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Abstract

The use of the computer has become an essential part in the work environment of companies
across a wide range of areas of expertise. The increase in computational power throughout the
years led to faster analysis with increased quality, enabled the transfer of information between
the different stakeholders in an easier and intelligible manner while also allowing the use of
computational learning techniques which are applied to the vast amount of data gathered
during the last decades, leading to significant developments in different areas such as
publicity, economics, medicine, robotics, just to name a few.

Despite the fast growth of this digitalization trend observed in other areas, Civil Engineering
IS just now starting to implement more advanced techniques that may be someday considered
a reliable alternative to the classic approaches.

The design process is currently based upon empirical knowledge, advanced analytical
methods, experimental tests and numerical simulations, used as the basis for the design of
different structural elements, and which despite being of fairly easy implementation constitute
time consuming processes.

This work explores the potential of applying machine learning techniques for the design of
steel connections and the prediction of their corresponding failure modes, without the need to
compute the expressions proposed by EN1993-1-8, by using different learning algorithm in
order to find the one that best fits the problem.

The procedure included in the European standard EN1993-1-8 for the design of welded steel
connections and the equations that return the resistance of the different components of these
connections are presented as well as the main characteristics of the various considered
learning algorithms, the different metrics used to evaluate the quality of the created models.

An overall view of the workflow used to create both the dataset and the different models is
also included

Finally, an analysis of the obtained results for both the classification of the conditioning
component and the regression of the resistant bending moment is presented.
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Resumo

O uso do computador tornou-se uma parte essencial no ambiente de trabalho de empresas que
atuam nas mais diversas areas. O aumento da capacidade computacional ao longo do tempo
levou a andlises mais rapidas e de melhor qualidade, a transmissdo de informacgéo entre os
varios intervenientes de uma forma mais facil e clara, permitindo ainda a utilizacdo de
técnicas de aprendizagem automaética aplicadas a grande quantidade de dados gerados nas
ultimas décadas, que possibilitaram avangos significativos em areas tdo distintas como a
publicidade, economia, medicina, robdtica entre outros.

Apesar do rapido crescimento desta tendéncia de digitalizacdo verificada noutras &reas, a
Engenharia Civil comeca apenas agora a implementar técnicas mais avangadas que possam
eventualmente servir de alternativa as abordagens classicas de projeto e execucdo, onde 0s
procedimentos de dimensionamento sdo atualmente baseados na experiéncia, em métodos
analiticos avancados, ensaios experimentais e simulacfes numéricas, que servem de base ao
dimensionamento dos diferentes elementos estruturais, e que apesar de serem de fécil
implementacdo, constituem em certos casos processos demorados.

No trabalho aqui desenvolvido, explora-se o potencial de aplicacdo da aprendizagem
automatica ao processo de dimensionamento de ligacGes e a possibilidade de previsdo do
diferentes modos de falha sem a necessidade de calcular as expressdes fornecidas pela
EN1993-1-8, recorrendo-se para tal a diferentes abordagens de forma a permitir encontrar
aquela que melhor se adapta ao problema.

E feita uma apresentagio do procedimento incluido na norma Europeia EN1993-1-8 para o
dimensionamento de ligacdes soldadas e das respetivas equacdes destinadas a determinacéo
da resisténcia das diferentes componentes séo apresentadas. S&o ainda descritas as principais
caracteristicas dos diferentes algoritmos de aprendizagem e as principais medidas usadas para
a avaliacdo da qualidade dos modelos criados.

E igualmente incluida uma perspetiva geral do procedimento usado para criar no so a base de
dados mas também os diferentes modelos.

Por ultimo é realizada uma analise dos resultados obtidos para os dois tipos de problemas
considerados, o problema de classificacdo da componente condicionante e o problema de
regressdo do momento fletor resistente.
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Machine learning techniques in connection design 1 Introduction

1 INTRODUCTION

1.1 Motivation

The use of steel elements as a structural solution for buildings, intended for a wide range of
purposes, has become a usual option for structural engineering practitioners worldwide. This
can be seen as a result of the different advantages that steel can offer, such as its reduced
production costs when compared to other construction materials, the speed of the construction
process which enables globally more economical solutions, the high resistance of steel,
leading to lighter and slender structural elements and thus to more aesthetically appealing
solutions, the combination of steel with other materials such as concrete, leading to composite
solutions which make use of the best mechanical characteristics of each material.

The design of steel structures leads, invariably, to the design of the respective joints,
regardless of their configuration (welded or bolted connections). Nowadays, the design of
steel joints constitutes a fairly simple process, owing to the introduction of the computer as an
essential part of the process of structural design among practitioners. However, despite the
exponential increase in computational power witnessed throughout the last few years and the
accompanying evolution of steel design software with an analytical based approach or by
means of the Finite Element Method (FEM), the steel connection design process still
constitutes a time consuming task, one that is painstakingly repeated despite the existing
similarities between the elements to be connected and the forces involved, leading to steel
connections with similar geometrical configurations not only within the same project but also
across different projects. The design of steel connections is therefore a process for which there
is a large amount of previously existing and available data within organizations such as a
structural engineering practitioner, data that is generated and validated numerous times
following older engineering projects and that most of the times is not reused as a basis for the
design of new steel joints. Thus, this design process presents itself as a possible candidate for
the application of machine learning techniques that could potentially lead to a more
expeditious procedure, leading to lower time consumptions during the steel connection design
process throughout the different stages of a project, contributing for the reduction of the
associated costs.

1.2 Contributions

The construction of an exhaustive database of unreinforced welded beam to column
connections is a crucial contribution for the main objective of this work. This database is
comprised of different pairs of standard commercial profiles, and in particular those used in
Europe such as IPE, HEA and HEB, or profiles based upon the combination of these, and
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their respective dimensional variations usually measured. Once obtained, the complete
database can then be split into training and testing sets, the former used to build the models by
training a learning algorithm and the latter to evaluate and validate the said model.

1.3 Objectives

The main objective of this thesis is the application of different learning algorithms to data in
order to solve two different problems. The first consists in building models that allow the
prediction of the conditioning component of the steel connections, in what is known as a
classification problem, while the second is the prediction of the corresponding design resistant
bending moment by solving a regression task.

1.4 Thesis Organization

This document is divided into six chapters.

The first chapter contains a brief introduction in which some of the advantages for the use of
steel as a construction material are laid out. Moreover, the mainstream approaches followed
for the design of steel connections within a practitioner’s environment are also presented.

The procedure followed by the European standard EN 1993-1-8, for the design of welded
beam to column steel connections, known as the Component Method, is presented in detail
throughout Chapter 2.

Chapter 3 begins with a short presentation of Artificial Intelligence (Al) in general and
Machine Learning (ML) in particular. The general aspects, which are transversal to different
algorithms, are also presented, including the different types of learning in which these
algorithms are inserted, the different types of tasks, as well as the metrics usually used to
evaluate an algorithm’s performance. Chapter 3 ends with the presentation of the basic
concepts underpinning the most relevant algorithms.

The definition of the problem being investigated, the proposed approach as well as the
procedure followed to obtain the dataset are presented along Chapter 4, while the obtained
results, for both the classification and regression tasks are presented and discussed throughout
Chapter 5.

Chapter 6 contains the resulting conclusions as well as future developments that may be
pursued based upon the current work.
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2 DESIGN OF WELDED BEAM TO COLUMN CONNECTIONS

2.1 Introduction

The design of steel connections implies their characterization in terms of resistance, stiffness
and ductility. This can be achieved by means of experimental tests, advanced numerical
analyse using the FEM and/or by analytical expressions.

Taking into account the considerable number of variables involved, the need to reduce the
costs and optimize the time consumed during the design process of the different structural
elements, expeditious methods, which enable the designer to engage in a process where
iterations can be developed in a quick and simple manner, should be adopted. Thus, the
analytical approach presents itself as the most practical one for the design if steel connections
in the engineering practice.

The component method is the analytical method of choice for the design of steel connections
with a wide range of geometrical configurations, intended to connect steel elements with
different cross-sections subjected to various loads and load combinations, thus being adopted
as the base procedure in the Eurocodes for the safety verification of this connections (Jaspart,
J. P., Weynand, K. (2016)).

2.2 Component Method

The application of the component method to the design of connections is based upon the
assumption that these connections are made up of a set of individual components, hereinafter
referred to as basic components. The basic components may be subjected to stresses of
various natures such as tension, compression and shear stresses as well as to an interaction of
different stresses.

For each one of the basic components, their respective resistance and stiffness may be
determined, allowing for the analysis of the global behaviour of the joint.

Taking into account the need to divide the joint in its respective basic components, the design
of structural connections can be divided into different steps, which for the particular case of
welded connections are as follows:

— Determination of the distribution of forces in both flanges of the beam, considering the
acting axial force and bending moment.
— Determination of the resistance and safety assessment in the tension zone.

3
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— Determination of the resistance and safety assessment in the compression zone.
— Determination of the resistance and safety assessment of the column’s web in shear.

— Determination of the resistance and safety assessment of the welds to the flanges and
web.

2.2.1 Force Distribution in the Beam

The tension F, g, and compression F, g, design forces acting on the beam flanges can be
determined assuming that the contribution of the beam web to the transmission of both the
bending moments and the axial forces to the column is negligible. Hence, the design forces
acting on the beam flanges are exclusively a function of the distance between the centre of
gravity of the beam flanges (h;, — ty).

. Mgy Ngg
. Mgy Ngq
FC,Ed - (hb — tfb) + 2 (22)

where hy, is the beam height and ¢, is the thickness of the beam flange.

Figure 2.1 — Force distribution (SCI/BCSA. (2013))

2.2.2 Column Flange in Bending

The resistance of the column flange in bending connected to an unstiffened column depends
upon the dispersion of the tension force between the beam flange and the column web. This
dispersion can be taken into account by the effective width b, .
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beff = tWC + 2s + 7ktfc (23)

where t,,. is the thickness of the column web, s is the root radius of the column for rolled | or
H sections or s =+/2a (a being the weld throat) for welded | or H sections, trc is the

thickness of the column flanges and k = (Z—;) (?—;) <1 (4) with f, . and f, , being the
Y,
design yield strength of the column and the beam respectively.

The effective width is limited by both the beam (b.ss < bj,) and column (b.ss < b.) width.

Figure 2.2 — Beam tension flange effective width (SCI/BCSA. (2013))

The design value for the resistance of the effective width of the beam flange is given by

berrtrnfy ro
Fifbra = —effyf s (2.5)
Mo

2.2.3 Column Web in Tension

Analogous to the beam tension flange, the resistance of the column web in tension depends on
the dispersion of the tension force between the two elements. In this case however the
dispersion can be taken with a ratio of 1/2.5 of both the root radius and column flange
thickness, limited in any case by the end of the column, and thus, the effective length of the
column web is given by expression (2.6).

beff,t,wc = tfb + ZSf + 5(5 + th) (26)

Sf = v2a being the flange weld length.
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Figure 2.3 — Column web in tension effective length (SCI/BCSA. (2013))
The design resistance of the column web component can be determined from expression (2.7)

Whesr twetwefywe 2.7)

Fewera =
o Ymo

In order to take into account the interaction between the tension and shear stresses acting on
the column web, expression (2.7) includes the reduction factor w which in its turn depends

upon the transformation parameter £.

Transformation parameter 8 Reduction factor w
0<pB<05 w=1

0.5<p<1 w=w+2(1-)1—-wq)

p=1 w = wq
1<p<2 w=w;+ (LB -1D(w, —w;)

p =2 W = Wy

1 1

w1 = Wy =
\/1 + 1-3(beff,c,wctwc/Avc)2 \/1 + 5-2(beff,c,wctwc/Avc)2

A, 1s the shear area of the column

B is the transformation parameter
Figure 2.4 — Reduction factor for interaction with shear (adapted from Comite Europeen de

Normalisation. (2010))

The transformation parameter S allows for the relation between the shear force developed on
the web panel and the compressive and tensile connection forces. Since the value of £ is a
function of the internal forces acting on the joint, and these forces for their turn variate with
the stiffness of the joint, an iterative process would be required. Such a process can be

6
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avoided for practical application as long as adequate values of S are considered and used to
model the joints beforehand, leading to a safe non-iterative analysis of the structure.

A A
¥ ¥
M
M M’p Fbw bl
e e b - h‘ i —
va Fb ) ( v / F? 1 )
wp D
vV F ! i V. F
wp b b2 wp bl
A A
Y ¥
pr: BF!) ‘/\s'p: B] Fbl
where F,= M,/z = BF,,
where F, = M, /z
Fb2: sz/z

Figure 2.5 — Transformation parameter B (Jaspart, J. P., Weynand, K. (2016))

Type of joint configuration Action Value

-

My ga My, g

Q’) ") M,z B=1
| —— |

-
-

= i)
M Mbl,Ed - sz,Ed :B =0

b2.Ed Mbw Ed b1,Ed

C i Mbl,Ed/MbZ,Ed >0 B=1
Mbl,Ed/MbZ,Ed <0 =2

My o+ M,y =0 | B=2

b1,Ed b2,Ed

-

o
£
o

-

-

*) In this case the value of f is the exact value rather than an approximation

Figure 2.6 — Transformation parameter  approximate values (Jaspart, J. P., Weynand, K.
(2016))

If the resistance of the beam flange and column web in the tension zone are adequate, column
tension stiffeners may be disregarded, which can be expressed as,

Fira < Ftfpra (2.8)

7
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Ft,Ed < Ft,wc,Rd (2-9)

If either one of expressions (2.8) or (2.9) or beg < (?—Z) by, are not verified, a pair of partial

or full depth stiffeners should be provided.
These stiffeners contribute simultaneously to the tension resistance of the column web as well
as to restrict the bending of the column’s flange and their minimum area should be determined

to ensure the design force Fgggq.

wbeff,t,wctwcfy,c (2 10)

Fsga = Fefpra — Y
MO

The recommended overall width of each stiffener should be,

0.75(b, — twe)

b g = 5 (2.11)
i e T
‘ Corner
tsT snipe
sg
Full depth stiffener
Partial depth stiffener
T[] Optional trimming /
| Corner
t, ? o snipe

Figure 2.7 — Tension stiffeners (SCI/BCSA. (2013))

2.2.4 Beam Flange in Compression

The effective width b, of the beam flange in the compression zone is as given for the
tension zone.
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The resistance of the beam compression flange connected to an unstiffened column is given
by,

berrtrnfy.rp 2.12)

Fefpra = ”
Mo

2.2.5 Column Web in Compression

The resistance of the column web in the compression zone F, . rq depends, as was the case
for the web in the tension zone, upon the dispersion of the compression force through the end
plate, the column flange and the root radius, leading to

beffewe = trp + 255 +5(s + tpe) + 5, (2.13)

where s, = 2t,, when an end plate of ¢,, thickness is provided.

wk,.b twe
Fc,wc,Rd _ wc ef];c,wc wcly,wc (2.14)
MO
wkyepberf cwetwefy,
Fc,wc,Rd < wc ef)]/‘cwc wclywc (2.15)
M1

Reduction coefficient k,,. allows for coexisting longitudinal compressive stress oy, g4 in the
column and is given by,

OcomEd = 0-7fy,wc kwe = 1.0 (2.16)
Oy,wc
Ocomed > 0.7fywe  kwe = 1.7 — ﬁ (2.17)

Where g, ,, is the maximum compressive stress acting on the column’s web.
For the cases in which the column is in tension throughout, k,,. = 1.0.
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ssc_ovi
"'\ 2.5
i 1
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F 1/
|
ol L
i
L.

Figure 2.8 — Column web in compression effective length (SCI/BCSA. (2013))

The reduction factor p in expression (2.15) allows for the consideration of plate buckling and
IS given by,

1, <072 p=10 (2.18)
1,>072 p=232 2.19)
AP

Where,

X, = 0932 \/b"f ! 'C'chwz”fy"”c (2.20)
EtWC
and

dwe = he — 2(tsc +5) (2.21)

If both the resistance of the flange and column web in the compression zone are adequate,
compression stiffeners may be disregarded, and both expressions (2.22) and (2.23) are
verified.

