UNIVERSIDADE DE COIMBRA
FACULDADE DE CIENCIAS E DE TECNOLOGIA
DEPARTAMENTO DE ENGENHARIA INFORMATICA

DEPENDABILITY MECHANISMS FOR DESKTOP
GRIDS

Patricio Rodrigues Domingues

DOUTORAMENTO EM ENGENHARIA INFORMATICA

2008

UNIVERSIDADE DE COIMBRA
FACULDADE DE CIENCIAS E DE TECNOLOGIA
DEPARTAMENTO DE ENGENHARIA INFORMATICA

DEPENDABILITY MECHANISMS FOR DESKTOP
GRIDS

Patricio Rodrigues Domingues

DOUTORAMENTO EM ENGENHARIA INFORMATICA

2008

Tese orientada pelo Prof. Doutor Luis Moura e Silva

This work was partially supported by the Programa de Formagdo Avangada
de Docentes do Ensino Superior Medida 5/Ac¢do 5.3 (PRODEP III), by the Por-
tuguese Foundation for Science and Technology under the POSI programme, by the
FEDER programme of the European Union through the R&D unit 326/94 (CISUC)
and by the CoreGRID programme funded by the European Commission (Contract
IST-2002-004265).

Abstract

It is a well-known fact that most of the computing power spread over the In-
ternet simply goes unused, with CPU and other resources sitting idle most of the
time: on average less than 5% of the CPU time is effectively used. Desktop grids
are software infrastructures that aim to exploit the otherwise idle processing power,
making it available to users that require computational resources to solve long-
running applications. The outcome of some efforts to harness idle machines can
be seen in public projects such as SETI@home and Folding@home that boost im-
pressive performance figures, in the order of several hundreds of TFLOPS each. At
the same time, many institutions, both academic and corporate, run their own desk-
top grid platforms. However, while desktop grids provide free computing power,
they need to face important issues like fault tolerance and security, two of the main
problems that harden the widespread use of desktop grid computing.

In this thesis, we aim to exploit a set of fault tolerance techniques, such as
checkpointing and redundant executions, to promote faster turnaround times. We
start with an experimental study, where we analyze the availability of the comput-
ing resources of an academic institution. We then focus on the benefits of sharing
checkpoints in both institutional and wide-scale environments. We also explore hy-
brid schemes, where the traditional centralized desktop grid organization is com-
plemented with peer-to-peer resources.

Another major issue regarding desktop grids is related with the level of trust
that can be achieved relatively to the volunteered hosts that carry out the execu-
tions. We propose and explore several mechanisms aimed at reducing the waste of
computational resources needed to detect incorrect computations. For this purpose,
we detail a checkpoint-based scheme for early detection of errors. We also propose
and analyze an invitation-based strategy coupled to a credit rewarding scheme, to
allow the enrollment and filtering of more trustworthy and more motivated resource

donors.

To summarize, we propose and study several fault tolerance methodologies
oriented toward a more efficient usage of resources, resorting to techniques such
as checkpointing, replication and sabotage tolerance to fasten and to make more
reliable executions that are carried over desktop grid resources. The usage of tech-
niques like these ones will be of ultimate importance for the wider deployment of

applications over desktop grids.

KEYWORDS: Fault tolerance, desktop grids, volunteer computing, checkpoint-

ing, scheduling, sabotage-tolerance.

Resumo Estendido

Introducao

E um facto sabido que uma vasta percentagem do poder computacional de com-
putadores pessoais acaba perdida. De facto, no &mbito desta dissertagcdo constatou-
se que a percentagem média de inactividade dos processadores de mais de centena
e meia de computadores de uma instituicdo académica era de 97,93%. Este valor
confirma a regra empirica dos 5/95%, regra essa que afirma que um CPU tem
uma taxa média de utiliza¢do de cerca 5%, sendo os restantes 95% desaproveita-
dos. Ironicamente, o constante aumento do poder computacional leva a que o
poder computacional desaproveitado aumente de ano para ano. O recente aparec-
imento de arquitecturas que integram vérios ntuicleos independentes (multi-cores)
num mesmo processador leva a que possam existir varios cores que, grande parte
do tempo, ndo estdo a ser usados pelo utilizador da médquina. Deste modo, perde-se
poder computacional, uma vez que recursos como memoria e CPU ndo utilizados

num dado instante ndo podem ser armazenados para posterior uso.

Se a maioria dos utilizadores de computadores pessoais apenas recorre a to-
talidade das capacidades da mdaquina por curtos periodos de tempos para suprir
necessidades pontuais, outros utilizadores estdo fortemente dependentes de eleva-
dos recursos computacionais para a execugdo de aplicacdes nas mais diversas dreas
do conhecimento, desde o cdlculo das propriedades de compostos quimicos, a con-
strucdo de imagens 3-D, a deteccdo de ondas graviticas, o experimentar de modelos
de propagacdo de doencas, ou para uma das muitas outras dreas do saber que estio
fortemente dependentes de poder computacional. Para estes utilizadores, todo o
poder computacional que possam usar é bem-vindo. Obviamente, essa classe de
utilizadores preferia ter acesso a recursos computacionais dedicados, mas esses ou

ndo existem ou nio estdo disponiveis devido a restri¢des or¢amentais.

O estudo de técnicas orientadas para o aproveitamento de recursos computa-
cionais ndo dedicados data dos finais da década de 80. A generaliza¢do do com-
putador pessoal e da Internet contribuiram ainda mais para o despontar de sistemas
distribuidos de larga escala orientados para o aproveitamento de recursos denom-
inados de voluntdrios. Esta designacdo advém do facto dos donos/responsdveis
destes recursos os disponibilizarem voluntariamente. Estes sistemas, também des-
ignados pelo termo anglo-saxdénico volunteer computing, foram popularizados pelo
seu uso em projectos de computagdo voluntdria tais como o distributed.net, o
SETI@home, o Folding@home, entre muitos outros. Na sequéncia do enorme
sucesso do projecto SETI@home, e cientes das dificuldades técnicas que sentiram
na cria¢do e manutencio do referido projecto, os seus promotores implementaram a
plataforma Berkeley Open Infrastructure for Network Computing (BOINC). Desta
forma, o BOINC foi desenvolvido com o intuito de tornar mais simples e flexivel
a instalacdo e manutengdo de um projecto de computagdo voluntaria. O BOINC é
hoje umas das principais plataformas para computac¢do voluntdria para ambientes
de larga escala, sendo empregue em cerca de trinta projectos publicos de com-
putacdo voluntéria tais como o Einstein @ home, 0 SIMAP @ home, o Rosetta@ home
e 0 SZTAKI Desktop Grid, entre outros. O XtremWeb € outro exemplo de plataforma
para aproveitamento de recursos ndo dedicados, embora esteja mais vocacionado
como plataforma para experimentacido de conceitos e técnicas relacionadas com o

desktop grid.

Apesar dos custos associados ao uso de recursos voluntarios serem reduzidos
relativamente ao poder computacional que pode ser alcangado, algumas limitagdes
restringem o seu uso. As limitagdes dos ambientes de computagdo voluntiria
relacionam-se com (1) a baixa prioridade de execugdo concedida as aplicagdes
externas, ¢ com (2) as assimetrias das redes de computadores que levam a que,
muitas vezes, duas ou mais miquinas ndo possam comunicar directamente entre
si. De facto, os recursos nao dedicados executam as aplicacdes externas com um
nivel de prioridade inferior ao empregue para as aplicacdes dos utilizadores inter-
activos, e, nalguns casos, as aplica¢des externas apenas sio executadas quando nao
existe uso interactivo dos recursos, isto €, quando nenhum utilizador estd a usar a
mdaquina. Nestes casos, a execucdo de uma aplicacdo externa é suspensa logo que
seja detectada utilizacdo interactiva da mdquina. Adicionalmente, um recurso pode
repentinamente ser desligado por um periodo de tempo indeterminado ou mesmo
por tempo infinito (por exemplo, o dono do recurso decidiu cessar a partilha do

mesmo). A conjugagdo destes dois factores — baixa prioridade no acesso aos re-

i

cursos e imprevisibilidade da disponibilidade dos recursos — leva a que os recursos
ndo dedicados apresentem elevada volatilidade, uma caracteristica a ponderar por
quem adapta as aplicacdes externas a ambientes ndo dedicados. A técnica habitual
para lidar com este tipo de situacdes € a da salvaguarda periddica do estado da apli-
cacdo para suporte persistente (checkpointing). Na sequéncia de uma interrupgao,
e logo que o recurso esteja de novo disponivel, a execucdo da aplicacdo reinicia-se
a partir do dltimo ponto de execugdo salvaguardado.

No que respeita a assimetria das comunicagdes, os mecanismos de firewalls e
de translagdo de enderecos (vulgo Network Address Translation, NAT) originam re-
des assimétricas, nas quais, as maquinas ndo podem comunicar directamente umas
com as outras, ou entdo, a comunicagdo até pode ser feita directamente, mas apenas
pode ocorrer num determinado sentido. E alids a assimetria nas comunicagdes que
leva a que os ambientes de computacdo desktop grids sejam baseados no modelo
de master-worker, no qual a iniciativa da comunicacio parte do lado do worker.
Outra limitacdo dos canais de comunicagdo relaciona-se com a largura de banda.
De facto, para além da heterogeneidade ao nivel da capacidade dos canais de co-
municagdo, com a existéncia de recursos com diferentes velocidades de acesso a
rede, existe ainda assimetria nas larguras de banda, com débitos de envio difer-
entes dos débitos de recep¢do. Adicionalmente, uma percentagem significativa de
maquinas estd limitada em termos de volume de trafego no acesso a Internet, ndo
podendo ultrapassar uma determinada quantidade de traifego mensal, sob pena do
trafego adicional ser fortemente taxado.

A par da volatilidade dos recursos, as limitagdes ao nivel das comunicagdes
condicionam o tipo de aplicacdes que pode ser eficientemente suportado pelos am-
bientes ndo dedicados de computagdo. De facto, mesmo se a existéncia de recursos
distribuidos permite a distribuicdo da aplicacdo por vdrias tarefas, as limitagdes re-
sultantes da elevada volatilidade dos recursos e da assimetria ao nivel das comuni-
cacdes obrigam a que essas tarefas sejam independentes, no sentido que a execucio
de uma qualquer tarefa ndo pode depender em nada da execucdo de outra tarefa.
Isto €, as tarefas de uma mesma aplicacdo t€m que ser auténomas no que respeita
a sua execucdo. Deste modo, torna-se dificil a execucdo de aplicacdes paralelas
ou de aplicacdes distribuidas cujas tarefas estejam fortemente acopladas, pela falta
de disponibilidade das mdquinas e pela dificuldade de estabelecer conectividade

directa entre os workers.

iii

Objectivos da Dissertacao

Esta dissertacdo visa alcancar os seguintes objectivos na drea da computacio

avancgada:

1. Estudo do nivel médio de uso dos recursos computacionais existentes em

laboratorios académicos;

2. Especificacdo de metodologias de escalonamento para aplicagées distribui-
das de elevado desempenho executadas em recursos nao dedicados de am-
bientes institucionais. Concretamente, procura-se diminuir o tempo de exe-
cucdo das aplicacdes, intervindo ao nivel do escalonamento das tarefas indi-

viduais com migracdes, replicagdes, e ainda com a partilha de checkpointing;

3. Adaptacdo dos mecanismos de partilha de checkpointing a ambientes de

larga escala ndo dedicados;

4. Extensdo do modelo tradicional de desktop grid por forma a optimizar a
partilha de dados de entrada e de checkpoints em ambientes institucionais e

em ambientes de larga escala;

5. Detecgdo precoce de erros através da validacdo de resultados intermédios

baseada na comparacao de ficheiros de checkpointing;

6. Apresentacdo de vdrias metodologias para incrementar o nimero de nodos
voluntariados para a computagdo bem como o seu nivel de contribuicio e

ainda minorar a ocorréncia de comportamentos maliciosos.

De seguida, descrevem-se os referidos objectivos, sendo apresentados os prin-

cipais resultados alcangados relativos a cada um deles.

Nivel de Uso dos Recursos Computacionais

Foi realizado um estudo no dmbito desta dissertagdo que abrangeu 169 com-
putadores pessoais de 11 laboratérios de informética de uma instituicdo académica.
Durante os 77 dias que durou a monitorizac¢do, foi observado um nivel médio de
inactividade de CPU de 97,93%. Este valor médio baixou para 94,24% aquando
da presenca de um utilizador interactivo e aumentou para 99,71% aquando da in-
existéncia de utilizador interactivo. Este tltimo valor indicia um consumo residual
de 0,3% de CPU quando a maquina nao estd a ser utilizada. Os elevados valores
de inactividade ilustram o grande potencial que pode constituir o aproveitamento

de recursos computacionais ndo dedicados.

v

No que respeita a memodria RAM, a taxa média de ocupacdo observada no
referido estudo foi de 58,94%, sendo de 67,53% aquando da presenca de utilizador
interactivo e de 54,81% na auséncia de uso interactivo. Importa notar que a inter-
pretacdo das taxas médias de ocupacdo deve ser feita com cuidado, pois a variacio
da quantidade de memdria entre as maquinas era aprecidvel, existindo maquinas
com 128 MB, outras com 256 MB e outras com 512 MB. Ao nivel da utilizacdo da
rede, denotou-se um padrdo de uso cliente-servidor, com as miquinas estudadas a
desempenhar o papel de cliente. De facto, em média, o volume de trafego recebido
por méquina era vdrias vezes superior ao volume de trafego enviado.

Os valores observados no citado estudo de monitorizagdo confirmam o sobre-
dimensionamento dos computadores pessoais em geral e dos CPUs em particular
para a maioria das actividades desenvolvidas em computadores, nomeadamente o
uso de ferramentas apelidadas de produtividade (processador de texto, folha de
célculo, etc.) e de utilitdrios de comunicagdo (correio electrénico, WEB, etc.).
Assim, essas mdquinas apresentam um elevado potencial que pode ser aproveitado

para a execucgdo de aplicacdes de computacao intensiva.

Escalonamento Orientado para a Execucao mais Rapida das Aplicacoes

Mesmo que um nimero significativo de aplicacdes ndo possa ser adaptado ao
modelo da tarefa independente, e portanto nio sdo passiveis de serem executadas
em ambientes desktop grids, o nimero de aplicagdes apropriadas ou adaptdveis a
este paradigma € largamente suficiente para justificar o uso em larga escala deste
tipo de plataformas. Prova disso é o crescente niimero de projectos assentes em
plataformas de computagdo voluntéria.

Uma particularidade deste tipo de plataforma € o facto das politicas de escalon-
amento de tarefas privilegiarem a taxa global de execugdo de tarefas (throughput)
em detrimento da velocidade individual de cada aplicacdo. Deste modo, embora
o sistema seja eficiente quando analisado na perspectiva da taxa global de exe-
cucdo de tarefas, ndo o é quando visto na perspectiva de um utilizador individual
que necessita que a sua aplicacao seja executada o mais rapidamente possivel (por
exemplo, para que possa analisar os resultados da execucdo corrente e planear as
execucdes seguintes de acordo com os resultados obtidos). Um exemplo cldssico
desta situagdo é o sindroma da iiltima tarefa, no qual o término de uma aplicacio
composta por multiplas tarefas independentes acaba por ser retardado pelo facto
da tdltima tarefa estar a ser executada numa maquina lenta ou instdvel, obrigando
a muitas reinicializacdes da tarefa que executa. Nesta dissertacdo exploram-se

metodologias de escalonamento que, combinadas com os indispensdveis mecan-

ismos de checkpointing nas plataformas de aproveitamento de recursos nao dedi-
cados, permitem tornar mais célere a execucdo de aplicagdes, seja através de mi-
gracdo e replicacdo de tarefas, ou mediante modelos que fornecem uma previsio
a curto prazo sobre a disponibilidade dos recursos computacionais. Com essa fi-
nalidade, analisam-se varias metodologias de escalonamento assentes em mecan-
ismos de salvaguarda que privilegiem a execucdo rdpida de aplicacdes individuais,
mesmo que isso ocorra em detrimento da taxa global de execugdo de tarefas. Conc-

retamente, as metodologias de escalonamento analisadas e/ou propostas foram:

e FCFS (First Come First Served): metodologia que se limita a atribuir ao
computador cliente uma tarefa cujos requisitos sejam apropriados 2 maquina.
Esta metodologia é tradicionalmente empregue nos sistemas de high through-
put computing. De modo a adaptar o escalonamento FCFS a prossecugdo de
resultados orientados para a execucdo rdpida de aplicacdes, foi empregue a
partilha de ficheiros de salvaguarda, sendo os mesmos guardados num servi-
dor. Esta metodologia diverge do modelo tradicional em que os ficheiros de
salvaguarda de uma tarefa sdo mantidos numa s6 maquina e consequente-
mente sdo privados 2 mdquina. Note-se que as restantes metodologias sdo

variantes da metodologia FCFS;

o FCFS-AT (First Come First Served with Adaptive Timeout): baseada na
metodologia FCFS, o escalonamento FCFS-AT define, aquando da atribui¢do
de tarefa a uma dada maquina requerente, um tempo maximo de execucao.
Esse tempo méaximo € determinado em fungdo da velocidade relativa da
madquina cliente encarregue de executar a tarefa. Caso a maquina cliente ul-
trapasse o tempo de execucao definido, o supervisor considera a tarefa como
perdida e volta a disponibilizd-la para novo escalonamento;

e FCFS-TR (FCFS with Transfer Replication): o escalonamento FCFS-TR in-
troduz a capacidade de replicacdo de uma tarefa. Concretamente, no escalon-
amento FCFS-TR, o supervisor pode proceder a replicacdo da execucdo de
uma tarefa, atribuindo a uma maquina requerente uma tarefa que ja se en-
contre em execucdo numa ou mais maquinas. Essa replicacdo ocorre ape-
nas quando ji ndo restam tarefas por atribuir e existam mdquinas livres,
ou seja, quando a execugdo da aplicacdo se encaminha para o seu término.
Em ambientes com armazenamento de ficheiros de salvaguarda num servi-
dor, a criacdo da réplica de uma tarefa ¢ feita a partir da tltima salvaguarda

disponivel, reaproveitando-se deste modo a computacio salvaguardada. Nos

vi

casos em que haja replicagdo para uma maquina mais rapida do que aquela
que originalmente acolheu a tarefa, hd uma execucao mais ripida da tarefa,
factor importante para um mais célere término da aplicagdo. Mesmo que
a replicagdo seja feita para uma maquina de igual ou menor desempenho
do que a original, a replicacdo aumenta a capacidade de tolerincia a falhas,
permitindo reduzir ou mesmo mascarar 0os custos caso ocorra interrup¢ao na

execucdo de uma das instancias da tarefa.

FCFS-TR-DMD (FCFS with Task Replication on Demand): a metodolo-
gia FCFS-TR-DMD acrescenta ao escalonamento FCFS-TR a capacidade
de activar o mecanismo de salvaguarda a pedido. Como o nome sugere,
este mecanismo permite que o escalonador requisite uma operacao de salva-
guarda a uma maquina que se encontre a processar uma determinada tarefa.
Deste modo, torna-se possivel replicar uma tarefa com um estado actual-

izado, maximizando o reaproveitamento de computagao;

FCFS-TR-DMD-PRDCT (FCFS with Task Replication on Demand with Pre-
diction): em relacdo a metodologia anterior, este escalonamento introduz o
uso de metodologias para a previsao da disponibilidade de curto prazo dos re-
cursos computacionais. Assim, caso a previsao aponte que uma maquina tem
elevada probabilidade de ser interrompida num futuro préximo, a metodolo-
gia potencia a replicacao da tarefa que possa estar em execucao nessa maquina.
Similarmente, caso uma mdéquina requerente de tarefa apresente uma ele-
vada probabilidade de ser interrompida, o escalonador poderd atribuir-lhe
uma funcdo de menor importancia, por exemplo, a execucdo da réplica de
uma tarefa. No caso do FCFS-TR-DMD-PRDCT foi seguida a metodologia

de previsao Sequential Minimal Optimization.

A respeito das metodologias de escalonamento acima expostas, importa notar

que se assume um escalonador centralizado e com um conhecimento médio do

estado do sistema. Por conhecimento médio entende-se que o escalonador recebe

periodicamente (por exemplo, todos os n» minutos) as actualizagdes referentes ao

estado das maquinas, nomeadamente sobre a disponibilidade ou ndo das mesmas

para a execucgdo de tarefas externas.

As metodologias foram simuladas através do DGSchedSim, um simulador de-

senvolvido para o efeito. A designacdo tempo total de execucdo corresponde ao

intervalo de tempo que medeia desde a submiss@o da primeira tarefa até ao término

da tdltima tarefa. As simulacdes foram realizadas com recurso a técnica de trace-

vii

driven tendo sido empregues os registos de actividade das maquinas capturados
num ambiente real pela ferramenta WindowsDDC. Os parametros considerados
para as simulagdes foram o nimero de tarefas por aplicacdo, o tamanho individual
das tarefas, o nimero, a capacidade e disponibilidade computacional das maquinas,
a frequéncia de checkpointing por tarefa e ainda o periodo de execucao (dias dteis
ou fim-de-semana).

Os principais resultados referentes as metodologias de escalonamento acima

apresentadas foram:

e A partilha de ficheiros de checkpointing origina melhorias de desempenho
significativas com redug@o dos tempos de execucdo que podem ir até aos
60%;

e Para aplicacdes de curta duracdo (até uma hora), a frequéncia de checkpoint-
ing tem pouca influéncia. Este facto sugere a viabilidade da execucgdo de
aplicacOes de muito curta duragdo sem que sejam empregues mecanismos

de checkpointing nos ambientes computacionais considerados;

e A replicacdo de tarefas pode trazer proveitos importantes ao nivel do desem-
penho, especialmente em ambientes heterogéneos onde coexistam maquinas
com diferentes velocidades computacionais. De facto, o replicar de uma
tarefa para uma maquina mais rdpida do que a original possibilita uma ex-
ecucdo mais rapida. Adicionalmente, o mecanismo de replicacdo melhora

significativamente o desempenho se acoplado com checkpointing a pedido.

e A previsdo da disponibilidade dos recursos computacionais possibilita al-
gum ganho ao nivel do desempenho, embora apenas em aplicacdes de longa
duracdo (superior a quatro horas), revelando-se inapropriado para aplicagdes

de curta duragdo;

e A hora do dia e o dia da semana sio dois factores a ter em conta no escalona-
mento de aplicagdes em recursos nao dedicados. De facto, os recursos com-
putacionais considerados exibem um padrao regular de uso interactivo, com
0s recursos a encontrarem-se livres durante os periodos nocturnos e espe-
cialmente aos fins-de-semana. Daf resulta que para os fins-de-semana, uma
simples metodologia baseada em replicacdo como a FCFS-TR seja suficiente
para a obten¢do de um bom desempenho. Similarmente, a execucdo de tare-

fas medianamente longas (até dois dias) e que ndo possuam suporte para sal-

viii

vaguarda periddica do respectivo estado, deve realizar-se aos fins-de-semana

de modo a maximizar a probabilidade de término.

Mecanismos de Salvaguarda para Ambientes de Larga Escala

Para além das metodologias que favorecem a execucdo rdpida em ambientes
de area local, esta dissertacdo foca ainda os sistemas de aproveitamento de re-
cursos em larga escala, sempre no ambito da acoplagem com os mecanismos de
salvaguarda. Concretamente, € proposto e simulado o sistema chkpt2chkpt, no
qual é empregue uma distributed hash table (DHT) para vigiar o estado de ex-
ecucdo de cada tarefa e a localizacdo (em termos de mdaquina) dos ficheiros de
salvaguarda que sdo periodicamente guardados em suporte persistente numa das
méquinas cujo dono/responsavel disponibiliza os seus recursos para o efeito. E
associada a cada instancia da tarefa! um nodo de monitorizagio designado de
guardian, cujo propdsito é o de manter na DHT uma entrada referente ao estado
corrente de cada uma das instancias da tarefa. E ainda mantida na DHT a localiza-
¢do dos ficheiros de salvaguarda correspondentes aos instantes #1,#, ..., ty. Sempre
que é detectada uma tarefa interrompida — a tarefa ndo actualiza na DHT o seu
estado de execucdo por um periodo de tempo superior ao predeterminado — o sis-
tema lanca novamente a tarefa, sendo essa re-execuco iniciada a partir do dltimo
estado salvaguardado, caso esteja disponivel. Para tal, é efectuada uma consulta a
DHT tendo em conta o ultimo ponto ¢, de salvaguarda que foi registado. Se este
tltimo ponto 7, ndo se encontrar disponivel, por exemplo porque a mdquina que
alberga os ficheiros de checkpointing pretendidos ndo estar disponivel, o sistema
procura o ponto imediatamente anterior, isto €, f,_ € assim sucessivamente, até
que seja encontrado um ponto de checkpointing disponivel. Caso nenhum ponto de
checkpointing esteja disponivel, a tarefa € reiniciada. A simulacdo da metodologia
chkpt2chkpt revelou que o sistema se torna rentdvel a partir de uma taxa de falha
de 5%. De facto, acima desse patamar, os beneficios do recurso aos estados salva-
guardados para retomar execugdes interrompidas tornam-se superiores aos custos

incorridos na manuten¢do da DHT e na replicac@o dos ficheiros de checkpointing.

10 sistema recorre a replicacdo de tarefas para validar os resultados, comparando no final das
execugdes, as saidas produzidas por cada uma das instancias. Deste modo, torna-se necessdrio a
execucgdo de vdrias instancias de uma mesma tarefa para que possam ser validados os resultados.

ix

Exploracao de Novos Paradigmas de Cooperacao entre Tarefas

Um factor pouco explorado dos ambientes de aproveitamento de recursos com-
putacionais nio dedicados prende-se com a capacidade de vdrias mdquinas coop-
erarem na execucao de um conjunto de tarefas. Para este efeito, os recursos sdo
vistos numa perspectiva federada, sendo analisados dois tipos de federagdes: (1)
ambientes institucionais e (2) ambientes peer-to-peer.

O primeiro tipo de ambiente contempla os recursos de uma mesma institui¢ao,
existentes numa mesma zona geografica, de tal modo que os recursos se encontrem
ligados por tecnologia de rede local e sob o controlo administrativo de uma sé enti-
dade que por si s6 pode decidir a forma com os recursos sdo postos a disposic¢do de
ambientes de execucdo ndo dedicados. Sdo exemplos desta configuracdo, campus
académicos, parques informaticos de empresas, etc. Importa notar que os ciclos de
CPU excedentdrios dos ambientes institucionais sao usualmente disponibilizados
para utilizadores da prépria institui¢do e nao para o exterior.

Nesta dissertag@o, a metodologia seguida de coopera¢do em ambientes institu-
cionais assenta na existéncia de um servico de coordenagdo de partilha, o procu-
rador local (LPS, seguindo a designacdo anglo-saxénica de Local Proxy Server).
O LPS coordena os recursos e age como ponte para o exterior, explorando pos-
siveis simbioses (e.g., partilha de ficheiros de dados necessarios a computacio das
tarefas, partilha de tarefas, etc.), entre as maquinas integrantes do ambiente insti-
tucional.

Por sua vez, os ambientes peer-to-peer sdo formados por recursos ndo rela-
cionados entre si, em que os donos/responsaveis dos recursos muito possivelmente
ndo se conhecem, e sobre os quais ndo existe nenhuma autoridade central. Um
exemplo de ambiente peer-to-peer é o formado pelos recursos voluntariados para
determinado projecto (e.g. SETI@home, Folding@home) e que possuem determi-
nadas caracteristicas que tornam a sua associagao viavel (por exemplo, as maquinas
possuem ligacdes de rede bastante rapidas entre elas e sdo publicamente enderecdveis
do exterior). Pela auséncia de controlo centralizado, os ambientes peer-to-peer
sdo bastante mais voldteis do que os ambientes institucionais. Adicionalmente,
a explorag¢do de ambientes peer-to-peer requer protec¢do contra comportamentos
gananciosos e/ou maliciosos, comportamentos esses que podem surgir tanto por

parte dos donos dos recursos como dos utilizadores?.

ZNeste caso, utilizador designa o individuo que pretende ver as suas aplicacdes executadas e que
eventualmente pode maldosamente querer causar prejuizos aos recursos voluntariados.

Niveis de cooperaciao
Como complemento ao modelo tradicional de tarefas independentes, nesta dis-
sertacdo sdo propostos os seguintes niveis de cooperacdo entre as tarefas de uma

mesma aplicacao:

- partilha dos dados de entrada;
- partilha dos ficheiros de checkpointing;

- comunicagdo entre nodos;

De seguida, cada um dos niveis de cooperacdo € descrito.

Partilha dos dados de entrada

Os dados de entrada de uma tarefa correspondem a informag@o necessaria a
computagdo da tarefa, sendo que muitas vezes a propria computacao incide sobre
esses dados (aplicagdo de determinado(s) algoritmo(s) aos dados, etc.). O tamanho
dos dados de entrada depende nao s6 do problema que a aplicacdo pretende re-
solver, como da divisdo de trabalho efectuados.

A partilha de dados de entrada consiste no reaproveitamento de ficheiros de
dados de entrada entre méquinas afectas a um mesmo projecto. Deste modo,
uma aplicag@o pode receber os dados de entrada de que necessita a partir de outra
maquina que ja os tenha e ndo apenas a partir da autoridade central (parte supervi-
sora).

Para que a partilha de dados de entrada faga sentido, é necessdrio que os mes-
mos ficheiros de entrada sejam empregues por vdrias tarefas diferentes, uma car-
acteristica totalmente dependente da aplicacdo. Saliente-se que ndo é conveniente
considerar a partilha de dados de entrada entre instancias de uma mesma tarefa,
pois isso levaria a que os recursos executantes das vérias instdncias passassem a
ter conhecimento uns dos outros. Tal situagdo potenciaria o conluio, em que uma
maioria de executores pudessem maldosamente combinar entre si a apresentacio
do mesmo resultado falsificado que, por via da maioria, iria ser aceite como cor-
recto pela entidade supervisora.

Por esses dados serem apenas de leitura, a partilha dos mesmos revela-se relati-
vamente fécil, sendo somente necessdrio verificar que os dados de entrada obtidos
via terceiros sdo copia conforme aos dados originais, prevenindo desta forma ndo
s6 erros de transmissdo mas também adulteragdes maliciosas. Esta verificagdo

pode ser feita com recursos a mecanismos de certificagdo do conteddo de ficheiros

xi

tais como os algoritmos de hash Message Digest 5 (MD5) e Secure Hash Algo-
rithm (SHA), sendo calculado para a cépia recebida o cédigo de certificacio que é

comparado com o cédigo disponibilizado pela parte servidora.

Partilha dos ficheiros de checkpointing

A partilha dos ficheiros de checkpointing visa permitir a migracdo de tarefas
entre maquinas, por forma a que uma tarefa interrompida numa méiquina possa ser
continuada a partir do seu ultimo ponto salvaguardado numa outra maquina. Desta
forma, na interrupcdo de uma tarefa, apenas é perdida a computacio efectuada
desde o ultimo ponto de checkpointing até ao instante em que a tarefa foi efecti-
vamente interrompida. Isto permite nio s6 o retomar da execugdo de uma tarefa
interrompida, como possibilita a migra¢do e/ou replicagdo preventiva de tarefas,
através da qual uma tarefa é migrada e/ou replicada para uma méaquina mais rdpida
ou mais confidvel (isto é, com um menor historial de falhas) com o objectivo de
conseguir uma execucdo mais rdpida.

A partilha dos ficheiros de checkpointing requer que os mesmos estejam aces-
siveis mesmo quando a mdquina na qual eles foram criados esteja indisponivel
(por exemplo, desligada). Deste modo, os ficheiros de checkpointing deixam de ser
privados, havendo a necessidade de recorrer a replicacdo dos referidos ficheiros em
tempo oportuno, idealmente, logo apds serem criados, sendo as réplicas guardadas
num servidor local (esta solugdo é apenas vidvel num ambiente institucional) ou
noutras maquinas (ambiente peer-to-peer).

Similarmente ao que sucede com a partilha de dados de entrada, é necessério
validar a integridade de um ficheiro de salvaguarda, pois este pode ser corrompido,
seja acidental ou maldosamente. Contudo, ao invés dos dados de entrada que sdao
produzidos exclusivamente pela parte servidora do sistema que deste modo man-
tém pleno controlo sobre os mesmos, podendo disponibilizar cédigos de verifi-
cacdo (MDS5, SHA, etc.), os ficheiros de salvaguarda sdo produzidos pelas maquinas
executantes, e portanto a verificacdo de integridade é mais complexa. De facto, tal
verificagdo requer, ora a confianga na entidade que produziu o ficheiro de salva-
guarda, ora a validacdo por execucdo redundante, na qual vdrias miquinas inde-
pendentes executam a mesma tarefa sendo o resultado final validado mediante a

comparagdo entre as vdrias maquinas executantes.

Comunicacio entre nodos
A execucdo de aplicacdes compostas por tarefas dependentes em ambientes
distribuidos requer apropriados canais de comunicac¢do, por forma a que haja co-

municacao e sincronizacdo entre as tarefas dependentes.

Xii

A comunicagio pode realizar-se de forma indirecta, no qual dois ou mais nodos
comunicam entre si recorrendo ao paradigma de memoria partilhada (vulgo fuple
space). Assim, o nodo emissor deposita a mensagem na memoria partilhada sobre
a forma de um tuplo, identificado por uma chave tinica. Este tuplo € posteriormente
acedido por outro nodo que apresente a mesma chave. A metodologia é apelidade
de indirecta porque nao hd lugar a comunicagdo directa entre as entidades comuni-

cantes.

Na comunicacdo directa as entidades comunicantes trocam mensagens entre
si. Contudo, pode existir uma entidade intermédia encarregue de encaminhar as
mensagens entre origem e destino, por forma a ultrapassar as barreiras criadas
pelos sistemas de Network Address Translation (NAT).

Validacao de Resultados através da Comparacao de checkpoints

Os esquemas tradicionais de computacio voluntdria recorrem a redundancia
para a validacdo de resultados. Concretamente, a mesma tarefa é escalonada por
N méquinas independentes (N € no minimo dois), sendo que quando todas as ex-
ecugdes estiverem completas, os resultados sdo comparados, sendo descartados
aqueles que estejam em minoria. Por exemplo, num esquema de redundancia
tripla, N = 3, se existirem dois resultados idénticos e um terceiro diferente, en-
tao este dltimo é considerado invdlido e consequentemente descartado. Embora a
abordagem da execucdo redundante seja relativamente simples de implementar, a
deteccdo de resultados incorrectos apenas ocorre, na melhor perspectiva, quando
existir j4 uma maioria de execucdes completadas, uma solucio que se revela insat-
isfatéria quando as execucdes sdo muito demoradas (vdrias horas, possivelmente

dias) e/ou se pretende uma rapida obtencao de resultados devidamente validados.

Nesta dissertacdo € proposto e simulado um esquema de validagao intermédio
de resultados aproveitando os j4 existentes mecanismos de salvaguarda assentes
em checkpointing. Concretamente, sdo empregues os ficheiros de salvaguarda
de pontos de execucdo intermédios (por exemplo, apds o primeiro ter¢o de exe-
cucdo) das execugdes redundantes, sendo calculada, via hashing, a assinatura dos
ficheiros de salvaguarda de cada ponto de execucdo intermédio. As assinaturas re-
sultantes de um ponto de execucgdo equivalente das vdrias execucdes redundantes
de uma mesma tarefa sdo comparadas, sendo que assinaturas divergentes indicam
que pelo menos uma das execucdes esta incorrecta. Deste modo, e relativamente
a metodologia tradicional que apenas detecta erros através da comparagdo dos re-

sultados finais, a comparacdo de pontos de salvaguarda intermédios permite uma

Xiii

deteccdo mais precoce de execugdes erradas. Isto verifica-se em todos os casos
excepto se o erro ocorrer na tltima parte da computacio. Neste caso, a detecgcdo do
erro apenas é possivel no final da execu¢do quando sdo comparados os resultados

finais.

A metodologia proposta permite ndo s6 uma deteccio e reac¢do mais rdpida
a erros, mas também possibilita que o re-escalonamento de uma execugdo redun-
dante que vise substituir uma execugdo identificada num ponto intermédio como
errada, possa ser iniciada a partir do dltimo ponto de execucao intermédio que foi
validado pelas vérias execugdes redundantes. Deste modo, caso o tltimo estado
salvaguardado esteja disponivel, a nova execu¢do pode ser retomada do referido
ponto intermédio, permitindo uma execugdo mais célere. De salientar que a trans-
feréncia de ficheiros de salvaguarda requer a existéncia de comunicacao directa ou
indirecta entre os varios nodos executantes por forma a que o referido estado possa

ser transferido para o novo nodo executante.

Reputaciao e Confiabilidade em Ambientes de Computaciao Voluntaria

Um dos problemas actuais da computacdo em ambientes ndo dedicados de
larga escala relaciona-se com a necessidade de cativar pessoas que voluntariem os
seus recursos computacionais. Se bem que alguns utilizadores sejam atraidos pelo
espirito pioneiro e cientifico do(s) projecto(s) a que se decidam associar, outros
voluntariam os seus recursos meramente pela perspectiva de competicao, dado que
muitos projectos avaliam o desempenho dos seus participantes recompensando-
os com créditos virtuais, créditos esses que sdo publicitados e que dao origem a
classificagdes. Contudo, apesar da existéncia de um sistema de classificacOes e
recompensa elevar o entusiasmo de certos participantes, também induz a compor-
tamentos desonestos, em que certos utilizadores ndo hesitam em falsificar resul-
tados ou em optimizar o préprio bindrio das tarefas para incrementar o nimero
de tarefas que processam por unidade de tempo, tudo numa perspectiva de rece-
ber mais créditos e consequentemente alcancarem uma melhor classificagdo. Este
comportamento ¢ também facilitado pela inexisténcia de identificacio fidedigna de
um voluntario, dado o acesso a um projecto apenas requerer um endereco valido de
correio electrénico, endereco esse que pode ser facilmente criado de forma pratica-
mente anénima na Internet. Se bem que os projectos possuam mecanismos de val-
idacdo de resultados, muitas vezes baseada em execugdo redundante, a existéncia
de tais comportamentos em nada beneficia a imagem do projecto, podendo mesmo

levar a desisténcia de voluntdrios desgostosos com situacdes menos correctas.

X1V

De modo a incentivar os voluntarios a recrutarem outros voluntdrios com ele-
vada produtividade, nesta dissertacdo propde-se um esquema assente em convites
para a disponibiliza¢do voluntdria de recursos a projectos de computagdo de larga
escala. Neste esquema, um voluntirio que ja tenha alcancado um determinado
patamar de qualidade no projecto (este patamar é atingido pela execugcdo com
sucesso de um nimero minimo de tarefas) recebe convites que pode enderecar
a aspirantes a voluntdrios. Por forma a incentivar a distribui¢do de convites, o uti-
lizador que convida recebe um bénus em créditos correspondente a determinada
percentagem dos créditos ganhos néo s6 pelo utilizador que integrou o sistema via
convite, mas também pelos convidados do convidado e assim sucessivamente até
a geracdo N. N é um pardmetro configurdvel do sistema. Se N = 1, entdo apenas
os convidados directos geram bénus. Contudo, para evitar que sejam convidados
elementos de menos valia, os resultados errados submetidos por convidados (ou
descendentes de convidados) penalizam o elemento que convidou. Deste modo,
incentiva-se ao convite de utilizadores de qualidade, que sdo eles préprios incenti-

vados a recrutarem elementos de qualidade e assim sucessivamente.

Contribuicoes da Dissertacao

As principais contribui¢des desta dissertagdo sdo:

- Desenvolvimento da plataforma WindowsDDC que possibilita a execucio
organizada de programas apelidados de programas sonda em conjuntos de
madaquinas nio dedicadas Windows, sem que para tal seja necessdria a insta-

lacdo de qualquer software nos sistemas remotos;

- Caracterizacdo do nivel de uso dos recursos computacionais de uma institu-
icdo académica, com constatagcdo da existéncia de uma taxa de inactividade
de CPU a rondar os 98%, confirmando a regra empirica dos 5% de uso, 95%

de inactividade;

- Desenvolvimento do simulador DGSchedSim orientado para o estudo das
politicas de escalonamento de aplicagdes distribuidas constituidas por tare-
fas independentes e executadas em ambientes de computacio desktop grids
ndo dedicados. As politicas de escalonamento sdo assentes na migracao e

replicacdo de tarefas baseado na partilha de ficheiros de checkpointing;

XV

- Proposta, simulagao e anélise de esquemas de checkpointing empregues jun-
tamente com vdrias metodologias de escalonamento na execucdo de apli-

cacdes distribuidas em ambientes desktop grid de 4rea local e de drea alargada;

- Proposta para a extensdo do modelo usualmente empregue na computacio
em recursos ndo dedicados. A extensdo consiste no estabelecimento de
uma rede peer-to-peer hierarquizada em nodos e super nodos, organizados
através de uma tabela de hash distribuida (DHT, Distributed Hash Table) ou,
alternativamente, através de passagem de mensagens num ambiente peer-to-
peer. O modelo procura melhorar o uso de mecanismos como o caching de

dados de entrada e a partilha de checkpoints;

- Proposta, modelacdo e andlise de uma metodologia de validag¢do de resul-
tados parciais, baseada na comparagao de ficheiros de checkpointing prove-
nientes de execugdes redundantes. O objectivo € a deteccdo de falhas logo

que essas ocorram, procurando diminuir o efeito nefasto das mesmas;

- Proposta e modelacdo de um sistema baseado em convites para o recruta-
mento de utilizadores que voluntariem os seus recursos computacionais para
aexecucao de tarefas em projectos de computagdo publica. De modo a estim-
ular a angariac@o de voluntdrios de qualidade — voluntdrios fidedignos que
se esforcem por contribuir positivamente para o projecto — os angariadores
recebem um bénus indexado ao contributo (medido em créditos) dos volun-
tarios que convidaram com éxito. Contudo, de modo a evitar a angariacio de
voluntdrios ndo fidedignos, os erros de computacdo induzem penalizagdes
ndo s6 nos donos/responsdveis pelos recursos, mas também nos individuos

que angariaram os recursos que produziram resultados erréneos.

PALAVRAS-CHAVE: tolerancia a falhas, desktop grid, computacéo em larga

escala, escalonamento, confiabilidade, tolerancia a sabotagem.

Acknowledgments

This journey was only possible because many people helped me along
the way. This section is an attempt to express my gratitude to them.

First of all, I would like to thank my supervisor, Professor Luis Moura
Silva from the University of Coimbra. His never ending energy, though
questions and dynamism were an inspiration to me. Moreover, his persis-
tence in creating research opportunities within CoreGRID was important
for my work. A word of praise also for Professor Jodo Gabriel Silva whose
smart questions and comments in Athens provided extra motivation for
this work.

A big thanks goes to Paulo Marques who was always available to an-
swer my questions or to narrate an interesting episode about his many tech-
nical activities. I was also fortunate to collaborate with Filipe "Mac" Araujo,
who had the strength for reviewing some chapters of this thesis. I would
like also to thank (in no particular order), Artur Andrzejak (ZIB), Derrick
Kondo (INRIA) and Bruno Sousa (CISUC) with whom I had the pleasure
to cooperate with.

I cannot forget the friendship of Bruno ".Net" Cabral, with whom I
shared many good (and healthy) laughs, and of José "Magic" Feiteirinha

who, fortunately, is a much better programmer than magician.

I am grateful to the Engineering Informatics Department, the School of
Technology of Management of Leiria and the Polytechnic Institute of Leiria
for the conditions that allowed me to focus on research. My acknowledg-
ments go not only to the institutions but also to the great people that work
there — they are too many to cite them. Likewise, I would like to thank the
Software and Systems Engineering Group, CISUC, the European network
CoreGRID and PRODEP for their support.

Last but not least, I would like to thank all the anonymous people that
are close to me, and who, in their own particular way, contributed to the
success of this long journey. To all of them: Obrigado e Saiide!

Leiria, 2008
Patricio Rodrigues Domingues

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3

1.4

Motivation L
Contributions
Organization of the Dissertation
131 ReadingMap
PublicationRecord

2 Desktop Grids

2.1
2.2

2.3

24

25
2.6

Motivation for Desktop Grids
Characterization of Desktop Grids
221 Generic Nomenclature
Strengths and Limitations of Desktop Grids
231 Strengths.
23.2 Limitations
Components of a Desktop Grid
241 Desktop Computers

242 Communication Networks
2.43 Middleware for Desktop Grid
Types of Desktop Grids
Major Desktop Grid Middleware
261 Condor.
262 BOINC

vii

x1

0 N W B~ o=

263 XtremWeb

264 GridMP
2.6.5 DP2P-based Architectures
27 SUMMATIY o oo

Resource Usage in Desktop Grids

3.1 Introduction
3.2 The WindowsDDC Framework
3.2.1 Experiments and iterations
3.2.2 Remote Execution
3.2.3 Post-collectingcode
3.3 Methodology and Monitored Metrics
3.3.1 Methodology
3.3.2 Monitored Metrics
34 Experiment.
341 Computing Environment
3.4.2 Settings and limitations
35 Results
3.5.1 Machines Availability
3.5.2 Stability of Machines
353 Group Stability
354 UserSessions
3.55 Global ResourceUsage
35.6 Weekly Analysis
3.5.7 Equivalenceratio
3.6 RelatedWork
3.7 Summary and Discussion

Fault-Tolerant Scheduling

41 Introduction
41.1 Fault Tolerance and Checkpointing
41.2 Institutional Desktop Grids
41.3 Bag-of-tasks Applications

414 Turnaround Time of Bag-of-Tasks Applications
42 Scheduling Policies
421 Scheduler Knowledge
422 FCFS

i

49
49
50
52
55
56
57
57
57
59
59
60
64
66
68
70
72
73
76
78
79
82

423 FCFS-AT

424 FCFS-TR
425 FCFS-TR-DMD
426 FCFS-PRDCT-DMD
43 Segmented Execution with Shared Checkpoints
43.1 Example of a segmented execution
44 The DGSchedSim Simulator
441 Requirements
442 Input
443 Output o o
45 Summary

Evaluation of Fault-Tolerant Scheduling

51 Computing Environment.
511 Machines.
52 Trace e e
5.2.1 Characterization of the Trace
52.2 CPUIdle Threshold
53 MainResults
5.3.1 Ideal ExecutionTime
5.3.2 Simulated Tasks.
54 PresentationofResults
5.4.1 Shared versus Private Checkpointing
5.4.2 Shared-based Policies
55 RelatedWork,
5.6 Summary and Discussion

Sharing Checkpoints over Wide-Scale Desktop Grids

6.1 Introduction
6.2 Motivation o
63 Overview
6.4 Description of chkpt2chkpt
6.41 BasicComponents
642 DProcessingaTask
6.4.3 Starting and ResumingaTask
6.4.4 Separation of Processing and Storage
6.4.5 Managing the Checkpoints

il

6.5 Garbage Collection 141

6.6 Evaluation 141
6.7 Related Work 144
6.8 Summary 147

Desktop Grid Topologies for Sharing Input Data and Checkpoints149

71 Introduction L 149
7.2 Levelsof Cooperation 150
7.2.1 Assessing the Benefits of Cooperation 152
7.3 Federating Institutional Desktop Grids 155
731 Overview 156
7.3.2 FunctionsoftheLPS 157
74 Desktop Grids for Unrelated Peers 158
74.1 A Model for Grouping Unrelated Peers 159
742 Costs of Replicating Checkpoints 169
75 RelatedWork 171
76 Summary 175
Sabotage Tolerance through Comparisons of Checkpoints 177
81 Introduction 177
8.2 Results Validation Techniques 180
821 Majority Voting 180
822 Spotchecking 182
8.2.3 Credibility-based Validation. 183
8.3 Assumptions and Definitions 184
8.4 Comparison of Equivalent Checkpoint Digests 185
8.4.1 Reducing the Time to Detect an Error 186
8.4.2 Theoretical Analysis 187
8.5 Checkpoint-based Task Replication 190
8.6 ExperimentalResults 192
87 RelatedWork 194
88 Summary 195
Reputation and Trust Management in Volunteer Computing 197
91 Introduction 198
9.2 TheProblem of Identity 198
9.3 ThelInvitationSystem 200

v

9.3.1 Overview e 201

932 InvitationCards. 204

9.3.3 Relationship Threshold Distance 204

9.3.4 Bootstrapping the Invitation System 206

9.3.5 Management Overhead 206

9.3.6 Collusion Avoidance 206

9.3.7 PreventingMisuse 207

9.4 Relationship Between Inviter-Invitees 208
9.4.1 Theoretical Analysis 208

9.5 Sharing Reputation Across Volunteer Projects 213
9.5.1 Implementation 215

9.6 RelatedWork 215
97 Summary 217

10 Conclusion and Future Work 219
10.1 Conclusions 219
10.2 Main Contributions 221
10.3 FutureWork 0L 222
Bibliography 227

vi

List of Figures

1.1

2.1
2.2
23
24
2.5

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1

42 Example of a DGSchedSim’s graphical output.

51

ReadingMap.

