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Abstract: This paper describes a bio-inspired algorithm for
motion computation based on V1 (Primary Visual Cortex)
andMT (Middle Temporal Area) cells. The behavior of neu-
rons in V1 and MT areas contain significant information
to understand the perception of motion. From a compu-
tational perspective, the neurons are treated as two di-
mensional filters to represent the receptive fields of sim-
ple cells that compose the complex cells. A modified elab-
orated Reichardt detector, adding an output exponent be-
fore the last stage followed by a re-entry stage of modulat-
ing feedback from MT, (reciprocal connections of V1 and
MT) in a hierarchical framework, is proposed. The end-
stopped units, where the receptive fields of cells are sur-
rounded by suppressive regions, are modeled as a divisive
operation. MT cells play an important role for integrating
and interpreting inputs from earlier-level (V1).We fit a nor-
malization and a pooling to find the most active neurons
for motion detection. All steps employed are physiologi-
cally inspired processing schemes and need some degree
of simplification and abstraction. The results suggest that
our proposed algorithm can achieve better performance
than recent state-of-the-art bio-inspired approaches for
real world images.

Keywords: Motion Direction, Neural Computational
Model, Area MT

1 Introduction
A biologically motivated computational model can be de-
rived from neurophysiological studies. They give us es-

*Corresponding Author: Fernanda da C. e C. Faria: Institute of
Systems and Robotics, University of Coimbra, Portugal, E-mail:
cunhaecastro@gmail.com
Jorge Batista: Institute of Systems and Robotics, University of
Coimbra, Portugal, E-mail: batista@isr.uc.pt
Helder Araújo: Institute of Systems and Robotics, University of
Coimbra, Portugal, E-mail: helder@isr.uc.pt

sential information to develop biologically inspired ap-
proaches. Understanding the principles that underlie the
basic known functional brain structures reveals informa-
tion about how the concepts link with the general mathe-
matical models.

Theneural processingof perceptionofmotion starts in
the eye. The observed scenehas, at least, two spatially sep-
arate images projected onto the 2D retinal surface. Several
cortical areas are involved to give an interpretation of the
data. To study this phenomenon based on two cortical ar-
eas, information of physiologically plausible characteris-
tics that integrates visual motion signals are used to guide
an appropriate algorithmic model to simulate the logic of
motion computation.

Understanding how biological neural motion detec-
tion system is organized for processing of optic flow, we
propose amodel to estimate the direction and speed of im-
age sequences. We describe a model that is not spatially
restricted to the classical receptive field. Instead, we con-
sider the area surrounding the receptive field center. The
neural motion information perception is studied in this
work using an elaborated Reichardt detector (original Re-
ichardt detector plus spatiotemporal filters). As in our pre-
vious work, the V1 cells are modeled through a set of log-
Gabor filters in the Fourier domain [1]. We explore a model
for V1 cells that includes a linear stage (log-Gabor filters)
andamultiplication stage that is followedbyanadditional
nonlinear output (exponent). Then, the suppressive effect
of the surround in V1 is computed using end-stopped units
which are subtypes of the simple and complex types. After-
wards, the integration of the inputs from V1 is realized by
MT cells through excitatory and suppressive components
calculated as a divisive normalization. The mechanisms,
algorithmic properties and implementations that induce
direction selectivity will be characterized in detail.

Froma computational perspective,weproposemathe-
matical models that relate the findings from neuroscience
to the processing of visual information. We focus on link-
ing the representation of the algorithm structure to the
computations performed by neurons in the brain. It might
be possible that future realizations of these ideas provide
an important source of inspiration for developing cogni-
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tive abilities on humanoid robots [2] towards human-robot
interaction, and others fields such as cybernetics, com-
puter vision, computational neuroscience, etc.

In thiswork,wewill describe themain theoretical con-
siderations (second section) of how to represent amodel of
movement computation based on V1 and MT cells. In the
third section of this study, a biologically inspired process-
ing scheme to compute visual motion is explored. Then,
the results (fourth section) are presented and compared
with simulations without the proposed improvements and
some state-of-the-art bio-inspired approaches. Finally, we
discuss detailed comparisons between the tests and we
finish with conclusions in the last section.

2 A bio-inspired perception of
motion

Motion perception is a basic quality of vision process that
examines a sequence of different but related images over
a brief span of time. The cerebral cortex of primates can
be divided in anatomically and functionally distinct areas
so-called cortical areas. This section addresses the study
of perception of visual motion biologically pertinent with
the small visual area known as Middle Temporal Area (MT
or V5), whose neurons are particularly responsive to mo-
tion perception.

Motion computations and stereoscopic depth percep-
tion are closely related. The computation of motion direc-
tion begins in PrimaryVisual Cortex (V1), because, cortical
feedforward inputs to MT come from several areas, includ-
ing V1 and some other areas, such as Second Visual Area
(V2). Inputs from V1 are the most potent [3].

