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Abstract

Stochastic Computing is a computing method that performs probability-based operations, allowing

simple circuits with low energy consumption and significant fault tolerance. Convolutional Neural Net-

works essentially require weighted sums, despite the huge computational weight associated with these

algorithms. Due to the simplicity of operations calculated by these algorithms, we propose applying

Stochastic Computing to Convolutional Neural Networks to implement more efficient edge computing

classifiers.

This dissertation intends to contextualize this problem and review the literature in the correspond-

ing areas to base the work carried out later. Brief reviews of possible implementation methodologies

have been carried out, to give an understanding of how to use Stochastic Computing in CNN image

classification.

We propose theModified LeNet-5 based on LeNet-5, where themodifications serve to divide the net-

work into blocks easily exchangeable for Stochastic Computing blocks. The modified LeNet-5 achieved

a training performance of 97% on Tensorflow. After training, we implemented the Modified LeNet-5

on custom reconfigurable hardware for the classification of images from the MNIST dataset. At the end

of our work, we have a CNN baseline full RTL implementation on which Stochastic Computing can be

added. The pipeline is fully implemented and working but not fully debugged.

KEYWORDS: Stochastic Computing, Convolutional Neural Networks, Machine Learning, Reconfig-

urable Logic
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Resumo

A Computação Estocástica é um método de computação que realiza operações baseadas em proba-

bilidade, permitindo circuitos simples com baixo consumo de energia e significativa tolerância a falhas.

As Redes Neurais Convolucionais requerem essencialmente somas ponderadas, apesar do enorme peso

computacional associado a esses algoritmos. Devido à simplicidade dos cálculos realizados por estes

algoritmos, propomos a aplicação de Computação Estocástica a Redes Neurais Convolucionais para

implementar classificadores de tecnologia de ponta mais eficientes.

Esta dissertação pretende contextualizar este problema e rever a literatura nas áreas correspondentes

para fundamentar o trabalho realizado posteriormente. Foram realizadas breves revisões de possíveis

metodologias de implementação para dar uma compreensão de como a Computação Estocástica pode

ser usada na classificação de imagens em CNNs.

Propomos a rede LeNet-5 Modificada baseada na rede LeNet-5 original, onde as modificações

servem para dividir a rede em blocos facilmente substituíveis por blocos de Computação Estocástica. A

rede LeNet-5 modificada alcançou um desempenho de treino de 97% no Tensorflow. Após o treino, im-

plementámos a rede LeNet-5Modificada em hardware reconfigurável personalizado para a classificação

de imagens do conjunto de dados MNIST. No final do nosso trabalho, obtivemos uma implementação

RTL modelo completa da CNN à qual pode ser adicionada a computação estocástica. O pipeline está

totalmente implementado e funcional, no entanto carece de debug futuro.

PALAVRAS-CHAVE: Computação Estocástica, Redes Neuronais Convolucionais, Aprendizagem de

Máquina, Lógica Reconfigurável
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Chapter 1. Introduction

This chapter summarizes the motivations and objectives of this dissertation and provides a guide to

contextualize the reader. A brief description of the related works on the basis for the development of

our work is made. Moreover, our main contributions to the scientific community are analyzed.

1.1 Motivation

Moore’s law, which says that the number of transistors on a chip doubles approximately every two

years, is slowing down. Trying to increase the operating frequency of the circuits leads to an increase

in the heat generation by the circuits, which has created the need to change the architectures through a

greater number of processors per chip. While evermore transistors are still being built per chip, there are

limits. For instance there is a cap on increasing the operating frequencies due to the excessive heat gen-

erated, and performance gains are now pursued with multi-core and non diverse processor architectures

[1].

Modern computing hardware has limitations by stringent application requirements like extremely

small size, low power consumption, and high reliability [2]. As result, the electronics industry explored

other strategies, such as Stochastic Computing (SC), originally proposed in 1956 by John Von Neumann

[3]. He considered designing computers based on probabilistic arithmetic with simple components in-

stead of floating-point units. Initially, the idea was not very popular, as it would always be possible

to increase performance by adding more transistors to the chips. The purpose of these circuits was to

overcome unreliable hardware, a problem with the early developed logic circuits.

Complex algorithms such as Convolutional Neural Network (CNN) used to perform Artificial Per-

ception (AP) can be implemented with probabilistic approaches in reconfigurable logic, using less power

consumption and fewer hardware resources than deterministic methods [4].

This dissertation proposes the study of the implementation of artificial perception algorithms in

CNNs computing with SC to understand if it is possible to achieve more efficient artificial perception

systems, enabling more intelligent low power systems. It will follow previous work at the Institute of

Systems and Robotics - University of Coimbra (ISR-UC) using SC. The base model of our work is

the LeNet-5 neural network model, with several modifications to simplify its implementation on Field

Programmable Gate Array (FPGA) environment.

3



4

1.2 Objectives

The main objective of this dissertation is to explore the use of Stochastic Computing in CNNs. A

second objective is to compare the trade-offs of the proposed approach with deterministic computing

methods and evaluate parameters such as energy consumption, resource utilization, and fault tolerance.

That said, the goal is not to achieve a system with greater classification efficiency than existing models

but a system capable of classifying images with relevant efficiency, lower use of hardware resources,

and lower energy consumption.

1.3 Related Work

In this section, we describe the most relevant works to take care of in the development of this dis-

sertation. These works present an overview of Stochastic Computing algorithms appliances to develop

our work.

Stochastic Computing in Bayesian Inference:

This dissertation got its basis on Stochastic Computing, and some works carried out at ISR-UC are

used as a reference [5]. These works are an excellent introduction to Stochastic Computing methods in

reconfigurable logic, even mainly directed to Bayesian Inference (BI). These works are briefly described

below. For more details, read [6, 7, 8]

• In [6] is proposed a Bayesian system to avoid collisions in an autonomous robot, fully implemented

on an FPGA. The robot example uses up 60% of a low-end FPGA, with the random number

generation requiring the most resources. This implementation can be interesting when the onboard

computing power is limited.

• In [7] is proposed the development of a toolchain that, given a high-level description, builds a

low-level description of a circuit computing probabilistic inference. The machine uses stochastic

arithmetic to approximate the result of exact inference and behaves as a fault-tolerant circuit that

can run at low voltage with low energy. The authors believe stochastic binary signals are better

candidates for bio-inspired machines than analog signals to code for probabilities.

• In [8] is proposed a general hardware architecture dedicated to solving sensor fusion problems

using Bayesian Inference. The proposed machine is an excellent candidate for solving tractable

inference problems and could successfully be used in real applications.

Stochastic Computing to Implement Image Processing:

In order to better understand how stochastic computing algorithmswork in the field of image process-

ing, the following works are an excellent introduction to later arrive at Stochastic Computing algorithms

in the implementation of Convolutional Neural Networks. For more details, read [9, 10].

• In [9] is presented an introduction and prove a stochastic absolute value function, a demonstration

of a mathematical analysis of a stochastic Tanh function, and a presentation of a quantitative anal-

ysis of a one-parameter linear gain function and proposition of a new two-parameter version. The

authors concluded that SC systems are highly tolerant of soft errors and proved that SC typically
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consumes substantially fewer hardware resources than conventional computing while performing

the same algorithm.

• In [10] is presented a proposal of three new stochastic architectures for three edge detection algo-

rithms. The proposed architectures require less area and also consume less power.

Stochastic computing in Convolutional Neural Network:

As our work consists of implementing a Convolutional Neural Network using Stochastic Computing,

the following works talk about this. Through them, it is possible to have an improved view of the

operation of Stochastic Computing algorithms in the implementation of Convolutional Neural Networks.

For more details, read [4, 11].

• In [4], an overview of Stochastic Computing in Convolutional Neural Networks is presented. SC

might be a good idea, specifically when people are still actively researching and optimizing SC

circuits.

• In [11], stochastic techniques that efficiently enable hardware training of implemented networks

are presented. The authors present stochastic techniques to implement all the elements that con-

stitute a feedforward neural network. The authors proved that stochastic neural networks are

especially suitable for latency problems.

LeNet-5:

LeNet-5 is a Convolutional Neural Network (CNN) proposed by Yann LeCun et al. in 1998 for

handwriting character recognition [12]. The authors present methods and architectures that offer generic

solutions for real-life document recognition systems composed of multiple modules. The authors also

built the MNIST dataset, used for train and test the LeNet-5 CNN.

In our work we will build upon the above related work, and use LeNet-5 as a testbed for efficient

FPGA classifier implementations and exploring gains from introducing Stochastic Computing.

1.4 Main Contributions

The main contributions of this dissertation are:

• We provide an overview on Stochastic Computing solutions applicable to CNN computation.

• Version of the LeNet-5 CNN adapted for further SC implementation with approximately 97%

accuracy on Tensorflow.

• Matlab script to convert and sort the parameters obtained on Tensorflow to memory format for

FPGA, enabling an efficient RTL implementation.

• Implementation of the CNN on FPGA built modularly to enable future changes to have Stochastic

Computing in some of the computation steps. The full pipeline is implemented and working but

not fully debugged.
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1.5 Dissertation Outline

This dissertation is divided in the following chapters:

• Chapter 1 – Introduction

A chapter on the motivation and objectives behind our work, where we describe significant related

works and the main contributions of our project.

• Chapter 2 – Background on Stochastic Computing and Convolutional Neural Networks

This chapter describes the theoretical background of Stochastic Computing, Artificial Perception

algorithms, Reconfigurable Logic, and Convolutional Neural Networks.

• Chapter 3 – Exploratory implementation of Stochastic Computing and Convolutional Neural Net-

works

Description of the implementation process and results analysis.

• Chapter 4 – Experimental Results

Analysis of results obtained on Tensorflow and Quartus Prime Software (QPS).

• Chapter 5 – Conclusions and Future Work

Conclusions on the project and suggestions for future work.

• References

Bibliographical references on the basis of the topics covered.



Chapter 2. Background on Stochastic Computing and

Convolutional Neural Networks

In this chapter we provide a theoretical background on Stochastic Computing, Convolutional Neural

Networks, and Stochastic Computing appliance in Convolutional Neural Networks. We also present an

overview of the hardware and tools used.

2.1 Reconfigurable Logic

The low complexity of stochastic circuits and the flexibility to have low energy consumption associ-

ated with the reconfigurable logic make its implementation on Field Programmable Gate Array (FPGA)

a good solution. Compared to FPGAs, Central Processing Unit (CPU) and Graphics Processing Unit

(GPU) devices are quite complex. The FPGA devices are characterized by two-dimensional arrange-

ments of logic elements, capable of performing Boolean operations and storing their results. The ability

to reconfigure a chip reduces the time to market and the cost of production of a system.

What defines the reconfigurability of these devices is the Look-up Table (LUT) of their logical

elements, formed by a small memory that associates the results with a combination of input variables.

Custom dedicated circuits have greater efficiency than FPGA devices. However, the great flexibility

of FPGA devices is a determining factor for our implementation due to the ease of making changes

to the circuits. Development boards provide power and communication support for the main chip and

peripherals that expand its capabilities [11, 13].