Distribution of activehosts.
Distribution of hosts per CPU architecture in SETI@home . .
Distribution of Machines per OS in SETI@home
Generic representation of BOINC.
BOINC's client-side components.

Overview of WindowsDDC architecture.
Machines sorted by their relative computing power.
Interactive sessions samples grouped by occurrence.
Count of powered on machines.
Machines” uptime and availability.
Average uptime per powercycle.
Stability of machines per classroom.
Count of stability periods over N machines.
Distribution of the duration of user-sessions.
Average CPUidleness.
Average CPU idleness after bootup.
Sum of free memory of the machines.
Cumulated free disk space of the machines.
Weekly distribution of powered on machines

Weekly distribution of free memory and network traffic.

Cluster equivalenceratio.

Optimal segmented execution of 5 tasks over 3 machines. . .

Count of accessible machines.

vii

19
19
32
34

52
5.3
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
517
5.18
5.19
5.20
521
522
5.23
524
5.25

6.1
6.2
6.3
6.4
6.5

7.1
7.2
73
74

8.1

Samples per machine per day and CPU idleness per machine 106
Variation count per machine and variation ratio 107
Variation count per machine and variation ratio for a 90% CIT 108
Variation count and variation ration for CIT=0% and CIT=90% 109
Turnaround for shared and private FCFES (0% CIT, weekdays) 113
Turnaround for shared and private AT (0% CIT, weekdays) . 114
Turnaround for shared and private TR (0% CIT, weekdays) . 114
Turnaround for shared /private TR-DMD (0% CIT, weekdays) 115
Turnaround for shared /private TR-PRDCT-DMD (0% CIT) . 115
Turnaround for shared and private AT (0% CIT, weekends) . 116
Turnaround for shared and private TR (0% CIT, weekends) . 117
Turnaround for shared and private FCFES (90% CIT, weekdays) 118
Turnaround for shared and private TR (90% CIT, weekdays) 118
Turnaround for shared /private TR-DMD (90% CIT, weekdays) 119
Turnaround for shared /private TR-PRDCT-DMD (90% CIT) 119
Turnaround for shared and private AT (90% CIT, weekends) 120
Turnaround for shared and private TR (90% CIT, weekends) 120
Slowdown ratios for 25/1800 tasks on weekdays (0% CIT). . 121
Slowdown ratios for 25/7200 tasks on weekdays (0% CIT). . 122
Slowdown ratios for 75/1800 tasks on weekdays (0% CIT). . 123
Slowdown ratios for 75/7200 tasks on weekdays (0% CIT). . 123
Slowdown ratios for 75/7200 tasks on weekends (0% CIT). . 124
Slowdown ratios for 75/7200 tasks on weekdays (90% CIT). 125

Slowdown ratios for 75/7200 tasks on weekends (90% CIT). 125
Components and interactions of chkpt2chkpt 133
Locating and retrieving a checkpoint (example) 137
Turnaround time with crash-recovery failures. 143
Turnaround time with crash-stop failures. 144
Turnaround time for varying checkpoint availability. 145
A Local Proxy ServerinalIDG. 157
Architectural organization of SNBDG. 160
Recovery Protocol for the DHT-based Approach. 167
Recovery Protocol for the NMS-based Approach. 170
Probability of undetected errors on majority voting. 181

viii

8.2
8.3
8.4
8.5

9.1
9.2
9.3
94
9.5
9.6

Three-segmented executionofatask
Benefit (W) as a function of the probability of error (p)
Benefit (W) as a function of checkpointing frequency (m)

Benefit (W) relative to expected maximum time (7).

Workflow of the Inviter-Invitee Relationship.
An Example of an Invitation System Tree.
E(x,n,08)/W(x,n) ratio for the linear penalty model.
Effects of varying rates on the penalty (linear model).
E(x,n,08)/W(x,n) ratio for the cubic penalty model.
Effects of varying rates on the penalty (cubic model).

ix

189
190
193

203
205
211
212
213
214

List of Tables

3.1
3.2
3.3
34

41

51
52
53

6.1
6.2

7.1
7.2

8.1

9.1
9.2
9.3

Main characteristics of the monitored machines. 61
Samples grouped by their relative time occurrence. 63
Global resourceusage 64
Average CPU idleness right after bootup. 74
Timeout tolerance factors for FCFS-AT and derived policies. 92

Sets of simulated machines and their performances. 104
Main metrics of traceclass 108
Ideal Execution Time (IET) 110
Parameter definitions. 135
Settings of the experiment. 143
Execution statistics regarding several BOINC-based projects. 153

Effect on reducing by A the failurerate , 155
Parameter definitions. 181
Parameters, functions and constant definitions. 209
Penalty factors yield by varying o in the linear model. 211
Penalty factors yield by varying o in the cubic penalty model. 212

xi

Xii

Introduction

In this opening chapter, we lay out the motivation for the theme of this
thesis — dependability mechanisms in the context of desktop grids. We then
present the main contributions of this thesis and outline its organization.
We end this introductory chapter with the list of publications that support
this work.

1.1 Motivation

It is a well known fact that many computing activities, specially the ones
that are dependent on direct human input through a keyboard, a mouse or
any other input device, barely load the machine, leaving plenty of unused
CPU. For instance, the use of a word processor, a text editor or a spread-
sheet program rarely demands more than a few percent of CPU usage'.
There are several references in the literature like [;

;] that support the idea that average CPU idle-
ness is well above 90%. As we shall see in Chapter 3, we also found out
a near 98% CPU average idleness among Windows-based machines of an
academic environment []. On top of that, the ever
growing capabilities of PCs means that more powerful resources are left
idle or unused. Interestingly, while many users have over-powered ma-
chines for their regular activities, and thus have plenty of cycles to spare,
other users such as researchers and engineers are limited in their activi-
ties due to lack of enough computing power. Thus, in this context, the
emergence of middleware to harness the resources of networked desktop
machines, that would otherwise be left idle, appears as natural. These sets

IThe most notable exceptions are graphical computer games, which are usually highly demanding
on resources.

2 CHAPTER 1. INTRODUCTION

of machines whose unused resources are volunteered for hosting demand-
ing computations are commonly referred as desktop grids [;
]. However, besides the difficulties that are usual in dis-
tributed environments, desktop grids introduce an additional challenge at
the level of availability: user-induced faults. Indeed, in desktop grids faults
are the rule, not the exception. In part, this is due to a basic, yet funda-
mental, principle for using non-dedicated grid computing: the owner of the
machine has full priority in accessing and using the machine, while ap-
plications submitted to the desktop grid middleware are run at lower pri-
ority. Thus, no interference whatsoever should be caused to the machine
hosting a foreign application, with the whole process being totally transpar-
ent. In practice, this means that applications executed over non-dedicated
desktop grid resources may be suspended or even aborted at any moment,
like for instance, if a machine gets powered off, rebooted or its owner sim-
ply decides to no longer contribute to the desktop grid system?. There-
fore, both the hosted applications and the supporting desktop grid middle-
ware should be prepared to deal with sudden failures, independently of the
cause of the failures: malfunctioning hardware or an owner claiming back
her resources. To cope with failures in such unstable environments, mid-
dleware of desktop grids, like BOINC [], XtremWeb [

], and United Devices’s GridMP [], resort to
several fault tolerance techniques such as checkpointing and redundant com-
puting. Checkpointing consists in periodically saving enough state of an
application to stable storage []. Whenever the applica-
tion needs to be restarted, the last stable and available checkpoint can be
used to resume the application. Redundant computing means to replicate
the computation throughout several independent machines, not only for
coping with machines that might never finish the computation, but also
for assessing the soundness of the computed results, comparing the results
returned by the multiple instances. However, despite fault tolerance mech-
anisms like checkpointing and redundant computing that are supported by
some desktop grid middleware, the usage of desktop grids is still encum-
bered by some limitations. Indeed, the main paradigm of most desktop
grids is oriented toward the delivery of high throughput computing, with

2For instance, as of June 2007, out of around 1,032,000 registered users in BOINC-based projects,
less than 338,000 were active, that is, they had contacted at least a BOINC server project in the last
30 days. (source: http://www.boincstats.com).

1.1. MOTIVATION 3

the systems geared to maximize the usage of resources instead of the execu-
tion speed of individual applications. This significantly hampers the use of
desktop grids for executing applications with soft deadlines, making users
whose applications require fast turnaround times to ignore desktop grids
as a viable computing platform for their needs. Security, both from the per-
spective of the resource donor and of the resource user, is another issue that
prevents a wider adoption of desktop grids, especially open desktop grids,
that is, desktop grids comprising Internet’s connected resources. Indeed,
resources are vulnerable to malicious applications that can disrupt them,
while desktop grid users can have their applications and the associated re-
sults tampered with.

In this thesis, we aim to enhance already existing fault tolerant mecha-
nisms such as checkpointing and redundancy to improve the dependability
provided by desktop grids in the execution of applications comprised of in-
dependent tasks. Specifically, we focus on improving turnaround time, re-
ducing the time elapsed from the application submission to the completion
of its last task. For instance, by sharing checkpoints amongst worker nodes
over LAN and WAN environments, we strive to promote faster execution
times by fostering a better usage of checkpointed computations, aiming
to reduce the needs to redo computation. Likewise, by comparing sets of
checkpoints from partial execution points, we aim to provide earlier detec-
tion of interrupted or faulty executions, in order to allow a prompter reac-
tion, so that replacement tasks can be scheduled as soon as an abnormality
is detected, again promoting a faster completion of the whole application.

Another major issue regarding desktop grids, especially the ones that
are based on the paradigm of public volunteered resources [;
], is the level of trust that can be achieved relatively to the

volunteered hosts that carry out the executions. In open systems like the
Internet, anyone can volunteer computing resources in an anonymous way.
Indeed, in most cases, only a valid email address is required. Such an email
address can be easily created in one of the many free email services that
exist. In this way, malicious users can attempt, and have done so, to de-
ceive volunteer-based computing projects by faking results, and if caught
can reengage on the project under a newly created email identity. In this
work, we propose an invitation-based system upon which access to a vol-

unteer computing project requires an invitation by an already contributing

4 CHAPTER 1. INTRODUCTION

member. To held accountable inviters, they receive positive/negative cred-
its according to the performance and behavior of their invitees. Therefore,
both schemes promote the recruitment of good contributors to the system,
and try to filter out the enrollment of malicious workers.

1.2 Contributions

The main contributions of this dissertation are:

e Development of the WindowsDDC framework. WindowsDDC al-
lows the organized execution of user-supplied binary probes over a
pool of non-dedicated Windows machines without requiring the in-
stallation of any software at the remote machines.

e Characterization of the level of computing resource usage in an aca-
demic desktop grid, where a near 98% CPU idleness average was
found, confirming that the informal 95% CPU idleness rule holds in
these environments.

e Development of the trace-driven simulator DGSchedSim for the study
of the effects on execution turnaround time of various shared check-

pointing policies executed over institutional desktop grids.

e Proposal, simulation and analysis of shared checkpointing schemes
coupled with several scheduling policies for the execution of appli-
cations over both institutional and wide-scale Internet-based desktop
grids.

e Proposal for an extension of the standard model for desktop grid
computing. The extension is based on a peer-to-peer network of su-
per nodes, either organized under a DHT-based infrastructure or re-
sorting to message passing between neighbor nodes. The model re-
sorts to checkpointing to tolerate failures of super nodes.

e Proposal and modeling of an error detection mechanism that exploits
the comparison of intermediate checkpoints from redundant execu-
tions to validate partial results. This scheme promotes an earlier de-
tection of errors in computations, since divergent results can be spot-

ted right after the first occurrence of the divergent checkpoints.

1.3. ORGANIZATION OF THE DISSERTATION 5

e Proposal for an invitation-based system for recruiting volunteers in
public computing projects. The system rewards with bonus credits
the recruiters who enroll active and well-behaved volunteers. Con-
versely, the system penalizes recruiters who enroll less reliable re-

source donors.

1.3 Organization of the Dissertation

This thesis is organized in three main parts:
1. Presentation and Characterization of Desktop Grids
2. Checkpoint Management in Desktop Grid Environments
3. Fault Tolerance and Trust for Wide Scale Desktop Grids

The first part presents and characterizes the concept of desktop grid. It
includes Chapter 2 and Chapter 3. Chapter 2 sets the scene for the desk-
top grid topic, analyzing the main motivations behind the use of desktop
grid and reviewing the most relevant concepts and systems. In Chapter 3,
we characterize the resources typically found in networked pools of desk-
top computers, evaluating the potential of an academic-based desktop grid.
First, we present the Windows Distributed Data Collector (WindowsDDC), a
tool we developed for the purpose of automating the collection of resource
usage traces in desktop grid environments. Then, as a case-study, we exam-
ine the resource usage collected for 77-consecutive days over 169 machines
from 11 computing classrooms of an academic institution. We conclude
that a high level of resource idleness exists on desktop machines, namely
an average of 97.94% regarding CPU idleness.

The second part of the dissertation centers on the usage of fault tolerant
mechanisms, namely checkpointing, to improve turnaround time of task
parallel applications executed over desktop grids. It includes chapters 4, 5,
6and 7.

In Chapter 4, we introduce fault-tolerant scheduling, proposing several
checkpoint-based approaches to reduce the turnaround time of so called
bag-of-tasks applications [] executed over single geograph-
ical institutional desktop grids. Specifically, we propose several scheduling
policies, where worker nodes share checkpoints to more efficiently reuse

6 CHAPTER 1. INTRODUCTION

computation, thus reducing the impact induced by failures. The chapter
terminates with the presentation of the DGSchedSim simulator that was de-
veloped to evaluate the proposed scheduling policies. In Chapter 5, we as-
sess through trace-driven simulations, the performances of the scheduling
policies that we introduced in Chapter 4. We first describe the simulation
scenarios, characterizing the trace, the machines and the set of tasks stud-
ied. Then, we present and analyze the main results, from the point of view
of execution turnaround times.

In Chapter 6, we extend the concept of shared checkpoints to wide-
scale desktop grid environments. Specifically, we present the chkpt2chkpt
system that resorts to a distributed hash table-based (DHT) infrastructure
for promoting the sharing of checkpoints among the workers of wide-scale,
possibly Internet-wide desktop grid projects. The basic idea is to organize
the worker nodes into a peer-to-peer (P2P) DHT, so that they can resort
to this P2P organization to monitor the execution of the tasks, as well as
tracking, sharing and managing checkpoint files.

Finally, in Chapter 7, we focus on alternative topologies for desktop
grids. Specifically, we start by proposing a proxy-based model for local
institutional desktop grids, with support for data exchange and indirect
communication among worker nodes of a same local environment. We
then tackle unstructured desktop grids, analyzing a peer-to-peer and su-
per node-based model for extending the current centralized desktop grid
middleware solutions. This concludes the second part of the thesis.

In the third part of the thesis, we broaden the horizon of our study, fo-
cusing on wide-scale systems like public computing systems that supports
Internet-wide projects such as SETI@home [], Einstein@home |

] and SZTAKI Desktop Grid [], to name just a few.

We target error detection in computation performed over desktop grids
in Chapter 8. We present a checkpoint and replication-based error de-
tection technique that simultaneously exploits checkpointing and redun-
dancy. Specifically, we promote comparison of intermediate checkpoints
in schemes that resort to n-replication for validating results. This way, we
are able to speed up error detection in most of the cases, and therefore to
promote faster responses to these errors by rescheduling the faulty tasks.

In Chapter 9, we analyze how social relationships and ties among vol-
unteers can be used to improve the reliability of public computing vol-

1.3. ORGANIZATION OF THE DISSERTATION 7

unteered infrastructures, namely at the level of workers. We propose an
invitation-based system, upon which potential workers can only donate re-
sources to a project if they are invited by nodes which had and are still sig-
nificantly contributing to the system. Moreover, to promote good recruit-
ment, inviters are made responsible for their invitees” behavior, receiving
credit bonuses for positive performance, and penalties whenever recruited
workers return erroneous results. Additionally, to promote trust among in-
viters and potential invitees, we propose a simple credential scheme, upon
which a computing project can make available the main events and statis-
tics related to a worker who has donated or is currently donating resources.
To preserve the privacy of donors, the information can only be disclosed by
the resource owners themselves when applying for an invitation to another
project.

Finally, Chapter 10 concludes this thesis by summarizing the main re-
sults and suggesting possible directions for future research.

10 — Conclusions and .
1 - Introduction
future work

Part | - Presentation &
Part lll - Fault Tolerance and Trust Characterization of DG

8 — Sabotage tolerance through
comparisons of checkpoints

. ‘ 2 - Desktop grids ‘

‘ 3 — Resource usage in DG ‘

‘ 9 — Reputation and Trust ‘

Part Il - Checkpoint management
inDG

‘ 4 — Fault-tolerant scheduling ‘

‘ 5 — Evaluation of FT scheduling ‘

6 — Sharing checkpoints over
wide-scale DG

7 — DG topologies for sharing
Input data and checkpoints

Figure 1.1: Reading map highlighting dependencies between chapters.

1.3.1 Reading Map

Although the thesis was devised for a sequential and full reading, the writ-
ing has also taken in account readers who might only be interested in a

8 CHAPTER 1. INTRODUCTION

given subtopic. In this way, there is a varying degree of independence
among chapters, with some subtopics being covered in a single chapter,
and others spread over two consecutive ones. A reading map that high-
lights dependencies between chapters is shown in Figure 1.1 (page 7).

1.4 Publication Record

Subsets of the work towards this dissertation or related to it have been
published in refereed international journals, conferences and workshops
as follows:

e Patricio Domingues, Paulo Marques, Luis Silva. “Distributed Data Col-
lection through Remote Probing in Windows Environments”, in Proceed-
ings of the 13" Euromicro Conference on Parallel, Distributed and
Network-Based Processing, pp. 59-65, PDP’05, Lugano, Switzerland,
February 2005. []

This paper presents WindowsDDC.

e Patricio Domingues, Paulo Marques, Luis Moura Silva. “Resource us-
age of Windows computer laboratories”, in Proceedings of the Interna-
tional Conference Parallel Processing, pp. 469-476, ICPP 2005 - Work-
shops on Parallel Processing, Oslo, Norway, June 2005.

[]

This paper studies the resource usage of desktop machines of an aca-

demic environment over 77-consecutive days.

e Artur Andrzejak, Patricio Domingues, Luis Moura Silva, “Classifier-
Based Capacity Prediction for Desktop Grids”, 1 Workshop of Integrated
Research in Grid Computing - CoreGRID, Pisa, Italy, 28-30 November
2005. []

This paper assesses five classification algorithms over traces collected

from classrooms of an academic environment.

e Patricio Domingues, Artur Andrzejak, Luis Moura Silva, “Scheduling
for Fast Turnaround Time on Institutional Desktop grid”, 2" CoreGRID
Workshop on Grid and Peer-to-Peer Systems Architecture, 16-17 Jan-
uary 2006, Paris, France. []

1.4. PUBLICATION RECORD 9

This paper reports the main results regarding the scheduling policies
simulated over real desktop grid traces.

e Patricio Domingues, Paulo Marques, Luis Moura Silva, “DGSched-
Sim: a Trace-driven Simulator to Evaluate Scheduling Algorithms for Desk-
top Grid Environments”, Proceedings of the 14"* Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP’06), pp
83-90, Montbéliard, France. IEEE Computer Society Press, February
2006. []

This paper describes the DGSchedSim simulator used to perform the
trace-driven simulations of scheduling policies over desktop grids.

e Artur Andrzejak, Patricio Domingues, Luis Moura Silva, “Predicting
Machine Availabilities in Desktop Pools”, (short paper). Proceedings of
IEEE/IFIP Network Operations & Management Symposium (NOMS
2006), Vancouver, Canada, 3-7 April 2006. []

This paper evaluates several algorithms for the prediction of the avail-
ability of machines that comprise a pool of desktop computers.

e Patricio Domingues, Jodo G. Silva, Luis Moura Silva, “Sharing Check-
points to Improve Turnaround Time in Desktop Grid”, pp. 301-306, 20"
IEEE International Conference on Advanced Information Network-
ing and Applications - Volume 1 (AINA’06), Vienna, Austria, 18-20
April 2006. [|

This paper gives a broad overview of the sharing checkpoint concept.

e Patricio Domingues, Artur Andrzejak, Luis Moura Silva, “Using Check-
pointing to Enhance Turnaround Time on Institutional Desktop Grids”,
Proceedings of 2" TEEE International Conference on e-Science and
Grid Computing, Amsterdam, The Netherlands, 4-6 December 2006.

[]

This paper reports the main results regarding the scheduling policies
simulated over a real desktop grid trace, introducing the concept of
CPU Idle Threshold (CIT).

e Patricio Domingues, Filipe Araujo, Luis Moura Silva, “A DHT-based
Infrastructure for Sharing Checkpoints in Desktop Grid Computing”, Pro-

10

CHAPTER 1. INTRODUCTION

ceedings of 2" IEEE International Conference on e-Science and Grid
Computing, Amsterdam, The Netherlands, 4-6 December 2006.

[]

This paper describes chkpt2chkpt, a peer-to-peer based system for shar-
ing checkpoints in a wide-scale desktop grid.

Filipe Aratjo, Patricio Domingues, Derrick Kondo, Luis Moura Silva,
“Validating desktop grid results by comparing intermediate checkpoints”.
In Achievements in European Research on Grid Systems, CoreGRID
Integration Workshop 2006 (Selected papers), pp 13-24, Krakow, Poland,
October 2006. Springer-Verlag. []

This paper presents a result validation scheme based on the compar-

ison of intermediate checkpoints.

Patricio Domingues, Bruno Sousa, Luis Moura Silva, “Sabotage-tolerance
and Trust Management in Desktop Grid Computing”, in Journal of Future
Generation Computing Systems, December 2006.

[1 (DOI:10.1016 /j.future.2006.12.001)

This paper gives an overview of existing sabotage-tolerance techniques
and presents two sabotage-tolerance oriented mechanisms: the Invi-
tation System and the Reputation Sharing scheme.

Derrick Kondo, Filipe Aratjo, Patricio Domingues, Luis Moura Silva,
“Result Error Detection on Heterogeneous and Volatile Resources via Inter-
mediate Checkpointing”, CoreGRID Workshop on Grid Programming,
Model Grid and P2P Systems Architecture Grid Systems, Tools and
Environments, pp 72-80, Hellas Heraklion, Crete, Greece, June 2007.

[]

This paper broadens the approach of validating intermediate results

via comparison of equivalent checkpoints.

Desktop Grids

In this chapter, we identify the main motivations for exploiting desktop
grids. Then, we characterize our understanding of desktop grids, describ-
ing their basic components and pointing out their main strengths and weak-
nesses. In addition, we distinguish between the somewhat controlled and
closed institutional desktop grids, and the open public desktop grids that
support the volunteer-based @home projects []. Finally, we
review the major middleware that support scavenging of desktop grid re-

sources.

2.1 Motivation for Desktop Grids

Desktop grids are becoming increasingly attractive for performing compu-
tations. It is a well documented fact that desktop machines used for reg-
ular activities, ranging from electronic office operations (word processing,
spreadsheets and other document preparation) to communication (email,
instant messaging), and information browsing have often very low resource
usage. Indeed, most computing activities, and especially the ones depen-
dent on human interactive input, barely load the machines. Several stud-
ies confirm the 95% CPU idleness estimate that is normally associated to
desktop machines, making these resources interesting for harvesting [
; I

Ironically, while a vast majority of users barely load their machines,
others are always limited in their work and research because they do not
have enough computing power, nor the budget to acquire and maintain
it. Indeed, many problems in areas such as biology, medicine, cryptog-
raphy, earth sciences, cosmology and high-energy physics, to name just a
few, require massive computing power to be effectively tackled [

11

12 CHAPTER 2. DESKTOP GRIDS

]. Thus, it appears logical that individuals or organizations in need
of computing power and who cannot afford dedicated high performance
computing facilities, aim to exploit resources that would otherwise be left
idle. In fact, although resorting to desktop grids requires adapting appli-
cations to the desktop grid paradigms, the return on investment (ROI) for
applications is frequently high [I

2.2 Characterization of Desktop Grids

In the context of this thesis, the designation desktop grids refers to compu-
tational aggregates formed by non-dedicated desktop machines whose re-
sources, such as CPU, memory, network bandwidth, storage space and,
more recently, graphical processing unit (GPU) [], can be har-
vested for running non-local applications in a loosely coupled fashion. Ex-
amples of desktop grids include the thousands of volunteer computers that
support emblematic public computing projects such as SETI@home |

], Einstein@home [], Rosetta@home |], OMC@-
home [], Folding@home [], Climateprediction.net
[] and SZTAKI Desktop Grid [], among many
others.

The usage of public resources for public computing projects is often
designated as public resource computing (PRC) or alternatively as public-based
desktop grids [;]. Another form of
desktop grid is related to the use of private computing resources existing
at corporations and institutions such as academic campuses. This type of
desktop grid is termed as institutional desktop grid or as enterprise desktop
grid [], or as local desktop grid|]. In this
thesis, we study both public resource computing and institutional desktop
grids. Next, we present the generic desktop grid nomenclature that is used
throughout this work.

2.2.1 Generic Nomenclature

Although some variability exists across the various desktop grid models
and implementations, they all share a common substrate. Next, we de-
fine the main nomenclature focusing on the logical elements that comprise
desktop grids.

2.3. STRENGTHS AND LIMITATIONS OF DESKTOP GRIDS 13

o task: the entity that gets executed by harvested resources. An equiva-
lent designation found in the literature is work unit or workunit [

1.

e application: an application is comprised of several tasks, possibly in-
dependent from one another and executed over different machines.
The execution of an application is only completed when all of its tasks
have been terminated.

e worker: the resource whose otherwise idle time is used for executing
tasks.

e resource donor: the individual or institution who is making available
the computing resources, inside which the workers run.

e submitter: the person or entity that submits an application. Contrary
to some desktop grid related literature, we do not use the term client
since it can be confused with the scavenged machine, that is, the ma-
chine that actually performs the computation.

e supervisor: this designates the software entity that controls the execu-
tion of an application. Typical functions of a supervisor include the
scheduling of individual tasks, the reception of the results computed
by the workers, and dealing with errors. Also, in some desktop grid
environments, an application can only be submitted through the su-
pervisor (this is often the case in public computing). The designation
server-side or master server is also used with the same meaning.

e manager: this is the human entity that controls and manages the re-
sources that run the supervisor and other related management soft-
ware (for instance, databases for storing tasks and results, and veri-
fication software for validating the results). Furthermore, this entity
authorizes the applications that can be submitted over the desktop
grid infrastructure.

2.3 Strengths and Limitations of Desktop Grids

In this section, we discuss the main strengths and analyze the major limita-
tions of desktop grids.

14 CHAPTER 2. DESKTOP GRIDS

2.3.1 Strengths

Low cost: From the submitter point of view, the core advantage of a desktop
grid environment is definitively the benefit of having access to a large com-
puting power at low cost. In fact, even in institutional environments like
an academic campus or a corporation facility, which have to support the
costs of their infrastructures (power, cooling, etc.), desktop grids present
the benefit of exploiting already existing resources, meaning that no ma-
jor additional investment is required in hardware nor infrastructure!. At
most, a couple of machines set as servers might be needed to support the
specificities of the desktop grid middleware, along with some personnel
attached to the management of the infrastructure. Thus, exploiting idle
resources in the context of desktop grids improves the return on invest-
ment of these resources []. In public desktop grids, the ratio
computing power/cost to submitter is even more favorable, since the costs are
distributed among the volunteers, with each resource donor supporting
her own machine(s). An interesting issue regarding public-based desktop
grids, is that, even considering a stable population of resource donors, the
potential computing power naturally progress over the years, due to the
upgrades that owners regularly perform in their machines.

Computing power: Especially in large public desktop grids that assem-
ble tens of hundreds of machines, the available computing power can be
immense. In fact, two of the most popular public projects, SETI@home and
Einstein@home report, at the time of this writing, 304,812 and 81,800 ac-
tive computers, respectively. Combined together, these computers boost a
performance of 365.1 TFlops and 88.2 TFlops, respectively?.

2.3.2 Limitations

Although desktop grids present some clear advantages, namely, low cost
and high computing power, they are also hindered by several limitations.
Next, we describe the main restrictions of desktop grids.

Volatility: Volatility of resources is a major limitation of desktop grids.
Indeed, besides the failures that normally affect computers, the tasks run-

'This might not always be the case: when pushed near their full capacity, computers generate
more heat and noise. This way, certain rooms that are suited for handling regular usage of PCs,
might require air cooling for dealing with intensive desktop grid usage.

Zhttp://www.boincstats.com, June 2007.

2.3. STRENGTHS AND LIMITATIONS OF DESKTOP GRIDS 15

ning over desktop grids are prone to get interrupted when resource owners
claim back their machines. In desktop grids, failures are not the exception
but the rule. Choi et al. categorize failures of harvested resources in two
main classes: volatility failures and interference failures []. The
former comprises failures like network and machine crashes. The latter
is a consequence of the shared nature of resources where the interactive
users of a machine have priority over volunteer computation in accessing
the resources of the machine. Note that some desktop grid middleware
allow resource owners to define the conditions that mark an owner claim-
ing back her machine’s resources and implicitly forcing the interruption of
any foreign task that might be running in their machine [;

]. It can be, for instance, the simple existence of keyboard
and/or mouse activity, or that the owner’s usage of resources, namely
CPU, is above a given threshold, or simply a combination of both (input
devices and CPU). Other owners might be more permissive and let foreign
tasks run jointly with their own local applications, relying on the operating
system priority mechanisms for non-obtrusiveness of foreign tasks (hosted
tasks are usually run at the lowest priority). From the point of view of
a hosted task, the cause of the failure is normally irrelevant since the net
outcome is that the task gets evicted from the resource.

Figure 2.1(a) plots the evolution of the number of active hosts partici-
pating in the Einstein@home project between July 2006 and June 2007. It
can be seen, that the number of active hosts varies between 52,000 and
slightly above 79,000 (a 50% variation), averaging to 67,208 machines (rep-
resented by the flat line), with a standard deviation of 7806.73. The plot
gives a rough example of the volatility of resources in a wide-scale public
computing project. The sharp drops of the plots seen at the end of 2006 cor-
respond to somewhat long downtime periods (days) of the Einstein@home’s
server side that occurred at this time.

A similar example of the resource volatility of public computing is given
by Figure 2.1(b), which plots the number of active hosts for SIMAP@home
[] for the period comprised between August 2006 and the end
of June 2007. SIMAP@home is yet another BOINC-based public project,
which aims to build a database of precomputed matrix of protein simi-
larities. During the observed eleven months, the count of active workers
varied between a minimum of 8,000 to a peak of almost 12,500, averaging

16 CHAPTER 2. DESKTOP GRIDS

to 10,768 (shown in the plot by the flat line), with a standard deviation of
816.80.

80000 12500 ﬂ

f\“ﬁ‘ . A 12000

75000 oo ;ﬁl ﬁfi
70000 M M\ ’J fi 11000 fw \.#f fo A } i&
R /

65000 1% J{

60000 \\Af \Lﬁ 9500 g
§/h 9000 g u

if

ﬂﬂﬂm
e

s

10500

e
T

10000

Number of active hosts
Number of active hosts

55000
" . % 8500
Number of active hosts in the past 7 days —+—

average -
50000 L L . L 9 7 8000 L L
Jul'oé Sep'06 Nov'06 Jan'07 Mar'07 May'07 July'07 Aug'06 Oct'06 Dez'06 Fev'07 Apro7 June'07

July'06 - June'07 August'06 - June'07

(a) Einstein@home (b) SIMAP@home

Number of active hosts in the past 7 days —+—
| average -

Figure 2.1: Evolution of the number of active hosts of the Einstein@home and
SIMAP@home projects throughout the 2" half of 2006 and the 1* half of 2007.

Security: Security is another serious issue of desktop grid. In such envi-
ronments, threats exist for both the donated resources and the submitters.
Indeed, the former can be harmed by running a malicious foreign task, ei-
ther explicitly (the attack disrupts the machines), or in a hidden way, for
instance, with the privacy of the host machines silently jeopardized by bot-
nets []. Security issues also exist relatively to submitters, since
a worker might spy upon the task it is executing. Worse, a malicious local
user might temper with the task data or/and algorithms, trying to extract
(for example, via reverse engineering) any valuable information. Addi-
tionally, results can be silently faked, in order to disrupt the computation,
or simply for claiming undue credits for work not performed as it occurs
in public computing projects [I

All of these are serious issues that need to be properly addressed. As
we shall see in section 2.6, sandboxing, resource virtualization, code sign-
ing, encryption of data and communications, and replication with result
comparison are some of the techniques implemented by middleware envi-
ronments to provide for a certain level of trustworthiness and security.

Communication model: Depending on the underlying network infras-
tructure and on the level of trustworthiness amongst donated peers, com-
munications can be another limitation of desktop grids. Internet-based
computing [] and particularly public-resource comput-
ing [;], present a much more chal-

2.3. STRENGTHS AND LIMITATIONS OF DESKTOP GRIDS 17

lenging communication model. Indeed, over open and consequently non-
trusted networks, several issues arise that seriously limit the type of ap-
plication that can be run over desktop grids. First of all, many machines do
not have a public IP address since they are behind network address transla-
tion services (NAT). Jointly with strict firewall rules, many hosts that access
Internet have asymmetrical connectivity: they can perform connections to
outside hosts, but only over well-defined ports, such as the HTTP port and
alike []. Furthermore, such hosts are not addressable by
outside peers, and thus they can only act as clients.

Besides addressing and reachability issues, bandwidth and limitation
over network traffic can pose additional restrictions on desktop grid. In
fact, despite bandwidth growth and the emergence of broadband, Internet
connections are still significantly lower than local area ones. Moreover, a
significant number of users with broadband connections have an upload
bandwidth much lower than the download one, causing a further network
asymmetry. For these reasons, communication is severely limited in desk-
top grid environments. This restricts the applications that can be run over
harvested resources to coarse-grained ones, with tasks having a high CPU
to communication ratio. Additionally, tasks need to be totally loose from
one another, with no communication occurring among them. This way,
for success, applications run over desktop grids need to follow the embar-
rassingly parallel paradigm, upon which tasks are completely independent
from one another. Although this constitutes a serious restriction, many re-
search, industrial and scientific applications follow this paradigm, and, in
fact, no scarcity of applications seems to exist for desktop grids [

1.

Heterogeneity: A subtle limitation that arises in desktop grids relate
to the heterogeneity of platforms. Indeed, if the code executed by work-
ers is implemented through a native binary, and the desktop grid aggre-
gates several types of non-compatible platforms, like Windows, Mac OS
and Linux as it is frequently the case, exploiting all of these platforms re-
quire the development and maintenance of several trees in the source code,
although this can be somewhat mitigated by writing portable code. An-
other platform-related effect respects the accuracy of numerical computa-
tions, with different hardware and operating system platforms potentially

18 CHAPTER 2. DESKTOP GRIDS

yielding approximate, yet different results’. Depending on the application,
this might need to be taken into consideration by the submitter when vali-
dating and analyzing the results [I

A possible way to deal with heterogeneity of platforms is to resort to in-
terpreted code run over software virtual machines, like for instance, JAVA
or .NET. Such approach solves the portability issues, and may also provide
additional security thanks to the virtual machine sandboxing mechanism,

but poses two additional problems:

1. Need for volunteer resources to have the proper virtual machine in-
stalled.

2. The performance penalty that is normally imposed by software-level

virtual machines.

Another approach yet is to resort to operating system level virtual ma-
chines like VMWare | 1, QEMU [], Xen [

] and VirtualBox [], to name just a few. These vir-
tual environments isolate the foreign task from the hosting machine, pro-
tecting them from each other. This approach allows to setup an execution
environment tailored for the harvesting task, like for instance, a different
operating system than the one running on the hosting machine [

]. Drawbacks include the need to download, install and setup the
appropriate virtual machine, the cost of the virtual machine software (al-
though free and open source solutions exist like QEMU and Xen) and the
resource overhead it imposes on the host machines.

Figure 2.2 and Figure 2.3 (page 19) illustrate the level of heterogeneity in
the volunteer hosts of the SETI@home project. Specifically, Figure 2.2 plots
the distribution of the CPU architectures of the hosts participating in the
project. The data refer to the 932,696 most productive machines registered
in the project as of August 2006. Note that the x86 architecture comprises
more than 96% of the machines. Figure 2.3 depicts the distribution of ma-
chines accordingly to their operating systems. Although Windows variants
represent more than 87%, and thus, it might appear that low heterogene-
ity exists, it can be seen that Windows variants are themselves spread in

3For certain numerically sensible algorithms, the cumulated divergences in computation per-
formed in different platforms yield non-compatible results.

2.4. COMPONENTS OF A DESKTOP GRID 19

CPU architecture distribution ExXxx3

70
65 64.11%
60
55
50
45
40

35 32.04%
30

25

20

15

10
5 3.69%

B 0,16%

Intel (x86) AMD (x86) PowerMac Others

CPU architecture

Distribution (%)

Figure 2.2: Distribution of hosts per CPU architecture in the SETI@home project.
(source: SETI@home)

several versions (Figure 2.3(b)). From the plotted data, it emerges that het-
erogeneity is quite high at the OS level.

100 vr— 100 " —
95 OS distribution &xxx3 95 Windows variants distribution Exxx3
90 59% 90
85 85 fi
80 - 80 86%
75 75 -
70 70 -
- 65 s 65
£ 60 £ 60
5 55 5 55¢
5 50 5 50 -
2 45 2 45
3 40 2 40 -
8 3 8 35
30 30
25 25
20 20
15 - 15 - 1285
10 7.54% 10 %
5L @ 430% 5L 63% - .350
K R 0.31% 0.20% 0.06% ° 3 23 0.77% 0.35% 0.15% 0.05%
Windows Linux Darwin SunOS BSD Others XP Win2000 Win2003 Win98 Millennium NT Longhorn Win95
Operating systems Windows variants
(a) Generic operating systems (b) Windows variants

Figure 2.3: Distribution of Machines per Operating Systems in the SETI@home.
(source: SETI@home)

2.4 Components of a Desktop Grid

The main components required for setting up a desktop grid are (1) the
desktop computers, (2) the underlying communication network, and (3)
the middleware that glues everything together. Next, we succinctly de-
scribe each of these components.

20 CHAPTER 2. DESKTOP GRIDS

2.4.1 Desktop Computers

In the context of desktop grids, the expression desktop computers designates
the machines whose idle resources are to be harvested. The attractive-
ness of personal computers is strengthened by the continuous growth of
their capabilities. Indeed, after more than 40 years, Moore’s law still holds
on [], meaning that roughly every 18 months, the number of
transistors available for CPU implementation doubles. Moreover, besides
CPU, other core elements like network bandwidth (9 months to double)
and space storage (12 months to double) continue to grow in size. Un-
fortunately, even if main memory have also become larger, the speed gap
between CPU and the memory system continues to widen, although clever
memory hierarchies with multiple in-chip caches and alike have allowed
to partially mitigate the effects of the memory-CPU speed gap on perfor-
mance*. Thus, not only are resources significantly idle, but they keep get-
ting faster and faster. Note that, although performance improvement by
raising the clock speeds of CPUs seems, at least for the time being, over
or much limited [], the trend towards multi-core CPUs appears
to indicate that the level of unused computing power will continue to in-
crease. Indeed, possibly entire cores will be available to exploit, further
reinforcing the attractiveness of cycle scavenging schemes [I

2.4.2 Communication Networks

Besides idle machines, another major component needed for proper im-
plementation of desktop grids is a communication infrastructure. In fact,
isolated individual machines, even powerful ones, are of low use if they
can not communicate with each other. Thus, the emergence and fast evo-
lution of affordable network technologies, which deliver bigger and bigger
bandwidths over wide areas, has allowed the creation of powerful aggre-
gates holding a large number of machines under a desktop grid infrastruc-
ture. In particular, the Internet with its fast and sustained growth has made
possible the successful deployment of large volunteer desktop grid com-
munities that support major public computing projects such as the pioneer
SETI@home [].

“4In fact, a significant part of the transistors implemented in a CPU chip are devoted for fast
on-chip memory caches. Moreover, a cache-level is added to the memory hierarchy roughly every
decade.

2.4. COMPONENTS OF A DESKTOP GRID 21

It is important to note that most desktop grid environments do not pro-
vide communication among workers. Indeed, these environments only
support applications where each worker solely communicates with the mas-
ter worker. This type of applications is known as embarrassingly parallel
computations or pleasantly parallel computations | I

2.4.3 Middleware for Desktop Grid

The success of desktop grids over the last decade is not only due to hard-
ware improvement in the area of computers and networks. Indeed, the
emergence of some sound middleware solutions has contributed signifi-
cantly for the deployment and exploitation of desktop grids, considerably
facilitating the setup and maintenance of desktop grid environments. Ex-

amples include Condor [], XtremWeb |],
BOINC [], United Devices [] and DataSy-
napse []. Next, we describe the main issues that a desk-

top grid middleware needs to address (we provide a detailed review of the
major desktop grids frameworks in section 2.6).

¢ Non-interference: It is of paramount importance for the acceptance
and success of a desktop grid environment that tasks running in vol-
unteered machines do not interfere with the local workload. This
means that interactive users of the machines must retain full prior-
ity over hosted tasks. Furthermore, the desktop grid system should
allow the definition of an harvesting policy, allowing the local user
to configure parameters related to the volunteering of the machines.
Such parameters might include, amongst other things, the host op-
erating system priority level to be used by scavenging tasks (usually
hosted tasks are run at the lowest available priority), the allowed time
frame (time of day and days of the weeks) for harvesting and what
should occur to a hosted task when a machine is claimed by its local
user (should the task be evicted, or on the contrary, kept in memory).
In all cases, a desktop grid framework should minimize any interfer-
ence it might cause on local resource users, even if this causes nega-
tive impact on the hosted task. Indeed, the acceptance of volunteer
mechanisms is tightly linked with the perception of resource donors
that they remain in full control of their machines.

22

CHAPTER 2. DESKTOP GRIDS

e Usability: Usability is an important feature both for system installers

and managers, and also for task submitters. Actually, deploying a
desktop grid infrastructure should be painless and require minimal
effort and resources from the coordinator side. The same should oc-
cur for normal management activities, which should not require ex-
cessive skills nor excessive work. Also significant, are the capabilities
required for task submitters. Ideally, few skills should be required
to task submitters, with the system adapting itself to submitters and
their tasks. In this area, a much appreciated feature is the support of
applications as is, without requiring burdensome adaptations or the
mandatory use of a given programming language and related APIs.

More importantly, volunteering resources should be an easy process.
Indeed, solutions that demand too much effort will most certainly
deter potential donors.

Scalability: A desktop grid middleware should scale accordingly to
the number of involved resources, in the sense that more resources
should mean proportionally more available computing power. Ad-
ditionally, management needs should not adversely suffer from the
scale effect, in the sense that adding resources should not mean addi-
tional management effort.

Security: As stated before, security in the context of desktop grids
is a two-way issue, since both the resource donor and the submitter
need to be considered. The former should be certain that the donated
resource will not be tampered with. For instance, local private data
will not be accessed nor the machine will be made more vulnerable
to malicious software. On the other hand, the submitter should also
receive guarantees over the integrity of the computations and over
the inviolability of her data running on volunteered resources. As we
shall see in section 2.6, security is a complex issue, with many desktop
grid frameworks addressing security issues in a less than perfect way.
Thus, the volunteering of resources and submission of tasks still re-
quire a fairly amount of implicit trust between donors and harvesters.

Fault Tolerance: Any computer-based system is prone to fail. In a
desktop grid environment, where the number of machines can quickly
reach high figures, this is even more real, since for a constant proba-

2.5. TYPES OF DESKTOP GRIDS 23

bility of failures, having a large population of computers means that a
significant number of machines will fail. Moreover, as stated before,
since resources are donated under best effort with no guarantee of
availability whatsoever, volatility of resources is significantly higher
than it is with dedicated machines. Thus a proper desktop grid en-
vironment should be able to cope with the normal types of failures
in a transparent way. Two main mechanisms for coping with failures
are checkpoint-and-restart | | and task replication [

]. Checkpoint-and-restart aims to limit the computation that
needs to be redone when recovering from a failure, while task replica-
tion is also employed for validating results through majority voting.

e Accountability of resource usage: Although not a critical factor of suc-
cess, the accountability of harvested resources can be important for
assessing the real value of the harvesting system. Moreover, in pub-
lic volunteered desktop grids, accountability of donated resources
allows to establish donor rankings, where top positions are yielded
to most active volunteers. Surprisingly, these rankings and all the
dynamic surrounding them are known to substantially stimulate the
enthusiasm of volunteers [I

2.5 Types of Desktop Grids

Two main types of desktop grids can be considered: institutional and Internet-
based. The former involves resources that are private to an institution and
geographically located at a single site, for instance a corporation or an aca-
demic campus. On the contrary, as the name implies, the term Internet-based
designates larger systems running over the Internet [] like
SETI@home, Einstein@home and Folding@home [], just
to cite a few.