Feea < Feppra (2.22)

Fc,Ed < Fc,wc,Rd (2-23)

10
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If either one of expressions (2.22), (2.23) or brr < (;y—") b, are not verified then full depth
u,b

compression stiffeners are required and should be provided symmetrically on both sides of the

column web. Partial depth stiffeners are also allowed although their application demands a

more complex analysis of web buckling phenomena.

In order for a stiffened column to be considered to be appropriately designed, both the
resistance of the effective stiffener cross section as well as its buckling resistance should be at
least equal to the design force acting at the compression flange.

The effective section of the compression stiffener can be determined considering a cruciform
cross section comprised of a 15¢t,,. length of web at either side of the added stiffener and a
width b, of the later that depending on its thickness ts should be limited to,

bsy < 14st, (2.24)

in order to avoid torsional buckling, which corresponds to complying with the Class 3 limit
for compression flange outstands.

sg

15¢e e

zzzzzZ 777777 7k t

Z 15etyc
_Al 2y |
o __--—‘L_ =y

Figure 2.9 — Compression stiffeners (SCI/BCSA. (2013))

The buckling resistance can be determined by taking into account the effective area A ¢ and
the second moment of area of the stiffener I

Agerr = (305t + to)tye + 2bg4ts (2.25)

11
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3
IS — (stg + tWC) ts (226)
12
The above mentioned cross sectional resistance of the effective compression stiffener can be
determined by expressin (2.27),

Aserrfy
Nopa = —2L2 2.27)

Ymo

The stiffener’s flexural buckling resistance depends as it is the case for other elements, upon
their respective non-dimensional slenderness, which for the case of the compression stiffener
may be obtained through expression (2.28),

l
i1y

1= (2.28)
Where 1; = 93.9¢, the radius of gyration is = \/I;/As s and L is the critical buckling length
of the stiffener, which for columns restrained against twist may be assumed to be not less than

[ =0.75h,, and for the cases where the column has no restrains against twist should be
considered to be [ = h,,,.

For the cases in which A < 0.2, the stiffener’s flexural buckling may be disregarded and only
the cross sectional resistance should be verified.

If 2 > 0.2, the flexural buckling resistance can be determined by,

XAserrf
Np g = 2122 (2.29)

Ym1

Where,

X = <1 (2.30)

®=05(1+a(1—-0.2)+2%) (2.31)
with @ = 0.49 and f, is the minimum yield strength of either the column or the stiffener.

12
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2.2.6 Column Web Panel Shear
The shear resistance of the column web panel may be the conditioning basic component of the
connection for the cases of double-sided connections with either unbalanced or same direction

bending moments and for single-sided beam to column connections.

VEd —_—
A

L

A

¥

Figure 2.10 — Column web panel shear (Comite Europeen de Normalisation. (2010))
The shear force acting in the column web panel V,,,, r4 0f a single-sided connection may be
conservatively taken as equal to the compression force F, g, for the cases where no axial
force is acting on the beam. If there are axial forces acting on the beam to be connected, their
effect should be considered.
For two-sided connections, the shear force value will depend upon the direction of the
bending moment. For the cases in which moments with opposing directions arise,

Vwp.ea = |Fea1 — Fepaz|, otherwise Vi, pa = Fepar + Fepaa-

Fogas —;,;::: : — 3 F
« l |
\ I\
M1 " \. f." IM
\ \ ',: t 2
l pr.Ed \
1:' B T "'.
2F g5 ¢ —|| |F—————%— Feaz
ZE"Ed'1 f :-: :: \ > ZFri.Ed.z
! I'
l' 1+ e ‘
M |/ "\ /"‘ \' M
1 \ / 2
" ) [ ¥
] wp.Ed .'
E / T~ 1T \
wEat —» «— R

Figure 2.11 — Shear force design force (SCI/BCSA. (2013))
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The shear resistance of the column web panel, for an unstiffened web with a slenderness
limited to d./t,,. < 69¢ may be determined as,

0.9f,cApc

Vwp,ra = (2.32)
P )’Mo\/§

where, d. = h, — 2(ts. + s) is the clear height of the column web, A, is the column’s shear
area and f, is the column’s yield strength.

For the cases in which d./t,,. > 69¢ nothing is mentioned in EN 1993-1-8, being suggested
however that,

Vwp,rd = 0.9Vpy ra (2.33)

Vuw,ra 1s the web’s contribution for the shear resistance of reinforced or unreinforced webs as
defined by EN 1993-1-5 and may be obtained from,

_ waywhwt

Vow,ra = W (2.34)
M1

where y,, is the factor for the contribution of the web to the shear buckling resistance.

For the cases for which the web resistance is not sufficient on its own, supplementary web
plates or diagonal stiffeners may be considered.

When the web’s reinforcement is achieved by means of supplementary web plates, additional
requirements must be fulfilled:

— The same steel grade should be considered for both the column and the supplementary
plates.

— The thickness of the supplementary web plates should be at least that of the column
web panel.

— The width of the supplementary web plates should extend to the fillets of the column
while not exceeding 40st;.

— The length of the supplementary web plate should extend at least to the effective
length of the tension and compression zones of the column web.

Whenever these requirements are fulfilled, the supplementary web plate contributes for the
increase in the joint resistance:

14
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— 50% of web tension resistance for an additional plate on one side or a 100% if two
additional plates, one on each, side are considered.

— 50% of web compression resistance for an additional plate on one side or a 100% if
two additional plates, one on each, side are considered.

— 75% of web panel shear resistance for either one or two additional plates.

beff.tI

IS

Berr,

iy

<
N —

>
| ‘ H
— N Al

bs , bs bs
%twc Etwc P — %twc
r+ts| | ts ts

Figure 2.12 — Supplementary web plates dimensions (SCI/BCSA. (2013))
The contribution of supplementary web plates for the area of a column web panel is equal to
bst,, .. Since that the increase in resistance is independent of the thickness of the additional
plates, only one plate will contribute to the column web panel shear resistance. Furthermore,
for the cases for which the supplementary plates are only required for the increase of shear
resistance, the width of the plates is only required to be such that the toes of the fillet welds
reach the fillets of the column section.

If the supplementary web plates are used as reinforcement for the tension resistance, their
contribution depends on the throat thickness of the welds that connect them to the web and the
effective thickness of the column web plate may be assumed to be t,, .- = 1.5t or

twerr = 2ty respectively for one or two supplementary plates.

The increase of the column web compression resistance, achieved through supplementary web
plates, can be determined in an analogous way as for the case of tension resistance,
considering an effective thickness of t,, . = 1.5ty OF ty, orf = 2t respectively for one or
two supplementary plates and the reduction factor w in expression (2.14) and (2.15) should be
based on the increased shear area.
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In the cases where the web’s reinforcement is achieved by means of diagonal stiffeners, three
types of stiffeners are usually considered, K stiffener, N stiffener or Morris stiffener.

Le

| | .ts
ts | ],/, N
. /"i’f
[
/ . AN
f \ / N S—nom SR
K stiffener N stiffener Morris stiffener

Figure 2.13 — Diagonal stiffeners (SCI/BCSA. (2013))

The K stiffener is usually applied for the cases where large ratios of connection depth to the
depth of the column are being analysed.

N stiffeners may be adopted instead of K stiffeners for cases for which the access to tensioned
bolts is not ideal.

Both K and N type stiffeners should be designed as compression stiffeners.
The Morris stiffener was developed to diminish the observed difficulties in placing the bolts

for the cases where K and N stiffeners are considered. Morris stiffeners are usually combined
with compression stiffeners to improve the web resistance in the compression zone.

2.2.7 Welds

The design of a connection must also take into account the design of its welds which should
allow for the correct transfer of both shear and tension loads between the elements to be
connected. This can be achieved by means of fillet or butt welds.

The shear resistance of a fillet weld can be determined accordingly to expression (2.35)

afu/V3

(2.35)
BwYm2

Fvw,Rd =
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Where a is the throat thickness of the weld, f,, is the ultimate tensile strength of the weaker
part, B, is a correlation factor according to the strength of the weaker part and may be taken
as 0.85 or 0.90 for S275 and S355 steel grades respectively.

The resistance of a fillet weld to transverse forces is given by,

afu/V3

(2.36)
BwYm2

an,Rd =

3
1+2cos?6

weld as represented in Figure 2.14.

Where K =

and 6 is the angle between the transverse force and the throat of the
1-

|
= 7\ throat

\ \  thickness a

Figure 2.14 — Transverse force applied to a weld (SCI/BCSA. (2013))

It is usual for practitioners to design the welds as a full-strength connection in order to avoid
that these component be the conditioning one. When considering fillet-welds, full-strength
connections can be achieved by means of a throat thickness of 1.0 or 1.2 times the smallest
thickness to be connected for S275 or S355 grade steel respectively. Full penetration butt
welds for their turn have a design resistance that may be considered to be equal to the design
resistance of the weaker part to be connected.

~~

-]

l

Partial penetration with gy penetration
Fillet weld superimposed fillet butt weld

Figure 2.15 — Weld types (SCI/BCSA. (2013))
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2.3 Summary

Despite rather exhaustive, the design procedure previously presented, is currently applied in a
somewhat simple and expeditious manner, being it through the development of self-made
spreadsheets, or by means of available software, either one of them comprising a common
practice.

However, even a broadly automated task, repeated on a large number of examples, may
become a time consuming and prone to error process. In order to bypass this issue, it may be
of interest to take advantage of different techniques, not physic based but rather based upon
data available from previous examples, such as is the case of the application of learning
algorithms, the base for Machine Learning.
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3 MACHINE LEARNING

The increasing complexity of a wide range of problems, across numerous fields, may lead to
situations for which there isn’t a particular method for computing an output based upon the
available inputs or situations where the needed computation is much too expensive, making
the application of common explicit programming impractical or even impossible. In order to
bypass these issues, an alternative approach, in which a computer tries to learn from
examples, known as learning methodology, can be taken advantage of.

The various definitions of Artificial Intelligence (Al) laid out by different authors can be
divided, accordingly to Russel (Russel, S. J., Norvig, P. (2016)), into four categories
(Thinking Humanly; Thinking Rationally; Acting Humanly; Acting Rationally), depending on
what concerns each one of them, be it the thought process and reasoning capabilities of a
machine, their behaviour or their success in accurately execute different tasks when compared
to human performance (Figure 3.1).

Thinking Humanly
“The exciting new effort to make computers
think...machines with minds, in the full and
literal sense.” (Haugeland (1985))

“[The automation of] activities that we
associate with human thinking, activities
such as decision-making, problem solving,
learning...” (Bellman (1978))

Thinking Rationally
“The study of mental faculties through the
use of computational models.” (Charniak
and McDermott (1985))

“The study of the computations that make it
possible to perceive, reason, and act.”
(Winston (1992))

Acting Humanly
“The art of creating machines that perform
functions that require intelligence when
performed by people.” (Kurzweil (1990))

“The study of how to make computers do
things at which, at the moment, people are
better.” (Rich and Knight (1991))

Acting Rationally
“Computational Intelligence is the study of
the design of intelligent agents.” (Poole et al

(1998))

“Al...is  concerned  with intelligent
behaviour in artifacts.” (Nilsson (1998))

Figure 3.1- Avrtificial Intelligence definitions (adapted from Russel, S. J., Norvig, P. (2016))

Although the first recognized work in Al was done in 1943 by Warren McCulloch and Walter
Pitts following the works of Russel, Whitehead and Turing’s theory of computation, the field
has its official birthplace in Dartmouth, following McCarthy’s initiative to organize a two-
month workshop in Dartmouth College during the summer of 1956 (Russel, S. J., Norvig, P.
(2016)).
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Machine Learning (ML) and Al are sometimes sought as being interchangeable concepts.
However, the former can be classified as a subfield of the latter (Figure 3.2). The term
Machine Learning was coined by Arthur Samuel in 1959 and can be defined as a branch of
computer science which goal is to develop models by means of algorithms that can
automatically extract patterns from within a dataset and then use the found patterns to make
predictions regarding new data (Murphy, K. P. (2012)).

Representation learning
Example: Shallow autoencoders

Machine
Learning
Example:

Deeplearning Logistic

Example: MLPs regression

Al
Example:
Knowledge
bases

Figure 3.2 — The different levels of Al (adapted from Goodfellow, I., Bengio Y., Courville,
A. (2016))

The process involved in the resolution of a certain problem by means of Machine Learning
techniques is composed of a set of interlinked steps that result in a workflow such as the one
presented on Figure 3.3.

The first step, here named “Get Data”, is one of the most important steps since it is this initial
volume of data that will be the basis of all remaining work, and from which will depend on
the quality of the created models. Once all the data has been gathered it is usually necessary to
preprocess it (“Clean, Prepare and Manipulate Data”) given for instance the existence of
incorrect examples, examples with missing information or simply because some algorithms
will only work if the data being given as an input is in a specific format.

Once all the dataset related tasks have been completed, it is necessary to choose a model for
the respective training process to begin. The original dataset is usually divided in some
proportion into a training and a testset. The first is used as an input for the learning algorithm
in order to be possible to define the proper parameters enabling the development of a model
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with a good quality. Once the training process is completed, it is possible to analyse the
quality of the model by comparing its predictions with the actual labels of a held out dataset,
such as is the case of the testset. Considering the quality of the results which can be measured
by different metrics, it is possible to further tune the algorithm’s parameters in order to further
improve the quality of the results.

Get Data Clean,. Prepare and Train Test Data Improve
Manipulate Data Model

Figure 3.3 — Machine Learning workflow

3.1 Types of learning

Machine learning approaches may be divided into different learning types such as supervised,
unsupervised, semi-supervised learning and reinforcement learning.

3.1.1 Supervised learning

Supervised learning is the most used form of ML. In this type of learning, the algorithms are
presented with a dataset containing not only the value of the different features xU) (in the
form of a feature vector x;) describing each example but also their respective label or target
yU), thus comprising pairs of input-output (feature-label) which may be given to the machine
as a training set in the form of the collection of training examples {(x;, ¥;)}.,, where the
label vector y; may comprise, for example, a finite set of classes {1,2, ..., C}, real numbers or
even other more complex structures.

Supervised learning, as the term itself suggests, consists in showing the machine what to do
by providing the “answer” y;, as a teacher would do, or in this case, a knowledgeable external
supervisor. The objective of the machine is thus to find a hypothesis h (or a function f(x))
from a training set that should enable a close agreement with the known labels in order to
allow for posterior predictions on new inputs, a process known as generalization (Russel, S.
J., Norvig, P. (2016)).

One of the best-known and oldest examples of supervised learning task is the application to
the Iris dataset, which comprises a collection of 150 examples of Iris flowers, namely the
measurements of some of their characteristics (features) such as the sepal length, sepal width,
petal length and petal width, together with the respective species classification.
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3.1.2 Unsupervised learning

As opposed to supervised, in unsupervised learning, the algorithms are presented with
datasets comprised of unlabelled examples {(x]-)}liv=1 thus being impossible to provide the

algorithm with any kind of “answer” y; or desired output. The objective of this kind of
learning is to find properties of interest and meaningful information such as patterns within
the structure of our data in order to create a model that takes an input such as a feature vector
and transforms it into an output that may be used to solve a practical problem.

One of the most common examples of unsupervised learning is the task of clustering. This
kind of tasks consist in organizing a large quantity of information into subgroups known as
clusters that comprise a group of elements that are similar between themselves but whose
characteristics are different from other clusters.

3.1.3 Semi-supervised learning

As the term suggests and following the previous definitions semi-supervised learning falls
somewhere in between unsupervised and supervised learning. In semi-supervised learning, the
provided dataset is comprised of both labelled and unlabelled examples, many of the times in
an unbalanced way, with the unlabelled examples largely outnumbering the labelled ones.
Since the 1990’s, there’s been a growing interest in semi-supervised learning, especially
applied to natural language and text classification problems. Although it may seem
counterintuitive, there are cases for which the application of semi-supervised learning yields
better results than if supervised learning is applied, in particular, those for which “the
distribution of examples, which the unlabelled data will help elucidate, be relevant for the
classification problem”. (Chapelle, O., Schélkopf, B., Zien, A. (2006)

3.1.4 Reinforcement learning

In reinforcement learning a system often known as a decision-making agent is able to improve
its performance by maximizing the expected reward in order to achieve a certain goal. These
different rewards are a result of the actions executed by the machine in its interaction with its
surrounding environment.