MT neurons are selective for stimulus orientation,
speed, and direction of movement. The majority of MT
neurons are selective for the direction of motion stimulus.
V1 neurons that project to MT are directionally selective,
i.e., the cells respond strongly to motion in one (preferred)
direction and very little or not at all to motion in the op-
posite or null direction. Basically, MT analysis may con-
tribute to an important role in the processing of visual in-
formation related to motion perception [4, 5].

Disparity selectivity is already established for horizon-
tal stimulus disparity in the V1 and V2 cells that project
to MT neurons [6]. The large receptive fields (RFs) in MT
are also sensitive to non-horizontal disparity, i.e., such
cells are not specialized for detecting horizontal dispar-
ities, they are selective for both vertical and horizontal
stimulus disparities [6].

Middle temporal area RFs are much more complex

Figure 1: A coarse approximation of possible RFs examples that
address center-surround antagonism. MT receptive field models
consisting of concentric excitatory center (light shading and “+”
signs) and inhibitory surround regions (dark shading and “-” signs).
Arrows indicate the cell’s preferred direction of motion. Three ex-
amples of different kinds of surround organization are presented.
First, the RF has inhibitory regions that completely surround the
excitatory area (left). Second, the RF has bilateral asymmetric in-
hibitory regions (middle). Third, the RF has a unilateral asymmetric
inhibitory region (right).

than previously described in [1], because they use a
broader range of information. The properties of neuronal
RFs in cortical areaMT can roughly be divided in twomain
parts: its center region, so-called Classical Receptive Field
(CRF), and its surround region (Fig. 1). MT receptive fields
have interesting properties such as: i) surround areamuch
larger than CRF; ii) center-surround RF relationships with
antagonistic zones; iii) RF organized in a circular symmet-
ric and asymmetric representation of the surround areas;
and iv) many elongated RF along the preferred axis of mo-
tion [7–11].

Receptive fields of MT cells are complex structures,
and they cannot be accurately modeled on the basis of lin-
earmechanisms because direction selectivity is inherently
nonlinear. Therefore, nonlinear mechanisms are essential
to the generation of direction selectivity [9, 12, 13].

There have been many studies of motion detection
mechanisms to account for direction selectivity [14–18].
They are inspired on many animals, including humans.
These models carry the idea of three requirements which
any motion detection algorithm has to compute. The first
particular aspect of motion computation is the input stim-
ulus, since we need to analyse at least two spatially sep-
arate input lines because motion detection requires com-
paring signals from two neighboring points in space. Sec-
ond, the temporal filtering of the two input lines has to
be asymmetrical in some way, otherwise motion detection
mechanisms could be interchanged without affecting the
output. Third, since not all directional computations in vi-
sual cortical neurons can be explained by linear interac-
tions alone, the two input lines must be combined by a
non-linear mechanism [19–22].

One of the first models of movement computation
was proposed by Hassenstein and Reichardt [23], the Re-
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ichardt detector (also called Hassenstein-Reichardt detec-
tor). Elaborated versions of the Reichardt detectors, i.e.,
the basic Reichardt model supplemented by spatial recep-
tive fields, can explain psychophysical responses to mo-
tion in humans. Santen and Sperling [14] analyze the rela-
tionship between the Elaborated Reichardt Detector (ERD)
and the motion energy detector of Adelson and Bergen
[16] and Watson and Ahumada detector [17]. Adelson and
Bergen detector is a reformulation of ERD with a multi-
plicative constant. They combine the filtered inputs with
π/2 spatial phase shift and π/2 temporal phase delay.
The output signal of the full opponent form of the ERD
is formally identical to the spatiotemporal energy model.
And, an elaborated Watson and Ahumada detector that
includes squaring followed by temporal integration and
subtraction of outputs of twomirror-image subunit is fully
equivalent to an ERD with π/2 for both, temporal delay
and spatial phase-shift filters. Both detectors [16, 17], de-
spite having different internal structures, are a more com-
plicatedway used to constructmethods of the direction se-
lectivity computation than the standard formulation of the
ERD.

Neurons interactions taking place in the nervous sys-
tem have been inspiring algorithmic models. Those mod-
els are described by formal operations (convolutions, sub-
tractions, multiplications etc.) to implement motion de-
tection. Many studies of mechanisms using biologically
inspired motion models adapt some of the existent mo-
tion detector [16, 17, 23] to analyse the direction-sensitive
computation that are applied for several activities (action
recognition, motion transparency, contour detection etc.).
Some examples of these kind of computer vision applica-
tions for a variety of real world image sequences and syn-
thetic image sequences can be found in [24–28].

Our work explores an alternative approach that com-
putes motion based on the not yet fully understood infor-
mation, about how thebiologicalmotiondetectionmecha-
nisms realize neurons synaptic interactions, and how they
can perform a multiplication. We suggest a model (Fig.
2) for analysis of the nonlinear mathematical operation,
the exponent, in order to improve the response of cells.
We are extending the existing elaborated Reichardt detec-
tor (ERD) [14, 15], simply adding an output exponent be-
fore the last stage, where the output of a leftward selec-
tive motion detector is subtracted from that of a rightward
detector. This particular adaptation in motion processing
can substantially alter neuronal selectivity. We incorpo-
rate these nonlinear component features to produce more
accurate direction-selective predictions [12, 21, 29–31].

