1 2

UNIVERSIDADE b

COIMBRA

Adriano Pinto Durao

RECURRENT NEURAL NETWORKS FOR SMILES

GENERATION
QUANTIZATION STUDY

Dissertaciao no ambito do Mestrado em Engenharia
Electrotécnica e de Computadores Area de Especializacgio
em Computadores orientada pelo Professor Doutor
Gabriel Falcdao Paiva Fernandes e apresentada a Faculdade
de Ciéncias e Tecnologia, Departamento de
Engenharia Electrotécnica e de Computadores.

Julho de 2022

Acknowledgments

I want to thank my thesis supervisor, Professor Gabriel Falcdo Paiva Fernandes for
accepting my project, for his constant availability to help me in any regard and all the
advices given during the execution of this dissertation.

This work was partially supported by Instituto de Telecomunica¢des and Fundacao
para a Ciéncia e a Tecnologia, Portugal, under grants UIDB/EEA/50008/2020 and EXPL/EEI-
HAC/1511/2021.

I thank Professor Bernardete Ribeiro and Professor Joel Arrais for their help during the
first stages of my thesis and Maryam Abbasi for providing and helping me get started on
the program she developed as part of her work in Department of Informatics Engineering,
which was the base for the work I developed.

I would like to also thank University of Coimbra and the Department of Electrical and
Computer Engineering (DEEC) for providing me with the education necessary to be able
to complete this project.

Finally I would like to thank my family for giving me the opportunity to complete my
studies and focus on my education and personal growth, without them I would never be
in this position.

Abstract

Machine Learning (ML) has possibly become the biggest research topic in computer
science, aiming to improve how tasks are performed and automate computer learning,
making use of the ever increasing data available on every major subject, from economics
to health. Due to the high number of computations necessary to train ML models it is a
Very energy intensive process.

Optimizing the training process leads to faster and less costly models and allows them
to run on less powerful devices. By running the models at reduced precision significant
savings can be attained both in memory requirements and power consumption. Most
optimization techniques focus on training the network at float precision, converting the
model to 16 or 8 bits and running inference on the converted model.

This study focuses on the effects of applying quantization during training, making use
of the QKeras library. It offers the flexibility to choose the precision used by the model
by defining the number of bits at each layer. A class of Neural Networks (NNs) denom-
inated Recurrent Neural Networks (RNNs) will be the focus of the study, comparing the
performance of 3 of the most used algorithms, Simple RNN, Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU). The models were trained on a selection of
SMILES, a form of line notation for molecular information, from the PubChem database.
Quantization performance was compared to their float equivalent for several combinations
of tuneable parameters. The goal of the program used for testing is to generate a large
number of novel SMILES, facilitating the process of Drug Discovery that is traditionally
very expensive and difficult.

By understanding how the behavior of quantized networks deviates from the regular
model, in relation to the parameters used, the process of choosing whether to quantize a
model and to which degree becomes more efficient. This study was able to achieve good
performance even on 4 bit models making use of LSTM and GRU layers and concluded
that Simple RNN quantization is not worth it.

Keywords

LSTM, Neural Networks, Machine Learning, Quantization, SMILES

Resumo

ML tornou-se, nos dltimos anos, num dos principais topicos de pesquisa em ci€ncia
de computadores, tendo como principal objetivo melhorar a forma como as tarefas sdao
executadas e automatizar a aprendizagem por computador, fazendo uso da maior disponi-
bilidade de dados sobre as mais variadas areas, da economia a saude. Devido ao elevado
nimero de cédlculos necessarios para treinar modelos de ML, este € um processo que im-
plica elevados custos energéticos.

A otimizacdo do processo de treino leva a obtencdo de modelos mais rdpidos e menos
dispendiosos, permitindo que eles sejam executados em dispositivos menos potentes. Ao
executar os modelos com precisdo reduzida, € possivel obter poupancas significativas nos
requisitos de memoria e no consumo de energia. A maioria das técnicas de otimizagdo
concentra-se em treinar a rede com precisao float, convertendo a seguir o modelo para 16
ou 8 bits e executando a inferéncia no modelo convertido.

Este estudo foca-se nos efeitos da aplicacdo de quantizacdo durante o treino, recor-
rendo a biblioteca QKeras. Esta oferece a flexibilidade de escolher a precisao usada pelo
modelo, definindo o nimero de bits em cada camada. A classe de Redes Neuronais de-
nominada Redes Neuronais Recurrentes serd o foco do estudo, comparando o desempenho
de 3 dos algoritmos mais utilizados, RNN simples, LSTM e GRU. Os modelos foram
treinados numa selecao de SMILES, uma forma de notacdo de linha com informacdes
moleculares, retiradas do banco de dados PubChem. O desempenho dos modelos quan-
tizados foi comparado ao seu equivalente float para véarias combinagdes de parametros
ajustaveis. O objetivo do programa usado para teste € gerar um grande nimero de novos
SMILES, facilitando o processo de descoberta de novos farmacos, tradicionalmente muito
caro e de dificil execugdo.

Ao entender como o comportamento das redes quantizadas se desvia do modelo regu-
lar, para cada combinacdo de parametros utilizados, o processo de escolher quantizar um
modelo ou ndo e em que grau o fazer torna-se mais eficiente. Este estudo conseguiu obter
um bom desempenho mesmo em modelos de 4 bits, fazendo uso de camadas LSTM e
GRU e concluiu que a quantizagdo de modelos usando de camadas RNN simples leva a
uma elevada degradacdo de desempenho.

Palavras-Chave

LSTM, Redes Neuronais, Machine Learning, Quantizacao, SMILES

Contents

1

3

Introduction
1.1 Context o o o i i e e
1.2 Motivation e e e e e
1.3 Objectives e
1.4 Structure
State of the Art
2.1 Neural networks: howitworks
2.1.1 Artificial Intelligence
2.1.2 Machine Learning L.
213 Deeplearning
2.1.4 Neural Networks
214.A Model
214B Layers
2.1.4.C Activation functions
214D Training
214E Inference
214F Parameters
2.2 RNNS . . e
23 LSTM . . . e
2.4 Gated Recurrent UnitGRU
2.5 DrugDiscovery e e
2.6 Frameworks
2.6.1 Tensorflow
262 Keras
263 QKeras e
2.7 Optimizations and quantization
2.7.1 Quantized training
Methods and Implementation of Recurrent Models and Quantization

3.1 QKeras quantization vs float32o oL
3.2 SMILES GenerationModel
32.1 Dataset
322 EncodingData
323 TrainingModel

3.2.4 Generating Output Lo

Contents

3.2.5 Validationof OQutput 23
3.3 QKeras implementationo 24
34 SimpleRNNmodel A 24
3.5 SimpleRNNmodel B-QKeras 25
36 GRUmodel A 25
377 GRUmodel B-QKeras 25
3.8 LSTMmodel A 26
39 LSTMmodel B-QKeras 26
3.10 Erroranalysis 26
3.11 Hardwareand System 27
Experimental Results 29
4.1 Simple RNNmodel 30
4.1.1 Simple RNN test 1 - Numberoflayers 30
4.1.2 Simple RNN test 2 - Dropout and Learning Rate 32
4.1.3 Simple RNN test 3 - Epochs and Number of training samples . . . 34
4.1.4 Simple RNN - Final Analysis 36
42 GRUmodel 38
42.1 GRUtest1-Numberoflayers 38
4.22 GRU test 2 - Dropout and Learning Rate 40
4.2.3 GRU test 3 - Epochs and Number of training samples 42
424 GRU-Final Analysis. 44
43 LSTMmodel 45
43.1 LSTMtest1-Numberoflayers 46
4.3.2 LSTM test 2 - Dropout and Learning Rate 47
4.3.3 LSTM test 3 - Dropout per layer and Learning Rate 52
4.3.4 LSTM test 4 - Epochs and Number of training samples 58
435 LSTM-Final Analysis 60
4.4 Recurrent models - Performance comparison. 62
Conclusion 65
5.1 Conclusion 66

5.2 Future Work 66

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Relations between commonly usedterms 6
General configuration of NN layers and connections 8
Commonly used activation functions 9
Gradient estimation convergence as a function of batch size 10
Learning rate analysis as a function of loss perepoch 11
RNNs architecture and unfolded cells 11
LSTM architecture and equations 13
GRU architecture and equations 14
Nicotine molecule with corresponding SMILES representation 15
Example of QKeras quantization on activation functions 21
Sample of SMILES taken from the PubChem dataset 22
SMILES with corresponding representations 22
Simple RNN - Valid and Unique SMILES by number of layers 36

Simple RNN - Valid and Unique SMILES by dropout and learning rate . . 36
Simple RNN - Valid and Unique SMILES by number of samples and epochs 36

GRU - Valid and Unique SMILES by number of layers 44
GRU - Valid and Unique SMILES by dropout and learning rate 44
GRU - Valid and Unique SMILES by number of samples and epochs . . . 45
LSTM - Valid and Unique SMILES by number of layers 60
LSTM - Valid and Unique SMILES by dropout and learning rate 60

LSTM - Valid and Unique SMILES by dropout per layer and learning rate 60

LSTM - Valid and Unique SMILES by number of samples and epochs . . 61
First test - Error graphic comparing performance of recurrent models . . . 62
Second test - Error graphic comparing performance of recurrent models . 62
Final test - Error graphic comparing performance of recurrent models . . 62
Sample of SMILES generated by the best 4 bit Simple RNN model 63
Sample of SMILES generated by the best 4 bit GRUmodel 63

Sample of SMILES generated by the best 4 bit LSTM model 64

iii

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

Computing SyStem e e 27
Simple RNN model: 1% test trainingdata 30
Simple RNN model: 1% test SMILES validationdata 31
Simple RNN model: 2" test trainingdata 32
Simple RNN model: 2" test SMILES validationdata 33
Simple RNN model: 3" test training data 34
Simple RNN model: 3" test SMILES validationdata 35
GRU model: 1% test training data 38
GRU model: 1% test SMILES validationdata 39
GRU model: 2™ test trainingdata 40
GRU model: 2™ test SMILES validationdata 41
GRU model: 3" test training data 42
GRU model: 3™ test SMILES validationdata 43
LSTM model: 1% test training data 46
LSTM model: 1% test SMILES validationdata 47
LSTM model: 2™ test training data-part 1 48
LSTM model: 2™ test training data - part2 49
LSTM model: 2™ test SMILES validation data - part 1 50
LSTM model: 2™ test SMILES validation data - part2 51
LSTM model: 3" test training data -part 1 53
LSTM model: 3" test training data - part2 54
LSTM model: 3" test SMILES validation data -part 1 55
LSTM model: 3™ test SMILES validation data -part2 56
LSTM model: 3™ test SMILES validation data - part3 57
LSTM model: 4™ test trainingdata 58
LSTM model: 4™ test SMILES validationdata 59

Acronyms

LSTM Long Short-Term Memory
RNN Recurrent Neural Network
GRU Gated Recurrent Unit

ML Machine Learning

DL Deep Learning
NN Neural Network
Al Artificial Intelligence

SMILES Simplified Molecular-Input Line-Entry System

vii

Acronyms

Introduction

1. Introduction

1.1 Context

Recurrent Neural Networks (RNNs) [1] are a class of Machine Learning algorithms
that perform especially well on sequential data. Long Short-Term Memory (LSTM) net-
works [2] are a type of RNN that solves many problems of simpler RNN configurations,
like exploding gradients. Other network architectures have been proposed to solve the
same issues while having lower computational requirements than LSTM’s, as is the case
of the Gated Recurrent Unit (GRU) [3].

Drug Discovery is a process that involves a large range of scientific disciplines, part
of that process consists of generating new molecules with the aim of developing new
compounds, inserted in the process designated as de novo drug design [4]. Deep learning
has a lot of potential in this area, with RNNs and its variations being used in state of the
art models used to generate novel molecules [S]. Simplified Molecular-Input Line-Entry
System (SMILES), a text based notation created in the 1980s by David Weininger [6], is
often used to represent the molecular structures, making RNNs the common choice for
the task as they are well equipped to process this data format and deal with long term
dependencies.

Quantization approaches aim to reduce how computationally expensive it is for mod-
els to perform Machine Learning tasks. Models typically run with 32 bit floating point
precision, by training and running inference on lower precision an increase in energy
efficiency and lower memory usage can be achieved, without losing significant perfor-
mance [7]. Some typically used libraries like Tensorflow already provide tools, like Ten-
sorflow Lite, that can perform some type of quantization, but do not provide many options
when it comes to choosing the number of bits and many only perform post training quan-
tization by converting the trained model to a quantized version. Qkeras [8] is a library
that extends the Keras library, providing replacements for some of its layers, enabling the
creation of a quantized model that performs the main operations in lower precision. It
allows the programmer to specify the number of bits and the use of different precisions in
different blocks of the model [8].

1.2 Motivation

The exponential increase in computing power, advances in memory technology and
the availability of data have been the main factors enabling the latest advances in Machine
Learning (ML) [9]. As the performance available increased, so did the complexity of
the problems being solved, making efficiency a constant problem throughout the years.

Hardware acceleration has been widely used for many purposes, like video and sound

1.3 Objectives

cards. Given the increasingly employment of Artificial Intelligence (Al) in many software
applications, Al accelerators are being made available even in mobile devices destined for
mass market, where power usage is of great importance [10].

By studying how profoundly the precision of AI models can be reduced at each oper-
ation, better hardware can be developed for commercial and research applications, lead-
ing to greater energy savings with comparable performance when applied to the same
tasks [11]. If the best quantization parameters for a model can be found by software
emulation a priori, the development of dedicated hardware, which is a time-consuming

process and has significant costs associated, can be made more efficiently.

1.3 Objectives

The goal of this study is to assess how the network performs in terms of accuracy and
prediction capabilities when training with reduced precision, studying how using different
building blocks of RNNs affect the model performance. With Simple RNN, LSTM and
GRU layers being studied. To achieve that, the Keras model, built upon Tensorflow, is
adapted into employing reduced precision by making use of the QKeras library. The
layers of the original model being adapted to the specifications of the new library used.

By assessing the number of precision bits that still perform the required task without
much degradation and which models should be kept at higher precision, the most efficient
solutions can be found. The general approach of using full precision or post training
quantization, despite working well for many use cases, is more limited in nature. The
design of more cost-effective hardware architectures for this application can be made

easier by building upon and analysing the results of this study.

1.4 Structure

The starting point for the thesis were the materials provided by a project carried out by
a research team from the Informatics Engineering Department from University of Coim-
bra. These materials were adapted to comply with the QKeras library specifications. The
description of the networks and different RNN configurations were the other resources
used as starting point in developing this study.

Chapter 2 explains and introduce the general topics being studied by this thesis, as
well as explaining the concepts required for understanding it. The first part of this chapter
will contextualize RNNs in the world of Al and explain how the different models work.
The most important frameworks and libraries used are also introduced during this chapter.

Chapter 3 describes the experimental setup, the overall dependencies of the program

1. Introduction

used and how it is modified to accommodate the changes required for reduced precision
training using the specified tools, namely QKeras. The focus will be on the software
implementation and the study of the accuracy degradation applied on the CHEMLAB
dataset as it is a good representation of a less studied but interesting use case of RNN’s
when compared to Natural Language Processing applications.

The results are analyzed and displayed in section 4. Prediction accuracy will be the
main metric used to assess the quality of the training process. As Drug Generation is the
program’s goal the created SMILES will be compared to available databases and validated
to determine the quality of the predictions.

The last section, section 5, will be a reflection on the results obtained and how the

study can be further improved and validated by future work.

State of the Art

2. State of the Art

2.1 Neural networks: how it works

A number of different terminologies are used when referring to Neural Networks
(NNs). Each of those are often used to refer to the same principles as they represent
closely related concepts. NNs are a subfield of Machine Learning (ML) and ML is itself
a subfield of Artificial Intelligence (Al). Deep Learning (DL) simply refers to config-
urations making use of NNs and containing more than one hidden layer. This relation

between different terms can be visualized in figure 2.1.