2.1.1 Field Programmable Gate Array (FPGA) and Project Environment

The chosen board for the implementation of the system is Terasic DE2-115 (Figure 2.1). The chip

present in the board is the Altera Cyclone IV [14]. It has 114480 logic elements, 3888Kbits of embed-

ded memory, 528 user input/output pins, 8MB of flash memory, and two external 64MB Synchronous

Dynamic Random-Access Memory (SDRAM). The main reason for choosing this device was its avail-

ability, as, among the available FPGAs, it meets all the requirements for carrying out the project.

Logic elements (LE) are the smallest units of logic in the Cyclone IV device architecture. LEs are

compact and provide advanced features with efficient logic usage. Each LE has the following features:

• A four-input look-up table (LUT), which can implement any function of four variables.

• A programmable register.

• A carry and register chain connection.

• The ability to drive local, row, column, register chain and direct link interconnects.

• Register packing and feedback support.

7
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Figure 2.1: Altera DE2-115 [15].

An overview of the Cyclone IV Device Logic Elements is shown in Figure 2.2. For more details on

the Cyclone IV device, read [14].

Figure 2.2: Cyclone IV Device Logic Elements [14].

The project’s development environment is Quartus Prime Software (QPS) 18.1 Standard Edition

[16], a programmable logic device design software produced by Intel FPGA. Quartus Prime Software

allows the analysis and synthesis of Hardware Description Language (HDL) designs, compiles the de-

signs, performs temporal analysis, examines Register Transfer Level (RTL) diagrams, simulates the

design’s reaction to different stimuli, and then configures the device with the programmer. Although it

is possible to simulate the design directly in the QPS, ModelSim - Intel FPGA Starter Edition 10.5b [17]

is used, allowing a more dynamic design simulation. This software is recommended for simulating all

Intel FPGA designs.
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2.2 Stochastic Computing

The first person to design computers based on probabilistic arithmetic was John Von Neumann in

1956 [3], but it was Brian R. Gaines who popularized the term of Stochastic Computing (SC) [18]. SC

is an unconventional computing method with great potential due to its extreme simplicity of computing

elements and high fault tolerance. Initially, it decodes a binary number in a bitstream that represents

the magnitude of the value with the frequency of 1’s. Then, the computations are in the stochastic

domain with simple logic gates. In the end, the stochastic bitstream will be converted back to binary

with a bit counter, counting the frequency of 1’s. With SC, it is possible to perform complex numerical

operations with simple circuits, such as a single AND gate to perform multiplication, defining the output

as in Equation 2.1, and a single multiplexer unit to perform scaled addition, defining the output as in

Equation 2.2. In both equations, ’P’ refers to the probability of the stochastic streams, ’S1’, ’S2’, ’S3’,

and ’S4’. We can simplify Equation 2.2 to Equation 2.3 if ’P(S3)’=0.5.

S3 = P (S3) = P (S1)P (S2) = S1× S2. (2.1)

S4 = P (S3)P (S1) + (1− P (S3))P (S2). (2.2)

S4 =
P (S1) + P (S2)

2
=

S1 + S2

2
. (2.3)

Figures 2.3 (A) and (B) show examples of the AND gate multiplication and the MUX scaled adder

operations, respectively. The multiplication is done with an AND gate in the unipolar format and an

XNOR gate in the bipolar format. The addition can be done with a single MUX in both representation

formats. The unipolar format maps the value between 0 and 1, while the bipolar format maps the value

between -1 and 1. The bipolar representation can be mapped from unipolar via the function y = 2x−1,

where y is the bipolar value and x is the unipolar value.

Figure 2.3: SC arithmetic operations. (A) Multiplication. (B) Scaled addition. Adapted from [2].

A Stochastic NumberGenerator (SNG) is required to perform stochastic arithmetic operations, which

consists of a RandomNumber Generator (RNG), and a comparator working synchronously to generate a

stochastic bitstream from a binary number. However, there is a challenge, as there may be a correlation

between the bitstreams, creating accuracy problems. A SC output will only be accurate if both working

streams are not correlated. The correlation is defined in Equation 2.4.

n∑
i=1

S1(i)S2(i) =

∑n
i=1 S1(i)×

∑n
i=1 S2(i)

n
. (2.4)
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Where ‘S’ is the stochastic bitstream and ‘n’ is the bit length. The accuracy is dependent on the

randomness and the length of the stochastic stream. There are some strategies to avoid the correlation

between the bitstreams [4, 19]. One strategy is the use of a Toggle Flip-Flop and an XOR gate to perform

addition (Figure 2.4). If the inputs are equal at each clock cycle, they propagate to the output. Otherwise,

the output is the state of the TFF, and the TFF is toggled. If the bitstream length is sufficient to represent

the result of the adder, it will always be accurate. Otherwise, the output will be rounded to the nearest

representable number [20].

Figure 2.4: SC addition with Toggle Flip-Flop. Adapted from [20].

Figure 2.5 represents an example of a stochastic process, where a pseudorandom bitstream is gener-

ated in a Linear Feedback Shift Register (LFSR), compared with a binary input by a binary comparator

or a weighted binary generator, generating a stochastic bitstream. The LFSR consists of XOR gates and

a bit shift register (8-bit example in Figure 2.6), initialized with a specific value, generating a new bit in

the bitstream at each clock cycle. Then, the stochastic logic circuits process the stochastic bitstream and

finally convert back to the binary domain in a counter, which is usually a flip-flop counter.

Figure 2.5: Example of an SC process. Adapted from [2].

2.2.1 Stochastic Bitstream Generator

Stochastic bitstreams are usually produced using an Random Number Generator (RNG) based on a

Linear Feedback Shift Register (LFSR) to generate pseudo-random numbers and a Binary Comparator or

Weighted Binary Generator (WBG) for comparing the generated pseudo-random number with the binary

number to be converted and then generating the stochastic bitstream. Although LFSRs are typically used,

there is a wide variety of RNGs [21].

• LFSR

An LFSR consists of m flip-flops and goes through cycles of n = 2m − 1 states cycles. The n-

bit sequence produced is called pseudo-random because it is deterministic, despite the success in
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some randomness tests. Shifted versions of sequences generated by LFSR have low correlation,

as intended [2]. Figure 2.6 shows an example of an LFSR with a feedback polynomial equal to

X8 +X6 +X5 +X4.

Figure 2.6: Example of 8-bit LFSR. Adapted from [22].

• Binary comparator

A binary comparator receives two binary words with the same size, one of which corresponds to

the input data and the other to the sequence generated in the LFSR. Figure 2.7 shows an example

of a 4-bit binary comparator.

Figure 2.7: 4-bit binary comparator. Adapted from [4].

• WBG

Proposed by Gupta [23] to reduce Stochastic Number Generator (SNG) cost, it has the same pur-

pose as a binary comparator, although it works differently. Figure 2.8 shows that a WBG is

composed of two levels. The first level consists of AND gates that receive random unbiased bit-

streams from an LFSR and send the outputs, corresponding to Equation 2.5, to the next level. The

second level consists of AND gates that receive the outputs from the previous level and the binary

number to be converted, and their output will then enter an OR gate, from where the final output

comes out. The final output probability is in Equation 2.6.

w3 = r3, w2 = r3.r2, w1 = r3.r2.r1, w0 = r3.r2.r1.r0. (2.5)

P (x) = P (w3)c3 + P (w2)c2 + P (w1)c1 + P (w0)c0 =
1

2
c3 +

1

22
c2 +

1

23
c1 +

1

24
c0. (2.6)
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Figure 2.8: Weighted binary comparator. Adapted from [24].

In the case that several bitstreams can be related, it is possible to share the LFSR and the WBG

part 1 between them, thus reducing the use of logic gates [23, 24].

2.2.2 Stochastic functions

This section describes the stochastic approach of CNN common activation functions as well as the

max function to obtain the maximum value in a Max-pooling layer.

• SC ReLU

ReLU function performs rectification and cuts off any negative value such that f(x) = max(0, x).

Li et al. [25] proposed a SC-based ReLU function block, as depicted in Fig. 2.9. In the stochastic

domain, the ReLU amplitude will naturally be maxed out at 1, but this is not a problem because

clipped ReLU has no appreciable accuracy deterioration [26]. A negative value must also be

clipped to zero. The magnitude of negativity is determined by the number of 0’s bits in the bipolar

stochastic stream. The output will be required to be 1 when the accumulated value is less than the

reference half value in a particular sampling time. Otherwise, the output will follow the pattern

of emulated linear function from the FSM [4].

Figure 2.9: SC Relu. Adapted from [4].

• Stanh

A stochastic approximation to the tanh function, Stanh, with both input and output signals coded

as bipolar stochastic signals, may be implemented using a state machine, as in Figure 2.10. The

output of the states has also been chosen in a particular way to obtain the tanh characteristic.
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The approximate transfer function is Stanh(N, x) ∼= tanh(xN/2), when N is even. For small

values of N, the approximation to a tanh function is relatively poor, but for large values of N, the

approximation is much better [27].

Figure 2.10: Stanh element: state transition. Adapted from [27].

Squaring stochastic stream can be conducted by delaying the input stream with D flip-flop before

multiplying itself, as in Figure 2.11. In the case of a non-linear function, such as hyperbolic tangent

(TanH), stochastic TanH (Stanh) uses a k-state finite state machine (FSM) [4].

Figure 2.11: Stochastic squaring with D flip-flop. Adapted from [4].

• Maxpool

A stochastic maxpool block was proposed by Yu et al. in 2017 [28]. A novel stochastic MAX

block could select whichever stream of higher value with only an XOR gate, FSM andMUX.With

the XOR gate controlling the FSM state jumping, the probability of the opposite stream could be

inferred from another bitstream by generating the condition of bit entanglement. Whenever the

FSM sampled a 0 bit from the current bitstream, it implies a 1 bit on the opposite bitstream. If

inequality between two bitstreams exists, the FSM state will be biased to the one with a higher

magnitude, completing the MAX function with the MUX [4]. Cascading the MAX function block

could realize the max-pooling function block, as shown in Figure 2.12.
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Figure 2.12: Stochastic MAX function. Adapted from [4].

2.3 Machine Learning

Machine Learning is an area of Artificial Intelligence (AI) responsible for algorithms dedicated to

learning from data to solve complex problems, such as image classification. In this type of problem, the

algorithm is fed with a set of specific data to detect patterns and subsequently identify those patterns in

another different set of data. Some machine learning algorithms can perform image classification tasks

better than humans.

Image classification is a Computer Vision problem based on pattern recognition through image pro-

cessing algorithms, such as edge detection. A typical classification algorithm consists of a training phase

and a classification phase. In the first phase, the algorithm learns the model’s parameters from a set of

labelled classified data, making the model able to map an image input to an output class. At the end of

the training, the model can classify new inputs.