After the modified ERD, later responses take into ac-
count the larger stimulus context, and we compute the fi-

Figure 2: A model of a modified elaborated Reichardt detector (ERD)
with end-stopped units (stage II) and a normalization (stage III). The
model consists of a modified ERD where the input stimulus with
and without a spatial shift (horizontal and vertical) and a tempo-
rally delayed (time t0 to t1) are filtered by log-Gabor functions (LGF).
The symbol × represents a multiplication operation of the filtered
images. Then the exponentiation ((.)α and (.)β) of the correlation
outputs are calculated before the subtraction step (+ represents
summation with opposite signs). Stage II starts with a squaring op-
eration followed by a velocity blur (Λvel) realized by Gaussian filters
for motion speeds and directions. After, a signal enhanced by FB
(MT feedback) is calculated. End-stopped units (ES) are modelled
as a divisive operation of the response of the center cell by the sur-
round suppression response. Stage III starts with a squaring opera-
tion followed by a smoothing with a Gaussian function (Λspace) and
the computation of the spatial size RFs difference between V1 and
MT (f 5:1interp is a spatial interpolation for resolution reduction). Then,
again, a velocity blur (Λvel) is realized. The symbol ÷ represents a
normalization process. And, the original image size is reestablished
(f 1:5interp).

nal response through two stages (Fig. 2). One, a re-entry
stage of modulating feedback (FB) from MT followed by
a nonlinear suppressive component is calculated, giving
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rise to their large RFs. This suppression has been found to
be largely nonspecific, and, it is modeled as end-stopped
units,whichare subtypes of the simple andcomplex types.
Neurons with this property (end-stopped) are found in the
V1 layers and provide input to MT cells. A substantial por-
tion of the input to MT cells is end-stopped. The other,
a stage where cells are explained by standard normaliza-
tion in order to connect the various results onmotion inte-
gration in MT. In both stages, RF of cells are surrounded
by suppressive regions, and the influence from the sur-
round should be modeled as a divisive or subtractive sup-
pression. Mathematically in our model, the interaction of
center and surround mechanisms (suppression) is divi-
sive. This type of interaction generated outside of the CRF
serves to improve motion detection results [32–36].

In this work, we describe how to detect motion using
a combination of a modified ERD, end-stopped units and
normalization. All those methods are bio-inspired pro-
cessing schemes and we evaluate our algorithm in syn-
thetic and real-world image sequences.

3 Modeling optical motion
estimation

To advance the understanding of how neurons of visual
area V1 and MT contribute to perception of motion, we de-
veloped a hierarchical modeling framework. Fig. 2 shows
the basic computational structure of the proposed motion
detection algorithm. Optic flow processing is computed in
a series of steps and our architecture starts with a modi-
fied ERDs which has two input stimulus (images) with a
simple temporal delay (I(x, y, t0) and I(x, y, t1)), i.e., the
2D image intensity coordinates (x, y) with a time delay (t0
and t1). Thus, for estimating spatio-temporal correlations
we use a spatial shift (horizontal and vertical) of the two
input stimulus defined by:

I(x, y, t0)∆l,n = I(x − ∆xl,n , y − ∆yl,n , t0), (1)

I(x, y, t1)∆l,n = I(x − ∆xl,n , y − ∆yl,n , t1), (2)

where ∆xl,n = sl × cos(δn), ∆yl,n = sl × sin(δn), δn is the di-
rection angle, sl represents speeds, n = 1...Nδ indexesmo-
tion directions, Nδ is the number of directions, l = 1...Ns
indexes motion speeds and Ns is the number of speeds.

Consistent with neurophysiological data, many neu-
rons in the visual cortex have tuned direction response
profiles. As in our previous work [1], each V1 RF that corre-
sponds to direction selective neurons is modelled through

linear band-pass filters, i.e., a set of two-dimensional log-
Gabor functions in the Fourier domain (the temporal di-
mension is not Fourier transformed), as follows:

g(r, ϕ; θm , fh) = exp
[︂
−(log(r/fh))2
2(log(k/fh))2

]︂
× exp

[︂
− (ϕ − θm)

2

2σ2

]︂
, (3)

where (ϕ − θm) is the absolute angular distance, i.e., (ϕ −
θm) = | tan−1(sin(θm − ϕ)/ cos(θm − ϕ))| where the coor-
dinate system is rotated according to the orientation an-
gle θm, m corresponds to motion orientations index and
ϕ = tan−1(−y/x) is the anticlockwise angular coordinate.
The standard deviation σ of the Gaussian function in the
angular direction has a constant value of π/9 (this value
is based on empirical data). The central radial frequency
is fh, h corresponds to spatial frequencies index, k is the
standarddeviationused todetermine thebandwidthof the
filter in the radial direction and r is the radial coordinate
(r =