Artificial Intelligence

Figure 2.1: Relations between commonly used terms

2.1.1 Artificial Intelligence

Artificial Intelligence, as the name suggests aims, to emulate how intelligence works.
In order to effectively learn and perform problem-solving, several mathematical approaches
are applied depending on the nature of the data being processed. It is the broadest term
used and can be divided in different ways. When dividing it based on their similarity to
the capabilities of our brain we define it as Reactive Al, Limited Memory Al, Theory of
Mind AI and Self-Aware Al [12].

Reactive Al is the simplest and oldest and can only respond to a limited combination
of inputs. Limited Memory Al can learn from historical data in order to make decisions.
Most DL algorithms are Limited Memory Al. Theory of Mind and Self-Aware Al are
still conceptual and are considered the future of the subject, aiming to perform the same
tasks as a human mind by having a concept of real understanding and in the latter actually
being able to make its own decisions and behaving like an individual.

From a technological point Al is divided into 3 levels: Artificial Narrow Intelligence,

Artificial General Intelligence, and Artificial Superintelligence. All of the currently used

6

2.1 Neural networks: how it works

models fall into the Artificial Narrow Intelligence category [13].

2.1.2 Machine Learning

Machine Learning as a branch of Al is a method of analysing data and creating al-
gorithms that improve from the data being processed in an automated manner. ML ap-
proaches are usually divided into Supervised Learning, Unsupervised Learning and Rein-
forcement Learning [14].

Supervised Learning uses labeled data to map inputs to outputs by adjusting some
internal weights to represent the relations between them and correctly predict the desired
output. Most DL algorithms fall into this category. Unsupervised Learning does not make
use of labeled data and instead used mathematical processes to find patterns in data and
solve the problems, that offers a big advantage in the sense that correct labeling of data
is a time consuming process and can be unfeasible for some problems. Some models
make use of both Supervised and Unsupervised approaches and are referred to as Semi-
Supervised. Reinforcement Learning aims to find the actions that maximize the payoff in
the particular situation at study by interpreting its environment and, though trial and error,

make a sequence of decisions to find the best solution.

2.1.3 Deep Learning

Deep learning is a subfield of ML that relies on Neural networks having multiple
hidden layers as part of their configuration. Different distinctions can be made and many
individual architectures exist.

The most popular types of Deep Neural Networks currently in use are: Convolutional
Neural Networks (CNN) [15] and Recurrent Neural Networks (RNN) [1], with a large ar-
ray of configurations derived from their core principles, making them the most thoroughly
researched. Other popular algorithms include: Generative Adversarial Networks (GANSs),
Radial Basis Function Networks (RBFNs, Multilayer Perceptrons (MLPs), Self Organiz-
ing Maps (SOMs), Deep Belief Networks (DBNs) and Restricted Boltzmann Machines(
RBMs) [16].

2.1.4 Neural Networks

Neural Networks, as a part of ML, mimic how the human brain works [17]. In mathe-
matical terms, NNs make a probabilistic analysis of the data to extract useful features and
learn the underlying patterns that define them. Akin to the brain we define the gateways
were data passes through as neurons. Neurons receive one or more signals as input, either

from the data set or from other neurons connected to it. They aggregate knowledge as

2. State of the Art

a set of weights, usually representing how important each feature will be to the desired
output and then proceed to use an activation function to introduce non-linearity, allowing

for more complex patterns to be learnt [17].

2.1.4.A Model

The model, when referring to NN, consists of a a specific combination of layers and
activation functions, applied to a specific data set. The model will have interconnections
between layers who assign the weights, while performing the computation pipeline re-

quired for the task.

2.14.B Layers

Neural networks typically have 3 types of layers: Input layer - Each unit from the
input layer drives its value to the neurons of the first hidden layer, taken from the initial
data. Hidden layers - As the name suggests hidden layers are not directly visible, they
perform the mathematical computations between the input and output layers, creating a
set of weights representing the associations between input/output. Multiple hidden layers
can be used depending on the task [18]. Output layer - The last layer in the pipeline, the
output layer simply constructs the results for the given inputs, based on the hidden layers.

Figure 2.2 shows how the 3 types of layers connect to each other.

Input layer | Hidden layers i Output layer

Input 1 :"/ /

\ .“}\.m
“'
/
)

TN\
ig?. N
Y e\ %

)

\N

.‘ \ Output n

Figure 2.2: General configuration of NN layers and connections, taken from [19]

2.1.4.C Activation functions

As previously described, activation functions introduce non-linearity, to achieve this,
several mathematical functions can be used, and without them the complexity of tasks

that can be performed becomes limited since the model will act as a linear regression in

2.1 Neural networks: how it works

its absence. Some of the most commonly used functions are: sigmoid, Relu and softmax
[20].

The use of the right activation function can help solve several problems that can arise
in some models, like vanishing gradients. Figure 2.3 represents some of these activation

functions in graphical and equation form.

Tanh RelU

tanh(z) max(0,)
X
X

Sigmoid Linear

v

f=x

v

X X

Figure 2.3: Commonly used activation functions, taken from [21]

2.14.D Training

In order to feed the data into the network a lot of care is required, otherwise the training
process wont lead to the desired results or, worst case, it becomes impossible altogether.
Most data needs to be prepared and correctly formatted before the training phase can
begin, that usually encompasses creating a dictionary, formatting it in a consistent way
and making sure its relevant to the problem. When training is supervised, data labeling

becomes necessary to achieve proper results.

2.1.4.E Inference

Once the training process is completed, in order to extrapolate a result from the model,
inference is performed. During inference the model outputs a prediction based on the
weights and biases of the previously trained network. The quality of results will vary
depending on the quality and representativity of training data in relation to the desired

solution, as well as adequate model usage.

2. State of the Art

2.1.4.F Parameters

The parameters are a sort of fine tuning of the network and encompass things like
dropout, batch size, number of epochs, number of units, temperature and learning rate.

Dropout is used to reduce overfitting. It involves dropping a percentage of the units,
that is, setting the weights to 0 or a random value.

Batch size is a way to divide the training samples. Training will be done for the first
batch of samples before moving to the next and so on. Dividing the training requires less
memory than using all the samples. For most applications the batch size cant be too small
or the gradient estimation will be less accurate leading to poor convergence, this behavior

can be visualized in figure 2.4.

@ Batch Size=2
4 Batch Size=4
= Batch Size=8
=== = Bafch Size=16
= Batch Size=32
Batch Size=64
Y ¢ Batch Size=128
{ £ Batch Size=256
L/ Balch Size=512

% Mormalized Accuracy

25

[)
5 10 15 20 25 30

Epochs

Figure 2.4: Gradient estimation convergence as a function of batch size, adapted from [22]

Number of epochs defines how many times training will do a full pass over the whole
data. During each epoch the model runs through all the batches, drops some weights at
the end and repeats until the final epoch.

Units are the number of neurons, that is, how deep the layers are in the network, more
complex data requires a higher number of units or more layers.

Temperature introduces randomness in predictions, it changes the output distribution
by making the final probabilities less rigid. Decreasing the confidence of the algorithm is
useful in avoiding repetitive results.

Learning rate controls how fast the model is adapted to the data, by modifying how
much the weights change in response to the loss gradient. If its too small the network
will take a long time to learn, if its too big it will have unstable behavior. Learning rate
is often adjusted during training by specific algorithms to stay in the optimal curve and
prevent over and under fitting. Figure 2.5 displays how looking at the loss per epoch

during training can help determine problems with the learning rate.

10

2.2 RNNs

loss

low learning rate

high learning rate

good learning rate

>

epoch

Figure 2.5: Learning rate analysis as a function of loss per epoch, taken from [19]

2.2 Recurrent Neural Networks (RNNs)

Feedforward Neural Networks are unable to retain information about former events in
a sequence. RNNs allow for data to persist over time by adding a feedback loop to their
cell, who gets updated at every time step as the sequence gets processed and becomes
part of the function of the next time step, along with the new input, therefore retaining
the temporal properties of the data in the hidden state weight’s [23]. RNNs can handle
variable lengths due to them being treated as a different number of time steps instead of a
variable sized vector due to the feedback process affecting on the same set of weights, at
most some data padding will be necessary.

Long term dependencies are handled by recurrently updating their internal cell which
allows the new cell to retain information from previous states, condensed in the weights
of the hidden layer. By having dependencies on previous cells RNNs are also able to gain
information about sequence order, a very important requirement for language processing.

Other than language processing RNNs also have aplications in machine translation
(encoder-decoder), music generation, sentiment classification over sequences and many
other problems, as is the case of De-novo drug design studied in this thesis.

Figure 2.6 gives a simple representation about the flow of a simple RNNs layer.

® b ® ®

- ILPLPAI—vf
& &

Figure 2.6: RNNs architecture and unfolded cells, taken from [24]

Where x; is the input at timestep t; A is the hidden state; 4, is the output at timestep t.

11

2. State of the Art

In order to train RNNs a form of the backpropagation algorithm is used, designated
as backpropagation through time (BPTT) [1]. The derivatives of the loss are taken with
respect to every parameter after the forward pass, but in the case of RNNs the overall
loss is represented by the sum of each loss at every time-step. That means the loss will be
backpropagated though each individual time-step and then backwards through time across
the time steps to the beginning of the sequence.

Between each time step, to get the gradients to flow back in time, matrix multiplica-
tions involving the weight matrix are necessary, meaning that to compute the gradient of
the first cell a lot of multiplications are required as well as gradient computations. This
can lead to two main problems: Exploding gradients if values are larger than 1, as suc-
cessive multiplications can lead to very large numbers. Vanishing gradients if they are
smaller than 1 as it can lead to numbers very close to 0, which is a problem to acquiring
long term dependencies as it leads to bias towards the short-term. To combat those prob-
lems activation functions like ReLU can be used to prevent shrinking gradients. A proper
initialization of the weights and bias can also help tackle those problems.

More complex architectures based on RNNs are often used as they fix the mentioned
problems and offer other advantages, the one most often used is called Long Short-Term
Memory (LSTM), which adds a cell state and gates to control the flow of information.
Other architectures like Gated Recurrent Unit (GRU) are also able to solve these problems
as they are similar to LSTM’s [23].

2.3 Long Short-Term Memory (LSTM)

A more elaborated and useful type of Recurrent Neural Network (RNN) is the LSTM
network, initially described in Hochreiter S. and Schmidhuber J.’s 1997 paper “Long
Short-Term Memory” [2]. It improves on RNN’s previous configurations by using a more
complex recurrent unit with the added capability of controlling the flow of information
through its cells, regulated using several structures denominated gates. This allowed mod-
els to improve significantly and learn on tasks involving thousands of steps,unlike RNN’s
they dont learn only from recent events, they can also look at context in much longer
sequences to gather relevant information.

The main goal behind their development was exactly that, removing the long-term
dependency problems of RNN’s. The ability to control information in their cell state is
the key to their greater performance. The cell state works in a way that complements
the hidden state by allowing information to flow easily between steps. Storing those

long-term dependencies that regular RNN are unable to comes at the cost of increased

12

2.4 Gated Recurrent Unit GRU

complexity.

Gates are composed of a sigmoid layer, represented by ¢, which outputs numbers
between 0 and 1, and a pointwise multiplication operation. The ability to control the
information in the cell state is regulated by the 3 gates of an LSTM cell. In the sigmoid a
output of 1 means that information flows in its entirety and 0 means no information gets
through. The gates work as 3 steps in the flow of information:

The first step consists in forgetting less relevant information learned in past states, in
the forget gate layer. Taking the last hidden state, #,_; and the current input, x;, it outputs
a number between 0 and 1, as it is a sigmoid layer. This is done in reference to each
number in the last cell state C;_;.

The second step is slightly more complex and requires two parts. First another sigmoid
layer known as input gate layer decides which is the relevant new information by defining
which values will be updated. Next, the vector of new prospect values,C;, is created by a
tanh layer. By combining those two steps the update to the cell state is created. To update
C;—1 into C; we multiply the old state by f; and then we add i; * C,.

The last step consists on deciding what to output, which will be based on a filtered
version of the cell state we calculated. First a sigmoid layer denominated output gate
decides the parts of the cell to output. Next the cell state goes though a tanh and multiplies
it by the output of last sigmoid to only output the parts it decided were relevant.

This is more easily understandable by looking at the equations and corresponding

scheme given in figure 2.7.

h!* a(thi -+ ht,lWi)

G A 1\ Ct ft a(thf + ht,lwf)
4 @ — o (2 U° + by 1 WO)

. ttmii) O‘r" i Ct = tanh (thg -+ ht,lwg)
el 1 1 1) 1 e Cy = o(fy x Ci_1 + 1, % Cy)
hi = tanh(C}) * oy

Xt LSTM cell

Figure 2.7: LSTM architecture and equations, taken from [25]

2.4 Gated Recurrent Unit Gated Recurrent Unit (GRU)

GRU, introduced by Cho et al.[2014] [3], are deeply inspired by the LSTM architec-
ture. By being very similar to LSTM networks the results produced by both networks
tend to also be very similar. GRU’s main difference and advantage lays in the fact they
have fewer parameters when compared to traditional LSTM networks. Like LSTM they

also use gates to solve gradient problems and control the flow of information, but where

13

2. State of the Art

LSTM uses 3 gates GRU only uses 2, the update gate and the reset gate.

The first step in GRU is calculating the update gate,z;, which determines how much
of the past information from former time steps is relayed to future steps, working as a
combination of the input and forget gates from LSTMSs, and in accordance with them also
uses sigmoid as the squashing function. The GRU also differs from LSTM in the sense
that memory cell state is merged with the hidden state.

The other gate used is termed reset gate, r;, and is used to determine how much past
information should be forgotten, it is very similar to the update gate, only differing in the
weights being used and where it applies. The output is therefore affected by the gates, the
new memory, /;, uses the reset gate to store the pertinent information from the past and
uses tanh as activation function.

As a last step the network calculates /;, which uses the update gate to decide what to
use from the new memory and from previous steps /4, to store the information for the
current element.

Figure 2.8 summarizes this process and shows the operations performed.

hy
hey ([\I‘ 2t =0 (Wz . [ht—lymt])
Tt =0 (Wr : [ht—laxt])

h = tanh (W - [ry * hy_1, 24])

ht:(l_Zt)*ht—l"'Zt*iLt

Figure 2.8: GRU architecture and equations, taken from [24]

2.5 Drug Discovery

The process of bringing a new drug candidate to market is very complex. Starting
from discovery and development of a compound with the required properties. Followed
by rigorous clinical research, including animal and human trials, to evaluate safety and ef-
fectiveness. Ending in approval by the regulating agents, the European Medicines Agency
(EMA) in Europe and the Food and Drug Administration (FDA) in the United States being
the main entities carrying out this regulatory process.

Carrying out this process is very slow and expensive, therefore it’s desirable that new
drug candidates have the desired molecular affinity to the target. The number of molecules
to be considered as drug candidates is estimated to be in the order of 1099 candidates [26].

Computational methods can help facilitate this process by narrowing down the num-
ber of candidates and generating molecules with the desired properties without in vitro

experiments [5].

14

2.6 Frameworks

In the process of generating new molecules one effective strategy is to use a form
of line notation denominated Simplified Molecular-Input Line-Entry System. LSTMs are
well equiped to deal with this data representation and are among the best performing mod-
els for carrying out this task [5]. An example of a well known molecule and corresponding

SMILES representation is displayed in figure 2.9.

CN1CCCC1C2=CN=CC=C2

Figure 2.9: Nicotine molecule with corresponding SMILES representation. Image
sourced from [27].

2.6 Frameworks

Frameworks make the job of building a Machine Learning (ML) model a much more
straightforward task, by providing all the building blocks of the commonly used and
most well defined Neural Network (NN) architectures they make building a network from
scratch a task reserved only for specific research when trying to create new models that
differ substantially from the ones the framework already offers as part of its ecosystem.

