMER field as re-

searchers attempt to surpass traditional methods. We proposed a DL approach to this

problem, using the existing 951 lyrics LMER dataset, which reached an F1-Score of

88.9% and consisted on a pre-trained model (BERT). This work also assesses LEVD

in which an F1-Score of 85.3% was achieved by applying concepts such as Natural Lan-

guage Processing (NLP) data augmentation and Long Short Term Memory (LSTM) mod-

els.

This research contributed to the improvement of our knowledge in DL approaches

which enhanced the previously achieved classical ML results and proved beneficial to the

better understanding of the limitations the data available imposes.

Keywords

deep learning, data augmentation, natural language processing, music emotion recogni-

tion, music emotion variation detection
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Chapter 1

Introduction

Art and music are basic human activities. Humankind and art cannot function without

one another. The interaction with sound is unavoidable, either to make it or take pleasure

in it. People have always found music significant in their lives, whether for enjoyment in

listening, the emotional response, performing, or creating. Music is something special.

Some call it a universal language, while others call it the window to the soul. In the earlier

days, we would give cassette tapes to the ones we secretly liked, since words could not

express our deepest feelings. We used the emotion in music. And not much has changed.

Nowadays, sharing music has become easier, and it is quite evident that music has

taken up an extremely important role. And for many people, and even brands, the music

they relate to is an extension of themselves. As we know, a musical piece sets a mood

and a vibe as we hear it in lounges, bars, parties, or other social events. In this era where

digital music libraries are constantly growing, to create the right environment one must

be able to pick the most suitable playlist. This is where Musical Information Retrieval

(MIR) is crucial as it provides individuals more advanced, malleable and user-friendly

ways of finding their musical preferences.

Music categorisation is one of the most valuable tools we have at our disposal for

understanding and discussing artists’ creations. When used flexibly and descriptively,

not as a means of rigid division, these classifications have the power to substantially

improve our comprehension, recognition, and enjoyment of the music we hear.

Music emotion recognition (MER) is a subfield of MIR that aims to determine the

affective content of music by applying machine learning techniques. These systems have

numerous applications such as music recommendation systems like the widely known

Spotify, automatic playlist generation, music therapy, and so forth. However, to deter-

mine the emotional category of music is a defying process and several issues need to be

addressed such as excerpt annotation, feature extraction and algorithm design and exper-

imentation.
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Chapter 1. Introduction

1.1 Problem Statement, Motivation and Scope

In current times, music plays a big role in the social and psychological functions of

individuals. The amount of new records keeps on growing, making it challenging and

highly expensive to manually annotate every single freshly produced song. This is where

music emotion recognition systems come to aid, helping to develop music recommenda-

tion, automatic playlist generation and other systems scattered by different fields.

Automating a task as subjective as music annotation is quite problematic. The exist-

ing MER methods face some serious challenges, it is difficult to accurately express the

ups and downs of music emotion based on the analysis of the entire music. Analysing

these emotions based on the pitch, length, and intensity of the notes, can hardly reflect

the soul and connotation of music. Research on early MER systems was based on audio

composition breakdown (Lu, Liu, and Zhang 2006). Subsequent investigation revealed

that combining lyrics and audio analysis and creating the so-called bimodal MER sys-

tems would conceive more accurate results (Laurier, Grivolla, and Herrera 2008, Hu and

Downie 2010).

Lyrics-based music emotion recognition (LMER) methods became a key aspect in

music information retrieval. More recent studies relied on feature extraction and tradi-

tional ML to create models capable of detecting and classifying emotion based on lyrics

(Malheiro 2017, Malheiro et al. 2018). Deep Learning is starting to grow in this research

field as most of the classical ML methods trust mostly on feature extraction which which

requires substantial domain knowledge and, for this reason, is a highly complex and ex-

pensive process.

Researchers developed projects solely consisting of coming up with new features that

could in some way retrieve more significant information from music to improve their

models. The implementation of DL methods can help researchers escape some of this

exhausting process by automatically capturing features from lyrics.

Emotion recognition from common text (e.g. world wide web corpus or social me-

dia interactions) has been widely explored but when considering lyrics, research is still

scarce and emotion recognition, in our opinion, poses as an even more difficult task. This

is mainly due to the characteristics of the data itself. Lyrics are not as straightforward as

most of the text found on the web. At the end of the day these documents always were a

way for artists to express themselves and expressiveness is often associated with ambigu-

ity or confusion in the meaning of a sentence. This is a problem that is hard to overcome

2



Chapter 1. Introduction

as it makes it difficult for the annotators when assigning labels and for the models in their

training process. Another major issue detected in the lyrics was the presence of a chorus

or multiple identical verses. Redundant information is typically (depending on the task

at hand) reduced or discarded as equal samples tend to add less additional information

and limit the generalisation capability of machine learning models. As real-world appli-

cations for the problem at hand consider high quantities of musical data, is it crucial that

our models can adapt reasonably to new information.

In this work, we aim to provide solutions for both static Lyrics-based Music Emotion

Recognition, where the song is treated and classified as a whole, and the dynamic ap-

proach, Lyrics Emotion Variation Detection, where the goal is to perceive the changes of

emotion throughout the lyrics. As this is the continuation of previous work (namely, Prof.

Ricardo Malheiro’s doctoral thesis Malheiro 2017) we will be leaning on past research

made with classical ML models and explore DL model architectures that rise above tra-

ditional approaches.

3



Chapter 1. Introduction

1.2 Main Objectives and Approaches

This dissertation was conducted in the scope of the MERGE project 1 (Music Emotion

Recognition - Next Generation , PTDC/CCI-COM/3171/2021), funded by Fundação para

a Ciência e Tecnologia (FCT), which offered the contex for this work. The research

conducted along the two semesters helped clarify a path to follow during the development

of this work, thus some objectives have been proposed for guidance (see Table 1.1),

ranked by priority - High, Medium or Low. The goal is to strive as much as possible in

order to become close to fulfil these tasks.

Objective Priority
Static LMER - Develop new DL approaches and compare them against existing traditional ML models in controlled datasets High
Static LMER - Explore NLP related methods for textual data augmentation Low
Static LMER / LEVD - Testing pre-trained models (BERT/ GPT-3) performance High
Static LMER / LEVD - Private database annotation Medium
LEVD - Explore NLP related methods for textual data augmentation High
LEVD - Develop new DL approaches for lyrics emotion variation detection in private dataset High

Table 1.1: Goals for the second semester

Overall the main purpose of this project was to assess if there are DL approaches capa-

ble of reaching or even surpassing State of the Art results provided by classical methods.

When we talk about new approaches, we do not refer to the development of new algo-

rithms or tools, but to the incremental improvements that new architecture designs bring

to the table. The fact that Deep Learning models tend to be complex and computation-

ally demanding needs to be taken into consideration when weighting the advantages and

disadvantages of these methods over the classical designs.

The central piece of this work was the static portion of the dilemma (LMER). Differ-

ent DL approaches were applied to the chosen datasets. Structures such as simple mul-

tilayer perceptrons, CNNs, LSTMs as well as powerful pre-trained models that perform

well on many other NLP tasks were evaluated as possible solutions for the problem. To

classify the songs we followed the 4 quadrants of the Russell emotion model. For the dy-

namic problem (LEVD) we have used a dataset of around 368 annotated sentences from

multiple lyrics previously used. In this part of the work we also performed experiments

using pre-trained models and applied data augmentation techniques commonly used in

the NLP field in order to take the most out of the scarce amount of annotated data we had

available. The literature on LEVD was still limited as this field is under development and

most of the applications for it rely on pure curiosity, making it an even more challenging

task.
1https://www.cisuc.uc.pt/en/projects/MERGE

4
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There were changes made in our priorities throughout the work and some of the ini-

tial objectives were discarded. One example is the transfer learning for LEVD as most

models were not available to the public or would not fit the needs of this project. Also,

the experiments made using pre-trained models took a big toll in our time constrains as

this was an area that required even more exploration and knowledge gathering than the

remaining.

While building and testing the approaches present in this work, other tasks were de-

fined such as the private database increase, which although was not used in this work, it

is essential for future research. New lyrics were annotated along the time frame of this

project in order to extend the existing datasets and prepare them for future work.

1.3 Results, Contributions and Limitations of the thesis

The main results achieved in this thesis:

• an F1-Score of 88.9% for static LMER, which surpassed the current state-of-the-

art for the datasets used in this work.

• an F1-Score of 85.3% for LEVD, which was also an increase over the current

state-of-the-art for the dataset used in this approach.

• improved F1-Score results in LMER by taking advantage of pre-trained models.

• improved F1-Score results in LEVD with NLP data augmentation approaches.

The contributions that impacted this work:

• a proposal of two DL architectures (one for static LMER and another for LEVD)

which outperformed the state-of-the-art traditional ML approaches.

• the analysis of the impact of different inputs (by taking advantage of multiple word

embedding models and data augmentation techniques) on DL models.

The limitations encountered in the whole process:

• the size of the datasets, which are still in constant expansion and still to be further

on explored in future work.

5
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1.4 Resources and Planning

1.4.1 Planning

In order to organise ourselves and have a better grasp of the tasks at hand we decided

to create a Gantt diagram that would showcase the main assignments of this project and

their respective duration. In Figs. 1.1 and 1.2 we display the work for the two semesters.

First Semester

Due to the initial lack of experience and information in the field, the opening weeks of

the first semester were reserved to gather knowledge and come in touch with the subject.

A lot of research was put into NLP and the multiple approaches on traditional machine

learning and deep learning emotion recognition as well as text classification. The state-

of-the-art (SOA) would rely on this investigation and therefore this starting point would

be necessary for a good document.

This stage was purely focused on LMER as LEVD can be thought of a more in depth

specialisation of this problem as it is explained later on this document. After the initial

research, we needed to put our hands on the work already done by our predecessors to

get the feel of how things operate in this area. Our first attempts to mimic traditional ML

SOA results were not so successful but with time we would achieve our goals. Later on

we started our first DL experiments. The objectives here were to get to know the existing

datasets, use previously extracted features combined with simple DL architectures and

also to process our lyrics with different word embedding techniques (these are necessary

as a lot of the SOA work on deep learning approaches are based on them). The choice

of these experiments relied on the need to assess the performance of simpler models first

as our experience in DL was still raw and only later test with the more complex ones.

Most of the time available in this semester was reserved for the experimental process.

Mounting these architectures and applying them to the problem at hand took a significant

toll on the initial arrangement.

Second Semester

At the start of the second semester the initial objectives were to build on the proposed

architectures and lookout for improvement as simple changes (i.e. adding dropout lay-

ers), which often meant considerable performance boosts. By this time only a few experi-
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ments had been conducted when compared to the extensive variety of possible parameters

passed to the models.

The deadline for this work was extended as multiple obstacles got in our path. The

necessary time to invest in knowledge gathering on pre-trained models and their imple-

mentations was specifically underlooked, since these are complex architectures that not

so often provide intuitive ways of using them. Another circumstance that impacted our

time necessities was the shared server used for our tests (see Section 1.4.2). Although

efforts were made to increase the amount of Graphics Processing Units (GPU) available

this aid only came in the later stage of the work and much of the semester was a constant

fight between the available processing units. As such, a big portion of the computation

was performed in Google Colab in an attempt to overcome this scenario.

Research on possible approaches for LEVD transfer learning took longer than ex-

pected as well, with most of the methods not publicly available or providing inconsistent

results.

Overall, this increase in time favored the work specially because at this time the

servers availability had been greatly improved and it allowed for a larger and more rich

experimentation process that led to our best results. Fig. 1.2 clearly demonstrates the

discrepancy between the real and planned times for our tasks.
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Figure 1.1: Gantt Diagram - 1st semester
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Figure 1.2: Gantt Diagram - 2nd semester.
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1.4.2 Experimental Environment

The first experiments were performed in a shared server by the team that provided:

• Intel Xeon Silver 4214 CPU @ 2.20GHz × 48

• 256 GB System RAM

• 3 x NVIDIA Quadro P500 16GB

The models were running on the GPUs (Graphics Processing Unit) which would help

save a considerable amount of time when in comparison to using the CPU for this task.