√︀
x2 + y2). The term k/fh has a fixed value of 0.55 to

achieve constant shape ratio filters [37, 38].
The Fourier transform of the input images is denoted

by the hat-symbol and the change of arguments to an-
gular frequencies (the temporal dimension is not Fourier
transformed), i.e, I(x, y, t0) is Fourier transformed into
Î(ωx , ωy , t0). Here, each input stimulus is filtered by log-
Gabor functions and the computed signal is then given as
follows (the four separable combinations outputs):

A(x, y, t0; θm , fh) = F−1{Î(ωx , ωy , t0)
×g(r, ϕ; θm , fh)} (4)

A′(x, y, t0; θm , fh)∆l,n = F−1{Î(ωx , ωy , t0)∆l,n

×g(r, ϕ; θm , fh)} (5)

B(x, y, t1; θm , fh) = F−1{Î(ωx , ωy , t1)
×g(r, ϕ; θm , fh)} (6)

B′(x, y, t1; θm , fh)∆l,n = F−1{Î(ωx , ωy , t1)∆l,n

×g(r, ϕ; θm , fh)} (7)

where the symbol F−1 corresponds to the inverse Fourier
transform.

The filtered stimulus output, in spatial domain is cal-
culated by inverse Fourier transform from time t0 (4) is
correlated (8) with the direct input from a time delay (t1)
with spatial shift (7). This can be modelled by a local im-
age phase (ψAm,h = arg{A(x, y; θm , fh)} and ψB

′ ,∆l,n
m,h =
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arg{B′(x, y; θm , fh)∆l,n}). We consider the variation of the
temporal order (9) where (5) is correlated with (6) employ-
ing local image phase (ψA

′ ,∆l,n
m,h = arg{A′(x, y; θm , fh)∆l,n}

and ψBm,h = arg{B(x, y; θm , fh)}). Thus, we defined corre-
lation equations as follows:

CAB
′

l,n = 1
Nθ

Nθ∑︁
m=1

[cos(ψB
′ ,∆l,n
m,h − ψAm,h)]

+ (8)

CBA
′

l,n = 1
Nθ

Nθ∑︁
m=1

[cos(ψBm,h − ψ
A′ ,∆l,n
m,h )]+ (9)

where Nθ is the number of orientations, [.]+ = max(., 0)
denoting a positive half-wave rectification, because cells
cannot fire negative values. Afterwards, correlation results
of different orientations are summed.

The basic idea behind the equations (8) and (9) to ac-
count for the responses of complex cells in V1 involves op-
erations with complex numbers, i.e., sum of the responses
(simple cells) corresponding to the real (Re) and imaginary
(Im) parts of a complex-valued log-Gabor filters (orthogo-
nal in phase). We consider the real and imaginary parts of
each of 4 responses (4)-(7), therefore, we have 8 measure-
ments available on the complex plane. Under this condi-
tions, if we rewrite the cosine of the angular difference be-
tween image phases (quadrature) (8) and (9), we see that:

CAB
′

l,n = 1/Nθ
Nθ∑︁
m=1

{Re[A(x, y, t0; θm , fh)]

×Re[B′(x, y, t1; θm , fh)∆l,n ]
+Im[A(x, y, t0; θm , fh)]

×Im[B′(x, y, t1; θm , fh)∆l,n ]
/|A(x, y, t0; θm , fh)|

×|B′(x, y, t1; θm , fh)∆l,n |}+, (10)

CBA
′

l,n = 1/Nθ
Nθ∑︁
m=1

{Re[A′(x, y, t0; θm , fh)∆l,n ]

×Re[B(x, y, t1; θm , fh)]
+Im[A′(x, y, t0; θm , fh)∆l,n ]
×Im[B(x, y, t1; θm , fh)]
/|A′(x, y, t0; θm , fh)∆l,n |
×|B(x, y, t1; θm , fh)|}+, (11)

where × and / denote a multiplication and division oper-
ation for each matrix element. This formulation is consis-
tent with the assumptions of [39, 40].

The modified ERDs model is completed by incorporat-
ing expansive static output nonlinearities (α and β), be-

fore the subtraction operation in the correlation asymmet-
ric outputs as follows:

C(x, y, δn , sl) = [(CAB
′

l,n )
α − (CBA

′

l,n )
β]+. (12)

In the next level (stage II – Fig. 2), corresponding yet
to cortical area V1, a cascade architecture based on three
steps involving spatial integration, signal enhancement,
feedback (FB) signals re-enter and normalization (center-
surround shunting inhibition) is used.