Institutional desktop grids present the advantage of a centralized man-
agement entity, who normally decides the sharing policy to be applied to
the resources. For instance, if the management of a corporation determines
that all machines must be available for harvesting purposes, then all users
have to comply. However, for a better acceptability of the sharing paradigm
and to foster cooperation and positive attitude, users should also benefit,

even indirectly, from the resource sharing. Indeed, the human factor is im-

24 CHAPTER 2. DESKTOP GRIDS

portant, and many individuals have ownership feelings about the machine
that is allocated to them. Thus resource sharing needs to be properly intro-
duced in such environments.

Additionally, in institutional environments, security issues might be
easier to deal with, since core infrastructures are private and thus can be
followed under a close control. Furthermore, institutional desktop grids
are normally confined to a single geographic point, with all resources con-
nected by local networks which are way faster than connections that link
resources of public desktop grids. This allows to run applications with
relatively high demands on networks, like for instance, applications that
process massive amounts of data.

On the other hand, resources involved in public desktop grids are ex-
clusively controlled by their respective owners and thus are much more
unpredictable. For instance, a user might suddenly withdraw her machine
from a public project to move it to another one, or to simply abandon re-
source volunteering altogether. Security measures need also to be stricter,
since malicious resource donors under the cover of anonymity might try
to sabotage the computation. Conversely, a dishonest submitter might try
to submit a malicious application. Regarding connectivity, many workers
might not be directly addressable because of firewalls and NAT schemes.
Thus, connections need to be worker-initiated and over authorized ports
(usually the HTTP port).

Although less stable and more prone to security problems, the number
of resources involved in an appealing public computing projects might be
orders of magnitude higher that what can be achieved at the scale of an
institutional desktop grid. Gathering a large community of users requires
creativity, like for instance, appealing screensavers and interesting prob-
lems to tackle, in order to persuade volunteers to join the public infras-
tructure. Furthermore, while institutional environments have to support
their own additional costs, like electric power to run the machines and the
associated cooling equipment, public-based desktop grids allow, at least
from the point of view of submitters, a much more attractive economical
model, since operating costs are distributed amongst volunteers, except for
the expenses for supporting bandwidth, servers and personnel related to
the supervisor side.

2.6. MAJOR DESKTOP GRID MIDDLEWARE 25
2.6 Major Desktop Grid Middleware

In this section, we review some of the most successful middleware plat-
forms for desktop grids. We start by Condor and move on to examine the
BOINC framework which is used by a large number of public computing
projects. We also analyze the SZTAKI Desktop Grid extension to BOINC.
We then review XtremWeb and its security-based approach to desktop grid
computing. Finally, we analyze the commercial middleware GridMP.

To ease comparisons of the frameworks, our review focuses mostly on
the parameters enumerated in section 2.4.3 (page 21), namely, level of in-
terference, usability, scalability, security, fault tolerance, and resource usage ac-
countability.

2.6.1 Condor

The Condor project was created in the mid-1980s at the University of Wis-
consin-Madison by the Condor Research Project, and is considered as the
pioneer framework in the area of harnessing CPU cycles [

]. The system has been continuously updated and adapted to new
computing environments. It currently supports the major operating sys-
tems, such as some flavors of Unix, Linux, Windows and Mac OS. Condor
is used to scavenge cycles in many computing sites throughout the world.
Although it has some support for exploiting resources over wide areas and
can be coupled with wide-area Internet-resource computing schemes like
XtremWeb |], Condor really excels in local area en-
vironments.

Condor is a workload management system oriented for high through-
put computing, which provides a job queuing mechanism, scheduling pol-
icy, priority scheme, resource monitoring, and resource management. Users
submit their tasks (jobs in Condor’s jargon), and Condor places them into a
queue, chooses when and where to run based on resource availabilities and
tasks demands, monitors their progress, and informs the submitter upon
completion []. The Condor system aggregates re-
sources in pools. Pools are usually delimited by logical and geographical
boundaries. For instance, the resources at an university campus can be ag-
gregated by departments, with a pool existing per department. To better
use resources, pools can be linked and configured to cooperate with one

26 CHAPTER 2. DESKTOP GRIDS

another, with idle pools receiving tasks from pools that are too overloaded
to deal with them. This mechanism is called flocking [
I
In Condor, management of resources and tasks revolve around Clas-
sAds. This mechanism is used by the system to represent the characteristics
and constraints of both machines and tasks. For instance, the characteris-
tic of a machine are expressed by a ClassAd (for example, "720300 KFlops,
1024 MB of main memory"), jointly with the restrictions that might be im-
posed by the machine’s owner regarding access for scavenging ("weekdays,
9pm-8am"). Similarly, the requirements of a task are specified via its own
defined ClassAd’. The scheduler, which has a global knowledge of the
ClassAds, tries to match the tasks related ClassAds with resources” Clas-
sAds.

Architecture

A Condor pool is organized in a centralized way, with the central manager
machine of the pool coordinating the activities of the workers and of the
submitter machines. The main role of the central manager of a pool is to
match demands (i.e., submitted jobs) with available resources. Since Con-
dor services are organized through daemons (normally, a daemon per ser-
vice), we briefly analyze the main supporting daemons of Condor [

I

e condor_master: this daemon runs at every machine that participates
in Condor (independently of the machine’s role). It acts as a meta-
daemon, being responsible for keeping the rest of the local Condor
daemons running on the machine, as well as updating them, when-

ever a new version is detected.

e condor_startd: this daemon represents a machine to the Condor pool,
advertising the machine’s capabilities and policies through ClassAd.

It runs at workers.

e condor_starter: this service deals with executing a Condor task in the
local machine and gets activated whenever the machine is selected to

SFor example, the ClassAd (OpSys="WINNT50" || OpSys="WINNT51") and (Memory >=
400), means that the task requires either Windows 2000 or Windows XP and at least 400 MB of
memory to run.

2.6. MAJOR DESKTOP GRID MIDDLEWARE 27

run a job. It sets up the execution environment, monitors the job once
it is running and cleans up after the execution has terminated.

e condor_schedd: this daemon allows the submission of jobs at the local
machine, and thus, it only runs at machines configured for submis-
sions of jobs.

e condor_shadow: the shadow daemon is activated at a submission ma-
chine whenever a job submitted at the machine is running. This dae-
mon serves requests for files to transfer, logs the job’s progress and
reports statistics when the job completes.

e condor_collector: this daemon collects all the data regarding the status
of a Condor pool. It does so by receiving the ClassAd which are peri-
odically sent by the other Condor daemons. This daemon runs solely
at the central manager.

e condor_negotiator: the negotiator daemon is responsible for all the
matchmaking within the Condor system. Like condor_collector, it runs
solely at the central manager.

Analysis

Non-interference: With its rich set of configurations, Condor allows re-
source donors to define the level of obtrusiveness they want to tolerate. For
instance, it is possible to define that a resource should only be occupied if its
local workload is below a given threshold, and that foreign tasks are only
allowed to run after a certain time interval has elapsed with no keyboard or
mouse activity detected at the local machine. For example, the default con-
figuration only allows the execution of a foreign task on machines which
have more than 15 consecutive minutes of keyboard and mouse idleness,
and whose local workload is below 0.15. As soon as one of these conditions
no longer holds, the task is withdrawn.

Usability: As the result of its long experience gathered over more than
20 years in the field, Condor is highly usable. The installation for resource
donor is relatively straightforward, even for non-computer savvy, and as
stated before, its default configurations protect resource owners. Regard-

ing submitters, a major benefit is that regular binaries, providing they can

28 CHAPTER 2. DESKTOP GRIDS

be run unattended (that is, requiring no human intervention), can be exe-
cuted with no changes. Additionally, Condor has support for running Java
binaries, since it detects any Java virtual machine that exists at the available

resources.

Although mastering the details for the submit files needed for submit-
ting tasks might require time and a certain level of expertise, the submis-
sion process is trivial. Submissions can be made from any machine that
was installed with this capability. An annoyance is the nonexistence of a
graphical or web interface that would allow the monitoring and manage-
ment of running tasks, although Condor has a rich command-line interface

that can be scripted to automate procedures.

Scalability: Since it was originally developed for local area environ-
ments, a Condor pool is not suited for wide area networks, although sev-
eral sites can have their respective pools cooperating with one another, as
long as some adjustments are made to sites’ firewall and NAT policies. In-
deed, Condor supports the aggregation of pools through the so-called flock-
ing mechanism, but the installation and setup is not trivial, at least when
compared with the installation of a local pool [1.
Additionally, the centralized approach to resources and tasks management
somewhat limits its scalability, although a single pool is said to be able to
hold around hundreds of machines []. Due to limitations in
the implementation of the condor_schedd daemon, a Condor pool requires
a balanced set of submitting machines to perform efficiently, otherwise the
whole system performance degrades quickly [. Moreover, a
normal reaction of users when faced with a Condor performance degrada-
tion is to query the system about their submitted jobs, which causes even

more performance degradation.

Security: Security has not been a top priority of Condor, in part due to
its targeting of institutional environments, which are assumed to be trust-
worthy. Therefore, Condor security mechanisms are sufficient for so called
safe environments, where users are supposed to cooperate with one another

[1.

Fault Tolerance: Being a framework oriented for non-technical users,
Condor has developed a fault tolerance oriented culture to allow smooth
management of the system, incorporating some fault tolerance mechanisms.

For instance, its Unix version implements automatic and transparent check-

2.6. MAJOR DESKTOP GRID MIDDLEWARE 29

pointing of applications []. Condor can be set to periodi-
cally checkpoint a task either to local storage or to a pool-wide checkpoint
server. The checkpointing is performed at the system level, with the whole
image of the process that runs the task being saved to stable storage. Al-
though the checkpoint mechanism comports some minor restrictions, like
the need of the application to be linked against Condor special libraries, the
impossibility to use certain system calls like fork() and its relatively large
size of checkpoint files, it is one of the few solutions that provides usable
and transparent checkpointing. At the harvested resource level, Condor’s
processes are hierarchically organized, such that upon detection of the fail-
ure of a process, an upper-level one can regenerate it. Only the failure of
the master process (condor_master) renders the resource unusable, from a
Condor point of view, at least until the next restart of the master process.
A problem, which arises from Condor’s centralized architecture, lies
in the consequences of a somewhat prolonged failure of a pool’s master
machine. Indeed, upon a failure at the pool’s server (for example, the server
crashes or is cut off from the network), the running tasks are lost, although
they are automatically restarted whenever the server recovers.
Other examples of batch systems for scavenging cycles in local environ-
ments include Sun Grid Engine (SGE) []and Alchemi.Net [
]. Both exhibit strong similarities with Condor and for this

reason, we will omit the details.

2.6.2 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC) is an
Internet-wide distributed computing middleware which aims to harvest
computing resources []. BOINC was developed by the SETI-
@home’s team to provide a generic solution for exploiting desktop grid
resources. Indeed, before BOINC, public and Internet-wide computing-
intensive scientific projects such as GIMPS [], distributed.net [

] and the first version of SETI@home, had to develop the
whole infrastructure, instead of focusing solely on their applications. This
was cumbersome, time consuming, and clearly inefficient. BOINC was
created precisely to ease the setup and management of public computing
projects, letting submitters to focus on their applications. Furthermore, the
BOINC platform also eases the procedures for resource donors, allowing

30 CHAPTER 2. DESKTOP GRIDS

owners to share their resources among several projects, without much bur-
den.

A major asset of the BOINC middleware is the fact that its develop-
ment is being coordinated and pushed forward by real desktop grid users,
namely the SETI@home’s team. Moreover, its adoption by other major pub-
lic computing projects have widen its base of users, and brought new real
problems to solve. Indeed, due to its open source nature, other users are
able to contribute. Thus, the resulting platform is highly usable, providing
out-of-the-box solutions for many problems that arise on wide public desk-
top grids. BOINC provides the whole software needed for implementing a
full desktop grid project.

The BOINC framework acts at the level of a project, where a project is
setup by an organization and comprises not only the application(s)® whose
execution is sought across the volunteer resources, but also the recruitment
phase, where resource donors are recruited to participate in the project.
Indeed, to participate into a BOINC project, a resource donor must install
the client-side software and register the resources to volunteer so that they
can ask for tasks to process from the selected project. A project is accessible
at its master URL, which is the home page of the project’s web site. This
URL also serves as a directory of scheduling servers.

Before recruiting volunteers, a BOINC project requires a server-side in-
frastructure (server complex in the BOINC jargon) able to support the server
processes, like management and distribution of tasks to workers, reception
and validation of results, registering and unregistering of volunteers, just
to name some of the operations that are the responsibility of the BOINC
server-side. Specifically, the server complex involves hardware (server ma-
chines and network bandwidth), and all the software infrastructure (data-
base, different processes, etc.) provided by the BOINC middleware, which
needs to be configured for the project. In addition, the coordinators of a
project need to provide the application that effectively executes tasks at the
volunteer resources (possibly in several versions to support distinct plat-
forms). This application needs to be integrated into the BOINC platform,

Note that a project can involve one or more applications, and the set of applications can change
over time.

2.6. MAJOR DESKTOP GRID MIDDLEWARE 31

requiring that it calls some of the BOINC'’s functions, like boinc_init() and
boinc_finalize() and others if more than a basic integration is sought’.

Note that although both Condor and BOINC aim to exploit idle re-
sources, their targets are quite different. As stated before, Condor is ori-
ented toward easy exploitation of local area resources. Conversely, BOINC
focuses on public computing, and it is much more labor intensive for task
submitters. For instance, deploying and maintaining a BOINC project re-
quires important setup, maintenance and recruitment efforts. In fact, it is
not unusual for a BOINC public project to have a somewhat long beta phase
(several months) to iron out issues regarded to the worker application(s)
and infrastructure. Moreover, BOINC creates an asymmetric scavenging
system, since all donors which have they resources working for a project
are themselves unable to profit from the computing power for running their
own applications.

The advantage of BOINC stems from the potential of attaining a much
wider audiences. Interestingly, Condor supports seamless integration with
BOINC, meaning that a machine that integrates a Condor pool and has the
BOINC client installed, will have its idle time harvested for any BOINC-
based project the machine might be attached as long as no Condor task
exists than can be run at the machine.

Architecture

The BOINC middleware is organized into two main modules: the server-
side and the client part. BOINC follows a reverse client-server model, which
as the name implies, is the traditional client-server with reversed roles. So,
instead of having a client that requests services from a server, in the re-
verse client-server model, the client actually requests tasks (workunits in
BOINC's jargon) to process, and thus performs work for the server. Next,
we describe the server-side complex module and then the client module.

Server-side The BOINC server-side, also known as the BOINC server com-
plex, is centered around a relational database that holds all the metadata

7BOINC also supports so-called legacy applications where no code modification can be per-
formed — for instance, the source code is not available, solely the binary is — but a much better
support is achieved if the application is integrated into the BOINC framework.

32 CHAPTER 2. DESKTOP GRIDS

A
i % E N [\o\:
i : " & Ul
vqur:teers Web interfaces BOINC
; | : database
: X E
! :
F e LEE—
BOINC client 5 ot & L
API : Task server Application
* Core E database
Project specific '
] g
Workers : S .
4 _Data server File storage)
Client-side Server-side complex

Figure 2.4: Generic representation of BOINC (adapted from [
D.

associated with the project such as applications, platforms, versions, tasks,
results, volunteer accounts, teams and so on |].

A BOINC server-side also includes a web interface, a task server and a
data server |]. Specifically, web interfaces exist for ac-
count and team management, message boards, and other features. The
task server creates tasks, dispatches them to workers, and processes the
returned results. It includes several components like the work generator,
the scheduler, the feeder, the transitioner, the validator, the assimilator, the file
deleter and the database purger. Finally, the data server makes available in-
put files and executables to be downloaded by the workers, and allows the
uploads of output files. The interaction of these server-side BOINC com-
ponents with the client-side is depicted in Figure 2.4.

Client. In a BOINC project, volunteers participate by running the client
software part on their computers. The client software of BOINC consists of
several components [1, namely, applications, core client,
manager and screensaver, as illustrated in Figure 2.5. The applications are
the reason for using BOINC, since they represent the real work that the

2.6. MAJOR DESKTOP GRID MIDDLEWARE 33

projects managers want to have performed. As stated above, a resource
owner might have her machine(s) attached to more than one project at once.
BOINC handles the distribution of local resources through the applications,
namely CPU, according to the user preferences (for example, it can be con-
tigured to split 20% CPU for application A, 30% for application B and 50%
for application C).

The BOINC core client, which is also known as the BOINC daemon, han-
dles the operations with the server-side, communicating with the sched-
ulers and managing both download and upload operations. For instance,
it is responsible for sharing local resources among applications if the host
is attached to several BOINC projects. The core client interacts with the
worker applications through the runtime system and by way of a library
that needs to be linked with the application. Specifically, the communi-
cations between the core client and the applications are done via message
passing of XML messages exchanged through shared memory. Note that
having the core client dealing with all communications and management
issues allows application programmers to focus mostly on their applica-
tions, without having to deal with the burden of interacting with the server-
side. As stated by their authors, BOINC is designed to be used by scientists
or other resource-hungry users that are not system programmers or IT pro-
fessionals []

The BOINC manager provides a graphical user interface to view and
control computation status. It communicates with the core client using re-
mote procedure calls over TCP. In fact, BOINC manager handles manage-
ment requests from any software that communicates via the BOINC GUI
RPC protocol.

Finally, the screensaver module, if enabled by the volunteer, runs when
the computer is idle. It does not generate screensaver graphics by itself, but
rather communicates with the core client, requesting that one of the run-
ning applications display an appropriate screensaver. Note that although
including support for a screensaver in the client might be seen as displaced,
since it is not fundamental for the execution of the applications, it is a mech-
anism that can attract and retain volunteers. In fact, much of the initial

success of SETI@home was due to its appealing screensaver®.

8Some authors even use the term Screen Saver Science to describe Public Resource Comput-
ing [1.

34 CHAPTER 2. DESKTOP GRIDS

Application
API
Runtime library

¢ __w Taskserver(s) |
<

GUI RPC \ﬁ Data server(s) \

Wl N

\\screensaver\ | manager \/

e

volunteer

Worker

Figure 2.5: BOINC'’s client-side components (adapted from [
D-

Analysis

Non-interference: The level of obtrusiveness of BOINC relatively to the vol-
unteered machine can be configured by the resource donor, indicating, for
instance, the time periods when the foreign applications should run, the
maximum amount of storage space that can be used, and when the applica-
tion can connect to the Internet. BOINC executes its applications under the
lowest priority level provided by the operating system. In addition, a vol-
unteered host can be configured under a more strict sharing policy, with
foreign applications only allowed to run when no local user activity is tak-
ing place.

Usability: Since it targets public resource computing, BOINC strongly fo-
cuses on usability in order to recruit and retain thousands of volunteers.
For instance, the graphical manager aims to be a simple interface for non-
computers savvy donors to understand and configure their resources. Ad-
ditionally, to ease the aggregation and maintenance of multiple machines,
BOINC allows a donor to aggregate her machines under three base profiles:
work, school and home. A change in a profile is propagated to all machines
of this donor that are attached to the profile.

2.6. MAJOR DESKTOP GRID MIDDLEWARE 35

An interesting feature of the BOINC framework lies in its automated
management of application’s update. Whenever a project releases a new
version of its application, the BOINC client of the attached machines down-
loads the new version, verifies its correct signature and then replaces the
old one. However, this does not happen with the BOINC core client to
preclude malicious updates.

Usability is not restricted to the client part. Indeed, although some com-
puter knowledge are definitively required for setting up a server-side com-
plex, much of the burdening work is facilitated by BOINC comprehensive
set of tools and templates. For instance, the project web site, with support
for user forums, volunteer statistics and even the socially rewarding feature
user of the day is relatively straightforward to configure.

Scalability: Although based on a centralized architecture, BOINC cur-
rently supports large volunteer computing projects. For instance, the SETI@-
home project has more than 170,000 active resource donors totaling more
than 300,000 machines®. In fact, in its early version, SETI@home (non-
BOINC based) endured a much more higher popularity than anticipated,
forcing their developers to focus on the server-side scalability. BOINC has
inherited much of these scalability-oriented features and has continued to
be developed along this path. In part, the scalability is achieved by decou-
pling web functions from task functions and data related ones. Also, for
the more solicited components, is it possible to distribute them to several
machines to spread the load. Some protection also exists at the client side,
like exponential backoff, upon which a client whose request could not be
served at the server-side will exponentially augment its waiting time in-
terval and add a random value, before performing a new request attempt.
This serves to avoid workers saturating the server-side after, for example,
a prolonged downtime occurred at the server-side.

Security: Security in BOINC is a very important issue. At the server
complex level, security issues arise with the web server and database com-
ponents (MySql, PHP, etc.), although eventual vulnerabilities in these com-
ponents are not the responsibility of BOINC. However, by gaining unau-
thorized access to the volunteer database, a malicious user can, for instance,
change the configuration settings of the volunteer machines. Note that re-
placing an application’s binary by a malicious file, for instance a Trojan, re-

http://www.boincstats.com/, June 2007.

36 CHAPTER 2. DESKTOP GRIDS

quires the file to be signed with the project’s private key, since the BOINC
core client always checks the signature of a candidate application signature
before replacing a binary. Thus, to protect against effective binary replace-
ment at the server’s, the project managers must securely keep the private
key. Anyway, any security hazard that might occur in a high visible BOINC
project would seriously undermine the credibility for resource volunteer-
ing and would probably mean the loss, at least temporarily, of many vol-
unteers. However, it should be noted that security hazards involving pop-
ular components like web server and database are usually quickly fixed,
and thus conscientious security procedures at the server side diminish the
risks.

At the client side, few security provisions are taken. In fact, since BOINC
does not yet implement sandboxing, a buggy, or even worse, a malicious
application can cause serious damages. On Windows machines, this is
further aggravated since BOINC tends to be executed as a Win32 service,
which by default is installed under the Local System Account, the highest
privilege level.

Another security menace at the client side relates with the possibility
of a volunteer to replace the binary of an application to which the ma-
chine is attached to. Anecdotal episodes have shown that replacing the bi-
nary application is a rather straightforward operation for local users with
administrator privileges'’. One example was the Akos Fekete’s episode.
Akos Fekete was an Einstein@home contributor from Hungary, and used
his knowledge of assembly programming to produce an optimized ver-
sion based on the official binary application. His version more than dou-
bled the performance of the original one, all of this done at the binary
level, since he did not have access to the application source code [

]''. The patched version was rapidly spread through the project’s
forum, with enthusiastic volunteers replacing the official binary with the
patched one, in order to have their resources processing more work per
time unit, and thus earn more credits. All of this was done without the
approval of the project coordinators. Although the outcome of this episode
actually benefited the project — some of the improvements were incorpo-

10This also casts doubts about the soundness of the binary signature scheme, since the binary of
the hosted application can locally be replaced by another one.

1T Although BOINC is open source, public projects rarely release their applications source code,
in part to avoid the surge of unwanted versions or for fear that a security issue can be exploited.

2.6. MAJOR DESKTOP GRID MIDDLEWARE 37

rated in the official version of the application — it illustrates the fragilities of
the BOINC client security model. Indeed, a malicious user could follow a
similar approach to spread a patched binary that would disrupt the compu-
tations, and in fact further patched versions from the well intentioned Akos
Fekete were banned by the project coordinators fearing that an optimiza-
tion could disrupt the integrity and soundness of the results. In summary,
although BOINC provides some security features, volunteering resources
for a BOINC project requires a certain amount of trust.

Fault tolerance: Since it targets highly volatile environments, BOINC
provides some support for fault tolerance. Indeed, one of the goals of
BOINC is autonomy in the sense that the software should recover with-
out human intervention from problems, even those caused by unexpected
volunteer actions []. For instance, the framework sup-
ports redundancy at the level of database servers, thus potentially increas-
ing availability with the added bonus of scalability. Likewise, the detection
of dead worker machines is performed through a simple soft state mechanism,
upon which a task is assigned a deadline when scheduled to a worker.
Whenever the worker fails to return the results before the deadline expires,
the supervisor reassigns the task to another worker. In addition, results that
are received past the respective deadline are discarded by the supervisor.

At the worker level, the BOINC client supports some application-level
checkpointing, meaning that applications themselves should incorporate
checkpoint capabilities to tolerate local node failures. The application should
notify the core client when it starts and terminates a checkpoint operation.
This is needed in order to allow the BOINC client to update some state
data, namely the CPU time used so far, which needs to be saved to persis-
tent storage, so that it can be later restored. Additionally, knowledge of a
recent checkpoint operation helps the core client scheduler to decide if it
should or not replace a running task by another one belonging to another
project, in the case the machine is participating in more than one project.

By default, the validation of results is achieved through replication with
majority voting, where the number of replicated instances is set by the
project coordinators. For projects extremely sensible to numeric variation,
BOINC also supports homogeneous replication, upon which replica in-
stances of a task are solely assigned to equivalent machines, that is, ma-
chines that have the same CPU vendor and the same operating system of-

38 CHAPTER 2. DESKTOP GRIDS

fering guarantees that their outcomes are identical if properly computed.
Homogeneous replication allows result validation through strict equality
comparison (i.e., bit-to-bit identical results) []. Although
validation through replication has the advantage of being a generic mech-
anism, which can be used without adaption by any project, it is vulnerable
to collusion. In fact, as a follow-up of the Akos Fekete’s episode, right af-
ter the beginning of stage S5, the Einstein@home project coordinators were
forced to ignore results from further Fekete’s optimized versions since they
feared that errors could exist and that the outcome of the project would
not be scientifically accepted. Moreover, due to the relatively high level of
adoption of the patched version, the probability of the instances of a same
task being executed by a patched version was significant. Since the project
was using a minimum quorum of 2 for validation'?, this meant that possi-
ble errors would not have been caught by the validation mechanism if two
paired workers were using the same version.

Accountability of resource usage: The credit assignment mechanism of
BOINC also relies on replication. Indeed, whenever an application sends
back the result of the task it has just completed, it appends its claim for
credit, asking for the number of credits corresponding to the produced
computing effort'*. The project coordinators are free to implement the pol-
icy they consider best suited for the project, taking in consideration the
credit claims of the instances of a same task. For example, it is possible
to define the computing credit of a task as the arithmetic average of the
credit claims of all instances, or more drastically (from the point of view of
resource donors), as the minimum credits claimed among all instances.

Fostering motivation: An interesting feature of BOINC lies in the sup-
porting features oriented for motivation of volunteers. Indeed, besides the
above cited support for graphical screensaver, BOINC’s default installa-
tion includes message forums where volunteers and project coordinators
can exchange tips and point of views, possibly fostering social ties. The
project web site also allows a volunteer to consult the status of the com-
puted workunits, and of her volunteered machines. Moreover, a BOINC
project also includes web rankings, where volunteers are ranked accord-

121 the stage S5 the Einstein@home project reduced the minimum validation quorum from 3 to
2, in order to have more computing power available.

13The credit claim is computed by the application, but this value can be jeopardized by cheaters
trying to boost their credits.

2.6. MAJOR DESKTOP GRID MIDDLEWARE 39

ingly to their credits. Volunteers can also be organized in teams. All of this
fosters competition and rivalry among volunteers and teams, increasing
the motivation for volunteers to bring additional resources to the public
desktop grids []. Additionally, the server complex
can produce, if configured to do so, a plethora of statistics related to the
computations and volunteers, and export it in XML format. Several statis-
tics aggregator web sites have emerged!#, which process the XML files and
display the statistics for all major projects. Also, third party enthusiasts,
have developed BOINC related tools, with functionalities that range from
monitoring a local BOINC installation to control a full network of BOINC
installed machines.

An extension to BOINC: SZTAKI Desktop Grid

The SZTAKI Desktop Grid (5ZDG) is an extension to BOINC developed by
the Hungarian MTA SZTAKI [;]. The
extension is aimed at enabling local desktop grids (LDGs), that is, institu-
tional and enterprise level desktop grids. In particular, SZDG allows for an
easy setup and implementation of a private computing project supported
solely by local computing resources. This can be important for desktop
computing projects that can only resort to local resources, for instance due
to data privacy or other similar reasons.

Another major feature of SZDG is the possibility of exploiting hierar-
chically organized resources in an almost transparent manner. In fact, un-
der SZDG computing resources can be stacked in a hierarchical way, ex-
tending the classic server-client model of BOINC. In this way, SZDG al-
lows aggregated resources such as clusters or local sets of computers to be
transparently used, with such resources appearing as powerful but as a sin-
gle computing element from the perspective of the BOINC server [

]. For this purpose, SZDG implements a hybrid BOINC mod-
ule (named child LDG server), which sits between the main server and the
end-level resources that actually execute the tasks. On the one hand, this
hybrid module requests tasks from the main server and thus appears as a
regular client, yet a powerful one, to the main server. On the other hand,
the hybrid module acts as a server for the resources that sit lower in the hi-
erarchy, providing them the tasks it has itself obtained from the main server

4http://www.boincstats.com

40 CHAPTER 2. DESKTOP GRIDS

and forwarding their results to the main server. The hybrid module han-
dles specific issues such as the automatic deployment of applications and
tasks at the workers’, guaranteeing the integrity of the binary code and of
the input data.

To ease the programming of applications to be executed on a BOINC-
SZDG environment, SZDG provides an API, named the Distributed Com-
puting Application Programming Interface (DC-API). As stated by the authors,
the API aims to be simple and easy to use. Nonetheless, the DC-API also
provides advanced features to support more demanding scenarios [

], allowing programmers to have a finer control of SZDG. Besides
easing the adaptation of applications to SZDG, the DC-API also isolates the
applications from the executing back end. In this way, an application can
be moved from an executing environment to another one, requiring just the
recompilation of the code.

The SZDG framework also allows for the execution of parallel appli-
cations, providing support for parallel environments such as the Message
Passing Interface (MPI) in clusters. In this mode, the application is handled
by another modified BOINC client-server module that sits at the front-end
machine of the cluster []. This module acts as a wrapper
to the parallel environment of the cluster, interacting with the appropriate
components in order to submit tasks and to collect the results, forwarding
them back to the upper layers of the hierarchy.

2.6.3 XtremWeb

XtremWeb is a volunteer open source platform middleware developed at
the University of Paris-Sud, France [; 1. It was
designed to study execution models in global computing, but has evolved
to a rather complete desktop grid environment. Contrary to the BOINC
platform, XtremWeb has a relatively discrete public exposure and focuses
mainly on important research issues such as the support for multiple ap-
plications, security and portability, besides high computing performance.
Despite its commitment to research, XtremWeb is a valuable desktop grid
platform. In fact, it has already been used in several large scale desktop
grid projects, as reported in [I

Bhttp://www.xtremweb.net

2.6. MAJOR DESKTOP GRID MIDDLEWARE 41

Architecture

The XtremWeb infrastructure is comprised of three main types of compo-
nents: the coordinator, the client and the worker []. The co-
ordinator is responsible for hosting applications and tasks submitted by
clients and for scheduling the tasks to the workers which express their will-
ingness to donate some CPU time. The coordinator orchestrates the execu-
tions over the volunteer resources. On the current implementation of the
architecture, there is one coordinator, although the architecture is prepared
to support multiple coordinators for the sake of fault tolerance and load
balancing.

Workers run at the volunteer machines, and are the entities that actually
execute the tasks. A worker monitors the load of the resource, and when-
ever conditions are met (i.e., local load is below a given threshold and no
interactive activity is observed for a while), the worker executes a task that
might have been interrupted previously, or if no task exists, it requests one
from the server. It then proceeds to execute the task. On completion, it
sends back the results to the server.

The client term under XtremWeb designates the module from which an
user can submit an application and the tasks she wants to have executed
by way of the scavenging platform. Note that this departs from the BOINC
nomenclature, where the client designates the module that actually exe-
cutes the task/application (identified as worker under XtremWeb).

In XtremWeb, the client module acts as an intermediary between the
user’s application and the scavenging system []. Itis
implemented as a library plus a daemon process. The daemon process
runs at every machine that allows the submission of applications. The li-
brary provides an interface between the application and the coordinator.
The basic actions ensured by the client are identification, submission of
tasks and results retrieval. The existence of a client module in XtremWeb
is related to the platform support for multi-application/multi-users, since
XtremWeb allows for the coexistence of multiple executing applications
possibly submitted by different users, departing from the BOINC single-
application model. This way, XtremWeb can be seen as a generic harvesting
system, much like Condor, but inherently designed for wide-scale environ-
ments. In fact, XtremWeb and Condor can be combined together for en-
abling resource sharing among firewall- and NAT-isolated clusters, form-

42 CHAPTER 2. DESKTOP GRIDS

ing a lightweight grid of Condor pools []. In this
scheme, the workers of XtremWeb execute as Condor tasks, fetching their
jobs from the central XtremWeb's coordinator, which can be located in a dif-
ferent administrative domain from the machines that run the XtremWeb’s
workers.

Analysis

Non-interference: Obtrusiveness in XtremWeb is controlled by the moni-
tor thread of the worker and follows the standard approach of scaveng-
ing system: a resource is considered idle in the continued absence of local
interactivity combined with low local load activity. Similarly to BOINC,
communications are also worker-initiated. Therefore, firewall policies and
NAT systems are not an impeding issue.

Usability: Usability of XtremWeb is enhanced by its support for mul-
tiple applications, which allows several users to concurrently exploit the
computing resources. This allows to setup XtremWeb for harvesting pri-
vate, yet geographically dispersed resources. Regarding platforms, Xtrem-
Web supports Windows, Linux and Mac OS, and further support is facili-
tated by its Java-based infrastructure!®

Scalability: Since the coordinator module can be distributed, XtremWeb
scalability should be good. In this context, experimental results are limited
to 1000 machines [].

Security: As stated before, security is a main focus on XtremWeb, es-
pecially at the level of protecting volunteered resources. For that purpose,
XtremWeb executes applications under sandboxing, either through an own
implemented sandbox environment, or resorting to the Java sandbox, in
the case of Java applications.

Fault Tolerance: XtremWeb does not provide explicit support for check-
point and restart, thus forcing applications to resort to application-level
checkpointing if such feature is needed. Moreover, submitters are also re-
sponsible for verifying the computed results, since no provision for repli-
cation exists. However, the coordinator periodically stores, on persistent
storage, the data and metadata concerning tasks and workers. On restart,
the coordinator reads the stored data for setting its own state, and then re-
trieves tasks that have already been scheduled [].

16There is also a version of XtremWeb written in C++.

2.6. MAJOR DESKTOP GRID MIDDLEWARE 43

This centralized logging of state data by the coordinator also allows the
system to tolerate client’s faults and mobility, since the results from a task
can be retrieved through any client machine.

2.6.4 GridMP

GridMP departs from the previously reviewed desktop grid middleware
by the fact of being a commercial product, distributed by United Device, Inc.
It is a closed platform, and thus scarce information exists relatively to its
inner architecture and working.

Note that although the Entropia desktop grid middleware has been ex-
tensively studied in the literature!’(e.g. []) and thus would
have been a natural choice for being reviewed here, the Entropia, Inc. com-
pany seems to have disappeared, taking along the commercial middleware.

GridMP is available in five versions, all based on the concept of harvest-
ing resources []. The versions are: GridMP Enterprise,
GridMP for clusters, GridMP on demand, GridMP Global and GridMP Alliance.

GridMP Enterprise targets enterprise desktop grids, aggregating com-
puter resources across servers, end-users machines and clusters. GridMP
for clusters is more specific, since it aims to simplify the management of
clusters. The GridMP on demand is a pay-per-use compute service for users
that need access to high performance compute power without having to in-
vest on permanent resources. GridMP Global is a wide public grid for large
institutions performing research and analysis projects. It gathers volun-
teer resources (which have installed the GridMP global’s client) support-
ing large projects such as fightcancer@home. Finally, GridMP Alliance is a
solution that allows owners of vast underutilized resources to commercial-
ize their computing power by selling it to GridMP on demand customers.
In this review, we focus on GridMP Enterprise, since it incorporates all the
main features of a desktop grid middleware. GridMP targets institutions
that aim to harvest their own resources’ spare cycles with guarantees of
a high level of security for both the applications and the associated data
that are to exploit underutilized resources. Indeed, GridMP has a strong
emphasis on security, resorting to sandboxing, and to the encryption of
data and communications. According to United Devices, Inc., some of the
clients of GridMP include pharmaceutical, life sciences, geosciences, finan-

17Some of the Entropia founders have had strong links to the academic world.

44 CHAPTER 2. DESKTOP GRIDS

cial services and industrial engineering companies, to name just a few, most
of them dealing with sensible and valuable data. GridMP was also used
as the desktop grid middleware for the World Community Grid, which is
a volunteer-based resource powering large-scale, public interest research
projects []. However, the World Community Grid switched in
2005 to the BOINC middleware.

The GridMP platform is comprised of three primary components: (1)
tools and interfaces, (2) a server and (3) local running agents [

]. As the name implies, the tools and interfaces allow users, application
developers and resource administrators to interact with the system. Specif-
ically, GridMP provides application services that are wrappers with simple
interface abstractions to allow applications to be run without any code
modification on GridMP’s managed resources. In addition, a software devel-
opment kit is provided for deeper integration of applications. For instance,
this allows to implement pipeline-like dependencies on applications, or to
exploit parallelism. Both resources and applications can be monitored and
controlled through the web management and reporting console. Note, that ac-
cording to its marketing brochure, GridMP can run on Windows and Linux

machines.

The server acts as the core element in GridMP. It is responsible for
matching the users” demand for resources and the availability of resources.
Its main functions include resource management (which machines are au-
thorized to join the pool), user management (which users can access the
system for submitting and monitoring applications), application and work-
load management (scheduling applications to resources, and dealing with
faults and resource overloads) and data management!8. Finally, the agent
is the software that connects a resource to GridMP. Its primary functions
are to detect idle cycles on the computer where it runs, to request jobs from
the GridMP server, to execute them and to send back the results.

Other commercial desktop grid systems include Frontier from Parabon
Computation [], GridServer from Data Synapse [
] and Digipede [].

18GridMP allows data requests to be treated separately from application to allow data reutilization,
that is, allowing that applications requiring the same set of data can be preferentially scheduled on
the same resources to allow data reuse.

2.6. MAJOR DESKTOP GRID MIDDLEWARE 45

2.6.5 P2P-based Architectures

To the best of our knowledge, no generic P2P-based middleware exists for
cycle harvesting, contrary to file sharing, where a significant number of
functional and quite popular frameworks are in broad usage.

The Cluster Computing On the Fly (CCOF) is a scalable and modular
peer-to-peer cycle sharing architecture for open access and wide-scale en-
vironments. It aims at executing generic bag-of-tasks (BoT) applications
over harvested resources. One of the interesting features of CCOF lies in
its so-called wave scheduling policy, upon which resources are organized
accordingly to their geographic timezones [. The goal is
to schedule tasks in a way that executions occur mostly on the nighttime
period of resources. For that purpose, tasks running on resources that are
close to enter daytime (and probably about to be claimed back by own-
ers) can be migrated by the scheduler to resources which are in nighttime.
This way, tasks follow nighttime’s located resources like a wave around the
globe, hence the name given to the scheduler.

Regarding the submission of applications, CCOF fosters a symmetrical
harvesting model, upon which peers donate resources but are also able to
harvest other peers’ resources, by submitting themselves applications. This
departs from the single submitter model implemented by BOINC and other
centralized middleware. However, note that this submission model opens
up a whole lot of security and trust problems. Additionally, an economical
model is needed to control submission of applications, specially to discour-
age the so-called free riders (i.e., application submitters that exploit the sys-
tem giving much less on return) and other non-social behaviors. Economi-
cal incentives are also needed for resource owners, since without the exis-
tence of a cause like a challenging scientific project like SETI’s search or Ein-
stein’s gravitational wave analysis, resource owners will have no incentives
to aggregate their resources to the CCOF-based desktop grid. CCOF only
seems to exist as an architecture proposal, with its main concepts studied
through simulations. Indeed, no implementation nor prototype appears to

exist.
The Personal Power Plant (P3) [] promotes CPU cycle
harvesting. This research project resorts to the JXTA [|

P2P middleware for implementing high level services, such as master-worker
and Message Passing Interface (MPI) parallel programming libraries. JXTA

46 CHAPTER 2. DESKTOP GRIDS

allows transparent firewall and NAT traversal at the cost of communication
performance. Although, P3 already addresses some issues like sabotage-
tolerance through replication, it currently only supports Java application.
In fact, the project is still in an early stage of development, and a production

version seems distant in time.

Han and Park propose a lightweight Personal Grid (PG) formed out of
unstructured peer nodes []. Contrary to the current wide-
scale desktop grid projects, where only the coordinating entity can submit
tasks, PG’s main goal is to allow that any individual can have her own
multi-task application(s) executed over the volunteered resources. PG has
no central control, implementing a peer-to-peer model. Specifically, the
proposed system explores a network of super nodes, calling cluster to a set
of worker nodes that is connected to a same super node. The aggregation
of a worker node to a given cluster (a worker node is only connected to a
single super node) is determined by the network proximity: on the pro-
totype implementation, two nodes are considered close if they can reach
each other through a link level broadcast, and thus belong to a same local
network. Since any node can submit an application to be executed over a
network of workers, PG has a mechanism to match applications” demands
to existing resources. Indeed, to submit a task, the submitter node releases
an advertisement to the network. This advertisement, which holds a meta
description of the task (URL of the needed files, message digest codes, etc.)
is sent to the super node which then forwards the metadata through the
network of super node and so on. To avoid flooding, the advertisement is
limited by a time to live (TTL). When terminated, the results are sent back to
the submit node. Contrary to the server-based model where only a central
and credible entity can release tasks, PG is prone to malicious submitters
and thus security of both resources and tasks’ results are important open

issues.

CompuP2P is a peer-to-peer based architecture which aims to allow peers
to share computing resources such as CPU, memory, storage, etc. under an
economical market model []. CompuP2P uses ideas
from game theory and microeconomics to foster incentive-based schemes
for peers to share their otherwise idle resources. CompuP2P resorts to
the Chord DHT overlay for addressing and connecting nodes. To cope
with node failures and departures, the system relies on dynamic checkpoint-

2.7. SUMMARY 47

ing, upon which the unused memory of peers nodes is used for storing
application-level checkpoints. In the true spirit of the CompuP2P’s com-
puting market, resources needed by dynamic checkpointing are also nego-
tiated. Note, that no information is given by the authors regarding how the
system tolerates failures of a machine holding dynamic checkpoints.
Other peer-to-peer based projects for exploiting idle cycles resort to
structured overlay networks. This includes Flock of Condor [

], WaveGrid [] and the self-organizing Wide area Over-
lay of networks of virtual Workstations (WOW) []. Flock
of Condor aims to dynamically organize the cooperation (flocking in the
Condor’s jargon) of pools of Condor, while WaveGrid aims to exploit time
zones, focusing on scavenging resources during nighttime, to benefit from
resource idleness. WOW departs from the former two by resorting to vir-
tualization to overcome network asymmetries and build an homogeneous

platform.

2.7 Summary

In this chapter, we presented the main motivations for resorting to desktop
grids, analyzing not only their main benefits, but also their major limita-
tions. Additionally, two types of desktop grids — institutional and public -
were discussed, and the main middleware for desktop grids were reviewed
with emphasis on the main characteristics such as fault tolerance, security
and scalability.

A common characteristic found in all reviewed desktop grids is their
centralized organization, with a server (or a set of servers) coordinating the
execution of tasks over volunteer resources. This centralization is mainly
justified by the communication model, which is worker-initiated, and re-
stricted to server-worker with no direct communications occurring among
workers. This a consequence of the network asymmetry, with NAT and
firewall schemes making difficult the direct communication between peers.

Regarding fault tolerance, it emerges that current desktop grid middle-
ware resorts both on checkpoint-and-restart mechanisms and on replica-
tion for detecting and tolerating faults. As we shall see in the next chap-
ters, both techniques can be further exploited to improve the makespan of
applications executed over desktop grids.

48

CHAPTER 2. DESKTOP GRIDS

Resource Usage In
Desktop Grids

It is common sense that the effective usage level of computing resources
is rather low, especially in environments where computers are mostly used
interactively for office and communication activities like web browsing and
email. Some studies focusing on Unix have shown that the vast major-
ity of workstations, desktop computers and even servers remain idle most
of the time []. In this chapter, we aim to quantify the usage of
main computer resources (CPU, memory, disk space and network band-
width) based on traces collected from real desktop machines running the
Windows 2000 operating system. First, we introduce the data collection
methodology, presenting the Windows Distributed Data Collection frame-
work (WindowsDDC) that was used to monitor the machines. Then, we
characterize the average resource usage of classroom laboratories, based on
a 77-day trace collected over 169 machines of 11 classrooms of an academic

institution.

3.1 Introduction

Today, academic institutions frequently have large dozens of PCs in their
classrooms and laboratories, with a large percentage of these PCs mostly
devoted to teaching activities. A similar situation happens at corporations
where computers are idle most of the time. Thus, most of the available
computing power simply goes unused. In fact, considering that these PCs
are only used during extended office work (from 8.00 am to 8.00 pm on
weekdays), it means that more than half of the time these machines are left
idle and could be used for running CPU demanding applications.

49

50 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

PCs of classrooms have an attractive characteristic for resource harvest-
ing: no individual user owns the PCs, while office computers are gener-
ally affected to an individual user who "owns" or acts as the owner of the
machine. Some of these individual owners do not tolerate schemes that
exploit idle resources. Therefore, the use of individual PCs for distributed
and parallel computing has to deal with social issues, besides engineering
and technological ones []. Computers in the classroom
are centrally managed, have no individual owner, and thus the social issues
regarding their use in resource harvesting are less cumbersome. Nonethe-
less, even without individual owner, care must be taken to avoid under-
mining regular user comfort, since resources are still primarily devoted to
interactive users. Gupta et al. [] analyze the relation be-
tween resource borrowing and interactive usage comfort, concluding that
resource stealing schemes can be quite aggressive without disturbing user
comfort, particularly in the case of memory and disk.

Our main motivation for studying resource usage was to characterize
the availability and the pattern usage of academic classroom computers,
quantifying the portions of important resources such as CPU, RAM, disk
space and network bandwidth which are left unused. In particular, we
were interested in differentiating resource usage according to the existence
or not of interactive login sessions, and their impact on resource usage.