Most commonly used frameworks are also open source meaning new layers and opti-
mizations can be achieved by extending their functionalities, without having to replicate
the segments they have in common with established networks. This allows the task of
solving a problem using NN to be focused on the type of problem being solved, the layers
the NN needs in order to optimally solve the problem, the data that’s available for training
the required network and in the task of finding the best parameters for the model, not on
mathematical details.

By not having to focus on programming every detail of the networks and abstract-
ing many of the mathematical components, it makes creating Artificial Intelligence (Al)
models a more accessible task. This allows for models to be created much cheaper with a

good degree of optimization still available for applications.

15

2. State of the Art

2.6.1 Tensorflow

As of 2022, the most popular framework used to build Al applications is Tensorflow,
a open source platform created by Google, offering a broad ecosystem of libraries, tools
and a vast array of community resources to learn from [28].

Using Tensorflow researchers are able to build state-of-the-art models and developers
can construct applications that make use of ML’s advantages in a easier way. Tensorflow
offers a high degree of optimization and allows for distributed training on multiple GPUs,
TPUs, or machines [28].

It is built on C++, Python and CUDA and mainly supports C/C++ and Python via its
API. This makes the library compatible with other Python libraries and their integration
easy [28].

2.6.2 Keras

Keras was launched in 2015 and created primarily by Francois Chollet, a software
engineer and Al researcher from Google [29].

Keras is a Python Deep Learning, high-level API, running on top of Tensorflow. It
enables fast deployment of ML applications by providing a simple an consistent API and
providing extensive documentation. It’s highly scalable on multiple devices and makes
the implementation process fairly simple [29].

By being user friendly, modular and easily extensible it has become one of the best
choices for deep learning courses and many universities and scientific organizations.

Its highly connected to the Tensorflow ecosystem and covers every step of the devel-
opment process. It’s highly flexible on keeping low-level research possible while using

abstraction whenever possible for convenience and faster experimentation [29].

2.6.3 QKeras

QKeras is a quantized extension to Keras, initially released in 2020 and developed by
a team from Google based on the work described by ”Automatic heterogeneous quan-
tization of deep neural networks for low-latency inference on the edge for particle de-
tectors” [8]. It provides replacement layers for Keras layers that creates parameters and
activation layers, as well as those who perform arithmetic operations [30].

This allows for quick creation and easy experimentation of quantized versions of neu-
ral networks, and better options when it comes to using mixed precision when compared
to solutions like Tensorflow Lite. It follows Keras design principles of being user friendly,

modular and easy to extend [30].

16

2.7 Optimizations and quantization

2.7 Optimizations and quantization

ML algorithms require a lot of trial and error, training a model comprises initiating the
matrix with some values and comparing them to the correct answer, performing successive
approximations to learn the underlying patterns required for the model to have decent
accuracy in their task even if the input is somewhat different than the training set.

Neural Networks perform a huge amount of operations, mostly matrix multiplications
and additions, which require a lot of computational power due to the size of the data
structures. This high resource requirement leads to a high cost of training a NN both in
terms of power consumption and upfront costs for adequate hardware. Several approaches
are employed in dealing with those inefficiencies. Using the best model is the first one,
as different models are better equipped at dealing with certain data, making the choice of
the right one of utmost importance.

Using the best training algorithm for the model also leads to a more optimized solution
as different requirements must be met depending on the data, in terms of speed, memory
and precision. Finally, by using lower precision (resulting in a smaller model) the model
can be made more efficient without significantly degrading the precision and allowing
running it with less powerful hardware.

ML models are traditionally trained using 32 bit float precision to represent their re-
spective weights, but not every task requires such high precision. One approach used to
mitigate that is to train using full precision and then convert the weights to a lower bit
representation and perform inference on that reduced precision. This allows for slower
hardware to be usable for inference, having special importance when edge devices are
the use case, as in many recent mobile applications like Augmented Reality, which are
computationally heavy without the use of Al.

Training with lower precision has to be done more carefully, as very small differences
can compound and prevent a model from achieving the same performance as when using
regular float 32. Due to the size of the data structures when training over large datasets
every bit counts and even small reductions can lead to great improvements in hardware

performance and energy usage with a fully optimized model.

2.7.1 Quantized training

Training NN using less bits usually implies a trade-of between accuracy and speed.
Not all use cases will allow for reduced precision as learning their defining features might
require full precision to achieve the desired results.

Most approaches simply convert the weights from a pre trained model into lower

precision to run inference but it could be desirable to be able to also train NN on reduced

17

2. State of the Art

precision, allowing training to run on lower power devices and using cheaper hardware.
Despite that, many application scenarios can benefit from finding the best balance in that
trade-off, as it can mean being usable in edge and low power devices without much quality
degradation or to simply use less resources.

To achieve that an approach where only some layers get simplified can lead to the most
desirable outcome by keeping only the most important operations running at higher preci-
sion to speed up the process and still benefit from the increased complexity. Quantization

is very application dependant and needs to be studied case by case.

18

Methods and Implementation of
Recurrent Models and Quantization

19

3. Methods and Implementation of Recurrent Models and Quantization

3.1 QKeras quantization vs float32

The work carried out in this dissertation makes use of the quantization tools initially
developed by Coelho et al. [8] from where the QKeras library originated, being currently
maintained and extended mostly by a team of researchers from Google. QKeras works as
a quantization extension for the widely used Keras API.

The goal of this study will be to use the tools provided by this library and make an
assessment of the best parameters and quantization settings to achieve the best accuracy
on a Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) based models. The model will be used for generating chemical
compounds used as part of the process of developing new drug candidates, as it is a
perfect candidate to showcase the advantages of the commonly used RNNs based models
in a setting that achieves decent results even on the limited computation power of the
setup being used.

The aim is to study how keeping the precision as low as possible affects the train-
ing process and inference quality. This should improve memory usage, decrease energy
consumption and lower the latency of the Neural Network (NN) models being used when
proper hardware is used. The use of these tools was motivated by other quantization
libraries not offering the tools necessary to manually specify the number of bits for quan-
tization, offering only a couple of options like 16bit and 8 bit quantization [8].

This setup also performs a form of quantized training, which is not as common prac-
tice as simply quantizing the weights from networks trained using full precision and run-
ning inference on those is the norm. This is, however, quite challenging to balance in an
optimal way as the configuration options for the model increase significantly with each
used layer and so the balancing of accuracy and quantization must reach a compromise in
accordance to the required specifications of the task as compared to the float-32 model.

The main advantage of QKeras is however the minimal code changes required to mod-
ify Keras models to work in a quantized fashion and the ease of changing the precision
used for the quantization, to allow for extensive testing in order to find those optimal pa-
rameters. The library converts the weights to lower precision at each step, but in order to
run the mathematical operations the software requires converting it back to float due to
software and hardware constraints. This means the performance can only be assessed by
looking at the results from the inference stage.

Figure 3.1 depicts how quantization will constrain the number of possible values.

20

3.2 SMILES Generation Model

16 bits 8 bits

-4 -2] 2 4 -4 -2 0 2 4

Figure 3.1: Example of QKeras quantization on activation functions, taken from [30]

3.2 SMILES Generation Model

The program used to create new SMILES will be very similar for all the different
model configurations in this quantization study. Only the training model used differs
between tests, using several combinations of Recurrent layers and activation functions,
as well as the fine-tuning parameters, namely the dropout for each layer, learning rate,

number of recurrent layers, number of training samples, epochs and quantization.

3.2.1 Dataset

The dataset used for training the model is acquired from the PubChem database, de-
veloped by the National Center for Biotechnology Information (NCBI) [31]. PubChem is
a database of chemical molecules, mostly smaller ones, and for some of them, also a selec-
tion of assays (investigative procedures to assess interactions and relationships between a
compound and some target to find properties like correct dosage for a medication) [31].

Those molecules are represented by their SMILES notation, which is a line notation
representing the structure of the compound, meaning complex structures can be repre-
sented as a string of characters instead of their 3D structure [6].

As the full dataset is too large of for the testing system, as it contains a selection of
1.576.904 SMILES from PubChem. It is therefore used as the source from where the
data samples for the study will be taken from. Smaller sub sets will be used since the
memory requirements for using the full dataset are higher than the memory available on

the hardware being used for experimentation.

21

3. Methods and Implementation of Recurrent Models and Quantization

A sample taken from the file containing the SMILES dataset is displayed in figure
3.2. In figure 3.3 the molecules described by SMILES 2396 and 2400 from figure 3.2 are
represented in 2D and 3D.

23898 CN(C)N=Nclccc(C)ccl

2357 NC(=N)ClCOcZ2ccccczZ0l
2398 NclncZ2[nH]cnc(N)c2nl
2399 Cclccc(NCc2cees2)ccel
2400 CNI1CCN(CCl)clncccclF
2401 Ccleccc(CC2=NCCNZ2)ccl

Figure 3.2: Sample of SMILES taken from the PubChem dataset.

SMILES 2D 3D

~y

zZ—Z

CN(C)N=Nc1ccc(C)ccl

CNTCCN(CC1)cTnccec1F LNJ

Figure 3.3: SMILES with corresponding representations. Images sourced from [27].

3.2.2 Encoding Data

To analyze the SMILES data sample, a table containing all the unique characters is
necessary as the models needs a dictionary of possible symbols being used. This is done
by tokenizing them, that is, defining indivisible portions representing the atoms and spe-
cial characters used for the chemical connections.

Next it is necessary to do some padding as the SMILES strings should all be the same
length. To have some normalization, since chemical compounds of different lengths are
present, finding the largest one is the first step. After having that information the smaller
ones are filled with characters used only as a placeholder (character A) so the network

can iterate over all the samples in a uniform way.

22

3.2 SMILES Generation Model

Finally a one hot encode array is created, giving each unique character a unique rep-
resentation in the array, giving it an effective label as the network requires numerical
information. Using the values of the ASCII characters could be possible but simply using

the value would be inefficient and the dictionary is much smaller.

3.2.3 Training Model

After having the encoded data, the data is prepared to be fed into the first layer of the
network, with most models used being composed of 2 recurrent layers. By using Keras
the only implementation necessary is to define the parameters to be used when the default
ones are not desirable or are the subject of study.

The data is divided in training and validation data as it is necessary to use different
data to verify if the network is learning the features in an unbiased manner. Checkpoints
will be used to monitor the loss and accuracy during training and obtain a curve of the
training process, allowing to better understand if overfitting or underfitting are happening.
By better identifying those issues, fine-tuning the parameters can be better applied, when

necessary.

3.2.4 Generating Output

To predict the new Smiles the weights calculated during training are used by the net-
work for the inference stage. In order to start generating new SMILES the token repre-
senting the begin of a new compound (G is used) is given as starting input. From then on,
the network goes symbol by symbol and predicts the next one, depending on the symbols
it had predicted already.

At each iteration G will be given and the network will keep generating symbols until it
predicts the symbol corresponding to the end of a compound (represented by E). Once E
is predicted the next iteration will begin. After all iterations are completed, representing
the number of molecules being generated, the resulting output can be validated against

the databases, in order to assess the performance of the model.

3.2.5 Validation of Output

To validate the results the Mol Vs library is used. MolVs [32], a molecule validation
and standardization tool, written in Python, using the RDKit chemistry framework [33],
is used to verify if the created SMILES are valid and if they contain errors making them
non valid or incomplete. The validator will also look for duplicate SMILES as the goal of

the program is to generate valid and unique SMILES.

23

3. Methods and Implementation of Recurrent Models and Quantization

3.3 QKeras implementation

In order to Implement the model in QKeras the type of quantization function used
needs to be specified for the weights and bias. By respectively defining the kernel_quantizer
and bias_quantizer parameters for each layer in the model. If those are not specified no
quantization is applied and the model runs in regular 32 bit precision instead.

Appropriate quantizer parameters need to be passed to the layer, quantized_bits is the
one used for the models, and is how the number of bits is specified in kernel_quantizer
and bias_quantizer. Quantized_bits accepts 3 values as parameters, bit width, integer bits
(to the left of the decimal) and alpha if changing the absolute scale is necessary (which
offers little advantage as all RNNs based models only work with values between -1 and
1).

In terms of mathematical operations, quantized_bits performs mantissa quantization,

which is given by:
2i"t_b+lclip(r0und(x*2b_i"t_1), b=l pb=1 1)

where x is the input, b is the number of bits for quantization, and int is how many bits are
to the left of the decimal

3.4 SimpleRNN model A

The first model tested made use of the SimpleRNN Keras layer [34]. As the results
obtained from using this model are predictably less interesting than those obtained from
the LSTM network the parameters chosen for testing were narrowed. Nevertheless it
was included in the study to showcase how superior more complex configurations are in
their predicting capabilities. Including it allows comparing how the complexity of the
algorithm used affects the quantization performance, as it is the most basic RNN model
present in the Keras library [34].

The parameters studied during the tests for the model based on SimpleRNN layers

were:

e Number of recurrent layers: 1,2, 3 or 4 recurrent layers.

e Dropout: 0.3 or 0.5 dropout.

e Learning Rate: 0.001 or 0.005 learning rate.

e Number of training samples: 100.000 or 250.000 training samples.

e Number of epochs: 16 or 24 epochs.

24

3.5 SimpleRNN model B - QKeras

With 250.000 being the highest number of training samples supported by the memory
available on the computing system used.

The tests were divided in 3 parts: The first compared only the number of recurrent
layers while keeping the other parameters the same. The second tested the different com-
binations of dropout and learning rate from the aforesaid values. The third used the best
parameters from the first two studies and studied the effects of increasing the training

samples and the number of epochs.

3.5 SimpleRNN model B - QKeras

Similar to the Keras version and as to give a direct comparison the same parameters
were tested, for the same reasons as mentioned above. As the results attained by this
model are unsatisfactory only 16 bit, 8 bit and 4 bit quantizations were tested.

As only a small number of valid SMILES could be generated by the 4 bits version,
studying deeper quantization is therefore of little practical use. The results leading to that

conclusion will be displayed in the next chapter.

3.6 GRU model A

Similar to LSTM both in configuration and performance, the GRU model [35] will be
tested with the same parameters as the Simple RNN model, as it was a late addition to
the study. This still enables a good assessment of eventual major performance differences
and makes an adequate evaluation of the GRU finetuning process.

The tests were again divided in 3 parts: The first comparing the number of recurrent
layers. The second testing the different combinations of dropout and learning rate. The
third used the best parameters from the first two tests and studied the effects of increasing

the training samples and the number of epochs in the network performance.

3.7 GRU model B - QKeras

The QKeras implementation will follow the previously used workflow and will test
the same parameters as the float model. The tests demonstrate the differences in the
performance obtained from the Keras and QKeras versions. The details about how each
parameter affects the training process as the precision gets lower will be described in the
next section where the results are analyzed.

The GRU QKeras model will be tested for 16 bit, 8 bit and 4 bit quantization.

25

3. Methods and Implementation of Recurrent Models and Quantization

3.8 LSTM model A

The most important model being tested made use of LSTM Keras layers [36]. Due
to it being the best performing model of the three being tested, according to literature on
models making use of the PubChem dataset it will have the most in depth testing.

The parameters studied when using LSTM layers were:

e Number of recurrent layers: 1, 2, 3 or 4 recurrent layers

e Learning rate: 0.001, 0.003, 0.005 or 0.1 learning rate.

e Dropout: 0.1, 0.3, 0.5 or 0.7 dropout.

e Number of training samples: 100.000 or 250.000 training samples.

e Number of epochs: 16 or 24 epochs.

For the LSTM model the tests were divided in four parts: The first compared the num-
ber of recurrent layers while keeping the other parameters the same, as in the RNN model.
The second tested the different combinations of dropout and learning rate from the above
values, keeping dropout the same for both layers. The third used different dropouts for
each layer, using combinations of values that could lead to the optimal solution. The forth
used the best parameters from the first three studies and increased the training samples

and the number of epochs, achieving the main results of the study.