The integration of motion signals is a gradual process
and the basic idea consists of nonlinear ordinary differen-
tial equations. Those equations consider membrane prop-
erties and normalizing gain control. The electrical proper-
ties of nerve cells can be characterized like electrical cir-
cuits. The cell membrane is modeled as a resistance and
a capacitance, i.e., an RC circuit. Cortical cells behave like
an RC circuit and the input to a cell is a current driven by
the synaptic conductances that vary over time [41–43]. Ac-
cording to this model, the dynamics of the membrane cir-
cuit obeys the following equation:

τẋ = −D × x + (x − Eex) × gex − (x − Ein) × gin , (13)

assuming a zero-level resting state with constant leak con-
ductance gleak = D; τ denotes themembrane constant and
x is the cell’s membrane potential. The terms gex and gin
represent the total inputs from excitatory and inhibitory
neurons synapses on the cell, respectively. Parameters Eex
and Ein define reversal potentials for excitatory and in-
hibitory conductances, respectively.

Neuronal models implementation integrates these
mechanisms in a generic three successive computational
steps (14)-(16), which are variants of the membrane (13)
[44–48]:

ẋ(1) = −x(1) + (xFF)2 * Λvel , (14)

ẋ(2) = −x(2) + x(1) × (1 + F × xFB), (15)

ẋ(3) = −x(3) + x(2) − (G + H × x(3)) ×
∑︁

x(2), (16)

where the terms x(1), x(2) and x(3) denote the activitywithin
the three stages of the particular model area. The pa-
rameter xFF represents the driving input signal (forward
stream). Λvel denotes weighting kernels for filtering oper-
ations (velocity blur). The term xFB is themodulatory feed-
back signal and the constant F adjusts the strength of feed-
back. The constants G and H control the strength of nor-
malization.

Themechanisms that underlieV1neural dynamics im-
plementation of feature extraction, exhibit end-stopped
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units to some degree. We adapt several indications in the
literature about the properties of end-stopped units to esti-
matemotion [32, 35, 36].We follow themechanismsof neu-
ral three step processing of (14)-(16). It starts with a non-
linear signal enhancement, i.e., it is squared in order to
sharpen the distribution. Then a velocity blur is processed
by different Gaussian kernels (Λvel) for motion speeds and
for motion directions [39, 44, 47, 49]:

ẋ(1)v1 = −x(1)v1 + (xFFv1 )2 * Λvel , (17)

where xFFv1 = C(x, y, δn , sl), x(1)v1 ranges between zero and
one, and the blur is calculated by a convolution (*) in the
domain of velocities with a Gaussian defined by the stan-
dard deviations σs = 0.2pixel per frame formotion speeds
and σδ = 0.75 for motion directions. Speeds are encoded
on a logarithmic scale.

Motion signals integration provides important cues to
the processes that are used by the visual system. Recur-
rent connectivity is a mechanism that is known to exist
in cortical areas and the surround suppression in V1 is af-
fected by feedback fromMT. Feedback connections for the
treatment of visual information can enhance the coher-
ent inputs consistent with themotion direction. This helps
the process of information extraction to other cortical vi-
sual areas. MT plays an important role in the integration
of motion signals in area V1 [44, 47, 50–53]. Our model in-
cludes the reciprocal connections of V1 and MT. The feed-
back (FB) in V1 is computed as follows:

ẋ(2)v1 = −x(2)v1 + x(1)v1 × (1 + F × x
FB
v1 ), (18)

where F has a fixed value of 100 to amplify the FB signal
(xFBv1 ) and x(2)v1 ranges between zero and one.

End-stopped model performs a suitable front end for
our MT model. We examine the end-stopped properties
without considering that their neurons form a separated
class in V1, because many V1 neurons exhibit some end-
stopped characteristics, i.e., inhibitory influences from
the surround. Here we show another version of the end-
stopped units, which consists of extending the analysis of
the non-classical RF organization to the output of the ini-
tial motion detector. Thus, the response of V1 cells could
be characterized as a divisive normalization (shunting in-
hibition) revealed by analysis of the center-surround in-
teraction [32, 35, 36, 39]. After the FB step, based on the
steady-state solution of the (16), the encoding of motion
information using mechanisms that are known to exist in
V1 can be approximated as follows:

x(3)v1 = rcenter
ϵ + rcenter + krsurround

, (19)

where rcenter is the response of the center cell andwhereby
it is approximated by filtering with a Dirac pulse (rcenter =
x(2)v1 – no kernel is applied). The rsurround is the total sur-
round response calculated by convolving the signal x(2)v1
with a Gaussian filter with parameter values of σs = 0.5
pixel per frame for motion speeds and σδ = 2.0 for motion
directions. The model is based on the assumption that the
RF centers and surrounds overlap spatially. Therefore, the
surround interactions overlaps the center and inhibits it.
The constant k is a gain parameter (set to 5) and ϵ has a
fixed value of 1.