Usual examples of reinforcement learning comprise chess engines and other kinds of game
playing, where the reinforcement is the winning or losing of the game, as well as robotics or
logistics, where the reinforcement can be accomplished or not of a given task (Sutton, R. S.,
Barto, A. G. (2018)).
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3.2 Types of Problems

3.2.1 Classification

In a classification task, the goal of the learning algorithm is to find the class, among a finite
set of C discrete classes, to which an unlabelled example belongs to, based on past
observations. In order to do so, the algorithm looks for a function f: R® — {1, ..., C} which
assigns a feature vector x to the class y, y = f(x). If a single label vector y; comprises just
C = 2 classes, then the problem at hand may be defined as a binary classification problem,
otherwise, for the cases in which C > 2, the classification is defined as being multiclass.
Furthermore, if more than a label exists for each example and their classes are not mutually
exclusive, the problem is referred to as a multi-labelled one.

A typical example, referred in Section 3.1.1, is the classification of the Iris flowers, where the
goal is to determine the type of Iris (Setosa, Versicolour, Virginica) each example is.

3.2.2 Regression problems

The objective of regression problems is to predict a target in the form of a numerical
continuous value, by giving the model an input. This task is similar to classification problems,
although with a different output format and can be achieved by looking for a function
fiR* = R.

Regression tasks are commonly used by insurance companies in order to predict the amount
of claims that might be made by an insured person (Goodfellow, I., Bengio Y., Courville, A.
(2016)).

3.2.3 Clustering

Clustering learning problems, which can usually be solved by means of algorithms such as the
k-means clustering algorithm, consist upon the division of a dataset into clusters composed of
similar examples. Contrary to regression and classification tasks, in clustering problems, the
training examples do not have an associated label, being the algorithm’s objective, the
creation of clusters and thus an implicit definition of classes through the definition of the
corresponding groups of examples (Silva, C., Ribeiro, B. (2018)). Hence, clustering is not
only inserted in the set of unsupervised learning but is also unsupervised learning’s most
common type of problem.

A usual example of the application of this type of learning task is the creation of groups of
users of e-commerce platforms, based upon their purchasing behaviour, which will enable
these platforms a targeted advertising strategy (Murphy, K. P. (2012)).
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3.2.4 Anomaly detection

Anomaly detection tasks, also known as outlier detection, consists in the analysis of a
problem by means of an algorithm that identifies examples that correspond to abnormal or
atypical cases and that are thus identified for being considerably different from the remaining
examples composing the dataset.

This type of task is not usually defined as a supervised classification learning problem,
composed of two classes, one corresponding to the so-called normal examples and the other to
the outliers, since usually, the number of examples that could be classified as outliers is very
low and thus it cannot compose a pattern that may be easily found by a two-class classifier.
Anomaly detection techniques are usually deployed by companies in tasks such as credit card
fraud detection (Goodfellow, I., Bengio Y., Courville, A. (2016)).

3.3 Data Preprocessing

Data preprocessing is a process in which a feature or group of features is extracted or
modified from a raw dataset in order to obtain a final dataset more suitable for a particular
machine learning model, thus enabling higher quality outputs (Zheng, A., Casari, A. (2018)).

3.3.1 Normalization

For the case of the more common data type, numerical data and depending on the chosen
machine learning algorithm, it may be necessary to consider among others, the scale of the
inputs, which may lead to the need to normalize the features, a process where the original
range of values of a feature is converted into a standard range such as [0;1] (Burkov, A.
(2019)).

3.3.2 Standardization

The statistical distribution of features in a dataset, or the probability that a feature takes a
particular value, might also be of importance for the performance of the ML algorithm. In
these particular cases, a standardization procedure should be considered. The standardization
of a feature consists in rescaling it in order to give it the properties of a standard normal or
Gaussian distribution with u = 0 mean and ¢ = 1 standard deviation.
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3.3.3 Binning

It may also be of interest in some cases to convert a numerical feature into a categorical one in
which case a binning or bucketing process, consisting of converting a continuous feature into
different value ranges is applied. This process can be better understood considering a task
where a feature comprising the age of a group of people represented by real value numbers, is
divided into different bins with 0 to 10 years-old on a bin, 10 to 20 years-old on the following
bin and so on.

3.3.4 One-hot encoding

As opposed to the binning process mentioned above, when a particular feature is comprised of
different classes, thus corresponding to a so-called categorical feature, and the intended
learning algorithm only accepts as input numerical feature vectors, the later should be
transformed into different binary features, leading to an increased dimension of the feature
vector, in a process known as one-hot encoding (Burkov, A. (2019)).

In some cases, due to the data gathering process or during the construction of the dataset,
especially when this dataset is obtained through a handcraft approach, the values of some
features may be omitted. In order to tackle this issue, different approaches are usually
followed, among them, the complete dismissal of the examples for which one or more
features are missing and the application of data imputation techniques, the later consisting of
replacing the missing values by either the average value of the feature, a value outside the
normal range of the feature or still a value in the middle of the normal range allowing that the
missing value won’t significantly affect the prediction.

Data preprocessing may also be of interest for analysis in which the dataset comprises a
considerable number of repeated examples and which for that reason may be removed.

The presence of irrelevant features or features with high correlation among each other may
allow a reduction of the overall size of the dataset without an impact in the output’s quality
(Silva, C., Ribeiro, B. (2018).

3.4 Training Models

The no free lunch theorem, a well-known theorem within the field of machine learning
(Wolpert, D.H.(1997)), states that all algorithms have the same performance when one
considers all possible problems and available data. However, for specific problems, a
selection process should be pursued in order to find the most suited algorithm and their
respective settings.

Unless one has the time to apply them all, the selection of machine learning algorithms for the
task in hands is not an easy process. This selection may be guided by a process of
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performance assessment, in which a quantitative measure of the quality of a model can be
obtained and be used for an informed decision (Burkov, A. (2019)).

Different models have widespread levels of complexity and the decision to pick one of them
can depend upon different factors. If the data is highly nonlinear, the choice for an algorithm
which is only able to handle linearly separable data can lead to a poor performance. The
explainability of an algorithm may be important for specific tasks and divide the different
algorithms into “white-box” and “black-box™ algorithms. With “white-box”, the users can
have a clear view of the decision-making process followed to obtain the wanted outputs which
also allows their validation. “Black-box™ algorithms such as neural networks, although they
may be very accurate, the obtained outputs can be hard to explain and understand.

As mentioned before, the available dataset can be comprised of different data types
(numerical, categorical) which may not be accepted by different algorithms, or which might
require a pre-processing in order to be accepted.

The training time and prediction speed can also be important factors to consider while
choosing the proper machine learning algorithm.

3.4.1 Hyperparameters

Hyperparameters can be understood as tunable settings of the different learning algorithms
which are neither directly estimated nor optimized by the machine learning algorithm itself,
although it is possible to develop procedures in which the hyperparameters of the former
learning algorithm are tuned and optimized by another algorithm (Goodfellow, 1., Bengio Y.,
Courville, A. (2016)). Usually, the process of tuning the hyperparameters is done by
searching the combination of values that yields the best result through a grid search
procedure. For the cases for which the number of hyperparameters make the grid search
procedure impractical, different techniques may be adopted such as a random search, genetic
algorithms, among others (Burkov, A. (2019)).

3.4.2 Overfitting and Underfitting

The main objective of the learning algorithm in an early phase of the learning process consists
of properly fitting the model to the training data. If the obtained training error, computed on
the training set yields unacceptable results, meaning that the built model fails in predicting the
outputs of the set in which it was trained, the model is said to be underfitting, which may be a
result of an insufficiently complex model or uninformative features.

Once the issue of underfitting has been overcome, the goal of the model becomes to correctly
predict new examples. When the complexity of the chosen model is such that not only it
learns the patterns present in the dataset but also the particular characteristics of each
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example, it may behave poorly in the presence of new data in which case it is said to be
overfitting.

3.4.3 Training, Validation and Test Sets

In order to choose the appropriate machine learning algorithm for the specific task being
undertaken, it is usual to split the available dataset into different subsets.

The first subset, known as the training set, is used to fit or build the model and is usually
comprised of 70% to 80% of randomly obtained examples of the original dataset, although
other split ratios can be considered.

The remaining 20% to 30% of the data is usually equitably divided between the validation and
test sets. The former is used to estimate prediction error for model selection and tuning the
appropriate values of hyperparameters and the latter to assess the generalization error of the
chosen model.

Alpaydin (Alpaydin, E. (2014)) uses a clear, easy to understand analogy in order to explain
the difference between the different sets: “...when we are taking a course: the example
problems that the instructor solves in class while teaching a subject form the training set;
exam questions are the validation set; and the problems we solve in our later, professional life
are the test set”.

3.5 Learning Methods

3.5.1 Linear Regression

Linear regression models are one of the most commonly used forms of supervised machine
learning algorithms owing to their simplicity and interpretability, while also being very
effective in many different tasks.

These models are the basis for all the other regression methods and have their simplest
expression in the form of the simple linear regression which can be written in the form

y(x) =Po+pix+e€ (3.1)

where E(Y|X = x) = B, + B,x is the mean function, and € is the statistical error to take into
account the difference between the actual response true and the predicted results. 5, and S,
are usually unknown parameters that characterize a model, and which may be estimated from
the data through different methods. These parameters are known, respectively, as the intercept
and the slope and are represented in Figure 3.4.
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Figure 3.4 — Simple linear regression visualization (Weisberg, S. (2013))

The most usual method used for the estimation of the intercept 8, and slope 8, parameters is
the ordinary least squares method (OLS).

For the more common cases in which a model contains a set of different variables, a
generalization of the simple linear regression, known as multiple linear regression, must be
developed, and thus

Y=XB+e¢ (3.2)

where Y a N = 1 vector, represents the resultant, X is a N(D + 1) matrix of features, B is a
(D + 1) = 1 vector of regression coefficients or weights and € is the residual error between
the predictions and the respective response as mentioned for the simple linear regression case.
It is also usual to find the previous expression written in the form

As mentioned above, the estimation of the coefficients f can be made, among others, by
means of the least squares method also known as maximum likelihood estimation. The goal of
the least squares linear regression is to minimize the sum of squared errors (SSE) sometimes
also called residual sum of squares (RSS), which corresponds to minimize the sum of the
lengths of the vertical (black) lines between each training value (red dots) and the respective
prediction as represented in Figure 3.5.

N N D
SSE = Z(}’i —y(x))? = Z()’i - Z wjx;; — €)* (3.3)
=1 =1 =
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Figure 3.5 — Linear least squares fitting (Hastie, T., Tibshirani, R., Friedman, J. (2013))

3.5.2 Logistic Regression

Although this type of model has the same objective as that of all other regression models, and
despite being called a regression, this method is in fact a form of classification (Murphy, K. P.
(2012)) and not a regression model since the obtained responses or outputs correspond to
discrete binary values which can be understood as categories such as true or false and success
or fail.

The bounded nature of the outputs involved in Logistic Regression problems, means that the
application of the ordinary least squares method (OLS) to the data is not the correct approach
as this would allow the return of values outside the expected range.

In order to allow for a continuous function with a codomain [0,1] that represented the above-
mentioned categories such as true or false if an input is close to 1 or O respectively, and
considering its mathematical flexibility and the interpretability of its parameters, the sigmoid
or standard logistic function was adopted,

flx) = (3.9

1+e>

where x is the input and e is Euler’s number which constitutes the base of the natural
logarithm.
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Figure 3.6 — Logistic functions (Montgomery, D. C., Peck, E. A., Vining, G. G. (2015))
The Logistic Regression model to be fitted to the data has the form,

eBO‘I'le 1

sigmBo + B1%) = 105w = T3 o= GotFim (3.5)

where B, and B, are the unknown parameters which for Linear Regression models were
estimated by means of the least squares method by minimizing the sum of squared errors
observed between the predicted values and the actual response. In Logistic Regression
models, the estimate of the unknown coefficients is made by means of the maximum
likelihood method, which maximizes the probability of returning the actual data and demands
the construction of the likelihood function which represent the probability of the observed
data as a function of the unknown parameters.

3.5.3 Decision Trees

This type of learning technique addresses an originally complex problem by splitting it into a
variety of smaller, simpler problems, in a hierarchical structured divide-and-conquer-like
approach, constituting a very simple and interpretable algorithm which can be summed up
into a set of if-then rules (Silva, C., Ribeiro, B. (2018)) and can be applied to both
classification and regression problems.

A decision tree can be defined as a nonparametric method which divides the feature space into
local regions to which a class is associated. Decision trees are composed of decision nodes m
which comprise a test function f,,,(x) from where different branches emerge, each one of
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these branches corresponding to a possible feature value or range of values (Alpaydin, E.
(2014)).

The first step is to select a feature to be placed at the first decision node, usually known as the
root node, and to create a branch for different values of the feature thus splitting the problem
into subsets, a process which can be recursively repeated until the leaf nodes, at the base of
the decision tree are achieved, and thus an output is obtained. Each path followed between the
root node and the different leaf nodes corresponds to a classification rule.
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Figure 3.7 — Dataset partition and corresponding decision tree (Alpaydin, E. (2014))

The goal while constructing a decision tree is to obtain the shortest possible decision tree, and
thus to arrive to the leaf nodes in the shortest number of decision nodes, which can be
achieved by testing the most important attribute first and hence by looking at information I or
entropy, a measure of the randomness of a variable to be predicted, in this case, a class. If for
a particular learning problem exists an optimum attribute, it would divide the examples into
subsets that are all positive or all negative while if an attribute generates subsets with a similar
proportion of negative and positive examples as that of the original set, it would be a rather
useless one.
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Figure 3.8 — Choice of attribute and obtained subset distribution (Silva, C., Ribeiro, B.
(2018))
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Information I is measured in bits and can be computed by counting the number of yes/positive
p or no/negative n classes ate a node and dividing each one by the total number of
possibilities, leading to their respective probabilities P (v;).

I(P(v1), P(v2), ..., P(vy)) = entropy(P(vy), P(vy), ..., P(vy)) = — Xi' P(v)log,(P(vy))
(3.6)

where v, is the nth possible answer of the random variable

Information I is usually also referred to as entropy. It reaches its maximum of log,(P(v;)
when the possible values of the random variable of interest I are equiprobable P(v;) = P(v;)
for any i different from j, and its minimum of I(X) = 0 if there is any i for which P(v;) =1,
corresponding to the cases for which the random variable only have a single value and thus all
examples have the same label.

entropy=-p* g, ip) - (1-p)* g f1-p)
N
//

EIE
p

Figure 3.9 — Entropy function (Alpaydin, E. (2014))

The reduction of entropy due to the partitioning of the examples in its turn can be measured
by the information gain achieved from the feature or attribute A in each decision node.

Gain(4) = [(P(vy), P(vy), ..., P(vy)) — Z’i’ﬂ;;—;I(P(vl),P(vz), ", P(1,) 3.7)

where v, is the vth possible answer of a subset obtained from the division of the feature
considered on a decision node to the ones below.

There are some criteria that can be considered in order to define the moment for which the
division process should be stopped. The first one corresponds to the case for which all
examples belong to a single class and thus the leaf node is pure.

In some other situations a certain minimum number of instances entering a node may be
required, since a generalization error may be incurred due to decisions which are based upon
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an insufficient number of examples. This process known as prepruning simplifies the tree. A
minimum value for the reduction of entropy during the splitting process of a decision node
may also be considered as a stop criterion for the construction of a decision tree.