Although this environment had an adequate overall performance, it was often being occu-

pied by other users which limited the availability of the server. Later on we have decided

to switch our experiments to the Google Research Colaboratory which allowed us to take

advantage of the following hardware:

• Intel Xeon Silver 4214 CPU @ 2.20GHz × 48

• NVIDIA V100 PCIE 16 GB

• 24 GB System RAM

• Virtual machine lifetime of 24 hours

Adapting to this new tool took a fair amount of time which we were not counting on,

specially when attempting to run previously made work, but these conditions allowed us

to train and test our models when we decided to, with the only constrain being the virtual

machine lifetime, limiting us to 24 hours of continuous usage.

Most of the available implementations were made with Python, thus this was the

selected language for this work. We have taken advantage of libraries such as tensorflow,

keras, scikit-learn, numpy, pandas and pytorch which offered us the optimised versions

of functions/models necessary to fulfil our tasks.

1.5 Outline

The following Chapter 2 reviews the state-of-the-art approaches to LMER and LEVD.

Section 2.1 gives insights on different emotion taxonomies and existing datasets are de-

scribed in Section 2.2. Deep learning concepts are disclosed in Section 2.3 and informa-
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tion about current progress when it comes to static LMER and LEVD are showcased in

Sections 2.4 and 2.5, respectively.

Chapter 3 aims to summarise the approaches and experiments made in order to come

up with a DL solution for the static LMER problem. Section 3.1 contains information

about the information available for the models to learn, followed by Section 3.2, which

clarifies these methods and their results in more detail, and Section 3.3 which contains a

critical analysis of these outputs.

Chapter 4 has a similar structure to the later, only this portion of the work is focused

on LEVD.

Chapter 5 concludes the work and provides expectations for future work.

11
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Chapter 2

Background Concepts and State of the Art

The following section covers the most significant principles necessary for the con-

clusion of this work. It summarizes the key background concepts related to this work

(e.g., emotion and deep learning) and stands as a critical review of the research done in

the field, particularly on static LMER and LEVD. The main datasets employed in these

problems are also reviewed.

2.1 Emotion

The concept of emotion commonly comes associated with doubtfulness and uncer-

tainty. In the following portion of this work we discuss the predominant aspects that are

entangled with the concept of emotion: definition, types and models.

2.1.1 Defining Emotion

“Emotion” is a term infused in the English dialect in the seventeenth and eighteenth

centuries as a translation of the French denomination “émotion”. Most of the concepts

we define as emotions today have been the object of theoretical analysis since Ancient

Greece, under a variety of language-specific labels such as passion, sentiment, affection,

affect, disturbance, movement, perturbation, upheaval, or appetite. The word "Emotion"

comes with a tremendous amount of ambiguity to its side generated by a long and compli-

cated history that created a wide variety of shared insights about the nature and function

of emotions, but no consensual definition of what emotions truly are. As Fehr and Russell

Fehr and Russel 1984 stated, “everybody knows what an emotion is, until you ask them

a definition”.

In modern psychology, emotion is often defined as a complex state of feeling that re-

sults in physical and psychological changes that influence thought and behaviour. Emo-

tionality is associated with a range of psychological phenomena, including temperament,

personality, mood, and motivation.

Generally we are used to hear that music expresses emotions or that we feel emotions
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in response to music. This relationship also leads one to intuitively assume that the emo-

tion we feel when listening to a song is the emotion being expressed by that piece. To

many, it makes sense that listening to an happy piece of music, for example, is likely to

make us feel that way. As Gabrielsson Gabrielsson 2002 has suggested, however, this

may not always be the case.

2.1.2 Expressed, Perceived and Felt Emotions

Typically emotions are branched into three categories: expressed, perceived and felt

emotions. Gabrielsson 2002.

• Expressed emotion: designates the emotion the artist is trying to convey in its piece.

• Perceived emotion: refers to the emotion that the listener apprehends from the song

(which, as stated before, can diverge from the emotion the author is trying to pass

on).

• Felt/Induced emotion: defines ones emotional response to the song.

Expressed and perceived emotions commonly match but not in all cases, these two types

of emotions are both related and dependent (just like felt emotions) on the person’s emo-

tional state, situational and musical factors, thus its natural that in some circumstances

they might differ from each other. Although an author tries to convey happiness in his

song (expressed emotion), a listener might perceive calmness and quietude (perceived

emotion) which can then provoke a state of depression on the auditor (felt emotion).

2.1.3 Emotion Representational Models

As we have seen before, there is no universal agreement when it comes to a standard

model to represent emotion, the currently existing models are divided in two branches:

discrete/categorical and dimensional/continuous.

Discrete Models

Categorical models aim to categorise emotions, distinguishing them from each other.

The famous Ekman’s model Ekman 1982 classified emotions in six different categories:

anger, disgust, fear, happiness, sadness and surprise. However, this model was ineffective
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in the music emotion recognition domain as it was originally established for encoding

facial expressions.

Another well known model is Hevner’s Hevner 1936, which divides emotions into

eight clusters using a total of 67 adjectives (Fig. 2.1).

Figure 2.1: Hevner’s emotion categories

The layout of this model is based on the emotions similarities, aggregates closer to

each other have more affinity between them while those who are farther away are more

distinct. For classification purposes, we consider that each emotion present in the same

cluster has the same intent as the rest. This model reduces the plethora of emotions to

these eight clusters making the understanding of the separation between them challenging

and even overlapping some.

Dimensional Models

Discrete models revealed themselves ambiguous representations of emotions. By using a

Cartesian space type of representation, Russell states that our emotion can be branched in

two neurophysiological responses, arousal and valence, dividing this space in four quad-

rants (Fig. 2.2). The Y-axis represents arousal (energy and stimulation level) while the

X-axis refers to valence (positive and negative affective states, a sense of pleasantness).
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Figure 2.2: Russell’s model

One can perceive this model as of having only four emotions, one for each quadrant

(happy for quadrant 1, angry for 2, sad for 3 and relaxed for 4) but Russell came up with

additional adjectives to classify emotions, distributing them in the plane (Fig. 2.2). This

model allows for emotion representation based on discrete tags or continuous dots on

the dimensional plane which remove the ambiguity as they’re not subjective as linguistic

terms. Although following the continuous annotation path provides more clear answers

to our question, it’s still a much more challenging task when it comes to giving labels for

the lyrics than the discrete version of the model.

Russell’s model has been reinvented in different ways, adding different dimensions

to refer to dominance or potency (Tellegen, Watson, and Clark 1999, Schimmack and

Reisenzein 2002) or separations with distinct tags Meyers 2007. Researchers find it chal-

lenging to establish pertinent comparison insights as different authors follow divergent

emotion models (Fig. 2.3). Currently, the Russell AV (Arousal/Valence) model proves

itself as the most consistent one and several MER projects are based on this representa-

tion of emotion (Juslin and Sloboda 2001, Laurier, Sordo, et al. 2009). This work is a

continuation of previous research made in our laboratory, thus it will also be focused on

the Russell AV model for classification purposes.
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Figure 2.3: Summary diagram of the emotion representational models.
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2.2 Music Emotion Datasets

To solve the problem of emotion recognition in music, researchers attempt to anno-

tate lyric datasets in a subjective approach based on emotional perception. Manual and

professional annotation of song emotions is labour intensive, restricting the amount of

labelled samples each dataset offers. Also, the perception of emotions is influenced by

various factors like age, gender, social context or professional background, and thus it

is quiet challenging to come to an agreement for all of the instances in the annotation

process.

Most of the available datasets do not even reach the amount of 1000 lyrics. Labelling

the songs requires a heavy cognitive involvement of the subjects, therefore it is difficult

to find individuals that are able to perform extensive work on the subject. Attempts to

create bigger datasets often are created using crowdsourcing and develop poorly labelled

information, compromising the quality of the whole dataset as machine learning algo-

rithms, as we are going to showcase in the following sections, work better with quality

over quantity.

In previous research made in our lab (Malheiro et al. 2018) smaller newly created

datasets were employed and provided good results. The annotation process was priori-

tised which further on helped machine learning algorithms to find strong representations

for each targeted emotion and extract features related to them. The following Table 2.1

showcases some of the datasets related to current research for LMER.
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Dataset Approach Features Size Emotion Taxonomy Observations

MoodyLyrics,
Y. Agrawal, R. Agrawal, and Alluri 2021 Dynamic/Static

Word Embeddings and
Preprocessed Lyrics 2595 Songs Russells AV

Well balanced among
the emotion classes
and high number of
unique artists/songs

YL AllMusic, D. Yang and W. Lee 2010 Static
Extraction based on the
Harvard General
Inquirer IV. 4 model

1032 Songs
Psychological model
of 23 emotions

Explores an unusual
model of emotion,
no great diversity
in feature extraction

MER 180 Lyrics, Malheiro 2017 Dynamic/Static

Features based on
content, structure,
style and semantics
(e.g. unigrams, POS tags,
GI and LIWC)

180 Songs Russell AV

Diversity in feature
extraction, good
balance between
emotion categories,
strict annotation
process but smaller
sized dataset

MER AllMusic
771 Lyrics, Malheiro 2017 Static

Features based on
content, structure,
style and semantics
(e.g. unigrams, POS tags,
GI and LIWC)

771 Songs Russell AV

Diversity in feature
extraction, decent
size for more
complex classification
models

Synchronised Lyrics
Emotion, Parisi et al. 2019 Static Word Embeddings ———-

Hevner Emotion
Model

Good for bi-modal
analysis as it is
part of a bi-modal
synchronised dataset

Baidu Web
Chinese/English
Lyrics, An, Sun, and Wang 2017

Static Segmented Lyrics 3552 Songs
Thayer Emotion
Model

Lack of annotation
restrictions, most
of the songs are
in Chinese

Popular Chinese
Lyrics, Xu et al. 2021 Static

Features extracted using
SC-LIWC 3839 Songs Russell AV

Low feature diversity
and poor annotation
criteria

Table 2.1: Datasets Summary
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2.3 Deep Learning

In this section we point out and explain key concepts from the DL domain. These

definitions will then be used frequently on the rest of this work, thus the importance of

reviewing them properly.

2.3.1 Basic Concept

At its simplest, deep learning can be thought of as a way to automate predictive analyt-

ics. These algorithms are stacked in a hierarchy of increasing complexity and abstraction.

A growing child can be a good analogy for this concept. At an young age we tend to point

out objects and call them by the name we think classifies them best. For example, when

a baby looks to a cat and says "Dog" it relies on its parent to confirm its classification

and say "No, that is not a dog!" or "Yes, that is a dog!". As the toddler continues to point

to objects, he becomes more aware of the features that all cats possess, clarifying the

concept of cat by building an hierarchy in which each level of abstraction is created with

knowledge that was gained from its preceding layer.

Neural networks (NN) are a necessary concept to explore when discussing deep learn-

ing. When they were first developed researchers were inspired by the human brain, their

structure and functionality are similar to the way biological neurons operate.

Figure 2.4: Fully Connected Neural Network Structure Example

A network can be split into three sections: the input, the hidden and the output layers.
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Each one of these layers is composed of a set of neurons - mathematical functions similar

to organic neurons. Once an input layer is determined, weights are assigned. These

weights determine the relevance of a given variable, thus defining its importance for the

output.
m

∑
i=1

wixi +bias = w1x2 +w2x2 + ...+wmxm+bias (2.1)

out put = f (x) =

1, if ∑ wx +b ≥ 1

0, ∑ wx +b < 0
(2.2)

Figure 2.5: Neuron Structure

Further on, the inputs are multiplied by their respective weights and summed (Equa-

tion 2.1). The result of this process is then passed through an activation function (Equa-

tion 2.2) which determines the final output. If that output exceeds a given threshold, it

activates the node, passing data to the next layer in the network (feed forward network).

This is the case for a simple multi-layer perceptron, but other types of neural network

structures are used in the various deep learning applications.

2.3.2 Convolutional Neural Networks

In this project we will be implementing a type of NN that is often used for computer

vision purposes but can be applied with the right techniques to natural language process-

ing, the Convolutional Neural Network or CNN. Fig. 2.6 showcases a diagram related to

the employment of a CNN for a NLP task.
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Figure 2.6: Usage of a CNN for NLP example diagram.