2.3.1 Convolutional Neural Networks

A Deep Neural Network (DNN) is a class of machine learning algorithms used to process complex

information, such as images and videos. The nature of DNN consists of layers of addition and multipli-

cation of numerical weights that compute the overall dimensionless probability values of an output class,

which in turn allows the computer to decide based on the output value. Many DNN algorithm variations

exist for a particular purpose, such as Convolutional Neural Network (CNN) for image processing and

long short-term memory for neural-linguistic processing.

CNN can reduce multidimensional images into simple classes and is very popular in image classifi-

cation and object recognition. A CNN can reduce large matrices into single values. The most distinctive

component that discriminates CNN from other DNN algorithms is its convolution layer [4].

AConvolutional Neural Network consists of various layers, such as convolutional and fully-connected

layers (performing the majority of the operations), pooling layers (used to prevent overfitting), and a

classification layer (to classify the final results). A typical layer consists of 3D volumes of neurons, as

shown in Figure 2.13. An overfitted model is a model that contains more parameters than can be justified

by the data. One way to avoid overfitting is to stop the training as soon as performance on a validation

set starts to get worse [29].

Convolutional Neural Networks take advantage of the fact that the input consists of images, and they

constrain the architecture more sensibly. In particular, unlike a regular Neural Network, the layers of a

CNN have neurons arranged in three dimensions (width, height, depth) [30].
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Figure 2.13: Architecture of classical LeNet-5 CNN. Adapted from [4].

The convolution process can be generalized as in Equation, 2.7

ylj = f(xlj) = f(

n∑
i=1

(xl−1
i × wl−1

ij ) + blj), (2.7)

where xlj is the convolved feature of the next layer, x
l−1
i is the feature from the previous layer, wl−1

ij

is the kernel weight matrix, and blj is bias. ‘l’ is the layer number, ‘i’ denotes scan window number, ‘n’

is the total number of scan window, and ‘j’ is the depth of next feature map. Then, there is an activation

function f(xlj) (ReLU or Tanh). Finally, the final product ylj is aggregated so that the process can be

repeated.

In a CNN, the convolution and activation layers are essential, and there may be other layers to reduce

the variance of the output (normalization), to save memory (pooling), or to prevent overfitting (dropout).

At the end of convolution, the matrix will be flattened into a single list of data. Then, those data will be

fed to the neurons [4].

Each layer can be described as it follows:

• Convolutional Layer - Performs convolution, taking the input image and decomposing it into

different feature maps. A kernel of weights is multiplied by a set of inputs, and the weighted

inputs are added together. A bias, whose value is usually 1, is added to the summed weighted

inputs to ensure that neurons fire. An activation function is applied to the accumulated sum to

limit the output to a reasonable range. Results from the activation function goes through to the

corresponding neurons in the next layer. Equation 2.8 describes the computation of a feature

map’s output size.

outputsize =
inputwidth − filtersize + 2× padding

stride
+ 1. (2.8)

• Activation Function - Used to ensure nonlinearity in the network and eliminate unnecessary infor-

mation. The most commonly used activation function is Rectified Linear Unit (ReLU), Equation

2.9, which returns 0 if it receives any negative input, but for any positive value x, it returns that

value. Hyperbolic Tangent, Equation 2.10, is another example of an activation function that maps

the negative inputs as strongly negative and the zero inputs near zero. In both equations x refers
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to the pixel value.

ReLU(x) = max(0, x). (2.9)

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
. (2.10)

• Pooling Layer - Reduces the dimension of the features at each level of the network to save mem-

ory. Standard pooling methods are maximum and average pooling. In maximum pooling, a set of

neurons are sub-sampled based on the size of a pooling filter. In contrast, the maximum neuron

value in that filter passes to the corresponding neuron in the next layer, and the remaining neurons

are dropped out, as shown in Equation 2.11 (with Filtersize = 2 × 2). In average pooling, the

forwarded value to the corresponding neuron in the next layer is the average of all neurons in a

filter, as shown in Equation 2.12.

Passedneuron → max(4, 3.5, 1, 3) = 4. (2.11)

Passedneuron → avg(4, 2, 1, 3) = 2.5. (2.12)

• Fully-Connected Layer - Comprises the highest number of parameters because every neuron

connects to all neurons in the previous layer, and parameters translate on the connections between

those neurons. Inputs in this layer are multiplied with the corresponding weights and added to

biases respectively, then nonlinearity is applied, as shown in Equation 2.13. The output passes to a

classifier that converts the output neurons value to a probability between (0, 1) for the classification

layer. The Final layer compares labels of the top probabilities from the classifier with actual labels

of the available classes, usually using the Softmax function that provides probabilities for each

possible output class, giving the model’s accuracy [4, 30].

Outineuron =

kinput∑
j=1

Inputi × weightij +Biasi. (2.13)

2.3.2 LeNet-5

LeNet-5 is a CNN proposed by Yann LeCun in 1998 [12] for handwriting character recognition.

The architecture of the LeNet-5 (Figure 2.14) consists of three convolutional layers, two sub-sampling

layers, and two fully connected layers, making a total of seven layers.

In the learning phase, the neural network receives a set of N images with an associated label for each

one. The categorical cross-entropy loss function, described later, computes the difference between the

predicted label and the actual label. The input consists of 32x32 sized images, which correspond to the

images from the MNIST [31] dataset with a padding of 2. The pixels are normalized from 0 to 255 in

values between -0.1 and 1.175. The main reason is to ensure that the batch of images has a mean equal

to 0 and a standard deviation equal to 1, which reduces the length of training time. The authors labels the

convolutional layers as Cx, subsampling layers as Sx, and fully connected layers are labeled Fx, where

x is the sequential position of the layer in the neural network.

The first convolutional layer, C1, outputs six feature maps and has 5x5 kernels. The dimensions of
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Figure 2.14: Architecture of LeNet-5, a Convolutional Neural Network for digits recognition. Each

plane is a feature map, i.e. a set of units whose weights are constrained to be identical. Adapted from

[12].

the six feature maps produced by the first convolution layer are 28x28.

Subsampling layer S2 halves the size of the feature maps it receives from the previous layer, reducing

their resolution. It also produces six feature maps, each corresponding to the feature maps received as

input from the last layer. The inputs inside the 2x2 pooling window are added, multiplied by a trainable

coefficient, and added to a trainable bias. The result goes through a sigmoidal function. The pooling

window moves through the pixels by a stride of 2, never overlapping the previous positions.

Layer C3 receives as input six feature maps of the last layer and outputs sixteen feature maps, in

which the combinations are according to Figure 2.15. The author designed local connections to avoid

increased computation, memory complexity, and symmetry between the learned features.

Figure 2.15: Combinations of feature maps to obtain the C3 output. Each column indicates which feature

map in S2 are combined by the units in a particular feature map of C3. Adapted from [12].

Subsampling layer S4 has sixteen feature maps of size 5x5 and has the same behavior as S2. Layer

C5 is a convolutional layer with 120 feature maps. Inputs are convoluted with 5x5 kernels, which result

in 1x1 feature maps.

The fully connected layer, F6, has 84 units and is fully connected to the C5. The last dense layer has

ten units that correspond to the number of classes within the MNIST dataset. The activation function

for the output layer is a Softmax activation function. The summarized structure of LeNet-5 can be seen

on Table 2.1.

2.3.3 Dataset

The criterion of simplicity is the basis of our dataset choice. Since this work aims to have a convo-

lutional neural network to classify images, a simple dataset was chosen, such as MNIST [31].

The MNIST database of handwritten digits, Figure 2.16, has a training set of 60,000 images and a
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Layer Name
Feature

Maps
Kernel

Feature Maps

Size

Trainable

Parameters
Connections

Activation

Function

Input - - 32x32 - - -

C1 6 5x5 28x28 156 122304 Hyperbolic tangent

S2 6 2x2 14x14 12 5880 Sigmoid

C3 16 5x5 10x10 1516 151600 Hyperbolic tangent

S4 16 2x2 5x5 32 2000 Sigmoid

C5 120 5x5 1x1 48120 - Hyperbolic tangent

F6 - - 84 10164 - Hyperbolic tangent

Output - - 10 - - Softmax

Table 2.1: LeNet-5 Structure. Adapted from [12].

test set of 10,000 images. It is a subset of a more extensive set available from NIST. The digits have

been size-normalized and centered in a fixed-size image. NIST’s original black and white images were

sizes normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The resulting images

contain grey levels due to the anti-aliasing technique used by the normalization algorithm. The images

are centered in a 28x28 image by computing the center of mass of the pixels and translating the image

to position this point at the center of the 28x28 field.

Figure 2.16: Sample of the MNIST dataset, with ten different classes representing the numbers from 0

to 9 [31].

2.3.4 Tensorflow - CNN training

The CNN can be trained on Tensorflow [32] servers to obtain the weights and biases referring to

each layer and, later, directly implementing the network with its predetermined values.

TensorFlow is a free and open-source software library for machine learning and artificial intelligence

that runs on Google Colaboratory [33] that allows to write and execute Python in the web browser. De-

spite its usage in various tasks, it focuses on training and inferring deep neural networks. TensorFlow is

a machine learning system that operates on a large scale and in heterogeneous environments. It uses data

flow graphs to represent computation, shared state, and operations that change that state. TensorFlow

allows developers to experiment with new optimizations and training algorithms. TensorFlow supports

various applications, focusing on training and inference in deep neural networks [32, 34].
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The hardware available in Tensorflow are Tensor Processing Unit (TPU)s [35], Intel(R) Xeon(R)

CPU [36] operating at a frequency of 2.20GHz and Tesla K80 GPU [37] operating at a frequency of

562 MHz. A TPU is an AI accelerator Aplication-Specific Integrated Circuit (ASIC) developed by

Google specifically for neural network machine learning, while GPUs have the ability to break complex

problems into thousands or millions of separate tasks and work them out all at once. We will compare

the training performance between TPU and GPU implementation.

The training process can be divided into the following steps:

• Download of MNIST dataset and python libraries

The first thing to do is to download the dataset and the necessary Python libraries directly from

Tensorflow.

• Data pre-processing

After the dataset download, we must normalize the values of the pixels. Each pixel in the image

is an integer belonging to the range [0,255] and must be normalized between [0,1] for the model

to work correctly.

• Model definition

In this step, we define the layers that are going to be a part of the model and then we define all the

necessary parameters of each layer. Then, we need to define the loss function and the optimizer.

• Loss Function

The loss function has the purpose of measuring the error between the predicted value in a CNN

and its real value and is used to optimize it through backpropagation that aims to minimize the

loss function by adjusting the trainable parameters of the model [38].

For multiclass classification problems, as in this problem, Categorical Cross-Entropy (CCE) Loss,

Sparse CCE Loss, and Kullback Leibler Divergence Loss can be used. The CCE and the Sparse

CCE work the same way. However, the Sparse CCE is much faster. Kullback Leibler divergence

is primarily used for more complex functions than simple multiclass classification.

Both, CCE and Sparse CCE cross-entropy have the same loss function, defined in 2.14, where

i is the number of rows, j is the number of categories, and yij is one hot-encoded target vector.