3.5.4 Random Forests

This algorithm falls in a particular learning method known as ensemble learning in which a
set of different models learned from the data are used in order to achieve the intended goal
(Silva, C., Ribeiro, B. (2018)). This approach is usually compared to typical human decision-
making processes in which the opinion of multiple experts is taken into account and
eventually combined in order to achieve a consensus or, in the cases for which this is not
possible, a voting procedure is engaged upon.

The ensemble learning method is thus based upon the assumption that a set of k learning
algorithms will achieve better results than a single learning technique, if the obtained outputs
are properly combined, being the combination of the different algorithms achieved by means
of voting algorithms.

There are several reasons that may ultimately guide the practitioner to the use of ensemble
learning such as reducing the risk of having a bad performance in the test set by combining
the outputs of an array of different algorithms which make different assumptions about the
presented data, or by using an array of the same learning technique although with the use of
different values for the corresponding hyperparameters.

In particularly large datasets, while the use of a single model may be inefficient, the partition
of the dataset into random subsets and the use of different individual classifying algorithms in
each subset, in a process called bagging, may make the global analysis a more efficient one,
reducing variance and overfitting. In bagging also known as bootstrap aggregation, the above-
mentioned subsets are obtained from the training set with replacement of the chosen
examples, enabling that different subsets may contain the same example. The output class is
determined from the individual classifying algorithms by choosing the one that was obtained
from the latter the most number of times.

It may also be of interest to apply different learning techniques in a serially manner, which
can be made among others through boosting or cascading, allowing for the current running
algorithm to pick up and give emphasis to instances that previous models failed to learn.

As mentioned for the case of decision trees, one way to solve complex problems is to follow a
divide-and-conquer approach, this also applies for ensemble learning, in particular in
situations where a set of different algorithms are capable of solving issues that a single
algorithm cannot solve.
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Random forests can be applied to both classification and regression problems and are based
upon the bagging technique mentioned above, consisting in a process where multiple decision
trees are built and for which the output is the value that appears most often, known as mode,
for classification tasks, and the mean of the predicted value for each decision tree in the case
of regression problems.

The different subsets used by this learning technique should comprise about 66% of the total
number of training examples each. The number of examples to be considered in a subset and
the number of decision trees constitute the most important random forest’s hyperparameters.
For each training subset, a subset of m features are randomly chosen, being the one with the
most information gain placed at the root node, as usually done for the case of individual
decision trees. The random selection process of features avoids possible correlations between
decision trees, increasing the overall accuracy of random trees.

3.5.5 k-Nearest Neighbors

The k-Nearest Neighbors algorithm, also known as KNN is another simple and explainable
learning technique, one that is instance-based meaning that unlike other type of machine
learning algorithms where a model is fitted to the dataset allowing the training examples to be
discarded after, in this technique the training instances have to be stored since they are only
used when a new example has to be classified, and thus a model is never really built. This
leads to a process for which the computational power is deployed mainly in the test stage
while the training process is almost non-existent. This type of processes is sometimes slow
and with a duration that is proportional to the number of training examples, demanding larger
computational efforts being usually inserted in the lazy learning framework.

The kNN learning technique uses the k nearest examples of the training set to classify a new
unseen input, based upon a specific distance, considering for this effect the predominant class
in the set of the k nearest training elements.

Considering the previous description of the procedure used by the kNN approach, there are a
few key considerations to be made, namely the use of representative samples instead of the
full training set depending on the number of examples, the choice of the number of the k
nearest examples, the type of distance used to measure the proximity of the training points to
the new unseen data and the method used to classify the new input.
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Figure 3.10 — KNN example (Nilsson, N. J., (2005))

The definition of the value k is no easy task demanding, many times, the use of a tuning
procedure to find the best value depending on the problem in hands. Taking into account the
example defined by Figure 3.11, where three different options are considered for the value of
the k nearest neighbors. For k = 1, thus a small value, the output would be a square and it
may be considerably influenced by noisy data. For a larger k = 7 the obtained answer would
be the class of triangles, while increasing even further the number of k = 15 the output would
once again be the class of squares, being obvious the influence of data points of different
classes when considering large values of k. The values considered for the number of
neighbors k should always correspond to an odd number in order to avoid ties, in which case
the obtained output would be a random value between the tied ones (Kuhn, M., Johnson, K.
(2018)).

Different advantages and disadvantages can be pointed out when using small or large values
of k. When considering the latter, as expected, the computational effort demanded by the
algorithm is greater, enabling however smoother decision boundaries and the extraction of
probabilistic information due to the availability of the proportions of examples that belong to
the different existing classes.
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Figure 3.11 — Influence of the value k (Silva, C., Ribeiro, B. (2018))

The distances used to evaluate the nearest neighbors can be computed in different ways, being
the Euclidean and the Manhattan the two most common used distances.

The well-known Euclidean distance corresponds to the shortest distance between two points x
and y and may be defined as,

d(x,y) = \/zyzl(xj —yp)? (3.9)

The Manhattan distance between the two abovementioned points, can be interpreted as a path
with 90° turns, which can be computed as,

d(x,y) = Xjo|x — v (3.9)

v
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Figure 3.12 — Distance definition — Euclidean (Left) and Manhattan (Right) (Silva, C.,
Ribeiro, B. (2018))
The classification of an example based upon the class of the k nearest neighbors, can be done
through different approaches, being the simplest one known as the majority voting, which
accordingly to its name consists in assigning to the new example the class which is the most
represented by the examples that constitute the k nearest neighbors. Another more complex
approach is to assigned different weights for the different neighbors, proportional to their
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distance to the new example. Since the closest neighbors should represent better the class to
which the new example belongs, their contribution, and hence their weight, for the

classification of the example should be greater and thus one possible weight to be considered
1

a(x,y

making the obtained output less vulnerable to fluctuations of the k value.

could be

2 (Silva, C., Ribeiro, B. (2018)). The latter procedure also contributes in

3.5.6 Neural Networks

Anrtificial neural networks (ANN) were developed following a growing interest regarding the
functioning of the human brain and the realization that this process could be efficiently
replicated by computers.

The human brain is comprised of a set of 10** individual simple elements known as neurons,
which are interconnected in such a way that each neuron is linked to 10* of its peers, forming
a web that allows the execution of complex tasks and decisions in an efficient and rapid way.
This performance is a result of a neuron’s low switching times to excitations received from
the connections to other neurons, a process that occurs in 10 seconds, and that when
compared to the switching speeds of computers 10™° seconds seems rather slow.

Taking into account a neuron’s switching time and that for example a 10" seconds time span
is needed to recognized our loved ones, it would be expected that only a few hundreds of the
10™ neurons would be involved in this processes, leading to the assumption by the scientists
that the brain’s functioning is a result of a synergy obtained from a large quantity of neurons
working in parallel instead of the sum of each neuron’s individual action.

Nowadays scientists believe that a part of the biological neural network is born with each
subject, while the rest is a result of the different experiences and interactions to which one is
subjected to, leading to the creation of new connection resulting in new learnings, memories
and other basic neural biological functions.

Figure 3.18 represents a single neuron and its structure which can be divided up into a
Dendrite, the body cell or Soma and Axon. The first act as receivers and are comprised of
nervous cells that carry electrical signals to the Soma where the sum of the different received
signals is carried out. Depending on the value of this sum, if a certain threshold is achieved,
the signal is sent to the Axon, otherwise the neuron won’t transmit any information down the
network and thus won’t excite the neurons to which it is connected. When the defined
threshold is met, the signal is passed to other neurons through the synapses, being the
connection with different neurons as strong as the respective synapse which ultimately
depends upon the value of the sum received from the Soma.

As ANNSs are based upon biological neural networks, they exhibit a considerable number of
characteristics that can be observed in human cognitive processes, namely, the ability to learn
from experience, the possibility of generalization from examples and the capacity of
abstraction regarding characteristics that only contain irrelevant facts for the situation in
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hands. Furthermore, this type of learning technique is fault tolerant, leading to a considerable
adaptation capacity.
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Figure 3.13 — Neuron (Russel, S. J., Norvig, P. (2016))

Artificial neural networks (ANN), a field which is sometimes also mentioned as parallel
distributed processing, connectionism or neural computation, can be understood as a network
analogous to the biological neural networks described previously, in which the neurons are
represented by basic units known as perceptrons.

Bias Weight

apg=1 —
. N a;=gGin;)

Wi

Input Input  Activation Output
Links Function Function Output Links

Figure 3.14 — Perceptron (Russel, S. J., Norvig, P. (2016))
A perceptron j has as its goal the calculation of a linear combination by means of a weighted
sum in; of the activation values a; (Equation 3.10) in order to obtain an output which can take
the values 0 or -1 depending on the activation value determined from an activation function

g(iny).

ing = XLitoWija (3.10)
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where q; is the so-called activation received from unit or perceptron i and w; ; is the weight
associated to link from perceptron i to j, and that determines both the sign and strength of the
connection.

In addition to the different weights associated to the different links it is also taken into
account an additional weight w,; known as bias weight which defines perceptron j’s
threshold.

The goal of the activation function, as the name suggests is determine if the weighted sum in;
activates or inactivates the perceptron. Furthermore, it is usual to define the activation
function as a nonlinear function due to the fact that if a linear function is considered, the
entirety of the neural network is resumed to a linear function.
Considering the threshold function as the activation function, the activation process could be
represented as,
noweas >
lofor T <o =
=0 ", j"

a(in;) g(in;)

l

in; in;

Figure 3.15 — Activation functions. Threshold function (left), Linear function (middle),
Sigmoid function (right) (Russel, S. J., Norvig, P. (2016))

Despite being able to represent simple logic operations such as the And and Or Boolean
functions, a single perceptron is limited to the representation of linearly separable functions,
which is a serious limitation, one that demands the construction of a network of perceptrons
with different structures.
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Figure 3.16 — And and Or Boolean fuctions (Silva, C., Ribeiro, B. (2018))

Accordingly to whether the data can follow only a direction along the network or there will be
a loop, the ANN can be classified as a feed-forward network or as a recurrent network.
Feed-forward networks, as the name implies, are networks that are comprised of connections
that only go along one way, receiving inputs upstream and delivering outputs downstream,
thus representing itself a function of the inputs.

Recurrent networks on their turn, allow as inputs their own obtained outputs, resulting in a
more complex system for which its response depends upon not only on the fed inputs but also
upon the initial state of the inputs obtained from the outputs making them harder to
understand.

The example presented in the figure below represents a 3-layer artificial neural network. The
first layer, known as the input layer, is comprised of two inputs x; and x,, each connected to a
middle layer, in this particular case a single hidden layer composed of two perceptrons n, and
n,. The output layer is comprised, in this example, of a single perceptron n; with a single
output.

While the definition of the number of input and output perceptrons only depends upon the
number of available features and intended outputs, the number of hidden layers is of harder
definition, being able to influence not only the algorithms capacity to solve the problem if an
insufficient number of layers are chosen but also its generalization capabilities if too many
hidden layers are considered.
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Figure 3.17 — Neural network with 3 layers (Silva, C., Ribeiro, B. (2018))

In order to simplify the understanding of the procedure of finding the weights to be
considered in a neural network, a simple single layered network, usually known as single-
layer feed-forward neural network or perceptron network is considered.

The goal of the training is to determine the weights that lead to the determination of correct
output for the different training examples. Two possibilities are usual considered, the
perceptron training rule and the delta rule.

The perceptron training rule begins with a random set of values for the different weights. This
are then altered every time a example is misclassified, a process repeated until the perceptron
is able of classifying every training example, being the different weights updated accordingly
to,

Wit1 = W; + AWi (312)
Aw; =n(t —o)x; (3.13)

where t is the target output, o is the output generated by the perceptron and 7 is a positive
constant known as learning rate, whose function is to moderate the rate at which the weights
may vary at each training example. Considering the definition of Aw; it is easy to conclude
that if an example is correctly classified then t = o and t — o = 0 and thus Aw; = 0, leading
to no updates on the value of the respective weight.

Despite of the intuitive nature of the perceptron training rule, and its ability to converge in a
finite number of steps, for a small enough value of 5, this will only happen if the displayed
examples are linearly separable, otherwise, convergence is non-guaranteed.

To solve this issue the gradient descent-based delta rule was developed, allowing for the
determination of the weight vector that best suits the intended outputs.
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The process starts with the definition of a measure for the training error, which is usually
chosen to be the sum of squared errors, previously used for linear regression and which is
defined for the ANN as

E(W) = > Yaep(ta — 04)? (3.14)

where d an example belonging to the training set D, being E represented as a function of the
weight vector w due to the fact that the outputs o are a function of this same vector,
depending on the training set as well.

Taking into account the definition of E(w) and visualizing the space composed by two
weights w, and w; and their respective errors E, a parabolic surface comprising a single
global minimum is obtained. The weight vector to which the global minimum corresponds
can be determined from an initial random weight vector and considering an iterative process
which follows the steepest descent direction until the minimum value of E is obtained, in a
process known as gradient descent.

Figure 3.18 — Error surface (Mitchell, T. M. (1997))

Due to the limited nature of perceptron networks which are only capable of representing
linear decision boundaries, a new approach known as multilayer networks, capable of
representing highly nonlinear decision boundaries, was developed. Multilayer networks work
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with a continuous, differentiable function, known as sigmoid function, previously seen for the
case of logistic regression, allowing for the use of the gradient descent technique.

The consideration of additional layers, known as hidden layers, allows the obtainment of an
enlarged space of hypothesis. Despite this however, the ideal number of hidden layers to be
considered for the different problems remains a topic under investigation.

Unlike single layered networks, in which the error may be determined by comparing the
obtained and the target outputs, in multi-layered networks, this process is not directly
applicable since it is not possible to know the target for the hidden layers, making it difficult
to determine the error and hence the different weights.

In order to overcome this difficulty, a new algorithm, known as Backpropagation algorithm
was developed. This technique is based upon a redefinition of the error E applied in this case
to the entirety of the output units and defined as,

1
E(w) = EZaep Ykeoutputs(tea — Ora)? (3.15)

with ¢ and o, respective the target and obtained outputs for the k™ output unit and for the d™
example.

The Backpropagation algorithm starts by defining the number of input units, hidden layers
and output units and considering random values for the initial configuration of weights as
done for the perceptron network. Then for each training example the inputs are propagated
forward through the network until the determination of the different outputs, followed by the
computation of their respective errors &

O = 0 (1 — 05 ) (tx — 0k) (3.16)

These errors are then propagated backwards along the hidden layers, allowing for the
determination of the hidden layer’s error &, and the updated weights wy;.

Sn = op(1 — 0p) Xkecoutputs Win Ok (3.17)

This iterative process is repeated for the array of different examples that belong to the training
set until a specified stop criterion, such as the number of iteration or a threshold for the error
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iIs met. This sometimes required that the same training set be presented several times in its
entirety to the algorithm, each one of these times comprising what is known as an epoch.

Although it is possible to apply the gradient descent method for the determination of the
weights vector w, the obtained error surface may comprise not only a single global minimum
but instead, multiple local minima. Despite this, the Backpropagation method has allowed for
good results in a large array of different practical problems.

3.5.7 Support Vector Machines

A Support Vector Machine (SVM) is a learning algorithm that is inserted in the supervised
learning framework, and which is based upon statistical learning techniques. SVM’s were
developed in the 1990°s by Vapnik as a binary classification technique, although regression-
oriented versions are also available, making them a fairly recent approach when compared to
other learning algorithms.

This learning algorithm has some particular characteristics which make it a very robust and
high-performance ML technique and hence a rather popular one, being the recognition of
handwritten digits a common application. Among these characteristics one can highlight its
good generalization capabilities, obtained by maximizing the distance between the example
points and the decision boundary, a process known as maximum margin separator; the use of
the kernel trick, allowing the algorithm to cope not only with linear separable data but also
with nonlinear datasets, giving SVM’s a great advantage when compared to learning
techniques which are exclusively oriented to linear representations. Due to the nonparametric
nature of this learning algorithms, SVM’s may need to store a significant portion of the
presented examples, allowing it the possibility to represent complex functions, this however is
counterbalanced by the fact that in reality the algorithm will only use a small part of these
examples, the ones it considers more important, hence contributing for a good behaviour
regarding the issue of overfitting.