Since we are dealing with lyrics, before feeding information to the CNN we would

have to express the words in the song with vectors representations. An embedding layer

or a pre-trained model is used firstly to receive the sentences and transform them so they

can further on serve as input for the CNN.

These networks are able to capture the spatial dependencies in an input through the

application of relevant filters. The architecture performs a better fitting to the sequence

vectors dataset due to the reduction in the number of parameters involved and re-usability

of weights. After receiving the inputs, the filter runs through the feature vectors, from left

to right it moves with a certain stride value until it parses the complete width of the data.

Then, it goes down to the left of the vector with the same stride and continues the same

analysis until the entire frame is traversed and new feature maps are created. In the end,

the data goes through an activation function for classification.

2.3.3 Long Short-Term Memory Networks

Long Short Term Memory Network is a more advanced Recurrent Neural Network

(RNN), capable of detecting dependencies in sequence prediction/classification tasks.

LSTMs store previous information and use it to process the current input, just like a
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person reading a book remembers the last chapters. LSTMs are considered in a certain

way an updated version of RNNs as they can handle long term dependencies by avoiding

the vanishing gradient problem - when the gradient has such a small value that stops the

weights of the network from changing.

Figure 2.7: Structure of an LSTM unit.

LSTM units can be summarized by a cell state which basically contains the informa-

tion gain in each unit and three main gates that interact with the later as shown in Fig.

2.7. The forget gate is decides which information is used for calculating the cell state

and which data can be discarded. The input gate updates the cell state and helps to find

out important information and store certain attributes in the memory that are deemed rel-

evant. The output gate passes the hidden state, this is where the modified cell state is

passed through a tanh function and is multiplied with the sigmoid output to calculate the

hidden state.

These types of recurrent neural networks have been successfully applied to NLP tasks

as they are effective in memorising important information. Fig. 2.8 showcases a simple

architecture of a bidirectional LSTM model used for NLP. Words are transformed into

their respective embedding representation with a fixed dimension and then given to two

layers of lstm units. The hidden states that result from these units are concatenated and

fed to a dense layer and processed by an activation function for classification.
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Figure 2.8: Usage of a LSTM for NLP example diagram.

Other methods mainly explore sentences as individual word inputs, thus not adapting

to the whole meaning of the sentence and producing predictions that rely more on statis-

tics. By using appropriate embedding and encoding techniques LSTMs can get more

information from actual sentences. Another common application in the NLP field would

be the Bidirectional LSTMs, which as the name expresses run through the input in both

ways therefore using past and future information which can help improve performance in

some cases.

2.3.4 Activation Functions

As we’ve seen, an activation function in a neural network defines how the input is

transformed into an output from a node or nodes in a layer of the network. The choice

of activation function has a large impact on the capability and performance of the neural

network, and different activation functions may be used in different parts of the model.

Commonly researchers use the ReLU, the sigmoid or the tanh activation functions for

the hidden layers, a neural network will almost always have the same activation function
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Figure 2.9: ReLU Activa-
tion Function

Figure 2.10: Sigmoid Ac-
tivation Function

Figure 2.11: Softmax Ac-
tivation Function

in all hidden layers, it is unusual to vary the activation function through a network model.

The type of function used in these layers is often related to the type of network we are

dealing with.

• Multilayer Perceptrons (MLP) typically use the ReLU activation function.

• Convolutional Neural Networks (CNN) are also often constructed with the ReLU

activation function.

• In Recurrent Neural Networks (RNN) the Tanh and/or Sigmoid activation func-

tions are frequently employed.

For the output layers the linear, the logistic (sigmoid) or the softmax activation func-

tions are the top choices. The linear function is common on regression problems, the

sigmoid function is employed mostly in binary classification tasks and the softmax acti-

vation function is preferred when it comes to multi-class classification and is the one used

in our models.

2.3.5 Loss Functions

The tuning of the network weights can be seen as an optimisation algorithm, choosing

the best set of weights that provides us the most accurate solution. The function we

want to minimise or maximise is called the objective function or criterion. When we are

minimising it, we may also call it the cost function, loss function, or error function. This

function helps us measure the difference between the calculated solution (i.e Arousal and

Valence) and the real value ( i.e. annotated values). The network updates the weights by

computing a gradient of the cost function.

Loss =−(
1

out putsize
)∑y · log ŷ+(1− y) · log(1− ŷ) (2.3)
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The most common are the Mean Squared Error (MSE, usually applied in regres-

sion tasks), the Binary Crossentropy (BCE, for binary classification) and the Categorical

Crossentropy (CCE, for multi-class classification). This thesis focuses in classification

problems with multiple labels, thus the CCE (Equation 2.3) is the appropriate loss func-

tion for our experiments.

2.3.6 Optimisation Algorithm

Optimisation is defined as the search of a set of inputs to an objective function that

results in a maximum or minimum evaluation for the given function. There are multiple

algorithms used to perform optimisation. In our work, we used Adam (see Fig. 2.12), an

algorithm based on stochastic optimisation.

Figure 2.12: Adam - algorithm for stochastic optimization, adapted from Kingma and
Lei Ba 2017

This method was chosen due to its popularity in the area we are tackling and the fact

that it only requires first-order derivatives (gradients) to choose the direction to move in

the search space, thus being more memory efficient when compared to other methods.

2.3.7 Transfer Learning

Transfer learning (TL) is a machine learning method commonly applied to deep learn-

ing approaches that involves using a previously developed model as foundation for a new

one that is created to solve similar problems. TL has its origins on the observation that

humans can apply previous knowledge to solve new problems faster and intelligently, and
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it has been proposed to deal in convenient ways with the problematic situation of having

training and test samples derived from different feature spaces and distributions.

This methodology is often used as the starting point on computer vision and natural

language processing (NLP) tasks given the vast compute and time resources required to

develop neural networks designed for these problems. TL is noticeably important in the

beginning of a NN, helping in skipping usually expensive and irrelevant learning phases

(Fig. 2.13).

Figure 2.13: Learning curve with and without TL.

Previous studies in the speech emotion recognition field show that emotion recogni-

tion models previously trained on a specific speech corpus have the tendency to perform

better to that same corpus than to new data. This is due to the characteristics of the speak-

ers in each corpus, as well as the type of emotions being conveyed, the level of portrayal,

among others. Because of this, TL has recently started to be applied to this area due to

its multiple advantages in dealing with mismatches between training and test data sets.

Pandeya and Lee (Pandeya and J. Lee 2020) proposed a supervised music video emo-

tion dataset for a data-driven algorithm and used late feature fusion of audio and video

representations after transfer learning.

Speech emotion detection is at the core of lyrics-based MER and previous research

using denoising autoencoders (DAE), simple recurrent networks (SRN) and long-short

term memory networks on speech and music emotion recognition have shown that using

TL from this area of knowledge can be beneficial for the performance of DL models

(Coutinho, Deng, and Schuller 2014).

BERT

Recent advances in Deep Learning approaches provided better results in the LMER field

but this is still certainly a challenging task. Publicly available datasets are scarce and most
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of them are small in scale which makes it hard to train DL models in such low amount

of information due to overfitting. Previous research (Devlin et al. 2018) highlighted the

effectiveness of fine-tuning pre-trained models such as the Bidirectional Encoder Repre-

sentations from Transformers (BERT), for specific tasks.

BERT is designed to pre-train deep bidirectional representations from unlabeled text.

The pre-trained BERT model can be fine-tuned with just one additional output layer to

create state-of-the-art classification models for a wide range of tasks. BERT makes use

of Transformer, an attention mechanism that learns contextual relations between words

(see Fig. 2.14). The input is embedded into vectors and processed in the neural net-

work. Classification tasks related to sentiment analysis require an extra layer on top of

the Transformer output to assign the labels.

Figure 2.14: Transformer model architecture adapted from Vaswani, Shazeer, Parmar,
Uszkoreit, Jones, A. Gomez, et al. 2017

Siriwardhana et al. 2020 used two pre-trained “BERT-like” architectures (Speech-

BERT for the signal component and RoBERTa to process the textual information) to solve

multi-modal emotion recognition. After tokenizing both the speech signals and text, the
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data was passed through the two pre-trained models and further on concatenated and sent

through a fully connected and softmax layers for classification. Four emotion categories

were defined: happy, sad, angry, and neutral. The experiments were conducted in differ-

ent datasets, first four ablation studies were made for the IEMOCAP dataset Busso et al.

2008 obtaining an average of 84.68 F1-score for the four emotion labels by only using

the RoBERTa model. Then, one of the largest multi-modal emotion recognition datasets

available at the time (CMU-MOSEI, Zadeh et al. 2018) was used to train the models

which obtained 88.08 F1-score. This work clearly shows that applying pre-trained mod-

els in the emotion recognition field is an advantageous process and can achieve very good

results.

GPT-3

GPT-3, or "Generative Pre-trained Transformer 3" (Radford et al. 2018) was created by

OpenAI and it consists on a large model that was pre-trained using one of the largest text

corpuses ever (around 499 billion tokens or 2 trillion characters). The information fed

into this model was mainly gathered from the textual data available on the world wide

web.

GPT-3 has a straight forward interface, when fed a textual sequence it outputs the

predictions. This model provides the means to achieve significantly good results on mul-

tiple tasks but one must learn how to specify the right inputs in order to extract the right

knowledge for the problem at hand.

This tool has been used for text-classification in previous research, a study made with

large pre-trained models for text classification was done and a benchmark was set - the

RAFT benchmark (Real-world Annotated Few-shot Tasks, Alex et al. 2021). The analysis

was done in multiple datasets for different purposes, the information included newspaper

articles, law corpus, bibliographic databases and tweets among others. The results were

impressive, GPT-3 scored first in the list of models of its kind with an average f1-score

of 62.7, achieving better scores than its predecessors and only losing to human crowd-

sourced predictions. At the time, the usage of this model for emotion recognition and

sentiment analysis tasks is scarce but the capabilities of this large pre-trained algorithm

can have a beneficial impact in the field.
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2.3.8 Data Augmentation in NLP

DL models are only as good as the data they are fed, information augmentation

techniques have been a huge step in increasing the amount of relevant data in smaller

datasets. Data augmentation is defined as a collection of methods that artificially increase

the amount of data by creating new data points from existing samples. The quantity of

data available for the model has an heavy performance impact.

The goal here is to create additional synthetic data from the original samples. In NLP

data augmentation should be done carefully due to the grammatical structure of the text.

This thesis experiments only generate augmented data from the samples that are used to

train the models as explained in Chapter 4.

There are multiple data augmentation methods available in NLP, in this thesis the

focus revolves around synonym replacement (replacing a given number of words from a

sentence with one of its synonyms chosen at random). The later is performed via word

embeddings (numerical vector representations of words) as this is the most commonly

used and effective path to find a synonym for a chosen word.

Non-contextual Word Embeddings

Word embeddings can be divided in contextual and non-contextual. Traditional word

embeddings aim to learn a continuous representation for each single word in a document.

These embedding models build a global vocabulary using unique words in the documents

by ignoring the meaning of words in different context. Similar representations are learnt

from the expressions that are most frequently close to each other in the documents. The

typical models used for non-contextual embedding are Glove, word2vec and fastText.

Contextual Word Embeddings

Google BERT and related versions are the dominant choice for contextual embeddings.

These consider the sequence of all of the words in the document to learn sequence level

semantics. Contextual methods have the advantage of learning multiple meanings for the

same word when in different situations (e.g. in "I left you at the left side of the bank" the

word "left" has two distinct interpretations).
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2.4 Static LMER

This section reviews and describes the current progress in LMER and provides infor-

mation in previous work while also giving some insights on related approaches applied

in different contexts that may prove useful for future work. During our investigation we

have found other studies that could’ve been relevant for our project but due to the lack of

information provided by the authors were discarded. We have also abdicated researches

that didn’t provide consistent results or were based on similar architectures of the ones

we are about to showcase but didn’t properly explore the possibilities and limitations of

these models, thus providing misleading, redundant or unimportant information for our

work.