3.9 LSTM model B - QKeras

For the QKeras implementation of the LSTM model the same parameters as the Keras
version were tested, with some worse performing combinations being skipped during the
third test as testing every possible combination for every number of bits would be too
lengthy without a more powerful setup.

The first three tests were run for 16 bit, 8 bit, and 4 bit quantization. The fourth and
final test also included 6 bit, 3 bit and 2 bit quantization versions of the model for more

in depth analysis of performance when using the optimal parameters.

3.10 Error analysis

To observe the flow of the training process before inference is performed it becomes
relevant to look at the accuracy and loss, taken after each epoch during training. Analyz-

ing those parameters gives good information about how fast the network is learning and

26

3.11 Hardware and System

at which point it plateaus. Looking at those parameters one can also tell if overfitting or
underfitting is occurring, giving a good idea of the impact the finetuning is having and
allowing for direct comparisons.

When the model has finished training the weights are saved and inference begins.
By generating new Simplified Molecular-Input Line-Entry System (SMILES) of varied
quality we get the most important metrics for assessing the success of the model. Those
generated SMILES are evaluated for validity and uniqueness, giving the metrics used to
compare the quality of the results and therefore find the best parameters for the model.

Simply using the mathematical accuracy and loss metrics from training wont give
enough information as generating valid but different SMILES is the goal. The training
parameters, despite giving a good idea of training success, have too much variability when

it comes to result analysis.

3.11 Hardware and System

The computing system and software used during experimentation is represented in
table 3.1.

Hardware

CPU:Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
GPU:NVIDIA GeForce GTX 1060 6Gb (Laptop)

RAM:16Gb

Software

OS:Microsoft Windows 10 Pro Version 10.0.18363 Build 18363
TensorFlow version 2.5.0

Keras version 2.4.3

Qkeras version 0.9.0

Python version 3.6.12

Table 3.1: Computing system

27

3. Methods and Implementation of Recurrent Models and Quantization

28

Experimental Results

29

4. Experimental Results

4.1 Simple RNN model

The starting parameters were chosen based on the initial parameter values from the
original LSTM model used in the SMILES generation program. The Simple Recurrent
Neural Network (RNN) models used those values as a beginning point as it establishes
a good middle ground between the commonly used values for all the studied parameters

and achieves decent performance in the original model.

4.1.1 Simple RNN test 1 - Number of layers

The first test kept the number of samples at 100k, running for 16 epochs with a learn-
ing rate of 0.001 and dropout of 0.3 (30% per epoch). The effect the number of layers has
on the quantization performance of the Simple RNN model was the focus, and generated
the results displayed in tables 4.1 and 4.2. Table 4.1 displays the final training parameters,
that is, the values of loss and accuracy taken after the last epoch. Table 4.2 displays the
percentage of valid and unique SMILES among the 1000 generated during inference.

Simple RNN model - training data
100k samples; 16 epochs; 0.001 learning rate; (0.3 dropout
number of layers float | intl6 int8 int4
loss 0.0056 | 0.0058 | 0.0058 | 0.0078
1 accuracy | 0.8202 | 0.8119 | 0.812 | 0.7396
val. loss | 0.0085 | 0.0088 | 0.0091 | 0.013
val. acc. | 0.7291 | 0.7201 | 0.709 | 0.5674
loss 0.0055 | 0.0056 | 0.0056 | 0.0083
) accuracy | 0.8212 | 0.8183 | 0.8164 | 0.7174
val. loss | 0.0084 | 0.0084 | 0.0084 | 0.0133
val. acc. | 0.7335 | 0.7336 | 0.7328 | 0.5559
loss 0.0055 | 0.0057 | 0.0058 | 0.008
3 accuracy | 0.8228 | 0.8182 | 0.7914 | 0.7383
val. loss | 0.0081 | 0.0085 | 0.0087 | 0.0128
val. acc. | 0.742 | 0.7225 | 0.7163 | 0.5758
loss 0.0055 | 0.0156 | 0.0183 | 0.0153
4 accuracy | 0.8217 | 0.5517 | 0.3745 | 0.5643
val. loss | 0.008 | 0.023 | 0.0231 | 0.0226
val. ace. | 0.7478 | 0.2624 | 0.2515 | 0.2515

Table 4.1: Simple RNN model: 1% test training data

30

4.1 Simple RNN model

Simple RNN model - SMILES validation data
100k samples; 16 epochs; 0.001 learning rate; 0.3 dropout
number of layers float | int16 | int8 | int4
valid (%) 39 | 23.7 {224 0.3
1
unique (%) | 37.4 | 23.2 | 203 | 0.3
valid (%) 44 | 308 [214 | 1.2
2
unique (%) | 43.2 | 30.6 | 18.8 | 1.1
valid (%) 42.1 | 28.1 | 21.1 | 0.6
3
unique (%) | 40.2 | 27.9 | 19.7 | 0.5
valid (%) 49.1 | 0.1 0 0.3
4
unique (%) | 35.7 | 0.1 0 0.3

Table 4.2: Simple RNN model: 1% test SMILES validation data

Analyzing tables 4.1 and 4.2 some patterns can be inferred. There is a relation between
the accuracy and loss during training and percentage of valid SMILES generated during
validation. As expected, higher accuracy during training leads to a higher percentage
of valid SMILES, but the relation is not linear. Observing the 2 layer model one can
notice that The discrepancy in training metrics between float, 16 bit and 8 bit is minimal,
yet the 8 bit version only achieves 21.4% of valid SMILES while the float model achieves
44%. Solely observing the training metrics is therefore not enough to assess performance,
giving only a general idea if training was successful. The percentage of valid and unique
SMILES generated will be the main metric being compared between models.

Using a more complex model with 4 layers a higher percentage of valid SMILES is
generated in the float version, when compared to the 2 layers model, yet significantly less
unique SMILES are created. The quantized versions perform even worse, creating less
than 1% of valid smiles. This effect could be explained by the vanishing gradients prob-
lem, common in the most basic types of RNN configurations, as it becomes more likely
to happen as the number of connections, and therefore matrix multiplications, increases.

Comparing the validation data from the float model to the quantized versions, the con-

clusion is that any form of quantization for the Simple RNN model using these combina-

31

4. Experimental Results

tions of parameters is not advised, the performance degradation is substantial. Comparing
the validation data from the float model to the quantized versions reveals at best a 13%
decrease in number of valid SMILES generated and at worse total inability to generate
valid SMILES.

4.1.2 Simple RNN test 2 - Dropout and Learning Rate

The second test used 2 recurrent layers, the best performing of the first test, while
also keeping the number of samples at 100k, running for 16 epochs. During this stage
it was analyzed how an increase in dropout and learning rate would affect quantization
performance. Table 4.3 displays the final training performance parameters for the float

and quantized models. Table 4.4 displays the percentage of valid and unique SMILES

created.
Simple RNN model - training data
2 layers; 16 epochs; 100k samples
dropout | learning rate float | intl6 int8 int4
loss 0.0055 | 0.0056 | 0.0056 | 0.0083
0.001 accuracy | 0.8212 | 0.8183 | 0.8164 | 0.7174
' val. loss | 0.0084 | 0.0084 | 0.0084 | 0.0133
0.3 val. acc. | 0.7335 | 0.7336 | 0.7328 | 0.5559
' loss 0.0066 | 0.015 | 0.0071 | 0.0073
0.005 accuracy | 0.7786 | 0.5751 | 0.6455 | 0.6277
' val. loss | 0.0098 | 0.0302 | 0.0112 | 0.0116
val. ace. | 0.6789 | 0.2533 | 0.4987 | 0.4864
loss 0.0065 | 0.0078 | 0.0081 | 0.0077
0.001 accuracy | 0.7814 | 0.7447 | 0.7199 | 0.6582
val. loss | 0.0093 | 0.0121 | 0.0126 | 0.0122
0.5 val. acc. | 0.6964 | 0.5998 | 0.5778 | 0.51
' loss 0.0078 | 0.0081 | 0.035 | 0.023
0.005 accuracy | 0.7291 | 0.7207 | 0.0607 | 0.3456
' val. loss | 0.0118 | 0.0125 | 0.0464 | 0.0351
val. acc. | 0.6079 | 0.58 | 0.0034 | 0.2458

Table 4.3: Simple RNN model: 2" test training data

32

4.1 Simple RNN model

Simple RNN model - SMILES validation data
2 layers; 16 epochs; 100k samples
dropout | learning rate float | intl6 | int8 | int4
valid (%) 44 | 30.8 | 214 | 1.2
0.001
unique (%) | 43.2 | 30.6 | 18.8 | 1.1
0.3
valid (%) 126 | 0.2 | 05 | 0.7
0.005
unique (%) | 12.1 | 0.2 04 | 0.6
valid (%) 12.7 | 2.1 26 | 0.5
0.001
unique (%) | 12.6 | 1.7 | 2.5 | 0.5
0.5
valid (%) 1.4 0.3 0 0
0.005
unique (%) | 1.2 0.3 0 0

Table 4.4: Simple RNN model: 2" test SMILES validation data

Analyzing tables 4.3 and 4.4 it is again noticed that quantization for the Simple RNN
model leads to big drops in performance. The models making use of higher dropout or
learning rate lead to much worse results when compared to the base parameter values. In
the quantized models the performance degradation is even more severe, being an order of
magnitude worse than what is achieved using 0.3 dropout and 0.001 learning rate, except
for the 4 bits version that generates around 99% of invalid SMILES even in the best case.

Increasing the learning rate seems to have a similar effect to increasing dropout for the
float model. The quantized model seems to suffer more from a increase in learning rate
than in dropout, but only to a small degree as both are significantly worse and generate
few valid SMILES.

Any form of quantization for the Simple RNN model using this configuration is again
not advised, the performance degradation is even more substantial than during the first
test.

33

4. Experimental Results

4.1.3 Simple RNN test 3 - Epochs and Number of training samples

The final test kept using 2 recurrent layers, with a learning rate of 0.001 and dropout
of 0.3, being the best performing parameters from tests 1 and 2. The tested parameters
were then the number of epochs and training samples, increasing them to check if the
network was being limited by a too small amount of samples or for not running for enough
cycles of training, given by the number of epochs. Table 4.5 displays the final training
parameters. Table 4.6 displays the percentage of valid and unique SMILES.

Simple RNN model - training data
2 layers; 0.001 learning rate; 0.3 dropout

epochs | samples float | intl6 int8 int4
loss 0.0055 | 0.0056 | 0.0056 | 0.0083
100k | accuracy 0.8212 | 0.8183 | 0.8164 | 0.7174
val. loss | 0.0084 | 0.0084 | 0.0084 | 0.0133
16 val. acc. | 0.7335 | 0.7336 | 0.7328 | 0.5559
loss 0.0053 | 0.0055 | 0.0056 oo
)50k | accuracy 0.8273 | 0.8278 | 0.8168 | 0.0021
val. loss | 0.008 | 0.0083 | 0.0084 o
val. acc. | 0.7464 | 0.7369 | 0.7309 | 0.0025
loss 0.0054 | 0.0055 | 0.0059 oo
100k | accuracy 0.8256 | 0.8212 | 0.8072 | 0.0022
val. loss | 0.0082 | 0.0084 | 0.0086 oo
4 val. acc. | 0.7412 | 0.7335 | 0.7194 | 0.0027
loss 0.0054 | 0.0056 | 0.0058 oo
)50k | accuracy 0.826 | 0.8164 | 0.811 | 0.0022
val. loss | 0.0081 | 0.0083 | 0.0086 oo
val. acc. | 0.7451 | 0.7375 | 0.7281 | 0.0026

Table 4.5: Simple RNN model: 3 test training data

34

4.1 Simple RNN model

Simple RNN model - SMILES validation data
2 layers; 0.001 learning rate; 0.3 dropout
epochs | samples float | int16 | int8 | int4
valid (%) 44 | 30.8 | 214 | 1.2
100k
unique (%) | 43.2 | 30.6 | 18.8 | 1.1
16
valid (%) 47.5 | 33.1 | 293] 0.7
250k
unique (%) | 45.7 | 32.8 | 29 | 0.6
valid (%) 455 | 36.2 | 319 | 1.2
100k
unique (%) | 44.6 | 352 | 302 | 1
24
valid (%) 53.6 | 40.8 | 419 | 0.9
250k
unique (%) | 51.6 | 40 |39.8 | 0.7

Table 4.6: Simple RNN model: 3" test SMILES validation data

Tables 4.5 and 4.6 share some of the conclusions from tests 1 and 2. The relation
between the accuracy and loss during training and valid created SMILES during inference
is still not linear but is more closely related than in the last two tests when comparing float
and quantized models.

The performance degradation going from float to a quantized 16 bit model leads to val-
idation metrics around 13% worse across most combinations of parameters, when training
using 100k samples for 24 epochs it declined less, at around 9%. Going from 16 to 8 bit
the number of valid SMILES decreases less when using more epochs and a higher num-
ber of samples, being very similar when 24 epochs with 250k samples are the parameters
used, with 8 bits generating around 1% more valid SMILES but having repeated results,
having 0.2% less of them being unique. Training with 4 bits was once again not able to
generate any significant number of valid SMILES, making it a poor choice for quantiza-
tion. During this test training was actually unable to progress past the first epochs for the

4 bit model, leading to infinite loss and training accuracy very close to 0.

35

4. Experimental Results

4.1.4 Simple RNN - Final Analysis

Figures 4.1, 4.2 and 4.3 display the validation data from tables 4.2, 4.4 and 4.6 respec-

tively, offering a better representation of performance differences between models.

Simple RNN model - test 1

Accuracy (%)
8

30
20
o | [N
0

valid unique valid unigue valid unique valid unigue

Layers 1 2 3 4

mfloat Wintl6 mint8 mint4

Figure 4.1: Simple RNN - Valid and Unique SMILES by number of layers

Simple RNN model - test 2

Accuracy (%)
w
S

40
30
20 I I
= il L i i
; | -— b -
valid unique valid unique valid unique valid unique
Learning Rate 0.001 0.005 0.001 0.005
Dropout 0.3 0.5

mfloat Wintl6 mint8 mint4

Figure 4.2: Simple RNN - Valid and Unique SMILES by dropout and learning rate

Simple RNN model - test 3

g
> 60
© 50
3 40
s]
< 30

20

10 I I

0

valid unique valid unique valid unique valid unigue

Samples 100k 250k 100k 250k
Epochs 16 24

mfloat Wintl6 mint8 mint4

Figure 4.3: Simple RNN - Valid and Unique SMILES by number of samples and epochs

36

4.1 Simple RNN model

Comparing the performance variation across the tests performed it is noted that using
4 bits for the Simple RNN model leads to virtually no training taking place. The 4 bit
model was unable to generate more than around 1% of valid SMILES independent of the
combinations of parameters being tested. Using 16 and 8 bits lead to similar quantization
performance when the best values for the parameters are used. The degradation is around
13%, which is significant, making their use also not advised.

Dropout and Learning Rate seem to have the most effect on performance. Simple
RNN layers are very susceptible to changes in these parameters. The number of Recurrent
Layers used affect quantized models more substantially than the float version. Once the
number of layers reaches 4 the quantized models run into problems that the simplicity of
the Simple RNN algorithm cannot address. The final conclusion from these tests is that
the quantization method used is not apropriatte for models using Simple RNN recurrent
layers as the performance degrades significantly. On broader terms, using this type of
layer for SMILES generation is also not advised as even in the best case, when using float
and running for 24 epochs with 250k samples, only 53.5% of valid samples are generated,

underperforming GRU and LSTM by a fair margin.

37

4. Experimental Results

4.2 GRU model

As in section 4.1 for the Simple RNN model, the initial parameters for the Gated
Recurrent Unit (GRU) models were chosen based on the initial values of the parameters
from the original LSTM model used in the SMILES generation program. GRU’s model
expected performance is much closer to the LSTM model, as their internal mechanisms
are quite similar, as described in section 2. This in turn makes studying quantization for

this model more propitious than for the Simple RNN models.