As mentioned above, SVM’s have its roots in the field of statistical learning. Their goal is to
minimize expected generalization loss instead of the empirical loss, in other words, instead of
attempting to minimize the loss (the number of mislabelled examples in case of classification
problems) inferred from the training set, the algorithm tries to minimize the problem’s real
loss by assuming that the unseen data has the same distribution as the examples presented in
the training set and by looking for the previously mentioned maximum margin separator.

Taking into consideration the simplest SVM’s, those that revolve around binary classification,

also known as Support Vector Classification (SVC), in which the goal is to find the best plane
that separates two classes, a positive and a negative one, it is easy to verify from Figure 3.19
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that different separating planes, known as hyperplanes, can be drawn, however only the
maximum margin separator will minimize generalization loss.
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Figure 3.19 — Linear separators (Russel, S. J., Norvig, P. (2016))

A margin can be geometrically interpreted as the width that separates the closest data points
of different classes, these particular data points are known as support vectors.
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Figure 3.20 — Maximum margin separator and support vectors (Russel, S. J., Norvig, P.
(2016))

The maximal margin classifier or hard margin SVM is based upon a linear function in the

form of equation (3.20) that assigns a +1 or -1 classification for f(x) =0 or f(x) <0
respectively and can only be applied to linearly separable data.

f(x)=(w.x)+b (3.20)
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where w is the weight vector and b is the biases, the former defines a direction perpendicular
to the hyperplane while the later moves the hyperplane along its parallel direction.

The maximal margin hyperplane is defined as,
(wx)+b=0 (3.21)
Considering the imposed restrictions
(w.x)+b=>+1,fory, = +1 (3.22)
(w.x)+b<—1,fory, =-1 (3.23)

the linear classifiers that separate a set have a positive margin, meaning that the above
restrictions ensure that does not exist any example between the hyperplanes defined by both

(wx)+b=0and |(w.x)+b| =1 (3.24)
Considering that the Euclidian distance between the support vectors and the separating
hyperplane can be represented by d, and d_ respective for the positive and negative support

vectors, and that p is the maximum margin obtained between all the hyperplanes and thus
p=d,+d_.

The distance between any given point x; and an hyperplane (w, b) is given by

|(w.x;) + bl _ yi(w.x;) + b)

d;(w,b,x;) = = (3.25)
N Twl
and as a result,
1
d;(w,b,x;) > —— (3.26)
llwl|

The above expression leadsto d, = d_ = ”—:V” and thus,

_ 2 (3.27)
P = Twll |
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Figure 3.21 — Margin definition (Burkov, 2019)

As can be concluded, the maximum margin separator that will allow the best generalization
capabilities corresponds to,

max p (3.28)

subject to y; (w.x;) + b)zL i ={1,2,...,n} which constitutes the primal problem.

llwll’
However, this problem is usually rephrased to the equivalent dual problem,
min ||w]|| (3.29)
subjectto y;((w.x;) + b)>1,i = {1,2,...,n}
The above mentioned dual problem corresponds to a quadratic programming optimization

problem, which results in the definition of the support vectors and the bias b, thus allowing
for the classification of a test example through the sign of the function,

f(z) =(w".z)+b" (3.30)
where the w* and b* are the result of the optimization problem.

The classification is obtained simply by means of the dot product between the test set z and
the different obtained support vectors.

In most of the practical cases, the structure of the available dataset is noisy hence not linearly
separable, and thus, rigid margin SVMs are not able to return a solution.
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Unlike hard margin SVMs, soft margin SVMs allow for examples to fall on the wrong side of
the separating hyperplane and despite the possibility of misclassified examples, one tries to
keep the probability of their existence to a minimum. It may happen as well that although the
example is correctly classified, it lies within the margin.

In order to take into account, the possibility of misclassified examples, the previously stated
quadratic programming optimization problem is transformed to the form,

min= Wl + € T, &; (3.31)
subjectto y;((w.x;) + b)>1—-¢;,¢,>0,i ={1,2,...,n}

where Y7, &; is the soft error and &; are known as slack variables which can be geometrically
interpreted as the distance between the misclassified examples and the separating hyperplane.
If & = 0 then the example is correctly classified and not within the margin, if 0 < &; < 1 the
example is correctly classified but it falls within the margin and if &; > 1 then the example is
misclassified.

C is a parameter that controls the trade-off between the complexity of the algorithm and the
number of misclassified examples., the bigger the value of C, the bigger the penalty when an
example is misclassified.

Both hard and soft margin SVMs are linear classifiers, which do not suffice in highly
nonlinear datasets. In these cases, a different approach, where the original features are
transformed into a higher dimensionality space, in which they can then be linearly separated,
may be followed. Figure 3.22 shows a nonlinearly separable dataset in a 2D space
transformed into a 3D space in which it is now possible to linearly separate the data.
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Figure 3.22 — Representation of a single boundary in different dimensions (Russel, S. J.,
Norvig, P. (2016))

In this approach the increase in dimensionality of the feature vector x is achieved by means of
basis functions ¢(x). Since the function ¢(x) that works best for the dataset in hands is
unknown at the start, it would be necessary to transform each example into the higher
dimensional space, and then applying the SVM to the data considering different mapping
functions, which would become a very inefficient process since first one would have to
transform the feature vectors and then proceed to the computation of their dot product. In
order to avoid this issue, and since only the previously mentioned dot product is needed, the
well-known Kernel Trick is applied, making it possible to compute this dot product after
mapping the feature vectors which can be achieved by means of kernel functions. Considering
two examples x; and x,, the kernel function can be defined as,

d(x1) p(x2) = K(x1,x3) (3.32)

where depending upon the chosen kernel function K(x4,x,), SVM can learn among others,
dt" polynomial classifiers, radial basis (RBF) or sigmoid neural networks.

Kpory (X1, %3) = (x1.%, + 1)@ (3.33)
Krpr (1, x7) = eV &x17%2)%) (3.34)
Ksigmoid(xlr xz) = tanh(kl(xl-xz) + kz) (3-35)
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3.6 Evaluation metrics

The ability of a machine learning algorithm to perform a certain task T can be assessed by
means of specific quantitative measures of performance P, which allow the user to evaluate
the quality of the chosen model (Goodfellow, 1., Bengio Y., Courville, A. (2016)).

Depending on the type of problem at hand (classification or regression), different performance
assessment metrics can be considered, some of them however may be applied to both
problems (Zheng, A., Casari, A. (2018)).

3.6.1 Confusion Matrix

Confusion Matrices are used in Classification tasks and allow, when compared with other
metrics, a more detailed analysis of the predicted classification for the different examples and
their distribution among the existing classes. The importance in knowing this distribution is
related to the cost of misclassifications which can be different depending on the class. This
issue can be understood considering an analogous situation such as the one in which a doctor
as to diagnose a cancer patient. In this particular situation, the cost of diagnosing the patient
with cancer when in reality it does not exist, also known as a False Positive (FP), is rather
different from the cost of diagnosing a patient as cancer-free when in reality he or she is not.
Confusion Matrices are not limited to binary classification problems but can also be applied to
multiclass ones.

A common example used to present the Confusion Matrix is the classification of emails as
“Spam or “Not Spam”. In this problem, the learning algorithm is provided with the set of
email’s text and metadata as input in order to obtain a label as output with classes “Spam” or
“Not Spam”, which can also be respectively named as “positive” or “negative” or even as “1”
or “0”.

spam (predicted) not spam (predicted)

spam (actual) 23 (TP) 1 (FN)
not spam (actual) 12 (FP) 556 (TN)

Table 3.1 — Email classification Confusion Matrix (Burkov, A. (2019))

From the analysis of the table above, it is possible to conclude that 23 examples where
correctly classified as being spam and are thus True Positives (TP). However, there was 1
example which was classified as not being spam when in reality it in fact was, corresponding
to what is known as a False Negative (FN). From the 568 examples that were in reality not
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spam, 556 examples where correctly classified (True Negatives (TN)), while 12 were wrongly
labelled as spam (FP).

Considering the simplest of cases, the Confusion Matrix of a fixed classifier f and a test set of
T examples can be mathematically defined as,

C(f) ={c;j(N}ijef12,..,03=3_[(y=DASf(x) =] (3.36)

where x is a test set example and y the corresponding label. i and j are, respectively, the rows
and columns of the matrix and [ is the number of classes.

Each element of the matrix c;;(f), corresponds to the number of examples that in reality
belong to the class i but were assigned by the classifier the class j.

i Pred_Negative Pred_Positive
Act_Negative cr(f) c2(f)
Act_Positive c21(f) c2(f)

Table 3.2 — Generic Confusion Matrix (Japkowicz, N., Shah, M. (2011))

From the analysis of equation (3.36) and Figure 3.24, one can conclude that the diagonal
entries c; of a Confusion Matrix correspond to the correct classified examples, while the
remain nondiagonal ones are misclassified examples. Furthermore, the sum of the examples
along a row i represent the total number of examples which in reality are labelled as class i
while the sum of examples along a column j represent the total number of examples that were
predicted to be of class ;.

Usually, a Confusion Matrix C(f) measures the performance of a single model f obtained
from a fixed learning algorithm. However, when only a small dataset is available it may be
necessary to resample the available data, creating multiple pairs of training and test sets, in
which case the Confusion Matrix would represent the combined performance over the
different pairs. It is also possible for the different entries of the Confusion Matrix to represent
not only the performance over the different test sets but also over different models obtained
from different learning algorithms.

3.6.2 Error Rate

The Error Rate R (f) is a performance metric that returns the ratio of misclassified examples
to the complete set of examples comprised in a dataset.
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Rr(f) = = X1, 1(: # f(x)) (337)
where the indicator function I(a) returns a value of 1 if the condition a is true, and 0 when
this is not the case.

Considering the previous definition of the Confusion Matrix, expression (3.37) can also be
written in the form of equation (3.38) for the more general case of multiclass tasks and in the
form of equation (3.39) for binary classification problems.

Yoy Thgini (D) Thoy Xy i (N-Tizq cu()

= = 3.38

Rr () Yo Zhog e Yo 2oy e (3.38)
FN+FP

Rr(f) = TP+TN+FP+FN (3:39)

3.6.3 Accuracy

The accuracy Accy(f) is the ratio of correctly labelled examples, positive and negative, to the
total amount of available examples, and can thus be understood as the complementary of the
Error Rate.

1 i)
ACCT(f) = ;2?:1 I(yl = f(xl)) = Z£=122=1 Cij(f) (340)
TP+TN
Acer(f) = rornirmern (3.41)

Together with the Error Rate, Accuracy gives a perspective of the overall performance of the
model being evaluated, considering the full range of classes involved in the problem. These
however don’t reflect the importance that particular classes may have in the task being
undertaken. Moreover, the two above mentioned metrics give better information when the
dataset has a balanced distribution among the different classes, opposed to when some
particular classes are represented by a considerably larger number of examples, in which case,
a biased result, influenced by the more-prevalent class is obtained.

3.6.4 Precision

Precision Prec;(f) or Positive Predictive Value PPV;(f) is a metric that can be understood as
the ratio of examples that were correctly labelled as being of class i to the total amount of
examples which were classified as being of this particular class, and thus, Precision enables
the comprehension of how precise the model is in classifying the examples of a given class.
For multiclass tasks this can be represented as,
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_ . _ _cil)
Prec;(f) = PPV (f) Ty cn () (3.42)

while for the particular case of binary classification tasks,

TP
TP+FP

Prec(f) = PPV (f) =

(3.43)

3.6.5 Recall

Recall, usually known as Sensitivity or True Positive Rate TPR;(f), returns the ratio of the
examples that were labelled by the classifier as being of class i to the total amount of
examples which actually belong to the class being surveyed.

i(f)
Reci(f) = TPR(F) = Lo (3.44)
j= i

TP
TP+FN

Rec(f) =TPR(f) = (3.45)

3.6.6 F measures

The different F measures, combine both Precision and Recall into a single metric by means of
a weighted harmonic mean which in its most general form can be represented as,

P o= (1+B82%)(Prec(f)*Rec(f))
B = " (pz«Prec(f))+Rec(f)

(3.46)

where f§ € Rwith g > 0.

The F1 score, with § = 1, takes into account both Precision and Recall evenly (3.47), while
the F2 score for its turn doubles the weight of recall in comparison to precision (3.48).

__ 2(Prec(f)*Rec(f))
" Prec(f)+Rec(f)

L (3.47)

F = 5(Prec(f)*Rec(f))
2 7 (4xPrec(f))+Rec(f)

(3.48)
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3.6.7 Root-mean-squared-error

The root-mean-squared-error (RMSE) is the most widely used metric for the assessment of
regression tasks and can be defined as the root of the averaged squared distance between the
predicted value and the actual value.

, N o fir))2
RMSE = lel(ylnf(xl)) (3.49)

where y; is the actual value of the example, f(x;) is the corresponding predicted value and n
is the total number of available examples.

3.6.8 Mean absolute percentage error

The mean absolute percentage error (MAPE) is obtained by first determining the error of the
predicted value in comparison to the actual value. The error is then transformed into a
percentage of the actual value and an average of the errors of the various examples is then
obtained and can be represented by equation 3.50.

1 on—1lyi—fx)l
MAPE = Y2 == (3.50)

3.7 Summary

In this Chapter were presented the most common types of problems and the different
algorithms frequently used for their resolution as well as some of the evaluation metrics
available for the analysis of the suitability of the created models. The application of these
techniques to the proposed problem as well as the evaluation of the obtained results is
presented in the following Chapters.
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4 Proposed Approach

This chapter presents the proposed approach to tackle the problem of designing unreinforced
welded beam to column connections using machine learning techniques. As mentioned
previously in chapter 1, this problem will be divided into two different problems. A
classification problem to identify the conditioning component and a regression problem to
obtain the corresponding design resistant bending moment.

Considering the current procedure followed for the design of steel joints, the need to repeat
this same process for a large set of similar connections within a single project as well as the
large number of existing data related to previously validated examples, makes the application
of machine learning techniques an interesting approach to transform this procedure into an
easier and faster one.

The application of these methods to the design of steel connections and the corresponding
validation of its results make the obtention of a dataset, as well as the development of
different models an essential part of this work.

/

Dataset Generation

Prepare
Classification |—
Dataset

Model Creation and Validation

Augment
Data

Get Data Train —P Test —P Improve

Prepare
Regression |
Dataset

- J

Figure 4.1 — Proposed workflow

The workflow used for the development of the proposed work presented on Figure 4.1 was
based upon the Machine Learning workflow of Figure 3.3.

The process of creating and augmenting the dataset as well as its division into two different
sets used for the two proposed problems (Classification and Regression) are fitted into
Chapter 4.1 “Dataset Generation”. The procedures followed to train the different models and
the analysis of the obtained results based upon the respective tests are presented in Section 4.2
and Chapter 5.
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4.1 Dataset generation

The development of the proposed work depends necessarily on the creation of a dataset
composed of a significant volume of examples that are representative of the type of
unreinforced welded connections that practitioners are faced with in their work. Taking into
account the difficulty in constructing a dataset with real examples developed during the
design of buildings or other structures, namely due to the need of consent to use this data from
the different parts involved for each of the different projects, a different approach was
followed. This approach was implemented through the development of a simple script, using
everyday tools such as Excel and Visual Basic for Applications (VBA), for the design of
welded beam to column connections accordingly to EN 1993-1-1 and EN 1993-1-8,
considering a wide range of European | and H sections and.

Considering that one of the objectives is to construct the dataset to represent the widest range
of I or H sections, including welded built-up sections, its development was made considering
that the inputs to be fed to the different learning algorithms should comprise geometric
characteristics that are not only analogous among the different sections but that also translate
in some degree their resistance. Thus, a total of 8 different geometric characteristics,
represented as real-valued numbers, for both the beam and column were considered.