Motion is a rich source of various types of biologically
relevant signals. Activity in V1 influences the perceptual
interpretation of the directional information andMT inher-
its considerable directional information from V1 area. We
propose that the next level (stage III – Fig. 2) is performed
by cortical area MT. We follow the three-step processing of
the (14)-(16) again. First, the signal fromV1 is squared for a
nonlinear signal enhancement. Next a spatial integration
(Λspace), where the signal is convolved by a Gaussian ker-
nel, and subsequently sampled (for adifferent spatial reso-
lution) using a linear interpolation (f 5:1interp) . This combina-
tion of poor spatial resolution (less ambiguous signals) is
consistent with the visual inputs to MT and their larger RF
size compared to that in V1 [5, 44, 47]. Then, as in stage II,
motion signals are smoothed in the velocity domain (Λvel)
with the same parameters of V1 area. We then calculated
the integration as follows:

ẋ(1)MT = −x
(1)
MT + f

5:1
interp((x

FF
MT)2 * Λspace) * Λvel , (20)

where xFFMT = x(3)v1 and x(1)MT ranges between zero and one.
The spatial resolution is reduced by a factor of 5 (linear
interpolation) and the standard deviation σspace = 5 for
Λspace.

The feedback in MT area could be included if our
model had influences of other cortical areas, such as the
medial superior temporal area (MST). However, in the cur-
rent model that involves connections of V1 and MT, the FB
in MT is computed as follows:

ẋ(2)MT = −x
(2)
MT + x

(1)
v1 × (1 + F × x

FB
MT), (21)

where the FB signal xFBMT does not receive any input and
x(2)MT ranges between zero and one. Thus, the result re-
sponse is denoted by the indetity x(2)MT = x(1)MT in its steady
state.

As demonstrated in Fig. 2, detailed picture of the ac-
tivities, visual system mechanisms are represented as a
sequential elaboration of processing steps through a hi-
erarchy of visual areas. MT cells play an important role
in integrating and interpreting inputs from earlier-level
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end-stopped cells (V1). To analyze visual motion, MT neu-
rons opponency is an essential aspect. We consider that
suppression contributes to the speed and direction tun-
ing of MT neurons. We fit a divisive suppression by apply-
ing a center-surround interaction, whereby the MT neu-
ron is constructed by excitatory and suppressive compo-
nents which shows the normalization property. More im-
portantly, cells model generates nonspecific suppression
which is divisive. The Center and surround differ in size
and the excitatory component is defined as the outputs of
each of the x(2)MT , and the surround calculates the sum over
all velocities [33, 34, 54]:

ẋ(3)MT =
x(2)MT

σ2MT +
∑︀
x(2)MT

, (22)

where σMT = 0.01. Equation (22) is based on the steady-
state solution of the (16).

Finally, as demonstrated in Fig. 2, a linear interpola-
tion (f 1:5interp) is computed to reconstruct the original image
size.

The estimation of velocity is based on similar spatial
RFs with a range of directions (δn) and speeds (sl), i.e.,
a set of hypotheses at each location. Those sets of possi-
bilities can be interpreted as local neural population code
which is biologically plausible with cells of MT. To find the
best fit, we can pool local motion information composed
of a population of units, using a divisive normalization to
determining the most active neurons. Therefore, to inter-
pret the population of motion for a given spatial location,
we simply normalize to present a single activation signal
[55–57]:

Rnorm =
∑︀
Mvel × x(3)MT∑︀

x(3)MT
, (23)

whereMvel represents the velocities of cells that are tuned
(+∆xl,n and −∆yl,n).

The specific parameters used to estimate motion for
real and synthetic image sequences are given in the next
section according to the tests realized.

4 Experimental results
The technique described for optic flow has been im-
plemented and applied to a variety of real image se-
quences and synthetic image sequences. The experimen-
tal evaluation considers greyscale synthetic and real-
world images from the Middlebury flow repository (vi-
sion.middlebury.edu/flow/) [58, 59] and from [60] as in-
put.We consider realworld images, scenes capturedwith a

camera, composed of real objects and natural texture. The
synthetic images are artificial sequences generated using
computer graphics and someuse a real image to create sur-
face texture.

We use an angular measure of error for quantita-
tive comparisons and we also compute the absolute er-
ror. Quantitative computational theories can be an effec-
tive tool for summarizing existing data andhelp us for test-
ing the consistency of our computational model. For eval-
uation (see Appendix A) we used the average angular error
(AE) and the absolute flow endpoint error (EE)[58–62].

We have used almost all the same parameter values
of [47]. For log-Gabor filters, the orientations are θm =
mπ/Nθ, where Nθ = 8 is the number of orientations
(m = 1 . . . Nθ). The spatial frequencies are defined for
fn = 1/(2π/(sws1s

Nf−h
b )), where sw = 3.0 relates an angu-

lar frequency to a speed, s1 = 0.8 is the minimal speed,
sb is a factor that influences the overlap between filters
(h = 1 . . . Nf , Nf = Ns − 1, sb = 1.5). The number of
speeds is Ns = 7 for image sequences with low speeds
(Army, Mequon, Sche�era, Wooden, Yosemite, Rubber-
Whale, Hydrangea, Dimetrodon, Grove2, Grove3, Translat-
ing tree and Diverging tree). For the image sequences with
high speeds Ns = 9 (Grove, Urban, Teddy, Urban3) and
Ns = 10 (Urban2). Speeds are multiples of minimal speed
defined for sl = (sws1sl−1b )/sw, where l = 1 . . . Ns. The di-
rections are δn = n2π/Nδ where the number of directions
is Nδ = 16 (n = 1 . . . Nδ). Moreover, the first speed used is
zero as well as the first frequency. Motion has been com-
puted with 5 frames. For Middlebury flow repository we
use frames 7 to 11 (exceptwhen the sequence provides only
two images) and for [60] we use frames 17 to 21.