4.2.1 GRU test 1 - Number of layers

The first test kept the number of samples at 100k, running for 16 epochs with 0.001 as
learning rate and a dropout of 0.3 per epoch. The test focused on the effects the number
of layers had on quantization performance and produced the results displayed in table 4.7
and 4.8. Table 4.7 displays the final training parameters. Table 4.8 displays the percentage
of valid and unique SMILES.

GRU model - training data
100k samples; 16 epochs; 0.001 learning rate; (0.3 dropout

number of layers float | intl6 int8 int4
loss 0.0052 | 0.0044 | 0.0044 | 0.0044
1 accuracy | 0.8316 | 0.8618 | 0.8637 | 0.8603
val. loss | 0.0079 | 0.0076 | 0.0075 | 0.0079
val. acc. | 0.7521 | 0.7627 | 0.7659 | 0.7524
loss 0.0051 | 0.0039 | 0.0039 | 0.0042
) accuracy | 0.8351 | 0.8786 | 0.8785 | 0.8687
val. loss | 0.0076 | 0.0068 | 0.0069 | 0.0073
val. acc. | 0.761 | 0.7884 | 0.7862 | 0.7727
loss 0.0051 | 0.0038 | 0.0038 | 0.0041
3 accuracy | 0.8347 | 0.8811 | 0.8809 | 0.8708
val. loss | 0.0075 | 0.0068 | 0.0067 | 0.0074
val. acc. | 0.7629 | 0.7894 | 0.7923 | 0.7701
loss 0.0052 | 0.0038 | 0.0038 | 0.0041
4 accuracy | 0.832 | 0.8814 | 0.8819 | 0.8707
val. loss | 0.0074 | 0.0068 | 0.0067 | 0.0074
val. acc. | 0.767 | 0.7904 | 0.7917 | 0.7751

Table 4.7: GRU model: 1% test training data

38

4.2 GRU model

GRU model - SMILES training data

100k samples; 16 epochs; 0.001 learning rate; 0.3 dropout
number of layers float | intl6 | int8 | int4
valid (%) 88.5 | 84.2 | 80.6 | 79.2

1
unique (%) | 84.8 | 80.7 | 78.5 | 76.4
valid (%) 929 | 93.2 | 85.1 | 88.6

2
unique (%) | 90.7 | 88.8 | 84.1 | 81.3
valid (%) 87.7 | 91.8 | 90 | 87.7

3
unique (%) | 86.2 | 87.1 | 89.5 | 69.4
valid (%) 84.8 | 922 | 90.8 | 844

4
unique (%) | 83.8 | 87.4 | 80.4 | 82.5

Table 4.8: GRU model: 1% test SMILES validation data

From analyzing tables 4.7 and 4.8 the following is evinced. The final accuracy and loss
metrics taken during training and percentage of valid SMILES created during inference
is even less comparable between float and quantized models than in section 4.1. High
accuracy leads to a high percentage of valid SMILES but some combination of parameters
have better training data yet lead to lower percentage of valid SMILES as is the case of
16 bit and 8 bit models using 1 layer. Therefore looking at this metric is only useful as
a general indication of a successful training and further analysis will focus on validation
data.

The best results were achieved using 2 recurrent layers. In these models the quanti-
zation was quite successful, achieving 88.6% of valid SMILES even in the 4 bit version.
The 16 bit version even achieved 0.3% more valid SMILES than the float yet 1.9% less
unique ones, which due to the small differences can be explained by the randomness of
the process alone. Using 3 and 4 layers some quantized models actually achieved better
results than float, while still inferior to those achieved by the 2 layer version. In some
of those models where more valid SMILES are generated a high percentage of repeated
ones are also present, giving signs of overfitting occurring in some instances, very evident

in the 4 bits, 3 layers model. Using 1 layer means the models will run faster but incurs

39

4. Experimental Results

less valid SMILES generated, 4.4% less than using 2 layers for the float model, similar
degradation for the 8 bit model and around 9% for the 16 bit and 4 bit models.

Overall this test shows promising results for reduced precision training for instances
where some accuracy can be sacrificed. As the SMILES molecules can be validated
externally some accuracy degradation is acceptable when randomly generating new ones

is the goal as in this instance.

4.2.2 GRU test 2 - Dropout and Learning Rate

The second test used 2 recurrent layers, the best performing of the first test, while
also keeping the number of samples at 100k, running for 16 epochs. During this stage
the effect of quantization on performance was tested for a setup with higher dropouts
and learning rate. Table 4.9 displays the training performance. Table 4.10 displays the
percentage of valid and unique SMILES created.

GRU model - training data
2 layers; 16 epochs; 100k samples

dropout | learning rate float | intl6 int8 int4
loss 0.0051 | 0.0039 | 0.0039 | 0.0042
0.001 accuracy | 0.8351 | 0.8786 | 0.8785 | 0.8687
val. loss | 0.0076 | 0.0068 | 0.0069 | 0.0073
03 val. acc. | 0.761 | 0.7884 | 0.7862 | 0.7727
' loss 0.005 | 0.0044 | 0.0102 | 0.0107
0.005 accuracy | 0.8407 | 0.8601 | 0.6479 | 0.6363
' val. loss | 0.0072 | 0.0071 | 0.0168 | 0.0179
val. ace. | 0.7738 | 0.7799 | 0.433 | 0.4086
loss 0.0063 | 0.0119 | 0.0044 | 0.0048
0.001 accuracy | 0.7911 | 0.6381 | 0.8604 | 0.8479
' val. loss | 0.0084 | 0.0198 | 0.0071 | 0.0078
0.5 val. acc. | 0.7343 | 0.4086 | 0.7772 | 0.7562
' loss 0.0062 | 0.0103 oo 0.0123
0.005 accuracy | 0.7935 | 0.6224 | 0.0022 | 0.6027
' val. loss | 0.0081 | 0.0213 oo 0.0235
val. acc. | 0.7472 | 0.2147 | 0.0026 | 0.1099

Table 4.9: GRU model: 2" test training data

40

4.2 GRU model

GRU model - SMILES validation data
2 layers; 16 epochs; 100k samples
dropout | learning rate float | intl16 | int8 | int4
valid (%) 929 | 93.2 | 85.1 | 88.6
0.001
unique (%) | 90.7 | 88.8 | 84.1 | 81.3
0.3
valid (%) 89.4 | 79.2 | 86.2 | 82.1
0.005
unique (%) | 86.5 | 754 | 67.7 | 73.2
valid (%) 85.6 | 89.1 | 76.7 | 85.5
0.001
unique (%) | 85.3 | 854 | 739 | 71.2
0.5
valid (%) 77 | 774 | 64 | 63.7
0.005
unique (%) | 77 63.7 | 53.8 | 56.3

Table 4.10: GRU model: 2" test SMILES validation data

Comparing the percentage of SMILES generated between float and quantized models
it’s observed that, when using 0.3 dropout, increasing the learning rate to 0.005 incurs a
4.2% loss in validation accuracy for the float model, when comparing unique SMILES.
The quantized models degrade even further with 16 bits performing around 13% worse, 8
bit degrading the most at over 16% and 4 bits degrading around 8%. Increasing dropout to
0.5 leads to less overall decline in performance for the quantized models than going from
0.001 to 0.005 learning rate, at 3.4% and 10.2% for 16 bit and 8 bit respectively. The 4
bits model degrades a bit more at 11.2%. The float model declines more significantly than
when increasing learning rate. Increasing dropout along with learning rate leads to more
unsatisfactory results and more unstable training. It is expected since increasing dropout
slows down convergence, and when used together with higher learning rate training is
hindered leading to performance between 13% and 30% worse as observed.

From this test it is clear that increasing dropout and learning rate does not improve
the results obtained. The performance degradation is not as severe as during the Simple
RNN second test but using 0.3 dropout per epoch and a learning rate of 0.001 leads to
superior results across float and quantized models. The quantized models degradation is
higher than the float when learning rate is increased. A higher learning rate, that could
translate into faster training, is more negatively impactful when lower precision is used.

Higher learning rate also seems to cause a higher percentage of repeated SMILES to be

41

4. Experimental Results

generated.

4.2.3 GRU test 3 - Epochs and Number of training samples

The final test kept using 2 recurrent layers, with a learning rate of 0.001 and dropout of
0.3, being the best performing parameters from tests 1 and 2. The tested parameters were
then the number of epochs and training samples, increasing them in both cases. Table
4.11 displays the final training parameters. Table 4.12 displays the percentage of valid
and unique SMILES.

GRU model - training data
2 layers; 0.001 learning rate; 0.3 dropout

epochs | samples float | intl6 int8 int4
loss 0.0051 | 0.0039 | 0.0039 | 0.0042
100k | Aceuracy 0.8351 | 0.8786 | 0.8785 | 0.8687
val. loss | 0.0076 | 0.0068 | 0.0069 | 0.0073
16 val. acc. | 0.761 | 0.7884 | 0.7862 | 0.7727
loss 0.0049 | 0.0037 | 0.0037 | 0.0041
)0k | aceuracy 0.8429 | 0.8844 | 0.8848 | 0.8718
val. loss | 0.0072 | 0.0065 | 0.0065 | 0.0075
val. acc. | 0.7764 | 0.7986 | 0.7982 | 0.7704
loss 0.005 | 0.0038 | 0.0038 | 0.0041
100k | @ccuracy 0.839 | 0.8826 | 0.8827 | 0.8707
val. loss | 0.0074 | 0.0067 | 0.0067 | 0.0075

4 val. ace. | 0.7676 | 0.7927 | 0.7934 | 0.77
loss 0.0048 | 0.0037 | 0.0037 | 0.0041
)50k | Accuracy 0.8458 | 0.886 | 0.8856 | 0.8723
val. loss | 0.007 | 0.0065 | 0.0065 | 0.0073
val. acc. | 0.783 | 0.7994 | 0.7996 | 0.7776

Table 4.11: GRU model: 3™ test training data

42

4.2 GRU model

GRU model - SMILES validation data
2 layers; 0.001 learning rate; 0.3 dropout
epochs | samples float | intl6 | int8 | int4
valid (%) 929 | 93.2 | 85.1 | 88.6
100k
unique (%) | 90.7 | 88.8 | 84.1 | 81.3
16
valid (%) 946 | 93.6 | 92 | 89.9
250k
unique (%) | 93.4 | 89.4 | 91.6 | 58.9
valid (%) 949 | 944 | 91.2 | 82.6
100k
unique (%) | 93.5 | 94.1 | 90.8 | 80.7
24
valid (%) 95.7 | 95 95 | 84.4
250k
unique (%) | 93.9 | 93.7 | 93.5 | 71.8

Table 4.12: GRU model: 3" test SMILES validation data

The GRU float model was able to achieve 95.7% valid and 93.9% unique SMILES
generated. Increasing the number of samples had a similar effect as training for more
epochs, as the performance from the 16 epochs, 250k samples test was very similar to the
24 epochs, 250k samples one. The model was able to properly scale with further training.

Training with 16 bits precision and running for 24 epochs leads to validation data on
pair with the float version, leading to slightly more unique smiles in the 100k samples
test (0.6% improvement) and only 0.2% less when using 250k training samples, the best
performing test. Going from int 16 to int 8 the performance deteriorates to a greater degree
across most configurations, yet in the 24 epochs 250k samples test it achieves the same
number of valid SMILES as int 16 and only 0.4% less unique SMILES when compared
to float. This means the GRU model scales well even at a precision of 8 bits. Int 4 is
unable to properly scale. When using 250k samples it seems to overfit leading to a large
percentage of repeated smiles, particularly when running for 16 epochs where over 30%
of valid SMILES created are not unique.

43

4. Experimental Results

4.2.4 GRU - Final Analysis

Figures 4.4, 4.5 and 4.6 display the validation data from tables 4.8, 4.10 and 4.12
respectively, offering a better representation of performance differences between models.
GRU model - test 1

100

valid unique valid unique valid unique valid unique
Layers 1 2

Accuracy (%)
BN W bh N 0 W
o O O O © © ©o o

3 4

mfloat ®intle mint8 mint4

Figure 4.4: GRU - Valid and Unique SMILES by number of layers

GRU model - test 2

100
90

0
70
60
50
40
30
20
10

0

valid unique valid unique valid unique valid unique

0

Accuracy (%)

Learning Rate 0.001 0.005 0.001 0.005

Dropout 0.3 0.5

mfloat Wintle Wint8 ®int4

Figure 4.5: GRU - Valid and Unique SMILES by dropout and learning rate

44

4.3 LSTM model

GRU model - test 3

100

90
80
70
60
50
40
30
20
10

0

valid unique valid unique valid unique valid unique

Accuracy (%)

Samples 100k 250k 100k 250k

16 24
mfloat Wintl6 mint8 mint4

Epochs

Figure 4.6: GRU - Valid and Unique SMILES by number of samples and epochs

Comparing the validation data across the three tests it is observed that quantization
for the GRU models was successful. The GRU based models achieved good overall per-
formance. 95.7% valid and 93.9% unique SMILES in the float model with 16 bit and 8
bit models being withing 1% of those values in the best performing scenario. Using int
4 is not advised as the model degrades considerably using the configuration that achieve
the best results.

Varying the number of GRU layers used lead to some interesting results. The float
and 16 bit models performed the best using 2 layers. On the other hand the 8 bit model
improved when 3 layers were used and the 4 bit model performed the best for a 4 lay-
ers model, although the improvement was marginal when compared to the 2 layers, 4
bit version. Increasing dropout and learning rate had a negative impact on all the mod-
els. Learning rate seems to have a bigger effect on performance as increasing it degraded
the results significantly. The float, 16 bit and 8 bit models were able to scale in a sat-
isfactory manner achieving great quantization performance when the number of samples
and epochs was increased. The precision of the GRU can be reduced to 8 bits without

sacrificing much in terms of generating a high percentage of valid and unique SMILES.

4.3 LSTM model

Starting from the same parameters as the GRU and Simple RNN models, a more com-
prehensive set of tests was developed for the Long Short-Term Memory (LSTM) model.
Testing was divided into four stages instead of three as per the previous models, by also
examining the effects of using different dropout for the first and second recurrent layers
of the model. It also included a higher range of values being tested for each parameter

other than the number of layers.

45

4. Experimental Results

4.3.1 LSTM test 1 - Number of layers

The first test kept the number of samples at 100k, running for 16 epochs with a learn-
ing rate of 0.001 and dropout of 0.3. The test focused on the effect the number of layers
had on the quantization performance of the LSTM model and produced the results dis-
played in table 4.13 and 4.14. Table 4.13 displays the final training parameters. Table
4.14 displays the percentage of valid and unique SMILES from the validation stage.