The only difference is the way true labels are defined. For Sparse CCE, one needs only provide a

single integer unit rather than an n-dimensional vector. Using Sparse CCE can save computation

time with lower memory requirements. However, it can only be used when each input belongs to

a single class only.

Loss = −
t∑

j=1

yij ∗ log(ŷij). (2.14)

• Optimizer

Optimization in machine learning is finding the best weights and biases to return the lowest loss.

We use the Adam optimizer, a replacement optimization algorithm for stochastic gradient descent

for training deep learning models based on adaptive estimates of lower-order moments [39].
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• Batch size

The neural network model training must use small batch sizes, offering good training stability and

lower generalization error. It is easier to fit one small batch in memory. The batch size should be

a power of two to take full advantage of the processor. Several studies suggest that a batch size

equal to 32 or smaller achieves the best results [40, 41].

• CNN training

In this step, we define the number of epochs to train the neural network. After this step, it is

possible to obtain the trainable parameters and the loss and accuracy values of the training phase.

2.3.5 Fixed-Point Representation

In neural networks, calculations are traditionally performed with floating-point, either on GPU or

CPU. Depending on the hardware resources, floating-point representation can slow down computations

due to the need to process many fractional bits at some point in the algorithm. An algorithm with greater

precision should use double-precision floating-point data or single-precision if low resource utilization

is essential. However, a large amount of processing power is required to perform floating-point cal-

culations. Fixed-point representation intends to decrease energy consumption by using a fixed amount

of fractional bits. It can also increase the speed of the operations. However, it is subject to a loss of

precision of the number representation. Described in more detail in [42].

Fixed-point can be represented by Q[QI].[QF], where QI is the number of bits of the integer part and

QF is the number of bits of the fractional part, the sum of QI and QF is called word length, WL. For

example, a Q3.5 number would be an 8-bit value with three integer bits and five fractional bits. A sign bit

will be included in QI for signed integer variables. Using fixed-point representation limits the ratio of the

maximum absolute value representable and the minimum positive absolute value representable, known

as dynamic range [43]. The dynamic range can be calculated using Equation 2.15 for a signed fixed-

point rational representation Q[QI].[QF], and using Equation 2.16 for an unsigned fixed-point rational

representation Q[QI].[QF]. For WL of any significant length, the “-1” is negligible, and therefore signed

and unsigned representations of the same word length have roughly the same dynamic range.

2× (2QI/2−QF ) = 2QI+QF+1 = 2WL. (2.15)

(2QI − 2−QF )/2−QF = 2QI−QF − 1 = 2WL − 1. (2.16)

In our case, we intend to obtain the values of the trainable parameters of the CNN in Tensorflow to

store them in the FPGAmemories. We can use these values and the pixels values of the images, between

0 and 1, to calculate QI using Equation 2.17, where α is the floating-point variable to represent in fixed-

point. QI will always be greater than zero since the logarithmic function (log2) can never be negative.

As for QF, it is possible to choose the number of bits of the fractional part through the difference between

the pretended word length and QI.

QI = ceiling(log2(max(abs[αmax, αmin]) + 1)) + 1. (2.17)
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To analyze the addition and multiplication operations, consider two signed fixed-point 8-bit num-

bers, A and B, where A is represented in Q1.7 format and B in Q2.6, Figure 2.17.

It is necessary to give special attention to the alignment of the fractional part and the possibility of

an overflow to perform addition. This is accomplished by right shifting and sign extending A, which is

the number that has a shorter integer part (Figure 2.17), aligning the fractional part, then the numbers

are added, and the carry bit (c) is verified to see if there is an overflow.

Figure 2.17: Signed fixed-point addition.

When performing fixed-point multiplication, the number of integers and fractional bits in the product

is the sum of the corresponding multiplier and Q points of the corresponding multiplicand, as described

in Equations 2.18 and 2.19.

QIproduct = QImultiplicand +QImultiplier, (2.18)

QFproduct = QFmultiplicand +QFmultiplier. (2.19)

When multiplying a Q1.7 and a Q2.6 number, the result is a 16-bit Q3.13 number. The 16-bit Q3.13

number can be reduced to an 8-bit representation. The result will have to maintain the 3 bits of the

integer part, though it is possible to remove 8 bits of the fractional part in Q3.5 format. This removal

leads to a significant loss of precision. The resulting 8-bit Q3.5 number within the 16-bit result is in

Figure 2.18.

Figure 2.18: Signed fixed-point multiplication.



Chapter 3. Exploratory implementation of Convolu-

tional Neural Networks

This chapter describes the implementation of our CNN algorithm divided into two phases. The

first phase consists of training the CNN. This provides the parameters to implement the classifier, and

also provides baseline results for later comparison. The second phase involves implementing the CNN

on reconfigurable logic and subsequent image classification. TensorFlow 2 [32], Matlab R2021a [44],

Quartus Prime Software (QPS) 18.1 [16] and ModelSim 10.5b [17] tools were used.

3.1 Implementation Workflow

The implementation is divided into the following aspects:

1. Tensorflow – Python:

• CNN training;

• Obtaining trainable parameters;

• Comparison between our Modified LeNet-5 and the original LeNet-5.

2. Matlab:

• Representation of images and trainable parameters with 8-bit fixed-point resolution, where

3-bit corresponds to the integer part and 5-bit to the fractional part;

• Writing image values and weights into memory initialization files (MIF).

3. Quartus Prime Software – VHDL:

• Definition of required blocks per layer, control signals and process timing;

• RTL synthesis and test on hardware.

Figure 3.1 shows the data workflow of our implementation.

Figure 3.1: Workflow of our implementation.
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3.1.1 Tensorflow

On Tensorflow, we implemented the Original LeNet-5 and our modified version of LeNet-5, adapted

for SC. There are different hardware hypotheses for training CNNs, and we trained the networks on TPU

and GPU. After the implementation, we studied the temporal, loss, and accuracy differences between the

neural network train using a TPU or a GPU, described in 4.1.2. However, for implementing the classifier

on FPGA, we only need to obtain the trainable parameters. The method we use to obtain them is not a

key point, although there are timing differences between the two types of hardware. In this section, we

describe the CNNs training.

3.1.1.1 Original LeNet-5 and Modified LeNet-5

We started by implementing LeNet-5, following 2.14, with two convolutional layers, two average-

pooling layers, a flattening layer, and three dense layers. The number of trainable parameters is computed

differently in each layer. In a convolutional layer, the number of parameters is calculated using Equation

3.1, and in a dense layer is calculated using Equation 3.2. In a max-pooling or a flattening layer, there

are no parameters.

NParametersconv2D
= Filtersize(5× 5)× Inputdepth × Filterquantity +Bias. (3.1)

NParametersDense
= InputDimension ×OutputDimension +Bias. (3.2)

Figure 3.2 shows the summary of the layers and parameters of the LeNet-5 model. We avoided

padding the input images in the original LeNet-5 to have the same input and output sizes as our modified

model. In layer C3 (2.3.2), we do not limit the local connections since the author only did this to save

computational effort due to the hardware limitations at that time. With current technology, it makes no

sense to limit connections, as the resulting computational difference would not be relevant.
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Figure 3.2: Summary of the LeNet-5 model.

We implemented our Modified LeNet-5 with two convolutional layers, two max-pooling layers,

a flattening layer, and a dense layer. Figure 3.3 shows the number of parameters calculated and the

different layers in the network.

Figure 3.3: Summary of the Modified LeNet-5.

The Modified LeNet-5, Figure 3.4, starts with one input image (28, 28), which is convoluted with

four filters (5, 5) generating four feature maps (24, 24). These four feature maps go through a ReLU

activation function, which outputs the pixel value if positive and 0 if negative. It then goes through

a max-pooling layer that reduces the values of the feature maps to a quarter (12, 12), thus, reducing

memory usage.

The four feature maps (12, 12) go through a second convolution layer with four filters (5, 5), gener-

ating four feature maps for each sub-image, in a total of sixteen feature maps (8, 8). The sixteen feature

maps go through the ReLU activation function again and through another layer of max pooling, resulting
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Figure 3.4: Modified LeNet-5 layout.

in sixteen feature maps (4, 4), corresponding to 256 pixels for one image. Then the values are converted

into a one-dimensional array, which will be the input of a dense layer, before classifying the image.

In the dense layer, the result for each output neuron, dni , i being the neuron number, is calculated

using the Equation 3.3, where pj corresponds to the layer’s input pixel, j is the pixel number, wij is the

corresponding weight to each pixel and bi is the bias corresponding to each neuron, with i varying from

0 to 9 and j varying from 1 to 64.

dni = (

64∑
j=1

pj × wij) + bi. (3.3)

At this point, we have everything we need to move on to training the two LeNet-5 models on Ten-

sorFlow.

3.1.2 Training

As described in 2.3.4, the CNN training is performed on Tensorflow to obtain the weights and bias

for each layer to be later implemented on FPGA. We use the 60000 training images to obtain possible

weights and bias values.

In Table 3.1 is possible to see the inputs and outputs of each layer. The neural network training

process starts with an input, which is an image (28x28) pixels that are convolved with four filters (5x5),

generating four (24x24) feature maps. These images go through the ReLU activation function. It then

goes through a max-pooling layer to reduce feature maps to (12x12) pixels. After the pooling layer,

the output goes through a new convolution layer with four filters (3x3) that generate new four feature

maps for each feature map of the previous layer, going again through the ReLU activation function and

a max-pooling layer, having as output 18 feature maps of (5x5) pixels.
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Input Output

C1
Image

(28x28)

4 Feature maps

(24x24)

S2
4 Feature maps

(24x24)

4 Feature maps

(12x12)

C3
4 Feature maps

(12x12)

16 Feature maps

(5x5)

S4
16 Feature maps

(5x5)

16 Feature maps

(4x4)

F5
16 Feature maps

(4x4)

Vector

(1x640)

D6
Vector

(1x640)
10 classes

Table 3.1: Inputs and Outputs by layers.

In the next layer, the pixel values are flattened into a single vector, which will be the input of the

dense layer and then multiplied, one by one, by the weights obtained and added to the bias to reach a final

value. This value corresponds to the input of the dense layer, which will go through a softmax function

to classify the image into one of the ten possible classes. We summarize the Tensorflow algorithm in

Algorithm 1.

Algorithm 1: Neural network algorithm in Tensorflow.

Import:

• Libraries, Dataset, Google Drive

Normalize the pixels with values between [0,255] into [0,1]:

• train_dataset = train_dataset.map(normalize)

• test_dataset = test_dataset.map(normalize)

Model creation:

• model = tf.keras.Sequential(layers)

• model.compile(optimizer, loss)

Training:

• model.fit(train_dataset, epochs, steps_per_epoch)

Save weights:

• model.save_weights(path)

Evaluate model:

• model.evaluate(test_dataset)

At this point, we have obtained the weights and biases we will use to implement theModified LeNet-

5 on FPGA.
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3.2 Weight pre-processing with Matlab

After obtaining the weights in Tensorflow, we use Matlab to sort them properly to use on FPGA.

Each layer has a different format from the others, and it is essential to order their weights individually.