3.2 The WindowsDDC Framework

The need to automate the periodic data collection over the machines to sur-
vey fostered us to develop a framework to support remote data collection
in local area networked Windows machines. The framework was named
Windows Distributed Data Collector (WindowsDDC). It aims to cover the
needs that arise in distributed data collection at the scale of local area net-
works of Windows PCs []

Besides the purpose to collect machines usage data, we felt the need
for a framework that would allow running a regular and unattended con-
sole application (termed as probe) across a set of machines. Such framework
could be used, for example, for regularly assessing the system performance
in the following manner: a benchmark can periodically be run over a set
of machines, with the meaningful data extracted from the collected out-

3.2. THE WINDOWSDDC FRAMEWORK 51

put of the benchmark. This would allow for an early detection of perfor-
mance drops. Alternatively, we could use this framework to spot probable
hard disk failures, resorting to the Self-Monitoring Analysis and Report-
ing Technology (SMART) [] values collected from the machines’
hard disks, with suspicious disks being flagged as having a high probabil-
ity of failing in a near future. These situations are just examples of what a
remote execution framework allows to achieve in a set of networked ma-
chines. Therefore, we required a distributed collection platform that would
follow these requirements:

e The framework should allow for easy collection, parsing and storage
of selected data over sets of networked machines;

e The framework should be modular and easily extensible, allowing
the easy integration of probes and associated post-collection filters in
order to fulfill further needs and opportunities for data collection;

e No restriction should be placed on probe, besides the requirement of
being a console application that can be run unattended;

e No software should be installed at remote machines in order to avoid
administrative and technical burdens. However, it is acceptable to
use a single dedicated machine (coordinator) for running the data col-
lection system as long as no special hardware is required;

e The system should be as autonomous and adaptive as possible in or-
der to minimize administrator interventions. For instance, the sys-
tem should cope with the transient nature of machines availability.
Ideally, the system should alert administrators only when abnormal
events that might require human intervention occur;

e Due to budget restriction, the framework should be based on open
source or freeware software;

e The data collector system should support Windows NT, 2000 and
XP. Additionally, the framework should allow a smooth transition to
Unix if needed;

e The system should be able to execute probes at remote nodes in one of
two modes: single-shot or periodic. The former serves for probes that

52 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

should be executed only once (e.g., a benchmark) while the latter, as
the name implies, periodically executes the probe (e.g., resource mon-
itoring). Additionally, single-shot mode needs to deal with volatile
machine availability, only terminating when execution of probe(s) has
occurred in all the specified machines;

e To keep low intrusiveness, the framework should allow remote exe-
cution of processes at a low level of priority.

The remote probing solution was chosen in part because it avoids the
installation of software in remote nodes, thus eliminating administrative
and maintenance burdens that remote daemons and alike normally require.
Another motivation for the remote probe approach is the possibility of tai-
loring the probe to our monitoring needs, capturing only the wanted met-
rics. The built-in remote monitoring capabilities like perfmon and Windows
Management Interface (WMI) [] were discarded for sev-
eral reasons. First, both mechanisms have high timeout values (order of
seconds) when the remote machine to be monitored is not available, a fre-
quent situation in the considered environments. Furthermore, both perfmon
and WMI impose a high overhead not solely on the remote machine but
also on the network. Perfmon’s overhead is caused mostly by the need to
transfer the remotely read data to the local machine, while WMI’s overhead
is a consequence of its dependence over Distributed COM (DCOM) for ac-
cessing a remote machine []. For these reasons, and since
to the best of our knowledge no system complied with our requirements,
we decided to develop WindowsDDC.

3.2.1 Experiments and iterations

WindowsDDC is based on a centralized architecture, with only one dedi-
cated machine (coordinator) running the coordinator module of Windows-
DDC. All the executions are performed in the context of what we term an
experiment. Specifically, an experiment is composed by one or more binary
probes and their associated post-collecting codes, plus the set of target ma-
chines where the execution of the probes should occur. A probe is simply
a win32 console application that runs unattended and emits its results via
the standard output (stdout) and the standard error (stderr) channels.

3.2. THE WINDOWSDDC FRAMEWORK 53

WindowsDDC organizes an experiment in successive iterations. An it-
eration consists of the execution attempt of every defined probes over the
whole set of target machines. WindowsDDC uniquely identifies an itera-
tion with the GMT time in Unix epoch format measured when the iteration
starts (to cope with time asynchronism among the monitored machines, all
time references are set by the coordinator machine).

An iteration is executed as follows: for every machine belonging to the
execution pool, the user-defined probes and their respective post-collect
codes are sequentially run. When the execution of all probes have been at-
tempted at a given machine!, WindowsDDC shifts to the next machine of
the pool. Figure 3.1 shows the sequential steps of the execution of a Win-
dowsDDC’s probe over a remote machine. First, (a) the remote machine
connectivity is checked through an ICMP ping. On success, (b) the probe
is executed in the remote machine. Next (c), output results are returned to
the coordinator machine. Finally, (d) these results are then post-processed
at the coordinator’s and stored.

DDC's core ﬁmota execution

(d) Post-process

~~—__(c) Remote output

\ % Mach. N

Coordinator machine Remote machines

Figure 3.1: Overview of WindowsDDC architecture.

At the coordinator machine, the results of the execution of a probe
are cumulatively redirected to text files (one file holds stdout, another one
stores stderr) whose names are based on the probe’s name. These files are
stored under a directory hierarchy (one directory per remote machine) with
the root directory named after the experiment name. This default logging

! An execution might not be successful, failing for several reasons — for instance the remote ma-
chine is down or without network connectivity.

54 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

behavior of the outputs can be replaced by user-defined code that gets exe-
cuted on the coordinator machine right after remote execution occurs. This
post-collecting code, which is specific to a probe, receives as input the re-
sults of the probe’s execution and can implement actions that the user de-
fines as deemed appropriate for the given context. For example, after pars-
ing and processing the execution’s output, post-collecting code can decide
to report a particular event via email. Besides the output of the execution,
the post-collecting code also inherits the execution context that contains
information relatively to the machine where the probe was executed, the
execution status (exit code from the probe), as well as the wall clock time
spent on the remote execution, among other data.

One of the configurable parameter for an experiment is the interval time
that should separate the start of two consecutive iterations and that effec-
tively defines the data collection frequency. So, after an iteration has com-
pleted, WindowsDDC pauses the execution until time has come to start the
next iteration. If this specified time interval cannot be respected, Windows-
DDC waits for a minimum time gap before starting the next iteration. This

prevents execution loops that spin in an uncontrolled manner.

WindowsDDC maintains a trace file for every probe of an experiment.
At the end of an iteration, a text line summarizing the outcome of the itera-
tion is appended to the file. This row starts with the time stamp identifier of
the iteration and includes, among other items, a comma separated list with
the machine names where the probe was successfully executed, a similar
list for failed executions (executions aborted due to timeouts) and a third
one that holds the names of the machines that were unavailable when the
execution was attempted (the ping attempt failed). This row also contains
the wall clock time that was needed to complete the iteration. A trimmed
example of a trace row is shown in Listing 3.1. From the data, it can be ex-
tracted that the iteration began at time stamp 1100441460 (in Unix’s epoch
format, meaning 14-11-2004 14:11:00 GMT) with 120 successful executions
(machine m01 and others), no failed executions and 49 unavailable ma-
chines (machine m12 and others) yielding 71.0% successful executions. The
iteration took 381.9 seconds. The listing also displays the next two entries,
1100442360 and 1100443260.

3.2. THE WINDOWSDDC FRAMEWORK 55

Listing 3.1: Extract of an Iteration File

1100441460112010149171.01381.9Im01,...| I ml2,... |

1100442360112410145173.41385.21m01,...| Iml4,...|
1100443260112410145173.41386.0/m01,...| I ml4,... |

The trace file of a probe can be used to drive an off line temporal analy-
sis of the probe execution. This file can also be used as a log, and in fact, the
periodic mail reports that are sent by a WindowsDDC experiment includes
the trace file (due to its high redundancy - the file contains mostly machine
names — the file is highly compressible and thus can be sent via email) as a
source of information regarding the evolution of the experiment.

3.2.2 Remote Execution

The remote execution mechanism of WindowsDDC is based upon the set
of freeware tools from SysInternals [], namely
the versatile psexec. Psexec is a utility that allows the remote execution of
an application given the proper access privileges. Psexec is a flexible tool,
configurable through appropriate command line switches.

In WindowsDDC, psexec is used as follows: an appropriate command
line that includes all the needed psexec switches and parameters, as well
as the probe executable name with its own command line arguments is
formatted and executed in the context of a separate thread within the Win-
dowsDDC core. The need of a separate thread for the remote execution
arises from the possibility of deadlock at the remote machine that would
stall WindowsDDC execution. Therefore, after a given time interval (con-
tigurable for each probe), if the execution of psexec has not yet terminated, a
timeout is triggered with the execution being aborted by way of canceling
the execution thread. Under these circumstances, the remote machine is
flagged as having failed the probe execution, with a new execution attempt
scheduled for the next iteration.

Since a target machine can be unavailable at a given time (powered off,
unplugged from the network, etc.), before attempting the execution of a
probe, the connectivity of the target machine is assessed with ICMP pings.

If no answer to the pings is received, the remote machine is assumed to be

56 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

unavailable and thus no remote execution is attempted in the current iter-
ation. The advantage of using ICMP pings over immediately attempting
the remote execution is that ping’s timeout can be controlled and thus set
to a lower value (for instance, hundredths of milliseconds) than the time
length it would take psexec to detect remote machine unavailability, which
is in the range of seconds. This way, detection of an unavailable machine
is much faster. Additionally, WindowsDDC’s ping mechanism also allows
to perform ping studies, where the machines are only tested for network
connectivity?.

3.2.3 Post-collecting code

An important element for WindowsDDC flexibility lies in its ability to ex-
ecute user-defined code right after the execution of a probe, allowing the
processing of the output channels (stdout and stderr). For that purpose,
post-collecting code needs to be written in the form of a Python? class that
extends the DDC_cnd class, implementing the method ParseResult (). This
method is executed by the main core of WindowsDDC at the coordinator’s
machine right after the remote execution has terminated. It receives as pa-
rameters, the probe’s stdout and stderr contents, an object representing the
remote machine that actually executed the probe, the execution exit code
of the probe, the iteration identifier, as well as other context data (e.g., the
directory path at the coordinator’s where the output files of the current ex-
ecution are stored). The base class method for ParseResult () is shown in
Listing 3.2.

WindowsDDC was a central piece in the monitoring infrastructure, al-
lowing us to collect the whole trace usage presented in this chapter, with-
out having to install any software at remote machines. In fact, for most
of the machines, we never physically accessed them, even ignoring the ex-
act physical location of some of them. WindowsDDC software is available
under the GNU Public License (GPL)*.

2 A drawback occurs if remote machines are blocking ICMP pings.
3http://www.python.org/
“http://www.estg.ipleiria.pt/"patricio/DDC/

3.3. METHODOLOGY AND MONITORED METRICS 57

Listing 3.2: ParseResult() Method (generic version)

Method to parse stdout/stderr (lists)
@param machObj [IN] machine obj.
@param status [IN] execution status
@param outList [IN] list with stdout (can be None)
@param ervList [IN] list with stderr (can be None)
@param execTime [IN] execution time
@param macroDict[IN] macro dictionary (used to extract the
directory of output file)
@param timestamp[IN] timestamp for "timestamping” events
@return None
def ParseResult(self ,machObj,status ,outList,errList,
execTime , macroDict, timestamp):
"Parse result of execution"
Convenience alias to m_CmdName
CmdName = self .GetCmdName ()
if status != 0:
print "%s — %s — exec. error — STATUS%s" % \
(CmdName, machObj . m_MachName, status)
else:
print "%s executed at "%s’ in %0.3f secs" % \
(CmdName, machObj . m_MachName, execTime)
if outList != None:
Debug
if self.m_DbglLevel > 4:
print "stdout: %d lines, stderr:%d lines" %\
(len(outList),len(errList))
Append SIDOUT/STDERR lists to save files
self.ListToSaveFile(outList , ‘OUT’ ,machObj, macroDict)
self . ListToSaveFile (errList , "ERR’ ,machObj, macroDict)

3.3 Methodology and Monitored Metrics

In this section, we present the monitoring methodology and the gathered

metrics.

3.3.1 Methodology

Our monitoring methodology resorted on periodically probing the remote
machines through WindowsDDC. Specifically, every 15 minutes an attempt
was made to perform a remote execution of a software probe (W32probe)
sequentially over the whole set of machines. Next, we detail the collected
metrics.

3.3.2 Monitored Metrics

For the purpose of this study we developed the W32probe probe. W32probe
is a simple win32 console application that outputs, via standard output (std-
out), several metrics aimed at characterizing the state of the machine that is

58 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

being monitored. These metrics are grouped in two main categories: static
and dynamic. Static metrics describe characteristics that typically remain
constant over time. Examples of such metrics include CPU name and type,
and the amount of installed main memory. Dynamic metrics are related
to current computing activity, measuring the usage of main resources. Dy-
namic metrics include CPU idleness percentage, memory load, available
free disk space and whether an interactive session exists at the machine.
Next, a brief description of the two categories of metrics is given.

Static Metrics

Static metrics comprise the following elements:

¢ Processor name, type and frequency: this identifies the processor name
and its frequency.

e Operating system: name, version and service pack version, if any.
e Amount of main memory: size of installed main memory.
e Amount of virtual memory: size of configured virtual memory.

e Hard disks: for every installed hard disk, W32probe returns a descrip-
tive string, the serial identification number and the size of the drive.

e Network interfaces: display the MAC address and the associated de-
scription string for every installed network interface.

Dynamic Metrics

Dynamic metrics collected from W32probe include the following items:

¢ Boot time and uptime: indicates the system boot time and the respec-
tive uptime, both expressed relatively to the moment when the probe

was run.

e CPU idle time: CPU time consumed by the idle thread of the operat-
ing system since the computer was booted. This metric can be used
to compute the average CPU idleness between two consecutive sam-
ples.

3.4. EXPERIMENT 59

e CPU idle percentage: CPU idle percentage since the machine was
booted. This metric simply corresponds to the division of CPU idle
time by the machine’s uptime.

e Main memory load: main memory load (as returned by the field dwMemoryLoad
filled by win32’s GetMemoryStatus () API function).

e Swap memory load: analogue to the main memory load metric but for
the swap area.

¢ Free disk space: returns free disk space.

e Hard disk power cycle count: SMART parameter that counts the num-
ber of power cycles of the disk, that is, the number of times the disk
has been powered on/powered off since it was built [1.

e Hard disk power on hour counts: SMART parameter that counts the
number of hours that a hard disk has been powered on since it was
built.

e Network usage: this metric comprises two main values and two de-
rived ones. Main values are total received bytes and total sent bytes.
Derived values are received byte rate and sent byte rate that are simply
computed, respectively, from total received bytes and total sent bytes.

¢ Interactive user login session: if any user is interactively logged at the
monitored machine, the username and domain name (if any), along
with the session initialization time are returned.

3.4 Experiment

34.1 Computing Environment

Using WindowsDDC and W32probe, we conducted a 77-day monitoring ex-
periment using 169 computers of 11 classrooms (L01 to L09) of an academic
institution for a total of 11 complete weeks. The monitored classrooms were
used for regular classes. Additionally, when no classes were being taught,
students used the machines to perform practical assignments and home-

work, as well as for personal use (email, web browsing, etc.). To avoid

60 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

any changes of behavior that could bias results, only system administra-
tors were aware of the monitoring experiment.

Each classroom has 16 machines, except L08 which only has 9 machines.
All machines run Windows 2000 professional edition (service pack 3) and
are connected via a 100 Mbps Fast Ethernet link. The main characteristics of
the computers, grouped by classrooms (from L01 to L11), are summarized
in Table 3.1. The columns INT and FP refer, respectively, to the integer
and floating-point performance of the NBench benchmark’s [I
NBench, which is derived from the well-known ByteMark []
benchmark, was ported from Linux, with the C source code compiled un-
der Visual Studio 2003 in release mode. Like its ancestor, NBench relies
on well-known algorithms to summarize computer performance with two
numerical indexes: INT for integer performance and FP to expose floating
point performance. It is important to note that the presented values are not
suitable for absolute comparisons with NBench original values, since the
operating systems and the compilers are different. However, the indexes
can be used to assess relative performance among the monitored machines,
since the same benchmark binary was used to compute the values. The fi-
nal column of Table 3.1 expresses FLOPS performance as given by the Lin-
pack benchmark [] compiled with Visual Studio .Net in
release mode. All performance indexes were gathered with the Windows-
DDC framework using the corresponding benchmark probe (NBench for
INT and FP, Linpack for MFlops). Figure 3.2 plots the cumulative distri-
bution of the machines according to their INT (left) and FP (right) perfor-
mance indexes. The plots present similar shape, indicating that a single
index (either INT or FP, or a combination of both) is enough for comparing
performances of a set of machines. Additionally, it can be seen from both
plots that, from a performance perspective, the machines can be roughly
ranked in four major sets.

Combined together, the resources of the 169 machines are rather im-
pressive: 56.62 GB of memory, 6.66 TB of disk and more than 98.6 GFlops
of floating point performance.

3.4.2 Settings and limitations

For the purpose of the monitoring experiment, the period for W32probe exe-
cution attempt over the set of machines was configured to 15 minutes. This

3.4. EXPERIMENT 61

Qty CPU RAM Disk size INT FP Linpack

(GHz) (MB) (GB) (MFlops)
LO1 16 P4 (2.4) 512 74.5 30.53 33.12 850.31
L02 16 P4 (2.4) 512 74.5 30.46 33.08 851.19
LO03 16 P4 (2.6) 512 55.8 39.29 36.71 903.18
L04 16 P4 (2.4) 512 59.5 30.55 33.15 847.23
LO05 16 PIII (1.1) 512 145 23.19 19.88 389.49
L06 16 P4 (2.6) 256 559 39.24 36.65 899.32
L07 16 P4 (1.5) 256 37.3 23.45 22.10 520.10
LO08 9 PIII (1.1) 256 18.6 2227 18.64 396.52
L09 16 | PIII (0.65) 128 145 13.65 12.21 227.37
L10 16 | PIII (0.65) 128 14.5 13.68 12.22 227.33
L11 16 | PIII (0.65) 128 14.5 13.68 12.22 227.32

Total | 169 - 56.25 GB 6.66 TB | 4315.69 | 4164.98 | 98654.12
Avg. - - 340.83 MB | 40.33 GB 25.54 24.64 583.75

Table 3.1: Main characteristics of the monitored machines.

40 40
INT — FP —
AVG —— AVG ——
35 35 i

30 30

25 25

20

20

INT index
FP index

15 15

10 10

5 5

0 0
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

Machines sorted by INT index Machines sorted by FP index
(a) INT

Figure 3.2: Machines sorted by their relative computing power.

value was a compromise between the benefits of gathering frequent sam-
ples and the negative impact that this strategy might cause on resources
(machines and network) and on the volume of monitoring data to process.

A 15-minute interval between samples means that captured dynamic
metrics are coarse grained, with quick fluctuations of values escaping the
monitoring system. For instance, a 5-minute memory activity burst using
nearly 100% of main memory is indistinguishable from a 10-minute period
with 50% memory usage, since samples comprising both memory usage
bursts will report the same average memory space usage. However, this
is seldom a problem, since all metrics are relatively stable, and thus not
prone to fluctuate widely in a 15-minute interval. The only exception is the
CPU idleness percentage, which is prone to quick changes. But, precisely

62 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

to avoid misleading instantaneous values, CPU usage is returned as the
average CPU idleness percentage observed since the machine was booted.
Therefore, given the CPU idleness values for two consecutive samples, it is
straightforward to compute the average CPU idleness between these two
samples, given that no reboot occurred in the meantime. If a reboot oc-
curred, then the sample taken after the reboot reports the average CPU
idleness since the machine was booted.

A subtle and unexpected limitation of our methodology was due to user
habits, particularly with users who forget to logout. In fact, over the origi-
nal 277,513 samples captured on machines with an interactive session, we
found out that 87,830 samples corresponded to users’ interactive sessions
lasting 10 hours or more. Since classrooms remain open 20 hours per day,
closing from 4 am to 8 am, these abnormal lengthy sessions have to do
with users that left their login session opened. To assert our hypothesis,
we grouped the samples of interactive sessions upon their relative time
occurrence since the start of the corresponding interactive session. For ev-
ery time interval the average and standard deviation of CPU idleness was
computed. Table 3.2 (page 63) presents these data, with the first column
corresponding to the time intervals, the second one holding the count of
samples, and the third displaying average CPU idleness jointly with the
corresponding standard deviation. The data show that the time interval
[10—11] hour (i.e., samples collected during the 10th and 11th hour of any
interactive session) is the first one that presents an average CPU idleness
above 99% (99.27%). This very high value indicates that no interactive ac-
tivity existed when the samples were collected. Therefore, in order to avoid
results biased by that abnormal interactive user sessions, we consider sam-
ples reporting an interactive user session equal or above than 10 hours as
being captured on non-occupied machines. Note that this threshold is a
conservative approach, which means that real interactive usage is proba-
bly lower than reported in this study. Figure 3.3 (page 63) plots the number
of samples (left y-axis) and the average percentage of CPU idleness (right
y-axis) of data shown in Table 3.2.

An important conclusion to drawn from the forgotten sessions is that
verification of user logins does not seem enough to assess machine inter-
active usage. Metrics like keyboard idleness and mouse usage should be

used as a complementary diagnosis. However, in Windows environments,

3.4. EXPERIMENT

Length of session (hour) | Number of samples | CPU idleness (stdev)
0-—1 65521 91.93% (12.69)
1-2 47057 94.72% (11.08)
[2-3] 28374 94.54% (11.76)
3—4 13387 95.28% (12.57)

-5 9514 96.24% (11.40)
[5-6] 7334 96.95% (10.28)
6—7 5654 97.43% (9.51)
7-8 4754 97.70% (9.24)
[8—9] 4181 98.03% (8.61)

[9—10] 3907 98.73% (6.09)
[10—11] 3637 99.27% (3.84)
>=11 84193 99.61% (1.65)

63

Table 3.2: Samples from interactive sessions grouped by their relative time occur-

rence.

90000

80000

70000

60000

50000

40000

Number of samples

30000

20000

10000

samples KXXx

AVG idle CPU ——

91

[0.1[[1.2[[2,3[[3.4] [4.5] [5.6[[6,7[[7.8[[8,9[[9,10[10,11[>=11

Session length (hours)

Average idle CPU (%)

Figure 3.3: Samples from interactive sessions grouped by their relative time occur-

rence.

Left y-axis depicts number of samples, right y-axis plots average CPU idleness.

64 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

No login With login Both

Samples (avg. uptime %) | 393,970 (33.87%) | 189,683 (16.31%) | 583,653 (50.18%)

Avg. CPU idle 99.71% (1.99) 94.24% (11.20) 97.93% (4.99)

Avg. RAM load 54.81% (8.45) 67.53% (11.95) 58.94% (9.59)

Avg. SWAP load 25.74% (4.28) 32.83% (7.86) 28.04% (5.44)

Avg. disk used in GB 13.64 (3.30) 13.64 (4.31) 13.64 (3.63)

Avg. sent bytes in Bps 255.3 (7029.6) 2602 (31241.9) 1017.9 (14898.4)
Avg. received bytes in Bps 359.2 (5754.6) 8662.1 (47604.8) 3057.9 (19357.2)

Table 3.3: Global resource usage (values within parenthesis indicate the standard
deviation o).

the monitoring of keyboard and mouse require, to the best of our knowl-
edge, usage of driver hooks, which not only forces software installation at
remote machines, but also require the software to be run at a high privilege
level. Interestingly, very high level of CPU idleness (99% or above) also
seems to be a good indicator of non-interactive usage on a machine, even
if an interactive session is opened. Finally, an aside conclusion to be drawn
from forgotten user sessions is the need to configure classroom computers
to detect long unused user sessions and to automatically logout.

3.5 Results

During the 77 days of the experiment, 6883 iterations were run with a total
of 583,653 samples collected. The main results of the monitoring are sum-
marized in Table 3.3. The column “No Login” shows the results captured
when no interactive user session existed, while the column “With login”
expresses samples gathered at user occupied machines. Both results are
combined in the final column “Both”. On rows that display average val-
ues, the standard deviation ¢ is given within parenthesis.

Machines responded to 50.18% of the sampling attempts over the 77
days, and in 393,970 samples (33.87%), the queried machine did not have
an interactive login session. This means that during the 77 days, for slightly
more than one third of the time, machines were completely available and
free for resources harvesting. In fact, unoccupied machines presented 99.71%
CPU idle time, expressing almost full idleness®. The presence of an interac-

SThis is logical in a client machine that does not run anything, when no users are logged on, apart
the OS and some services like anti-virus software and Windows Update.

3.5. RESULTS 65

tive session reduces the CPU idleness to an average of 94.24%. This means
that an interactive session roughly consumes an average 5.5% of CPU. This
CPU idleness confirms other studies performed in academic classrooms
running Unix environments [], but with higher than the
values found by Bolosky et al. [], who reported an av-
erage CPU usage of about 15%. In fact, Bolosky et al. analyzed corporate
machines from Microsoft stating that some of the machines presented an al-
most continuous 100% CPU usage, a fact that obviously raised mean CPU

usage.

Main memory usage values are difficult to interpret recurring only to
global averages, since the amount of main memory of the assessed ma-
chines ranged from 128 MB to 512 MB. However, main memory occupancy
increases roughly 12% when interactive usage occurs at a machine. This
is a natural behavior, since an interactive session obviously means that in-
teractive applications will be opened and thus consuming memory. Even
though, the broad conclusion is that a significant amount of memory goes
unused. Again, as a consequence of higher main memory usage verified
during interactive sessions, swap memory load raises by 5% when an in-
teractive user is logged on the machine.

Used disk space is independent of the presence of interactive login ses-
sions: average of 13.64 GB for both situations. The relatively low variabil-
ity respecting used disk space, confirmed by the low standard deviation
of 3.63, is a consequence of system usage policy: an interactive user is re-
stricted to up to 300 MB of temporary local hard disk drive (the actual size
depends on the capacity of the machine hard drive). Additionally, this tem-
porary storage can be cleaned after an interactive session has terminated.
This policy restricts users from cluttering disks, and also avoids that per-
sonal files can mistakenly be forgotten, or that Trojan programs and alike
be maliciously dropped in shared machines. In fact, users are fostered to
keep their files in a central file server with the benefit of being able to access
their files independently of the desktop machine being used.

Regarding network usage, the values clearly show that the machines
have mostly a client role in client-server interactions. Indeed, when used
interactively the average incoming traffic is nearly four times bigger than
the outgoing traffic. As importantly, the outgoing traffic under interactive
usage increase 10-fold relatively to an idle machine and almost 25-fold for

66 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

incoming traffic. This way, network traffic is another metric that can be
used to detect interactive usage.

3.5.1 Machines Availability

Figure 3.4 (page 67) plots the count of accessible machines over the 11-
week experiment. During this period, the average count of accessible ma-
chines was 84.87 (shown by the horizontal line in the plot), while the av-
erage count of occupied machines was 27.58. This means, that on average,
roughly 70% of the powered on machines were free of users, and thus fully
available for hosting foreign computation. Also, on average, slightly more
than half of the set of 169 machines was powered on.

Figure 3.4 exhibits a sharp pattern with high frequency variations show-
ing that machine counts fluctuate widely during a 24-hour period, with a
relatively high count of accessible machines during daytime followed by a
drop during the nighttime period. Weekends are recognizable by the flat-
ness of the curve (note that the x-axis labels of the plots denote Mondays
and thus weekends are on the left of these labels). Since classrooms are
open on Saturdays, weekend slowdowns are more noticeable on Sundays,
except for the Saturday 1 May since this was a holiday (Labor Day). The
negative spike that can be found around 10" June corresponds to another
holiday (Portuguese National Day), while the other negative spike on 21"
June was motivated by a somewhat long maintenance period on the power
circuits that feed the classrooms. The high frequency variations exhib-
ited on weekdays mean that the count of available resources is somewhat
volatile and thus harvesting the resources requires tolerant and adaptable
mechanisms.

The left plot of Figure 3.5 (page 67) shows two metrics related to uptime.
The double cross curve, which appears almost as a straight line, represents
machine availability measured in units of nines []. The nine
unit is defined as the log;, of the fraction of time a host is not available.
The name of the unit comes from the number of nines in its availability
ratio. For example, one nine means a 0.9 availability ratio (90%), that is,
logip(1—0.9) = I nine, two nines represents a 0.99 availability ratio (99%,
that is logio (1 —0.99) = 2), and so on. The simple cross curve displays the
fraction of time each machine is up. In both curves, machines are sorted in
descending order by their cumulated uptimes.

3.5. RESULTS 67

160 | " Number powere‘d on machines .

m ull ‘\Hln

120 bt
100 H‘ h LII' N Hh
AMTILTTIT,

60\‘

40 i |

I !
20 ‘
|

140

==

number of machines
|
|

0
19.04 03.05 17.05 31.05 14.06 28.06
Date

Figure 3.4: Count of powered on machines over the experiment period.

1 1
uptime 800 uptime ———
& 09 availability ——~— — 0.9 "
£ o8l . 08 s
g | —_ 7]
§ o7 = 0.7 g g
5 08 06 £ ¢
R ——— 05 & B
= \ 2 £
S5 04 \ 04 S <
pe! <
€ 03 03 3 5
) ﬁ‘—\)\ © o
E 02 = 0.2 E
3 o1 v 0.4 <
0 I 0 ey .
0 20 40 60 80 100 120 140 160 36 48 60 72 84 96
machines sorted by cumulated uptime uptime length (hours)
(a) Uptime and availability (b) Histogram of machines’ uptime

Figure 3.5: Machines’ uptime and availability.

68 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

The ratio availability curve shows that only 30 machines have cumu-
lated uptimes bigger than half the experiment period, that is, 37.5 days.
Also, less than 10 machines have cumulated uptimes ratio higher than 0.8
and none was above 0.9. Comparatively to the Windows corporate envi-
ronment described in Douceur [] where more than 60% of the
machines presented uptimes bigger than one nine, the analyzed classroom
machines present much lower uptime ratios. This is a consequence of the
possibility of the machines to be power off at the end of a class, since they
have no steady users. On the contrary, they are two patterns for corporate
machines: daytime and 24 hours. Daytime are machines powered on during
office hours, while 24 hours machines remain powered on for long periods.

3.5.2 Stability of Machines

An important fact in resource harvesting regards machine stability, that is,
how long a given group of machines will be available for intensive compu-
tation. We define two levels of stability: a light level, where group stability
is broken by a machine shutdown or reboot, and a more demanding level,
which add to the non-reboot policy, the need for a machine to remain free

of user’s sessions.

Machines uptime. In this section, we analyze the machines’ sessions,
focusing on uptime length and reboot count. We define a machine’s session
as the activity comprised between a boot and its corresponding shutdown.

During the whole experiment 10,688 sessions of machines were cap-
tured by our sampling methodology. It is important to note that due to
the 15-minute period between consecutive samples, some short machine
sessions might have not been captured. In fact, between two samples, Win-
dowsDDC can only detect one reboot, since its reboot detection is based
upon the uptime of the machine.

The average duration of the length of sessions was 15 hours and 55
minutes. This value exhibits a high standard deviation of 26.65 hours in-
dicating that session length fluctuates widely. Since multiple reboots that
occur between two samples escape our monitoring setup (only the last one
is detected), the above given average duration exceeds the real value. Fig-
ure 3.5(b) displays the distribution of the uptime length of the machines for
sessions that lasted at most 96 hours (4 days). These sessions accounted for

3.5. RESULTS 69

98.7% of all machine sessions and 87.93% of cumulated uptime. These data
allows us to conclude that most machine sessions are relatively short, last-
ing few hours, an indication of the somewhat high volatility of machines.

Machines power on cycles. Networked personal computers, especially
Windows machines, have a reputation for instability, requiring frequent
reboots to solve system crashes, complete software installations or simply
to refresh system resources®.

Since our sampling methodology has a coarse grained granularity of
15 minutes, some of the short machine sessions may go unnoticed. Thus,
in order to have a detailed view of reboots, we recurred to SMART’s pa-
rameters []. Indeed, by resorting to the SMART power cycle count
metric, it becomes possible to spot undetected machine sessions. For in-
stance, if two consecutive samples of a machine have a difference in power
cycle count parameters higher than one, this means that at least one short
machine session, with its corresponding boot and shutdown sequence, oc-
curred without being noticed by the monitoring mechanism.

An important issue regarding SMART is that parameters vary among
disk manufacturers, not only in their availability, but also in the units used
to represent the metrics []. For instance, while almost all
machines reported the power on hour in hours, the disks of two machines
counted power on hour in minutes with the 16-bit value overflowing after
roughly 1090 hours of disk usage. A third machine had a disk that ex-
pressed this metric in seconds, but using a 32-bit register (and thus with no
risk of overflow). Finally, a fourth machine had a disk that simply did not
provide the power on hour count parameter.

The cumulated count of power on cycles for the whole set of machines
was 13,871, with an average of 82.57 power cycles per machine and a stan-
dard deviation of 37.05 over the 77 days. This represents 1.07 power on
cycle per day. The number of power on cycles is 30% higher than the num-
ber of machine sessions counted by our monitoring analysis. This means
that a significant percentage of power cycles are of very short duration (less
than 15 minutes) escaping our sampling mechanism.

With the SMART’s parameters power on hour count and power on cycles,
we can compute the average power on hours per power on cycle, henceforth

6To be fair, it is important to note that one of the main drivers of Windows 2000 development was
to reduce the high rate of reboots of its predecessor [].

70 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

referred as uptime per power cycle. For the 77-day monitoring, the uptime
per power cycle was 13 hours and 54 minutes with a standard deviation of
nearly 8 hours. As stated before, the difference between the average uptime
per power cycle and the average machine session length (see section 3.5.2)
can be explained by the short lived sessions that are not caught by our
sampling methodology. The histogram of average uptime length per power
on cycle is shown in Figure 3.6(a), with the uptime counts being grouped
by intervals multiple of 15 minutes.

Given the absolute count of power cycles and power on hours, it is pos-
sible to compute the uptime per power cycle for the whole disk life. Since
machines are relatively new — the oldest are three years old, and the newest
nine months old - the probability of machines still having their original
disk is high and thus average uptime per power cycle serves as a good mea-
sure of average uptime. For our monitored system, the uptime per power
cycle was 6.46 hours with a standard deviation of 4.78 hours. This value
is surprisingly lower than the one we found during our 77-day monitor-
ing. This might be due to the fact that machines are fully reinstalled at the
beginning of each semester, an operation that requires many reboots. Fig-
ure 3.6(b) (right) plots the distribution of average uptime per power cycle
considering the whole lifetime of disks.

225 avg uptime (77 days) 1 225 avg uptime (lifetime) ———1
20 20
¢ 175 g 175 [
£ K=
S 15 S 15 |
[} [
E 125 E 1251
(=] o
5 10 5 10 4
Qo =)
E 75 E 751
2 2
5 5 1 I
25 { 1 2.5 -]
o4 il 1 I 01 la] 1
0 4 8 12 16 20 24 28 32 36 40 44 48 0 4 8 12 16 20 24 28 32 36 40 44 48
hours hours
(a) 77-day experiment (b) lifetime of machines

Figure 3.6: Average uptime per power cycle.

3.5.3 Group Stability

An important issue when executing parallel applications in network of
non-dedicated personal computers is group stability, that is, how long a

3.5. RESULTS 71

given set of machines will be available for foreign computation. In fact,
some parallel environments are very sensitive to changes in the machine
pool. For instance, initial implementations of the Message Passing Inter-
face (MPI) would stop the whole computation when one or more machines
failed [I

Our definition of stability is similar to Acharya’s []:
a set of K machines is said stable for a time interval T, if for T consecutive
time units, all machines remain available for a joint parallel computation.
This means that the failure of a machine ends up the stability for the set of
K machines.

=
o

16

[y —
=} 8 \\ >
£ N o £ w
2 \ L06 2 10
5 6f Lo7 3
Z s 10 v o8
S 4 L1 ——] -
) bt 6 :
2 5 \
g ¢ g 4
5 2] °
T I 2
0 ; ; 0 ; ; ;
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of machines Number of machines
(a) powered on machines (b) user-free machines
Figure 3.7: Stability of machines per classroom.
1.6e+06 YT 140000 o
g Lae06 los | g 120000 - tos 1
= S \
2 / \ L04 o Lo4 -
o 12006 P L05 € 100000 fre A L05 1
e e AN
9 / L09 % 80000 FNTT L09]
g 800000 (10 8 AN \ (10
8 : 11— > 60000 W L1l ——
< 600000 o 5 /
- \ [7} .
5 400000 e g 40000 i
; ; € ;
[E ¢
2 200000 [2 20000 -
0 &= = 0 [
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of machines Number of ma(_:hines
(a) powered on machines (b) user-free machines

Figure 3.8: Count of stability periods over N machines.

We limited the stability computation to the 10 classrooms that have 16
machines, thus excluding L08. Two views of the stability of the classrooms
are shown in Figure 3.7. Both plots depict the average stability length of
power on machines, with the number of machines ranging from 2 to 16. All

72 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

curves present a similar shape, with the average stability decreasing as the
number of machines in the set increases. Even so, on average, the powered
on machines stability is quite interesting since that even with 16 machines,
almost all classrooms presents an average stability above one hour. Fig-
ure 3.7(b) (right) presents the average stability for user-free machines. This
metric differs from the average stability length of power on machines since
it requires that a machine remains user-free. That is, if a user logs on a ma-
chine, this machine is no longer considered available and thus the stability
of the set in which the machine was integrated terminates. The curves for
the average stability of user-free machines are much more heterogeneous
than the stability of power on machines. Surprisingly, the average stability
periods are significantly bigger than the average length of power on sta-
bility periods (note that the plots have different y-scales). In reality, this is
mostly a consequence of the number of stable periods, which are, quite log-
ically, much less for user-free machines than for power on machines. For
instance, the user-free spike for classroom L10 which presents a 14 hours
average stable period for 15 machines is somewhat misleading since its cor-
responds to a single occurrence.

The number of stable periods for both situations is shown in Figure 3.8.
The shape of the plots shown in Figure 3.8 reflects the fact that the number
of machine combinations reaches its maximum around 8 machines. Since
user-free machines are a subset of powered on machines, the number of
stable periods is much higher for powered on machines than for user-free
machines.

3.5.4 User Sessions

During the monitoring period, we recorded 23,224 interactive user-sessions
from 1684 different logins. The average session length was 8942 seconds,
that is, a little bit more than 2 hours and 29 minutes. This value is similar to
the duration of most computer classes, which lasts around 3 hours. How-
ever, the duration of sessions fluctuates widely, with an observed standard
deviation of 9083 seconds, that is, roughly 2 hours and 32 minutes. The his-
togram of the duration of the user sessions grouped by quarters of hour is
plotted in Figure 3.9 (page 73). The high number of short sessions that ex-
ists — more than 2200 login sessions lasted less than 15 minutes and slightly
less than 2000 lasted between 15 and 30 minutes — might be due to students

3.5. RESULTS 73

login in for checking their email. Otherwise, the duration of sessions are
distributed almost evenly between 30 minutes and 3 hours. For duration
bigger than 3 hours, session counts drops smoothly and linearly. The spike
of nearly 900 sessions that occurs at the right end of the plot is due to our
truncation policy for user-session bigger than 11 hours (see Section 3.4.2,
page 60).

user session count

3000

2500

2000 -

1500 -

1000 -

number of user sessions
]

500 -

0 WWWW’WWWWW

T T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11 12
individual session length (hours)

Figure 3.9: Distribution of the duration of user-sessions.

3.5.5 Global Resource Usage

Figure 3.10 plots the average percentage of CPU idleness over the whole
11 weeks. Specifically, Figure 3.10(a) displays the CPU idleness when an
interactive user session exists, while Figure 3.10(b) represents the idleness
of user-free machines. Both plots exhibit a similar trend: a convergence
near 100% CPU idleness, obviously more noticeable in user-free machines.
Once again, daytime, nighttime and weekend patterns are identifiable in
the plots. This is especially true for weekends, where idleness stabilizes
near 100%. In the user-occupied machines plot (Figure 3.10(a)), some drops
in global average CPU idleness below 70% are visible. These drops are
mostly caused by the existence of a relatively busy single machine when
the number of occupied computers is very low, less than 10 units.

An interesting issue respects the CPU idleness of user-free machines,
shown in Figure 3.10(b): numerous negative spikes occur, with idleness
percentage dropping near 90%, a surprising condition for unused machines.

74 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

105

105

CPU idle (used) CPU idle (free) -

100 - -

95 = L R
= 90 s 9 : ‘
S S
=) 85 =) 85
o o
O 8ot O g0
2 2
2 75t 2 75

70 70

65 65

60 60

19.04 10.05 31.05 21.06 19.04 10.05 31.05 21.06
. Date . Date .
(a) occupied machines (b) user-free machines

Figure 3.10: Average CPU idleness.

Seconds since boot | Number of samples Avg. CPU
(no user session) idleness (%)
[0,60] 19 77.70
160,120] 154 83.89
1120, 180] 65 86.60
]180,240] 49 90.44
1240, 300] 43 91.60
Total 330 86.05

Table 3.4: Average CPU idleness on user-free machines right after boot up.

After some research, we found out that these negative spikes occur when
a significant number of machines are powered on at the same time, for in-
stance, in the first class of the day taught in a classroom. In fact, the boot up
of a machine consumes a significant amount of resources and since a user
can only log on after a certain amount of time, if the machine is sampled
shortly after startup, but before a user has had the opportunity to log on,
observed average CPU idleness will be relatively low, and since no user is
yet logged on, the machine will be reported as being user-free. To support
our hypothesis, we found that average CPU idleness was 86.05% in user-
free machines with less than 5 minutes uptime. The average CPU idleness
percentage ranging from 0 to 5 minutes uptime with no user sessions is
given in Table 3.4 and plotted in Figure 3.11.

Interestingly, even for machines with interactive usage, the CPU idle-
ness average seldom drops below 75%, and mostly fluctuates around 95%.
This confirms the potentiality of CPU harvesting, even when interactive

sessions exist as demonstrated by Ryu et al. [I

3.5. RESULTS

Number of samples

160
140
120
100
80
60
40
20

Number samples =oxx

AVG idle CPU ——
/
d
/
10,1] 11.2] 12,3] 13.4] 14,5]

Uptime (minutes)

100

95

90

85

80

75

Average idle CPU (%)

75

Figure 3.11: Average CPU idleness right after machine boot up.

Figure 3.12 (page 75) shows the sum of free memory observed over the

11-week observation. The left plot focuses on the unused memory of occu-

pied machines, while the right plot displays the same metric for user-free

machines. Both plots mostly reflect the machines usage pattern, especially

the number of powered on machines at a given time. In fact, the high fre-

quency fluctuations in all plots derive essentially from the number of avail-

able machines, constituting another proof of the volatility of the resources.

25

20

15

Total free mem (GB)

0
19.04

Tot. free mem. (used)

10 ¢

Total free mem (GB)

10.05

31.05

Date
(a) occupied machines

21.06

25

20

15

10 Pl

Tot. free mem. (free‘ e

oLl ¢
19.04 10.05

(b) user-free machines

31.05
Date

Figure 3.12: Sum of free memory of the machines.

Plots of free disk space cumulated from all machines, shown in Fig-

ure 3.13, exhibit the sharp high frequencies characteristics of high volatile

environments. The differences of cumulated available space between used

and unused machines are dependent of the ratio of machines in either con-

dition. On weekdays, especially during work time, since most machines

76 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

powered on are being interactively used, this set of machines presents nor-
mally more than 1.5 TB of available disk space. The cumulated available
disk space, even if highly volatile, rarely drops under 1 TB. This is an im-
pressive figure indicator of the dimension of resources that can be exploited

in classroom machines.

Total free disk (used) Total free disk (freé)

Total free disk (TB)
Total free disk (TB)

0 0 ; i
19.04 10.05 31.05 21.06 19.04 10.05 31.05 21.06
Date Date
(a) occupied machines (b) user-free machines

Figure 3.13: Cumulated free disk space of the machines.

3.5.6 Weekly Analysis

Figure 3.14 (page 77) combines two plots related to the weekly distribution
of samples: the left plot characterizes the average number of powered on
machines (top curve) and the standard deviation (bottom curve), while the
right plot shows the weekly distribution of CPU idleness’s average. Both
plots reflect the weekly pattern with stable curves on weekends, especially
Sundays, and during the nights. Besides following the night and weekend
pattern, the weekly distribution of average CPU idleness presents a signif-
icant plunge on Tuesdays afternoons, dropping below 91%. Although we
could trace back the Tuesdays’ afternoon CPU usage spike to a practical
class which was taught in one classroom and consumed an average of 50%
of CPU, we could not determine what actually caused this abnormal CPU
usage.

Confirming the high availability of CPU for resource scavenging, the
average CPU idleness never drops below 90%, mostly ranging from 95%
to 100%. The phases of near 100% average CPU idleness correspond to the
periods when classrooms are closed: 4 am to 8 am during weekdays, and
from Saturdays’ 9 pm to Mondays’ 8 am on weekends.

3.5. RESULTS 77

‘avg. num. machines — évg. CcPUIdle -
120 _stdev num. machines 100
1o Mo MM o NN AN f
g L T A T [\ o Y L A O A R A
g X EENAY! g WL Wy WY
g 84 o 97 | My
£ | |V S g [V WL A O o
c 72 o |) N ' W
g 60 o 95
o © 94
g 48 E
o
a 36 92
24 91
12 r : 1 90
0 : : : : : : 89
Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat
(a) powered on machines (b) CPU idleness

Figure 3.14: Weekly distribution of powered on machines and average CPU idle-
ness.

Figure 3.15(a) shows the weekly average memory distribution with the
top curve representing average RAM load and the bottom curve showing
average swap load. The right plot (Figure 3.15(b)) depicts the average
network rates for received (top curve) and sent traffic (bottom curve).

Both the RAM and swap load curves exhibit the weekly pattern, al-
though in a smoothed way. Note that RAM load never falls below 50%,
meaning that a significant amount of RAM is used by the operating sys-
tem. Comparing RAM and swap usage, it can be observed that the swap
curve roughly follows memory usage, although strongly attenuating high
frequencies. This is a natural consequence of how memory systems are

organized.

The weekly distribution of network rates (Figure 3.15(b)), is yet another
example of the weekend/nighttime trend line. Since we are plotting a
rate, the drops originated by nighttime periods and weekends appear as
smoothed lines. The network client role of the classroom machines ap-
pears clearly visible, with received rates up to several times higher than

sent rates.

From the observation of the weekly distribution of resource usage, we
can conclude that even if a lower number of machines is powered on off-
work periods (that is, from 4 am to 8 am on weekdays, and on weekends),
these resources are much more stable than the more numerous workday-

time ones. However, even on working hours, idleness levels are quite high.

78 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

T 15000

a{/g. RAM load évg. recv. per secs —
80 avg. SWAP load 4 avg. sent per secs
12500
70 An
60 J/V\y |/ Vv \jN\u\J"!\" A 10000
50 Q) A
8 2 7500 | A l |
) e “J I
30 5000 | \
20 V
2500
10 N~
0 0 ; ; ; ; ; ;
Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat
(a) memory usage (b) sent and received traffic

Figure 3.15: Weekly distribution of free memory and network traffic.