LSTM model - training data
100k samples; 16 epochs; 0.001 learning rate; 0.3 dropout

number of layers float | intl6 int8 int4
loss 0.0054 | 0.0054 | 0.0043 | 0.0055
| accuracy | 0.827 | 0.8281 | 0.8644 | 0.8171
val. loss | 0.0082 | 0.0081 | 0.0078 | 0.0082
val. acc. | 0.7404 | 0.7472 | 0.7557 | 0.7253
loss 0.0052 | 0.004 | 0.0039 | 0.0053
) accuracy | 0.8334 | 0.8733 | 0.8774 | 0.847
val. loss | 0.0078 | 0.0072 | 0.007 | 0.0078
val. ace. | 0.7559 | 0.7771 | 0.7821 | 0.7463
loss 0.0051 | 0.005 | 0.005 | 0.0051
3 accuracy | 0.836 | 0.8643 | 0.8487 | 0.8156
val. loss | 0.0073 | 0.0071 | 0.0072 | 0.0074
val. acc. | 0.7688 | 0.7846 | 0.7972 | 0.7516
loss 0.0051 | 0.0049 | 0.0051 | 0.0052
4 accuracy | 0.8346 | 0.8385 | 0.8431 | 0.8119
val. loss | 0.0074 | 0.0071 | 0.0074 | 0.0075
val. acc. | 0.7661 | 0.7697 | 0.7739 | 0.7452

Table 4.13: LSTM model: 1% test training data

46

4.3 LSTM model

LSTM model - SMILES validation data

100k samples; 16 epochs; 0.001 learning rate; 0.3 dropout
number of layers float | intl6 | int8 | int4
valid (%) 75.2 | 83.1 | 82.1 | 80.6

1
unique (%) | 72.1 | 753 | 769 | 74.8
valid (%) 89.6 | 89.1 | 87.7 | 86.9

2
unique (%) | 88.9 | 82.2 | 83.3 | 85.1
valid (%) 859 | 78 |83.2] 809

3
unique (%) | 82.3 | 73.2 | 76.8 | 69.3
valid (%) 88.1 | 86.8 | 87.1 | 87.7

4
unique (%) | 81.8 | 80.4 | 80.2 | 75.6

Table 4.14: LSTM model: 1% test SMILES validation data

Observing the results displayed on table 4.14 the quantization performance is satis-
fying, even outperforming float in the 1 layer configuration, albeit more than 10% worse
when compared to the float model using 2 layers. The 2 and 4 layers configurations reach
the highest percentage of valid SMILES, with 4 layers having the undesirable behavior of
generating more repeated SMILES across both float and quantized models. The 3 layers
quantized models performed the worse, being comparable to the 1 layer models. When 2
layers are used the 16 bit model generated only 0.5% less valid SMILES yet around 7%
of those are not unique. The 8 bit and 4 bit models have around 2% less valid SMILES
when compared to the 16 bit model, but a higher percentage of unique SMILES, this was
likely due to the inherent randomness of the training process resulting in less generaliza-
tion capabilities in this run and further testing would be necessary to validate this result.

From the first test it is concluded that 2 layers is the best performing configuration.

4.3.2 LSTM test 2 - Dropout and Learning Rate

The second test used 2 recurrent layers, the best performing of the first test, and kept
the number of samples at 100k, running for 16 epochs. During this stage dropout was set

between 0.1 and 0.7 per epoch in 0.2 increments and learning rate was tested for several

47

4. Experimental Results

values between 0.001 and 0.01. Tables 4.15 and 4.16 display the training performance.
Tables 4.17 and 4.18 display the percentage of valid and unique SMILES created.

LSTM model - training data
2 layers; 16 epochs; 100k samples

dropout | learning rate float | int16 int8 int4
loss 0.0042 | 0.0038 | 0.0038 | 0.0046
0.001 accuracy | 0.8687 | 0.8819 | 0.8637 | 0.8387
val. loss | 0.0071 | 0.0074 | 0.0073 | 0.0078
val. acc. | 0.7804 | 0.7695 | 0.7536 | 0.7535
loss 0.0039 | 0.0041 | 0.0039 | 0.0045
0.003 accuracy | 0.8796 | 0.8513 | 0.8641 | 0.856
val. loss | 0.0067 | 0.0071 | 0.0067 | 0.0077
0.1 val. acc. | 0.7945 | 0.7689 | 0.7805 | 0.7732
' loss 0.0037 | 0.0038 | 0.0038 | 0.004
0.005 accuracy | 0.8833 | 0.8896 | 0.8815 | 0.8816
val. loss | 0.0064 | 0.0071 | 0.007 | 0.0069
val. acc. | 0.8027 | 0.7913 | 0.7841 | 0.8012
loss 0.0037 | 0.0038 | 0.0038 | 0.0042
0.01 accuracy | 0.8841 | 0.883 | 0.8684 | 0.8374
' val. loss | 0.0063 | 0.0065 | 0.0065 | 0.0072
val. acc. | 0.8056 | 0.8046 | 0.7913 | 0.7631
loss 0.0052 | 0.0052 | 0.0051 | 0.0055
0.001 accuracy | 0.8334 | 0.8326 | 0.8355 | 0.7987
val. loss | 0.0078 | 0.0078 | 0.0077 | 0.0083
val. acc. | 0.7559 | 0.7552 | 0.7578 | 0.7244
loss 0.0049 | 0.0049 | 0.0049 | 0.0052
0.003 accuracy | 0.8443 | 0.8529 | 0.8514 | 0.835
' val. loss | 0.0071 | 0.007 | 0.0072 | 0.0075
0.3 val. acc. | 0.7775 | 0.7854 | 0.784 | 0.769
' loss 0.0048 | 0.0047 | 0.0048 | 0.005
0.005 accuracy | 0.8459 | 0.8462 | 0.8416 | 0.8456
' val. loss | 0.0071 | 0.007 | 0.0071 | 0.0074
val. acc. | 0.7779 | 0.7782 | 0.7739 | 0.7776
loss 0.0048 | 0.0049 | 0.0048 | 0.005
0.01 accuracy | 0.8477 | 0.8596 | 0.8515 | 0.8227
' val. loss | 0.007 | 0.0071 | 0.007 | 0.0073
val. acc. | 0.7826 | 0.7936 | 0.7861 | 0.7595

Table 4.15: LSTM model: 2" test training data - part 1

48

4.3 LSTM model

LSTM model - training data
2 layers; 16 epochs; 100k samples

dropout | learning rate float | intl6 int8 int4
loss 0.0064 | 0.0058 | 0.0066 | 0.0067
0.001 accuracy | 0.788 | 0.7906 | 0.7946 | 0.7814
val. loss | 0.0088 | 0.008 | 0.009 | 0.0092
val. ace. | 0.7223 | 0.7247 | 0.7283 | 0.7163
loss 0.0061 | 0.0048 | 0.0042 | 0.0065
0.003 accuracy | 0.7981 | 0.8189 | 0.8683 | 0.7701

val. loss | 0.0084 | 0.0066 | 0.007 | 0.009
0.5 val. acc. | 0.7352 | 0.7543 | 0.7809 | 0.7094
' loss 0.0061 | 0.0049 | 0.0043 | 0.0058
0.005 accuracy | 0.7992 | 0.8201 | 0.8539 | 0.82
val. loss | 0.0086 | 0.007 | 0.0071 | 0.0082
val. acc. | 0.7299 | 0.749 | 0.768 | 0.7489
loss 0.006 | 0.0058 | 0.0061 | 0.0059
0.01 accuracy 0.8 0.79 | 0.7854 | 0.8281
val. loss | 0.0087 | 0.0084 | 0.0088 | 0.0085
val. ace. | 0.7276 | 0.7185 | 0.7143 | 0.7531
loss 0.0077 | 0.0061 | 0.006 | 0.0071

0.001 accuracy | 0.7336 | 0.8096 | 0.7979 | 0.761
val. loss | 0.0111 | 0.0089 | 0.0088 | 0.0103
val. ace. | 0.6403 | 0.7384 | 0.7277 | 0.6642
loss 0.0076 | 0.0054 | 0.0052 | 0.0071
0.003 accuracy | 0.7384 | 0.8433 | 0.8338 | 0.7415
' val. loss | 0.0113 | 0.0079 | 0.0076 | 0.0102
0.7 val. ace. | 0.6325 | 0.7691 | 0.7604 | 0.6472
' loss 0.0076 | 0.0075 | 0.0075 | 0.0078
0.005 accuracy | 0.739 | 0.7492 | 0.7252 | 0.7634
' val. loss | 0.0121 | 0.0111 | 0.0111 | 0.0115
val. acc. | 0.6184 | 0.6833 | 0.6614 | 0.6539
loss 0.0076 | 0.0068 | 0.0075 | 0.0062
0.01 accuracy | 0.7386 | 0.7502 | 0.7397 | 0.8001
' val. loss | 0.0121 | 0.0109 | 0.0109 | 0.0092
val. ace. | 0.6095 | 0.6278 | 0.6746 | 0.7195

Table 4.16: LSTM model: 2™ test training data - part 2

49

4. Experimental Results

LSTM model - SMILES validation data
2 layers; 16 epochs; 100k samples

dropout | learning rate float | intl6 | int8 | int4
valid (%) 88.8 | 88.7 | 88.7 | 87.2
0.001
unique (%) | 83.7 | 83.8 | 83.2 | 82.9
valid (%) 89.5 | 90.2 | 88.1 | 89.1
0.003
unique (%) | 85.2 | 84.2 | 83.6 | 81.2
0.1
valid (%) 932 | 92.8 | 91.9 | 90.3
0.005
unique (%) | 91.6 | 91.4 | 89.5 | 86.5
valid (%) 90.8 | 89.5 | 90 88
0.01
unique (%) | 89.9 | 88.1 | 89.7 | 87.2
valid (%) 89.6 | 89.1 | 87.7 | 86.9
0.001
unique (%) | 88.9 | 82.2 | 83.3 | 85.1
valid (%) 89.2 | 85.7 | 87.8 | 82.9
0.003
unique (%) | 86.3 | 83.7 | 83.9 | 784
0.3
valid (%) 90.8 | 89.1 | 90.2 | 89.1
0.005
unique (%) | 90.5 | 87.2 | 86.9 | 87.6
valid (%) 80.4 | 83.1 | 80.7 | 77.5
0.01
unique (%) | 80.1 | 78.2 | 76.9 | 77.3

Table 4.17: LSTM model: 2" test SMILES validation data - part 1

50

4.3 LSTM model

LSTM model - SMILES validation data
2 layers; 16 epochs; 100k samples
dropout | learning rate float | intl6 | int8 | int4
valid (%) 59.4 | 60.3 | 58.8 | 57.8
0.001
unique (%) | 59 58 | 574|548
valid (%) 71.4 | 727 | 714 | 69.3
0.003
unique (%) | 70.2 | 70.2 | 69.8 | 67.8
0.5
valid (%) 63.5 | 64.1 | 62.9 | 64.2
0.005
unique (%) | 63.5 | 61.5 | 61.7 | 61.6
valid (%) 639 | 642 | 649 | 62
0.01
unique (%) | 63.9 | 63.5 | 63.6 | 62.6
valid (%) 11.7 | 21.6 | 16.5 | 204
0.001
unique (%) | 11.7 | 17.9 | 15 | 18.1
valid (%) 13.6 | 21.5 | 21.5 | 21.7
0.003
unique (%) | 13.6 | 17.7 | 17.5 | 17.2
0.7
valid (%) 119 | 16.7 | 17.9 | 15.7
0.005
unique (%) | 11.9 | 152 | 12.5 | 14.8
valid (%) 1.1 | 17.6 | 16.9 | 25.5
0.01
unique (%) | 1.1 124 | 12.6 | 194

Table 4.18: LSTM model: 2" test SMILES validation data - part 2

51

4. Experimental Results

From the second test it is observed that lower dropouts perform better, with 0.1 and
0.3 dropout performing significantly better than 0.5 and 0.7, independent of learning rate.
Using 0.7 as dropout, which is very high, as it means 70% of weights trained will be
randomized after each epoch, quantized models achieve higher percentage of valid and
unique SMILES compared to float. Compared to models using smaller dropouts they
achieve very low accuracy and are therefore only interesting in their comparative behavior
since more than 60% degradation is present, relative to models using optimal parameters.

Regarding learning rate the middle values perform better than those in the upper and
lower limits considered. For smaller dropouts 0.05 seems to be the optimal value, for the
higher ones 0.03 performs slightly better. Some exceptions occur as the best performing
8 bit model when it comes to unique SMILES occurs with 0.01 learning rate, but the
difference of 0.2% is not significant enough to consider it an improvement since a 1.9%
drop in valid SMILES generated occurs at the same time. A similar situation happens with
the 4 bit model using 0.3 dropout and 0.005 learning rate where more unique SMILES
are generated but less valid.

The best combination of parameters, able to achieve 93.2% valid and 91.6% unique,
is then 0.1 for dropout and 0.005 for learning rate, having satisfactory quantization per-
formance, with the 16 bit model generating only 0.2% less unique SMILES, 8 bit model
withing 2% and 4 bit model withing 5%.

4.3.3 LSTM test 3 - Dropout per layer and Learning Rate

The third test essayed centered around having the dropout vary between LSTM layers.
Testing for combinations of the values used during the second test. Some compromises
had to be made during this series of tests to limit the number of times the program had to
run. Learning rate of 0.01 was removed from this test as it performed worse across the
whole range of dropouts. The quantized models were tested only for the best performing
learning rate overall, 0.05, for each combination of dropouts as they take much longer to
run due to the constant data conversions required to emulate training at reduced precision.

Tables 4.19 and 4.20 display the training performance. Tables 4.21, 4.22 and 4.23
display the percentage of valid and unique SMILES created.

52

4.3 LSTM model

LSTM model - training data
2 layers; 16 epochs; 100k samples

dropout | learning rate float | intl6 int8 int4

loss 0.0042 - - -
accuracy | 0.8666 - - -
0.001 val. loss | 0.0072 - - -
val. acc. | 0.7769 - - -
loss 0.0039 - - -
_ accuracy | 0.8773 - - -
0.1,0.3 0.003 val. loss | 0.0067 - - -
val. acc. | 0.7939 - - -

loss 0.0041 | 0.0042 | 0.0041 | 0.0041

0.005 accuracy | 0.8716 | 0.8637 | 0.861 | 0.8652

val. loss | 0.0067 | 0.0073 | 0.007 | 0.007

val. acc. | 0.7917 | 0.7816 | 0.7791 | 0.7829
loss 0.0052 - - -
accuracy | 0.8334 - - -
0.001 val. loss | 0.0078 - - -
val. acc. | 0.7539 - - -
loss 0.0048 - - -
. accuracy | 0.8448 - - -
0.3,0.1 0.003 val. loss | 0.0071 - - -
val. acc. | 0.7797 - - -

loss 0.0048 | 0.005 | 0.0049 | 0.0048

0.005 accuracy | 0.8463 | 0.8413 | 0.8417 | 0.8376

val. loss | 0.0071 | 0.0074 | 0.0072 | 0.0071

val. acc. | 0.7786 | 0.7764 | 0.7768 | 0.7731
loss 0.0052 - - -
accuracy | 0.8309 - - -
0.001 val. loss | 0.0079 - - -
val. acc. | 0.7531 - - -
loss 0.0049 - - -
. accuracy | 0.8425 - - -
0.3,0.5 0.003 val. loss | 0.0072 - - -
val. acc. | 0.7744 - - -

loss 0.0048 | 0.0047 | 0.0047 | 0.0048

0.005 accuracy | 0.8445 | 0.852 | 0.8563 | 0.8299

) val. loss | 0.0071 | 0.0069 | 0.007 | 0.007

val. acc. | 0.7806 | 0.7831 | 0.7871 | 0.7628

Table 4.19: LSTM model: 3™ test training data - part 1

53

4. Experimental Results

LSTM model - training data
2 layers; 16 epochs; 100k samples

dropout | learning rate float | intl6 int8 int4

loss 0.0064 - - -
accuracy | 0.7886 - - -
0.001 val. loss | 0.0093 - - -
val. acc. | 0.7037 - - -
loss 0.0061 - - -
_ accuracy | 0.7986 - - -
0.5,0.3 0.003 val. loss | 0.0086 - - -
val. acc. | 0.7267 - - -

loss 0.006 | 0.0056 | 0.0057 | 0.0059

0.005 accuracy | 0.8002 | 0.8188 | 0.8198 | 0.8087

val. loss | 0.0086 | 0.0078 | 0.008 | 0.0083

val. acc. | 0.7298 | 0.7451 | 0.746 | 0.7359
loss 0.0043 - - -
accuracy | 0.8648 - - -
0.001 val. loss | 0.0072 - - -
val. acc. | 0.7745 - - -
loss 0.0039 - - -
) accuracy | 0.877 - - -
0.105 0.003 val. loss | 0.0067 - - -
val. acc. | 0.7934 - - -

loss 0.0039 | 0.004 | 0.004 | 0.004

0.005 accuracy | 0.8786 | 0.8677 | 0.8614 | 0.8522

val. loss | 0.0065 | 0.0069 | 0.0069 | 0.0069

val. acc. | 0.8001 | 0.785 | 0.7793 | 0.7709
loss 0.0044 - - -
accuracy | 0.8626 - - -
0.001 val. loss | 0.0073 - - -
val. acc. 0.773 - - -
loss 0.004 - - -
] accuracy | 0.875 - - -
0.1;07 0.003 val. loss | 0.0067 - - -
val. acc. 0.792 - - -

loss 0.0039 | 0.0042 | 0.0041 | 0.0044

0.005 accuracy | 0.8774 | 0.8635 | 0.8645 | 0.8502

' val. loss | 0.0066 | 0.007 | 0.0069 | 0.0074

val. acc. | 0.796 | 0.7816 | 0.7825 | 0.7695

Table 4.20: LSTM model: 3™ test training data - part 2

54

4.3 LSTM model

LSTM model - SMILES validation data
2 layers; 16 epochs; 100k samples
dropout | learning rate float | intl6 | int8 | int4
valid (%) 87.2 - - -
0.001
unique (%) | 87.2 - - -
valid (%) 92.3 - - -
0.1;0.3 0.003
unique (%) | 91.2 - - -
valid (%) 86.5 | 87.4 | 86.3 | 86.2
0.005
unique (%) | 85.7 | 84.9 | 83.1 | 84.2
valid (%) 87.2 - - -
0.001
unique (%) | 86.5 - - -
valid (%) 91.2 - - -
0.3; 0.1 0.003
unique (%) | 91.1 - - -
valid (%) 91.8 | 92.3 | 90.6 | 90.1
0.005
unique (%) | 91 | 88.8 | 90.4 | 88.4