There are three layers (C1, C3, and D6) where we obtain the weights. The index corresponding orders

the weights to each filter in the convolution layers. The first four weights correspond to the first value

of each filter and so on. We intended to sort the weights by filters, starting with the first value of the

first filter, then with the second value of the same filter, and so on.

In layer C1, weights are in the format {5, 5, 1, 4}, with a total of 5*5*1*4=100 weights, where {5,

5} corresponds to kernel size, {1} to the number of channels, and {4} to the number of filters. It is

necessary to save the values starting with the first of the first filter and skip to the fourth value after

that, repeating until reaching the last value of that filter. In the following filters, the process is repeated,

considering the first value of each filter. In Figure 3.5 on the left, it is possible to see how we ordered

the weights in Tensorflow and our pretended order on the right. We refer to the kernels as ki,j , where i

is the kernel number, and j is the kernel element.

Figure 3.5: Order obtained in Tensorflow for C1 on the left. Pretended order on the right.

In C3, the weights are in the format {5, 5, 4, 4}, with a total of 5*5*4*4=400 weights. The difference

between this layer and the previous one is that there are four channels instead of one, meaning there are

four filters per channel. The process is similar to the last layer, differing in the number of skipped values

to obtain the desired order, with sixteen being jumped instead of four (Figure 3.6).

Figure 3.6: Order obtained in Tensorflow for C3 on the left. Pretended order on the right.

Regarding layer D6, its weights are in the format {64, 10}, being 640 weights (64*10). In this layer,

sorting the weights is unnecessary since they are already sorted by the weights relative to each neuron.

Each neuron uses 64 weights to get the final value (Figure 3.7).
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Figure 3.7: Order obtained in Tensorflow for D6 on the left. Pretended order on the right.

After the weight sorting, we converted from decimal to signed fixed-point 8 bits using the ‘deq2q’

function, which converts decimal (base 10) numbers to fixed-point Qa.b format. Where ”a” is the number

of integer bits (not including the sign bit), and ”b” is the number of fractional bits. The output format

is either binary or hexadecimal. We call the function using ”dec2q(x, a, b, format)”. Where x is the

decimal input (which can either be a scalar or a vector), ”a” is the number of bits to the left of the binary

point not including the sign bit, and ”b” is the number of bits to the right of the decimal point. The

format is either ’bin’ or ’hex’ [45].

After converting to fixed-point, we write the weights in three MIFs (Memory Initialization File),

each corresponding to each layer’s weights. We summarize the Matlab script in Algorithm 2.

3.2.1 Fixed-point format

We decided to use an 8bit representation in the CNN inputs. However, due to a large number of

additions and multiplications, it is necessary to use more bit representations as we advance through the

CNN, which led us to use a dynamic format to avoid losing information. Considering the worst-case

scenario, it is necessary to know the absolute maximum value of the input |inmax, inmin|, the kernel
size, the weights |wmax, wmin|, and the biases |bmax, bmin| to calculate the theoretical maximum value

of each convolutional layer layermax, using Equation 3.4.

The maximum value from the dense layer can be calculated using Equation 3.5, similar to Equation

3.4, where the kernelsize is replaced by the number of neurons, nrneurons. The values obtained by using

Equations 3.4 and 3.5 are shown in Table 3.2.

Layermaxconv = (|inmax, inmin| ∗ |wmax, wmin|) ∗ kernelsize + |bmax, bmin|. (3.4)

Layermaxdense
= (|inmax, inmin| ∗ |wmax, wmin|) ∗ nrneurons + |bmax, bmin|. (3.5)

The worst-case scenario uses the highest possible absolute value of the input, the weights, and the

biases values. In convolutional layers, the multiplication between the pixel and the weight value is added

25 times to the bias value. In C1, the maximum input value is equal to 1, and in C2, it is similar to the

absolute maximum of the first layer. Regarding the dense layer, the highest input value is equal to the

absolute maximum of the second convolutional layer, then multiplied by the highest value of weights of

this layer 256 times and added to the bias value. By analyzing Table 3.2, we can save power by using an

adaptive fixed-point representation, using a fewer bit representation at earlier layers. Layer 1 requires a



29

Algorithm 2:Weight sorting and fixed-point representation

Input : c1_w(25, 4), c3_w(100, 4), d6_w(64, 10)
Output: weightsc1.mif , weightsc3.mif , weightsd6.mif
Separate and sort the weights by filter for C1:

• fn,C1 = [c1_w(1, n), c1_w(2, n), c1_w(3, n), ..., c1_w(25, n)]′, nε[1, 4]

• c1_w_ordered = [f1,C1, f2,C1, f3,C1, f4,C1]
Separate and sort the weights by filter for C3:

• f1n,C3 = [c3_w(1, n), c3_w(5, n), c3_w(9, n), ..., c3_w(97, n)]′, nε[1, 4]

• f2n,C3 = [c3_w(2, n), c3_w(6, n), c3_w(10, n), ..., c3_w(98, n)]′, nε[1, 4]

• f3n,C3 = [c3_w(3, n), c3_w(7, n), c3_w(11, n), ..., c3_w(997, n)]′, nε[1, 4]

• f4n,C3 = [c3_w(4, n), c3_w(8, n), c3_w(12, n), ..., c3_w(100, n)]′, nε[1, 4]

• c3_w_ordered = [f11,C3, f12,C3, f13,C3, f14,C3, f21,C3, f22,C3, f23,C3, f24,C3, f31,C3, f32,C3,
f33,C3, f34,C3, f41,C3, f42,C3, f43,C3, f44,C3]

Sort the weights by neuron for D6:

• d6_w_ordered = d6_w(:)
Conversion to fixed-point representation:

• c1_fp = dec2q(c1_w_ordered(:), 2, 5,′ bin′)

• c3_fp = dec2q(c3_w_ordered(:), 2, 5,′ bin′)

• d6_fp = dec2q(d6_w_ordered(:), 2, 5,′ bin′)
Write MIF file for C1:

fid = fopen(′weightsc1.mif ′,′w+′)
count = 0
if fid then

fprintf(width = size(c1_fp, 2), depth = size(c1_fp, 1), addressradix =
Hex, dataradix = Bin, ‘CONTENTBEGIN ’)
for i = 1 : size(c1_fp, 1) do

fprint(count)
for j = 1 : size(c1_fp, 2) do

fwrite(fid, c1_fp(i, j)
end

count++
fprint(′;′ )

end

fprintf(‘END; ’)
fclose

end

Repeat write MIF file for C3 and D6.

fixed-point output format of Q8.5, layer 3 requires a Q11.5 format, and layer requires a Q19.5 format.

From this point, we now have all the CNN parameters in ROM Memory Initialization Files (MIF)

ready for the Register Transfer Level (RTL) circuit implementation.
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Layer Parameter Value Fixed-Point Format

Layer 1

Convolutional

Max 21.31444 Q6.5

Min -42.5570 Q8.5

Layer 3

Convolutional

Max 413.9171 Q10.5

Min -663.9777 Q11.5

Layer 6

Dense

Max 91001.5141 Q18.5

Min -160532.5760 Q19.5

Table 3.2: Maximum and minimum per layer and the corresponding fixed-point format, considering the

worst-case scenario.

3.3 Register Transfer Level (RTL) Project

This section describes the Quartus Prime Software (QPS) implementation of each layer individually.

The description corresponds only to the processing of an image. All layers have a checkpoint before

moving to the next layer by writing the results to RAM. The addresses are in hexadecimal format. To

implement our SC CNN, we started by implementing the network fully sequential, without stochastic

elements, with the purpose of inserting them in future work. The objective is to gradually go from a

network without any stochastic computing components to a network with all its modules in stochastic

computing. This section describes the implementation of the CNN without SC modules.

3.3.1 Layer C1 - Convolutional Layer

We designed a controller in VHDL to generate memory addresses to access both the image and

weight memories. The image memory is where the pixel values are stored, 784 pixels for each image

(from address 0x000 to 0x30F), and theweight memory (from address 0x00 to 0x63) is where the weights

are stored. Since there is only four bias in this layer, they are written manually on the controller.

When generating the addresses, the controller generates five addresses from 0x000 to 0x004, then

jumps twenty-four, generating five consecutive addresses. This procedure repeats until there are twenty-

five kernel elements. After that, it repeats the same process starting an address after the first previous

address until it reaches the final element of the line (0x01B). It then jumps to the first address of the

second row of pixels (0x01C) and repeats until it has gone through the entire image.

Generating weight addresses is simpler than image addresses, as twenty-five addresses are gener-

ated sequentially per kernel and repeated until the end of the kernel. As soon as a kernel changes, the

controller must jump to the address where the new kernel starts. Kernels start at addresses 0x00, 0x19,

0x32 and 0x4B. Algorithm 3 describes the implementation of the address generation for C1.

After choosing the correct addresses, the values will enter a block with two MACs, multiplying the

pixels by their respective weight. The use of twoMACs serves to alternate each convolution, as it makes

it simpler to return the value of each convolution in an orderly way. Two controllers do this alternation

where one selects which MAC to use and the other selects which should be the output. The schematic

of the MAC-based convolution is in Figure 3.8. The block receives another input, ’k_elm’, beside the

values to multiply. This input is an index indicating the multiplication index, where the range of the

index goes from 1 to 25. We use a demultiplexer to select the MAC and a multiplexer to select the
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Algorithm 3: Address generation for C1

kernel_count = 0, line_count = 0, conv_total = 0, addr_img = 0, addr_w = 0
if kernel_count < 24 then

kernel_count++
addr_w ++
if line_count < 4 then

line_count++
addr_img ++

else if line_count = 4 then
line_count = 0
addr_img+ = 24

end

else if kernel_count = 24 then
kernel_count = 0
addr_w = start address of the filter to be used
if conv_total < 576 then

conv_total ++
addr_img = start address of the new kernel

else if conv_total = 576 then
conv_total = 0
addr_img = start address of the next image

end

end

output to use. After these operations, the bias value referring to the kernel used is added, and then it

goes through the activation function ReLU.

Figure 3.8: MAC-based convolution.

The output of the ReLU block is written in a FIFO memory to ensure the sequential writing of

the outputs in RAM, which will be the input of the next layer. This layer outputs four feature maps

with 2304 pixels (576 each). Figure 3.9 shows the data flow in C1, where ’C1_address_generator’ and

’RAM_C1_controller’ sends addresses to other blocks. All the other blocks send data to the following

block.
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Figure 3.9: Data flow in layer C1.

3.3.2 Layer S2 - Max Pool Layer

Layer 2 starts with an address generator, which generates the first two addresses of two consecutive

lines (0x00, 0x01, 0x18, 0x19). It then generates the following two addresses for each line, repeating

until the end of the lines. When it reaches the end of a feature map, it restarts at the first addresses

of the following two lines (0x30, 0x31, 0x48, 0x49). The process is repeated until it reaches the end

of the four feature maps. The corresponding pixels enter a Maxpool block with another input to know

where to store the pixel values until there are four, then compute the maximum between them and write

the result in a FIFO memory and later in a RAM, that will be the input of the next layer. The layer

output is four feature maps with 576 pixels (144 each). Figure 3.10 shows the data flow in S2, where

’S2_address_generator’ and ’RAM_S2_controller’ sends addresses to other blocks. All the other blocks

send data to the following block.