3.5.7 Equivalence ratio

Arpaci et al. [] define the equivalent parallel machine as a
metric to gauge the usable performance of non-dedicated machines rela-
tively to a parallel machine. Kondo et al. [] adopt an
analogue metric, based upon clusters, and which they appropriately name
the cluster equivalence ratio (CER). Specifically, the cluster equivalence ratio
measures, for a given set of non-dedicated machines, the number of cluster
machines (that is, dedicated machines) that would be needed for achiev-
ing an equivalent computing power. In summary, the cluster equivalence
ratio aims to measure the fraction of a dedicated cluster that a set of non-
dedicated machines is worth to an application, considering solely the CPU.
In this study, we apply this definition by computing the CPU availability
of a machine for a given period accordingly to its measured CPU idleness
over the considered period. For instance, a machine with 90% of CPU idle-
ness is viewed as a dedicated machine with 90% of its computing power. It
is important to note that this methodology assumes that all idle CPU can be
exploited. Thus, the obtained results should be regarded as an upper limit
of CPU resources that can effectively be harvested.

To cope with the performance heterogeneity of machines, the computa-
tion of the performance cluster ratio was done resorting to a combined INT
and FP index, named INTFP. Specifically, a 50% weight was given to each
index to compute the combined machine index. For instance, a machine
of LO3 (INT:39.29, FP:36.71) is worth 1.19 of a L01’s machine (INT:30.53,
FP:33.12).

3.6. RELATED WORK 79

1 169 1 169
total total
avg avg
0.8 135 0.8 135
n | g \ JL n g
° £ o W L £
g 06 M | i 02 5§ os } ;'M | & ‘,”M\ ‘1} s 02 %
5 N E 3 7 ; E
¢ s \ W S -
= | . =l :
2 o4 h” U | ‘, I 67 ¢ 3 04 My 67 ¢
> =3
z z
0.2 34 0.2 34
0 “ 0 0 0
19.04 10.05 31.05 21.06 Sun Mon Tue Wed Thu Fri Sat
(a) 77 days (b) weekly distribution

Figure 3.16: Cluster equivalence ratio.

Figure 3.16 plots the cluster equivalence ratio for the 77-day experiment
(left) and its weekly distribution (right). The average cluster ratio is 0.26 for
occupied machines and 0.25 for user-free machines. Combining together
occupied and unoccupied machines yields a 0.51 cluster equivalence ra-
tio, meaning that the set of non-dedicated machines is roughly equivalent
to a dedicated cluster with half the size. This follows the 1:2 rule found

by [l.

3.6 Related Work

The evaluation of computer resources usage has been a research topic since
the wide deployment of networked computers in the late 80’s. In fact, soon
it was noticed that computer resources, noticeably CPU, were frequently
underused, especially in machines primarily used for tasks dependent on
human interaction.

Several studies have observed the high level of resources idleness in

networked computers, not only about CPU [;
], but also memory [] and disk storage [
].
Through simulation, Arpaci et al. study the interaction of sequential
and parallel workloads []. They conclude that for the

considered workloads, a 2:1 rule applies, meaning that N non-dedicated
machines are roughly equivalent to N/2 dedicated machines. We found a

similar value for our set of machines.

80 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

The study presented in [] focuses on the potentiality
of using non-dedicated Solaris machines to execute parallel tasks during
idle periods. The authors evaluate the machines availability and stability
based upon a 14-day trace of computers that are primarily assigned to un-
dergraduate students. The authors observe that reasonably large idle clus-
ters are available half the time noting, however, that such set of machines
are not particularly stable, that is, machines frequently go down.

Acharya and Setia analyze the main memory idleness and assess its
potential utility by using a two-week memory usage trace from two sets
of Solaris workstations []. One set includes machines
titted with, at the time of the study, a high amount of main memory (total
of 5.2 GB for 29 machines, averaging 183 MB per machine), while the other
set is more modest (total of 1.4 GB for 23 machines, that is, an average of
62 MB per machine). The study shows that, on average, a large fraction of
the total memory installed on a machine is available, with idle machines
presenting around 50% of unused main memory.

Ryu et al. aim to harvest idle resources from what they define as non-
idle machines, that is, machines that are lightly loaded by interactive us-
age []. They conclude that a vast set of idle re-
sources can be harvested without much interference on interactive users.
However, their methodology requires modification at the kernel level and
therefore seems impractical for closed operating systems like Windows.

All of the aforementioned cited studies are focused on UNIX environ-
ments and rely on somewhat reduced traces to draw their conclusions. Our
analysis targets Windows machines, monitoring a medium sized set of ma-
chines over a relatively long period of time.

Bolosky et al. have conducted a study in a vast set of nearly 30,000
Microsoft Corporate desktop machines, reporting availability, CPU load
and file system usage in a corporate environment [I
The study is oriented toward the demonstration of the potential to build
a serverless distributed file system. Thus, issues discussed in this chapter
such as main memory load, network usage, and interactive sessions and its
impact over resource usage are not reported. In contrast, our work is fo-
cused on categorizing resources usage, and we have some results that are
substantially different, especially respecting a much lower CPU load than
observed in the corporate environment depicted in [].

3.6. RELATED WORK 81

This is mostly due to the fact that the machines we monitored were es-
sentially client computers employed for interactive usage, with no really
demanding computing activity taking place.

Heap studies the resource usage of Unix and Windows servers, through
15-minute periodic gathering of monitoring data []. He found
out that Windows servers had a CPU idleness average near 95%, while
Unix servers averaged 85% CPU idleness, showing that even server ma-
chines present high levels of CPU idleness.

Kondo et al. studied the CPU and host availability from the perspec-
tive of desktop grid applications in an Entropia environment [

]. They collected usage data for 220 machines of an academic campus
for a total of 28 days. Most machines were assigned to researchers, and
thus were effectively "owned" by an individual. The measurements were
conducted by submitting actual tasks to the Entropia system [

]. These tasks performed computation and periodically reported their
computation rates, thus allowing for the characterization of the availability
of hosts and of CPUs. Note that this approach is interesting in the sense
that it allows for a real characterization from a scavenging point-of-view.
However, such characterization is only possible in a desktop grid environ-
ment fitted with an desktop grid middleware like the Entropia middleware,
while our approach required no installation of software at the monitored
nodes. The average host availability of the environment was 3 hours dur-
ing weekdays and slightly less than 6 hours for weekends. The cluster
equivalence ratio average was slightly under 0.70 for weekdays and near
0.90 for weekends. Relatively to the cluster equivalence ratio found in our
study, the value are significantly higher. We believe this is mostly due to
the fact that machines studied by Kondo et al. were assigned to individual
users, thus having a much more restricted and stable community of users
than the classrooms where we conducted our study.

In their assessment of around 330,000 BOINC /SETI@home’s hosts, An-
derson and Fedak report that an average of 89.9% of the machines” CPU
time is effectively yielded to SETI@home []. This
means that roughly 90% of the CPU computing power is actually harvested,
confirming not only the high idleness of CPU but also the effectiveness of
scavenging schemes such as BOINC. Furthermore, the average PC partici-
pating in the project, as of February 2006, had an impressive configuration:

82 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

1.568 GFlops of processing power, 819 MB of main memory (2.03 GB swap)
and 63 GB of disk space, with more than half of the disk space (36 GB) left
unused. This attests the wealth of resources that can potentially be har-
vested for the purpose of public volunteer computing.

Our approach is distinct from previous work by focusing on academic
classrooms fitted with Windows desktop machines. The workload traces
were collected for 11 weeks over a medium-sized set of 169 desktop ma-
chines (Pentium III and Pentium 4). An analysis of main resource usage is
conducted with emphasis in differentiating resource usage between ma-
chines occupied with interactive users and free machines, assessing the
effect of interactive user over resources consumption. Furthermore, we
also present a novel approach to assess machines availability, combining
collected samples with data extracted from SMART counters of machines’
hard disks [], namely the power on hour counts and power on cycle
counters. Coupled with the collected traces, these SMART values allow to
infer about machines power on pattern, giving a rough estimation of the ma-
chines’ availability since hard disk was installed, which is, for most of the

computers, the date they were built.

3.7 Summary and Discussion

This chapter presented the main results of a 77-day monitoring usage study
of 169 Windows 2000 machines. The results show that resources idleness in
the studied academic classrooms comprised of Windows machines is very
high, confirming previous works such as []and [

I

The main conclusions that can be drawn from this chapter are:

- CPU idleness is impressively high, with an average of 97.93%. Like-
wise, the 94.24% average CPU idleness measured in user-occupied
machines indicates that CPU harvest schemes should be profitable
not only when a machine is unoccupied but also when interactive us-
age of the machine exists.

- Another interesting result associated to CPU is that interactive usage
of the machine can be sensed by the level of CPU idleness: CPU idle-

3.7. SUMMARY AND DISCUSSION 83

ness above 98% almost certainly means that the machine is not being

interactively used, even if a login session exists.

- The cluster equivalence ratio is 0.26 for interactively used machines,
and 0.51 when user-free machines are also considered. This means
that the 169 non-dedicated machines are roughly worth 86 dedicated
machines.

- Memory idleness is also noticeable, with respectable amounts of un-
used memory, especially in machines fitted with 512 MB of main
memory. Coupled with a relatively fast network technology such as
100 Mbps switched LAN or gigabit Ethernet, such resources might be
used for network RAM schemes such as networked temporary RAM
drives.

- Due to the fact that the single hard disk of all machines only con-
tains the operating system installation plus specific software needed
for classes, the free space storage among monitored machines is high.
And with the trend for exponential growth of hard disks, the ten-
dency is that more and more unused disk space becomes available,
at least in sites whose management policy limits the use of local ma-
chines” disks to temporary storage. A possible application for such
disk space relates to distributed backups, or to the implementation of
a local data grid.

- Usage of the SMART hard disk accountability metrics can yield some
average indications about the number of power on hours and the
number of reboots of a given machines.

We believe our results can be generalized to other academic classrooms
that resort to the Windows operating systems and which follow a similar
classroom usage policy: shared machines with minimal disk space for inter-
active user, and student off-class access to computers for work assignment
and e-communication use.

Overall, classrooms comprised of Windows machines seem appropriate
for desktop grid computing. The attractiveness of such environments for
resources harvesting is strengthened by the fact that machines have no real
personal owner, being managed by a central authority. This eases the de-

ployment of resource harvesting schemes, since an authorization from the

84 CHAPTER 3. RESOURCE USAGE IN DESKTOP GRIDS

central authority gives access to the shared machines. Obviously, it is still
important for harvesting environments to respect interactive users, guar-
anteeing that interactive usage is not degraded by harvesting schemes.

In conclusion, this chapter confirms that resource idleness observed in
classroom environments has great potentiality. Indeed, if properly chan-
neled, these resources can yield good opportunities for grid desktop com-
puting. In the next two chapters, we propose and analyze some schedu-
ling strategies to overcome the volatility of resources and to speed up turn-

around times of applications.

Fault-Tolerant
Scheduling

In this chapter, we focus on fault-tolerant scheduling for institutional desk-
top grids. The goal is to devise fault-tolerant aware scheduling policies in
order to provide for fast execution of bag-of-tasks applications over non-
dedicated institutional desktop grids. For this purpose, we propose sev-
eral scheduling policies supported by shared checkpointing methodologies,
where checkpoint images can be shared among nodes. Under this ap-
proach, a task interrupted in one host can be resumed from the last sta-
ble checkpoint as soon as another host is available. In addition, the shared
checkpoint methodology also allows the replication of tasks, which can be
important not only for fault tolerance purposes, but also for speeding up
the turnaround time of the application. We conclude the chapter with the
presentation of DGSchedSim simulator, a simulator that we developed to
evaluate the scheduling policies herein presented.

4.1 Introduction

4.1.1 Fault Tolerance and Checkpointing

A common solution to cope with the limitations imposed by volatility of
desktop grids is checkpointing []. It consists in periodi-
cally saving the state of the executing process to stable storage. Whenever
a computation is interrupted, the application can be resumed from the last
available checkpoint as soon as the original resource or an equivalent one
is available. This way, the loss caused by a failure is reduced to the com-

85

86 CHAPTER 4. FAULT-TOLERANT SCHEDULING

puting time elapsed since the last usable checkpoint was saved plus the
overhead of restoring the computation.

Broadly, two main types of checkpoints exist: system-level and appli-
cation-level []. The former involves saving the whole
state of the process that executes the application to be preserved. Although
transparent to programmers and users, system-level checkpointing usu-
ally generates big chunk of data to be saved (in the order of hundreds of
megabytes, if not more), since the whole process’s memory image needs
to be preserved. This significantly increases the costs of the checkpoint-
ing operations. Furthermore, a system-level checkpoint is strongly tied
to the operating system where it was created, and thus can only be used
for restoring execution in a compatible system, that is, a machine with a
matching hardware and with the same operating system version. This seri-
ously hinders the portability of system-level checkpointing schemes, espe-
cially in heterogeneous environments like desktop grids. On the contrary,
checkpointing at the application-level requires the direct intervention of
the application programmer to point out and explicitly code the meaning-
ful data that need to be preserved. However, since only the necessary state
is saved, application-level checkpoints are way lighter than system-level.
Moreover, if saved in a transportable format (e.g., XML), checkpoints can
be used to restore the execution in another machine, possibly with a differ-
ent hardware and operating system (as long as a version of the application
exists for the restore machine), thus effectively allowing task migration. As
stated previously in section 2.6.1 (page 28), apart from Condor, which relies
on system-level checkpointing [] all major desktop grid
middleware like BOINC and XtremWeb resort to application-level check-
pointing. System-level checkpointing is impractical for such systems due
to OS limitations (to the best of our knowledge, system-level checkpoint-
ing is not available in Windows) and due to the disk space requirements.
Therefore in this thesis, we only consider application-level checkpointing.

An important issue regarding checkpointing lies in the storage location.
Indeed, a usual limitation of desktop grid-based computing is that check-
points are private, in the sense that a checkpoint saved in a given machine
will only be used to resume the application in that machine. Moreover, if
the machine has a large downtime period (for example, it is power down
for the weekend), any checkpoint kept there is inaccessible. In this chap-

4.1. INTRODUCTION 87

ter, we explore the advantages of sharing checkpoints in a desktop grid
environment for the purpose of speeding up turnaround time. Under the
shared checkpoint approach, portable checkpoints are saved in a network
shared storage and can be used for restoring, moving or replicating tasks

to another machines.

4.1.2 Institutional Desktop Grids

As stated before in section 2.2, the usefulness of desktop grids is not limited
to public projects. In fact, it is frequent for institutions like corporations and
academia to own a significant number of personal computers, primarily de-
voted to low demanding computing activities like e-office and other similar
interactive tasks. These machines can be used by local users to execute de-
manding e-science applications like simulations or image processing. The
attractiveness of institutional desktop grids is reinforced by their network
infrastructures which can benefit from local and metropolitan fast network
technologies (100 Mbps Fast Ethernet is standard in such environments, of-
ten complemented with a Gigabit Ethernet backbone). Also, comparatively
to the resources volunteered to public projects, institutional desktop grids
are usually comprised of more homogeneous computing infrastructures,
with, for instance, a substantial percentage of machines matching a unique
operating system and software profile!. Also, security can be more effec-
tively controlled, with incidents like malicious usage and anomalies being
potentially traced back to the source in a more efficient manner. Finally, the
usual existence of a central entity charged of managing and coordinating
the computing resources and their usage, allows the adoption and enforce-
ment of policies regarding shared and cooperative usage of resources, lim-
iting uncooperative behavior from users unwilling to share the computing
resources made available to them by the institution.

This chapter focuses on institutional desktop grids comprised of own-
erless machines, as found in academic classrooms. The ownerless desig-
nation comprehends machines that are not assigned to any individual in
particular, contrary to office machines that are normally under the control

of a given user.

Hardware might be more variable, with newer machines delivering better performance and hav-
ing bigger resources, namely memory and disk, than older ones.

88 CHAPTER 4. FAULT-TOLERANT SCHEDULING

4.1.3 Bag-of-tasks Applications

Mostly due to the communication limitations, desktop grid applications are
mostly restricted to sets of independent tasks executed under a supervisor-
worker paradigm, upon which a central supervisor entity coordinates the
whole computation. Under this model, a worker requests tasks from the
supervisor, processing the tasks it receives in background mode and un-
der minimal local system priority, since precedence to access resource is al-
ways given to local users. Upon the completion of the task, results are sent
back to the supervisor and a new task is requested by the worker. In order
to achieve high resource efficiency in such environments, communications
must be kept to a minimum, with tasks being essentially CPU bound, thus
having a high computation to communication ratio. This type of applica-
tion is commonly referred as bag-of-tasks applications [I

4.1.4 Turnaround Time of Bag-of-Tasks Applications

The turnaround time of an application is defined as the wall clock time
elapsed between the start of the application and its termination, when it
is executed over a given set of resources. Since a bag-of-tasks application is
comprised of several tasks, the turnaround time corresponds to the elapsed
time between the start of the first task and the completion of the last task.

We consider only applications comprised of independent tasks, that is,
no dependency exist among the tasks, so that the tasks can be freely sched-
uled. This way, the first task is simply the first task to be scheduled, and the
last task is the last one to be completed.

Turnaround time is especially relevant in iterative and/or speculative
research based on computing, like for instance computer-based simulations
[]. Indeed, in iterative/speculative based research, the
next steps of the work are dependent on the outcome of the current execu-
tion. Moreover, speeding up the turnaround time allows to explore more
hypotheses, discarding the bad ones, or alternatively, to faster reach a so-
lution. It is important to note that a turnaround time oriented scheduling
inevitably hinders the overall throughput of the desktop grid system. So,
whereas in public volunteer projects the emphasis is normally on the num-
ber of tasks carried out per time unit (throughput), our approach privilege
a fast execution of applications possibly at the cost of the whole system

4.2. SCHEDULING POLICIES 89

throughput, inclusively by sacrificing resources with replication of tasks, if
this might contribute for a shorter turnaround time.

4.2 Scheduling Policies

In this chapter, we propose several scheduling policies focused on deliver-
ing fast turnaround time for typical bag-of-tasks applications executed over
institutional desktop grids. Specifically, we evaluate the turnaround time
delivered by several heuristic-oriented scheduling policies. Besides shar-
ing checkpoints, the heuristics include adaptive execution timeouts, task
replication with and without checkpointing on demand, and short-term
prediction of resource availability.

For the purpose of resource harvesting, we consider that the non-de-
dicated machines are partitioned in sets, with a given set assigned to a
harvesting user for a fixed period of time. This model corresponds to a
time partitioned management of the machines for resource harvesting. For
instance, considering an academic environment, a representative example
would be a single user having permission to harvest, for a whole day, the
machines of a given number of classrooms. It is important to note that un-
der our assumed scenario, the machines are shared between their regular
users and the desktop grid user, who is, at least for the assigned time frame,
the sole user of low priority non-dedicated cycles. Furthermore, the em-
phasis for the use of harvesting resources is clearly on pursuing a fast turn-
around time, so that the scheduling methodology might trade resources
for achieving a faster execution time. For instance, if deemed appropri-
ate, a task can be replicated among multiple machines, even if this means
that when the first replicated instance of a task terminates, the computation
performed by the other replicas will be discarded and, thus the computing
power will have been effectively wasted. Given these conditions, our goal
is to devise and assess scheduling strategies based on checkpoints that pro-
mote faster turnaround times.

4.2.1 Scheduler Knowledge

We assume a medium knowledge-base scheduler [1,
upon which the scheduler is periodically (for instance, every 2 minutes) fed
with data about the availability of the machines. This is a realistic assump-

90 CHAPTER 4. FAULT-TOLERANT SCHEDULING

tion in institutional desktop grids, and can be achieved resorting through
a simple heartbeat mechanism or through a monitoring environment like
Ganglia []. The periodic knowledge of the availability
status of the machines is useful for scheduling purposes. This is espe-
cially true for a checkpoint-sharing aware scheduler, which can react much
more effectively to a sudden machine unavailability (whether the machine
was voluntarily power off by its owner, or a crash occurred), since it can
reschedule the task formerly assigned to the now unavailable machine to
another machine that can resume it from the last stable checkpoint. On the
contrary, a scheduler based on private checkpointing, would only be able
to restart the task from scratch, since the checkpoint file would be inacces-
sible. Thus, for shared checkpoint policies, we assume that the checkpoint
server is co-located with the scheduler.

Next, we present each of the proposed scheduling policies, starting by
the First-Come-First-Served (FCFS) methodology, which we use as a refer-

ence.

4.2.2 FCFS

First-Come-First-Served (FCFS) is the classical eager scheduling algorithm
for bag-of-tasks applications, where a task is simply delivered to the first
worker that requests it. This scheduling policy is particularly appropri-
ate when high throughput computing is sought and thus it is commonly
implemented by major desktop grid middleware like BOINC, Condor and
XtremWeb. This way;, it is used by the main volunteer grid desktop projects.
However, FCFS is normally inefficient if applied unchanged in environ-
ments where fast turnaround times are sought, especially if the number
of tasks and resources are in the same order of magnitude, as it is often the
case for local users’ bag-of-tasks []. Indeed, a FCFS-based
scheduler assigns tasks following the order of the workers” requests. This
might create undesirable schedules, especially in the last stage of the ap-
plication, where the number of tasks to compute is less than the number of
available resources. For instance, consider the extreme situation of the last
task being assigned to the slowest machine of the pool, simply because the
slowest machine requested a task.

In order to adapt the FCFS policy to fast turnaround-oriented envi-

ronments, we applied several changes. First, we added support for shar-

4.2. SCHEDULING POLICIES 91

ing checkpoints to promote checkpoint mobility, and consequently for an
improved usage of resources relatively to private checkpointing. Then,
based on FCFS, several scheduling policies were devised, namely FCFS-AT
(AT stands for adaptive timeout), FCFS-TR (task replication), FCFS-TR-DMD
(task replication with checkpoint on demand) and FCFS-PRDCT-DMD (predic-
tion with checkpoint on demand). Next, we describe each of the proposed
scheduling policies.

4.2.3 FCFS-AT

FCFS-AT improves the base FCFS with the inclusion of an adaptive timeout
that defines a maximum time for the machine to complete the execution of
the assigned task. Should the timeout expire before the task has completed,
the scheduler considers the task as non-terminated and will therefore reas-
sign it to another machine, where it will be restarted, possibly from the last
stable checkpoint, if shared checkpointing is enabled. However, under a
private checkpoint model, the task needs to be restarted from scratch in an
available machine, unless the original executing machine rapidly returns
to availability, which allows the task to be resumed from the private check-
point.

The timeout is computed each time the task is assigned to a request-
ing machine. The timeout computation takes into account the needed CPU
time to complete the task (measured relatively to a reference CPU), as well
as, the machine performance as given by the Bytemark benchmark indexes
[]- Both values are used to estimate the minimum time needed
by the candidate machine to complete the task assuming an ideal execution
(i.e., a fully dedicated — 100% CPU for the task — and a flawless execution
without interruptions). An heuristic tolerance time is added to the base
timeout to provision for overhead and the possible existence of interactive
usage of the machine. This tolerance time depends on the expected run-
ning time of the task under the ideal conditions and also on the time of the
day. Table 4.1 shows the factor by which the estimated completion time
under ideal conditions is multiplied to obtain the total timeout time. We
introduced different factors for the nighttime periods and the weekends to
take into account the likely stability of the desktop grid resources during
period of low or non-existence of human presence as it was observed in
Chapter 3.

92 CHAPTER 4. FAULT-TOLERANT SCHEDULING

CPU reference time (secs) or time of day | Timeout factor
< 1800 1.500
11800,3600)] 1.325
13600, 7200] 1.250
> 7200 1.150
Nighttime (0.00-8.00 am) 1.100
Weekend (Sat,Sun) 1.050

Table 4.1: Timeout tolerance factors for FCFS-AT and derived policies.

4.24 FCFS-TR

FCFS-TR adds task replication on top of the FCFS-AT scheduling policy.
The strategy is to resort to task replication at the terminal stage of the
computation under the condition that all uncompleted tasks are already
assigned and there is at least one free machine. Replicating the task aug-
ments the probability of a faster completion of the task, especially if the
replica is scheduled to a faster machine than the current one. Even if a
replica is assigned to a slower or to an equal performance machine, it can
still be useful by acting as a backup in case the primary machine fails or
gets delayed.

In all replica-based policies, the number of replicas-per-task (hence-
forth replica count) is limited by a predefined threshold. The purpose of
the replica count limitation is to promote fairness in the replica function-
ality, avoiding that some excessively replicated tasks clutter the resources.
Therefore, the tasks whose replica count has already reached the limit can
only be further replicated when one of the current replicas is interrupted.
Moreover, when a task is terminated all other results produced by replicas
that might exist are simply discarded.

4.2.5 FCFS-TR-DMD

FCFS-TR-DMD adds the checkpointing on demand feature to task replica-
tion implemented by FCFS-TR. As the name suggests, checkpointing on
demand allows the scheduler to order a worker to perform a checkpoint
operation on the task it is currently executing. This fresh checkpoint is use-
ful immediately before the creation of a replica, since it allows the replica
to start with an up-to-date state of the source task. In fact, resorting only

4.2. SCHEDULING POLICIES 93

on regular checkpoints would mean that a valid but possibly aged state of
the task would be used to create the replica, and thus computation already
performed would need to be redone by the computer hosting the replica.

Itis important to note that checkpointing on demand poses two require-
ments: (1) the capability for the supervisor to initiate communication with
workers (to demand the checkpointing operation) and (2) the ability of a
task to be checkpointed at any time. In fact, supervisor-initiated commu-
nication might be avoided if the desktop grid system allows the supervi-
sor to send information and commands in response to a worker’s periodic
heartbeat. However, this approach would induce a delay on the supervisor
demand to checkpoint, in average equal to half the heartbeat’s periodic-
ity. Furthermore, depending on the granularity of the task and how the
application checkpointing was programmed, the ability to perform an im-
mediate checkpoint might not be feasible. For instance, the execution of a
task that implements an iterative execution is comprised of successive iter-
ations. It is reasonable to suppose that checkpoints can be saved between
but not during iterations. Therefore, if an iteration requires T time units, in
average, saving a checkpoint can only occur 7' /2 time units after it has been
ordered. In this work, we do not consider the delays that may be imposed
by an imperfect checkpointing on demand mechanism.

4.2.6 FCFS-PRDCT-DMD

The FCFS-PRDCT-DMD scheduling policy resorts to short-term prediction
regarding machines’ availability on top of FCFS-TR-DMD. When a predic-
tion indicates that a currently requested machine might fail in the next sche-
duling interval, the scheduler requests a checkpointing on demand opera-
tion and promotes the creation of a replica if conditions are met, that is, if
at least a free machine exists and the maximum number of replicas for the
considered task has not yet been reached. The rationale behind this policy
is to anticipate the potential unavailability of machines, taking the proper
measures to reduce or even eliminate the effect of the machine unavailabil-
ity on the execution of the application.

The used prediction method was the Sequential Minimal Optimization
(SMO) algorithm. This algorithm was selected since it yielded the best pre-
diction results for machine availability, as shown by Andrzejak et al. [

1.

94 CHAPTER 4. FAULT-TOLERANT SCHEDULING

4.3 Segmented Execution with Shared Checkpoints

In this section, we detail the concept of segmented execution that aims, un-
der ideal execution conditions, to achieve an optimal turnaround time of
an application comprised of 7 homogeneous tasks when executed over a
fixed set of M homogeneous machines. Note that we solely address homo-
geneous tasks, since scheduling heterogeneous tasks, even over homoge-
neous resources is NP-hard [].

The goal of the segmented execution approach is to split the execution
in equal-sized segments and schedule them so that full usage of the com-
puting resources is achieved, yielding an ideal execution time. The main
idea is to segment the execution of tasks, splitting a task into several tempo-
ral segments. These segments are then executed sequentially (for instance,
segment one needs to be completed before the execution of segment two
can start, and so on), with the execution possibly scheduled over different
machines. To allow a segmented execution, a shared checkpoint/restart
mechanism is assumed, allowing not only temporal segmentation of the
execution of tasks but also that the segments of a task can be executed at
any machine.

The rationale behind the segmented execution approach comes from
the fact that when considering execution under ideal conditions, namely
failure-free and fully dedicated machines, it is uncommon to have all ma-
chines fully occupied by tasks during the whole execution, and thus com-
puting power is lost, lengthening turnaround time. In fact, depending on
the ratio 7 /M and considering a non-segmented execution, some machines
will be left for some periods with no tasks to process. Specifically, this
happens in the last stage of execution, when all tasks have at least been al-
ready started and if the number of tasks, T, is not a multiple of the number
of machines. For instance, consider the simplest case, where M homoge-
neous machines are set to execute T tasks, each one requiring a single CPU
time unit to complete. The time needed to carry out the execution of the
tasks is given by [T /M]. Unless T is a multiple of M, the last stage of ex-
ecutions (when the machines receive their last task to execute) will only
involve T mod M machines (considering that the previous execution stages
fully occupied all M machines), and thus M — (T mod M) machines will be
left idle without tasks to execute. The goal of the segmented execution is
precisely to schedule tasks in such a way that in every execution stage, all M

4.3. SEGMENTED EXECUTION WITH SHARED CHECKPOINTS 95

machines are fully occupied. For this purpose, execution of all T tasks need
to be done in T'/M segments, each task being split in M segments. Since, at
any given time, at most M tasks can be executing (one per machine) and
since the execution of the segments of a task imposes sequentiality (the
second segment can only be executed after the first one and so on), the exe-
cution needs to be carefully scheduled in order to yield a turnaround time
of T /M time units. As stated before, the segmented scheduling requires the
interruption of tasks since the segments of a given task are not necessarily
executed consecutively.

4.3.1 Example of a segmented execution

To make matters clear, we give an example of an ideal segmented execution
considering an homogeneous set of machines and an homogeneous set of
tasks. Specifically, we consider a set of 3 homogeneous machines (M = 3,
with M, M>, M3) and an application comprised of 5 homogeneous tasks
(T =5, with individual tasks labeled 7; to T5s). For the sake of simplicity, we
assume that every single task requires one unit of CPU time for complete
execution.

The optimal turnaround time considering segmented execution is 7' /M,
that is, 5/3 time units, while a non-segmented execution would require
[5/3], i.e., 2 entire time units to complete. The segmented execution of the
whole application is to be completed in five steps (one time unit per step),
with every task being split in 3 segments. A possible scheduling of the
execution is outlined in Figure 4.1, where each cell represents the task in-
dicated along the y-axis during the step pointed by the x-axis. A gray cell
indicates that the task is stopped for the given step. The pseudo-code for
the algorithm used to compute this solution is listed in Algorithm 4.1. Note
that other scheduling layouts exist, possibly more optimized. For instance,
a segmented execution scheduling may minimize the interruption of tasks
(an interruption occurs when after completing a non-terminal segment of
the task, the execution is either stopped or moved to another machine). In-
deed, relatively to the next segment of the task, two situations might occur:
either the segment is processed on the same machine and thus a private
checkpoint is enough for resuming the execution, or the next segment is
scheduled to another machine. This latter case forces a checkpoint trans-
fer, between the shared storage point and the newly scheduled machine.

96 CHAPTER 4. FAULT-TOLERANT SCHEDULING

Algorithm 4.1 Segmented execution algorithm.

1: {Init stage}

2: tasks_D — [(T1 : 0),...,(T; : 0),...,(T; : 0)]

3: {Iterate step-by-step (the number of steps is equal to T')}
4: for every stepiin{i=1,...,T} do

5: forevery taskjin {j=1,...,T} do
6: if (M —execstep(T;) > (T —i+1)) then
7 {Task; needs to be scheduled in this step 7}
8: execstep(T;) «— execstep(Tj) + 1
9: end if
10: { Assigns a task for every vacant machine (if any)}
11: if NumVacantMachines >0 then
12: for every vacant machine Mach;, do
13: {Lookup for an unassigned task}
14: for every Taskjin{j=1,...,T,} do
15: if Unassigned(Task;) then
16: Machg < Tasky
17: end if
18: end for
19: end for
20: end if
21: end for
22: end for

Therefore, a possible goal would be to find the schedule that minimizes the
interruption of tasks, and for the unavoidable interruptions, to minimize
the number of checkpoint transfers. For instance, considering the example
depicted in Figure 4.1, two transfers of tasks occur: one for task 75 (from M,
to M in step 4) and the second one for 73 (from M3 to M, in step 5).

Tl 1 1 M 1
T,)) M,
tasks T, 3 3 N
T4 2 2 2
TS 3 3 3
step #1 step #2 step #3 step #4 step #5

Figure 4.1: Optimal segmented execution of 5 tasks over 3 machines.

4.4. THE DGSCHEDSIM SIMULATOR 97

4.4 The DGSchedSim Simulator

To assess the performance of the scheduling policies presented in this chap-
ter, we developed the simulator DGSchedSim. The main goal of the simula-
tor is to provide accurate execution models of bag-of-tasks applications ex-
ecuted over a set of machines which is characterized by the individual per-
formance of the machines. To support models close to real environments,
the simulations are trace-driven by traces collected from real desktop grid
systems. Our choice for trace-driven simulation is due to the fact that such
simulations are credited as being more reliable than assessments based on
analytical load distribution models []. In the context of non-
dedicated resources, one of the key benefits of simulation over real testbed
experiments is to allow reproducible and controlled experiments. In par-
ticular, real desktop grid systems are prone to various external uncontrol-
lable factors such as the interactive load induced by users, variable network
load and failures, just to name a few. These random external factors results
in unpredictable fluctuations of resource availability, rendering difficult,
if not impossible, to have repeatable execution conditions for successive
experiments. Additionally, compared to real testbeds, simulated scenar-
ios are much easier to setup and change since no real resources (hardware
and human), besides the ones that effectively run the simulations, are actu-
ally needed. Indeed, simulation makes possible to study environments not
available or possibly inexistent in the real world. For example, increasing
the number of machines of a simulated scenario may be a simple question
of editing a resource file, while to achieve the same effect in a real testbed
requires much more effort, if at all doable.

4.4.1 Requirements

The requirements that guided the development of the simulator DGSchedSim
were the following:

e Capacity to simulate the execution of bag-of-tasks applications in desk-
top grid environments;

e Ability to support the simulation of predefined and user-defined sche-
duling algorithms;

98 CHAPTER 4. FAULT-TOLERANT SCHEDULING

e Support for simulating heterogeneous resources with variable perfor-

mance,

e Capability for recreating real load scenarios based on trace load col-

lected from real environments;

e Ability to provide relevant information about the temporal evolution
of a simulation so that results can be better understood, allowing the
refinement of the simulated scheduling algorithms;

e Support for a predefined set of parameters that are relevant to sche-
duling in desktop grids, namely checkpoint policies and associated

parameters.

4.4.2 Input

For carrying out a simulation, DGSchedSim requires four main items: (1)
the application requirements, (2) the characteristics of desktop machines
that represent the grid to simulate, (3) the load traces needed to drive the
simulation, and (4) the user-defined scheduling algorithms.

The description of an application includes, besides the number of tasks,
the computing requirements of an individual task. The computing needs
of a task are expressed by the required CPU time, which is the number of
dedicated CPU time units necessary for the complete execution of the task.
This metric is given relatively to a reference machine. To extrapolate the
required CPU time for a task, the computing capabilities of the involved
machines need to be quantified. For this purpose, DGSchedSim resorts to the
INTFP index, which corresponds to the arithmetic mean of the two numer-
ical performance indexes, INT and FP, of the NBench benchmark [

], as previously introduced in Chapter 3. Specifically, to compute the
CPU time needed for the execution of a task in a given machine, the simu-
lator uses the ratio between the machine’s INTFP index and the reference
machine’s index. For example, a ratio of 3 means that the machine is cred-
ited as being as three times faster than the reference machine, and thus the
execution of a task will consume 1/3 of the CPU time that would have been
needed if the execution was performed by the reference machine. Other
characterizing elements of a task include the maximum required memory,
the needed disk space, the input data size (size of data used as input) and
the individual checkpoint size, in case checkpointing is enabled.

4.4. THE DGSCHEDSIM SIMULATOR 99

Every simulated machine is defined by a single entry in a so called desk-
top grid configuration file. An entry holds the machine name, its INTFP per-
formance index, its static attributes like CPU model and speed, amount of
main memory, disk space and the speed of the network interface. The entry
also defines the thresholds for volunteer computing, namely the maximum
main memory and maximum disk space available for running volunteer
tasks. Note that tasks requiring resources above the thresholds of a ma-
chine cannot be run on the machine.

The traces are organized by time stamps: a time stamp corresponds to
the chronological time, in UNIX’s epoch format, when the data was col-
lected. At every time stamp, the collected data aggregates various metrics
for all the monitored machines, like uptime, CPU idleness, presence of in-
teractive user, load of main memory, and so on. A trace is comprised of
data captured at successive time stamps. For the purpose of a simulation,
the time interval between consecutive time stamps may influence the ac-
curacy of the results of a simulation. A wide interval between successive
time stamps, even if it speeds up the time needed to execute the simula-
tion, might worsen the precision of the simulation since events occurring
between two time stamps can not be reproduced.

To perform a simulation with a given trace, it is necessary to specify the
time stamp of the trace to be used as the starting point. However, differ-
ent starting points might yield substantially different results, since different
load patterns can be crossed by the simulation. For instance, a Friday after-
noon’s starting point will most certainly yield a much different execution
pattern and turnaround time than a Monday morning’s. This is especially
relevant for short-lived applications. Therefore, to prevent results from be-
ing biased by the unpredictability of the starting point, DGSchedSim sup-
ports the possibility of multi-run, meaning that several simulations are exe-
cuted from different starting time stamps with the final results correspond-
ing to the average of all the executed simulations. Under the multi-run
mode, the starting points may be user-selected (to allow for reproducible
results) or randomly generated by the simulator. To drive a simulation,
DGSchedSim can use the traces produced by WindowsDDC (see section 3.2,
page 50).

DGSchedSim updates the status of the simulation at every time stamp.
Based on the trace information of the time stamp being processed, the sim-

100 CHAPTER 4. FAULT-TOLERANT SCHEDULING

ulator updates the status of machines and tasks. If the machine assigned to
a given task is still available, the simulator updates the execution progress
percentage of the task accordingly to the idle CPU time of the executing
machine, weighted by the computing capabilities relatively to the reference
machine.

To support experimentation of scheduling policies, DGSchedSim sup-
ports the addition of user-defined scheduling algorithms. To add a schedu-
ling algorithm the user only needs to implement a Python class® derived
from the base class dgs_sched. Specifically, the class needs to override
the method DoSchedule (), which gets called at every time stamp. This
method receives as parameters the current time stamp and the list of non-
executing tasks (i.e., tasks that have not yet been started or which are cur-
rently stopped). Through its base class, the method can also access the core
data of the simulation like the list of machines and their associated statuses.

4.4.3 Output

Besides turnaround time, DGSchedSim can be set to produce other types of
results. The goal behind the diversity of outputs is to allow a better com-
prehension of the outcome of the simulation.

For every simulation executed, several statistics are generated such as
the turnaround times, the number of saved and loaded checkpoints, among
other items. These statistics are saved in a file in CSV-like format allowing
the use of generic tools like spreadsheets for further analysis and process-
ing. If instructed to do so, DGSchedSim can also produce a file containing the
evolution over time of the counts of tasks completed, stopped and under
execution. This information can be plotted to survey the temporal evolu-
tion of the execution and the consequent behavior of the scheduling policy.
Furthermore, to enable a better understanding of the execution, important
for perceiving strategies to minimize turnaround time, DGSchedSim can also
produce a set of images depicting the physical distribution of tasks over
machines as well as their states of execution. Since one image is generated
per time stamp, the whole set can be combined to compose an animation
displaying the application execution driven by the traces of the desktop
grid. An example of DGSchedSim’s output is shown on Figure 4.2. Specif-
ically, the image represents the activity at time stamp 1101380656 of the

2The simulator was written in Python.

4.4. THE DGSCHEDSIM SIMULATOR 101

32 machines defined for the shown simulation. As indicated by the filled

boxes, five of the machines were processing tasks.

laiZ-m01 / lai3-m01 /
lai2-m02 / lai3-m02 /J
lai2-m03 __ﬂ_,———"_' lai3-m03 f_’_‘___‘_
lai2-m04 lai3-m04
oo oo
; . 7 | —
1ai2-m06 lai3-m06
i2-w07 [" L o eEd 1ai3-m07
1ai2-m08 f——— lai3-m08 —————W
lai2-m09 —— g 0331 020% 946 lai3-m09 —— g
i2- i3-
lai2-m 10 ——— =~ [35.1 020% 909 lai3-m 10 ——
lai2-m11 lai3-m11
T ——#= 2.1 019% 999 -
lai2-m12 lai3-m12
[T ol i
lai2-m13 lai3-m13 s Wdn B
1ri2-m14 I 1ri3-m14 I
|| gl e || el
— \ - \
lai2-m16 0491 022% 000 lai3-m16
1101380656:0008\.. 6:0:26 \..

50:00

Figure 4.2: Example of a DGSchedSim’s graphical output.

As an aside feature, DGSchedSim can also compute the cluster equiva-
lence ratio (CER) yielded by a given load trace. The simulator applies the
CER definition (section 3.5.7, page 78), computing the CPU availability of
a machine for a given period correspondingly to its measured CPU idle-
ness over the analyzed period of time. For instance, a machine with 70%
CPU idleness is accounted as a 0.70 dedicated machine. This methodology
assumes that all idle CPU can be harvested, and thus the obtained results
should be regarded as an upper limit of CPU resources that can effectively
be exploited.

Finally, to speed up simulations, DGSchedSim can itself create a bunch of
tasks suitable for execution under Condor. This feature was heavily used to
simulate the herein proposed scheduling policies and allowed us to gather
an inner knowledge of scavenging desktop grid cycles from the perspective
of the user.

102 CHAPTER 4. FAULT-TOLERANT SCHEDULING

4.5 Summary

In this chapter, we presented the case for the importance of turnaround
time for bag-of-tasks executed over desktop grids. We also defined a set
of scheduling policies targeted for improving turnaround times of the clas-
sical FCFS scheduling methodology. The proposed scheduling policies ex-
ploit the concept of shared checkpoints, upon which, application-level check-
points can be shared among workers, providing mobility to tasks. Finally,
we summarily presented the DGSchedSim simulator, which was used for
simulating the aforementioned scheduling policies. In the next chapter, we
analyze the simulation results for the scheduling policies that were pro-
posed in this chapter.

Evaluation of
Fault-Tolerant
Scheduling

In this chapter, we present the main results for the scheduling policies de-
scribed in the previous chapter. We first describe the simulated computing
infrastructure, namely the set of machines and the desktop grid trace which
was used to drive the simulations. We then present and analyze the main
results.

5.1 Computing Environment

5.1.1 Machines

To assess the behavior of the scheduling policies relatively to the speed of
machines and of the heterogeneity of resources, two machine sets, hence-
forth identified as M01 and M04, were simulated. The M01 set holds 32
identical fast machines of type D (see Table 5.1), while the M04 set, as the
name suggests, is a mix of four different groups of machines: 8 machines
of type A, 8 of type B, 8 of type C, and 8 of type D. The M01 group deliv-
ers a higher computational power than M04, since only 8 machines of M04
are as fastest as the machines of the M01 set. Concretely, and based on the
reference ratios of the machines that constitute the sets, M01 is equivalent
to 54.14 reference machines, while M04 yields 36.66 reference machines,
meaning that M01 is approximately 1.5 times faster than M04.

The four types of simulated machines are summarized in Table 5.1. The
column CPU describes the machine’s CPU type and clock speed, while the
next column, Perf. index, indicates the combined INTFP performance index

103

104 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

Type CPU Perf. index | Ratio to reference
A PIII@650 MHz 12.952 0.518
B PIlI@1.1 GHz 21.533 0.861
C P4@2.4 GHz 37.791 1.511
D P4@3.0 GHz 42.320 1.692
Avg. - 28.649 1.146
Reference P4@1.6GHz 25.008 1.000

Table 5.1: Sets of simulated machines and their performances.

of the respective machine group. Finally, the fourth column corresponds
to the reference performance ratio of machines relatively to the reference
machine. The reference machine, shown in the last row of Table 5.1, is
used as reference for calibrating the execution of tasks. For instance, a task
requiring 1800 seconds of CPU on the reference machine, would take nearly
3475 seconds on a type A machine, and slightly more than 1063 seconds on
a type D machine.

5.2 Trace

Due to the difficulty of conducting repeatable and configurable experi-
ments in real desktop grid platforms, we resorted to simulation to carry
out performance analysis of the proposed algorithms. All simulations were
driven by a trace collected from two academic classrooms of 16 machines
each, totaling 32 machines. The trace is comprised of samples collected,
through WindowsDDC, at a two-minute cadence at the available machines.
Each sample aggregates several metrics, like uptime, CPU idleness and
memory load to name just the metrics that are relevant to the simulations.
All the machines run the Windows 2000 (service pack 3) operating sys-
tem. As reported in Chapter 3, no shutdown policy exists for the machines:
when leaving a machine, a user is advised but not obligated to shut it down.
Therefore, machines may remain powered on for several days. On week-
days, the classrooms remain open 20 hours per day, closing from 4 am to 8
am. On Saturdays, the classrooms open at 8 am and close at 9 pm, remain-
ing closed until the following Monday.

5.2. TRACE 105

5.2.1 Characterization of the Trace

The trace represents 39 consecutive days (from the 25 November of 2004
to the 3 January of 2005) and contains 27,193 sampling periods, for a to-
tal of 473,556 samples. The samples were collected during a period with
classes, except for the last ten days which corresponded to the Christmas
holidays. When no classes were taught, the machines were used by the stu-
dents for their practical assignments, web browsing and email activities.
Figure 5.1 plots the number of accessible machines for the trace (Figure
5.1(a)), as well as the weekly distribution of accessible machines (Figure
5.1(b)). The average number of accessible machines for the trace was 17.42
(shown by the horizontal line avg) with a standard deviation of 6.78.

32

machs # machs
30] ﬂ L I machs 1 . ‘ . machs
g 2] ‘ g 2 i M \ i
(:é 20 | I mﬁu § 20 L r\ LW I\'\
2 b J 2 AW} A
é I m— § 2
g 10 £
E 2 8
s |
4
0 0
25.11 02.12 09.12 16.12 23.12 30.12 Sun Mon Tue Wed Thu Fri Sat
. Date . . Weekdays .
(a) Number of accessible machines over time (b) Weekly count of machines

Figure 5.1: Count of accessible machines.

The flat portions of the plot displaying the count of accessible machines
indicate periods of resource stability. These periods correspond mostly to
weekends and also, although in a lesser degree, to nighttimes, as can be
seen on the weekly distribution. This behavior is explained by the fact that
when the classrooms are closed, like on weekends and during nighttimes,
the machines maintain the state (powered on/powered off) that they had at
classroom’s close time. Indeed, since only power users can remotely access
the resources, the physical inaccessibility of the machines means that their
state remains unaltered apart an unexpected and rare event occurs, like a
crash or a power outage.