Table 4.21: LSTM model: 3™ test SMILES validation data - part 1

55

4. Experimental Results

LSTM model - SMILES validation data
2 layers; 16 epochs; 100k samples

dropout | learning rate float | intl6 | int8 | int4
valid (%) 70.5 - - -
0.001
unique (%) | 67 - - -
valid (%) 84.1 - - -
0.3;0.5 0.003
unique (%) | 81 - - .
valid (%) 87.4 | 88.5 | 87.8 | 87.3
0.005
unique (%) | 87.1 | 87.7 | 86.7 | 85.8
valid (%) 60.8 - - -
0.001
unique (%) | 60.8 - - -
valid (%) 66.9 - - -
0.5;0.3 0.003
unique (%) | 66.9 - - -
valid (%) 70.1 | 71.8 | 73.7 | 69.9
0.005
unique (%) | 70.1 71 71.2 | 69.5

Table 4.22: LSTM model: 3" test SMILES validation data -

part 2

56

4.3 LSTM model

LSTM model - SMILES validation data
2 layers; 16 epochs; 100k samples
dropout | learning rate float | intl6 | int8 | int4
valid (%) 86.3 - - -
0.001
unique (%) | 84.8 - - -
valid (%) 93.6 - - -
0.1; 0.5 0.003
unique (%) | 92 - - -
valid (%) 93.7 | 93.2 | 92.7 | 92.6
0.005
unique (%) | 92.1 | 914 | 92 |91.8
valid (%) 77.3 - - -
0.001
unique (%) | 76.4 - - -
valid (%) 92.5 - - -
0.1;0.7 0.003
unique (%) | 86.5 - - -
valid (%) 92.8 | 926 | 91.3 914
0.005
unique (%) | 89.6 | 90.8 | 90.6 | 89.4

Table 4.23: LSTM model: 3™ test SMILES validation data - part 3

From this test it was established that using a smaller dropout for the first layer and
increasing it in the second achieves better results than using a higher value for the first or
the same for both. Using 0.1 dropout for the first layer and 0.3 for the second seemed to
contradict the previous statement as the reverse configuration of 0.3 dropout in the first
layer and 0.1 in the second outperformed the former across both float and every quantized
model. Float had 5.3% more unique SMILES generated, 16 bit 3.9% improvement, 8 bit
had 7.3% and 4 bit 4.2%. Further testing proved that the same was not verified when 0.3
and 0.5 dropout were used, which worse results across every model.

57

4. Experimental Results

Using 0.1 for first layer and 0.5 for second layer lead to great results with very few
repeated smiles created and high accuracy even with a 4 bit quantized model. This had
better performance than the 0.3/0.1 test, with special significance in the quantized model,
which was able to achieve results withing 1% of the float model even at 4 bits precision.
The 4 bits model had the greatest improvements, improving over 5% when compared to

simply using 0.1 as dropout for both layers.

4.3.4 LSTM test 4 - Epochs and Number of training samples

The final test kept using 2 recurrent layers, with a learning rate of 0.005 and dropout
of 0.1 in the first layer and 0.5 in the second, being the best performing parameters from
tests 1 to 3. The tested parameters were then the number of epochs and training samples,
increasing them in both cases. This test included more quantized models, adding 6, 3 and
2 bit configurations for the final test. Table 4.24 displays the final training parameters.
Table 4.25 displays the percentage of valid and unique SMILES.

LSTM model - training data
2 layers; 0.005 learning rate; 0.1, 0.5 dropout

epochs | samples float | intl6 int8 int6 int4 int3 int2

loss 0.0039 | 0.004 | 0.004 | 0.004 | 0.004 | 0.007 | 0.0209

100k |Accuracy 0.877 | 0.8677 | 0.8614 | 0.8559 | 0.8522 | 0.7363 | 0.342

val. loss | 0.0067 | 0.0069 | 0.0069 | 0.0067 | 0.0069 | 0.01 | 0.0218

16 val. acc. | 0.7934 | 0.785 | 0.7793 | 0.7839 | 0.7709 | 0.6427 | 0.1464
loss 0.0037 | 0.0038 | 0.0038 | 0.0039 | 0.0039 | 0.0071 | 0.0238

)50k | aceuracy 0.8831 | 0.8758 | 0.8795 | 0.8648 | 0.8708 | 0.7558 | 0.2101

val. loss | 0.0062 | 0.0064 | 0.0064 | 0.0066 | 0.0065 | 0.0102 | 0.0344

val. ace. | 0.8088 | 0.8021 | 0.8055 | 0.7921 | 0.7976 | 0.6597 | 0.1833

loss 0.0038 | 0.0035 | 0.0036 | 0.0036 | 0.0036 | 0.008 | 0.0239

o0k |ecuracy 0.8806 | 0.8994 | 0.8855 | 0.8916 | 0.888 | 0.7211 | 0.2095

val. loss | 0.0064 | 0.0065 | 0.0067 | 0.0067 | 0.0067 | 0.012 | 0.0357

24 val. ace. | 0.8019 | 0.8047 | 0.7923 | 0.7977 | 0.7945 | 0.6146 | 0.1786
loss 0.0037 | 0.0036 | 0.0039 | 0.0036 | 0.0036 | 0.0078 | 0.0262

hsok | Aecuracy 0.8851 | 0.8883 | 0.8787 | 0.8895 | 0.8871 | 0.7338 | 0.1551

val. loss | 0.0062 | 0.0066 | 0.0067 | 0.0067 | 0.0067 | 0.0117 | 0.0391

val. acc. | 0.8099 | 0.7954 | 0.7916 | 0.7958 | 0.7937 | 0.6254 | 0.1322

Table 4.24: LSTM model: 4™ test training data

58

4.3 LSTM model

LSTM model - SMILES validation data
2 layers; 0.005 learning rate; 0.1, 0.5 dropout
epochs | samples float | int16 | int8 | int6 | int4 | int3 | int2
valid (%) 93.7 |1 93.2 1927 | 92 | 926|609 | 04
100k
unique (%) | 92.1 | 914 | 92 | 90.5|91.8|58.1| 04
16
valid (%) 91.6 | 913 | 922 | 93 |92.1 | 63 | 1.2
250k
unique (%) | 91.3 | 90 |90.7 | 894 | 91 |61.8] 1.1
valid (%) 89.2 | 90.1 | 89.4 |90.9 | 88.1 | 454 | 0.7
100k
unique (%) | 86.8 | 87.5 | 88 | 88.5 | 86.1 |39.9 | 0.7
24
valid (%) 059 | 949 | 956 | 95 | 943|627 | 1
250k
unique (%) | 95.1 | 944 | 93.6 | 94.1 | 939 | 62.3 | 0.9

Table 4.25: LSTM model: 4 test SMILES validation data

Using the best parameters derived from the previous 3 tests the float model was able
to achieve 95.9% valid SMILES with 95.1% of them unique when 250k samples were
trained through 24 epochs. Quantization performance was very satisfactory with the 4
bit model achieving 93.9% unique SMILES, only 1.2% worse than the float model. 6 bit
quantization performed 1% worse. 8 bit generated more valid SMILES than 6 bits but
performed 1.5% worse, being an outlier. 16 bits had only 0.7% worse performance.

Increasing the number of samples had the biggest performance gains of this test as
increasing the number of epochs without using more training samples actually performed
worse for the LSTM models as overfitting started occurring. Quantization under 4 bits is
not advised as even in the best case scenario the performance dropped 30% going from 4
to 3 bits.

59

4. Experimental Results

4.3.5 LSTM - Final Analysis

Figure 4.7, display the validation data from table 4.14, figure 4.8 from tables 4.17 and
4.18, figure 4.9 from tables 4.21, 4.22 and 4.23 and figure 4.10 from table 4.25, offering
a better representation of performance differences between models.

LSTM model - test 1

100

90

80
T 70
> 60
I 50
3 40
£ 30

20

10

0

valid unique valid unique valid unique valid unique

Layers 1 2 3 4

mfloat Wintl6 Wint8 mint4

Figure 4.7: LSTM - Valid and Unique SMILES by number of layers

LSTM model - test 2

100

90
80
g 70
< 60
g 50
3 40
£ 30
20
10
: o ol o0 oo 0
= g = g = g =] =l] =l 13 = g = g = g =] =] =l] =l] =l e = g = g
T § s g s gz gt g gToETETOEYTER LTS EE T OEYOE
E s s s s s S s s s s s 5 E s s
Learning Rate g 991 0.003 0.005 0.01 0.001 0.003 0.005 0.01 0.001 0.003 0.005 0.01 0.001 0.003 0.005 0.01
Dropout 0.1 03 0.5 0.7
mfloat Wintl6 mint8 mintd
Figure 4.8: LSTM - Valid and Unique SMILES by dropout and learning rate
LSTM model - test 3
100
90
80
g
< 60
3 50
3 40
8
< 30
20
10
0
valid unique valid unique valid unique valid unique valid unique valid unique
Learning Rate 0.005 0.005 0.005 0.005 0.005 0.005
Dropout 0.1;03 0.3;0.1 03;05 05;03 0.1;05 0.1;07

mfloat mintl6 mint8 mint4

Figure 4.9: LSTM - Valid and Unique SMILES by dropout per layer and learning rate

60

4.3 LSTM model

LSTM model - test 4

100

90 m

80 ‘
7 ‘
60 ‘
50 ‘
40 ‘
30 ‘
20 ‘
10 ‘

° B B _ _ _ ARNARL _ _
valid unique valid valid iq valid unique

unigue wvalid unique
Samples 100k 250k 100k 250k

Accuracy (%)

Epochs % mfloat Wintl6 ®int8 Mint6 Wint4 MWint3 Wint2 2

Figure 4.10: LSTM - Valid and Unique SMILES by number of samples and epochs

The number of layers used had a significant effect on the performance of the LSTM
models. Using 2 layers had the best performance and increasing it further leads to slower
training without any benefit. LSTM models perform better for smaller dropouts. A learn-
ing rate of 0.003 or 0.005 is optimal for training when compared to lower or higher values.
By using different dropout for the first and second layers the model achieved decent im-
provements over the best parameters from the previous test. The models benefit from
having a smaller dropout in the first layer and a larger one in the second. Increasing the
number of samples was able to improve the SMILES generating abilities of the mod-
els substantially. Training for a bigger number of epochs was only beneficial when also
increasing the number of samples used.

The quantized models were able to achieve very good results when using 4 or more
bits. The LSTM model can be quantized very effectively when optimal parameters are
used, generating only fewer 1.6% valid and 1.2% unique SMILES when using 4 bit int
when compared to float. Quantization under 4 bits proved to be ineffective leading to over
30% drop in accuracy.

61

4. Experimental Results

4.4 Recurrent models - Performance comparison

Figures 4.11, 4.12 and 4.13 show the error for the best performing parameters from
each corresponding test, comparing the Simple RNN, GRU and LSTM models.

Error analysis - Test 1 - Comparison between recurrent models

100 98.8 98.9

86 812
69.2 69.4
o 56 568
2
%0 187
15.9 15 17.8 16.7
20 1 es 189 414 93 112 10.4 10,9 12.3 131 111 14.9
" T] u | |
. - mu [| | [|

valid unique valid unique valid unique

Error (%)
I
o

Simple RNN - 2 layers GRU - 2 layers LSTM - 2 layers

mfloat Wintl6 mWint8 wint4

Figure 4.11: First test - Error graphic comparing performance of recurrent models

Error analysis - Test 2 - Comparison between recurrent models

100 98.8 98.9
90
. 78.6 81.2
8 69.2 69.4
70
T 60 56 56.8
é 50
o 40
30 18.7
20 149 1., 5.0 135
X 112
10 71 68 93 . 68 72 81 97 84 86 105
. - [] | T 1 mm
valid unique valid unique valid unique
Simple RNN - 0.3 dropout; 0.001 learning rate GRU - 0.3 dropout; 0.001 learning rate LSTM - 0.1 dropout; 0.005 learning rate

mfloat mintle mint8 mint4

Figure 4.12: Second test - Error graphic comparing performance of recurrent models

Error analysis - Final test - Comparison between recurrent models

100 99.1 99.3
20
80
70
59.2 58.1 60 60.2
s 60
X
g 50 464 48.4
& 40
282
30
20 15.6
10 43 5 5 61 63 65 41 51 44 57 49 56 64 6.1
0 - .- — - - . .
valid unique valid unique valid unique
Simple RNN - 24 epochs; 250k samples GRU - 24 epochs; 250k samples LSTM - 24 epochs; 250k samples

mfloat Wintl6 Wint8 mint4

Figure 4.13: Final test - Error graphic comparing performance of recurrent models

62

4.4 Recurrent models - Performance comparison

Looking at the error graphics its clear how the three models perform differently in term
of quantization and overall performance. The error in the Simple RNN models increase
substantially from an already high value when quantization is applied. This approach is
ineffective and the Simple RNN model should be discarded as an option for generating
SMILES.

The GRU models have greatly improved metrics when compared to the Simple RNN
models, falling only a bit short of the LSTM models. Quantization for the GRU models
is very effective at 16 bits across every experiment. 8 bit quantization needs a lot of
parameter optimization to be effective when compared to float, generating good results in
the final test. 4 bits quantization was unable to scale for the GRU models and performed
even worse during the final testing.

The LSTM models were able to train at reduced precision with favorable results across
most tested parameters. Quantization was also able to scale very well even up to 4 bits
precision, achieving results withing 2% of the best performing float model. The higher
complexity of the LSTM layers, despite needing more time to train, lead to less perfor-
mance degradation when quantization is applied, enabling lower bit number formats to be
used.

Figures 4.14, 4.15 and 4.16 showcase how training a model using the proper recurrent

layers and parameters leads to results of much higher quality.