Figure 3.10: Data flow in layer S2.

3.3.3 Layer C3 - Convolutional Layer

In this layer, we generate five addresses in a row starting from 0x000, then skips eight and generate

five from that, repeating until there are 25. Then a convolution with the first filter occurs and then returns

to the first address and repeats with the following filters. When the convolution finishes with the four

filters of the first channel, it switches to the second channel and repeats until the fourth filter of the fourth

channel is complete. The first channel starts at 0x000, the second at 0x090, the third at 0x120, and the

fourth at 0x1B0. Algorithm 4 describes the implementation.

Figure 3.11 shows the data flow in C3, where ’C3_address_generator’ and ’RAM_C3_controller’

sends addresses to other blocks. All the other blocks send data to the following block.
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Algorithm 4: Address generation for C3

kernel_count = 0, line_count = 0, conv_total = 0, addr_img = 0, addr_w = 0
if kernel_count < 24 then

kernel_count++, addr_w ++
if line_count < 4 then

line_count++, addr_img ++
else if line_count = 4 then

line_count = 0, addr_img+ = 8
end

else if kernel_count = 24 then
kernel_count = 0
addr_w = start address of the filter to be used
if conv_total < 64 then

conv_total ++
addr_img = start address of the new kernel

else if conv_total = 64 then
conv_total = 0
addr_img = start address of the next image

end

end

Figure 3.11: Data flow in layer C3.

3.3.4 Layer S4 and F5 - Max Pool and Flattening Layers

This layer has the same behavior as layer 2, differing in the number of inputs and outputs. It takes

the 16 feature maps of the previous layer, with 1024 pixels in total (64 each), and returns 16 feature maps

with 256 pixels (16 each). The address generator generates the first two addresses of two consecutive

lines (0x00, 0x01, 0x08, 0x09). It then generates the following two addresses for each line, repeating

until the end of the lines. When it reaches the end of a feature map, it restarts at the first addresses of

the posterior two lines (0x10, 0x11, 0x18, 0x19). The pixel values go through a MaxPool block, a FIFO

memory, and RAM.

The output of this layer is already on the output format of the Flattening Layer, making it unnecessary

to apply changes to layer five. Figure 3.12 shows the data flow in S4 and F5, where ’S4_address_gen-

erator’ and ’RAM_S4_F5_controller’ sends addresses to other blocks. All the other blocks send data to

the following block.
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Figure 3.12: Data flow in layer S4.

3.3.5 Layer D6 - Dense Layer

There are four channels of featuremaps in this layer, eachwith 64 values. There are also 640weights,

64 corresponding to each of the ten neurons. We implemented two counters (counter64 from 0 to 63

and counter256 from 0 to 255) to control the address generation of the memory containing the weights

and the output from the previous layer, respectively. The operations are performed per neuron, meaning

that all the four channels’ values multiply the weights corresponding to each neuron. The feature map

addresses are traversed from 0 to 255 and restart when counter256 reaches 255. The weight addresses

are traversed from 0 to 63 and start again when counter64 reaches 63. If it reaches 63 and counter256

to 255, it should start at the address of the next neuron, repeating the process until reaching the last

neuron. Neurons 0 to 9 correspond to addresses 0x000, 0x040, 0x080, 0x0C0, 0x100, 0x140, 0x180,

0x1C0, 0x200 and 0x240, respectively. Each bias corresponds to each neuron. Algorithm 5 describes

the implementation.

Algorithm 5: Address generation for D6

count64 = 0, count256 = 0, addr_img = 0, addr_w = 0
if count64 < 63 then

count64 + +, addr_w ++
else if count64 = 63 then

count64 = 0
addr_w = start address of the neuron to be used

end

if count256 < 255 then
count256 + +, addr_img ++

else if count256 = 255 then
count64 = 0, addr_w = 0

end

The data flow in D6 is in Figure 3.13, where ’D6_address_generator’ and ’RAM_D6_controller’

sends addresses to other blocks. All the other blocks send data to the following block.
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Figure 3.13: Data flow in layer D6.

3.4 Stochastic Computing approach circuit

To familiarize ourselves with the numerical conversion processes for the domain of Stochastic Com-

puting, we studied the approximation of a stochastic number to its fractional value. To verify this, we

designed a small circuit consisting of conversion from binary to stochastic, one AND gate performing a

multiplication between two numbers, and conversion from stochastic to binary. The binary to stochas-

tic conversion consists of two LFSR and two comparators. The conversion from stochastic to binary

consists of two up counters, one for zeros and one for ones.

Figure 3.14: Stochastic computing circuit to multiply two numbers.

The circuit is shown in Figure 3.14. To avoid correlation between the seeds, the LFSRs are fed with

different initial seeds, ’00111011’ and ’10001011’ (59 and 139 in decimal, respectively). The LFSR

outputs connect to a comparator, which compares its value with two numbers, x and y, respectively. The

comparators generate stochastic streams of bits, which will serve as input to the AND gate, multiplying

them and generating a single stream. This stream is converted back to binary through counters.



Chapter 4. Experimental Results

This chapter presents our results relative to the previously described implementation. We present

a performance comparison between TPU and GPU implementations on Tensorflow, as well as a com-

parison between LeNet-5 and Modified LeNet-5. Then the RTL implementation results of the Modified

LeNet-5 and the Stochastic Computing circuit. Despite having a full implementation of our Modified

LeNet-5, we verified that the network is not working as intended due to memory access errors.

4.1 Training on Tensorflow

Training the CNNs on Tensorflow allowed us to obtain comparative results between the training on

TPU and GPU concerning Modified LeNet-5 and LeNet-5. We also analyze the classification phase

results of the two CNNs on Tensorflow.

4.1.1 TPU vs. GPU

In an initial phase, we decided to verify the relevance of the number of training epochs of the network.

We evaluated this by analyzing the training’s loss value and accuracy. We analyze five cases for each

implementation, with the number of epochs equal to 1, 5, 10, 20, and 50. In Figure 4.1, we can verify

that, both in GPU and TPU implementations, we can obtain a relevant efficiency with few epochs, in

which the most significant variation occurs between one and five epochs, varying 2.11% and 3.45% in

GPU and TPU implementation, respectively. This variation occurs because the networks did not train

enough epochs to adjust their parameters efficiently. The loss value varies most between one and five

epochs in both implementations. In the case of TPU, the loss value differs 0.1215 between one and five

epochs and 0.0326 between five and fifty epochs. In the case of GPU, it varies by 0.0806 between one

and five epochs and 0.0279 between five and fifty epochs. For more details, see Table A.1 in Appendix

A.

Figure 4.1: Accuracy and loss variance in function of the number of epochs.

With our study, we can verify that by training the CNN with a low number of epochs, the network

will still have very high accuracy, both on TPU and GPU, mainly due to the great simplicity of the

36
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dataset, which makes the algorithm capable of classifying images very quickly. We can also verify that

the loss value tends to close to zero with few epochs as they tend to be the best possible value, validating

the obtained trainable parameters.

When executing the code on Tensorflow and not locally, we can not control the hardware used, which

may not be the same in each code execution. In order to understand if there are significant differences

between the execution times, the loss values, and the accuracy obtained in different executions, we

decided to test two scenarios. In the first one, we manually changed the number of epochs each time

we ran the code, starting with one epoch and incrementing one unit each time, up to 20 epochs. We ran

the code only once in the second scenario and checked the values corresponding to each epoch from 1

to 20. We tested both scenarios on TPU and GPU. Figure 4.2 shows that the three parameters tend to

significantly close values. The trend is more linear in the second scenario since we trained the CNN

twenty epochs once.

Figure 4.2: Comparison of speedup, loss, and accuracy between TPU and GPU implementation of the

neural network. First scenario on the left and second scenario on the right. For more details, see Tables

A.2 and A.3 in Appendix A.

We found that the processing of networks in GPU is faster than in TPU, despite the TPUs being

ASICs explicitly designed for neural networks. One factor that explains this result is the optimization of

this hardware for complex neural network models with a large number of parameters, which is precisely

the opposite of the Modified LeNet-5 model.

4.1.2 Modified LeNet-5 vs. LeNet-5

We tested each network on GPU and TPU. The tests were done for five epochs to avoid overfitting.

Firstly, we can observe in Table 4.1 the values of loss and accuracy of the training of the two models, as

well as the time they take to be executed. As for the loss value, we consider that the difference between

our network and the LeNet-5 is not problematic since values closer to zero would cause overfitting,

indicating that the Modified LeNet-5 would take more epochs than the LeNet-5 until we have overfitting

problems. We obtained a training accuracy equal to 96.79% on GPU and 96.68% on TPU, which are

excellent values and are close to the values obtained in LeNet-5, 98.91% on GPU and 98.88% on TPU.

Our network is 1.2175x faster than LeNet-5 on GPU and 1.6985x on TPU, which was expected due to

the low number of trainable parameters in the proposed model.

We can observe in Table 4.2 the values of loss and accuracy of the classification phase of the two
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CNN GPU Loss GPU Accuracy GPU Time TPU Loss TPU Accuracy TPU Time

LeNet-5 0,0351 0,9891 50,15 0,0353 0,9888 232,19

Proposed CNN 0,1053 0,9679 41,19 0,1102 0,9668 136,70

Table 4.1: Performance comparison between LeNet-5 and the Proposed CNN in the training stage.

models, as well as the time they take to be executed. In the classification phase, we achieved similar

loss values. The accuracy obtained was very close to those obtained in the training phase, indicating

no overfitting in any model. We can also highlight that the classification times are significantly faster

than the training times. We consider our model valid for classifying handwritten digits belonging to the

MNIST dataset with the obtained results.

CNN GPU Loss GPU Accuracy GPU Time TPU Loss TPU Accuracy TPU Time

LeNet-5 0,0374 0,9873 1,06 0,0561 0,9826 2,19

Proposed CNN 0,1017 0,9676 1,05 0,0918 0,9719 1,11

Table 4.2: Performance comparison between LeNet-5 and the Proposed CNN in the classification stage.

As mentioned in 4.1.1, TPUs are ASICs explicitly designed for neural networks optimized for com-

plex neural network models with a large number of parameters. As the Modified LeNet-5 is a CNN with

only 1158 parameters, TPU presented an expected behavior, being slower than GPU.

4.2 CNN - RTL implementation

Figure 4.3 shows the number of clock cycles each layer takes in our implementation. It clearly shows

that convolutional layers take longer to be completed, since they are the most computationally intensive

layers. As expected, the first layers take longer to execute than layers of the same type than the following

ones since the number of calculations decreases as the layer advances. Maxpool layers are the layers

that run the fastest. One suggestion to improve network performance is that convolutional layers are

parallelized whenever possible.
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Figure 4.3: Number of clock cycles per layer.