— hy, the height of the beam

— by the width of the beam

— typ the thickness of the beam’s web

—  tsp the thickness of the beam’s flange
— h, the height of the column

— b, the width of the column

—  ty the thickness of the column’s web
—  tyc the thickness of the column’s flange

In addition to the 8 features comprising each example, 2 different outputs were considered.
The first, to be used in classification problems, corresponds to the governing component, the
one that limits the connection’s resistance for the different examples. Taking into account the
interest in determining the resistance of an unreinforced welded connection given the sections
of the beam and column, a second output, consisting of a real-valued number, which
represents the resistance of the connection due to its weakest component was considered,
allowing for the development of regression analysis. Both outputs were obtained considering
the same S355 steel grade for both the column and beam elements.
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Due to the different nature of both outputs, the original dataset was split into two distinct
datasets, both with the same number of examples and features but each with its corresponding
output.

The flowchart represented in Figure 4.1 shows the algorithm developed and implemented for
the creation of the dataset.

The first step consists in assigning a section for the beam b; to be connected which can be
characterized by the dimensions hy;, by, twp; and tgp;. Once the beam section has been
defined, one proceeds to the definition of the column’s section ¢; which is characterized by its
respective dimensions h;, b, ty.; and tg.;.

For each pair beam-column, a set of limits are considered for the ratios hy;/h.; and by;/b.;,
in order to avoid unrealistic beam-column pairs. The assumed limitations are as follows.

— by < b
— by = 0.5b,;
— hy; < 2h;
— hy; = 0.5k

In case any of the above-mentioned conditions are not met, the pair in analysis is discarded
and the following column section is considered. If all ¢; sections were previously considered,
a new cycle begins with a new beam section.

Otherwise, if all the conditions are respected, the algorithm assigns the null value to the
design bending moment acting on the beam Mg, , = 0, and an increment of bending moment
Mg step COrresponding to 1% of the smaller resistant bending moment between the beam and
the column sections is considered Mgy min = min(Mgg pi; Mgaj). The design bending

moment Mg, ;, is then successively incremented, as well as the bending moment acting in the

. . .- . . M
column above and below the beam which as a simplification, is assumed to be Mg, . = Ez‘“’.

In each cycle n for which the design bending moments are incremented, the algorithm
engages in an analysis of the utilization ratio R, of the different components of the
connection, except for the flange welds component, as it is assumed that these are full strength
and thus do not govern the resistance of the connection. The cycle ends when the ratio R,, >
1, in which case the governing component is determined as well as its corresponding
resistance in the form of the maximum bending moment that may act on the beam, Mp,;, =