The average daily count of samples collected per machine is shown in
the plots of Figure 5.2. The left y-axis is scaled to the maximum number
of samples per machine in a day (720 samples, corresponding to a sample

106 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

every 2 minutes). The machines (x-axis) are displayed by their identify-
ing number (1 to 32) in the left plot, and reversely sorted by the average
count of samples in the right plot. The number of samples of a machine
measure the availability of the machine, since only an accessible machine
(powered on and with network connectivity) can be sampled. The plot in-
dicates that machine availability varies roughly between 550 samples per
day (corresponding to 76.39% availability) for the most available and 220
(30.55% availability) for the least available. The plot also displays the aver-
age CPU idleness percentage per machine (right y-axis), with values rang-
ing from slightly less than 96% to 99%. Once again, this confirms the high
CPU idleness of machines.

700 avg samples per day ——— 700 - avg samples per day ——
IDLE (%) IDLE (%)

600 600

500 ol 500

400

400

number of samples
=
S
3
CPU idle (%)
number of samples
=
S
3
CPU idle (%)

300 e H bbb H LT] ‘v»‘b it o8

%]
I 95 200 I 95
9 94
93 100 93
%2 %2
91 91
0 %0 0 %

machines (1..32) machines (1..32)

(a) average samples per machine (b) average samples per machine (descendant)

300 kit TP M T LT] [LR [T # o8

20!

3

10

3

Figure 5.2: Samples per machine per day (left y-axis) and CPU idleness per ma-
chine (right y-axis).

To assess the volatility of the trace, we computed the variation count of
every machine of the trace. A variation is defined as the change of state in
a machine’s availability, either from available to unavailable (for instance,
the machine was powered off), or vice-versa (the machine was booted, or
regained connectivity to the network). The variation count of a trace is then
a set which holds, for every machine of the trace, the machines’ variation
count. Furthermore, to facilitate comparison, we defined the variation ratio
of a machine as the ratio between its actual variation count and the poten-
tial maximum number of variations, which corresponds to the number of
samples minus one (that is, 719).

Figure 5.3 combines the variation count per machine (plotted against
the left y-axis), and the variation ratio (right y-axis) for the trace class. (Plot
5.3(b) displays the machines reversely sorted by their respective variation

5.2. TRACE 107

count.) It is important to note that we use the broad definition of avail-
ability, upon which a machine is considered available as long as it is pow-
ered on, independently of the existence or not of an interactive user. This
definition follows what can be configured for some desktop grid workers
like BOINC or even Condor (by default, Condor does not allow the coex-
istence of interactive usage and volunteer computation, but this can easily
be changed). The main metrics of the trace are summarized in Table 5.2
(page 108).

variation ——— variation ———
140 - variation ratio - 140 variation ratio -

120 - I 120

100] nl 2 100 [Hin 2

80

variation count
"
@«
variation ratio (%)
variation count
-
@«
variation ratio (%)

60
40 40

machines (1..32) machines (1..32)

(a) variation count and ratio (b) variation count and ratio (descendant)

Figure 5.3: Variation count per machine (left Y-axis) and the corresponding varia-
tion ratio (right Y-axis).

Although a set of 32 machines may appear as somewhat limited and
not representative of existing institutional settings, it should be noted that
we consider that a pool of machines to harvest is split among several users,
with the set of 32 machines representing the machines assigned to a given
user for a limited period of time, for instance, one day. Furthermore, much
of the criticality of scheduling oriented for fast turnaround time occurs in
the last stage, when the number of resources is bigger than the number of
tasks to be completed. Therefore, under such circumstances, for assessing
scheduling policies, the ratio number of tasks / number of machines is more
significant than the total number of machines.

5.2.2 CPU Idle Threshold

As can be observed in Table 5.2, the machines have high percentages of
CPU idleness, indicating the high availability of the studied computing en-
vironment. Regarding variability, as measured by the variation ratio per ma-

108 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

Metric weekday weekend Total
Trace length (days) 27 12 39
No of samples 353618 119938 473556
Avg. count of machines 189 (c=74) 16.1 (c=3.4) 17.4 (6 =6.8)
Avg. CPU idleness 95.7% (6 =17.7%) | 98.7% (6 =2.7%) | 96.5% (6 =7.2%)

Table 5.2: Main metrics of trace class

1000 5 1000 — 5
variation C——1 variation C———1
variation ratio . variation ratio

800 |- - - - M a 800 [[| 4

600 || i | P 3 600 L H] : : 3

400

variation count
variation ratio (%)

variation count
variation ratio (%)

IS
S
3

N

200

-
N
]
1S

-

0 0 0
machines (1..32) machines (1..32)

(a) variation count and ratio (b) variation count and ratio (descendant)

Figure 5.4: Variation count per machine (left y-axis) and the corresponding varia-
tion ratio (right y-axis) for a 90% CIT.

chine, the trace has very low values (0.35%, with ¢ = 0.10%), meaning that
fault tolerance mechanisms by themselves might not yield major improve-
ment on performance, since the stability of resources is high. Therefore, for
the purpose of evaluating the proposed scheduling policies under a more
stringent environment, namely with a higher level of volatility, we defined
a threshold condition regarding the minimum level of idle CPU required
for a machine to be targeted for scavenging at a given period. Specifically,
under the CPU Idle Threshold condition (CIT), a machine is defined as candi-
date to scavenging at a time ¢, only if its CPU idleness is above the defined
threshold.

In practical terms, the CIT condition is equivalent to a resource owner
defining that the machine should only be considered for opportunistic com-
puting when CPU idleness is above a predefined threshold. In this study,
besides the 0% CIT, which corresponds to the original trace, simulations
were also carried out for a 90% CIT condition. From the point of view of

the resources, this corresponds to a much more demanding scenario, where

5.3. MAIN RESULTS 109

— 3 1000 — 5
variation —— variation ——
140 variation ratio ----- variation ratio -

120 -] 800 |[]ryo 4

100 1 2

600 fiHH HH| 11 A 3

80

variation count
I
o
variation count

60

IR
40
e 200 1
LT, 05
0 0 0

machines (1..32) machines (1..32)

(a) 0% CIT (b) 90% CIT

variation ratio (%)
variation ratio (%)

Figure 5.5: Comparison of 0% CIT and 90% CIT variation count (left y-axis) and
variation ratio (right y-axis).

only periods that have less than 10% of CPU consumed by the resource
owner can be harvested by hosted tasks.

Figure 5.4 plots the variation count and ratio for the trace when the CIT
is set to 90%. As expected, the variability of the resources is much more
pronounced than for the 0% CIT case. The mean variation count is 707.78
(with 0 = 447.7), and the average variation ratio is 2.69 (¢ = 1.62). Thus,
relatively to the 0% CIT, the resources measured under the 90% CIT are
nearly 8 times more volatile. To allow for a better comparison of the effect
of a 90% CIT relatively to a 0% CIT, the variation count and ratio plots of
both CITs are plotted next to each other in Figure 5.5, page 109 (note that
the plots have different y-axis scales).

5.3 Main Results

In this section, we present the most relevant results for the proposed sche-
duling policies. Before examining the main results for the studied cases,
we present the concept of Ideal Execution Time, and then we describe the
application scenarios that were simulated.

5.3.1 Ideal Execution Time

For a better assessment of the results, the obtained turnaround times are
given relatively to the Ideal Execution Time (IET). Specifically, the reported
results correspond to the slowdown ratio, that is, the ratio of the application

110 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

Number of tasks | Task (seconds) | turnaround (minutes)
MO1 M04
25 1800 17.73 (17.73) 35.46
25 7200 70.91 (70.91) 141.83
75 1800 53.19 (41.49) 70.91
75 7200 212.74 (165.93) | 283.66

Table 5.3: Ideal Execution Time (IET) for the considered task/machine pairs. For
the MO1 set, the segmented ideal execution time is shown within parenthesis.

turnaround time relatively to the IET for the given characteristics of the ap-
plication (number of tasks and the amount of reference CPU time required
per task), and the machine set (either M01 or M04). The IET measures the
theoretical turnaround time that would be required for the execution of the
application if performed under ideal conditions, that is, with fully dedi-
cated and failure free machines, and with no overhead whatsoever. The
fully dedicated requirement means that all CPU (and other resources) are
devoted to the application. Thus, IET is independent of the usage trace
of the resources, being determined by the characteristics of the application
(number of tasks and individual size of the tasks) and the performance of
the executing machines. Table 5.3 reports the IETs for the scenarios ana-
lyzed in this study, that is, the M01 and M04 machine sets, and applications
comprised of either 25 or 75 tasks of 1800 or 7200 seconds each. The ta-
ble also includes the execution time considering an ideal segmented execu-
tion based on shared checkpoints as computed by Algorithm 4.1 (page 96).
The values are shown within parenthesis and solely for the M01 machine
set, since mapping tasks to heterogeneous machines is, as reported before,
NP-hard []. Note that for the 25-task cases, the ideal seg-
mented execution time concurs with IET. This is due to the fact that the
number of tasks is less than the number of machines.

5.3.2 Simulated Tasks

Simulations were carried out with applications comprised of either 25 or 75
tasks, with individual tasks requiring either 1800 or 7200 seconds of CPU
time when executed on the reference machine. The number of tasks per

application was chosen in order to assess a scenario where the number of

5.3. MAIN RESULTS 111

tasks would be slightly smaller than the number of machines (25 tasks),
and another one, where the number of tasks would be moderately higher
than the number of machines (75 tasks).

The impact of the checkpoint policies over the turnaround time was
measured by varying the number of saved checkpoints during the execu-
tion of a task. For this purpose, simulations were performed with no check-
points, one checkpoint and nine-checkpoint per single-task execution. In
single-checkpointed executions, the checkpoint file is saved when the task
reached half of its execution, while for the nine checkpoints executions a
checkpointing operation is performed every 10% of the execution (i.e., at
10%, 20%, 30% and so forth). The size of the individual checkpoints was set
to 1 MB for all simulated scenarios. In fact, bigger sizes (up to 10 MB) were
also simulated and they did not yield significant differences, mostly due to
the fast communication links of the targeted LAN environments, and thus,
the network data movement is not a determinant fact in terms of overhead.
Note that network costs (latency and the transfer time) and disk costs (read
and write operations) were considered for modeling the checkpointing op-
erations. Specifically, latency was set to 1 millisecond, and the network
speed considered to be 92 Mb/s as measured by the IPerf utility [

]. Regarding disk operations, read and write speeds were experimen-
tally determined at the reference machine to be, respectively, 31.263 MB/s
and 28.081 MB/s. These values are conservative, since the reference ma-
chine was a laptop, which usually have relatively slow I/O subsystems, at
least when compared with desktop machines.

For the scheduling policies that rely on replication, that is, TR, TR-
DMD and TR-PRDCT-DMD, the replication count threshold (Section 4.2.4,
page 92) was set to 3, since this proved to be the value that delivered the
best results for the considered setting.

Our simulated model assumes that the presence of a local user, although
holding priority over resources, would not suspend the execution of the
running task in that machine. Instead, the quality of service for local users
is assumed to be preserved via the process priority mechanism of the host’s
operating system, with guest processes running at the lowest priority level.
As stated before, this behavior is similar to the one that can be configured in
the BOINC client, as well as in other desktop grid middleware like Condor
and XtremWeb.

112 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

To assess the effects of the weekday/weekend variations of the trace
over the workloads — as seen earlier on, weekends present much lower
volatility of resources — separated simulations were carried out for week-
days and weekends. Furthermore, to prevent results from being biased by
using only specific portions of the trace, all simulations were run multiple
times from different starting points, with the reported turnaround times
corresponding to the mean average of the multiple executions. Specifically,
the number of runs for every simulated case was 12 for weekday periods,
and 10 for weekend ones.

5.4 Presentation of Results

The presentation of results is split in two parts. First, to assess the effect of
sharing checkpoints, the turnaround time from the shared version of a sche-
duling policy is compared to the corresponding private version for each
one of the four number of tasks/individual task length scenarios (i.e., 25/1800,
25/7200, 75/1800, 75/7200). Note that the shared versions of scheduling
policies have their name terminated with an _S, while private versions are
identified with an ending _P in their names.

In the second part, and since scheduling based on shared checkpoints
consistently outperforms private-based schemes, we compare the shared
checkpointing versions of all the proposed scheduling policies. Specifi-
cally, every plot aggregates the slowdown ratios for the studied schedu-
ling methodologies, that is, adaptive timeout (AT), first-come-first-served
(FCES), transfer replicate (TR), transfer replicate with checkpoint on de-
mand (TR-DMD), and transfer replicate with prediction and checkpoint on
demand (TR-PRDCT-DMD). An important note is that the plots display
slowdown ratios, with lower values meaning faster, and thus better, turn-
around times. To assess the effects of volatility over the scheduling policies,
results are shown for 0% and 90% CIT.

5.4.1 Shared versus Private Checkpointing

0% CIT over weekdays. Figure 5.6 (page 113) displays the turnaround
times, in minutes, for the shared and private checkpoint versions of the
FCFS scheduling policy, when simulated over weekday periods, consid-
ering a single-checkpoint per task and CIT sets to 0%. Specifically, Fig-

5.4. PRESENTATION OF RESULTS 113

ure 5.6(a) reports the results for the MO1 machine set, while Figure 5.6(b)
presents the turnaround times for the M04 machine set. Independently
of the scenario, the shared version markedly outperforms the private ver-
sion. This occurs for almost all the other scheduling policies as shown in
Figure 5.7 (AT, single-checkpoint per task, page 114), Figure 5.8 (TR, single-
checkpoint per task, page 114), Figure 5.9 (TR-DMD, with nine checkpoints
per task, page 115) and Figure 5.10 (TR-PRDCT-DMD, with nine check-
points per task, page 115). All plots correspond to executions performed
over weekday periods considering a 0% CIT.

450 FCFSg mxxx1 900 FCFSg exxxx

400 | FCFSp mummm B 800 | FCFSp

350 700

300 600

250 500

200 400

300

150 .
100 . 200
50 @ . 100 I é
0

0
25/1800 75/1800 25/7200 75/7200 25/1800 75/1800 25/7200 7517200
(a) MO1 machine set (b) M04 machine set

turnaround time (minutes)
turnaround time (minutes)

Figure 5.6: Turnaround execution time for the shared and private FCFS (one check-
point per execution) with 0% CIT over weekdays.

The superior performance delivered by the shared-based policies is mostly
due to the rapid detection of interrupted executions, allowing for a fast re-
scheduling of the interrupted tasks on other machines. On the contrary,
private schemes only detect an interruption when the associated timeout
expires, thus losing precious time between the failure detection and the
consequent restart operation on another machine. Indeed, the importance
of timeouts is demonstrated by the fact that the adaptive timeout policy
(AT) greatly improves the performance of the private versions of FCFS but
without bringing any benefit to the shared checkpoint methodologies (see
Figure 5.6 and Figure 5.7). Another observation that reinforces the early
failure detection as an important factor for achieving faster turnaround
time is that execution times are not significantly influenced by the check-
point frequency, since checkpointless executions perform closely to one-
and nine-checkpoint executions, at least when considering a 0% CIT.

114

450

350
300
250
200

150

turnaround time (minutes)

100
50

CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

ATg xx==l
LATS wees

a

25/1800 75/1800 25/7200
(a) MO1 machine set

75/7200

turnaround time (minutes)

900
800
700
600
500
400
300
200
100

N B

ATg o
LAT, e

25/1800 75/1800 25/7200 75/7200
(b) M04 machine set

Figure 5.7: Turnaround execution times for shared and private AT (one checkpoint
per execution) with 0% CIT over weekdays.

For a same scenario, and independently of the scheduling policy, the

MO1 machine set yields faster turnaround times than the ones achieved

through the M04 machine set (note that the plots for representing the M01’s

turnaround times have different y-axis scales than the ones showing the

MO04’s). The superior performance of the M01 machine set relatively to M04

is due to the fact that the M01 set, as seen in section 5.1.1 (page 103) aggre-

gates approximately 1.5 times more computing power than M04.

450
400
350
300
250
200
150

turnaround time (minutes)

100

50

o

TRg mxxx1
[TRp m—

25/1800 75/1800 25/7200
(a) MO1 machine set

75/7200

turnaround time (minutes)

900
800
700
600
500
400
300
200

TRg &3
[TRp m—

= [

25/1800 75/1800 257200 7517200
(b) M04 machine set

Figure 5.8: Turnaround execution times for shared and private TR (one checkpoint
per execution) with 0% CIT over weekdays.

5.4. PRESENTATION OF RESULTS 115

450 TR-DMDg exxxx) 900 TR-DMDg exxxx)
400 [TR-DMDp s 800 [TR-DMDp s
7 350 % 700
2 e
2 300 { 2 600
E E
o 250 4 o 500 4
£ £
o 200 1 = 400 .
c c
3 3
S 150 4 £ 300 .
€ €
2 100 4 2 200 1
“ a []
0 0
25/1800 75/1800 25/7200 75/7200 25/1800 75/1800 25/7200 75/7200
(a) MO1 machine set (b) M04 machine set

Figure 5.9: Turnaround execution times for shared and private TR-DMD (nine
checkpoints per execution) with 0% CIT over weekdays.

450 TR-PRDCT-DMDg xxxx1 900 TR-PRDCT-DMDg exxx1

400 [TR-PRDCT-DMDp mmmm 800 [TR-PRDCT-DMDp
% 350 4 - 700
g e
2 300 . 2 600
E E
o 250 4 o 500
£ 1S
© 200 4 o 400
2 2
3 3
S 150 g £ 300
£ £
2 100 - 2 200

* i I |

0 0
25/1800 75/1800 25/7200 75/7200 25/1800 75/1800 25/7200 7517200
(a) MO1 machine set (b) M04 machine set

Figure 5.10: Turnaround execution times for shared and private TR-PRDCT-DMD
(nine checkpoints per execution) with 0% CIT over weekdays.

116 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

0% CIT over weekends. Figure 5.11 (page 116) plots the turnaround times
for the AT scheduling methodology when executed over weekend periods.
As it clearly emerges from the plots, the private-based methodologies per-
form similarly to shared ones. This is a consequence of the high stability
of resources on weekends, caused by the fact that classrooms are locked
from Saturday 9 pm to the following Monday 8 am, with users having no
physical access to the machines. Thus, every machine maintains the state it
has at 9 pm on Saturday until the end of this no access period. Since practi-
cally no failure occurs over weekends, the early detection advantage of the
shared approach yields no benefit.

900 900
ATg xxxx) ATg xxxx)
800 |[ATp mmm— 800 |[ATp mmm—

600

600

500 500

400 400

300 300

turnaround time (minutes)
turnaround time (minutes)

200

100 & g 100
o R
25/1800 75/1800 25/7200 75/7200 25/1800 75/1800 25/7200 75/7200
(a) MO1 machine set (b) M04 machine set

200

Figure 5.11: Turnaround execution times for shared and private AT (one checkpoint
per execution) periods with CIT=0% over weekends.

Comparatively to the equivalent AT executions over weekdays (see Fig-
ure 5.7), executions over weekends produce lengthier turnaround times.
This is due to the number of accessible machines, which diminishes on
weekends relatively to weekday periods (see Figure 5.1(b), page 105), thus
impacting the whole available computing power.

Although over weekends, private and shared schemes perform very
similarly, for the simple TR policy (Figure 5.12, page 117), shared schemes
provide significant benefits relatively to private-based methodologies. This
is especially true for applications with 75 tasks executed over the M04 ma-
chine set. Furthermore, as replication is only activated in the last stage of
the application execution, that is, when all tasks have already been com-
pleted or at least been assigned to a machine, the performance improve-
ments achieved by simple replication are due to replicas being scheduled

5.4. PRESENTATION OF RESULTS 117

to faster machines. This means that the task location yielded by FCFS (and
the FCFS-based policies, like AT) is far from optimal and can be improved
by simply reassigning tasks to faster machines. Therefore, this suggests
that TR is appropriate for applications executed over stable heterogeneous

resources.
900 TRs 900 TRs
800 LTRp mew—m 800 LTRp mew—m

700

700

600 600

500 500

400 400

300

1 [1
o L memm | oLzl

25/1800 75/1800 25/7200 75/7200 25/1800 75/1800 25/7200 75/7200
(a) MO1 machine set (b) M04 machine set

300

turnaround time (minutes)
turnaround time (minutes)

Figure 5.12: Turnaround execution times for the shared and private TR (one check-
points per execution) periods with CIT=0% over weekends.

90% CIT over weekdays. Figure 5.13 compares the private and shared
checkpointing turnaround times under the FCFS policy executed over week-
days, with CIT sets to 90%. The pattern of results is similar to what was
observed for the 0% CIT, although, as expected, with lengthier turnaround
times than the ones obtained for a 0% CIT (see Figure 5.6, page 113). This
is due to the fact that under a 90% CIT the opportunities for exploiting idle
resources diminish, since the 90% CPU idleness threshold must be met for
a task to be scheduled. An interesting issue is that the degradation of per-
formance relatively to the 0% CIT is minor for the shared-based policies,
confirming that shared checkpointing overcomes, at least partially, the ef-
fects of volatility induced by a 90% CIT requirement. A similar trend occurs
for the TR, TR-DMD and TR-PRDCT-DMD policies, shown on Figure 5.14
(page 118), Figure 5.15 (page 119) and Figure 5.16 (page 119), respectively.

90% CIT over weekends. The turnaround times for weekends under a 90%
CIT closely follow the ones observed for a 0% CIT, with no major differ-

ences existing between the shared and private versions, a consequence of

118 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

600 1200

FCFSg mxm FCFSg mxxa
FCFSp FCFSp mmmm
500 1 1000 :
7 7
2 2
2 400 1 2 800 1
E E
(] (]
£ 300 1 E 600 ,
el el
c c
3 3
g 200 {1 & 400 1
f=] f=]
E E
100 1 200 g .
0 @ 0 @
25/1800 75/1800 25/7200 75/7200 25/1800 75/1800 25/7200 75/7200
(a) MO1 machine set (b) M04 machine set

Figure 5.13: Turnaround execution times for shared and private FCFS (one check-
point per execution) with a 90% CIT over weekdays.

500 (7 1000 (-
450 TRp m— 4 900 -TRp mmmm 4
400 1 . 800
(%) [
Q Q
5 350 g 5 700
£ £
E 300 g E 600
(4] (4]
£ 250 1 E 500
=] =]
5 200 4 S 400
e]
8 150 1 8 300
] =
= 100 1 = 200
o El oLl
25/1800 75/1800 25/7200 75/7200 25/1800 75/1800 25/7200 75/7200
(a) MO1 machine set (b) M04 machine set

Figure 5.14: Turnaround execution times for the shared and private TR (one check-
point per execution) with a 90% CIT over weekdays.

5.4. PRESENTATION OF RESULTS

500
450
400
350
300
250
200
150

turnaround time (minutes)

100
50

TR-DMDg exxxx)
| TR-DMDp s

a

25/1800 75/1800 25/7200
(a) MO1 machine set

75/7200

turnaround time (minutes)

900
800
700
600
500
400
300
200
100

(b) M04 machine set

TR-DMDg exxxx)
| TR-DMDp s]
o L=l %
25/1800 75/1800 25/7200 75/7200

Figure 5.15: Turnaround times for the shared and private TR-DMD (nine check-
points per execution) with a 90% CIT over weekdays.

700

600

500

400

300

200

turnaround time (minutes)

100

TR-PRDCT-DMDg xxxx1
TR-PRDCT-DMDp s

A

25/1800 75/1800 25/7200
(a) MO1 machine set

75/7200

turnaround time (minutes)

1000
900
800
700
600
500
400
300
200
100

TR-PRDCT-DMDg xxxx1
[TR-PRDCT-DMDp

A

25/1800 75/1800 25/7200
(b) M04 machine set

75/7200

Figure 5.16: Turnaround execution times for shared and private TR-PRDCT-DMD
(nine checkpoints per execution) with a 90% CIT over weekdays.

120 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

the relative stability of resources over weekends. Moreover, the only ef-
fect of a 90% CIT is to lengthen the turnaround times, independently of the
used checkpointing type. Plots for the AT and the TR cases are shown in
Figure 5.17 and in Figure 5.18, respectively.

L ATg &xxx1 | ATg exxx1
1000 ATi 1000 ATi

800 800

600

600

400 400

Lo Lol

25/1800 75/1800 25/7200 75/7200 25/1800 75/1800 25/7200 75/7200

(a) MO1 machine set (b) M04 machine set

turnaround time (minutes)
turnaround time (minutes)

Figure 5.17: Turnaround execution times for shared and private AT (one checkpoint
per execution) with a 90% CIT over weekends.

L. TRg EXXx1 L. TRg EXXx1
1000 TRy 1000 TRy

800 800

600

600

400 400

turnaround time (minutes)
turnaround time (minutes)

200 - 200 %
oL mm % L=l
25/1800 75/1800 25/7200 7517200 25/1800 75/1800 25/7200 7517200

(a) MO1 machine set (b) M04 machine set

Figure 5.18: Turnaround execution times for shared and private TR (one check-
point per execution) with a 90% CIT over weekends.

5.4.2 Shared-based Policies

We now analyze the slowdown ratios yielded by the shared-based schedu-
ling policies when executed over the trace. We first detail the behavior of

5.4. PRESENTATION OF RESULTS 121

the policies over weekdays for a 0% CIT, and then for weekends. We then
follow the same approach for the 90% CIT case.

0% CIT over weekdays. Figure 5.19 aggregates the slowdown ratio plots
of the machine sets M01 (left) and M04 (right) for the execution of 25 tasks
of 1800-second CPU time on weekdays. For the M01 set, all scheduling
methodologies perform on a same level, apart from the prediction-based
policy which produced the worse slowdown ratios. As expected in a ho-
mogeneous set of machines, replication yields no benefits. Regarding the
weak performance of the prediction-based scheduling, we hypothesize that
the prediction methodology, while trying to replicate tasks executing on
machine predicted as unavailable on the next scheduling round, might oc-
cupy other machines that would otherwise run more useful replications
(from the point of view of turnaround time). As we should see later on, the
prediction-based method yields more positive results for larger tasks.

For the M04 machine set, the replication-based policies delivered the
best turnaround times, with the checkpointing on demand mechanism yield-
ing benefits relatively to the simple replication policy. The positive results
of the replication-based scheduling can be explained by the heterogeneity
of the M04 set, which creates opportunities for replications, namely when
a task is replicated to a faster machine, something that obviously can not
happen under MO1.

ATg &
FCFSg mx
TR-PRDCT-DMDg &z
-DMDg e

TRg 55

IET =

Slowdown ratio
~
Slowdown ratio

1 chkpt 9 chkpts

G| R o L&
kpt
(a) MOlp machine set (b) M04 machine set

no chkpt 9 chkpts

Figure 5.19: Slowdown ratios for 25/1800 tasks on weekdays (0% CIT).

For the 25/7200 case (Figure 5.20, page 122), the prediction-based policy
performs practically on pair with the simple replication policy that still de-

122 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

livers the best turnaround time on the M01 set. For the M04 set, replication-
based policies coupled with checkpointing on demand achieve the fastest
turnaround times. In fact, the prediction-based scheduling generates much
better results for 7200-second tasks than it does for 1800-second ones, con-
firming that this policy is better suited for longer tasks, especially in het-
erogeneous machine environments like M04. Once again, while checkpoint
benefits on turnaround times are seen with low checkpoint frequency (i.e.,
one checkpoint), increasing the checkpoint frequency to nine checkpoints
per execution only marginally improves performance. This a consequence
of the low variability of resources when a 0% CIT is considered.

3 ATg O3 25 ATs I
FCFSg &= FCFSg =1
TR-PRDCT-DMDg s TR-PRDCT-DMDg 5
TR- TR-DMDg wa

TRg &3
IET w2

15

Slowdown ratio
Slowdown ratio

05 -

0
no chkpt 1 chkpt 9 chkpts no chkpt 1 chkpt 9 chkpts

(a) MO1 machine set (b) M04 machine set

Figure 5.20: Slowdown ratios for 25/7200 tasks on weekdays (0% CIT).

The relative shape of the 75/1800 plots (Figure 5.21, page 123) are some-
what similar to the 25/1800 case (Figure 5.19, page 121) indicating that the
number of tasks does not seem to influence the behavior of the scheduling
policies. In this case, the replication-based policy with checkpointing on de-
mand is consistently the fastest policy regardless of the machine set. Again,
results demonstrate that the prediction-based policy is not well suited for
short tasks.

Slowdown ratios for the 75/7200 case, shown in Figure 5.22(b) (page 123),
further confirm our previous indication regarding the appropriateness of
the prediction-based policy to longer tasks in heterogeneous environments.
In fact, independently of the checkpoint frequency, the prediction-based
policy outperforms the other scheduling methods for the M04 machine set.
For the homogeneous set M01, shown in Figure 5.22(a), both basic task
replication (TR) and replication with checkpoint on demand (TR-DMD)

5.4. PRESENTATION OF RESULTS 123

Slowdown ratio

Slowdown ratio

05

no chkpt 1 chkpt 9 chkpts no chkpt 1 chkpt 9 chkpts

(a) MO1 machine set (b) M04 machine set

Figure 5.21: Slowdown ratios for 75/1800 tasks on weekdays (0% CIT).

yield the best results, although without much benefit relatively to the basic
FCFS and AT. As stated before, this can be explained by the limited role of
replication in a homogeneous set of machines, which is only meaningful

when a task is interrupted.

18

25 AT

FCFSe
TR-PRDCT-DMDg =
TR-DMDg

TRg &=
IET w2

16

DMDg

14

12 -

0.8

Slowdown ratio
Slowdown ratio

0.6
0.4 05 L

0.2

L 4 S i o 7
no chkpt 1 chkpt 9 chkpts no chkpt 1 chkpt

h
(a) MO1 machine set (b) M04 machine set

Figure 5.22: Slowdown ratios for 75/7200 tasks on weekdays (0% CIT).

0% CIT over weekends. For weekend executions, only the 75/7200 case is
shown (Figure 5.23) since the results for all the other cases follow a similar
trend. With the M01 homogeneous set of machines, all scheduling policies
perform roughly at the same level. The same occurs for the M04 set of ma-
chines, although replication-based policies such as TR and TR-DMD yield

barely perceptible faster turnaround times.

124 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

As previously observed (see Figure 5.11, page 116), and contrary to
what occurs on the weekday period, the shared checkpoint versions present
no real advantage over the private checkpoint ones, especially with the ho-
mogeneous machine set (M01). This is due to the higher stability of re-

sources on weekends.

25 ATs & 3 ATg 3

FCFSg = FCFSg =

TR-PRDCT-DMDg TR-PRDCT-DMDg s

TR-DMDg me TR-DMDg wm

TRg £ 25 [TRs &3

il IET e IET

2L
I}]
s 157 g
< c
§ _§ 15
2 H
3 L H
» ! @
s
05
05
| 51 SR L o g N : RE
no chkpt 1 chkpt chkpts noc kpt 9 chkpts
(a) MO1 machine set (b) M04 machine set

Figure 5.23: Slowdown ratios for 75/7200 tasks on weekends (0% CIT).

90% CIT over weekdays. Results regarding 90% CIT present similar shapes
that the ones observed for a 0% CIT. This is noticeable on the comparison of
Figure 5.24 (page 125), which presents the slowdown ratio for the 75/7200
case for a 90% CIT, and Figure 5.22 (page 123), which depicts the same case
for a 0% CIT. As expected, slowdown ratios are bigger for the 90% CIT.
This is a consequence of the higher volatility induced by the higher CIT.
Furthermore, the comparison of the plots highlights that higher checkpoint
frequency are effective in masquerading the negative impact of volatility
on performance, proving the usefulness of checkpoints in volatile environ-
ments. For instance, in the depicted 75/7200 case, the 9-checkpoint execu-
tions are much faster than the checkpointless ones.

90% CIT over weekends. Setting the CPU idleness threshold to 90% bears
minimal impact on resources volatility on weekend periods, and thus it
is practically unnoticeable on the results. This can be observed from Fig-
ure 5.25 which displays the slowdown ratio for the 75/7200 case executed
for a 90% CIT over weekends. All policies perform closely, except for the

5.5. RELATED WORK 125

25

15 -

Slowdown ratio
Slowdown ratio

05

no chkpt 1 chkpt 9 chkpts 1 chkpt 9 chkpts

(a) MO1 machine set pt(b) MO04 machine set

Figure 5.24: Slowdown ratios for 75/7200 tasks on weekdays (90% CIT).

replica-based ones which yield minor benefits for the heterogeneous set of
machines M04.

25 ATg =

IET w2t

15

Slowdown ratio
Slowdown ratio
-

o
T

05
05

no chkpt 1 chkpt 9 chkpts no chkpt 1 chkpt 9 chkpts

(a) MO1 machine set (b) M04 machine set

Figure 5.25: Slowdown ratios for 75/7200 tasks on weekends (90% CIT).

5.5 Related Work

In this section, we review the main work related to scheduling for fast turn-
around time over desktop grids.

Scheduling methodologies for reducing turnaround times of task-parallel
applications in desktop grids were thoroughly studied by Kondo et al.
[]. The authors analyzed several strategies such as re-

source exclusion, resource prioritization, and task duplication. The study

126 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

also resorted to trace based simulations, using traces collected from the En-
tropia desktop grid environment [. However, the study
targeted only small sized-tasks, with the length of tasks being 5, 15 and 35
minutes of CPU time. Moreover, the work did not consider migration nor
checkpointing, assuming that interrupted tasks would be restarted from
scratch. Although perfectly acceptable for small tasks, this assumption is
not appropriate for longer tasks, especially in volatile environments.

The OurGrid project implements the workqueue-with-replication sche-
duling policy (WQR) []. Under this scheme, tasks are as-
signed in a FCFS-like manner, regardless of the metrics related with the
performance of machines. When all tasks have been distributed to work-
ers, and if there are enough free resources, the system creates replicas from
randomly chosen tasks. WQR acts as a best-effort scheduler, with no guar-
antee of executing all tasks. This differs from our work, which is based on
the assumption that an application must be completely executed, thus re-
quiring that the scheduler enforces the execution of all tasks. Cirne et al.
conclude that task replication significantly augments the probability of an
application being terminated.

Anglano and Canonico [] propose WQR-FT
that extends the basic WQR methodology with replication and checkpoint-
ing. They recommend the usage of checkpointing for environments with
unknown availability, since it yields significant improvements when volatil-
ity of resources is high. Likewise WQR, WQR-FT is also limited by its best
effort approach, with no guarantee that all tasks comprising a given ap-
plication are effectively executed.

Weng and Lu [] study the scheduling of bag-of-tasks
with associated input data over grid environments (LAN and WAN) of
heterogeneous machines. They propose the Qsufferage algorithm that con-
siders the influence of the location of input data repositories on scheduling.
The study confirms that the size of the input data of tasks has an impact in
the performance of the heuristic-based algorithms.

Zhou and Lo [] propose the Wave scheduler for run-
ning tasks in volunteer peer-to-peer systems. Wave scheduler uses time
zones to organize peers, so that tasks are preferentially run during work-
ers’ nighttime periods. At the end of a nighttime period, unfinished tasks

are migrated to a new nighttime zone. In this way, tasks ride a wave of idle

5.6. SUMMARY AND DISCUSSION 127

cycles around the world, which reduces the turnaround time. However, the
exploitation of moving night zones is only feasible in a wide-scale system,
distributed all over the globe.

Taufer etal. [] define a scheduling methodology based
on availability and reliability of workers. Specifically, workers are classi-
tied based on their availability and reliability. The scheduler deploys the
tasks based on this classification, assigning tasks to workers accordingly to
the priority of tasks and to the reliability and availability of workers. The
proposed scheduling policy targets BOINC-based projects, taking advan-
tage of the fact that this middleware already collects enough information
to classify individual workers from the availability and reliability point of

view.

5.6 Summary and Discussion

As demonstrated by the results presented in this chapter, sharing check-
points appears as an effective strategy for lowering the turnaround time of
bag-of-tasks applications executed over an institutional desktop grid.

The main results of this chapter are:

- Improvements of up to 60% were obtained relatively to the private
checkpoint methodology. This way, the usage of shared checkpoints
should be promoted for users with soft real time deadlines who resort
to institutional desktop grid resources to run their applications.

- An interesting result is that turnaround time for short duration tasks!
are only marginally dependent on checkpoint frequency. This sug-
gests that it is viable to run checkpointless applications over institu-
tional desktop grids, provided that the tasks are short. This confirms
the results of Kondo et al. [].

- For highly volatile scenarios, such as the ones yielded by a 90% CIT,
sharing checkpoints become mandatory if the goal is to have fast
turnaround times.

- Our results also point out that replication-based policies can be effec-
tive for speeding up turnaround times, especially in heterogeneous

Less than 1-hour of CPU time, considering the average machine of the available resources.

128 CHAPTER 5. EVALUATION OF FAULT-TOLERANT SCHEDULING

environments. Indeed, for settings comprised of homogeneous ma-
chines, a replica can only act as a backup, and thus no major gain
should be expected.

- Regarding replication, care should be taken in setting an appropriate
replication factor count, in order to allow that a maximum of uncom-
pleted tasks can be replicated to faster resources, especially during
the critical last stage of the bag-of-tasks execution, which frequently
determines the turnaround time. For the studied environment, three
was the replication factor that yielded the best results. Additionally,
the effectiveness of replications improves with checkpointing on de-
mand, although implementing such a scheme might break the tradi-
tional reverse-client model implemented by most desktop grid mid-
dleware.

- Although the prediction-based techniques seem inappropriate for short
tasks, they yield substantial benefits with long-running tasks.

- An important issue regarding scheduling for fast turnaround time
relates to the day of the week. Indeed, the considered resources ex-
hibit the traditional weekday/weekend use pattern, meaning that on
weekends the resources are highly stable, and thus, a simple replica-
tion scheme such as TR is enough. Although the studied resources
exhibited a somewhat short nighttime period, such periods are also
exploitable. This means that scheduling strategies should adapt ac-
cordingly to the time of the day/day of the week pair. For instance, ap-
plications comprised of lengthy tasks (up to two days), and which do
not resort to checkpointing should preferentially be run over week-
ends to profit from the stability of the resources.

- We believe that the results herein presented can be extrapolated to
other institutional environments, since most of them should exhibit

similar patterns to those found in our environment.

In the next chapter, we focus on sharing checkpoints over wide-scale
desktop grids.

Sharing Checkpoints over
Wide-Scale Desktop
Grids

In this chapter, we extend the concept of shared checkpoints to wide-scale
desktop grid environments like the Internet. Specifically, we target desktop
computing projects with applications that are comprised of long-running
independent tasks, executed on thousands of computers on the Internet.

6.1 Introduction

We present the chkpt2chkpt system that resorts to a distributed hash table-
based (DHT) infrastructure for sharing checkpoint among the workers of a
desktop grid project. The main idea is to organize the worker nodes of a
desktop grid into a peer-to-peer (P2P) DHT. Worker nodes can take advan-
tage of this P2P network to track, share, manage and claim the space of the
checkpoint files. Moreover, the system introduces the concept of guardian
to allow for a finer grain control over the execution of tasks, speeding up
the detection of interrupted tasks, and consequently, the recovery process.

We use simulation to validate our system and we show that remotely
storing replicas of checkpoints can considerably reduce the turnaround
time of the tasks, when compared to the traditional approaches where nodes
manage their own checkpoints locally. These results make us conclude that
the application of P2P techniques seems to be quite helpful for managing
and sharing checkpoints in wide-scale desktop grid environments.

129

130 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

6.2 Motivation

Given the high volatility of desktop grid resources, platforms like BOINC
and XtremWeb resort to application-level checkpointing. However, as seen
previously in Chapter 4, this approach presents a clear limitation, because
all the checkpoint files of a node are only stored at the local nodes, and thus
are private. If this node fails, the local checkpoint files will not be avail-
able, and thereby they turn out to be useless. Martin et al. |

] reported that the wide-scale public computing project climatepredic-
tion.net in which they are involved, would greatly improve its efficiency
with the existence of a mechanism to support the sharing of checkpoint
files among worker nodes allowing the recovery of tasks in different ma-
chines. It should be noted that the climateprediction.net’s individual tasks
(workunits) are computationally very demanding (up to three months of
computation on an average machine), and thus a significant percentage of
workers drop the project before completing their first workunit. For wide-
scale volunteer computing projects, the alternative, proposed in Chapter 4,
of storing checkpoints in the central supervisor is not feasible, since the
central supervisor would become a clear bottleneck.

In this context, we propose to use a P2P infrastructure for sharing check-
point files that should be tightly integrated with the desktop grid envi-
ronment. Under this approach, the worker nodes act as peers of a P2P
Chord [] distributed hash table, which they use to track the
checkpoint files. If the replicated checkpoint files are available in the P2P
overlay, recovering from a failed task can be much more effective than the
private checkpointing model which is used in the traditional desktop grid
middleware.

It is important to note that the P2P overlay network should be regarded
as a complement to the desktop grid infrastructure: it does not replace the
centralized approach followed by all major volunteer based desktop com-
puting projects. It is a fact that the central model has its limitations, namely
being a single point of failure and a bottleneck. However, it allows for a
tight control over the progress of the computation and has been used suc-
cessfully in all major projects. For these reasons, we keep untouched some
of the paradigms that have made the centralized approach a successful op-

tion.

6.3. OVERVIEW 131

Although there are many recent examples of peer-to-peer file-sharing
and backup applications, e.g. [; ;

], just to mention a few non-commercial systems, sharing check-
points requires a different type of solution. To start, checkpoints become
garbage in a deterministic way. For instance, as soon as some task is fin-
ished (or definitively canceled), all of its checkpoints should be discarded.
Another difference concerns the usefulness of the checkpoints. While the
motivation for volunteering storage space for storing music or other multi-
media files in one’s disk is obvious, the same is not true with checkpoints.
Thus, a system that replicates checkpoints needs to explicitly reward users
that concede their space. On the other hand, in our solution, we can take
advantage of the strict control that we have on the creation and placement
of checkpoints. This sort of reasons make us think that creating a check-
point replication system goes beyond a simple adaptation of existing file-
sharing solutions. Moreover, we add a fine-grain control, allowing for early
discovery and consequent recovery of interrupted tasks. In this way, we
promote faster turnaround times.

In this chapter, we propose and validate through simulation a desktop
computing architecture called chkpt2chkpt, which couples the traditional
central supervisor based approach with a P2P distributed hash table that
enables checkpoint sharing. The purpose of chkpt2chkpt is to reduce the
turnaround time of bag-of-tasks applications executed over wide-area vol-
unteer environments. By reusing the checkpoints of interrupted tasks, nodes
need not to recompute those tasks from the beginning. This consider-
ably reduces the average turnaround time of tasks in any realistic scenario
where nodes often departs with their tasks unfinished. Moreover, by pro-
moting the utilization of previous computations (by way of task’s states re-
stored from checkpoints), our replication system also increases the through-
put of the entire desktop grid system.

6.3 Overview

Our system is built upon the traditional model of public computing projects,
with a central supervisor coordinating the global execution of an applica-
tion. Specifically, the central supervisor replies to a volunteer worker node
(henceforth worker) request for work by assigning it a processing task. The

132 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

worker then computes the assigned task, sending back to the central super-
visor the results when it has completed the task. The targeted applications
are bag-of-tasks, each one comprised of a large number of independent
tasks, with an application only terminating when all of its tasks are com-
pleted. Every task T is uniquely identified by a number, with the applica-
tion A being represented by the set Ay suchas Ar = {T,...,T;,...}. Further-
more, we only consider sequential tasks that can be individually broken
into multiple temporal segments {S;,,...,S;,...,S, } and whose intermedi-
ate computational states can be saved in a checkpoint when a transition
between temporal segments occurs. Whenever a task is interrupted, its ex-
ecution can be resumed from the last stable checkpoint, either by the same
node (if it recovers) or by some other worker. Our main goal is to promote
the availability of checkpoints to increase the recoverability of the inter-
rupted tasks, thereby improving the turnaround time of the applications.

Workers self-organize to form a DHT!, which they use to maintain the
distributed checkpointing scheme and to keep track of the execution of
tasks, in such a way that requires a minimal intervention of the central
supervisor.

Checkpoints are identified by a sequential number starting at 1. Note,
that for the purpose of our system, not all checkpoints taken by a worker
node are exported to the DHT, with some checkpoints kept private. For
example, a task might be checkpointed every 5 minutes to local storage, but
to avoid some overhead and network traffic, only one out of six checkpoints
is exported to the DHT, meaning that, from the point of view of the global
system, the checkpoint period is 30 minutes. To simplify, in the reminder
of this chapter, we use the designation checkpoint to refer to checkpoints
effectively exported to the DHT.

To describe the basic idea of the proposed system, we first expose the
simple case of a single worker executing a task from the start to end (see
Figure 6.1, page 133). In this case, interaction occurs as follows:

1. The worker requests the central supervisor for a computing task, re-
ceiving a task ready to be processed.

2. The worker registers the task in the DHT, by selecting a regular peer-
worker of the DHT to store a tuple called “worker-task info”. This

!t is not strictly necessary that all the nodes participate in the DHT, but only that they can access
and write data on the DHT. To simplify description, we assume that all nodes belong to the DHT.

6.3. OVERVIEW 133

A

Storage Points

_
Central Supervisor
Worker
guard|an‘

Worker

. . Worker

Worker Worker

Worker

Figure 6.1: A summary of chkpt2chkpt’s components and interactions.

tuple keeps information about the task (we describe it in Section 6.4).
We call this peer-worker the “guardian of i” and represent it as guardian;.

3. Each time the worker has to perform a checkpointing operation, it
writes the checkpoint in its own disk and replicates it in some storage
point. The storage point is selected accordingly to a given metric, like
for instance, the network distance.

4. The worker uses the DHT to store a pointer to that storage point. This
pointer is accessible by any other node of the DHT, using as key the
pair formed by the task identifier and the checkpoint number.

5. Finally, when the worker node has completed the whole task, it sends

back the results to the central supervisor.

If a worker fails two things may happen: (1) if the worker recovers after
a short period of time, it resumes its previous task execution from the last
checkpoint file maintained in its local disk. However, (2) if the worker fails
for a period longer than a specified timeout, then the central supervisor
may redistribute that task to some other worker node. In this case, the new
worker performs step 2 as before, trying to register the checkpoint in the

134 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

DHT, but it may get in response from guardian; the number of the check-
point where the task was left, an indication that at least one checkpoint
from a previous execution attempt exists. In this case, the worker tries to
fetch the checkpoint to resume the task. However, the worker may not get
any reply with the number of the checkpoint, if the previous guardian; has
meanwhile departed the network. In this scenario, the worker starts look-
ing for the best checkpoint, that is, the one with highest number, using a
procedure that we describe in Section 6.4.5 (page 140). After having found
such checkpoint, the worker proceeds as explained before.