Table 2.2 contains previous work related to LMER that is further on explained in

detail.
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Author Approach Database Model Input Models Emotion Taxonomy Results

Yang and Lee Traditional ML
1032 lyrics
from AllMusic

182 features from the Harvard
General Inquirer IV.4 model

Decision Trees /
Rule-based
methods ensembles

Psychological
model of 23
emotions

67.0% Accuracy

Malheiro et al. Traditional ML MER 180 lyrics

Novel Features based on
content, structure,
style and semantics
(e.g. unigrams, POS tags,
GI and LIWC)

SVM Russell AV 77.1% F1-score

Malheiro et al. Traditional ML

MER 180 lyrics
for training/
AllMusic 771
lyrics for
validation

Features based on
content, structure,
style and semantics
(e.g. unigrams, POS tags,
GI and LIWC)

SVM Russell AV 73.6% F1-score

An et al. Traditional ML
3552 Chinese/English
lyrics extracted
from Baidu web

Segmented lyrics
Naive Bayes
Classifier

Thayer Emotion
model (4 classes) 68.0% Accuracy

Xu et al. Traditional ML
3839 popular chinese
songs annotated by
87 uni. students.

98 Features extracted
using SC-LIWC RFR-based model Russell AV

0.147 RMSE Arousal
0214 RMSE Valence

Abdillah et al. Traditional ML MoodyLyrics
Word embeddings extracted
with the GloVe model

Naive Bayes
Classifier Russell AV 87% F1-Score

Parisi et al. DL
Synchronized Lyrics
Emotion Dataset

Word embeddings
extracted with ELMo LSTM

Hevner Emotion
model (5 classes)

74.86% Accuracy
50.26% F1-score

Parisi et al. DL
Synchronized Lyrics
Emotion Dataset

Word embeddings
extracted with fastText Bi-LSTM

Hevner Emotion
model (5 classes)

80.61% Accuracy
66.41% F1-score

Abdillah et al. DL MoodyLyrics
Word embeddings
extracted with GloVe Bi-LSTM Russells AV 91% F1-score

Agrawal et al. DL MER 180 lyrics Preprocessed Lyrics
Bidirectional
transformer
(XLNet)

Russells AV
88.60 % F1-score Quadrants
93.98% F1-score Valence
88.89% F1-score Arousal

Agrawal et al. DL MoodyLyrics Preprocessed Lyrics
Bidirectional
transformer
(XLNet)

Russells AV 94.77% Quadrant

Table 2.2: LMER approaches
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2.4.1 Classical Machine Learning Approaches

Traditional machine learning approaches (Fig. 2.15) are always deeply connected

with a need to discover and create informational relevant features. In the MER field, it is

no different, with a lot of research made on the audio features, researchers started to go

deeper on LMER, creating novel features that could help in the development of models

with performances close to the ones trained with audio signals. These studies created

state of the art results for future research and even helped improve bi-modal analysis.

Figure 2.15: Traditional ML approach to MER diagram.

Yang and Lee (D. Yang and W. Lee 2010) used decision trees and rule-based meth-

ods ensembles to create a human-comprehensive model and identify emotion in lyrics.

They gathered 1032 songs from the allmusic.com repository and extracted 182 features

form the General Inquirer Harvard IV.4 model (Stone et al. 1966) to use as input for their

algorithms as these features would help to reduce the dimensionality in contrast to the

bag-of-words approach. For classification purposes the authors chose the psychological

model of 23 emotions (Tellegen, Watson, and Clark 1999). The data was split into train

and test and ran through a 10-fold cross-validation process with the chosen model. The

results were impressive considering the 23-class classification problem at hand, the au-

thors managed to achieve an accuracy of 67 percent with a fairly human comprehensive

model.

Malheiro et al. (Malheiro et al. 2018) constructed a dataset by collecting 180 song

lyrics annotated by 39 individuals coming from different background and education levels

following the Russell’s circumplex emotion model. Novel features concerning the con-

tent, structure, style and semantics of the lyrics were extracted and further ran through a

selection process. The best features were used for classification, performed using Sup-
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port Vector Machines (SVM) with grid search for parameter optimisation. Several ex-

periments were made resulting on a mixed classifier (with the best models by feature

type) that reached 77.1% F1-score for quadrant classification. This approach was then

validated on a 771 lyrics dataset extracted from the AllMusic platform and still obtained

73.6% F1-score which showed how well the model could adapt to new samples.

An et al. (An, Sun, and Wang 2017) conducted a research using Naïve Bayes Classi-

fier with four classes from the Thayer emotion model and got 68% accuracy. The study

used a collection of 3552 song labels extracted using crawling in the web of Baidu music,

the lyrics were from both English and Chinese music pieces. Abdillah et al. (Abdillah,

Asror, and Wibowo 2020) used the same Naïve Bayes Classifier but with word embed-

dings extracted from the MoodyLyrics dataset using the GloVe method. The results of the

model with word embeddings were surprisingly better, achieving an F1-score of 82% for

Russell quadrant classification, making clear that feature extraction has an heavy impact

on traditional approaches performance.

Xu et al. (Xu et al. 2021) attempted to predict values for valence and arousal combin-

ing both audio and lyrics from a dataset containing 3839 popular chinese songs manually

annotated by 87 university students. In total, for each song 98 features were extracted

using SC-LIWC (Gao et al. 2013). For the algorithms the authors decided to use multiple

linear regression (MLR) and random forest regression (RFR) since the labels are contin-

uous, making this a problem fit for regression (predicting values based on previous sam-

ples). Grid search was performed to achieve optimal parametization and cross-validation

was used for model evaluation.

Figure 2.16: Xu et al. proposed architecture (adapted from Xu et al. 2021).

As we can see in Fig. 2.16 the research analyses training both combined data (audio
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and lyrics) and solo information (audio or lyrics only). Results showed that when it

comes to arousal, lyrics are not nearly as relevant as audio but for the perceived valence

of music, textual information becomes as relevant as audio features. This is a common

result as even humans most often perceive music intensity better through sound but this

weakness in lyric information can also be caused by poor feature extraction and selection,

in my opinion the authors didn’t explore much on this topic.

From this short review, we can see that traditional machine learning approaches rely

heavily on feature extraction and selection processes. This can be a very time-consuming

and expensive task and it is often challenging to find features that convey the relevant

information the model needs in order to perform well on a specific assignment. We have

found out a pattern in most of the classical approaches from the literature that disregard

this crucial stage, these tend to fail in achieving decent results.

2.4.2 Deep Learning Approaches

Parisi et al. (Parisi et al. 2019) decided to use convolutional, long-short term neu-

ral networks for lyrics and audio emotion classification. Different text embeddings were

tested and models like fastText, ELMo (Peters et al. 2018) and BERT were used for con-

textual feature extraction. A new emotion dataset containing synchronised lyrics and

audio was created and the authors decided to follow the Hevner emotion representation,

labelling their data with 5 different adjectives (Sad, Joy, Fear, Anger, Disgust). One of

the main aspects of this work is that the text and audio data were synchronised, thus es-

tablishing a connection between the lyrics and its corresponding audio interval. Focusing

on the lyrics component (Fig. 2.17), the authors used ELMo and BERT to extract the

word embeddings and fed them into an LSTM layer followed by two dense layers for the

first one or simply two dense layers for both (having the output layers softmax activation

for prediction).
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Figure 2.17: Parisi et al. proposed architecture (adapted from Parisi et al. 2019).

The results for these models were not that impressive, ELMo embbedings combined

with LSTM layers was the best overall scoring 74.86 percent accuracy but only 50.26

f1-score. The open-source text representation library fastText was also used to get a fixed

portrayal of text and this is where the work got interesting, by combining the later rep-

resentations with bidirectional LSTM and attention-based classification layers (Vaswani,

Shazeer, Parmar, Uszkoreit, Jones, A.N. Gomez, et al. 2017) an accuracy of 80.81 percent

and an f1-score of 66.41 were achieved.

Abdillah et al. (Abdillah, Asror, and Wibowo 2020) also proposed a Bidirectional

Long-short Term Memory (Bi-LSTM) deep learning approach with word embeddings

extracted from the MoodyLyrics dataset using the GloVe method to classify music emo-

tions. The study follows Russells emotion model and the Bi-LSTM model with dropout

layer and activity regularisation produced an F1-score of 91%. The authors also per-

formed tests with regular LSTMs and CNNs but the results for both of these models felt

1% short of the ones achieved with the Bi-LSTMs. In this research a lot of experiments

were conducted to evaluate the best parameters for the Bi-LSTM, the authors have discov-

ered that the dropout, the activity regularisation and the learning rate decay parameters

can reduce the difference between training loss and validation loss by 0.15. This is a

relevant aspect as a large difference between the training and validation losses is related

to overfitting making the choice of the parameters crucial to avoid it.
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Figure 2.18: Agrawal et al. proposed architecture (adapted from Y. Agrawal, R. Agrawal,
and Alluri 2021).

Agrawal et al. (Y. Agrawal, R. Agrawal, and Alluri 2021) developed a transformer-

based approach for LMER that achieved the impressive F1-scores of 94.77% for quadrant

classification on the MoodyLyrics dataset and 88.60%, 93.98%, 88.89% for quadrant,

valence and arousal respectively on the 180 lyric dataset created in our lab (Malheiro

2017). Classification was performed using the four quadrants of Russells emotion model.

The architecture was based on a large bidirectional transformer named XLNet (Z. Yang

et al. 2019) that the authors describe as an improvement upon BERT in the retrieval of

contextual information. The transformer outputs raw hidden states, which are processed

and passed on to an hidden fully-connected layer which encodes the information and

branches out into three complementary tasks for classification of quadrant, valence, and

arousal separately. Such impressive results showcase the possibilities of DL approaches

and set a new level for future research.

2.5 LEVD

When talking about lyrics-based emotion variation detection we’re referring to text

emotion recognition applied to the musical context. The main approaches related to this

topic refer this as sentence/verse classification problem. Research is still scarce and in

our investigation we have found a lot of consistent work applied to similar fields and it is

unavoidable to mention these techniques as they are going to be laying the foundations for

our future work. Table 2.3 showcases the most popular approaches selected as candidates

to be applied in this type of task.
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Malheiro Traditional ML
44 song lyrics /
951 song lyrics

Keyword
Processed
Sentences

Keyword-Based
/SVM Russells AV 67.35% F1-Score

Ge et al. DL
SemEval-2019
Task 3 Word Embeddings Bi-LSTM/CNN

3 Emotion Classes
(Happy, Sad, Angry) 75.42% F1-Score

Ma et al. DL
SemEval-2019
Task 3 Word Embeddings Bi-LSTM/LSTM

3 Emotion Classes
(Happy, Sad, Angry) 75.57% F1-Score

Ragheb et al. DL
SemEval-2019
Task 3 Word Embeddings Bi-LSTM

3 Emotion Classes
(Happy, Sad, Angry) 75.82% F1-Score

Xiao DL
SemEval-2019
Task 3

Ekphrasis tool
raw pre-processed
text

Pre-trained models
(e.g. BERT, GPT-3,
ULMit)

3 Emotion Classes
(Happy, Sad, Angry) 76.86% F1-Score

Table 2.3: LEVD approaches
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2.5.1 Classical Machine Learning Approaches

Malheiro (Malheiro 2017) had an important contribution for the groundwork in this

field as he proposed a sentence-based approach for LEVD. In his work he states that sen-

tences are the basic information units of any document, thus the document level emotion

detection method depends on the emotion transmitted by the individual sentences of that

specific document. Lyrics are created by grouping individual units of information such as

verses (poetry) or sentences (prose) and by analysing each one of these units individually

we can have a better grasp of the emotion conveyed by the whole song. For his work

Malheiro collected 44 song lyrics and created a web application in order to facilitate the

annotation process which was performed by labelling 330 sentences into 5 categories

- 4 of them being each one of the quadrants from Russells model and 1 for a neutral

emotion. Repeated sections and sentences with neutral emotion were discarded and the

dataset ended up with 239 sentences - 86 for quadrant one, 67 for quadrant two, 47 for

quadrant three and 39 for quadrant four.

Figure 2.19: Malheiro SERM proposed architecture (adapted from Malheiro 2017).