MEabn
Rn
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Figure 4.2 — Dataset generation flowchart — 9079 datapoints
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This process is then repeated for the different beam-column pairs, allowing for a total
of 9079 different combinations. Figure 4.2 represents the distribution of the obtained
beam-column pairs in a 2D plot with the beam height h;, in the abscissa and the
column height h. in the ordinate axis. From the analysis of this plot one can highlight
the clear distinction of the upper and lower limits introduced by the constraints
hypi < 2h;; and hy,; = 0.5h;;. Furthermore, the dataset as the appearance of an
artificially created one, reflected mainly by the organized distribution of the examples.

~~~~~~

598 1118

Figure 4.3 — Dataset visualization — Beam height vs Column height

In order to increase the number of data points comprising the dataset and giving it a
more disperse and realistic distribution of examples, a new set of 10 beam-column
pairs with dimensions h*, b*, tw* and tf* was obtained from each one of the previous
9079 combinations as represented on the flowchart of Figure 4.3. This procedure was
based upon the ratio of the mean to nominal dimensions of the different sections and
their corresponding coefficient of variation (c.0.v), which by considering a normal
distribution allowed to obtain a total of 99849 different beam-column configurations
distributed among 3 different classes, Column Flange in bending, Compression Web
and Web Shear.

Dimension b h tw tr
mean/nominal 1 1 1 0.98
C.0.V 0.9% 0.9% 2.5% 2.5%

Table 4.1 — Standard steel sections dimensional distribution
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Figure 4.4 — Dataset generation flowchart — 99849 data points
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From the analysis of Figure 4.4, it is noticeable, the increased number of data points and their
more disperse distribution.

1192.9101

634.27947

Compression Web
Web Shear
Column Flange in bending

75.021 627.7131 1180.40489

75.649

Figure 4.5 — Dataset visualization — Beam height [mm] (abscissa) vs Column height [mm)]
(ordinate)

4.2 Model creation and validation

Once the dataset has been obtained, it becomes necessary to define the best approach to be
followed in order to apply the different learning algorithms. Thus, and taking into account its
versatility and its rising popularity amongst the Machine Learning community, programming
language Python was chosen to be the default one for the development of this work.
Moreover, the different pre-processing operations needed, the different learning algorithms
used as well as the different evaluation metrics used for their validation were implemented by
means of open source Machine Learning library sklearn2.

2 https://scikit-learn.org/
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5 Results and Analysis

This chapter is divided in three parts. The first addresses the Exploratory Data Analysis
(EDA) which is commonly applied before any learning technique, while the last two
correspond to the classification and regression tasks undertaken by applying different learning
algorithms, and by varying the corresponding hyperparameters as well as the number of input
features.

5.1 Exploratory Data Analysis

The process of Exploratory Data Analysis is usually undertaken for the development of an
early analysis of the available dataset, previously to the application of any machine learning
technique. This procedure allows the determination of specific characteristics such as patterns
or anomalies that may be, at first sight at least, hidden within the dataset and that may be
initially disclosed by means of techniques such as the graphic visualization of the dataset.

Beam Height

Beam Width

Beam Web Thickness
Beam Flange Thickness
Column Height

Column Width

Column Web Thickness

Column Flange Thickness

Beam Width

=
-
v
T
=
o
v
o

Column Height
Column Width

Beam Web Thickness
Beam Flange Thickness
Column Web Thickne:

Column Flange Thickness

Figure 5.1 — Feature Correlation

The development of this analysis was made by means of different software. Initially, in order
to obtain the 2D representations of the dataset, the well-known Weka3 software was used. The
will to further develop this analysis, by obtaining also 3D plots, led to the use of Matlab.

Figure 5.1, obtained by means of the Python programming language run within GoogleColab*
, presents the correlation matrix of the 8 considered features. As it can be seen, the diagonal
elements relate the different features with themselves, leading to a full correlation, with a
value of 1.

3 https://www.cs.waikato.ac.nz/~ml/weka/
4 https://colab.research.google.com/
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It should also be mentioned the high correlation obtained between the web and flange
thicknesses of both the columns and the beams, respectively 0.97 and 0.98. The difference
between the two values is a result of not considering exclusively the standard dimensions of
the different sections but also those that despite being based upon their standard counterparts,
were obtained by means of a normal distribution.

The second highest obtained correlation (0.79) refers to the column height and its width. This
reduction, when compared to the previously mentioned correlations, is a result of the
consideration of sections such as HEA and HEB type sections. The width of these sections
increase along with the increase of its height until a certain dimension is reached. Once the
threshold dimension is met, the height of section continues to increase while the
corresponding width remains constant.

The obtainment of the correlation matrix can be used as a support for the feature engineering
process undertaken for the different learning algorithms, enabling an informed choice of the
features to be successively discarded.

Compression Web
Web Shear
Column Flange in bending

248.8362 454.775

Figure 5.2 — 2D Dataset visualization — Beam width [mm] (abscissa) vs Column width [mm]
(ordinate)

The obtainment of relevant results throughout the graphic visualization process depends upon
the choice of the different inputs to relate. Figure 5.2 presents the set of data points by means
of a 2D plot with the beam width values and the column width in the abscissa and ordinate,
respectively. Also, the distribution of the different points with respect to the conditioning
component is displayed, blue for the column compression web, green for the column Flange
in bending and red for the column web shear. From the analysis of Figure 5.2, it is not
possible to extract meaningful information due to the dispersion and superposition of data
points of different classes. Despite this, it should be mentioned the graphical visualization of
the previously mentioned imposed limits to the hy,;/h.; and by,; /b ratios and the fact that the
considered sections do not possess a continuous range of widths, with the absence of the
[315;420]mm range.
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Figure 5.3 — 3D Dataset visualization — Beam width [mm] (abscissa) vs Column width [mm]
(ordinate) vs Column web thickness [mm] (applicate)

Using the representation presented in Figure 5.2 as a basis, and considering an additional
feature, in this case, the column web thickness, it is possible to obtain the 3D plot of Figure
5.3, in which it is possible to notice not only the same range of missing widths [315,420]mm
but also an improvement in the separation between classes, a direct result of considering an
extra dimension for the representation of the dataset.

The use of a 3D representation of the dataset allows not only a better general idea of the
distribution of classes but also the representation of the distribution of the resistance of the
different beam-column pairs as a function of their respective conditioning component, by
considering this resistance in the applicate axis.
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200 350
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Figure 5.4 — 3D Dataset visualization — Beam width [mm] (abscissa) vs Column width [mm]
(ordinate) vs Mrd [kN.m] (applicate)
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60.841

31.8819

Compression Web
Web Shear
Column Flange in bending

3.9 58.611 113.3215

Figure 5.5 — 2D Dataset visualization — Column flange thickness [mm] (abscissa) vs Column
web thickness [mm] (ordinate)

Considering the plot presented in Figure 5.5, with the abscissa and ordinate axis representing
respectively the column flange thickness and the column web thickness, it is noticeable an
improvement translated by a clearer transition zone between two classes, the column
compression web and the column flange in bending, while the third class however remains
considerably disperse.

The separation between the two previously mentioned classes is a result of the influence of
smaller column web thickness in the resistance of the connection, while the increase of this
thickness leads to the change of the connection’s resistance governing factor and thus to the
corresponding conditioning component.
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Figure 5.6 — 3D Dataset visualization — Column flange thickness [mm] (abscissa) vs Column
web thickness [mm] (ordinate) vs Beam flange thickness [mm] (applicate)
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Figure 5.7 — 3D Dataset visualization — Column flange thickness [mm] (abscissa) vs Column
web thickness [mm] (ordinate) vs Mrd [KN.m] (applicate)
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Figure 5.8 — 2D Dataset visualization — Beam height [mm] (abscissa) vs Column web
thickness [mm] (ordinate)

The dataset is represented in Figures 5.8 and 5.11 respectively, by means of the pairs of
features beam height (abscissa) and column web thickness (ordinates) and beam flange
thickness (abscissa) and column web thickness (ordinates).

In the first 2D plot, the transition zone between the conditioning components presents itself
less strict, with a superposition of the two components, column web compression and column
flange in bending as well as with the web shear component.

From the connection’s structural behaviour point-of-view, as it would be expected, smaller
column web thicknesses govern the column web compression component. The obtained
correlation between beam height and beam flange thickness (0.74), suggests that for a
considerable part of cases, the increase in the beam’s height leads to the corresponding
increase of the beam’s flange thickness and thus to it resistance. Thus, considering a constant
column web thickness, the successive increase of the beam’s height leads to a change in the
conditioning component, from the column flange in bending component (for smaller beam
flange thicknesses) to the column web compression (for larger beam flange thicknesses).
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Figure 5.9 — 3D Dataset visualization — Beam height [mm] (abscissa) vs Column web
thickness [mm] (ordinate) vs Beam flange thickness [mm] (applicate)
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Figure 5.10 — 2D Dataset visualization — Beam height [mm] (abscissa) vs Column web
thickness [mm] (ordinate) vs Mrd [KN.m] (applicate)

In the second plot, the one in Figure 5.11, the transition zone between the column web
compression and beam flange compression appears more clear, less blurred, suggesting that
the features adopted for this representation of the dataset, and in particular the beam flange
thickness, are more adequate, and are thus a more proper indirect measure of the beam’s
resistance.
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Figure 5.11 — 2D Dataset visualization — Beam flange thickness [mm] (abscissa) vs Column
web thickness [mm] (ordinate)
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Figure 5.12 — 2D Dataset visualization — Beam flange thickness [mm] (abscissa) vs Column
web thickness [mm] (ordinate) vs Mrd [KN.m] (applicate)

Once more, the consideration of an increased number of dimensions, between the 2D plots of
Figures 5.8 and 5.11 and their respective 3D counterparts in Figures 5.9, 5.10 and 5.12
appears to return clearer separation boundaries between the different classes considering the
same base features in the abscissa and ordinate axis.
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Compression Web
Web Shear
Column Flange in bending

108. 9088

Figure 5.13 — Dataset visualization — Beam flange thickness [mm] (abscissa) vs
Column height/Column web thickness ratio (ordinate)

In an attempt to introduce a third feature in a 2D plot and a fourth feature in a 3D
representation of the dataset that would allow for a better representation of the web shear
component, a “temporary” input was considered. Considering the influence of both the
column height and the column web thickness in the resistance of this particular component,
the ratio column height/column web thickness was considered.

As it can be seen from Figure 5.13 and 5.14, despite some superposition between data points
of different classes, the obtained transition zone between web shear and two remaining
components is now much clear.

It is noticeable that for lower column height to column web thickness ratios, the design
resistance of the connection is governed by web shear, except for smaller beam heights.

Beam Width
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Beam Flange Thickness

Column Height/Column Web Thickness

Figure 5.14 — Dataset visualization — Beam flange thickness [mm] (abscissa) vs
Column height/Column web thickness ratio (ordinate) vs Beam width [mm] (applicate)
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5.2 Component Classification

In order to address the classification task, in which the conditioning component is to be
predicted, four different learning algorithms have been selected, namely, Decision Trees, k-
Nearest Neighbors, Support Vector Machines and Neural Networks.

Before applying any of the above-mentioned learning algorithms, the dataset was split into a
training set and a testing set in a 70/30 proportion.

Once these datasets, comprised by all 8 features were obtained, it was possible to obtain new
pairs of training sets and testing sets by successively eliminating specific features in order to
evaluate their influence in the learning algorithms behaviour.

5.2.1 Decision Trees

The use of Decision Trees for the classification task was made by means of the sklearn library
function DecisionTreeClassifier(), allowing not only a graphic representation of the decision
path but also the obtainment of its full depth, the total number of leaves as well as the
obtained precision, recall and F1-score for the three classes as well as the overall accuracy of
the model.

Table 5.1 presents the confusion matrix obtained considering the dataset with all 8 previously
mentioned features. The corresponding Decision Tree is represented graphically in Figures
5.15 and 5.16, the first showing the first two decision nodes and the latter the first four nodes.

Prediction Value
Component Col i
p o_ umn F_Iange Compression Web Shear
in bending Web
Column F_Iange in 10203 397 90
bending
Actual Value Compression 351 16509 110
Web
Web Shear 93 91 2112

Table 5.1 — Decision Tree Classifier - Confusion matrix — Test set with all 8 features

From the analysis of the Confusion Matrix, it is possible to conclude that from the 10690
(10203+397+90) examples that correspond effectively to the Column Flange in bending class,
10203 are correctly classified. Following further down along the confusion matrix diagonal,
on verifies that from the 16970 (351+16509+110) Compression Web datapoints, 16509 are
correctly predicted as such and 2112 are correctly classified as Web Shear amongst a total of
2296.

71



Machine learning techniques in connection design

5 Results
Column Flange Thickness <= 37.118
gini = 0.547
samples = 69891
value = [24697, 39626, 5568]
class = Compression Web
Tn:/ N&fe
Beam Flange Thickness <= 13.334 Beam Flange Thickness <= 25.671
gini = 0.44 gini = 0.545
samples = 44458 samples = 25433
value = [9689, 31686, 3083] value = [15008, 7940, 2485]
class = Compression Web class = Compression Flange

Figure 5.15 — Decision tree Classifier (first two nodes) — Test set with all 8 features

A new confusion matrix, also obtained following the use of Decision Tree, is presented in
Table 5.2. This matrix, contrarily to what was considered for the matrix presented in Table
5.1, does not consider all the features, instead 5 features were removed, namely, beam height

h, and web thickness tw,, column height h. and width b, as well as the column flange
thickness tf.

Prediction Value
Component Col Fl C i
p qumn _ange ompression Web Shear
in bending Web
Column F.Iange in 9861 511 318
bending
Actual Value Compression 466 15367 1137
Web
Web Shear 345 1082 869

Table 5.2 — Decision Tree Classifier - Confusion matrix — Test set without beam height h,,
and web thickness twy,, column height h., width b, and flange thickness tf.

Analyzing the confusion matrix in Table 5.2 and comparing it to the one from Table 5.1, it is
noticeable the general decrease in correctly classified examples, in particular the ones related
to the Web Shear class, the one with the smaller amount of datapoints.

Column Flange in bending Precision Recall F1-score Support
With all 8 features 0.96 0.96 0.96
Without hy, twy, b, tf, 0.96 0.96 0.96 10690
Without hy,, twy, h., b, tf; 0.92 0.92 0.92

Table 5.3 — Decision Tree Classifier - Comparison of Column Flange in bending Precision,
Recall and F1-score
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Compression Web Precision Recall F1-score Support
With all 8 features 0.97 0.97 0.97

Without hy,, twy, b, tf; 0.97 0.97 0.97 16970

Without hy,, twy,, h., b, tf, 0.91 0.91 0.91

Table 5.4 — Decision Tree Classifier - Comparison of Column Flange in bending Precision,
Recall and F1-score

Web Shear Precision Recall F1-score Support
With all 8 features 0.92 0.93 0.92
Without hy, twy, b, tf, 0.93 0.93 0.93 2296
Without hy, twy, h,, b, tf 0.38 0.38 0.38

Table 5.5 — Decision Tree Classifier - Comparison of Column Flange in bending Precision,
Recall and F1-score

Throughout tables 5.3 to 5.5, three different evaluation metrics, related specifically to each
one of the existing classes are presented, namely Precision, Recall and F1-score. The variation
of these metrics with the variation of the number of considered features is also presented in
each table. It should be mentioned the good overall results obtained for the different classes
while considering the 8 features, as well as the steep decrease of the different metrics for the
Web Shear component after the removal of the column height feature h,.

Accuracy Support
With all 8 features 0.96
Without hy, twy, b, tf, 0.96 29956
Without hy, twy, h,, b, tf. 0.87

Table 5.6 — Decision Tree Classifier - Comparison of Accuracy

5.2.2 k-Nearest Neighbors

The implementation of the k-Nearest Neighbors (kNN) algorithm was achieved through the
KNeighborsClassifier() function. This function presents as its main parameter the number of k
neighbour examples to be considered in the voting process for the classification of a
previously unseen datapoint.

In order to verify the suitability of the application of the KNN algorithm to the design of steel
connections and in particular to the classification of the conditioning component, a sensitivity
analysis was developed by essentially varying the number of k neighbour examples.
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Tables 5.7, 5.8, 5.9 and 5.10 present different confusion matrixes obtained respectively for

k=1,3,5and 7.
Prediction Value
Component i
p quumn F.Iange Compression Web Shear
in bending Web
Column F.Iange in 10110 523 57
bending
Actual Value Compression 449 16385 136
Web
Web Shear 71 120 2105

Table 5.7 — kNN Classifier - Confusion matrix — Test set with all 8 features and k=1

Prediction Value

Com t i
ponen quumn F_Iange Compression Web Shear
in bending Web
Column F_Iange in 10011 614 65
bending
Actual Value Compression 484 16346 140
Web
Web Shear 92 120 2084

Table 5.8 — kNN Classifier - Confusion matrix — Test set with all 8 features and k=3

Prediction Value

Component quumn F_Iange Compression \Web Shear
in bending Web
Column F.Iange in 9892 738 60
bending
Actual Value | Compression 529 16313 128
Web
Web Shear 107 149 2040

Table 5.9 — kNN Classifier - Confusion matrix — Test set with all 8 features and k=5
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Prediction Value
Component Col Fl C i
p qumn _ange ompression Web Shear
in bending Web
Col Fl i
SR PR 9735 882 73
bending
Actual Val C i
ctual Value ompression 567 16270 133
Web
Web Shear 127 191 1978

Table 5.10 — kNN Classifier - Confusion matrix — Test set with all 8 features and k=7

From the analysis of these matrixes together with the Precision, Recall and F1-score metrics
presented in table 5.11 throughout 5.13, it is noticeable that good results can be achieved by
considering the single closest k=1 example, while an increase in the number of considered
neighbours leads to a general decrease in the quality of the results, which is also supported by
the reduction in the overall Accuracy presented in Table 5.14.

Column Flange in bending Precision Recall F1-score Support
k=1 0.95 0.95 0.95
k=3 0.95 0.94 0.94
10690
k=5 0.94 0.93 0.93
k=7 0.93 0.91 0.92

Table 5.11 — KNN Classifier - Comparison of Column Flange in bending Precision, Recall
and F1-score

Compression Web Precision Recall F1-score Support
k=1 0.96 0.97 0.96
k=3 0.96 0.96 0.96
16970
k=5 0.95 0.96 0.95
k=7 0.94 0.96 0.95

Table 5.12 — KNN Classifier - Comparison of Column Flange in bending Precision, Recall
and F1-score

Web Shear Precision Recall F1-score Support
k=1 0.92 0.92 0.92
k=3 0.91 0.91 0.91
2296
k=5 0.92 0.89 0.90
k=7 0.91 0.86 0.88

Table 5.13 — KNN Classifier - Comparison of Web Shear Precision, Recall and F1-score
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Accuracy Support
k=1 0.95
k=3 0.95
29956
k=5 0.94
k=7 0.93

Table 5.14 — KNN Classifier - Comparison of Accuracy

5.2.3 Support Vector Machines — Linear Kernel

The application of learning algorithms known as Support Vector Machine (SVM) to the
classification problem being undertaken was initially made using the linear kernel. In order to
do so, the SVC() function of the sklearn library was considered.

Previously to the use of the SVC() function it was necessary to engage in a standardization
process of the different considered features, a process made possible by means of the
StandardScaler() function applied to the trainingset. The parameters of the standardization of
the trainingset were then later used for the standardization of the examples that compose the
testset. Once both dataset are standardized, it was possible to develop an analysis that would
allow a deeper understanding of the suitability of this learning algorithm to the proposed
problem, namely by varying the ¢ parameter, defined as the regularization parameter. A
decrease of c leads to a larger regularization and hence to a larger margin at the cost of some
accuracy.

Prediction Value
Component i
p Co_lumn F_Iange Compression Web Shear
in bending Web
Column F_Iange in 10121 471 08
bending
Actual Value Compression 369 16502 99
Web
Web Shear 146 78 2072

Table 5.15 — SVM Linear Kernel Classifier - Confusion matrix —Test set with all 8 features

and c=1

Table 5.15 presents the confusion matrix for the dataset containing all 8 features and
assuming the unit value for the regularization parameter c=1.
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Column Flange in bending Precision Recall F1-score Support
c=0.001 0.92 0.83 0.88
c=0.01 0.95 0.93 0.94
c=0.1 0.95 0.94 0.95
c=1 0.95 0.95 0.95 10690
c=10 0.95 0.95 0.95
c=100 0.95 0.95 0.95
c=1000 0.95 0.95 0.95

Table 5.16 — SVM Linear Kernel Classifier - Comparison of Column Flange in bending

Precision, Recall and F1-score

Compression Web Precision Recall F1-score Support
¢=0.001 0.86 0.98 0.92
c=0.01 0.93 0.98 0.95
c=0.1 0.96 0.98 0.97
c=1 0.97 0.97 0.97 16970
c=10 0.97 0.97 0.97
c=100 0.97 0.97 0.97
c=1000 0.97 0.97 0.97

Table 5.17 — SVM Linear Kernel Classifier - Comparison of Compression Web Precision,

Recall and F1-score

Web Shear Precision Recall F1-score Support
¢=0.001 0.88 0.35 0.50
c=0.01 0.93 0.66 0.77
c=0.1 0.92 0.87 0.89
c=1 0.91 0.90 0.91 2296
c=10 0.91 0.91 0.91
c=100 0.91 0.91 0.91
¢=1000 0.91 0.91 0.91

Table 5.18 — SVM Linear Kernel Classifier - Comparison of Web Shear Precision, Recall

Tables 5.16 throughout 5.18 present the Precision, Recall and F1-score metrics for each
observed class as well as its variation with the regularization parameter. It should be noticed
the slight increase of the quality of the results along with the increase of the regularization
parameter, at least until ¢ approaches the unit value (c=1).

and F1-score

77




Machine learning techniques in connection design 5 Results

Accuracy Support
¢=0.001 0.88
c=0.01 0.94
c=0.1 0.96
c=1 0.96 29956
c=10 0.96
c=100 0.96
¢=1000 0.96

Table 5.19 — SVM Linear Kernel Classifier - Comparison of Accuracy

5.2.4 Support Vector Machines — Radial Basis Function Kernel

In addition to the analysis presented above considering a SVM with linear kernel, it was also
possible, taking advantage of the same SVC() function, to develop an analysis considering
however a Radial Basis Function (RBF). In addition to the regularization parameter
mentioned previously for the case of the SVM with the linear kernel, the SVC() function
assuming a Radial Basis Function allows also the definition of the additional parameter y,