Example of SMILES generated by the best 4 bit Simple RNN model

1 CN(RRRARC)ARARRARRRAARARARARRARAFARARCAARARARARARARAARARRAARARARARL (RAACNARARA [(AARRARARARARRARRAARRALR
2 CNIRRRRRIRRARAARRLRARARRRRARARRRARARLAARAARRLARAARLRARACARARARRACARARLE 2 RARRRAAAARRLCARRARCARRRRRRAAARLRE
3 CO(RRRARARRRRRAACRLRAARARACARARRRAARLARARAARNARRAAARCARAAARAAARLARFAARLRARAARRAAACARRAAAARARAAARANARAARERR
4 COlRRRARRARRARRARRAARARACARRARRFARACRAARARARARAR (RARZARRACRARAAARARAAARRAARARRARAAARCARAARRARRAARRATR
C2cRRARARLARRAAARLARAARRLAARAAR AR A AAR AR RARCERRARAARRRARAARRARORARRACARARACARRRRRAAARRAARAARARARARAARAACRARD
COlRRRARRARRAAARLRRR P AR A AR | AR AR AR AR AR AR AR AR A AR A AR R A AR AR CARAR AR AR CARRARCARRAAAARRAARA I ARAAARANAR

CFl #AC CRARRRACRARR
CN1)RRRRRR
COlRRRARRARRAARARARARRLACARR [AARCAACARRLAA AR AR A AR A AR A AR AR A AR AR AR ARLCARAARRAAAARRRORARARAAARRART

10 CN1RRRARRRRRRRRC

Figure 4.14: Sample of SMILES generated by the best 4 bit Simple RNN model

#RBALRRRRARCAC

(

Example of SMILES generated by the best 4 bit GRU model

1 CC(=0)Nclccc2C(=0)C(C) (C)0oc2cl

2 Coclccoc(ccl)C(=0)Nclccc(OC)c(oC)cl

3 CCCCCCCCCCCCCoCCCrCCCCCCCCCCoCCCCCCoCCCCCCCCCCCoC=CCCCCCCCCCCCCoCCCCCCCCCCCoCCCCCCCCCCCCCCCoCCoCCeT
4 CN1CCC(CCLl)NC (=0)clccc(ccl) C(=0)NCCCCCCCCCCCCCCCCCCCCCoe (0) =0

cc(c)c(=0)Nclccc(ccl)-clcooce (cl) C(=0)NCCCC (=0)Nclccocecccl
CCCCCCCCCCCCCCCCCCCoCCCCCCCCCCCCoCCCCCCCCCCCCoCCCCCCCCoCCCCCCCCoC (0) C (0) CCCCCCCCCCCCCCCCCCCCCCCCCCeT
cc(cycc(c)c(=0)Nclceco (OC) ccl

CC(C)C{=0)NCC(=0)N(Cclcccc(Cl)cl)C(=0)clcceccl

9 CC(C)CC(NC(=0)CCclccc(ccl)C(F) (F)F)C(F) (F)F

10 Ccleece(ccl)Cl=C(C(=0)NC(Cc2ccccc2)C(0)=0)C(=0)N1lCclcccccl

Figure 4.15: Sample of SMILES generated by the best 4 bit GRU model

63

4. Experimental Results

Example of SMILES generated by the best 4 bit LSTM model

CN1CCC(CCl)NC (=0)C(CC(C) (C)C)C(=0)NCClceeetl

Coclcco (C=CC (=0) c2ccc (CC (=0)Nc3ccceoe3)cc2) ccloc

COclccc (ccl) C(=0)NCCCCNC (=0) clccececl
cCc(C)c(=0)occlcco(ccl)eclece(NC(=0) c2cece (F)ecc2)ccl
cc(c)clcoco(ccl)yc(=0)NCecleceecel

CC(2) (C)clceco(CC(=0)Nc2coco (cc2) 5 (=0) (=0)Nc2ccc (F)cc2)ccl
COclcoc (C=CC(=0)NCC (=0)Nc2ccc (OCC (0)=0) cc2) ccl
CC(C)CC(C)CNC (=0)C=CclccccclN (=0)=0

S COclccclccl)C(=0)Nclccece(cl)C(=0)Nclceco(ccl)C(C) (T)C

10 CcC(2)C(=0)Nclccc (OCCC (=0)NCc2cocococ2) ccl

Lol L o

Figure 4.16: Sample of SMILES generated by the best 4 bit LSTM model

We can see how training performance is much more effective using LSTM layers in
practical terms. The three samples were taken from 4 bit models, the first from the best
Simple RNN model, the second from the best GRU model and the third from the best
LSTM model. The first is unable to generate barely any valid SMILES and learns only
that molecules start with a Carbon (C character) and little else. The second is able to
generate valid and well defined strings of molecules but sometimes seems to get stuck in
a loop and generates, for example, a lot of Carbons in a row, as visualized in figure 4.15.
The LSTM model is able to generate almost exclusively valid SMILES, with those invalid
still appearing to be well structured.

64

Conclusion

65

5. Conclusion

5.1 Conclusion

This work focused on the process of finding the best parameters for a NN model and
how it differs when reduced precision is used during training and inference, with the goal
of streamlining the process and treating the number of bits as just another variable to
be taken into consideration when designing a optimized network. The best float model
achieved 95.9% valid and 95.1% unique SMILES. Using the same parameters and 4 bit
quantization the methods from this study were able to achieve 94.3% valid and 93.9%
unique SMILES, just 1.6% and 1.2% worse than float while using 8x less bits.

Choosing the best training parameters had a significant effect on how comparatively
well the quantized models performed. This method of quantization responded to different
parameters in a different manner than the float model. Being more susceptible to some
and in other cases even outperforming the float model when less optimal parameters were
used, as in some LSTM quantized models when using high dropouts.

The dataset used was composed of strings of 100 or less characters and used a dic-
tionary containing only a few dozen unique characters. The data strings follow the same
patterns of validity but have no dependencies between each other. This makes quanti-
zation quite effective for this dataset, as reducing the precision of the weights should
lead to less loss of information as would be expected in problems like Natural Language

Processing, the most common use of Recurrent Neural Networks (RNNs).

5.2 Future Work

This study was constrained to a limited number of variables as testing every possi-
ble parameters was unfeasible with the limited computing power available. Parameters
as batch size, sampling temperature and number of units were left out of this study but
would be useful to consider in a more complete research work. This work used software to
convert and emulate the use of reduced precision, leading to a lot of extra operations. Im-
plementation in optimized and dedicated hardware would allow testing how quantization
improves execution time.

The computing system only allowed for the use of 250.000 training samples, a more
capable system would be able to increase this number and achieve higher prediction accu-
racy. A quantized model took at least 6 hours to run, making running every model several
times impossible for the scope of this study, future work should also verify the results

with repeated runs.

66

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533-536, 1986.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties
of neural machine translation: Encoder-decoder approaches,” CoRR, vol.
abs/1409.1259, 2014. [Online]. Available: http://arxiv.org/abs/1409.1259

P. Schneider and G. Schneider, “De novo design at the edge of chaos,” Journal
of Medicinal Chemistry, vol. 59, no. 9, pp. 4077-4086, 2016, pMID: 26881908.
[Online]. Available: https://doi.org/10.1021/acs.jmedchem.5b01849

M. H. S. Segler, T. Kogej, C. Tyrchan, and M. P. Waller, “Generating focused
molecule libraries for drug discovery with recurrent neural networks,” ACS Central
Science, vol. 4, no. 1, pp. 120-131, 2018, pMID: 29392184. [Online]. Available:
https://doi.org/10.1021/acscentsci.7b00512

D. Weininger, “Smiles, a chemical language and information system. 1.
introduction to methodology and encoding rules,” Journal of Chemical Information
and Computer Sciences, vol. 28, no. 1, pp. 31-36, 1988. [Online]. Available:
https://pubs.acs.org/doi/abs/10.1021/ci00057a005

M. Z. Alom, A. T. Moody, N. Maruyama, B. C. V. Essen, and T. M. Taha, “Effective

quantization approaches for recurrent neural networks,” 2018.

C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, J. Ngadiuba, T. K. Aarrestad,
V. Loncar, M. Pierini, A. A. Pol, and S. Summers, “Automatic heterogeneous
quantization of deep neural networks for low-latency inference on the edge for

particle detectors,” Nature Machine Intelligence, vol. 3, no. 8, p. 675-686, Jun
2021. [Online]. Available: http://dx.doi.org/10.1038/s42256-021-00356-5

67

http://arxiv.org/abs/1409.1259
https://doi.org/10.1021/acs.jmedchem.5b01849
https://doi.org/10.1021/acscentsci.7b00512
https://pubs.acs.org/doi/abs/10.1021/ci00057a005
http://dx.doi.org/10.1038/s42256-021-00356-5

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Hwang, “Computational power and the social impact of artificial intelligence,”
2018. [Online]. Available: https://arxiv.org/abs/1803.08971

A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner,
“Al accelerator survey and trends,” CoRR, vol. abs/2109.08957, 2021. [Online].
Available: https://arxiv.org/abs/2109.08957

B. Moons, K. Goetschalckx, N. V. Berckelaer, and M. Verhelst, “Minimum energy

quantized neural networks,” 2017.

A. Hintze, “Understanding the four types of ai, from reactive
robots to self-aware beings,” The Conversation US, 11 2016. [Online].
Available: https://theconversation.com/understanding-the-four-types-of-ai-from-

reactive-robots-to-self-aware-beings-67616

B. Mesko and M. Gorog, “A short guide for medical professionals in the era of

artificial intelligence,” npj Digital Medicine, vol. 3, 09 2020.

R. Sathya, A. Abraham et al., “Comparison of supervised and unsupervised learning
algorithms for pattern classification,” International Journal of Advanced Research
in Artificial Intelligence, vol. 2, no. 2, pp. 34-38, 2013.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural
networks,” Pattern Recognition, vol. 77, pp. 354-377, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320317304120

M. Coskun, O. Yildirim, A. Ucar, and Y. Demir, “An overview of popular deep
learning methods,” European Journal of Technique (EJT), vol. 7, no. 2, pp. 165 —
176, 2017.

“Neural networks.” [Online]. Available: https://www.ibm.com/cloud/learn/neural-
networks
M. Uzair and N. Jamil, “Effects of hidden layers on the efficiency of neural net-

works,” in 2020 IEEE 23rd International Multitopic Conference (INMIC), 2020, pp.
1-6.

L. Shukla, “Designing your neural networks.” [Online]. Available: https:
/Iwww kdnuggets.com/2019/11/designing-neural-networks.html

68

https://arxiv.org/abs/1803.08971
https://arxiv.org/abs/2109.08957
https://theconversation.com/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-beings-67616
https://theconversation.com/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-beings-67616
https://www.sciencedirect.com/science/article/pii/S0031320317304120
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://www.kdnuggets.com/2019/11/designing-neural-networks.html
https://www.kdnuggets.com/2019/11/designing-neural-networks.html

Bibliography

[20] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” 2018. [Online].
Available: https://arxiv.org/abs/1811.03378

[21] “Activation functions.” [Online]. Available: https://docs.paperspace.com/machine-

learning/wiki/activation-function

[22] D. Chang and A. Pathak, “Effect of batch size on neural net training,” Medium
online platform, 2020. [Online]. Available: https://medium.com/deep-learning-

experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57

[23] F. Bonassi, M. Farina, J. Xie, and R. Scattolini, “On recurrent neural networks for
learning-based control: recent results and ideas for future developments,” 2021.
[Online]. Available: https://arxiv.org/abs/2111.13557

[24] C. Olah, “Understanding Istm networks,” 2015. [Online]. Available: https:
/[colah.github.io/posts/2015-08-Understanding-LSTMs/

[25] S. Varsamopoulos, K. Bertels, and C. Almudever, “Designing neural network based

decoders for surface codes,” 11 2018.

[26] J.-L. Reymond, L. Ruddigkeit, L. Blum, and R. van Deursen, ‘“The enumeration
of chemical space,” WIREs Computational Molecular Science, vol. 2, no. 5, pp.
717733, 2012. [Online]. Available: https://wires.onlinelibrary.wiley.com/doi/abs/
10.1002/wcms. 1104

[27] “Pubchem compound summary.” [Online]. Available: https://

pubchem.ncbi.nlm.nih.gov

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, ‘“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:

https://www.tensorflow.org/
[29] F. Chollet et al., “Keras,” https://keras.i0, 2015.

[30] Google, “Qkeras,” https://github.com/google/gkeras, 2020.

69

https://arxiv.org/abs/1811.03378
https://docs.paperspace.com/machine-learning/wiki/activation-function
https://docs.paperspace.com/machine-learning/wiki/activation-function
https://medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57
https://medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57
https://arxiv.org/abs/2111.13557
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1104
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1104
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://www.tensorflow.org/
https://keras.io
https://github.com/google/qkeras

Bibliography

[31] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A.
Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E. E. Bolton,
“PubChem in 2021: new data content and improved web interfaces,” Nucleic
Acids Research, vol. 49, no. D1, pp. D1388-D1395, 11 2020. [Online]. Available:
https://doi.org/10.1093/nar/gkaa971

[32] M. Swain, “Molvs: Molecule validation and standardization,” 2016. [Online].
Available: https://molvs.readthedocs.io/en/latest/

[33] “Rdkit: Open-source cheminformatics software.” [Online]. Available: https:

/Iwww.rdkit.org

[34] “Simplernn keras layer.” [Online]. Available: https://www.tensorflow.org/api_docs/
python/tf/keras/layers/SimpleRNN

[35] “Gru keras layer.”” [Online]. Available: https://www.tensorflow.org/api_docs/
python/tf/keras/layers/GRU

[36] “Lstm keras layer.” [Online]. Available: https://www.tensorflow.org/api_docs/
python/tf/keras/layers/LSTM

70

https://doi.org/10.1093/nar/gkaa971
https://molvs.readthedocs.io/en/latest/
https://www.rdkit.org
https://www.rdkit.org
https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNN
https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNN
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

Bibliography

71

	Title Page
	Acknowledgments
	Abstract
	Resumo
	Index
	Index
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Structure

	2 State of the Art
	2.1 Neural networks: how it works
	2.1.1 Artificial Intelligence
	2.1.2 Machine Learning
	2.1.3 Deep Learning
	2.1.4 Neural Networks
	2.1.4.A Model
	2.1.4.B Layers
	2.1.4.C Activation functions
	2.1.4.D Training
	2.1.4.E Inference
	2.1.4.F Parameters

	2.2 RNN
	2.3 LSTM
	2.4 Gated Recurrent Unit GRU
	2.5 Drug Discovery
	2.6 Frameworks
	2.6.1 Tensorflow
	2.6.2 Keras
	2.6.3 QKeras

	2.7 Optimizations and quantization
	2.7.1 Quantized training

	3 Methods and Implementation of Recurrent Models and Quantization
	3.1 QKeras quantization vs float32
	3.2 SMILES Generation Model
	3.2.1 Dataset
	3.2.2 Encoding Data
	3.2.3 Training Model
	3.2.4 Generating Output
	3.2.5 Validation of Output

	3.3 QKeras implementation
	3.4 SimpleRNN model A
	3.5 SimpleRNN model B - QKeras
	3.6 GRU model A
	3.7 GRU model B - QKeras
	3.8 LSTM model A
	3.9 LSTM model B - QKeras
	3.10 Error analysis
	3.11 Hardware and System

	4 Experimental Results
	4.1 Simple RNN model
	4.1.1 Simple RNN test 1 - Number of layers
	4.1.2 Simple RNN test 2 - Dropout and Learning Rate
	4.1.3 Simple RNN test 3 - Epochs and Number of training samples
	4.1.4 Simple RNN - Final Analysis

	4.2 GRU model
	4.2.1 GRU test 1 - Number of layers
	4.2.2 GRU test 2 - Dropout and Learning Rate
	4.2.3 GRU test 3 - Epochs and Number of training samples
	4.2.4 GRU - Final Analysis

	4.3 LSTM model
	4.3.1 LSTM test 1 - Number of layers
	4.3.2 LSTM test 2 - Dropout and Learning Rate
	4.3.3 LSTM test 3 - Dropout per layer and Learning Rate
	4.3.4 LSTM test 4 - Epochs and Number of training samples
	4.3.5 LSTM - Final Analysis

	4.4 Recurrent models - Performance comparison

	5 Conclusion
	5.1 Conclusion
	5.2 Future Work

	Bibliography