After the definition of the training and validation datasets Malheiro proposed a Key-
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word Based Approach (KBA - the Sentence Emotion Recognition Model (SERM) ar-

chitecture that is shown in Fig. 2.19. Each sentence starts by running through a whole

transformation process where words are treated one by one after which weights are as-

signed and values of valence and arousal are extracted using an Emotion Dictionary (ED)

and the Dictionary of Affect in Language (DAL) (Whissell 1989). This is a complex pro-

cess but it is well documented in the thesis Malheiro 2017. With this SERM approach,

Malheiro was able to achieve a training F1-score of 70.82% and further on validated his

model obtaining 67.35% which came relatively close to the training performance. The

KBA was later compared with a classical ML model trained with a 951 lyrics dataset that

resulted by combining the 180 lyrics and the 771 lyrics from AllMusic datasets. The best

result that was achieved, testing on the 239-sentences dataset, was an F1-score of 52.7%

which was far away from the 67.35% obtained by the KBA.

There are many approaches for text emotion recognition based on keywords and tra-

ditional learning methods applied to other tasks but as our work is specifically based on

DL classification of music lyrics and the work we have reviewed in this section has simi-

lar goals and is heavily connected with our project we will consider this the baseline for

our future endeavours in LEVD and start exploring available DL approaches.

2.5.2 Deep Learning Approaches

Ge et al. (Ge et al. 2019) proposed a deep learning model for emotion recognition

in textual conversation which is showcased in Fig. 2.20. The approach was trained and

tested using the SemEval-2019 Task 3 dataset which is made out of 38424 textual dia-

logues (Chatterjee et al. 2019). Three pre-trained word embedding models were used,

which are word2vec-twitter (Godin et al. 2015), GloVe (Pennington, Socher, and Man-

ning 2014), and ekphrasis (Baziotis, Pelekis, and Doulkeridis 2017), were used. The

embedding layer is fed into a Bi-LSTM followed by an attention layer and a CNN. The

outputs of the Bi-LSTM and the CNN are concatenated and global max-pooling is ap-

plied. From this point, a softmax activation computes the predictions. By combining the

outputs of Bi-LSTM and CNN layers, the model was able to learn local features as well as

long-term features, the model resulted in an average F1-score of 75.42% for classification

in an emotion model composed of three classes (Happy, Sad and Angry).
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Figure 2.20: Ge et al. proposed architecture (adapted from Ge et al. 2019).

Ma et al. (Ma et al. 2019) developed a DL model with the same purpose as Ge et

al. with the same dataset (SemEval-2019 Task 3). Emojis were replaced with words that

would describe them the best in order to include this type of information in the word

embeddings as these wouldn’t accept this kind of special characters. The embeddings

are fed into a Bi-LSTM layer, while an attention mechanism modifies the weights of the

emotional relevant words. The inner product is taken from the output of the Bi-LSTM

and the attention weights and fed into another Bi-LSTM and a pooling process is made

in the outputs of this layer. The pooling scores are sent into a regular LSTM layer and

classified using a softmax activation function. On average this approach produced an

F1-score of 75.57% for classification in three emotions (Happy, Sad and Angry).
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Figure 2.21: Ragheb et al. proposed architecture (adapted from Ragheb et al. 2019).

Ragheb et al. Ragheb et al. 2019 has implemented the structure presented in Fig. 2.21.

The work was also based in the SemEval-2019 Task 3 dataset. The conversation data

was concatenated and inputted into an embedding layer and fed into three consecutive

Bi-LSTM layers trained by average stochastic gradient descent. After this process, an

average pooling was applied after a self-attention mechanism and the difference between

the pooled scores is taken as an input for softmax layers to obtain the emotion labels. The

results exhibited low performance in the recognition of happiness which was the label

out of the three possibilities with most erroneous predictions. Overall the model scored

75.85% F1-score.

Figure 2.22: Xiao proposed architecture (adapted from Xiao 2019).

Xiao Xiao 2019 created an interesting study based on pre-trained models. This work

is key for our future research as we are planning to implement this kind of design to our

42



Chapter 2. State of the Art

approaches. The models acted in the same dataset as the approaches stated before (Ge

et al. 2019, Ma et al. 2019, Ragheb et al. 2019) which is highly important to establish

a good comparison between standard deep learning approaches and pre-trained models.

Fig. 2.22 demonstrates how the author designed the structure for his work. The ekphrasis

tool (Baziotis, Pelekis, and Doulkeridis 2017) was once again used for pre-processing the

text. Which makes this work even more important is that the researcher fine-tuned all the

models used and also tested the combination of them at once. The best results of 76.86%

F1-score were obtained by producing an ensemble and combining the strengths of the

ULMFiT (Howard and Ruder 2018), the BERT (Devlin et al. 2018) and the Open-AI’s

GPT (Radford et al. 2018) models. This work showed that large pre-trained models can

indeed be fine-tuned for text emotion recognition and are able to create state-of-the-art

results.

LEVD is still an unpopular research topic in recent times but from our investigation,

we believe that structures based on LSTM units that can exploit the dependencies between

the elements of a verse and large pre-trained models that provide infinite possibilities, can

create good DL foundations and provide new state-of-the-art results. The limitations on

this field come from the lack of quality datasets, therefore our future work also involves

a raise in the amount of samples in our current data, data augmentation techniques can be

a necessary component when dealing with this kind of task.
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Chapter 3

Static LMER

This section aims to give insights about the experiments made for LMER. Different

approaches to the problem are explored with multiple classification model architectures

and inputs.

3.1 Data

This section presents the datasets used and the way they were handled in order to be

used for the static LMER models.

3.1.1 Database - MIR Lyrics Emotion (2016)

As this work is a continuation of previous research made by Malheiro (Malheiro

2017), we had at our disposal the data employed on his project. Specific information

can be found in the thesis but to briefly summarise it: this dataset contains two parts, the

first being a 180 lyrics dataset manually annotated with arousal and valence values based

on Russell’s emotion taxonomy and the second a 771 lyrics dataset annotated in the 4

quadrants of the same model, based on AllMusic tags. As both parts were carefully anal-

ysed in previous research, no critical flaws were noticed and no changes were performed

when it comes to the amount of lyrics available. For this work we considered the 180

lyrics set as the most relevant, this is due to the fact that most experiments on previous

work were specifically made on this set and also the way that it was built. Experiments

for static LMER within the scope of this thesis were performed in the 180 lyrics set as

well as in a 951 lyrics set that originated in the aggregation of both parts of the full dataset

available (771 + 180 lyrics).

Quadrant Distribution

In the study we have performed classification ruled by the four quadrants of the Russell

taxonomy. The annotation process for the 180 lyrics dataset was specifically performed

by 39 people with diverging backgrounds and educational levels. Their job was to read the
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(a) 180 Lyrics Dataset (b) 951 Lyrics Dataset

Figure 3.1: MIR Lyrics Emotion (2016) Quadrant Distribution

lyrics, assign values for arousal/valence and identify the predominant emotion expressed

without any previous research about the song. Further validation was performed and

described on the thesis.

Figure 3.1 showcases the distribution of the songs from both datasets among the four

quadrants. The information was reasonably balanced except for the number of songs

from the fourth quadrant in the 951 lyrics dataset which deviated from the average.

3.1.2 Traditional Feature Sets

This thesis explored the feature sets suggested by Malheiro (Malheiro 2017), four

different feature groups divided by the type of features were used in his traditional ap-

proach to the problem: CBF for content-based features, StyBF for stylistic-based features,

StruBF for song-structure-based features and SemBF for semantic-based features.

CBF

This group contains features extracted with the bag-of-words (BOW) and part-of-speech

(POS) tags methods. 10 feature sets are of this group: 6 for BOW (from unigrams to

trigrams) after tokenization with and without stemming (st) and stopwords removal (sw);

4 are BOW (bigrams up to fivegrams) after the application of a POS tagger without st and

sw.

StyBF

These features are related to stylistic aspects of the language. Grammatical classes oc-

currences are collected as well as the number of slang words, the total of words started

with capital letters (First Capital Letter - FCL) and the amount of terms with all the letters

in uppercase (All Capital Letters - ACL). For this category there are 2 feature sets: the
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number of occurrences of POS tags in the lyrics and the number of slang and capitalised

words (ACL/FCL).

StruBF

Newly created features related to the structure of the lyrics, a few examples are the the

number of times the chorus is repeated in the lyric, the amount of occurrences of the title

in the lyric, the number of verses or the total of sections (verses and chorus) in the lyrics.

Only one feature set was deducted out of this section covering all the structural features.

SemBF

These features describe the semantic aspects of the lyrics. Ricardo Malheiro used fea-

tures based on previously developed frameworks as stated on the thesis. 4 feature sets

were developed: the first with the features from Synesketch (Synesketch n.d.) and Con-

ceptNet (ConceptNet n.d.); the second with the features from LIWC (LWIC n.d.); the

third with the features from GI (GI n.d.); and the last with the features from gazetteers,

DAL (Whissell 1989) and ANEW (Bradley and Lang 1999).

Feature Sets

Malheiro achieved his best results for quadrant classification with the feature sets present

in Table 3.1. Each feature set went through feature selection and ranking with the ReliefF

algorithm (Robnik-Šikonja and Kononenko 2003) before being passed to the models. An

additional set (FS51) that initially contained 1083 features was built by combining all of

the selected features from each one of the feature sets present in the table.
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FS (Feature Set) Feature Description Group #Features-#Selected Features

FS11 BOW (unigrams) CBF 3567-200

FS12 POS+BOW (trigrams) CBF 4687-700

FS21 #POS_tags StyBF 34-20

FS22 #Slang+ACL+FCL StyBF 3-3

FS31 Structural Lyric Features StruBF 12-11

FS41 LIWC SemBF 82-39

FS42 Gazetters SemBF 20-20

FS43 FI SemBF 182-90

FS51 All All 1083-609

Table 3.1: Feature set organization

FS (Feature Set) Feature Description Group #Features-#Selected Features

FS11 BOW (unigrams) CBF 3567-385

FS22 #Slang+ACL+FCL StyBF 3-3

FS42 Gazetters SemBF 20-20

FS43 FI SemBF 189-90

FS51 All All 597-498

The full range of feature sets previously created by Malheiro was not explored as this

was not the main goal of this thesis. In this work we aimed to develop approaches that

can automatically recognise relevant information from the provided data, thus reducing

the work done in the feature extraction stage. These feature sets were relevant to observe

how DL models perform when ran on traditional features.

3.1.3 Word Embeddings

Word embeddings became a popular way of representing text and are considered one

of the main breakthroughs for the performance of DL models on diverse NLP tasks.

Some of the models used in this project relied on word embeddings, thus it is necessary

to explore this concept. This word portrayal technique allows words with similar meaning

to have a similar representation and are considered a major breakthrough in increasing the

performance of DL models built for NLP tasks.
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Fig. 3.2 illustrates one simple way to explain word embedding methods: given word

sequences (in our case pre-cleaned/processed lyric corpus) these algorithm output em-

bedding vectors for each unique word. The words with similar vectors (that are closest in

space) are most likely to have the same meaning or are used to convey the same sentiment.

Figure 3.2: Word vector representation, adapted from Borah 2021.

This simple description does not account for the training process of the models that

provide these vector representations. There are many ways to learn word embeddings

(Mikolov, Chen, et al. 2013), mostly based on the occurrence of words in the same con-

text. For example, the algorithms can learn similar embeddings for words that appear

many times in identical situations by guessing missing words in a huge corpus of text

sentences.

There are different algorithms to perform word embedding. In this work we have

mainly used the following: Word2Vec (Mikolov, Yih, and Zweig 2013), GloVe (Global

Vectors for Word Representation) (Pennington, Socher, and Manning 2014) and fastText

(Joulin et al. 2016).
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Figure 3.3: Sentence preprocessing.

From the experience obtained in the experiments, it was found that the models per-

formed better when the information was processed before being passed to the embedding

steps. For this reason, before creating these word representations the lyrics were modified

as shown in Fig. 3.3. Before anything else, each individual corpus was tokenized and the

word was considered the standard unit.

The system consisted in removing the "dirt" off each lyric. We started with deleting

the punctuation and any number or unusual symbols that appeared. Then the lyrics had

to be tokenized to words and in order to reduce redundant information, a set of expres-

sions that occur commonly in the corpus (stop words) are cut out. Finally the data goes

through a lemmatization process that aims to stem the words to their root form while

trying to conserve their meaning, this is done by using a dictionary that stores the context

of each word (e.g. the word "geese" turns to "gees" after stemming and "goose" after

lemmatization).