The Gaussian kernels for motion directions used for
velocity blur and for surround interaction are computed in
a region of 3x1 and 9x1 pixels, respectively. The Gaussian
kernels for motion speeds used for velocity blur and for
surround interaction are encoded on a logarithmic scale
and they are computed in a region of 1x5 for both filters.
TheGaussian kernel for spatial integration (Λspace) is com-
puted in a region of 21x21 pixels. For Gaussian filtering, we
use two boundary conditions: a circular boundary condi-
tion for the domain of motion directions and a replicate
boundary condition for the domain of motion speed and
space.

Tables 1 and Table 2 present the performance of our al-
gorithm for a collection of optical flow datasets with hid-
den (Dataset 1) and public (Dataset 2) ground truth flow,
respectively. In our experiments, we compare two alterna-
tive of configurations besides the original configuration for
the same input sequences (Table 2). First, to examine the
importance of the exponents (α and β – Fig. 2), we execute
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Table 1: Error statistics for motion perception estimation for a vari-
ety of synthetic and real-world image sequences (Dataset 1).

Our Method
AE EE

Army 8.97 0.24
Mequon 8.89 0.88
Schefflera 10.9 1.08
Wooden 8.30 0.78
Grove 8.16 2.0
Urban 22.9 3.09
Teddy 19.9 3.81

Figure 3: The top row shows the first frame of the input sequences
used to our study. The middle row shows the color coded ground
truth flow of each image. The bottom row shows the estimated optic
flow of our algorithm. In the left-most column we visualize the color
coded ground truth flow that indicate speed and direction.

Figure 4: The top row shows the first frame of the input sequences
used to our study. The middle row shows the color coded ground
truth flow of each image. The bottom row shows the estimated optic
flow of our algorithm. In the left-most column we visualize the color
coded ground truth flow that indicate speed and direction.

Figure 5: The top row shows the first frame of the input sequences
used to our study. The middle row shows the color coded ground
truth flow of each image. The bottom row shows the estimated optic
flow of our algorithm. In the left-most column we visualize the color
coded ground truth flow that indicate speed and direction.

Figure 6: The top row shows the first frame of the input sequences
used to our study. The middle row shows the color coded ground
truth flow of each image. The bottom row shows the estimated optic
flow of our algorithm. In the left-most column we visualize the color
coded ground truth flow that indicate speed and direction.

the algorithm without them. Then, to evaluate the influ-
ence of feedback from MT, we execute the algorithm with-
out FB.

Fig. 3 and Fig. 4 show estimated optic flow for three
real image sequences (Mequon, Sche�era and Wooden),
two synthetic image sequences (Grove andUrban) and one
modified stereo data (Teddy). In the left-most column we
see the flow color coding, i.e., the color coded ground truth
flow that indicate speed and direction (Middlebury color
code). It associates a single color with each possible veloc-
ity and the direction of the velocity corresponds to the hue
of the velocity (whiter for slower speeds). We included in
Fig. 3 and Fig.4 images of the results presented in Table 1.
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Table 2: Error statistics for motion perception estimation for a variety of synthetic and real-world image sequences (Dataset 2).

Our Method Our Method without Our Method without
the exponents α and β the FB fromMT

AE EE AE EE AE EE

RubberWhale 6.59 0.22 7.87 0.26 6.91 0.23
Hydrangea 5.36 0.55 8.75 1.18 5.67 0.71
Dimetrodon 4.31 0.27 11.46 0.71 4.31 0.27
Grove2 5.98 0.50 9.50 0.88 9.14 0.75
Grove3 11.84 1.37 15.76 1.98 14.68 1.70
Urban2 22.61 3.11 35.05 6.51 29.38 5.18
Urban3 18.91 3.09 29.38 5.19 28.91 4.72
Venus 12.96 1.25 21.47 2.21 12.96 1.25
Yosemite 5.43 0.28 8.71 0.46 7.34 0.41
Translating tree 1.33 0.09 3.75 0.23 1.81 0.11
Diverging tree 5.58 0.16 8.00 0.24 5.31 0.15

Table 3: Comparisons of the average angular errors of our model and some state-of-the-art bio-inspired works in the literature.