In our failure model, we assume that the central supervisor is protected
by some replication mechanism and is always available despite the occur-
rence of some transient failures — this corresponds to what happens with
some major public computing projects like, for examples, SETI@home and
Einstein@home. On the contrary, we assume that worker nodes may fail
frequently under a failure model that is either crash-stop or crash-recovery.
Nodes that fail and then recover but lose their previous task can be seen
as new nodes. Due to the high volatility of volunteer resources [

], nodes are very prone to fail, and thus can deprive, at least tem-
porarily, the DHT from some state information and checkpoints. Thus, we
consider as a typical case, the possibility of a node not finding some infor-
mation that it is looking for in the DHT. We inherit from existing solutions,
which are current practice in volunteer desktop grid systems, that use repli-
cation of computation to overcome some of these failures.

An important issue regarding chkpt2chkpt, as well as many peer-to-peer
file sharing systems, is the garbage collection of shared files that are no
longer useful. This is relevant with checkpoint files, whose usefulness ex-
pires as soon as the task is completed or abandoned?. Thus, it is necessary
to remove the no longer needed checkpoints, as well as the related man-
agement information (metadata) for these checkpoints. We propose two ap-
proaches to erase the useless files, that we identify as pull and push. Under
the pull approach, the storage nodes query the guardian; for task i before
deleting the stored information. Conversely, in the push mode, the worker
node that finishes a task sends messages to remove all the administrative
information related to the task. This is further detailed in Section 6.5.

ZA task may be abandoned if for whatsoever reasons it fails to complete. For instance, the task
may systematically crash due to a software bug of the task’s code.

6.4. DESCRIPTION OF CHKPT2CHKPT 135

Parameter | Definition

P; Worker node processing task i
task i Task processed by worker node p;
keyi:j Key for j'* checkpoint of task i
hash(i:j) Hash of key i: j
guardian; | Timeout watchdog for worker p; while processing task i

WTI; “worker-task info of i (tuple kept by guardian;)
tp Timeout to detect an abandoned task (watchdog: guardian)
t Timeout to detect an abandoned task, with #, >> t,, (watch-

dog: supervisor)

Table 6.1: Parameter definitions.

6.4 Description of chkpt2chkpt

6.4.1 Basic Components

We assume that task i is identified by i and that n sequential checkpoints
are produced along the execution of the task. We identify the node that is
working on task i as p;, the j-th checkpoint of task i with the key i: j, and the
hash of this key as hash(i : j), where hash() is the hash function of the DHT.
The DHT mechanism ensures that there is a single node responsible for
holding key i : j, typically a node whose identifier is close to hash(i : j) (to
simplify, we refer to this as the node hash(i : j), although the real identifier
of the node will usually be close but different). Any node in the DHT can
reach the node hash(i : j) in a deterministic way.

One of the principles that guided the design of the chkpt2chkpt system
was to keep low the burden on the central supervisor, as well as to respect
the traditional worker-initiated communication model. Hence, the check-
pointing service must be supported, as a best effort, by the nodes of the
DHT. In particular, chkpt2chkpt strongly relies on guardian;, on the storage
points, and on the indirection pointers to ensure proper operation of task
i. The node guardian; serves to indicate that worker p; is processing the
segment that leads to checkpoint j of task i. Nodes can determine the loca-
tion of guardian; by computing the hash of key i : 0, that is, hash(i : 0). The
guardian of i stores a tuple that we call “worker-task info of i”, represented
as WT1;. The format of this tuple is (p;, j,#,), where p; is the processor node
of task i, j is the checkpoint being computed, and #, is a timeout information

136 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

used to detect workers that abandon a task. Specifically, when the timeout
t, expires, guardian; sends a message to the central supervisor announcing
a possible failure of p;. This allows the chkpt2chkpt system to maintain time-
outs with a much finer granularity than it is usually possible with minimal
effort from the central supervisor. The advantage is that the system can
recover from failures of worker nodes in a much faster way, since failures
are detected much quicker than what would have been possible by relying
solely on the per-task global timeout.

Ideally, we would like to maintain the invariant INV in chkpt2chkpt,
which we define as follows: WTI; exists in the node guardian; if and only
if task i is being processed. From this, it follows that if there is no WT; in
the node guardian;, the nodes can assume that the task is already finished
(or yet to start). For performance reasons, we allow this invariant to be vi-
olated once in a while, as node guardian; can be down and task i can still be
active.

At this point, we can use a concrete example to better illustrate the in-
teraction with the DHT: consider that node Worker, wants to fetch the last
checkpoint available of task 43 (assume that it is in fact available). (1) It is-
sues a get(43 : 0) operation. (2) Assume that 43 : 0 hashes to 578. The DHT
will forward the request to the owner of key 578, which may be node 581.
(3) Node 581 will reply with the number of the requested checkpoint, e.g.,
3. (4) Now, to get checkpoint #3, the requesting node issues a ger(43 : 3)
operation that hashes to, for instance, (5) to node 1411 and that node 1411
is accessible. (6) Node 1411 will then reply with the address (either an IP
address or a machine name) of the storage node SN; that it is known to
hold checkpoint #3 of task 43. Finally, (7) Worker, contacts SNy so (8) it
can download the requested checkpoint. A graphical illustration of the de-
scribed example is given in Figure 6.2 (page 137).

6.4.2 Processing a Task

While processing a task i, a worker node p; needs to perform two opera-
tions at guardian;: increase the number of the checkpoint when it has com-
pleted the previous one and send periodic heartbeat message to let guardian;
know that it is alive, before 7, expires. As long as this timeout does not ex-
pire (or the timeout of the central supervisor, as we explain in Section 6.4.3),
only processor p; can change values in the WTI; tuple (this is one of the

6.4. DESCRIPTION OF CHKPT2CHKPT 137

DHT

@

get(43:0)——»—__ 578
™ Node X

5 (581)

guardiangs

Worker ——get(43:3)—» 1411
@ ™ Node Y

SN (1411)

~——checkpoint is #3———4—

«—storage node is SNi— 4

download chkpt#3,task,;—»

<7Chkpt#3 ,task43
Storage Node

SNk

Vt

Figure 6.2: Locating and retrieving a checkpoint under chkpt2chkpt (example).

small twists that we do to the normal operation of the DHT). However, it
is possible that two workers try to process the same task i simultaneously:
this occurs when guardian; or the central supervisor wrongly consider the
tirst worker as failed and the central supervisor reassigns the task to the
other. If this occurs, it is up to node guardian; to decide which node owns
the task. It is either the first node that tries to take control of the task, if ¢, is
expired, or it is the initial worker, if 7, is not expired. One interesting way
of providing the periodical heartbeat is to slightly modify the normal put()
operation of the DHT, such that rewriting the WTI; tuple serves as a heart-
beat. In this case, this operation will also serve without any modification
as a watchdog for guardian;, because it periodically rewrites the value j of
the current checkpoint in the guardian; (possibly a new one if the previous
guardian; failed).

6.4.3 Starting and Resuming a Task

The central supervisor assigns three types of tasks: (1) tasks that are being
delivered for the first time and tasks whose previous execution attempts
have exceeded the task timeout, either (2) 7, (given by guardian;) or (3)

138 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

(given by the central supervisor). To improve the turnaround time, we need
to set 1, <<, so that a failure can be early detected, and dealt with. We aim
to minimize the number of messages and the number of bytes exchanged
between node p; and the central supervisor, as this latter one is a potential
communication bottleneck. If the central supervisor is delivering task i for
the first time, it can immediately send all the data to the worker and the
worker can start to process the data as shown in Figure 6.1 (page 133).

However, it may happen that a worker departs the network without
delivering its task. In this case, upon expiration of the timeout ¢,, guardian;
sends a message informing the central supervisor of the likely interruption
of task i, which puts task i in the redistribution list’. In the redistribution
of a task, the central supervisor only sends the identifier of the task, say
i, and flags the repetition to the newly assigned worker p;, which must
check at guardian; whether some other node is still processing this task, to
avoid concurrent processing of the same data. If worker p; finds that the
previous owner of task i is still holding the task (because it came back to
life, for instance), it gives up the task and tries to get a new one from the
central supervisor.

Finally, we have the case where the central supervisor redistributes a
task for which ¢, has expired. Here, the new worker, say p;, will have the
task regardless of the situation of the previous worker. To this end, p; must
instruct guardian; to check the new owner of the task in the central super-
visor. When a task is redistributed by the central supervisor (regardless of
the timer, 7, or 1, that has expired), the new worker node always tries to
fetch the last available checkpoint, as we describe in Section 6.4.5.

6.4.4 Separation of Processing and Storage

To ensure the availability of checkpoints, the worker node processing a task
should store replicas of its checkpoints in other nodes. This way, we keep
the sequential checkpoints of a running task available in case the worker
that holds the task fails and its task gets redistributed. Given this con-
straint, we consider the following two additional assumptions to build our

checkpoint replication system:

3To avoid concurrent processing of the same task, guardian; sends another message to the central
supervisor if a timed out worker ever recovers (due, for instance, to a machine with transient network
access that gets reconnected to the network).

6.4. DESCRIPTION OF CHKPT2CHKPT 139

Assumption 1: nodes offering processing time may not have space available
for storage of checkpoints. The system should explicitly manage a separa-
tion between processing and storage nodes;

Assumption 2: it is not feasible to maintain a constant number of replicas
of each checkpoint in the DHT. When nodes enter and leave the DHT,
they cannot transfer big checkpoints from one node to another as the DHT
changes, because nodes may be distant from each other and this would clog
the network. We base this assumption on the work of Blake and Rodrigues,
which states that only two features out of high availability, scalable storage,
and dynamic peer networks can be obtained [I

To cope with Assumption 1, chkpt2chkpt extends the contribution model
of traditional public-computing projects. Besides donating CPU cycles,
nodes can contribute to the P2P infrastructure with storage space and band-
width. The system separates CPU donation from storage space and band-
width volunteering. In fact, a node can provide CPU cycles (executing
tasks), or volunteer storage and bandwidth (integrating the DHT or be-
ing a storage point), or donate resources to both causes. To foster moti-
vation for donors to volunteer space storage and bandwidth for the P2P
infrastructure, a rewarding credit mechanism and associated ranking sys-
tem, similar to the one employed to recompense CPU donation in public-
computing projects, can be devised []. Under this scheme, a
resource donor receives credits for the space storage effectively devoted to
shared checkpoints. Furthermore, to foster motivation for checkpoint stor-
age donors, an added bonus can be provided whenever a locally-stored
checkpoint is used to resume a task in another machine.

To cope with Assumption 2, we do as we explained before: the DHT
does not hold the checkpoints, but only pointers to the checkpoints. The
purpose of this indirection is to avoid unneeded network traffic, because
checkpoints can be very large, like in the case of the climateprediction.net
project where each checkpoint file has about 20 MB |]. To
access checkpoints, nodes use the standard get() functionality of the DHT.
For instance, to access checkpoint j of task i, a node needs to issue a get (i : j).
Since there is yet another level of separation, this get () operation returns an
indirection pointer to the storage, instead of the storage itself.

140 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

6.4.5 Managing the Checkpoints

To retrieve checkpoint j of task i from a storage point, the interested nodes
get the value of the key i : j, which is a pointer holding all the needed infor-
mation to reach the checkpoint. However, the checkpoint may be unreach-
able (for example, the machine holding it is down or simply disconnected
from the network). In this case, the node starts a procedure with a loga-
rithmic number of steps to find the highest number available checkpoint.

The worker node successively divides the space of keys i: 1, i:2,i:
..., i n (assuming that n is the number of checkpoints) in approximately
equal parts. First, it looks for checkpoint [n/2]. If this checkpoint exists it
will consider the interval [[n/2],n], otherwise it will consider the interval
[1,[n/2]). In either case, it will split this second interval in two and repeat
the procedure until it finds the highest available checkpoint. For example,
if n = 10, the node will look for checkpoint 5. If checkpoint 5 exists, it will
now look for checkpoint [(10 —5)/2+ 5] = 8 and so on, until it may find
out that 7 is the highest available checkpoint. When setting limits for these
intervals, the worker must also try some checkpoints beyond the limits it
previously found to make sure that a negative answer is not due to a dis-
appeared checkpoint. For instance, checkpoint 5 might have been missing,
which would make the node restrict its search to the interval [1,5). How-
ever, it could be the case that checkpoints 6 and 7 were still there and the
node would wrongly get checkpoint 4 as the last one.

An aspect that we evaluate experimentally and which is crucial to the
performance of our scheme is the availability of the checkpoints. As re-
ferred before, we use indirection pointers to separate storage from the DHT.
A consequence of this is that checkpoints may be lost due to the disappear-
ance of the indirection pointers stored in the DHT. To overcome this prob-
lem, the processing node periodically refreshes the pointers to old check-
points. It may also occur that indirection pointers are left hanging, either
because the storage point left the network or because it deleted the check-
point. In this case, the node looking for the checkpoint must try to fetch
checkpoints with lower numbers.

6.5. GARBAGE COLLECTION 141

6.5 Garbage Collection

As introduced earlier in Section 6.3, under the push mode, garbage collec-
tion is performed by the worker that has finished a task. Specifically, after
having completed the task, the worker sends a message to every node that
store information of the task: WT;, pointers to checkpoints, and to the stor-
age points. In fact, as we show ahead, deletion of the WTI; tuple requires
more than a simple deletion message. Alternatively, we also define a pull
mode, if for some reason a storage node is left with state of task i hang-
ing (for example, the finishing worker cannot complete the send operation
of the deletion message). Additionally, nodes that store replicas of large
checkpoints also use the pull approach if they need to recover space before
the task ends. Indeed, although the storage point can immediately delete
any replicas, it can also use a more graceful approach of fetching the WT'I;
to know if the task is over or the checkpoint is old.

It may happen that when the worker node tries to delete the WT'[;, this
tuple is temporarily unreachable, just to come back later and violate the
invariant /NV, leaving an orphaned WTI; (Section 6.4.1). To avoid this in-
consistency, when the worker node finishes task i, it stores n as the last
checkpoint written, which means that the task ended. For garbage col-
lecting purposes, reading n as the current checkpoint is the same as not
finding the task — it just means that the task is not running. The guardian;
must store this tuple for some time before deleting it, to ensure that a fin-
ished task cannot come back to life, due to some transient misbehavior of
the DHT, capable of bringing an old WTI; back. Finally, guardian; can only
delete WTI; with a checkpoint value lower than » after asking the central
supervisor whether task i has already finished.

6.6 Evaluation

In this section, we evaluate the advantages of replicating checkpoints to re-
cover from failures. We compare, through simulation, the turnaround time
of chkpt2chkpt, where each checkpoint is replicated exactly once, versus a
typical private solution, where each worker locally stores its own check-
points. As in previous chapters, we use the traditional definition of turn-
around time, corresponding to the time that goes from the moment when
the central supervisor distributes the task up to when it receives the last

142 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

result. Furthermore, we assume a homogeneous set of workers, with indi-
vidual nodes prone to crash-stop and crash-recovery failures, both of them
following a random geometric distribution. At discrete time intervals, we
randomly decide whether the worker changes state with a probability that
is fixed throughout the computation of the task. In the crash-stop model,
a node can change from working to crashed without ever recovering, cor-
responding, in the context of a volunteer project, to a worker that has sim-
ply abandoned the project. Under the crash-stop model, the task will only
restart when it is rescheduled to another worker. Finally, in the crash-
recovery model, the worker node can change from working to crashed state
and vice-versa with the same probability. In the private checkpointing solu-
tion, a new worker must restart a reassigned task from the beginning, while
in chkpt2chkpt it can be resumed from the highest available checkpoint.

Under ideal execution conditions, that is, if run uninterrupted and with
full machine dedication, a task requires ... time units to complete, with
checkpointing occurring every fcieckpoins time units, for a total of n check-
points (fexee =1+ tcheckpo,-m)4. Additionally, we consider that the execution
pace of the tasks is dictated by two timeouts: the timeout of the entire task
t; and the timeout 7,. We set t; = 3 - fox (only for private checkpoints) and
tp = 3-teheckpoint (ONly for distributed checkpoints). If these timeouts expire,
the entire task is immediately reassigned and restarted. In all cases, we set
teheckpoint t0 be 10 time units and fixed the number of checkpoints per task (n)
to 5.°> Hence, we have t,,,. = 50, t, = 150, and t, = 30 (see Table 6.2). When a
task is reassigned to another worker, the private approach restarts the com-
putation from scratch, that is, from checkpoint 1, while in the distributed
checkpoint solution, the new worker tries to fetch a previous checkpoint.
Unless otherwise stated, the probability of recovering each of the previ-
ously saved checkpoints is set to 50% (we take the most recent one, that is,
the one with the highest index).

The simulation results, corresponding to the average of at least 50 ran-
dom trial points, are plotted in figures 6.3 to 6.5. Specifically, figures 6.3
and 6.4 compare the execution times of private versus distributed solu-

4We assume that the n™" checkpoint is saved at the end of the task (in fact, it can be regarded as
the result of the task).

5 As expected, when we keep the failure ratio constant and increase the number of checkpoints
for the same task, the turnaround time clearly improves until some point and then becomes nearly
constant.

6.6. EVALUATION 143

Lcheckpoint | M | Lexec | Ip It

10 51 50 |30 150

Table 6.2: Settings of the experiment.

60 | | | |
private checkpoints ——
distributed checkpoints -
50
[
£ 0
©
c
=}
o
g 30
=
[
=
[
< 20
14
10
S et -
0 W«——,,,,,,,W

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Avg. failure count between consecutive checkpoints

Figure 6.3: Turnaround time with crash-recovery failures.

tions when the failure rate increases, for the crash-recovery and crash-stop
models, respectively. These execution times are relative to the minimum
possible execution time, i.e., f.r... The average count of failures that oc-
cur between consecutive checkpoint operations (fceckpoin:) 1S represented in
the x-axis. The curves show that our scheme performs better for higher
failure rates. This makes sense, because if failures are rare, i.e., if the en-
vironment is only lowly volatile or not volatile at all, there is no real need
to share checkpoints, as we have already observed in Chapter 5 with the
turnaround times obtained over weekends. Under the crash-stop model,
where a worker never returns to its task after failure, the distributed ap-
proach yields even better results when compared to the private checkpoint-
ing approach. This is a consequence of the fact that the failure state lasts
longer than the time needed to execute the task, a situation that degrades
performance in the private approach. On the contrary, the shorter inter-
checkpoint timeouts of the distributed approach, #,, enables a faster reac-

144 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

120 ‘ |
private checkpoints ——
distributed checkpoints ------

100 Vi
Q
£ w0
©
c
>
<
g 60
2
()
=
k5]
< 40
[d

20

,,,,,,,,,,,,, X
0 ,%4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Avg. failure count between consecutive checkpoints

Figure 6.4: Turnaround time with crash-stop failures.

tion. This comparison is fair, because no dependency exists on the central
supervisor to manage these per-checkpoint or per-process timeouts (ex-
cept when they cause a redistribution). Finally, in Figure 6.5 (page 145),
we evaluate the impact of the probability of checkpoint availability (for a
fixed crash-recovery probability). It is quite clear that the availability of
checkpoints is crucial to the performance of our system: if availability is
too small, like 40% or less, chkpt2chkpt is of low utility. Hence, we believe
that these results show the validity of the chkpt2chkpt approach and enable
us to derive some conclusions about the benefits of using P2P structured
techniques in wide-scale desktop grids.

6.7 Related Work

In this section we discuss related work. We focus on two major areas re-
lated to chkpt2chkpt: use and management of distributed checkpointing,
and scavenging systems that resort to structured DHT overlay networks.
In Chapters 4 and 5, we analyzed the effects of sharing checkpoints
in local area environments, resorting to a centralized checkpoint server
[]. Likewise, Condor [] relies on a
central server for sharing checkpoint files, and allows the migration of tasks

6.7. RELATED WORK 145

12 T T
private checkpoints ——
R X distributed checkpoints ------
10
(]
£ o
g 8 \
[
£
2 7 3
° .
2 S
> ;
5 5
K-
4 B R %
3
0 0.2 0.4 0.6 0.8 1

Probability of checkpoint availability

Figure 6.5: Turnaround time for varying checkpoint availability.

for fault tolerance and faster turnaround time. However, these approaches
are limited to LAN environments, while chkpt2chkpt targets Internet-based
desktop grids with possibly thousands of nodes.

Tritrakan and Muangsin [] simulate the ben-
efits of direct communication between a submitter machine that proposes
a work and worker nodes in a desktop grid environment. Under their ap-
proach, scheduling is still done centrally, but the transfer of the needed files
(input data and/or results) occurs directly between the submitter machine
and the selected worker machine. A central file repository is still needed
to cope with situations when a worker machine is not promptly available
at submit time, and also, to deal with submitter machine unavailability
when results are ready and need to be transferred from the worker ma-
chine. When compared to our work, this approach uses a different seman-
tic in the access to resources, since submission of tasks is no longer the sole
exclusivity of a central machine. This freedom, although interesting, might
pose some serious security risks, especially in untrusted environments like
openly accessible desktop grids.

Wei et al. |] explore the use of BitTorrent [] to
solve the scalability issues that arise with large data files. The authors com-
pare the performance of FTP-based solutions to BitTorrent-based solutions,

146 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

concluding that BitTorrent is effective for deploying large files required by a
significant number of workers. For relatively small files, the high overhead
of BitTorrent renders its use counterproductive. Our approach is different,
since we aim to promote file sharing directly between worker nodes.

Several works resort to structured DHT overlay networks for achieving
different purposes. For instance, WaveGrid is a peer-to-peer desktop grid
system aimed to achieve fast turnaround execution times |].
It resorts to the peer based model, where all peers can submit applications
to be executed over the desktop grid system. To enable communication
within peers, WaveGrid makes use of a CAN DHT overlay network [

1.

Another DHT-based infrastructure is proposed by Butt et al. [
]. They present a technique which uses a Pastry DHT [
] for resource discovery in distributed Condor pools [
| spread over several administrative domains, to overcome the restric-
tions of the statically defined flocking mechanism supported by Condor.

FreeLoader [] and Squirrel [] are
two Pastry-based systems that scavenge resources in local area environ-
ments. FreeLoader resorts to unused storage of regular desktop machines
to provide disk space for immutable scientific datasets. Squirrel targets web
caching and exploits locality in web data object references. The key idea is
to enable web browsers on desktop machines to share their local caches,
without the need for dedicated hardware and the associated administra-
tive costs.

Similarly to the work we present here, there are many other systems
that use DHTs to manage data, from file systems to replicas of entire sys-
tems. For instance, Venti-DHash is a cooperative backup system, which
couples the Venti backup system with an Internet peer infrastructure for
archiving snapshots of file systems []. Venti-DHash uses DHash,
which is a Chord-based distributed hash table (DHT). Pastiche [

] is another peer-to-peer backup system that resorts to a Pastry [

] DHT for the identification and organization of re-
dundant data for saving space storage. Unlike our application-level check-
pointing and unlike Venti-DHash, which acts at the block level, Pastiche
makes replicas at the machine level.

6.8. SUMMARY 147

Other interesting approaches to create file systems are Shark [

] and Kosha |]. The main asset of Shark
lies in its cooperative-caching mechanism, in which mutually distrustful
clients use a DHT to exploit their associated file caches to reduce load on
a file server. Finally, Kosha aims to harvest unused storage of desktop ma-
chines within a LAN environment. It uses a structured overlay network to
provide location and mobility transparency, load balancing and file repli-
cation.

6.8 Summary

In this chapter, we presented an extension to the traditional desktop grid
architecture by using a DHT to maintain decentralized replicas of check-
point files, thus promoting sharing of checkpoints over a wide-scale envi-
ronment. With the use of this technique, any node of the grid can resume
a failed task provided that a checkpoint file is available in the P2P infras-
tructure. Almost all interactions needed to replicate checkpoints are decen-
tralized among the DHT, thus containing the load on the central supervi-
sor. Moreover, we keep all the interactions involving the central supervisor
strictly worker-initiated, without disrupting the basic assumptions of exist-
ing architectures, and thus easing the adoption of the proposed checkpoint
infrastructure. Simulation results show that our proposed scheme can con-
siderably reduce the turnaround time of tasks when there is a significant
probability of node failures. In this way, the use of P2P techniques in desk-
top grids seems to be a promising approach, although several issues such
as scalability and sabotage-tolerance of the whole system need to be ad-
dressed. We examine some of these issues in the next chapters.

148 CHAPTER 6. SHARING CHECKPOINTS OVER WIDE-SCALE DG

Desktop Grid Topologies
for Sharing Input Data
and Checkpoints

In this chapter, we propose some extensions to the traditional desktop grid
model, focusing on the dependability aspects of these extensions. Specifi-
cally, we concentrate our attention on hybrid topologies that introduce in-
termediary nodes between the central server and the workers. We first
suggest a local proxy server (LPS) for institutional desktop grid resources
that acts as a liaison machine between the local resources of the institu-
tion and the central server. Then, we widen the topology to accommodate
unrelated home volunteer resources, thereby exploiting dependability in a
more unreliable context. For this purpose, we resort to a network of su-
per nodes, focusing on the fault tolerant methodologies that can be used in

such instable environments.

7.1 Introduction

As stated in previous chapters, the current approaches for wide-area desk-
top grid computing are based on a centralized model. Although this model
provides for central control, easing the management and supervision of
projects, it also creates a single point-of-failure and a potential performance
bottleneck. Coping with this performance constriction point usually re-
quires costly resources such as capable hardware and substantial band-
width for the server-side.

In this chapter, we look at federated and peer-to-peer approaches for the
management of volunteer desktop grid resources with the goal to reduce

149

150 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

the bandwidth demand and the computational load at the global servers.
We then focus on how some of the fault tolerant-based techniques that were
covered in previous chapters can be adapted to these new topologies. It
is important to note that the extension to move decentralized architecture
should be achieved without disrupting the current server-based model of
volunteer computing, so that existing middleware can easily be adapted
to these paradigms, allowing workers and volunteers to swiftly migrate
to the new model. This is relevant for existing projects that have a large
community of users.

This chapter is organized as follows. We first lay out the levels of co-
operation that we deem achievable in desktop grids. We then present two
topologies, one that targets structured organizations, namely institutional
desktop grids, and another one that encompasses P2P overlays in environ-
ments such as typical home volunteers. The distinction between institu-
tional environments and home volunteers is due to the fact that the former
can be more tightly controlled while the latter is comprised of individual
and mostly anonymous nodes. Our presentation is oriented toward the
benefits that dependability mechanisms can bring to such environments.
We finish by reviewing related work and outlining the main conclusions.

7.2 Levels of Cooperation

In this section, we briefly identify several levels of cooperation among desk-
top grid nodes, ranging from the simplest one — caching of input data sets —
to the most demanding one — communication between cooperating work-
ers.

1. Caching of input data sets. The designation of input data sets encom-
passes the input data that are needed to carry out the execution of
a task. The rationale for caching input data sets comes from the fact
that some applications perform multiple runs, possibly with different
parameters or algorithms, on the same input data sets. In the case of
applications executed over desktop grids, this corresponds to several
tasks requiring the same input data. Since input data sets for indi-
vidual tasks can attain several tens of megabytes or more, a clever
caching of input data set can significantly save bandwidth both at the
server’s and at the worker’s side. A concrete example is the public

7.2. LEVELS OF COOPERATION 151

project Einstein@home []. This project resorts to param-
eter sweep, exploring a wide range of signal parameters (frequency
and spin-down rate), with a given input data set originating several
tasks. For instance, the execution of a reference workunit! of the Ein-
stein@home project requires the download of 18 files, for a total of
53 MB of data. In our approach, we aim to extend the caching of an
input data set from the worker realm — where only one worker node
benefits — to an intermediate level, upon which several nearby work-
ers might share a data set that was downloaded from the supervisor
by only one of them.

To prevent tempering of input data sets, the server-side that produces
the data sets can sign them, resorting to its private key, while the
complementary public key is made available to workers. Each time
a worker receives an input data set from a non-trusted source, it can
verify the data set through the data set’s signature. This way, it is
straightforward to verify the integrity of shared input data sets.

2. Sharing of checkpoints. A further level in cooperation is to have work-
ers to share checkpointed states. As seen in Chapter 4 and Chap-
ter 5, the sharing of checkpoints can significantly reduce execution
times, especially in volatile environments. Moreover, sharing check-
points also increases the rate of successful executions, thus reducing
the needs for rescheduling as well as the traffic and load at the server-
side. Note that sharing checkpoints departs from the caching of input
data sets since the data to be shared (checkpointed states) are pro-
duced by the workers, while input data are made available by the
server-side, and thus from the point of view of workers, input data
are read-only.

3. Communication among workers. Communication among workers rep-
resents the highest level of cooperation, allowing to support applica-
tions with dependent tasks, thus significantly broadening the class of
applications that can be executed over desktop grid resources.

Communication can be indirect, for instance through distributed tu-
ple spaces []. Indeed, a tuple space can be used for ex-
changing information among local cooperating worker nodes follow-

Uhttp://www.aei.mpg.de/"bema/einsteinathome/refwu.zip

152 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

ing, for instance, the blackboard system metaphor |]. This
approach can allow the execution over desktop grids of loosely cou-
pled applications, i.e., applications that can be broken into indepen-
dent sub-tasks, each one requiring heavy processing with light com-
munication. Examples include brute force search like the ChessBrain
project [;], Monte-Carlo sim-
ulations and distributed evolutionary algorithms such as genetic pro-
gramming and simulated annealing [. All of
these applications involve the parallel generation of a batch of solu-
tions and then using these solutions to come up with an answer for
the initial problem []. Conversely, communica-
tions between workers can be direct, with a point-to-point channel, or
with a node relay between them. This requires either NAT traversal
mechanisms such as Simple Traversal of UDP NAT STUN [

1, Traversal Using Relay NAT TURN []
and Interactivity Connectivity Establishment ICE [. A
good survey of NAT punching techniques is given by Ford et al. [

]. Providing for communication among workers is a vast

subject, whose details are out of scope of this thesis.

7.2.1 Assessing the Benefits of Cooperation

In this section, we briefly assess the benefits of cooperation focusing on the
savings that can be achieved at the server-side level. For this purpose, we
consider the success and error rates observed from the execution attempt
of several thousand tasks from various BOINC-based projects.

Table 7.1 (page 153) aggregates the success and failure rates for the fol-
lowing BOINC-based projects: Einstein@home, Rosetta@home, QMC@ho-
me and SETI@home projects. For each project, the data were gathered
by accessing the status of workunits publicly available at the site of each
project through specially crafted URLs. Specifically, the URLs were PRO-
JECT/workunit.php?wuid=ID, where PROJECT is the URL of the project and
ID is the identifier of the sought workunit?.

The column Quorum of Table 7.1 indicates the quorum level of the project.
For instance, the Einstein@home project requires a quorum of 2 for the vali-

ZFor instance, the URL for accessing the data regarding an Einstein@home’s workunit is
http://einstein.phys.uwm.edu/workunit.php ?wuid=ID.

7.2. LEVELS OF COOPERATION 153

Project Quorum | Attempts Success Failure
Einstein@home 2 13502 8032 (59.49%) | 5470 (40.51%)
SETI@home 2 5924 3660 (61.78%) | 2264 (38.22%)
QMC@home 1 12402 9210 (74.26%) | 3192 (25.74%)
Rosetta@home 1 10129 9410 (92.90%) 719 (7.10%)
Total - 41957 30312 (72.25%) | 11645 (27.75%)

Table 7.1: Execution statistics regarding several BOINC-based projects.

dation of a workunit. This means that a workunit is only finished when the
execution of its two tasks yield the same result®. So, whenever a task fails to
complete or the results of a task do not match, another task is scheduled for
execution. This process is repeated until a majority of tasks produces the
same result or when the threshold for the maximum number of executions
is reached (20 for the case of Einstein@home). In Table 7.1, the column At-
tempts counts the number of execution attempts of tasks, with the columns
Success and Failure reporting how many of these attempts were successful
and how many failed, respectively.

Analyzing Table 7.1, it can be seen that, for the Einstein@home project,
13502 execution attempts yielded 8032 correct executions and 5470 did not
complete or were erroneous. This means that 40.51% of the execution at-
tempts ended up with no results and needed to be rescheduled by the
server-side for repetition. SETI@home presents similar results with a fail-
ure rate of 38.22%. On the other hand, the Rosetta@home project yielded
a success execution rate above 92%. This is mostly due to the shorter du-
ration of tasks of Rosetta@home comparatively to the other projects. Con-
versely, Einstein@home is the most resource demanding of all the studied
volunteer projects. Although it would be possible for the Einstein@home
to distribute smaller, less demanding tasks to achieve higher rates of suc-
cessful executions, this would increases the load on the server-side since
more tasks and input data sets would need to be downloaded. Thus, a del-
icate balance needs to be achieved between the duration of a task and the
amount of input data that its execution requires.

Across the observed projects, 27.75% of execution attempts failed, mean-
ing that slightly more than a quarter of tasks needs to be rescheduled and
consequently requires a redistribution to workers. Therefore, as much as

3Under BOINC, a task is an instance of a workunit.

154 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

27.75% of resources end up wasted at the server-side, especially bandwidth,
the same happening at the workers’.

Some projects, like Einstein@home, promote the reuse of input data by
attempting to schedule tasks to workers that already have, from previous
executions of other tasks, the required input data sets. This feature is called
locality scheduling []. To assess the effect of locality sche-
duling in Einstein@home, we analyzed the publicly available scheduling
logs for seven consecutive days*. From the logs, it was observed that there
was 547,532 requests for workunits, with 390,827 (71.38%) of these requests
receiving workunits requiring input data already present at the worker’s.
Thus, only 156,705 requests (28.62%) required the downloading of the as-
sociated input data set, making locality scheduling an effective bandwidth
saver for the Einstein@home project.

Both the first and the second level of cooperation can mitigate the neg-
ative impact of failures at both server-side and at the worker’s by reusing
input data and previously checkpointed computation. Specifically, through
sharing of input data, level one has the potential of reducing the data traffic
between the server-side and workers. Likewise, by promoting computation
reuse through sharing of checkpoints, level two increases the success rate
of executions, lessening the amount of tasks that needs to be redone and
therefore the resources demand at both server and workers.

To quantify the effects of reducing the failure rate P, we analyze the
outcome considering that a A¢% reduction is achieved on just 20% of the
execution attempts. Specifically, Table 7.2 shows the effects on the failure
rate P, of several BOINC-based projects, when the failure rate F; is reduced
by A¢% on just 20% of the execution attempts. The column A;=0% displays
the failure rates previously shown in Table 7.1 (page 153), while A¢=100%
represents what would happen to the overal failure rate of each volunteer
project if 20% of the execution attempts would be successful, while the
other 80% would maintain the original failure rate. For instance, for the
Einstein@home project, cutting the failure rate by 50% (A¢=50%) for solely
20% of the execution attempts, yields a failure rate of 36.46%. This way, if
cooperation techniques such as reuse of input data and sharing of check-
points can be applied to 20% of the workers and cut their failure rate in half,
the overall failure rate of the project drops from 40.51% to 36.46%, that is a

“http://einstein.phys.uwm.edu/sched_logs/, May 2007.

7.3. FEDERATING INSTITUTIONAL DESKTOP GRIDS 155

Project Ae=0% | Ae=10% | Ae=25% | Ae=50% | Ae=75% | A:=100%
Einstein@home | 40.51% | 39.70% 38.48% 36.46% 34.43% 32.41%
SETI@home 38.22% | 37.46% 36.31% 34.40% 32.49% 30.58%
QMC@home 25.74% | 25.23% 24.45% 23.17% 21.88% 20.59%
Rosetta@home | 7.10% 6.96% 6.75% 6.39% 6.04% 5.68%
Total 27.75% | 27.20% 26.36% 24.98% 23.59% 22.20%

Table 7.2: Effect on reducing by A, the failure rate P. on 20% of the execution
attempts.

drop of 4.05%. This way, by simply halving the failure rate on 20% of the
execution attempts, the Einstein@home project would see its exploitable

computing power grow by 4.05%.

7.3 Federating Institutional Desktop Grids

A first level for hierarchical organization of resources of a volunteer in-
frastructure is to complement the resources of a local institutional desktop
grid with the addition of a local proxy server (LPS). A local proxy server is
a machine that holds services responsible for aggregating the resources of
a single geographical institutional site. It interacts with the global server-
side, taking advantage of its collective view and knowledge of the local
resources to reduce the interactions between local resources and the global
server-side.

As seen in Chapter 4, the designation local institutional desktop grid (LIDG,
for short) refers to the volunteer resources of an institution (for instance, an
academic campus or a corporation) possibly located at a single geographi-
cal site so that network connections among the volunteer nodes of a single
site are provided by local area technology. Furthermore, we assume that
local institutional environments are coordinated by a (local) central man-
agement, who authoritatively decides which and how resources are to be
volunteered, overcoming any resistance that personnel might have toward
volunteering machines.

The local proxy server infrastructure exploits two main characteristics
of institutional environments: tight control of resources and fast internal
communications. Indeed, under a central management who can enforce
and control a given volunteering policy, a cooperative behavior is easier
to achieve. Regarding communications, a single geographical site brings

156 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

the benefits of faster inter-worker connections plus network symmetry. In
fact, profiting from local area network technologies, worker nodes are con-
nected to each other and to the local proxy server by fast communication
links. Actually, communication links within the worker nodes are signifi-
cantly faster than the ones that connect the whole institution to the outside
world, namely to the global server-side. Additionally, communications
among the worker nodes of an institution can usually flow quite freely,
since they are not hampered by NAT schemes, and individual nodes’ fire-
wall policy can collectively be adjusted by the intervention of the manage-
ment authorities of the institution.

7.3.1 Overview

A local proxy server mediates the interaction between the client workers
running on the institution’s machines and the global master server-side.
Specifically, any request to the master server-side performed by a worker
is routed through the local proxy server, which forwards it to the global
master server. Likewise, when the global master server answers back, the
proxy local server reroutes the answer back to the worker. This communi-
cation routing allows the local proxy server to maintain state information
about the local workers, and to effectively cooperate with the global master
server. For instance, the request of a worker for tasks can be complemented
by the local proxy server with the list of input data sets that already exist at
the institution. This allows the global master server to assign a task whose
data set already exists locally, thus avoiding the download of a possibly
lengthy data set. Therefore, having the local proxy server intermediating
the exchanges amongst workers and the global server-side allows to imple-
ment mechanisms such as caching of input data that can benefit the com-
munity of local worker nodes and reduce the traffic to the global servers.

As reported in Chapter 2, the SZTAKI Desktop Grid (SZDG) |
;] extension to BOINC is a good example of a LPS-
based system. Specifically, SZDG implements an hybrid BOINC module
that acts as a client relatively to the BOINC master, and acts as a server
to the BOINC clients that sit lower in the hierarchy and that actually exe-
cute the tasks. Therefore, SZDG can be used as a Local Proxy Server, with
checkpoint sharing easily integrated into the framework.

7.3. FEDERATING INSTITUTIONAL DESKTOP GRIDS 157

Worker
Institutional Desktop Grid (IDG)

Figure 7.1: A Local Proxy Server in a IDG.

7.3.2 Functions of the LPS

A local proxy server can have three main functions: (1) to cache input data
sets, (2) to act as an institutional checkpoint repository, and (3) to support
communication and synchronization operations among the local nodes of
the institutional environment. Next, we detail each of these functions in
the context of a local desktop grid environment. Figure 7.1 represents an
institutional desktop grid fitted with a local proxy server. In the depicted
environment, any connection to the Internet needs to be done through the
institution’s firewall, including the connections managed by the LPS. The
dashed line represents the ability of the local machines to bypass the LPS to
connect to the master server-side (for instance, to circumvent an unrespon-
sive LPS). Indeed, local proxy services are provided as a best effort. When
such services are unavailable — for instance, a failure occurred at the local
proxy server —local worker nodes can still directly interact with the global
servers, as it happens in the classic server-based model. This way, the usual
disadvantages of a central point of failures such as the LPS are somewhat

circumvented.

158 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

Cache of input data sets. A local proxy server is a perfect fit for acting as a
cache of input data sets. When requesting tasks to the master server-side,
the LPS can send along the list of input data sets that it already has, so that
the master side can preferentially assign tasks related to those data sets.
A further benefit of empowering the LPS with the responsibility of locally
scheduling tasks is that it allows for an easy implementation of the shared
checkpointing mechanism, as shown next.

Institutional checkpoint repository. Besides caching input data sets, a lo-
cal proxy server can also act as a checkpoint repository, storing copies of
the checkpoints saved by the local workers. Then, whenever a node goes
down and remains unavailable for a period of time longer than a prede-
fined threshold, the local proxy server assumes the node is on a long down-
time period, and thus assigns the partially executed task to an idle node as
soon as one is detected. The identification of idle nodes is simplified by the
fact that the workers’ traffic to the project master server is routed through
the local proxy server, since idle nodes will be the ones requesting tasks.
Thus, a requesting node will receive the uncompleted local task, jointly
with the last stable checkpoint, from where the task can be resumed. This
way, the execution time of tasks can be significantly reduced. Sharing of
checkpoints contributes for a higher success rate and thus further reduce
the number of tasks that needs to be rescheduled by the server-side.

7.4 Desktop Grids for Unrelated Peers

Similarly to institutional desktop grids, aggregating unrelated peers like
home users who have volunteered their machines might yield substan-
tial benefits. Aggregating unrelated peers allows to implement collective
schemes, such as caching of input data files and sharing of checkpoints. In
addition, if resources are properly aggregated at the network level, orga-
nizing peers into groups allows for the implementation of loosely coupled
communication amongst workers, making possible the execution of coop-
erative applications.

Contrary to LAN-based federated desktop grids, aggregating unrelated
peers is much more challenging. Firstly, an environment comprised of un-

related peers, or at best, loosely coupled peers poses some serious security

7.4. DESKTOP GRIDS FOR UNRELATED PEERS 159

and trust issues. In fact, while control and central management is rather
easy to enforce in LAN-based institutional desktop grids, unrelated peers
environments are much more unreliable, and thus workers” security, as
well as the integrity and accuracy of results should be a priority. Moreover,
connection management needs to be addressed, since a substantial percent-
age of volunteer machines are behind a firewall and/or a NAT server and
thus are not directly addressable from the "outside". Finally, volunteer ma-
chines have high churn [], and a variable and often
unpredictable uptime, making cooperating schemes more difficult to im-
plement.

7.4.1 A Model for Grouping Unrelated Peers

In this section, we propose a super node based solution, that we name Super
Node-Based Desktop Grid (SNBDG), upon which so-called super nodes assume
a special coordinating role. Note that we still follow the traditional reverse
client-server desktop grid model, relying on the existence of a master-side
which ultimately coordinates the whole computation. Our approach fo-
cuses on empowering the edge nodes, with networks of super nodes> con-
nected together and providing scheduling and storage services to attached
worker nodes.

Super nodes in peer-based environments serve to accommodate the
heterogeneous set of machines that are volunteered to public computing
project. In fact, it has been shown that the efficiency of peer-to-peer schemes
can be hampered if all nodes are required to perform the same demanding
network functions []. By splitting nodes in super and
regular ones, the whole network services can perform smoothly, benefiting
all the enrolled volunteers.

Architectural organization. SNBDG follows an unstructured peer-to-peer
approach similar to the ones laid out by the successful FastTrack proto-
col [] (KaZaA) and Skype [], where nodes
are differentiated into super node and regular, accordingly to their functions.

A rough layout of the SNBDG architecture is shown in Figure 7.2 (page 160).
Apart the server-side, nodes are split in super nodes and regular worker

3Other designations of super nodes found in the literature include super peer and ultrapeer.

160 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

=\

Worker (standalone)

Worker
W%r\>
g

Worker

4/\'7\7%1'
2 SN
Worker Worker / : \Q
)

Worker

Worker

Worker
Worker

Figure 7.2: Architectural organization of SNBDG.

nodes. The formers are connected with each other, forming a partially con-
nected graph, while worker nodes are connected to super nodes. Note, that
worker nodes which are not connected to any super node — independent
nodes — can still exist, but those nodes will not benefit from the SNBDG
infrastructure. Furthermore, the independent state of a worker node might
be permanent or transient, when, for instance, the super node to which the
node was attached disappears and the node has not yet attached to another
super node.

Regular worker nodes. A regular worker node is simply a worker node
that is connected to a super node. Like the worker nodes of current desk-
top grid models, under SNBDG, regular nodes handle the core activity of
the desktop grid, that is, they process the tasks that are assigned to them.
In addition, a regular node can interact with its super node to access ser-
vices such as tasks scheduling and the sharing of input data sets and of
checkpoints.

7.4. DESKTOP GRIDS FOR UNRELATED PEERS 161

Super nodes. The main role of a super node is to promote and coordinate
the cooperation among the regular nodes which are connected to it. Specif-
ically, a super node has the following main functions:

- Manage tasks, requesting them from the master server, and distribut-
ing them to requesting workers. The super node might also upload
the results to the master server side, although this operation might
be done directly by the worker node if no cost nor speed savings are
effectively achieved by proxying the results through the super node.

- Cache input data sets needed for processing the tasks. This makes
way for an input data set to be reused among several workers, possi-
bly avoiding several downloads of the same input data set from the
project’s master side, thus preserving bandwidth both at the worker
and at the server-side. Note that this feature can be regarded as an
extension of the LPS’s locality scheduler, as seen in section 7.3.2.

- Provide storage to hold checkpoints of partially executed tasks. This
feature needs to be balanced between the checkpoints size and both
the storage space and the bandwidth required for uploading and down-
loading checkpoints between regular nodes and the super node.

- Support the resiliency of the system, tolerating failures of other super
nodes of the network. Indeed, whenever a super node departs from
the network, its functions and responsibilities should be taken over
by neighbor super nodes.

In order to perform the functions of a super node, a node needs ade-
quate technical characteristics, namely appropriate bandwidth, a public IP
address, no restricting firewall, sufficient storage space, and, preferentially,
long uptime. This means that not all volunteer nodes can perform as a
super node. In fact, due to the resource requirement that the duties of a
super node might impose, namely at the bandwidth level, only nodes that
have explicitly being authorized by their owners can be assigned a super
node role. A major critic raised over the Skype’s VoIP (Voice over IP) infras-
tructure [] lies in the fact that the owner of a node has no
control over the possibility of her machine becoming a super node. Indeed,
in the Skype’s network, the conversion to super node is determined and
performed automatically by the Skype software running at the node. And

162 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

all of these critics are made to an application that provides an added value
VoIP service to its users, which is the opportunity to talk and to text for free
to other Skype users. Thus, in a desktop grid system, where resources are
volunteered by users for a common cause, and many times without direct
benefits for the resource providers, the extra demand that the role of su-
per node imposes need to be explicitly authorized by the resource owner,
otherwise the system is most probably deemed to failure, since potential
volunteers would not enroll in the system.

We now outline the network dynamics of the SNBDG topology. We
first examine how the nodes can find and connect to a network of super
nodes. We then overview the main operations of a super node and proceed
to present how the network can deal with departure of nodes, either worker
or super node ones.