3.2 Methods and Results

This section intends to explain the different static LMER approaches and showcase

their results.

3.2.1 Evaluation Methods

To evaluate the performance of our models we chose to use the k-fold cross-validation

technique with 10 folds (k=10) and 10 repetitions (one for each test fold), thus assessing

the efficiency of the algorithms with ten different information splits.
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F1 =
2∗Precision∗Recall

Precision+Recall
=

2∗T P
2∗T P+FP+FN

(3.1)

When it comes to evaluation metrics we decided to use the F1-score (see Equation 3.1)

as it is considered one of the most important metrics for evaluating the capabilities of a

given predictor by combining both the Precision and Recall metrics. The F1-Score has

been the main metric used by researchers in the last years (as shown previously in Chapter

2) and in order to facilitate the results comparison we chose this as our leading metric. In

the aggregation of F1 scores from different classes, weighted F1-score aggregation was

employed.

3.2.2 Classical ML

The first step for this problem was to replicate previously referenced results. To

achieve this goal we followed the steps shown in the work done by Malheiro (Malheiro

2017) and performed grid search to optimise the parameters of an SVM with a poly-

nomial kernel. The models performance was evaluated with a 10-fold cross validation

repeated 10 times. The inputs for this model were based on the feature sets created by

Malheiro, these were adapted and shown before (see Table 3.1). We also had available

different versions for each feature set, depending on the feature selection made in past

research. The best result found was 77.03% F1-Score with FS51 (the combination of 609

features). This procedure was necessary in order to further on compare this result with

the DL approaches performances.

3.2.3 Deep Learning

When reviewing different practical approaches to similar problems it became clear

that complexity not often means performance in accordance with Occam’s razor. With

this in mind and considering the computational resources available, the experimental pro-

cess started with the most basic DL architectures and further on climbed the complexity

ladder.

Features

Our first model is one of the simplest yet still effective deep learning algorithms available.

It consists in a dense neural network fed with the lyrical features extracted before: CBF,

51



Chapter 3. Static LMER

StyBF, StruBF and SemBF.

Figure 3.4: DNN models structure diagram.

Fig. 3.4 represents the structure for our best performing models with the combined

and individual feature sets. The image itself does not account for the multiple designs

tested throughout the experimental process. For the individual feature sets, by varying the

amount of hidden layers and respective units we could better adapt the model for each

unique set. Classification was performed by taking advantage of a softmax activation

layer in the end of the network.

To analyse the possibility of overfitting and have a better understanding of which

would be the optimal model we also chose to vary some parameter values, namely the

number of training epochs, learning rates and batch sizes. Finding the best parameters for

any DL architecture often becomes a challenging task. Combining the number of training

epochs with the structure of the model and the learning rate associated with the optimizer

was challenging and on top of this we also had to find the most adequate batch size (i.e.

the number of samples that the model has seen before updating the network weights).

The main goal was to achieve the best possible performance in the training set while

preventing the model from overfitting on test data. This was specially demanding when

experimenting in the smaller dataset of 180 lyrics. Lower amounts of training data implies

that the model has less patterns available to learn from, making it difficult to classify new

samples. Different approaches were tested and it was observed that often feature sets that
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had less information available would require less complexity and reducing the amount of

dense layers would help increase performance.

At first the only features extracted belonged to the 180 lyrics emotion dataset, but as

in general DL models tend to need higher volumes of information, we have also tried

extracting the same type of features from the 951 lyric dataset. In this version only some

of the traditional feature sets could be extracted as some of the original extraction methods

were not at our disposal, thus the experiments were made in a mixed dataset of only 498

features. Although less features were available in this set, there was still a considerable

amount of additional information to be treated as there were more lyrics at our disposal

and models would tend to overfitt more often. In an attempt to treat this issue, a 0.3

dropout layer was added as shown in Fig. 3.4. The purpose of this layer was to randomly

ignore 30% of the information from the neurons (by changing them to 0), making them

insignificant for the next layer.

Table 3.2 summarises the hyperparameter selection for the experiments. For the 180

lyrics dataset, the training epochs ranged from 10 to 250 in increments of 10 epochs.

The batch size was related with the total amount of samples in the training set, in this

case, it started in 1 and ended in 130 in intervals of 10 samples. The learning rate with

Adam went from 1×10−6 up to 1×10−1 by shifting through the decimal places (every

one fourth of the current decimal place is also tested e.g. 1× 10−3 shifts to 1× 10−2

after testing the model with the learning rates equal to 0.25× 10−3, 0.50× 10−3 and

0.75× 10−3). On the 951 lyrics dataset, the number of training epochs was the same as

well as the learning rate, only the batch size changed, ranging from 1 to 500 with a step

size of 25 samples.

Parameter 180 lyrics (min/step/max) 951 lyrics (min/step/max)
Learning rate (Adam) 0.1/0.25×10−n/1×10−6 0.1/0.5×10−n/1×10−6

Epochs 10/10/250 10/10/250
Batch size 1/10/130 1/25/500

Table 3.2: Hyperparameters intervals for each dataset

When it comes to individual feature sets, the best results obtained were 77.8% F1-

Score with the Gazetteers features (FS42) in the 180 lyrics dataset and 76.1% F1-Score

with unigrams (FS11) in the 951 lyrics dataset. These were impressive results, consider-

ing the small number of features fed into the model in some of the feature sets.

Although with different amount of features available, the mixed feature sets (FS51)

were also taken in consideration for both datasets. The model fed with the 498 features
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extracted from the 951 lyrics dataset reached a top performance of 72.1% F1-Score. Bet-

ter results were achieved when testing with the 609 features extracted form the 180 lyrics

as this model achieved an F1-Score of 78.3% which is barely statistically significant re-

sult when compared with the 77.03% of the SVM model fed with the same dataset, with

a p-value of 0.0381 < 0.05. Table 3.3 showcases the confusion matrix and the F1-Score

(both in percentage) per quadrant for this model.

Q1 Q2 Q3 Q4 F1-Score
Q1 20.3 4.3 1.8 0.6 78.2
Q2 3.4 23.2 0.4 1.6 82.5
Q3 0.7 0.1 19.4 3.9 77.9
Q4 0.5 0 4.1 15.7 74.5

Table 3.3: Confusion matrix (percentage values) and F1-Score per quadrant for DNN
with 951 lyrics and 498 features dataset

From this experiments solely we started to identify cues of a larger pattern that would

be present in most of the tests made in this work: the third and fourth quadrants were the

ones the models would struggle to classify the most and the second quadrant rarely had a

lower accuracy than the others.

CNN

The second approach is based on a CNN fed with word embeddings. This model was

chosen given most of the SOA research on text classification and sentiment analysis men-

tioned this concept and demonstrated good results for multiple tasks.
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Figure 3.5: CNN structure diagram.

After much experimentation that the process of building an architecture for a deep

learning model requires, the CNN structure presented in Fig. 3.5 was the top performer.

The word vectors were achieved with three different models: Word2vec, GloVe and fast-

Text. These two dimensional embeddings, which had a height of the size of the embed-

ding dimension and a width equal to the length of the largest lyric in the dataset, pass

through three sets of convolutional layers where feature maps are extracted by taking ad-

vantage of n x dim sized filters (where n is an integer between 2 and 5 and dim is the

dimension of the embeddings). Each one of these layers was directly followed by a pool-

ing process that helps reduce the dimension of the feature maps and feed them to dropout
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layers. In the final portion of the structure, information is passed through a dense layer

with 100 neurons and classification was done by adding a softmax activation layer after

the later.

Changing embedding models provided interesting results. This modification allowed

us to see the impact of multiple word representations in the final performance of our

model. Overall, the CNNs would perform better when fed with fastText embeddings,

achieving more than a 2% increase in F1-Score most of the times. Word2vec and GloVe

embeddings were toe to toe with each other, one scoring better than the other and inter-

spersing in different scenarios.

The lookout for the best hyperparameters was done by grid search similar to our

previous model (see Table 3.2), the learning rates and batch sizes were the same, however

the maximum number of epochs tested was exaggerated and could have been reduced as

the model started to overfitt after 50 epochs or less most of the times (with some particular

exceptions as can be observed further on). Embedding dimensions ranged from 200 to

400 with increments of 50 and k (the number of filters in each convolution) was either

16, 32, 64 or 128. The kernel size for the convolutional layers and dropout percentage

final values decision process required a considerable amount of time as when these were

combined with the change of inputs and hyperparameterization, the performance would

be deeply influenced.

Q1 Q2 Q3 Q4 F1-Score
Q1 19.6 4.6 1.9 0.8 73.4
Q2 4.2 20.3 0.3 1.9 76.6
Q3 0.8 0.9 17.3 4.9 71.6
Q4 1.9 0.5 4.9 15.2 67.1

Table 3.4: Confusion matrix (percentage values) and F1-Score per quadrant for fast-
Text+CNN and 951 lyrics dataset

An F1-Score of 68.6% was the best performance achieved with the 180 lyrics dataset,

using Word2vec embeddings. When fed with the 180 instances processed with the GloVe

and fastText algorithms, the same model achieved F1-Scores of 61.3% and 59.1%, re-

spectively. For the 951 song lyrics the initial idea was to increase the number of filters per

layer as in general the more information available in an input the higher the number of

filters required in a CNN, but in this case we ended up with 72.2% F1-Score as our best

result (see Table 3.4) with only 32 filters, the main change being the inputs that were pro-

duced with the fastText model. This is a statistically significant result when compared to
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the one produced by the same model with the 180 lyrics, having a p-value of 2.44×10−7.

In this case, using Word2vec as the embedding model resulted in 69.6% F1-Score and

when fed with GloVe embeddings the CNN reached only 67.6%.

Augmented Data

Considering the 180 lyrics as our relevant source of information, it was clear that the

scarcity of samples would be an issue. Data augmentation in NLP posed as a necessary

resource to experiment on our work. In this field, augmentation is most commonly done

by taking advantage of synonym replacement and word embeddings. Six approaches

were tested using three non-contextual embedding models (word2vec, GloVe and fast-

Text), a contextual embedding model (BERT), a lexical database where each word is

grouped into a set of cognitive synonyms (WordNet) and a sequential algorithm in which

lyrics would be augmented by the different algorithms in order.

Before passed to the models, lyrics were preprocessed in order to remove irrelevant

characters/words and solely increase the amount of relevant information. The amount of

lyrics available was scarce but cross-validation was intended so 6 different splits were

made, each one with 120 and 60 lyrics for training and testing, respectively. Augmen-

tation was performed solely on the training sets by increasing the number of training

samples by three times the original size (360 lyrics) and the test sets were left untouched

(60 lyrics). Each training set would be augmented with one of the six approaches refer-

enced previously as shown in Fig. 3.6.

Figure 3.6: Training/Test splits with augmented data
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The lenght of each lyric posed a problem, some of the models were computationally

expensive and our system would run out of resources and stop the execution of the process

many times specially if the amount of new samples requested was too large. By visually

observing the new corpus we could identify mistakes in the freshly created lyrics. Often

the words replaced by these models wouldn’t fit the original sentiment of the lyric and

also the amount of redundant information would increase severely in many of the songs.

In more rare scenarios some of the words that replaced the original ones came with un-

usual characters like dots, commas, hashtags, etc., in the middle of them or were straight

antonyms of the original words, thus conveying a different emotion in the lyric.

Q1 Q2 Q3 Q4 F1-Score
Q1 12.2 9.1 3.2 1.4 50.9
Q2 5.3 14.8 0.5 3.8 56.9
Q3 2.4 1.4 13.9 7.3 49.1
Q4 2.1 2.3 8.2 12.1 52.9

Table 3.5: Confusion matrix (percentage values) and F1-Score per quadrant for fast-
Text+CNN and 540 lyrics BERT augmented dataset

The augmented data splits were processed by the three usual embedding models and

fed into the CNN model previously shown in Fig. 3.5. When processing the augmented

samples with the Glove algorithm the CNN achieved 49.3% F1-Score and 49.7% when

using Word2vec. The model averaged the best F1-score of 52.5% when processed with

fastText embeddings (see Table 3.5) and the top performing split was achieved when

using BERT to create new samples with an F1-Score of 58.6%. GloVe and fastText

originated folds both reached 52.4% F1-Score, followed by the WordNet and Word2vec

splits with 51.9% and 50.9% F1-Score, respectively. The split built with instances created

using the sequential algorithm had the lowest score of 49.4% F1-Score.