Although we could classify an image, the classification is not accurate. In Figure 4.4, the CNN

classifies an image of the number 7 as 0, despite ’class_o’ is 1. On the right side of the figure, we verify

the same error as in 4.10, where the info is shifted one address up and an information loss in the second

and third addresses.

Figure 4.4: Error in classification.

All layers of the network were implemented sequentially, and in Figure 4.5 it is possible to see the

RTL overview of our implementation, where each rectangle indicates a layer. Every layer only starts

when the previous layer has finished the computations. For more details see Appendix B. To control the

sequential execution of the layers, we designed a controller with the state machine in Figure 4.6. The

controller is designed for classifying one image. However, it can be easily adapted for more images.
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Figure 4.5: RTL implementation overview of Modified LeNet-5.

Figure 4.6: State machine for layer execution control.

We verified that all address generators are generating addresses correctly and that the ReLU (Figure

4.7) and Maxpool (Figure 4.8) functions also work correctly. An example of MAC operations is in

Figure 4.9. However, we have detected that the output of C1 is not written properly in RAM.

Figure 4.7: Example of ReLU operations. The input of the ReLU block is ’plus_b’ and the output is
’conv_out’.

Figure 4.8: Example of a Maxpool operation. The input of the Maxpool block is ’c1_out’ and the output
is ’c2_max’.

Figure 4.9: Example of a MAC based convolution. The inputs of the MAC block are ’img_in’ and
’wb_in’ and the output is ’mac_out’.

In Figure 4.10, we observed that we lose information on address 0x002. After debugging, we con-

cluded that this error occurred due to bad memory access techniques. Better addressing techniques when

writing to memories must be studied to solve this problem. To find if the writing error is at the moment

we write in RAM, we can replace the data written by the corresponding address. So, if the written

address is different from the actual address, we are experiencing a delay while writing. If we get the

address properly written, we must verify if the FIFO before the RAM is receiving only the intended data,

otherwise we must force a FIFO clear at the clock cycle before the first data write.
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Figure 4.10: Information loss on the output of layer C1.

4.3 Stochastic approach circuit

In our approach to Stochastic Computing, we were able to verify some concepts and limitations

of this type of computation. We obtained results concerning the randomness of an LFSR and verified

the limitations in generating numbers. We also evaluate the Root-Mean-Square Error (RMSE) as a

function of the bitstream size, while generating the bitstream, and the RMSE between the predicted and

the observed values after the multiplication circuit of Figure 3.14.

4.3.1 Pseudo-random sequence

First, we studied the behavior of LFSR to validate its implementation. In Figure 4.11, we can observe

the behavior of the 8bit LFSR. The ’random_a’ signal is generated through the ’seed_a’, equal to 58,

while the ’random_b’ signal is generated through the ’seed_b’, equal to 139. It is also possible to verify

that a new pseudo-random number is generated every clock cycle. Since we are using a LFSR with

8bit resolution, it is only possible to generate 255 different numbers before the random sequence repeats

itself.

Figure 4.11: Snippet of the pseudo-random numbers generated by the LFSRs from Figure 3.14.

With our RNG working properly, we advanced to the binary to stochastic conversion, where we

studied the RMSE between the predicted and the expected values.
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Predicted value

(Stochastic)

Predicted value

(Decimal)

Predicted value

(Binary)

0.0157 4/255 00000100

0.2000 51/255 00110011

0.4980 127/255 01111111

0.8000 204/255 11001100

0.9843 251/255 11111011

Table 4.3: Test cases for binary to stochastic conversion.

4.3.2 Root-Mean-Square Error in number generation

The tests were done using the numbers from Table 4.3, where we evaluated the RMSE on the binary

to stochastic conversion as the bitstream size increases.

The Root-Mean-Square Error (RMSE), Equation 4.1, is frequently used to measure the differences

between the predicted and the observed values. We use the RMSE to find the error between the predicted

and the observed value of P. Ppredicted refers to the predicted value of the number, Pobserved to the

observed value of the number and N to the total elements in the test case.

RMSE =

[
N∑
i=1

(Ppredicted − Pobserved)
2 /N

]1/2

. (4.1)

Figure 4.12 presents the variation of the RMSE in function of the bitstream size. For more details,

see Table C.1 in Appendix C.

Figure 4.12: RMSE in function of bitstream length.
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From the figure, we can see that when the numbers are very close to 0 and 1, the RMSE is quite

low compared to the other cases. Since when the value is very close to 0 it is quite likely that the LFSR

value is greater, almost always leaving a bit equal to 0 from the comparator and when the value is very

close to 1 it is quite likely that the LFSR value is smaller, almost always leaving a bit equal to 1 from

the comparator. In the case of the intermediate value, the comparator output alternates between 0 and

1 equally. In the remaining cases, with small bitstreams, the RMSE is larger compared to the previous

cases, requiring longer bitstreams to approach its predicted value.

4.3.3 Root-Mean-Square Error variation in multiplication

To evaluate the RMSE after multiplication, we used the test cases from Table 4.4. The table indicates

the expected values (P_expected) of the multiplication between the elements of the first row and the first

column represented by a bitstream with 255 bits. Table 4.5 represents the observed values (P_observed)

after our implementation.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900

0.2 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800

0.3 0.0300 0.0600 0.0900 0.1200 0.1500 0.1800 0.2100 0.2400 0.2700

0.4 0.0400 0.0800 0.1200 0.1600 0.2000 0.2400 0.2800 0.3200 0.3600

0.5 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500

0.6 0.0600 0.1200 0.1800 0.2400 0.3000 0.3600 0.4200 0.4800 0.5400

0.7 0.0700 0.1400 0.2100 0.2800 0.3500 0.4200 0.4900 0.5600 0.6300

0.8 0.0800 0.1600 0.2400 0.3200 0.4000 0.4800 0.5600 0.6400 0.7200

0.9 0.0900 0.1800 0.2700 0.3600 0.4500 0.5400 0.6300 0.7200 0.8100

Table 4.4: Test cases with the expected values (P_expected) for the multiplication circuit.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.0078 0.0196 0.0314 0.0392 0.0471 0.0627 0.0627 0.0784 0.0902

0.2 0.0118 0.0353 0.0588 0.0745 0.0980 0.1176 0.1373 0.1608 0.1765

0.3 0.0235 0.0510 0.0863 0.1098 0.1451 0.1725 0.2078 0.2392 0.2627

0.4 0.0471 0.0784 0.1255 0.1647 0.2000 0.2471 0.2863 0.3255 0.3647

0.5 0.0510 0.0980 0.1490 0.2000 0.2471 0.3020 0.3490 0.4000 0.4510

0.6 0.0549 0.1137 0.1804 0.2431 0.3020 0.3647 0.4275 0.4824 0.5412

0.7 0.0745 0.1412 0.2157 0.2941 0.3529 0.4314 0.5020 0.5686 0.6392

0.8 0.0824 0.1569 0.2392 0.3255 0.3961 0.4824 0.5608 0.6392 0.7255

0.9 0.0863 0.1804 0.2706 0.3569 0.4471 0.5373 0.6275 0.7137 0.8039

Table 4.5: Test cases with the observed values (P_observed) from the multiplication circuit.

Using the values from the table in Equation 4.1, we obtained the variation of the RMSE, which we

represented in Figure 4.13. From the analysis of the figure, we verified that the RMSE is higher when we
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multiply opposite values, indicating that there is a greater deviation of the RMSE between P_expected

and P_observed. This deviation indicates that multiplication is more accurate when multiplying values

close to 0 by the same values and when multiplying values close to 1 by the same values.

Figure 4.13: RMSE variation between the expected and observed values after multiplication.

Despite this variation, it is possible to obtain significantly accurate values, as the RMSE has a re-

duced magnitude. From this analysis we were able to validate the stochastic multiplication circuit, being

possible to add it to the Modified LeNet-5 when it is ready to receive Stochastic Computing features.

4.4 Using SC in the CNN computation pipeline

Having shown some of the SC elements in the previous section and with the stochastic functions

presented in Section 2.2.2, we move on to several proposals to introduce them in Modified LeNet-5.

The options vary on where the data is in binary or stochastic domain in the computation pipeline.

Convolutional Layers

Figure 4.14 shows four possible SC changes in the convolutional layer data flows represented in Fig-

ures 3.9 and 3.11. All mathematical operations are done in the stochastic domain in the following four

options:

• The top option of Figure 4.14 presents a data conversion to the stochastic domain, and after the
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operations, the data is reconverted to the binary domain.

• In the middle option, the data is maintained in the stochastic domain at the output of the layer, in

case the data can be processed in the same domain by the next layer.

• In the third option, data arrives at the current layer in the stochastic domain and is always kept

in this domain. This option does not apply to the first layer of the network, as the data enters the

network in the binary domain.

• Another option is to convert the stochastic input data to the binary domain after the convolutions.

Figure 4.14: Convolutional layer options with SC.

Maxpool Layers

Figure 4.15 shows four possible SC changes in the data flows represented in Figures 3.10 and 3.12.

All mathematical operations are done in the stochastic domain in the following four options:

• The top option of Figure 4.15 presents a data conversion to the stochastic domain, and after the
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maxpool block, the data is reconverted to the binary domain.

• In the second option, the data is maintained in the stochastic domain at the output of the layer, in

case the data can be processed in the same domain by the next layer.

• In the third option, data arrives at the current layer in the stochastic domain and is always kept

in this domain. This option does not apply to the first layer of the network, as the data enters the

network in the binary domain.

• Another option is to convert the stochastic input data to the binary domain after the convolutions.

Figure 4.15: Maxpool layer options with SC.

Dense Layer

Figure 4.16 shows four possible SC changes in the dense layer data flow represented in Figure 3.13.

All mathematical operations are done in the stochastic domain in the following four options:
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• The top option of Figure 4.16 presents a data conversion to the stochastic domain, and after the

operations, the data is reconverted to the binary domain.

• Another option, when the input data is in the stochastic domain, is to reconvert the data to the

binary domain after the operations in the stochastic domain.

Figure 4.16: Dense layer options with SC.

Tests on timings and precision need to be performed to find the best option for each layer, combining

the different options. Therefore is possible to adapt the Modified LeNet-5 to be fully implemented on

the stochastic domain, having only data in the binary domain in the CNN input and output.



Chapter 5. Conclusions and Future Work

5.1 Conclusions

We were able to adapt the CNN LeNet-5 to a simpler version in terms of the number of complex

layers and trainable parameters, with a negligible reduction in accuracy, to be implemented in an FPGA

with Stochastic Computing features. Our Modified LeNet-5 performed classification of MNIST dataset

images with approximately 97% accuracy on Tensorflow. During the implementation of CNNs on Ten-

sorflow, it was possible to verify differences depending on the choice of hardware for the training, as

the train in GPU is 2.8442x faster than TPU.

After training, we changed the format of the trainable parameters to enable their implementation

on FPGA through a script developed in Matlab that converts the parameters into a Q3.5 fixed-point

representation, sorts them, and writes them in Memory Initialization Files (MIF).