Our Method Raudies 2012a Solari 2014b Dellen 2011c Solari 2015d

RubberWhale 6.59 - 17.1 9.8 10.20
Hydrangea 5.36 - - 9.3 5.96
Dimetrodon 4.31 - - - -
Army 8.97 14.5 - - 12.0
Mequon 8.89 11.4 - - 10.7
Schefflera 10.9 16.8 - - 15.6
Wooden 8.30 11.7 - - 16.6
Grove 8.16 16.6 - - 6.51
Grove2 5.98 - - - 4.28
Grove3 11.84 - - - 9.72
Urban 22.9 27.3 - - 16.2
Urban2 22.61 - - - 14.51
Urban3 18.91 - - - 15.11
Yosemite 5.43 9.77 11.4 3.75 3.41
Translating tree 1.33 - - 0.52 -
Diverging tree 5.58 - 6.7 3.82 -
Venus 12.96 - - - -
Teddy 19.9 37.9 - - 12.3
a [47]
b [63]
c [64]
d [65]
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Fig. 5 and Fig. 6 show estimated optic flow for
three real image sequences (RubberWhale, Hydrangea
and Dimetrodon) and for three synthetic image sequences
(Grove2, Yosemite and Diverging tree), respectively. In the
left-most columnwe see the flow color coding (Middlebury
color code). We included in Fig. 5 and Fig. 6 images of the
results presented in Table 2.

The performance of the algorithm is comparable to the
[47, 63–65] obtained by some state-of-the-art bio-inspired
approaches. Various approaches exist in the literature that
test only the widely used simple synthetic Yosemite se-
quence with ground true flow, which is very limited. Our
study focuses on comparing the results with works that
present several tests. According to Table 3 the proposed
algorithm has better results than the estimated optic flow
results in [47, 63].

Except Teddy and Venus, that are stereo images pairs,
our proposed algorithm has better average angular error
results for real world images (the first seven images of the
Table 3) than for synthetic images, if we compare our re-
sults with the results presented in [64, 65].

Summarizing the results, the simulations suggest that
the additional nonlinear components (exponents) and the
feedback projections of MT cells to V1 produce more accu-
rate motion detection results.

5 Discussion
Our model is inspired by the idea of our previous work [1],
where we represented RFs of V1 cells through logarithmic
Gabor functions. Although our previous approach [1] uses
the energy model [16] to describe the structure of the com-
plex cells, we choose the ERD [14, 23] to extract the mo-
tion information from input image sequences in this work.
We opt for ERD to compute movement because the energy
model [16] is amore complicated reformulation of the ERD.
This biologically plausible model was easier to configure
and it permitted to develop an algorithm in MATLAB with
a reasonable processing time. We spent 165 seconds to ob-
tain the estimated optic flow of Yosemite sequence (Fig. 6).

The model for V1 neuron is a relatively simple exten-
sion of the ERDwhose definitions use an exponent in their
formulation. Table 2 demonstrates the results of our al-
gorithm without the exponents (α and β). If we compare
with the results of theproposedalgorithm (Table 2),we can
observe that the nonlinear interaction incorporated to the
ERD architecture contributes to improve the output data.

To examine the importance of theFB connections from
MT to V1 we test our algorithm without the FB (Table 2).

Our results show that FB influences more the relative per-
formance of synthetic sequences than our real world im-
ages.

We proposed a different implementation of the in-
hibitory center-surround interactions in theV1 area, based
on some evidence that end-stopped units can module sur-
round suppression [32, 33, 35]. This interpretation is ap-
pealing because nonspecific suppression can come from a
combination of cells [33] and wemodeled these properties
that extend outside their CRF as a divisive normalization.

The algorithm performs well on real world images
(Army, Mequon, Sche�era, Wooden, RubberWhale, Hy-
drangea and Dimetrodon), which contain motion discon-
tinuities, rigid and non-rigid motion, hidden texture, thin
structures, areas with little texture and shadows [59]. The
best-fitting parameter values were chosen for computing
the flow in real world images. On the other hand, our
method has limitations with synthetic image sequences
containing motions with large displacements. An aspect
to be considered about the bio-inspired approaches pre-
sented in the Experimental Results section [64, 65] is that
they have better results for synthetic images, however,
their performance is poor for real images. That is a con-
sequence of the over smoothy sequences observed on the
results available. A challenge in biologically inspiredmod-
els is to find good methods that could help to correctly
find motion information across the various datatypes in
the benchmark [59].

In summary, this work presents a bio-inspired model
where amodified ERDwith exponentiation, feedback from
MT, and shunting inhibition (end-stopped units) affecting
V1 neurons is proposed. The output of V1 feed the MT neu-
rons, the spatial resolution is reduced, followed by a nor-
malization and a subsequent pooling to find the most ac-
tive neurons for motion detection. Our model is consistent
withknownproperties of neurons inV1 andMTbrain areas
and we suggested an orderly arrangement and a combina-
tion of methods, which is different from existing state-of-
the-art methods.

As future work, we are considering to extend the pro-
posedmodel by adding a stage to represent the neurons of
V2 in order to investigate whether the overall results can
be improved. This investigation can answer whether the
properties of V2 neurons are similar to MT neurons and
whether they can combine the signal information follow-
ing a very nonlinear integrative mechanism [3, 66].
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