Pre-trained Models

Pre-trained models have taken over current research as these algorithms revealed great ca-

pability of handling different text classification tasks with great performance. The main

issues with most of these architectures are their complexity, computational costs and the

fact that many of them do not make it out to the public for testing. Most of the models that

are made available often require monetary funds to operate or have limited usage. How-

ever, Google has developed an algorithm that has been in the core of their search engine

and is available worldwide. Since Google BERT was made accessible, many versions
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of this algorithm flooded the world wide web in which many were designed for specific

tasks. In our experiments for the static classification problem, only the base version and

the Robustly Optimized BERT Pre-training Approach (RoBERTa) were tested.

Figure 3.7: BERT model structure diagram.

Both these models have demands regarding the format of the its inputs. The song

lyrics had to be tokenized and a CSL token had to be in the beginning of each sample (see

Fig. 3.7). After loading the pre-trained weights and passing the information throughout

the algorithm, the outputs of the model were processed by a dropout and dense layers

before reaching the softmax classification and final layer.

These large algorithms were constantly overfitting and it was useless to train them

with a large amount of epochs. Despite the fact that this situation reduced the room for

broad testing, it was also an advantageous factor as BERT and its versions, as stated

previously, require large amounts of computational power even with smaller datasets.

Experiments were performed with no more than 10 training epochs since after the fourth

or fifth epoch performance would start to deteriorate.

RoBERTa is often assumed to be an improvement upon BERT because of its dynamic

masking, however, our experiments did not properly prove this statement was truthful for
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all cases. For the 180 lyrics dataset, RoBERTa achieved an F1-Score of 85.6% while

BERT only got up to 83.4%. It was a different scenario when testing with the larger 951

lyrics dataset where the base version finished off with 88.9% F1-Score (see Table 3.6),

which is statistically significant with a p-value of 1.03× 10−5 when compared with the

RoBERTa model trained with the 180 lyrics. The modified version stuck with 84.2% for

the 951 lyrics dataset.

Q1 Q2 Q3 Q4 F1-Score
Q1 22.6 2.8 0.2 0.2 87.1
Q2 2.7 23.4 0 1.1 87.0
Q3 0.4 0.3 22.1 2.2 91.9
Q4 0.4 0.1 0.8 20.7 89.6

Table 3.6: Confusion matrix (percentage values) and F1-Score per quadrant for BERT
and 951 lyrics dataset

The BERT model had an interesting behaviour, other models tested in this work would

find it difficult to classify samples from the third and fourth quadrants whereas BERT, as

can be seen in Table 3.6, would assign these labels correctly in many more experiments

than the other algorithms. The data this model has learned from and used to set its pre-

trained weights could be the major influence for this drastic improvement.

3.3 Analysis of the Results

The hyperparameters, results and computation time for each model are illustrated in

Table 3.8.

Concerning the DNN models, initial thoughts were to create and test a large diver-

sity of structures, ones more complex than others so that we could take advantage of the

multiple feature sets available. Having this amount of feature groups definitely forced us

to adapt each DNN to each group. Reducing the amount of layers and their respective

neurons would work best in simpler features sets with less features or number of samples.

Larger amount of information required more computation and specific techniques to pre-

vent overfitting (i.e. adding dropout layers in the combined feature set, FS51 with 609

and 498 features depending on the dataset, improved the model generalisation capabilities

in the test sets).

The CNN model was perhaps one of the most tested structures in this work, having

explored multiple hyperparameter combinations and architectures. We could argue that

the lack of sufficient quality data for this type of model had an impact on the results.
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Different embedding models were tested and their impact was noticeable. One type of

embeddings and its dimension would often perform better with specific CNN structures.

This made the whole experimental process longer. Just like the majority of the mod-

els tested in this thesis, CNNs struggled when classifying the unseen third and specially

the fourth quadrant instances which diminished the overall scores. By taking a deeper

look into our outputs and analysing the confusion matrices that resulted from our tests, a

pattern could be identified: often lyrics from the third quadrant would be classified as be-

longing to the fourth and vice versa. This revealed that the model would have difficulties

distinguishing the sentiment related to each one of these quadrants.

Augmentation was also performed and did not end up improving our CNN results as

the lyrics created by these models would deviate from the original sentiment of the song

or generate redundant/misleading data, as previously explained. More work should be

put in improving this process, splitting the lyrics in sentences, either manually or with an

automatic process, and augmenting them individually could improve the quality of the

augmented data since some of the models like contextual embeddings take in account

more than just the word or part of the lyrics that is being replaced.

Regarding pre-trained models, although these approaches required a large amount of

implementation and knowledge gathering time due to their complexity, they also proved

to be one of the best possible solutions for the problem at hand. Taking advantage of these

architectures led to a substantial increase in the third and fourth quadrant classification

accuracy (see Table 3.7) which, because of the way these models are trained, takes us

back to the necessity of improving the data we feed our models.

Q1 Q2 Q3 Q4 F1-Score
Q1 22.6 2.8 0.2 0.2 87.1
Q2 2.7 23.4 0 1.1 87.0
Q3 0.4 0.3 22.1 2.2 91.9
Q4 0.4 0.1 0.8 20.7 89.6

Table 3.7: Confusion matrix (percentage values) and F1-Score per quadrant for BERT
model

Complex architectures like these have high demands in computational resources and

the training time is usually two or even three times higher than with other approaches but

no conclusive observations can be taken out of the time stamps recorded in our work as

the models were trained in two setups with different specifications due to the lack of GPU

availability in the main server.
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Model Input Kernel
Size, #Filters

Emb.
Dimension

Learning
Rate

Batch
Size #Epochs F1-Score

(%)
Time
(min)

CNN
Word2vec Emb.
(951x640x400) 5x400, 32 400 0.0005 100 40 69.6 342.75

CNN
GloVe Emb.

(951x640x300) 5x300, 64 300 0.00075 25 40 67.6 322.32

CNN
fastText Emb.

(951x640x300) 5x300, 32 300 0.00125 75 30 72.2 285.47

CNN
Word2vec Emb.
(180x498x250) 3x250, 32 250 0.00125 50 50 68.6 221.56

CNN
GloVe Emb.

(180x498x250) 3x250, 32 250 0.005 30 30 61.3 202.49

CNN
fastText Emb.

(180x498x200) 3x200, 16 200 0.001 10 40 59.1 218.27

Top ind. features
for 180 lyrics DNN

Feature Set 42
(180 x 20) N/A N/A 0.01 10 20 77.8 40.30

Top ind. features
for 951 lyrics DNN

Feature Set 11
(951 x 200) N/A N/A 0.005 25 50 76.1 120.30

Combined 180
lyrics features DNN

Feature Set 51
(180 x 609) N/A N/A 0.00075 50 200 78.3 310.65

Combined 951
lyrics features DNN

Feature Set 51
(951 x 498) N/A N/A 0.001 150 100 72.1 259.95

Augmented Split
CNN

Word2vec Emb.
(420 x 501 x 200) 5 x 200, 64 200 0.0015 50 25 49.7 182.13

Augmented Split
CNN

GloVe Emb.
(420 x 501 x 300) 5 x 300, 64 300 0.00075 40 30 49.3 203.79

Augmented Split
CNN

fastText Emb.
(420 x 501 x 250) 5 x 250, 64 250 0.001 50 25 52.5 192.48

BERT 180 lyrics N/A 200 0.0001 20 2 83.4 638.2
BERT 951 lyrics N/A 400 0.00005 15 3 88.9 801.36

RoBERTa 180 lyrics N/A 200 0.000125 25 3 85.6 740.36
RoBERTa 951 lyrics N/A 400 0.00001 20 3 84.2 878.42

Table 3.8: Best results for DL static LMER approaches

62



Chapter 4

LEVD

The purpose of this section is to showcase the data used for the LEVD problem and

detail the experimental process.

4.1 Data

This section presents the datasets used and the way they were handled in order to be

used for the LEVD models.

4.1.1 Database - MIR Lyrics Emotion Sentences (2016)

When it comes to the LEVD problem, we also had a previously built dataset (which

has also been carefully explored by Malheiro in Malheiro 2017). In his thesis, Malheiro

considered a sentence (verse) as the basic unit for the lyric, thus this dataset consisted in

a total of 368 sentences manually annotated into the 4 quadrants of Russell’s model. The

sentences came from 44 lyrics that belonged to several musical genres and were annotated

through a web application that allowed users to read the specific verse and chose one

of five options: four for each one of the quadrants of Russell’s emotion model and an

extra one that would be used if the annotator felt like the sentence would not convey

any emotion (Neutral). For each verse, the final label was the option with the most votes

(when in a draw, the verse was ignored) and the sentences classified as "Neutral" were left

behind. After the annotation process we were left with the quadrant distribution shown

in Fig. 4.1.

There was a significant difference between the number of samples for each label,

specifically when comparing the first with the third and fourth quadrants. This could

have been one of the factors that negatively impacted the results of the models tested with

the initial data. Originally the dataset was split into 129 and 239 sentences for model

training and testing, respectively, but our methods revolve around a different approach to

data splitting as detailed further on.
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(a) 129 Sentences Dataset (b) 239 Sentences Dataset

Figure 4.1: MIR Lyrics Emotion Sentences (2016) Quadrant Distribution

4.2 Methods and Results

This section intends to explain the different LEVD approaches and showcase their

results.

4.2.1 Classical ML

The goal for this portion of work was to develop DL approaches for LEVD that would

reach or surpass previously obtained results as well. Malheiro built a keyword-based

approach (KBA) which achieved an F1-Score of 67.4% Malheiro 2017 when applied to

the same dataset we have at our disposal.

4.2.2 Deep Learning

At this stage, and considering the data available for this problem, LEVD consists in

a diminished version of LMER: instead of a full lyric classification task we now face a

sentence/verse labelling problem. Although it looked like we had a simpler scenario at

hand, this was not the case. Most of the models adjusted too well to the training data

and were unable to generalise when shown new samples. The evaluation of our models

follows the same rules as in Chapter 3.

CNN

Initial experiments in LEVD started with the same concept applied in the CNN from

Section 3.2.3. Quickly we found out that adjustments to the model itself had to be made

as there was a big discrepancy between the high performance on the training sets and

the much lower one in the test sets: the model was prone to overfitting. We started by

modifying the actual structure of the model and reducing the convolution and pooling
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layers to only one of each as shown in Fig. 4.2, which by itself produced far better

results.

Figure 4.2: CNN structure diagram.

At this stage the complexity of the model was severely reduced but there was still

room for improvement as the intricacy of our inputs was significantly reduced. Kernels

with smaller dimensions typically obtained the best performances. The number of filters

in each convolution was reduced as well and only layers with 16 and 32 filters were

tested as higher values would make the model overfitt quickly. After the convolution and

pooling processes information was passed through a dropout layer, whose values varied

between the interval from 0.2 to 0.4 (achieving the best results with 0.2), and a dense

layer with 50 neurons before the softmax activation and final layer. Again, grid search

was performed to tune hyperparametes, the learning rates and embedding dimensions

tested in Chapter 3 were kept, however the batch sizes went from 5 to 100 in steps of 5

and the epochs ranged from 5 to 75 also in increments of 5.

This structure achieved a top result of 59.8% F1-Score (see Table 4.1) when fed with

the sentences processed with the GloVe model, followed by fastText and Word2vec with

57.1% and 53.4%, respectively. The best results for the CNN model are still statistically

significant, with a p-value of 3.18× 10−14, when compared to the improved keyword-

based approach result of 67.4% F1-Score.
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Q1 Q2 Q3 Q4 F1-Score
Q1 22.4 2.9 2.2 2.0 76.0
Q2 3.7 24.4 2.9 1.7 74.6
Q3 5.1 4.9 9.8 1.0 47.1
Q4 7.1 1.7 1.1 7.1 41.4

Table 4.1: Confusion matrix (percentage values) and F1-Score per quadrant for
GloVe+CNN and 368 sentences dataset

LSTM

LSTMS are widely used for NLP as these architectures maintain a memory based on

history information, which allows the model to predict an output conditioned on distanced

features. In this work experiments were made using both unidirectional and bidirectional

long short-term memory cells. Once again, the architecture built for the problem at hand

could not surpass a certain level of complexity, otherwise the model would overfitt.