We built a skeleton of the CNN on FPGA, which despite not being fully functional, is capable of

image classification, even though the classification is incorrect. However, we could verify the well-

functioning of the MAC-based convolution, and the ReLU and MaxPool functions.

Finally, we tested a stochastic circuit with an RNG, Binary to Stochastic and Stochastic to binary

conversions, and multiplication in the stochastic domain, where we verified the limitation of the 8bit

LFSR and the problem in generating accurate representations in the stochastic domain using smaller

bitstream sizes.

5.2 Future work

In order to pursue the ultimate goal of a CNN implemented on FPGA with stochastic features, mem-

ory writing techniques should be studied, since it was not possible to have the CNN working correctly

due to writing wrong values in the memories which propagate through the following layers.

After successfully writing the memories, the CNN should be fully functional and ready to receive

stochastic computing features and then compare the trade-offs of the proposed approach with determin-

istic computing methods and evaluate parameters such as energy consumption, resource utilization, and

fault tolerance.
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Appendix A.Tensorflow

This section contains support material for Figures 4.1 and 4.2 in Chapter 4.1. It covers data obtained

on Tensorflow.

Table A.1 presents the values corresponding to the comparison of speedup, loss, and accuracy be-

tween TPU and GPU implementation of our convolutional neural network, with only five scenarios. The

plot of Figure 4.1 was built using this values.

Table A.1: Comparison of speedup, loss, and accuracy between TPU and GPU implementation of our

convolutional neural network.

TPU GPU TPU/GPU

Number

of epochs
Time (s) Loss Accuracy Time (s) Loss Accuracy Speedup Loss Accuracy

1 41,15 0,2094 0,9383 33,06 0,166 0,9516 1,24 1,2614 0,9860

5 140,69 0,0879 0,9728 61,23 0,0854 0,9727 2,30 1,0293 1,0001

10 255,29 0,0778 0,9755 96,41 0,0778 0,9751 2,65 1,0000 1,0004

20 506,65 0,0635 0,9789 158,8 0,0591 0,9813 3,19 1,0745 0,9976

50 1297,84 0,0553 0,9834 374,36 0,0575 0,9834 3,47 0,9617 1,0000
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Table A.2 presents the values corresponding to the comparison of speedup, loss, and accuracy be-

tween TPU and GPU implementation of our convolutional neural network, for 20 epochs. The first

scenario present in Figure 4.2 was built using this values.

Table A.2: Comparison of speedup, loss, and accuracy between TPU and GPU implementation of our

convolutional neural network. The plot on the left side of Figure 4.2 was built using this table.

TPU GPU TPU/GPU

Number

of epochs
Time Loss Accuracy Time Loss Accuracy Speedup Loss Accuracy

1 43,16 0,1843 0,9426 31,05 0,2245 0,9296 1,3900 0,8209 1,0140

2 75,33 0,1545 0,9514 38,09 0,1484 0,9566 1,9777 1,0411 0,9946

3 101,47 0,1132 0,9649 45,12 0,1204 0,9640 2,2489 0,9402 1,0009

4 121,56 0,1182 0,9610 54,16 0,0979 0,9707 2,2445 1,2074 0,9900

5 140,71 0,0853 0,9742 62,21 0,0834 0,9744 2,2619 1,0228 0,9998

6 176,88 0,0899 0,9730 70,25 0,0813 0,9736 2,5179 1,1058 0,9994

7 197,01 0,0772 0,9746 69,28 0,0747 0,9778 2,8437 1,0335 0,9967

8 225,14 0,0699 0,9773 75,32 0,0745 0,9783 2,9891 0,9383 0,9990

9 246,25 0,0963 0,9678 95,37 0,0656 0,9800 2,5820 1,4680 0,9876

10 256,34 0,0759 0,9773 91,40 0,0783 0,9724 2,8046 0,9693 1,0050

11 285,47 0,0737 0,9768 111,45 0,0706 0,9775 2,5614 1,0439 0,9993

12 328,68 0,0701 0,9772 118,49 0,0714 0,9769 2,7739 0,9818 1,0003

13 340,78 0,0720 0,9768 118,52 0,0606 0,9813 2,8753 1,1881 0,9954

14 385,99 0,0720 0,9769 124,57 0,0674 0,9795 3,0986 1,0682 0,9973

15 411,13 0,0630 0,9802 143,06 0,0591 0,9811 2,8738 1,0660 0,9991

16 444,28 0,0641 0,9788 143,64 0,0673 0,9775 3,0930 0,9525 1,0013

17 451,33 0,0600 0,9797 147,68 0,0562 0,9808 3,0561 1,0676 0,9989

18 468,39 0,0693 0,9771 164,77 0,0614 0,9805 2,8427 1,1287 0,9965

19 491,52 0,0598 0,9791 181,83 0,0647 0,9790 2,7032 0,9243 1,0001

20 509,66 0,0788 0,9766 178,82 0,0597 0,9811 2,8501 1,3199 0,9954
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Table A.3 presents the values corresponding to the comparison of speedup, loss, and accuracy be-

tween TPU and GPU implementation of our convolutional neural network, for 20 epochs. The second

scenario present in Figure 4.2 was built using this values.

Table A.3: Comparison of speedup, loss, and accuracy between TPU and GPU implementation of our

convolutional neural network. The plot on the right side of Figure 4.2 was built using this table.

TPU GPU TPU/GPU

Number

of epochs
Time Loss Accuracy Time Loss Accuracy Speedup Loss Accuracy

1 31,13 0,3928 0,8750 26,06 0,4083 0,8701 1,1946 0,9620 1,0056

2 56,26 0,1442 0,9566 34,10 0,1689 0,9483 1,6499 0,8538 1,0088

3 81,39 0,1200 0,9636 42,14 0,1325 0,9593 1,9314 0,9057 1,0045

4 106,52 0,1056 0,9675 50,18 0,1186 0,9639 2,1228 0,8904 1,0037

5 131,65 0,0978 0,9692 58,22 0,1120 0,9660 2,2613 0,8732 1,0033

6 156,78 0,0927 0,9714 66,26 0,0992 0,9693 2,3661 0,9345 1,0022

7 181,91 0,0853 0,9740 74,30 0,0971 0,9711 2,4483 0,8785 1,0030

8 207,04 0,0815 0,9757 82,34 0,0917 0,9724 2,5145 0,8888 1,0034

9 232,17 0,0770 0,9765 90,38 0,0856 0,9735 2,5688 0,8995 1,0031

10 257,30 0,0750 0,9765 98,42 0,0817 0,9755 2,6143 0,9180 1,0010

11 282,43 0,0720 0,9778 106,46 0,0775 0,9766 2,6529 0,9290 1,0012

12 307,56 0,0684 0,9791 114,50 0,0771 0,9771 2,6861 0,8872 1,0020

13 332,69 0,0669 0,9790 122,54 0,0733 0,9777 2,7150 0,9127 1,0013

14 357,82 0,0659 0,9803 130,58 0,0722 0,9780 2,7402 0,9127 1,0024

15 382,95 0,0644 0,9806 138,62 0,0695 0,9791 2,7626 0,9266 1,0015

16 408,08 0,0603 0,9816 146,66 0,0674 0,9797 2,7825 0,8947 1,0019

17 433,21 0,0628 0,9803 154,70 0,0685 0,9792 2,8003 0,9168 1,0011

18 458,34 0,0596 0,9816 162,74 0,0611 0,9814 2,8164 0,9755 1,0002

19 483,47 0,0613 0,9811 170,78 0,0653 0,9801 2,8310 0,9387 1,0010

20 508,60 0,0577 0,9819 178,82 0,0617 0,9815 2,8442 0,9352 1,0004



Appendix B. Quartus Prime Software - CNN

In this section, we present the values used to build the plot of Figure 4.3. We also present Figure 4.5

divided in four larger images for a better comprehension.

The number of clock cycles per layers was obtained by simulating our Modified LeNet-5 on Mod-

elSim. This value is obtained by dividing the time that each layer takes to complete by the clock period

we used, which was 100ps.

Table B.1: Number of clock cycles per layer. The simulation used a 10GHz clock.

Layer C1 S2 C3 S4 D6

Time (ps) 5990900 230600 2662700 103000 257200

Clock cycles 59909 2306 26627 1030 2572

The following four figures correspond to Figure 4.5, which is the RTL implementation overview of

our Modified LeNet-5.

Figure B.1: RTL overview of Modified LeNet-5 - Part 1.
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Figure B.2: RTL overview of Modified LeNet-5 - Part 2.

Figure B.3: RTL overview of Modified LeNet-5 - Part 3.
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Figure B.4: RTL overview of Modified LeNet-5 - Part 4.



Appendix C. Stochastic

This section presents the values obtained while testing the stochastic computing multiplication cir-

cuit. We obtained this values by simulation of the circuit in Quartus Prime Software.

Bitstream length 0.0157 0.2000 0.4980 0.8000 0.9843

8 0.0157 0.2000 0.0020 0.0750 0.0157

16 0.0157 0.2000 0.0605 0.1375 0.0157

24 0.0157 0.1167 0.0397 0.1583 0.0157

32 0.0157 0.0750 0.0020 0.1063 0.0157

40 0.0157 0.0500 0.0480 0.0500 0.0157

48 0.0157 0.0542 0.0605 0.0292 0.0051

56 0.0022 0.0393 0.0337 0.0500 0.0022

64 0.0312 0.0344 0.0176 0.0500 0.0001

72 0.0260 0.0361 0.0298 0.0222 0.0018

80 0.0218 0.0250 0.0145 0.0250 0.0032

88 0.0184 0.0614 0.0361 0.0273 0.0043

96 0.0156 0.0604 0.0541 0.0187 0.0053

104 0.0228 0.0500 0.0405 0.0115 0.0035

112 0.0200 0.0679 0.0556 0.0411 0.0200

120 0.0176 0.0500 0.0437 0.0417 0.0176

128 0.0156 0.0422 0.0411 0.0344 0.0155

136 0.0137 0.0426 0.0388 0.0206 0.0137

144 0.0121 0.0292 0.0228 0.0153 0.0121

152 0.0106 0.0171 0.0086 0.0105 0.0106

160 0.0093 0.0250 0.0145 0.0000 0.0093

168 0.0081 0.0202 0.0139 0.0095 0.0081

176 0.0070 0.0159 0.0134 0.0068 0.0070

184 0.0060 0.0120 0.0074 0.0152 0.0060

192 0.0051 0.0135 0.0124 0.0125 0.0051

200 0.0043 0.0200 0.0170 0.0200 0.0043

208 0.0035 0.0163 0.0212 0.0221 0.0035

216 0.0028 0.0083 0.0159 0.0102 0.0028

224 0.0022 0.0009 0.0109 0.0009 0.0022

232 0.0015 0.0060 0.0023 0.0017 0.0015

240 0.0010 0.0083 0.0063 0.0042 0.0010

248 0.0004 0.0145 0.0061 0.0016 0.0004

255 0.0000 0.0039 0.0000 0.0000 0.0000

Table C.1: RMSE in function of bitstream size. The column headers correspond to the predicted value

of each test case.
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