which can be understood as the parameter that defines the influence of a single example, thus
while large values of y correspond to small regions of influence which may lead to
overfitting, the consideration of small values for this parameter may result in a model that is
not capable of representing the complexity of the training examples.

Prediction Value
Component i
p Co_lumn F_Iange Compression Web Shear
in bending Web
Column F_Iange in 10450 210 30
bending
Actual Value Compression 156 16732 82
Web
Web Shear 34 107 2155
Table 5.20 — SVM RBF Kernel Classifier - Confusion matrix —Test set with all 8 features and

c=10 and y=10

Table 5.20 presents the confusion matrix obtained considering the standardized dataset with
all 8 features and assuming a value of 10 for both ¢ and y parameters.

From the analysis of the above confusion matrix, it is possible to observe that the use of SVM
learning algorithm considering a RBF leads to good overall results, especially for the case of
the more represented classes such as in the case of Column Flange in bending and
Compression Web.

78



Machine learning techniques in connection design 5 Resullts
Column Flange in bending Precision Recall F1-score Support
v=0.1 0.96 0.95 0.96
c=0.1 v=1 0.97 0.96 0.96
=10 0.97 0.93 0.95
v=0.1 0.98 0.97 0.97
c=1 v=1 0.98 0.98 0.98 10690
v=10 0.98 0.97 0.98
v=0.1 0.98 0.98 0.98
c=10 v=1 0.99 0.98 0.99
vy=10 0.98 0.98 0.98

Table 5.21 — SVM RBF Kernel Classifier - Comparison of Column Flange in bending
Precision, Recall and F1-score

Compression Web Precision Recall F1-score Support
v=0.1 0.95 0.98 0.97
c=0.1 v=1 0.96 0.98 0.97
=10 0.93 0.99 0.96
v=0.1 0.97 0.99 .98
c=1 v=1 0.98 0.99 0.98 16970
=10 0.98 0.98 0.98
y=0.1 0.98 0.99 0.99
c=10 =1 0.99 0.99 0.99
=10 0.98 0.99 0.98

Table 5.22 — SVM RBF Kernel Classifier - Comparison of Compression Web Precision,
Recall and F1-score

Web Shear Precision Recall F1-score Support
v=0.1 0.94 0.76 0.84
c=0.1 y=1 0.93 0.83 0.88
=10 0.96 0.65 0.78
v=0.1 0.94 0.88 0.91
c=1 v=1 0.94 0.91 0.92 2296
=10 0.94 0.92 0.93
v=0.1 0.93 0.93 0.93
c=10 v=1 0.95 0.95 0.95
=10 0.95 0.94 0.94

Table 5.23 — SVM RBF Kernel Classifier - Comparison of Web Shear Precision, Recall and

F1-score
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Tables 5.21 and 5.22 show the results for the different considered metrics (Precision, Recall
and F1-score) for the analysis of specific classes, in this case the Column Flange in bending
and Compression Web classes respectively and their variation with both ¢ and y parameters.
For these two classes the obtained results are very good, in particular when considering c=10
and y=1. These results are also corroborated by the overall accuracy displayed on Table 5.24.

Accuracy Support
v=0.1 0.95
c=0.1 v=1 0.96
=10 0.94
v=0.1 0.97
c=1 =1 0.98 29956
=10 0.97
v=0.1 0.98
c=10 v=1 0.98
=10 0.98

Table 5.24 — SVM RBF Kernel Classifier - Comparison of Accuracy

5.2.5 Artificial Neural Networks

The development of a model using Artificial Neural Networks (ANN) was made possible by
means of the MLPClassifier() function. This function presents as its main inputs the number
of hidden layers which will compose the network as well as the type of activation function
being considered for this case the logistic sigmoid function.

The stochastic gradient descent solver was considered leading to the need for the definition of
other parameters such as the learning rate and the momentum and thus enabling the analysis
of their influence on the obtained results. The number of times an example is used was also
defined as an input, a parameter known as number of epochs.

80



Machine learning techniques in connection design

5 Results

Hidden Layers Neurons Class Precision
Column Flange in bending 0.97
5 Compression Web 0.98
Web Shear 0.90
Column Flange in bending 0.98
1 10 Compression Web 0.99
Web Shear 0.90
Column Flange in bending 0.98
15 Compression Web 0.99
Web Shear 0.90
Column Flange in bending | 0.95
5 Compression Web 0.99
5 Web Shear 0.88
Column Flange in bending 0.96
10 Compression Web 0.99
Web Shear 0.88
Column Flange in bending | 0.97
5 Compression Web 0.99
3 Web Shear 0.88
Column Flange in bending | 0.97
10 Compression Web 0.99
Web Shear 0.86
Column Flange in bending 0.96
5 Compression Web 0.99
4 Web Shear 0.87
Column Flange in bending | 0.97
10 Compression Web 0.99
Web Shear 0.86
Column Flange in bending 0.96
5 5 Compression Web 0.95
Web Shear 0.56

Table 5.25 — ANN Classifier — Comparison of Networks

The application of ANN to solve the proposed problem begun with a sensitivity analysis
regarding the number of hidden layers as well as the number of neurons in each one of these
layers and considering a fix learning rate and momentum of 0.3 and 0.2 respectively. Table
5.25 shows that even considering a reduced number of hidden layers and neurons good results
were achieved. However, an increased number of hidden layers led to a decrease in the quality
of the results especially for the less represented classes, in this case the Web Shear class.
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Prediction Value
Component Col Fl C i
p qumn _ange ompression Web Shear
in bending Web
Column F.Iange in 10479 159 52
bending
Actual Val C i
ctual Value ompression 164 16667 139
Web
Web Shear 99 46 2151

Table 5.26 — ANN Classifier - Confusion matrix —Test set with all 8 features and neural
network with 3 hidden layers of 10 neurons each, a learning rate of 0.5 and a momentum of

0.9

Table 5.26 presents the obtained confusion matrix for a network composed of 3 hidden layers
each one with 10 neurons and a learning rate and momentum of 0.5 and 0.9 respectively.

Column Flange in bending Precision Recall F1-score Support

Momentum=0.1 0.97 0.98 0.98

L rate=0.1 Momentum=0.5 0.98 0.98 0.98
Momentum=0.9 0.98 0.98 0.98
Momentum=0.1 0.97 0.99 0.98

L rate=0.5 Momentum=0.5 0.98 0.99 0.98 10690
Momentum=0.9 0.98 0.98 0.98
Momentum=0.1 0.97 0.98 0.98

L rate=0.9 Momentum=0.5 0.98 0.98 0.98
Momentum=0.9 0.98 0.97 0.98

Table 5.27 — ANN Classifier - Comparison of Column Flange in bending Precision, Recall

and F1-score

Compression Web Precision Recall F1-score Support

Momentum=0.1 0.99 0.98 0.98

L rate=0.1 Momentum=0.5 0.99 0.98 0.98
Momentum=0.9 0.99 0.99 0.99
Momentum=0.1 0.99 0.98 0.99

L rate=0.5 Momentum=0.5 0.99 0.98 0.99 16970
Momentum=0.9 0.99 0.98 0.98
Momentum=0.1 0.99 0.98 0.98

L rate=0.9 Momentum=0.5 0.99 0.98 0.99
Momentum=0.9 0.98 0.98 0.98

Table 5.28 — ANN Classifier - Comparison of Compression Web Precision, Recall and F1-

score
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Web Shear Precision Recall F1-score Support

Momentum=0.1 0.90 0.95 0.92

L rate=0.1 Momentum=0.5 0.90 0.95 0.92
Momentum=0.9 0.92 0.95 0.93
Momentum=0.1 0.90 0.95 0.93

L rate=0.5 Momentum=0.5 0.91 0.95 0.93 2296
Momentum=0.9 0.92 0.94 0.93
Momentum=0.1 0.90 0.95 0.93

L rate=0.9 Momentum=0.5 0.91 0.94 0.93
Momentum=0.9 0.90 0.94 0.92

Table 5.29 — ANN Classifier - Comparison of Web Shear Precision, Recall and F1-score

For the sensitivity analysis regarding the variation of both the learning rate and the
momentum the network used to obtain the confusion matrix of Table 5.25 was considered.
Tables 5.27 throughout 5.29 present the obtained results for the different combinations,
considering a learning rate and momentum which could take a value of 0.1, 0.5 or 0.9.

From the analysis of the above mentioned tables it is possible to verify that the ANN learning
algorithm led to overall good results, including the less represented class, which is still the
one with the worst metrics.

Accuracy Support
Momentum=0.1 0.98
L rate=0.1 Momentum=0.5 0.98
Momentum=0.9 0.98
Momentum=0.1 0.98
L rate=0.5 Momentum=0.5 0.98 29956
Momentum=0.9 0.98
Momentum=0.1 0.98
L rate=0.9 Momentum=0.5 0.98
Momentum=0.9 0.98
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5.3 Resistant Bending Moment Regression

The prediction of the resistant bending moment of the steel connections between the different
beam and columns pairs comprising the testing set was made considering models built mainly
by means of the same learning algorithms used for the prediction of the conditioning
components, although with the necessary modifications due to the different nature of
classification and regression problems.

The examples comprising the training and testing set are the same used for the classification
task with the exception of their respective outputs, which for the regression task are
comprised of real-valued numbers.

The quality of the different models was evaluated by means of the Mean Absolute Percentage
Error (MAPE) and also through a graphic representation of the results, in the form of 2D
plots, was obtained. In these plots, the abscissa axis represents the actual values of the
resistant bending moment determined accordingly to EN1993-1-8, while the ordinate axis
represents the predicted resistant bending moment for the respective beam-column pair. An
additional straight line in the form y = x, representing the set of perfectly predicted value was
also added to the different plots.

5.3.1 Linear Regression

The use of Linear Regression for the development of a model to solve the regression task was
done without any preprocessing of the data and was made possible by means of the
LinearRegression() function present in the sklearn library.

From the analysis of Figure 5.16, which represents the results obtained with this algorithm, it
IS noticeable the large dispersion of the results relatively to the red line representing the
perfectly predicted results.

It should also be mentioned two large deviations of the results. The first related to beam-
column pairs with large resistant bending moments, and the second, at the opposite end of the
spectrum, for connections with small resistant bending moments, where the predicted
examples comprise negative values, incompatible with any physical interpretation for the
behaviour of these connections.

The graphical representation of these results is corroborated by a MAPE=253%.
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Figure 5.16 — Linear regression Plot - True Mrd [kKN.m] (abscissas) vs Predicted Mrd [KN.m]
(ordinates)

5.3.2 Decision Trees

The function DecisionTreeRegressor() applied to dataset without any preprocessing enabled
the development of a regression model by means of Decision Trees.

The analysis of the results obtained with this learning algorithm was made considering the
modification of the training and testsets by eliminating some of the features. This process
allowed the evaluation of their influence on the behaviour of the algorithm.
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Figure 5.17 — Decision Tree Plot - True Mrd [KN.m] (abscissas) vs Predicted Mrd [KN.m]
(ordinates) — All 8 features

The results represented on Figure 5.17, obtained considering all 8 features, are concentrated
along the previously mentioned y = x straight line, suggesting that this algorithm may be
well suited for the regression problem, a conclusion also supported by the relatively small
MAPE=2.8%, a value that is kept lower even without considering the beam web thickness
tw, (MAPE=2.8%) and both the beam web thickness tw, and column flange thickness tf
(MAPE=3.1%).
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Figure 5.18 - Decision Tree Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd [KN.m]
(ordinates) — Without beam height h;, and web thickness tw,,, column width b, and flange
thickness tf

The plot presented on Figure 5.18 shows the results obtained considering dataset without 4 of
its original features, namely the beam web thickness tw,,, column flange thickness tf., beam
height h;, and the column width b.. In comparison to the plot on Figure 5.17, it is noticeable
an increase in the dispersion of the results relatively to the y = x straight line, also translated
by the increase in the mean absolute percentage error of 13.9%.
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5.3.3 k-Nearest Neighbors

The suitability of models created by means of the k-Nearest Neighbors (KNN) learning
algorithm was evaluated through the application of the KNeighborsRegressor() function to the
dataset. The analysis focused not only on the influence of the variation of the number of k
neighbors to be considered but also by varying the number of considered features.

10000 -

8000

6000

4000

Predicted Mrd [kN.m]

2000

0 2000 4000 6000 8000 10000
True Mrd [kN.m]

Figure 5.19 — k-Nearest Neighbors Plot - True Mrd [KN.m] (abscissas) vs Predicted Mrd
[KN.m] (ordinates) — All 8 features and k=1

Figure 5.19 shows a plot with the obtained distribution of results considering a single
neighbour k=1 and all 8 features, while the plot presented on Figure 5.20 shows the results
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obtained with the same dataset but considering instead the sevens closest neighbors (k=7) to
each new example.

The comparison between the two above mentioned plots, may not be enough to allow for a
definite conclusion regarding which one of the created models best suits the problem. In this
particular case the analysis of the mean absolute percentage error, respectively 4.6% and 8.3%
leads to the conclusion that considering a single k=1 neighbor returns better results.

10000 /
8000
6000 s

4000

Predicted Mrd [kN.m]

2000

0 2000 4000 6000 8000 10000
True Mrd [kN.m]

Figure 5.20 — k-Nearest Neighbors Plot - True Mrd [KN.m] (abscissas) vs Predicted Mrd
[KN.m] (ordinates) — All 8 features and k=7

As for the case of the model created by means of Decision Trees, the model obtained through
the KNN learning algorithm considering the removal of the features beam web thickness twy,,
column flange thickness tf., beam height h;, and the column width b, leads to a considerable
increase of the mean absolute percentage error value, MAPE=15.3%, as represented on Figure
5.21.
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Figure 5.21 — k-Nearest Neighbors Plot - True Mrd [KN.m] (abscissas) vs Predicted Mrd
[KN.m] (ordinates) — Without beam height h;, and web thickness tw,;,, column width b, and
flange thickness tf, and k=1

5.3.4 Support Vector Machines — Linear Kernel

The use of Support Vector Machines for the development of models to solve the regression
problem was made possible by applying the SVR() function after the preprocessing of the
datasets, namely through the standardization of the trainingset’s features whose parameters
where then used for the standardization of the testing set’s features.

As for the case of the classification problem, the use in this case of the SVR() function led to
need of using the regularization parameter ¢ while considering a linear kernel. A sensitivity
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analysis was developed in which the regularization parameter was successively considered to
have the following values, 0.01, 0.1, 1, 10 and 100. Figures 5.22 and 5.23 show the graphical
representation of the results obtained for the extreme values c=0.01 and c=100, respectively.
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4000 .

Predicted Mrd [kN.m]
N
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0 2000 4000 6000 8000 10000
True Mrd [kN.m]

Figure 5.22 — SVM with Linear Kernel Plot - True Mrd [kKN.m] (abscissas) vs Predicted Mrd
[KN.m] (ordinates) — ¢=0.001

From the analysis of both figures, it should not be expected that Support Vector Machines
with linear kernel may yield interesting results, a conclusion that is supported considering a
mean absolute percentage error of MAPE=79.2% and MAPE=152.5%, respectively for
¢=0.01 and c=100.
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Figure 5.23 - SVM with Linear Kernel Plot - True Mrd [KN.m] (abscissas) vs Predicted Mrd
[KN.m] (ordinates) — c=100

5.3.5 Support Vector Machines — Radial Basis Function Kernel

Once concluded the analysis assuming a linear kernel, the option for a Radial Basis Function
was then considered.

Different analysis, in which all 8 features were taken into account, and that were a result of
considering different combinations originated from c taking the values 0.1, 1, 10, 100 and
1000 and y 0.1, 1 and 10 were developed.

Figure 5.24 shows the graphic representation of the obtained results for a model in which
¢=0.1 and y=0.1, leading to results that considerably lack a proper accuracy, in particular for
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large values of resistant bending moments. These conclusion is also supported by a
MAPE=77.1%.
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Figure 5.24 — SVM with Radial Basis Function Plot - True Mrd [KN.m] (abscissas) vs
Predicted Mrd [KN.m] (ordinates) — ¢=0.1 and y=0.1
The sensitivity analysis led however to interesting results when considering the pair of

parameters ¢=1000 and y=0.1. These results are graphically represented on image 5.25 and
lead to a MAPE=2.6%.
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Figure 5.25 — SVM with Radial Basis Function Plot - True Mrd [KN.m] (abscissas) vs
Predicted Mrd [KN.m] (ordinates) — ¢c=1000 and y=0.1

5.3.6 Artificial Neural Networks

The application of Artificial Neural Networks (ANN) to the regression problem was possible
by means of the sklearn library function MLPRegressor().

The use of this function led to the need of a preprocessing procedures comprising not only the
standardization of the features of each example but also their respective output.

In order to allow a correct representation of the resistant bending moment, an inversion
process was need after the predicted results were obtained from the model, this task was
accomplished by means of the inverse_transform() function.
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As for the case of the classification task, the analysis by means of ANN begun with a
sensitivity analysis by comparing the MAPE value of different network configurations, by
varying the number of hidden layers and the number of neurons on each one of these layers
while considering a fixed learning rate and momentum of 0.3 and 0.2 respectively.

The results are presented on Table 5.31 and show that the better results were obtained for a 2
hidden layer configuration with 10 neurons each and a 3 hidden layer configuration with 15
neurons each, resulting, respectively in mean absolute percentage errors of MAPE=21.6% and
MAPE=17.8%.

Hidden Neurons MAPE (%)
Layers
5 495 %
1 10 26 %
15 1398 %
5 211 %
2 10 21.6 %
15 26.7 %
5 455 %
3 10 27 %
15 17.8 %
5 189 %
4 10 145 %
15 23.5%

Table 5.31 — ANN Regressor — Comparison of Networks

Taking into account the results presented on Table 5.31, the analysis focused on the two
previously mentioned network configurations by varying the learning rate and momentum and
considering that these parameters could take the values 0.005, 0.1, 0.5 or 0.9.

The results presented on the plot of Figure 5.26 correspond to the configuration the led to the

best results, the 2 hidden layer network with 10 neurons and a learning rate of 0.005 and a
momentum of 0.1, yielding a MAPE=14.7%
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Figure 5.26 — ANN Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd [KN.m] (ordinates)
— Testing set with all 8 features and neural network with 2 hidden layers of 10 neurons each, a
learning rate of 0.005 and a momentum of 0.1

5.4 Summary

Once the sensitivity analysis of the different algorithms and their respective hyperparameters
has been concluded for both the classification of the conditioning component and regression
of the resistant bending moment, it is of interest to compare the quality of the obtained results.
Table 5.32 presents a summary of the best results using each learning algorithm and for the
classification and regression problems respectively.

For the classification problem, it is possible to obtain good predictions for algorithms
considered, a conclusion that is supported by the overall high accuracy, in the range
[0.96;0.98].
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The regression problem presents a considerably higher dispersion of results, with low quality
models created by means of Linear Regression and with Support Vector Machines with
Linear Kernel and high quality models created through algorithms with different levels of
complexity such as Decision Trees and Support Vector Machines with Radial Bases Function
Kernel., these latter algorithms enabled a resistant bending moment regression with a very
low mean absolute percentage error.

. Classification Regression

Algorithm Accuracy MAPE

Linear Regression - 253%

Decision Trees 0.96 2.8%

k-Nearest Neighbor 0.95 4.6%

Suppor_t Vector Machine 0.96 79 2%

Linear Kernel

Support Vector Machine o

Radial Basis Function Kernel 0.98 2.6%

Acrtificial Neural Networks 0.98 14.7%

Table 5.32 — Classification and Regression tasks - Comparison of results
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6 Conclusion

6.1 Final Considerations

The work developed throughout this thesis unveiled a small part of the large number of
subjects that compose both the design process of steel connections and also the field of
machine learning, enabling a deeper understanding of the key concepts behind the behaviour
of steel connections and some of the most widely used learning algorithms, as well as a more
general perspective of the entire process involved in the creation and validation of the models
used to solve different problems in general and the problem of designing unreinforced welded
beam-to-column joints in particular.

The main methods used currently for the design of beam to column connections were
identified and a special attention was given to the method followed by the European standard
EN 1993-1-8, the component method. A thorough description of the different components
involved in this type of connection and which influence its behaviour was presented as well as
the different equations used to obtained their respective resistance.

A small introduction to Artificial Intelligence in general and Machine Learning in particular,
as well as the different types of learning and the different types of problems were presented.
Due to the importance that data pre-processing may have not only in the proper behaviour of
the algorithms but also in the quality of the final results, some of the different techniques
commonly used for the manipulation, treatment and enhancement of the datasets were also
introduced.

Particular attention was given to the description of different learning algorithms and the
metrics used to evaluate the quality of the models.

The proposed approach followed to solve the problem of designing unreinforced welded
connections by means of machine learning techniques was presented, together with the
adopted workflow and the procedure used to create and augment the dataset which served as
the basis for the development of this work.

The graphic analysis of the dataset by means of 2D and 3D representations was followed by
the presentation of the results obtained with the different algorithms and the necessary
analysis, based on the relevant metrics, for both the classification and regression problems.

The algorithms used for the prediction of the conditioning component of the beam to column
connection, with a wide range of complexity levels, led to very promising results, translated
by the different considered evaluation metrics and especially by a high accuracy, in the range
[0.96;0.98].
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Special attention should be given to the regression task developed with the aim of predicting
the value of the resistant bending moment, as this value is commonly one of the most
important in the design process of steel connections. Unlike what was observed for the
classification task, some learning algorithms such as Linear Regression or Support Vector
Machines with Linear Kernel yielded poor results with very high mean absolute percentage
errors, and thus not appropriate for practical application. However, there were other
algorithms, with different levels of complexity such as Decision Trees and Support Vector
Machines with Radial Basis Function Kernel that led to mean absolute percentage errors
smaller than 3%, a promising result for the integration of this workflow in the different stages
of real projects.

6.2 Future Developments

The analysis developed in the current work was based upon a dataset that was created with
specific assumptions regarding both the adopted steel grade, the nature of the forces acting on
the two elements being connected and their geometry.

Future developments of this work may consider an enlarged dataset comprising not only S355
steel graded elements but also other steel grades and a combination of beams and columns
with different steel grades. Together with the consideration of different steel grades, the
adoption and application of the statistical distribution of the corresponding yield stresses, in
an analogous manner as was adopted for the steel sections dimensional distribution, may lead
to a rapid increase in the number of examples comprising the dataset.

Another aspect is the consideration of axial forces acting on the beam and column as well as
the combination of axial forces and bending moments on both the beam and column elements,
leading to examples that may be closer to real cases.

Although the work here developed focused on the more standard H and | shaped steel cross
sections, other databases may be created considering other cross sections such as rectangular
or circular hollow sections. It may also be of interest to expand the scope of this work in order
to include not only welded connections but also bolted ones.
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