Figure 4.3: Unidirectional/Bidirectional LSTM structure diagram.

The first structure tested is showcased in Fig. 4.3, this architecture was one of the

simpler versions of an LSTM-based model, composed of an LSTM layer with 64 units, a

0.3 dropout layer (which was inserted in the model not long after the first experiments),

a fully connected layer with 30 neurons and, as usual, a softmax activation layer. Grid

search was similar to the one made in the previously discussed CNN model. With an

unidirectional version of the model it achieved an F1-score of 60.7% combined with

fastText, 58.9% with Glove and 57.2% with Word2vec embeddings. When using a bidi-

rectional layer the F1-Score increased to 64.0% (see Table 4.2) by using the fastText

model for embeddings and 61.3% for both Glove and Word2vec embeddings. The BiL-
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STM still was not an improvement on past results, being statistically significant compared

to the KBA with a p-value of 1.17×10−5.

Q1 Q2 Q3 Q4 F1-Score
Q1 22.8 3.8 2.2 4.5 67.2
Q2 3.3 18.8 4.3 1.6 69.5
Q3 4.3 2.4 12.0 2.0 58.2
Q4 4.3 1.1 2.2 10.4 57.1

Table 4.2: Confusion matrix (percentage values) and F1-Score per quadrant for fast-
Text+BiLSTM and 368 sentences dataset

Augmented Data

The information available to train our models was scarce, in hope for an increase in

performance, new datasets were built by taking advantage of data augmentation methods

designed for NLP related tasks. On previous research Malheiro 2017 the dataset was

divided on two splits, one with 239 sentences for training the models and another with

129 sentences in order to test them on unseen data. Again, to perform data augmentation

and maintain cross-validation we decided to unite these initial splits and, from the total

368 lyrics, create 6 different folds each made of 268 and 100 lyrics for training and

testing, respectively.

Just like in Section 3.2.3, in each split solely the training set was used to perform

augmentation and the 6 folds had a different augmentation method for every single one

of them, thus we were able to create 6 new different training sets with three times the

number of original training verses in which one of them relied on synonym replacement

with the WordNet lexical database, three of them were based on non contextual embed-

dings (GloVe, fastText and Word2vec), one of them coming from contextual embeddings

(BERT) and the remaining consisted in a the same sequential algorithm that created new

samples with each one of the previous methods. Each one of these new folds would have

a total of 904 instances in which 804 would be used to train our models and 100 of them

to further on test them.

The process of developing these new datasets had to take into consideration the class

imbalance of the original samples as the new information would derive from them. If

new sentences were created from each one of the initial training verses then the more the

training portion increased, the bigger the imbalance would be. In order to correct this,

classes with less samples would have priority in the augmentation process. This method
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allowed us to build balanced training sets (with 201 instances per quadrant) where the

classes that originally had less samples now contain more augmented information than

the rest.

Q1 Q2 Q3 Q4 F1-Score
Q1 33.4 2.2 1.1 1.5 87.5
Q2 0.6 26.7 0.9 0.4 93.4
Q3 2.0 1.2 14.1 0.5 79.3
Q4 1.3 0.6 1.0 12.5 80.8

Table 4.3: Confusion matrix (percentage values) and F1-Score per quadrant for fast-
Text+BiLSTM and augmented sentences dataset

Augmented data was processed by the three embedding models (fastText, Word2vec

and Glove) and passed through the CNN, LSTM and BiLSTM architectures described

previously. The CNN model achieved 76.5% of F1-Score with the Word2vec model as

its best performance which is statistically significant to when compared with the KBA

approach with a p-value of 2.04× 10−16. The LSTM increased this score up to 81.3%

with the same embeddings and the BiLSTM had the best performance of all with 85.3%

F1-Score using fastText embeddings (see Table 4.3) which is a statistically significant

result compared with both the KBA and the unidirectional version of the model, with the

p-values of 1.25×10−26 and 1.53×10−6, respectively. Although these were very basic

models results were impressively high, proving performance was not always dependant

on high levels of complexity and is greatly impacted by the inputs the model receives.

Pre-trained Models

Curiosity about the capability of pre-trained models grew with the impressive results

achieved in Section 3.2.3. From the previous experiments on the LMER dataset and based

on the constant overfitting problem shown by the developed architectures for LEVD, there

was a major concern that these models would adapt well in training and, just like the later,

substantially decay in performance when given test set instances.

The process was similar to the one presented in Section 3.2.3. The sentences were

formated accordingly to the BERT/RoBERTa input requirements and fed into the models.

The major differences were the amount of neurons the fully connected layer was given

(reduced to 75 for these experiments) and the dropout value of its preceding layer which

was now set to 0.4 instead of the 0.2 used for LMER. BERT reached an F1-Score of

82.9% while the modified version, RoBERTa, achieved 84.6% F1-Score (see Table 4.4).
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The final result obtained by RoBERTa is statistically significant when compared with the

base version, having a p-value of 0.0021, but this is not true when compared with the

BiLSTM trained on augmented data since the p-value in this case is 0.5308 > 0.05.

Q1 Q2 Q3 Q4 F1-Score
Q1 32.0 2.3 1.1 1.6 86.5
Q2 0.6 27.5 0.9 0.3 93.3
Q3 2.1 1.2 12.9 0.6 77.0
Q4 1.3 0.8 1.0 13.8 81.7

Table 4.4: Confusion matrix (percentage values) and F1-Score per quadrant for RoBERTa
and 368 sentences dataset

Another pre-trained model was tested with the 368 sentence dataset, the GPT-3 de-

veloped by OpenAI. It is necessary to mention that the experiments conducted with this

model were restricted. By the time the tests were made OpenAI only offered a trial

version which limited the amount of computation available by giving the user a cer-

tain amount of credit and taking advantage of a credit per usage policy. The best result

achieved, given the limitations imposed by OpenAI, was an F1-Score of 71.4% which

was not by any means impressive when compared to the remaining pre-trained competi-

tors.

4.3 Analysis of the Results

The hyperparameters, results and computation time for each model are illustrated in

Table 4.5.

Many times when investigating a problem we tend to overcomplicate the approaches

developed in order to solve it. Our best results came from one of the simplest BiLSTM

architectures designed for NLP tasks. Soon enough we have realised that, in this partic-

ular case, high performances would require some work on the model inputs as the issues

analogous to the task at hand were highly related with the lack of information available

in our dataset. NLP data augmentation techniques were key to achieving a top result of

85.3% F1-Score. It is well worth to note that when fed with these smaller inputs (verses

instead of full lyrics) the augmentation algorithms often kept the core emotion of the

lyric, making much less mistakes when replacing parts of the input and producing more

meaning full information than when applied to the static dataset.
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(a) BiLSTM (trained on the 368 sentences
dataset) F1-Score evolution per epoch

(b) BiLSTM (trained on the augmented split
dataset) F1-Score evolution per epoch

Figure 4.4: BiLSTM Model Evolution

Fig. 4.4 demonstrates the impact these methods had in our models performance. The

BiLSTM trained on the original dataset would perform well when training but lacked

generalisation capabilities as it struggled to classify new samples. Although it took more

training instances, with more patterns to learn from, the model fed with augmented data

quickly adapted to the test set, reaching an initial peak around the first 5 epochs and

stabilising more after this large momentum.

Similar results were obtained when using the transformer pre-trained model RoBERTa.

This shows how larger models do not necessarily mean better outcomes. By being pre-

trained on a large corpus RoBERTa is also exposed to information that is irrelevant for the

problem at hand which can be a cause of a diminished performance. This model was not

only akin to the BiLSTM on end results, but the intrinsic quadrant classification mistakes

were alike, having similar confusion matrices.

CNN architectures were also tested as a possible solution to this problem but the

LSTM models outperformed them in most cases. This can be related to the way that

the later are capable of capturing dependencies in the sentences, specially when a bidi-

rectional version is applied. Assuming that words are not individually independent from

each other and that emotion is more often related to an aggregate of expressions, is an

important step to understand the capabilities of these methods.
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Model Input Kernel
Size, #Filters

Emb.
Dimension

Learning
Rate

Batch
Size #Epochs F1-Score

(%)
Time
(min)

CNN
Word2vec Emb.
(368x156x200) 3x200, 16 200 0.00125 5 20 53.4 83.85

CNN
GloVe Emb.

(368x156x250) 3x250, 16 250 0.001 5 20 59.8 87.96

CNN
fastText Emb.

(368x156x200) 3x200, 16 200 0.0005 10 25 57.1 96.37

LSTM
Word2vec Emb.
(368x156x200) N/A 200 0.001 50 20 57.2 130.85

LSTM
GloVe Emb.

(368x156x250) N/A 200 0.001 45 15 58.9 131.96

LSTM
fastText Emb.

(368x156x200) N/A 200 0.00125 45 20 60.7 128.37

BiLSTM
Word2vec Emb.
(368x156x200) N/A 350 0.00175 40 20 61.3 249.85

BiLSTM
GloVe Emb.

(368x156x250) N/A 300 0.001 30 15 61.3 265.96

BiLSTM
fastText Emb.

(368x156x200) N/A 300 0.0015 30 20 64.0 253.37

Augmented Split
CNN

Word2vec Emb.
(904x154x200) 3x200 200 0.00075 20 25 76.5 301.77

Augmented Split
LSTM

Word2vec Emb.
(904x154x200) N/A 300 0.00125 50 30 81.3 410.26

Augmented Split
BiLSTM

fastText Emb.
(904x154x200) N/A 400 0.0015 100 35 85.3 675.19

BERT 368 Sentences N/A 300 0.00015 60 3 82.9 244.87
RoBERTa 368 Sentences N/A 250 0.000125 40 2 84.6 272.95

Table 4.5: Best results for DL LEVD approaches
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Chapter 5

Conclusion and Future Work

This chapter addresses, in a summarised way, the main contributions and discoveries

from this work. A rundown of the best results and approaches is done in Section 5.1 and

the elements that deserve further exploration are detailed in Section 5.2.

5.1 Conclusion

Overall this work came as a beneficial experience for personal growth and devel-

opment. There were portions of the project where the end result did not come out as

initially expected, specifically when talking about the expected time frames produced in

the most early stages. This can be justified on our own inexperience, being the first time

we confront DL tasks related to a real-world scenario. Nonetheless, efforts were made

to diversify the approaches taken and not just for the classification models, but for their

inputs as well (i.e. Word2vec, GloVe, fastText embeddings). This work covers the sim-

plest architectures available in DL (i.e. the DNN and the CNN), and follows on to more

complex ones later on (i.e. pre-trained models).

The experimental process revealed itself as a highly time consuming task, testing a

multitude of hyperparameters and structure designs for each model most often took longer

than initially expected. As we became more familiar with the concepts, we started to get

better results and our top performer (BERT) achieved 88.9% F1-Score for static LMER.

Regarding LEVD, data augmentation posed as a beneficial process for the perfor-

mance of our models. By combining this process and the use of LSTM layers, we have

achieved the best result, to our knowledge, in the literature for the dataset in question -

85.3% F1-Score.

5.2 Future Work

We propose that the following guidelines should be considered for future work:

• expanding the currently available datasets for both LMER and LEVD, with special
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regard to the class imbalance present in the LEVD dataset.

• considering implementing the LEVD sentence classification approach for static

LMER (i.e. splitting the full lyrics in sentences, classifying these verses one by

one and combining the results in order to obtain a single label for the whole lyric).

• increasing the efforts made to explore NLP augmentation techniques for static

LMER.

• tuning and experimenting with different architectures and hyperparameters for the

DL approaches.

• exploring more versions of pre-trained models for both problems, as the results

obtained with these approaches were impressive.

• investing in understanding why misclassification happens in specific lyrics/sentences.

We optimistically believe that if tackled with the right amount of effort, the proposed

future research lines can result in better outcomes for these problems.
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