Connecting to a network of super nodes. To connect to a network of super
nodes (NSN), a node — regular or super - first needs to obtain the address
of a super node. The way this is achieved depends on whether the node has
previously been connected to a network of super nodes®, or on the contrary,
if this is the node first contact with a network of super node (first-time node).
Previously connected nodes can simply resort to their persistent list of IP
addresses of super nodes, and try to contact each one of the nodes until
a successful connection is obtained. The worker node can retrofit its own
list of super nodes, based on past sessions. For instance, the first entries of
the list should contain the super nodes which have been, at the same time,
highly available and close from a network point of view.

For first-time nodes, or similarly, for nodes whose list of past-connected
super nodes has no currently available super node, a request can be made
to the global server, so that a list of super nodes can be obtained. In fact,
the global server can easily keep an up-to-date list of super nodes by hav-
ing nodes to report their status whenever they contact the global server.
Note, that such a global server-based scheme should be seen as a last re-
sort, otherwise the global server-side can be flooded with queries for super
node addresses.

®Due to the unstructured way that super nodes aggregates themselves, it is possible that more
than one network of super nodes exist at a given time. In such case, two super nodes associated to
different networks will not able to contact each other via the super node’s network.

7.4. DESKTOP GRIDS FOR UNRELATED PEERS 163

After having connected to a super node network, a regular node may
try to seek a better connection or a more suited super node (for instance,
the current one might be overloaded) by trying out other super nodes. This
is made possible by experimenting other locally saved addresses of super
nodes, or fresh ones obtained from the current super node. Likewise, a
freshly connected super node will also seek other connections, but contrar-
ily to a regular node, not only for the purpose of obtaining a more appro-
priate connection, but also for seeking out other super nodes to which it
can connect in order to fully integrate the network of super nodes. Indeed,
a super node needs to maintain connections with several super nodes in
order to more softly tolerate the departure of a super node to which it is
attached to.

Operations over a network of super nodes. The type of operations in which
a node can engage on a network of super nodes obviously depends on its
role: worker or super node. A worker node will mostly request tasks from
its super node (tasks can also be requested directly from the master server-
side), and, if needed, access existing data like input data sets or shared
checkpoints.

Super nodes have a wider involvement than regular nodes on the su-
per node infrastructure. For instance, a super node needs to maintain a list
of the input data sets it stores locally, and another one with the input data
sets which are easily accessible to it, that is, they are stored at other super
nodes to whom it has direct contact with. The super node also needs to as-
sume scheduling responsibilities, by distributing tasks, new and partially
executed ones, to requesting workers. Another possible function of a super
node might be to host checkpointed states of partial executions, and dis-
tribute them to other requesting worker nodes whenever the worker node
that was processing a task is no longer executing it. On top of this, a su-
per node is also involved in other tolerance-related mechanisms such as
the ones needed to support the departure of a worker node or, more im-
portantly, of another node to which it is connected. Next, we deal with
departures of nodes.

Departing from the network of super nodes. As expected in non-dedicated
resource environments such as desktop grids, a node might depart the su-

164 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

per node network at any time, in either a soft or a hard manner. In the
former, the node is softly shutdown, and it might still have time to com-
municate its departing status, although this may not happen: for instance,
the network message(s) signaling its departure might not reach its destina-
tion(s), and since the node is departing the network, retransmission might
not be feasible. In the case of a unexpected failure, the node disappears
without notifying the network.

Departure of a worker. A departing worker node has few impact over
the network of super nodes if it is processing an independent task, that is,
without being involved with other worker nodes. Thus, if a worker node
gets interrupted and departs the network, the corresponding super node
will wait until a given timeout expires, before integrating the presumably
interrupted task in the pool of ready to schedule tasks. The timeout can be
the Time To Live (TTL) defined for the task, but to achieve a finer granularity
in the detection of lost tasks, a Time To Report (TTR) can be defined, with
TTR significantly lower than TTL. The TTR, which is associated to the task,
defines the periodicity for the worker to report to its super node the status
of the task that it is currently processing. The TTR can therefore be seen as
a worker/task heartbeat, allowing for early detection of abandoned tasks,
that is, tasks whose workers no longer appear active.

Tolerating the departure of super nodes. To preserve the state and data
kept at a super node, a periodic checkpoint needs to be taken by the super
node itself. To avoid confusion with the checkpoints taken at the workers’,
we identify the checkpoint of the super node as SNgjeckpoins- This check-
point holds the state of the super node, namely the list and state of the
tasks that are being processed by worker nodes that are attached to the su-
per node. Note that the state of an individual task can easily be known
if checkpoint sharing of tasks is enabled, since on receiving a checkpoint
taken at a worker’s, the super node is updated about the current state of
the task. Since SN jeckpoins ONly contains some states of the super node, the
checkpointing mechanism can be implemented at the application-level.

To tolerate the departure of a super node from the network, the check-
points taken at the super node’s are replicated to, at least, a nearby super
node. Over time, several successive versions (say 1,..., N) of checkpoints

7.4. DESKTOP GRIDS FOR UNRELATED PEERS 165

holding the super node’s state and data will exist at neighbor nodes. An
important note is that at the super node level, checkpoints are organized
per super nodes. For instance, the super node SNy might be checkpointed
at time tgy, with the checkpoint replicated to the super node SNz, while
SNg’s checkpoint and the consequent replication might occur at time zgy, to
another super node, say SNc.

To avoid cluttering disk space with checkpoints which are no longer
useful, every super node’s checkpoint should be timestamped with a TTL.
Whenever this TTL expires, the checkpoint should be deleted by the hold-
ing super node and any global state referring the location of the checkpoint
should be appropriately updated. Note that a checkpoint stored at a su-
per node might be deleted before its TTL expires, for instance if the task
is signaled as completed, or if the storing super node needs to claim back
storage space.

When the departure of a super node is detected, the workers that were
attached should try to connect to the super node that holds the most recent
checkpoint of the now unreachable super node (say version N). This way,
and if the connection is successful’ the recovery procedure can be boot-
strapped, in order to allow for on line restoration of state and data, and to
resume regular operations. However, an important issue arises: how can a
worker node locate the most recent and stable super node’s checkpoint? To
address the last stable checkpoint location issue, we propose two solutions: a
distributed hash table-based (DHT) one and a neighbor-based one. We detail
both solutions in the next sections.

A DHT-based network of super nodes

Under this approach, a DHT is formed exclusively by super nodes, with
each node holding part of the key space. Since the DHT holds the location
of super node’s checkpoints, the keys are obtained by hashing the check-
point IDs, which are themselves comprised of the super node’s ID — each
super node has a unique ID — concatenated with the checkpoint’s sequen-
tial number (as seen before, checkpoints are numbered sequentially, from 1
to N).

"The super node holding checkpoint N might also be unreachable and thus checkpoint N — 1
needs to be reached, and so forth.

166 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

When a super node exports its current checkpoint to a neighbor node, it
inserts in the DHT, under the key yielded by the hash of the checkpoint ID,
the location of the checkpoint replica (indicating the host’s name or its IP
address), a message digest of the checkpoint, and the date/time stamp. In
addition, the super node also updates a DHT’s key which holds the sequen-
tial number of the just saved checkpoint. This key, which results from the
hashing of the string formed by the super node ID suffixed with a meaning-
ful string (for instance, "LAST") allows any node to request the sequential
number of the last checkpoint saved by the super node, and consequently
to retrieve the DHT’s key that holds the location of the super node’s last
saved checkpoint.

A key from the DHT is removed when the corresponding checkpoint is
no longer valid (its TTL has expired) or the corresponding super node has
ceased its functions. In this latter case, all keys pointing to checkpoints of
the super node need to be removed. Note that the management of keys —
insertion, update and removal - is performed by super nodes, while worker
nodes can solely lookup the DHT. Moreover, instead of a single big-sized
DHT, several small ones can exist, each one grouping a set of super nodes
and worker nodes, all being independent of one another. This DHT-based
approach is similar to the path followed in Chapter 6, except that the DHT
only involves super nodes and thus is way smaller.

Whenever a super node departs the network for a period of time longer
than a given threshold, the worker nodes that are connected to it are left
without super node. Thus they need to reconnect to a super node, ideally
to the one that holds the last saved checkpoint. We call this stage recovery
mode. The recovery mode protocol is detailed in Figure 7.3 and works as
follows®:

1. The worker nodes consult the DHT to obtain the location of the super
node that holds the last saved checkpoint. To avoid a burst effect to
the DHT that would occur if all workers entered simultaneously in
recovery mode, each individual worker needs to pause for a random
variable amount of time before starting its recovery mode.

2. A worker tries to connect to the super node that holds the last check-
point. If the connection is successful, the worker requests a restore

8The circled numbers of Figure 7.3 correspond to the stages of the protocol.

7.4. DESKTOP GRIDS FOR UNRELATED PEERS 167

DHT

worker worker

Figure 7.3: Recovery Protocol for the DHT-based Approach.

operation, that is, the restoration of the state of the departed super
node. This is done through the checkpoint that is stored at the now
contacted super node.

3. Before restoring the requested state, the super node checks whether
it really holds the most recent checkpoint of the departed super node.
It performs this check by looking up the appropriate key in the DHT.
This verification is done to rule out improper restore operations that
might be (1) requested by workers that somehow obtained outdated
information from the DHT and (2) to discard malicious worker nodes
possibly interested in triggering a denial of service.

4. If the super node finds out that it really holds the last available ver-
sion of the checkpointed state of the departed super node, it will re-
store it. Requests of further worker nodes will then be accepted. On
the contrary, if the super node finds out that it does not hold the most
recent version of the checkpoint, it can either ignore subsequent re-
store requests, or redirect them to the super node, which according to
its knowledge, hosts the most recent checkpoint.

168 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

An issue arises when the super node registered at the DHT as storing
the most recent checkpointed state of a departed node has itself left the
network or has disposed of the checkpoint without properly synchroniz-
ing its status within the DHT. Under these circumstances, and after having
failed to reach the super node which should be holding the most recent
checkpoint version (say version N), the worker nodes will then attempt to
contact the super node holding the N — 1 checkpoint version. If available,
the super node for N — 1 erases the DHT entry regarding the N"* checkpoint
version and proceeds for restoration as explained before. Likewise, if the
super node for the N — 1 version is itself unreachable, the recovery should
proceed with N —2 and so on, until either a proper restore operation can be
performed or no checkpoint can be found.

A neighbor-based network of super nodes

We describe an alternative to the DHT-based scheme for locating the most
recent and available checkpointed state of a departed super node. Specifi-
cally, we resort to a message- and neighbor-based scheme that we call Mes-
sage and Neighbor Scheme (MNS).

Similarly to the DHT-based scheme previously described, under MNS,
a super node checkpoints its state when it deems it as necessary and exports
the resulting checkpoint (say version /), via the network of super nodes, to
a neighbor super node. However, instead of registering the checkpoint’s
location under a DHT maintained by the super nodes, the super node sends
to the holder of its checkpoint /, the list of super nodes that hold the former
checkpoint versions that are still active, that is, those checkpoints whose
TTL have not yet expired (for instance, version I — 1,/ —2,...). This list —
checkpoint location list (CLL) — is also forwarded to any node (worker or
super node) that contacts with the super node. This way, the location of the
most recent checkpoint is slowly diffused to the interesting parties, that is,
the worker nodes that are connected to this super node, and to the neighbor
super nodes that hold former versions of the super node’s state.

When a given super node goes down, the recovery protocol works as
follow (see Figure 7.4, where the circled numbers correspond to the differ-
ent stages of the protocol):

1. Every worker node that was attached to the now departed super node
will seek to connect to the super node that has the most recent check-

7.4. DESKTOP GRIDS FOR UNRELATED PEERS 169

pointed state of the departed super node. For this purpose, each
worker resorts to its checkpoint locations’ list to try to contact the
super node listed as holding the most recent checkpoint and asking it
to initiate recovery mode for the departed super node.

2. When it receives the initiate recovery mode request, the super node
replacement candidate will first check if the original super node is re-
ally unavailable. This verification is needed to rule out not only mali-
cious workers, but also workers whose network might be fragmented
leaving them unavailable to reach the super node!”.

3. If the original super node is in fact unreachable, the super node re-
placement candidate will itself try to contact the other super nodes
which appear on its version of the CLL, notifying them that it will ini-
tiate recovery mode of the departed super node, unless one of these
super nodes has a more recent version of the checkpoint.

4. If a more recent version exists at one of these peer super nodes, the
super node replacement candidate drops its intention of restoring the
checkpointed state, and acts as a forwarder, that is, it will forward
every requests for recovery to the super node that has a more recent
checkpoint. On the contrary, if no more recent version can be found,
the super node waits for a given period of time, and then restores the
state of the departed super node. In this case, the other super nodes
that were contacted in the previous step will themselves forward any
worker node’s recovering mode request they might receive to the su-
per node used for restoration.

7.4.2 Costs of Replicating Checkpoints

We briefly discuss the factors that influence the costs caused by the method-
ologies that provide fault tolerance to the super nodes. Indeed, replicating
checkpoints represents an overhead that needs to be balanced against the
profits of recovering a super node’s state. We focus on the (1) content of
checkpoints and on (2) the frequency of checkpointing.

9Note that workers can have different versions of the CLL, since a worker only receives an update
when it contacts its super node. Thus some nodes maybe aware of version /, while other ones may
not.

10Under such situation, the super node itself will see the worker node as having departed.

170 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

EE;‘/r\\\‘ii! CLL

~ [SNy
= //Restore@ Recovery mode?,
worker / R

HONNOL

worker worker
CLL CLL

worker
CLL

worker
CLL

Figure 7.4: Recovery Protocol for the NMS-based Approach.

Content of a Super Node’s Checkpoint

An important factor relates to the content of a super node’s checkpoint,
which should be minimized to lighten storage space and to preserve net-
work bandwidth when checkpoints are replicated. Therefore, a super node’s
checkpoint will be comprised of the individual checkpoints of the tasks
that are being computed by worker nodes which are attached to the super
node. The checkpoint will also include some metadata, such as the check-
point ID, the super node’s ID and the time-to-live. Note that to further pre-
serve bandwidth and storage space, each checkpoint of an individual task
should be compressed by the worker before it is replicated to its attached
super node. The task’s checkpoint will only get decompressed when and if
the task is resumed at another worker node. This way, storage space and
CPU are preserved at the associated super node.

It should be pointed out that the input data sets needed for a given task
are not included in the individual checkpoint of the task, and thus are not
part of a super node’s checkpoint. The rationale behind this approach is
that input data sets can be obtained either from other super nodes or, as a

7.5. RELATED WORK 171

last resort, from the master server. Instead, the list of input data sets held
at a given super node can be sent along the replica of a checkpoint. This
eases the lookup of a given input data set, making possible that a super
node obtains input data sets from another super node.

Frequency of Replications

The frequency of replication of checkpoints impacts the overhead induced
by checkpointing: a high frequency loads the network, while a low check-
point frequency might reduce the usefulness of checkpointing. This is valid
for both task’s checkpoints and for super node’s checkpoints. However, it
should be pointed out that a super node is more important than a worker
node, since the failure of a super node impacts all worker nodes that are at-
tached to it, while the failure of a regular node only hinders the task being
executed at the worker.

Regardless of the role of a node, the replication frequency for check-
points should be linked to two factors: (1) the failure rate of the node and (2)
the speed of change of the node’s state. Indeed, nodes with low failure rates
can be checkpointed at lower rate relatively to more instable nodes. This
means that the checkpoint frequency should be set per node, depending on
its average availability and on the rate of change of the node’s state. More-
over, as super nodes are mostly selected on their availability, this means
that the replication rate of the checkpoint of a super node can be low. In
fact, if a super node’s availability declines, the super node will be demoted
to the rank of a regular node. In this way, if super nodes are properly se-
lected, the replication mechanism should cause few impact on resources.

7.5 Related Work

We now review related work focusing on P2P-based and derived systems
that exploit wide-scale volunteering resources.

The Chessbrain project [;]is an
example of a distributed application that departs from the independent
task model. As the name implies, this project implements a distributed
chess application, upon which workers analyze possible solution sets of a
chess play, returning their results to the master node as it is usual in vol-
unteering projects. However, contrary to other projects, Chessbrain has a

172 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

soft real time constraint, since the time for a whole game of chess is ac-
counted for and limited. Thus the workers’ results need to be sent back
within a short time frame, else they are useless. A key achievement of
Chessbrain was performed when the project managed a draw in a game
against an human grand master chess in 2004. However, during this at-
tempt, it was found out that the centralized approach was reducing scal-
ability, with only around 2000 workers having effectively contributed to
the game, while many others where not allowed to contribute due to the
communication clogging on the main server []. Therefore,
the project has since taken a federated approach to cope with its soft real
time demands, seeking to aggregate resources which are near to one an-
other in what the authors call cluster nodes. For that purpose, a framework
termed MsgCourier is being developed. MsgCourier requires every partic-
ipant peer node to communicate with a cluster node, instead of directly
interacting with the master node''. No details are available on the way
how peer nodes can locate and contact peer nodes, except that the cluster
nodes should be chosen from trustworthy ones [], possi-
bly from a list of known volunteers. Our proposal for institutional desktop
grid based on local proxy servers is similar to the MsgCourier’s approach,
since both aims to reduce bandwidth demand at the server-side, although
the LPS approach is more generic.

Although KaZaA [] and Skype [] are
not computing-oriented (that is, they do not aim to exploit CPUs cycles),
both of these platforms are pioneer and successful examples of the usage
of unrelated volunteer peer-to-peer nodes over the Internet. The former
is a file-sharing applications, while Skype is a well-know VoIP solution.
Both exploit network of super nodes, although in KaZaA, the transition
of a node to a super node role is only performed if the node’s owner au-
thorizes it. On the contrary, in the Skype network, the change to super
node requires no prior consent from a node’s owner. This feature has draw
critics and fears, mostly due to the network bandwidth and computing re-
sources a super node role might impose, but has the merit of avoiding non-
cooperative behavior, namely selfish conduct that could affect the overall
network strength!2. As noted before (section 7.4.1, page 159), in a network

II'The documentation for MsgCourier designates the master node as the super node. We do not
use this term to avoid further confusion.
12Users that benefit from P2P systems, but that do not contribute to them are called free riders.

7.5. RELATED WORK 173

of volunteer workers such as SNBDG, the conversion to a super node can
only be done with the consent of its owner, otherwise most resource owners
will simply stop volunteering their resources. Both KaZaA and Skype rely
on strong communication and data encryption to minimize the possibility
of interference from outside applications in their networks!'3.

The OurGrid project [1, whose scheduling algorithm
workqueue-with-replication we mentioned in Chapter 5, aims to attract com-
puting laboratories from any place to create a global community of shared
resources. For this purpose, institutions that join OurGrid grant access to
their own resources, receiving in turn the permission to use the idle time
of other laboratories’ resources. Regarding the interaction of the machines,
OurGrid is based on a peer-to-peer network, where each participating in-
stitution/laboratory corresponds to a peer in the system. To cope with free
riders, OurGrid resorts to the network of favors, a decentralized resource
allocation and accounting scheme, not based on money. In the network
of favors, a favor corresponds to the allocation of a computing resource to
a peer that requests it, and the value of that favor is the amount of work
done for the requesting worker. Specifically, each peer keeps locally track
of the total value of favors if has given to and received from each peer it
has interacted with. Whenever an idle node is requested by more than
one peer, the requested node calculates a local reputation value for each
of the resource seekers, selecting the one whom it owns most favors. To
prevent malicious behavior from resource owners or/and application sub-
mitters, OurGrid isolates resources from applications through sandboxing
via the hypervisor-based virtual machine Xen system [I
Regarding fault tolerance, and as reported in Chapter 5, OurGrid only sup-
ports bag-of-tasks applications, and no provision, besides overscheduling,
is done to cope with node failures.

As reported earlier in Chapter 2, the Personal Power Plant (P3) is an-
other peer-to-peer-based framework to scavenge idle cycles [

]. Similarly to the OurGrid project, the framework, which is still in
development, allows any node to submit tasks for execution. However,
contrary to other P2P environments, P3 offers support for communication
between tasks through both an object passing and a message passing pro-

gramming libraries, effectively supporting parallel tasks. For communi-

13Note that the KaZaA network is completely independent of the Skype’s network.

174 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

cation and organization of the nodes, P3 resorts to JXTA [

], which provides for the network overlay, organizing the nodes in
JXTA-supported peer groups called job groups. P3 is built around two main
daemon programs: host and controller. The host daemon is to be run by re-
source providers, and its main function is to execute the tasks it receives
from its job group’s controller. Conversely, the controller daemon, besides
being used for submitting jobs, also controls the hosting machines. Indeed,
at each host machine, a so called host daemon connects the machine to its
group’s controller daemon. A major issue with P3 lies in the overhead
that is imposed by JXTA on communications. Additionally, no provision
seems to exist relatively to fault tolerance when a parallel-enabled applica-
tion is executed, while result verification for independent tasks is provided
through redundancy.

Other peer-to-peer based systems include the Personal Grid (PG) [

], which we briefly presented in Chapter 2. PG’s main goal
is to allow that any individual can have her own multi-task application(s)
executed over the volunteered resources. PG has no central control, imple-
menting a peer-to-peer model. Specifically, the proposed system explores
a network of super nodes, calling cluster to a set of worker nodes that is
connected to a same super node. The aggregation of a worker node to a
given cluster (a worker node is only connected to a single super node) is
determined by the network proximity: on the prototype implementation,
two nodes are considered close if they are reachable through a link level
broadcast, and thus belonging to a same local network. Since any node can
submit an application to be executed over a network of workers, PG has
a mechanism to match the needs of the applications to existing resources.
Indeed, to submit a task, the submitter node releases an advertisement to
the network. This advertisement, which holds a meta description of the
task (URL of the needed files, message digest codes, etc.) is sent to the
super node which then forwards the metadata through the network of su-
per nodes and so on. To avoid flooding, the advertisement is limited by a
TTL. When terminated, the results are sent back to the submit node. PG
only aims to allow the execution of independent tasks, providing no sup-
port for communication, nor synchronization among workers, even if they
are located in the same cluster. In addition, and contrary to the server-
based model where only a central and credible entity can release tasks, PG

7.6. SUMMARY 175

is prone to malicious submitters and thus the security of both resources and
of results are important open issues.

7.6 Summary

In this chapter, we analyzed two hierarchical desktop grid models oriented
toward a better exploitation of resources: federation of servers and P2P
overlay of workers. The former model organizes the workers behind a lo-
cal proxy server that acts as the representation proxy of the institutional re-
sources. The P2P overlay of workers model targets peer nodes which have no
special affinity with each other, apart being close in network terms. For the
P2P environment, we propose a super node-based infrastructure, where
more reliable, available and resource rich nodes act as super nodes, coordi-
nating the data and task distribution of the worker nodes that are connected
to them.

As soon as the fault tolerance issues are solved, P2P-based infrastruc-
tures will play an important role in desktop grids, as they already do in the
area of file sharing. P2P-based computing will allow not only for the shar-
ing of data and checkpoints, but also for the execution of tasks that require
communications among workers.

176 CHAPTER 7. DESKTOP GRID TOPOLOGIES FOR SHARING

Sabotage Tolerance
through Comparisons of
Checkpoints

Redundancy is commonly used by public resource computing middleware
for the validation of final results. Simultaneously, checkpointing is used
for fault tolerance purposes. In this chapter, we merge the redundancy
model with checkpointing of intermediate execution points. Specifically,
the signature of checkpoints from intermediate execution points of redun-
dant tasks are compared with each other to detect possible errors. With this
methodology, errors can be caught earlier. This yields faster execution and
higher confidence in the application results.

8.1 Introduction

The correctness of computations that are performed over volunteer resources
is a major issue in desktop grids. Indeed, if a worker sends back some
wrong results, it may undermine the whole computation.

A possible source for incorrect results is faulty hardware. Anderson
cites overclocking as a significant cause of faulty computations in projects
that resort to the BOINC framework []. Another cause for
erroneous results is motivated by the somewhat fierce competition among
volunteers who dispute the top places of the contribution ranks elaborated
by the project managers []. In fact, some volunteers try to
increase their credits resorting to dishonest tricks to collect undue credits.
For instance, they might have their volunteered machines return fabricated

results that require no or minimal computation, or even resend results in-

177

178 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

stead of performing the honest computations []. This type of
users is known as lazy cheaters. A saboteur is another type of users who
acts maliciously for the sole purpose of ruining the computation, without
concern for credits, nor any other direct benefices []. In con-
trast to lazy cheaters, saboteurs may be difficult to spot since they may be
resourceful and committed to perform everything they can to disrupt the
computation.

Commonly, desktop grid projects resort to redundancy as a sabotage-
tolerance technique []. Under this approach, the same task is
distributed to 2M — 1 distinct and independent worker machines to avoid
collusion. When completed, results are compared and there is a majority
vote. If a result has majority, that is, at least M tasks return a same result or
an equivalent one!, it is interpreted as the correct one and the task is flagged
as completed. On the contrary, if no consensus can be found, all results are
discarded and the task is marked for rescheduling. The requirement for
executing 2M — 1 replicas of a task over distinct and independent machines
stems from the need to avoid the tainting of results. This can occur if a
faulty or malicious worker executes more than one replica. For example,
for M =2 (i.e., 3 replicas per task), if two replicas are executed by the same
faulty worker, then the majority result will be the one reported by the faulty

machine, that is, the incorrect one.

In this chapter, we present a checkpoint and replication-based error de-
tection technique that simultaneously exploits checkpointing and redun-
dancy. The technique compares intermediate checkpoint digests of redun-
dant instances of a same task. If differences are found, we conclude that
at least one execution went wrong. In contrast to the simple redundancy
mechanism, where diverging computations can only be detected after a
majority of tasks have completed (we call this approach “compare-at-end”),
the comparison of intermediate equivalent checkpoints allows for earlier
detection of errors, since divergences among the replicated executions can
be spotted at the first checkpointing operation that occurs after an error.
This allows one to take proactive and corrective measures without having
to wait for the completion of the tasks, therefore allowing for a faster task
completion, since tasks spotted as faulty can immediately be rescheduled.

ISome projects dependent on floating-point operations might have slightly different results when
executed in different platforms, but yet equivalent from the project point of view [].

8.1. INTRODUCTION 179

Furthermore, the checkpoint-based comparison technique makes feasi-
ble the setup of correctness tests, upon which the correctness of a worker
is evaluated without its knowledge. For that purpose, a task whose in-
termediate checkpoint digests are known by the supervisor (having being
validated by previous executions) is dispatched to the worker under assess-
ment. The worker is certified if the returned checkpoint digests are correct.
On the contrary, if it fails the test, it can be placed in a blacklist, or, at least,
the results that it produces will need to be more thoroughly checked.

To complement the error detection methodology based on comparison
of equivalent checkpoints, we propose a checkpoint-based replication tech-
nique whose goal is to promote the fast completion of redundant repli-
cas of a same task, in order to speed up the validation of results. Specifi-
cally, under the proposed technique, the replication of a redundant replica
is scheduled as soon as the replica is determined to be erroneous or lagging
behind, comparatively to other replicas. To minimize the computation to
be re-executed, the technique tries to initialize the replica from an already
validated intermediate checkpoint. The technique extends the checkpoint-
based verification, promoting a balanced execution of redundant replicas,
since validation can only occur when a majority of results have been com-
pleted. Moreover, since execution credits are given to workers only after re-
sults have been validated, this also accelerates validation and proper credit
assignment, which is an important issue for a vast percentage of volun-
teers [].

The organization of this chapter is as follows. First, we review valida-
tion methods for results computed over volunteer desktop grid resources.
Second, we construct a theoretical model that estimates the benefit of com-
paring intermediate checkpoints as a function of the probability of task er-
ror and checkpoint frequency. Third, we propose the use of immediate re-
placement of erroneous or slowly executing tasks to prevent further delays
in the execution of tasks and in the validation of results. Fourth, we con-
duct simulations and analysis of results using our novel approach, which
confirms the benefits estimated by our theoretical model. Finally, we com-
pare our approach with related work.

180 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

8.2 Results Validation Techniques

In this section, we review the most common techniques for validation of the
results computed by volunteer desktop grid resources. Specifically, we an-
alyze replication with majority voting, spot-checking and the generic credibility-
based approach.

8.2.1 Majority Voting

The majority voting method detects erroneous results by sending identical
tasks to multiple workers. After the results are returned, they are com-
pared. If they are identical, or at least a majority of results are, the result is
assumed as being the correct one. Sarmenta determines the amount of re-
dundancy for majority voting needed to achieve a bound on the frequency
of voting errors given the probability that a worker returns an erroneous
results []. Considering ¢ as the probability that a worker is
erroneous and returns an incorrect result, and that € is the percentage of
final results (after voting) that are incorrect. Let r be the number of identi-
cal results out of 2r — 1 required before a vote is considered complete and
a result is decided upon. Then the probability of a incorrect result being
accepted after a majority vote is given by:

21 [5.1 . ‘
Emajy(9,1) = Y, (.)cp’(l—cp)”” (8.1)
j=r J

From Equation 8.1, Sarmenta shows that the error rate decreases expo-
nentially as long as ¢ is kept under 50%. So voting is especially effective
when the error rate is small. However, when the fault rate is relatively
large, increasing redundancy does not significantly reduce the error rate.
For example, when ¢ =20%, the error rate is still more than 1% when r = 6.
Figure 8.1 plots the frequency of voting errors in function of ¢, for the r
replication factor sets, respectively, to 1, 2, 4, 6 and 8. Note that r = 1 means
that no replication is done, and thus the probability of error is solely depen-
dent on the worker. Furthermore, while increasing the redundancy level
lowers the probability of an erroneous result being accepted, with ¢ above
50% the reverse occurs, that is, the probability of erroneous results escaping
the majority voting detection system increases exponentially.

8.2. RESULTS VALIDATION TECHNIQUES

181

] Parameter \

Definition

¢

Probability that a worker is erroneous and returns an erro-
neous result

Fraction of results after voting that will be erroneous

Number of identical results out of 2r — 1

Fraction of hosts that commit at least one error

Frequency of spot-checking

S|~~~ |m

Number of temporal segments

Probability of having a computational error in any of the
checkpoints

Number of segments, or equivalently, checkpoints per task
(c=m)

Total time of the computation

Time elapsed from the occurrence of an error up to its de-
tection (random variable)

0.8

0.6

0.4

0.2

Prob. of Undetected Error with r-Redundancy

Table 8.1: Parameter definitions.

.
V2
LN

X‘ Om

X

\‘;(‘x_?::m\

T

\i\m:‘

wWiE %

F= = = = =
I UL
OB NPF

*

0 0.2 0.4 0.6

©
o
=

Prob. of Individual Host Error

Figure 8.1: Probability of undetected errors on majority voting.

182 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

,
7
hosts that can commit at least one error. The performance impact of repli-

The redundancy of majority voting is where f is the fraction of
cation can be huge. Indeed, even the lightest replication scheme, that is,
r =2, cuts the performance of the entire system in half. Another poten-
tial drawback to this method is that it is susceptible to correlated failures,
as the bounds computed for €,,j, assume that error occur independently
among hosts. However, if hosts collude together often and conduct a co-
ordinated attack, majority voting may not be efficient. In conclusion, ma-
jority voting is effective when the host error rate is relatively small, below
1% and the error behavior of hosts is independent from each other, that is,
no collusion exists among workers. Despite its high resource consumption,
n-replication is widely used in Internet-based projects, such as SETI@home
and Einstein@home?, since it is a straightforward method to implement,
and generic enough to support any applications, as long as an appropriate
results comparator is provided. In fact, n-replication is supported natively
in the BOINC framework [].

8.2.2 Spot-checking

Spot-checking is another method for error detection []. It con-
sists in the random distribution of tasks with a known result to worker, as
a way of testing them. The returned results are compared with the ones
that are known to be correct, and any discrepancies cause the correspond-
ing worker to blacklisted, i.e., any past or future results returned from the
erroneous host are discarded (perhaps unknowingly to the worker).

The main advantage of spot-checking is that the amount of redundancy
computation can be set to be negligible, specially when compared to the
majority voting method. In particular, the amount of redundancy of spot-
checking is given by lflq, with g representing the frequency of spot-checking.

The disadvantage of spot-checking is the difficulty of effectively black-
listing an erroneous host, when it can register under new anonymous iden-
tities at will (as we shall see in chapter 9), or if hosts have high churn rate
as reported by Anderson and Fedak []. Moreover,
blacklisting may be harmful if it removes from the project workers that un-

2 As previously stated in Chapter 2, in its stage S5, the Einstein@home project reduced the mini-
mum validation quorum from 3 to 2 in order to diminish the computing power lost to replication.

8.2. RESULTS VALIDATION TECHNIQUES 183

intentionally and infrequently return invalid results. Nonetheless, without
blacklisting, the spot-checking technique is practically ineffective.

8.2.3 Credibility-based Validation

Another way of reducing the acceptation of erroneous results as correct
ones is to use conditional probabilities of errors. This approach analyzes
the ratio of correct results computed by a given host in the past to assess
the credibility of the host. A system based on this principle is called a
credibility-based system []. The idea is based on
the assumption that hosts that have computed many results with relatively
few errors have a higher probability of producing errorless computation
than hosts with a history of returning erroneous results. Thus, the credibil-
ity of an host increases with correct results. Tasks are assigned to hosts such
that more attention is given to the tasks distributed to higher risk hosts. To
determine the credibility of each host, any error detection method such as
majority voting, spot-checking, or various combinations of the two can be
used. The credibility values are then used to compute the conditional prob-
ability of a result’s correctness. As such, this method, like spot-checking,
assumes that the error rate per host remains consistent over time. Sar-
menta and Hirano conclude that a method that combines voting and spot-
checking (using voting also for spot-checking) is the most effective way of
using credibility.
A credibility-based approach is also taken by Taufer et al. [

] with workers being classified by their availability and reliability ac-
cording to their past behavior, that is based on the tasks they have pre-
viously computed (or attempted to compute). Specifically, workers are dy-
namically classified into four classes: High Available/High Reliable (HA /HR),
Low Awvailable/High Reliable (LA /HR), High Available/Low Reliable (HA /LR)
and Low Available/Low Reliable (LA /LR). A high available worker is one that
has a high probability of being available to process tasks. Conversely, a low
available worker is seldom available for desktop grid computing. A high
reliable worker is one whose computations are dependable, that is, there is
a high probability of its results being correct. However, the purpose of the
author’s approach is to properly schedule tasks in order to improve turn-
around time, and it is not expressly related to sabotage-tolerance.

184 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

8.3 Assumptions and Definitions

We assume a wide-scale computing project, where a central supervisor co-
ordinates the whole computation by distributing tasks to requesting volun-
teer worker machines. The tasks that comprise an application are sequen-
tial and independent from each others. Furthermore, we assume that all
communications occur exclusively between workers and the supervisor,
and more precisely, communications are worker-initiated in order to cir-
cumvent Internet asymmetries caused by NAT and firewall schemes [

]. Thus, the supervisor is passive in the sense that it can only
answer to worker requests. As seen in earlier chapters, this communica-
tion model is the one adopted by several desktop grid frameworks such as
BOINC and XtremWeb | ; 1.

At the worker level, fault tolerance is achieved through application-
level checkpointing []. We only consider tasks which can
individually be broken into m temporal segments S; = {S;,,...,S;,}. The
intermediate computational states can be checkpointed at the end of each
temporal segment, yielding the checkpoint set C = {Cy,...,Cy}, with G,
taken at the end of the computation. Like in current desktop grid mid-
dleware platforms, whenever a task is interrupted, its execution can be re-
sumed from the last stable checkpoint C;. Note, that in this chapter, we do
not consider task migration nor checkpoint sharing.

Depending on the application, checkpoints can get quite large, in the
range of tens to hundreds of megabytes in size, and thus it might be inef-
ficient to transfer and compare them. (For the purpose of comparison, all
checkpoints need to be on the machine that effectively performs the com-
parison; thus at least one of them has to be transferred.) Thus, for com-
parison purposes, we assume that message digests of checkpoints (pro-
vided by the MD5 [] and the SHA-family [

] algorithms, for example) can be used. Due to their reduced and pre-
dictable dimensions, message digests can be easily exchanged and com-
pared. Furthermore, an application-specific preprocessing function might
be deployed to normalize checkpoints (for instance, for removing task-
dependent identifiers) prior to the use of a generic digest algorithm. For the
purpose of comparison, checkpoint C; is represented by the message digest
MD(C;). Additionally, the comparison of checkpoints needs to be executed
between what we term as equivalent checkpoints, that is, checkpoints from

8.4. COMPARISON OF EQUIVALENT CHECKPOINT DIGESTS 185

worker 1
C C C
Stw1,‘l w11 Stw1,2 w12 Stw1,3 w1,3
® ®
MD(Cw11)i ~ MD(Cwi2)i MD(Curs)i
v v 4
compare compare compare
checkpoints . - checkpoints results
A A A

MD(Cuz1)i MD(Cuzz)i MD(Cyoy):

o ® o

Stw2,1 Stw2,2 Stw23
w21 w2,2 Cw23

worker 2

time
>

Figure 8.2: Three-segmented execution of a task by two workers with comparison
of intermediate checkpoints and results.

different replicas of a task that represent a same execution point of the task.
Figure 8.2 exemplifies two workers executing a three-segment task (m = 3),
with comparisons of intermediate checkpoints and of the final results.

Regarding redundancy, we assume that the system executes each task
2r — 1 times, resorting to 2r — 1 independent workers, with the supervisor
applying majority voting to validate results, electing the so-called canoni-
cal result |]. Afterward, when the result verification is com-
pleted, the system assigns the proper credits to the workers that have re-
turned correct results.

8.4 Comparison of Equivalent Checkpoint Digests

For the comparison of equivalent checkpoint digests, a worker is requested
by the supervisor to return, along with the results of the task that it com-
puted, a selected set of message digests of the checkpoints saved during the
computation of the task. The list of checkpoints whose message digests are
requested is defined during the task creation, so that redundant replicas of
a task share the same set of requested checkpoint digests.

186 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

When a majority of redundant executions are completed, and the su-
pervisor holds enough results for meaningful comparisons, the checkpoint
digests from equivalent execution points are compared to one another. If
the digests are different, the execution point with the divergent digests
is marked as suspicious. Comparatively to the compare-at-end methodol-
ogy, the selective digests technique allows for a finer grain detection level,
since an erroneous computation can be located right after the first divergent
checkpoint, enabling the identification of the execution segment where the
divergence occurred.

8.4.1 Reducing the Time to Detect an Error

Although the selective digests strategy allows for a more precise location of
error occurrence, since the segment where the error occurred can be identi-
tied, comparison of checkpoints by itself does not speed up the detection of
incorrect computations, since error detection can only occur after, at least,
two redundant replicas have terminated.

A more proactive variant is to have workers returning available check-
point digests during the computation. Ideally, from a detection point of
view, the worker should send back to the supervisor a checkpoint digest
immediately after its computation. This way, an error can be spotted by the
supervisor as soon as a majority of checkpoint digests is available for the
considered execution point. Thus, upon detection of a divergent computa-
tion, corrective measures can immediately be triggered by the supervisor.
For instance, the execution of another replica of the task can be scheduled.
Additionally, the apparent faulty worker can be marked as a suspect and
further probed to assess its computational validity, or if repeating a faulty
behavior, it can be blacklisted altogether [].

Additionally, on failure detection, the supervisor can notify the worker
to cancel its current task computation. Note that, although commendable
for a honest worker victim of a faulty hardware, the cancellation order
might also alert smart malicious workers that their dishonesty have been
spotted. This way, malicious users might gain valuable insights about the
sabotage detection capabilities of the supervisor and thus have access to
an effective way to probe the project detection mechanisms. Furthermore,
even if the supervisor issues a cancellation order to the worker, this order

can only reach the worker in the next communication phase (which is initi-

8.4. COMPARISON OF EQUIVALENT CHECKPOINT DIGESTS 187

ated by the worker). This is a consequence of the worker-initiated commu-
nication model. Thus, we assume that detected failures are dealt silently
by the supervisor, with no notification issued to faulty workers.

8.4.2 Theoretical Analysis

In this section, we conduct an initial analysis of the advantage of detect-
ing erroneous computations at intermediate checkpoints. The goal of this
analysis is to estimate the potential benefits of our approach.

As stated earlier, we assume that the execution of a task is segmented
into m fragments. Additionally, we make the following simplifying as-
sumptions:

Assumption 1: machines are homogeneous, as well as segments. A task al-
ways requires 7 time units to complete, and each segment takes 7'/m time
units to execute. The probability of obtaining a wrongly computed segment
is the same for all the workers and for all segments of the same task;

Assumption 2: all replicas of a task start at the same time across all workers;

Assumption 3: the errors are independent of each others, and thus, no con-
tamination of replicas occur, meaning that comparison of replicas is enough
to catch all the errors.

Although these assumptions may seem too restrictive, we show exper-
imentally in Section 8.6 that our analysis also holds for other more hetero-
geneous scenarios. We will focus on two variables that affect the system:
the probability, p., of having a computational error in any of the check-
points? (either due to a computational mishap or malicious behavior) and
the number of checkpoints of the task. We consider that results are vali-
dated through r-replication, with all replicas having to compute the same
equivalent checkpoint digests. However, comparison of equivalent inter-
mediate checkpoint digests allows partial validation at point j as soon as
the r replicas of a task have sent back their respective message digests of
checkpoint j, that is, MD(C;). We compare this new and improved ap-
proach against the state-of-the-art method, which can only detect errors at
the end of the execution.

3We use the designation segment and checkpoint interchangeably, referring to the segment and to
the subsequent checkpoint which is taken at the end of the segment.

188 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

When the computational error occurs before the first validation check-
point (Cy), the checkpoint comparison method will anticipate the detection

T -1 time units sooner than the regular methodology. This case occurs
when there is one or more errors in the computation of all the r replicas.
The probability of this event is 1 — (1 — p,)", which we denote as p to sim-
plify. For the next checkpoint (C;), the comparison of equivalent check-
points saves T - -2 time units, relatively to the normal validation method.
This happens with probability p- (1 — p). Extending this reasoning to check-
point i yields a saving of T - - with probability p- (1 — p)"~!. (In the last
segment, when i = m, or if there is no error for the whole computation,
our approach brings no benefit since in both cases the error detection only
occurs at the end.) We let W be a random variable to represent the error
detection time, that is, the time elapsed from the occurrence of an error up
to its detection. In other words, if we reschedule the task as soon as the
error in the checkpoint is detected, W represents the maximum time that
we can save, relatively to the compare-at-end approach, with a single er-
ror detection. However, in the regular strategy, the computation time can
be even worse than T + W, because other errors can delay the task even
further. Hence, if we are able to calculate W, we can have a measure of
the advantage of detecting errors by comparing intermediate checkpoints.
To calculate the expected value of W, we proceed as follows (we omit the
probability of not having any error, as there is no gain in that case):

e i1 m—i - i &,
E[W]:Z<Pq l'mT>:T'P'<i_ZICI l—agl'q]> (8.2)

Where ¢ = 1 — p. Since Y7, ¢!
quence, its sumis S, =]I_—qq. We can use standard techniques to compute

is a sum of terms of a geometric se-

the second term of the difference.
Consider that S/, | =Y ,i-¢"'. By multiplying S/, | by ¢ and taking

the difference (1 —¢q)- S,

m—17

m

Sm—1 —mq

= Since p =1 —gq, this

we get S, | =
yields:

m—1 —

T. 1—gm
EW|=T p-Sp1——Ls T(l— q) (8.3)
m

8.4. COMPARISON OF EQUIVALENT CHECKPOINT DIGESTS 189

0.9

0.8

0.7

0.6

0.5

0.4
0.3

oal |
or |

0 0.2 0.4 0.6 0.8 1
Probability of error in checkpoint computation

Benefit relative to maximum time

Figure 8.3: Benefit (W) relative to expected maximum time (7") as a function of the
probability of error (p).

In Figures 8.3 (page 189) and 8.4 (page 190), we depict the time that we
can save relative to T (E[W]/T), considering Equation 8.3. Specifically, in
Figure 8.3, we set m = 20, while in the other figure we set p = 0.05. From
Eq. 8.3 we conclude that the maximum time that a checkpoint comparison
can save converges to 7, when m — co. When p — 1, the time that we can
save approaches T - -1 as we would expect. For example, we find that
with an error rate of 5% and checkpoint frequency of 20 times per task,
the gain is as high as 35% compared to the case where error detection is
done only at the end of task execution. Note that this is a conservative es-
timate of the benefit as the worker software of many projects (such as Ein-
stein@home |] and SIMAP [I) have higher check-
pointing frequencies (as high as one checkpointing operation per minute).
In particular, in the BOINC-based project climateprediction.net [

], a task requires around 3 months of CPU time in a fast PCs, be-
ing checkpointed 72 times during the whole execution. In conclusion, for
even conservative estimates of error rates and checkpoint frequencies, the
benefit of comparing digests of intermediate checkpoints is significant, and
is even greater for higher probabilities of error or for longer computations
with checkpoints.

190 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

0.9 —
P —
o 08
£
gE 07
3
E
X 06
£
2 05
[
=
T 04
g
£ 03
=
[
@ 02
0.1
0

20 40 60 80 100 120 140 160 180 200
of checkpoints

Figure 8.4: Benefit (W) relative to expected maximum time (7") as a function of the
checkpointing frequency (m).

8.5 Checkpoint-based Task Replication

Some BOINC-based desktop projects increase, at least for specific period
of times, the redundancy level to foster the chance of fast completion of
tasks. Surprisingly, one of the main motivation for this important deci-
sion, which has important implications on the available computing power
of the system as seen in Section 8.2 (page 180), is not directly related to the
gain of an higher confidence level for the results, but the need to quickly
rewards workers with the proper amount of credits. In fact, credits are
only committed to workers after validation of the results. These credits
are determined by the supervisor, based on the credit claims made by the
intervening workers: jointly with the completed results, the worker sends
a claim with the amount of credits it believes it deserves. This claim is
computed by the project application running at the client. To circumvent
the high volatility of volunteers, a number of replicas higher than what
is required for majority voting is scheduled for execution*. This provides

4That is 3, although a 2+ 1 scheme can also be employed — a 2+ m means that initially 2 tasks
are executed, and only if the results are different, than a third one is scheduled for execution. This
scheme proceeds until consensus is found or a limit threshold of execution attempts is reached.

8.5. CHECKPOINT-BASED TASK REPLICATION 191

timely assignment of credits even in the presence of sluggish and drop-out
workers. However, this approach wastes resources, and thus slows down
the whole computation.

To speed up completion and validation of individual tasks, thereby pro-
moting fast credit assignment, we combine the comparison of intermediate
checkpoint digests with task replication. Furthermore, to prevent lengthy
re-computations due to the replication of task, we resort to already vali-
dated checkpoints to load execution state in tasks to replicate, avoiding to
restart from scratch.

The task replication works by loosely coupling the execution of the re-
dundant replicas of a same task, which are configured for reporting se-
lective checkpoint digests. Note that workers processing replicas are not
aware of each other, otherwise the risk of collusion would increase. The
supervisor follows the progress of the coupled replicas of a task through
the messages holding the checkpoint digests sent back by these replicas,
validating the received checkpoint digests of the selected execution point
through comparison as soon as a majority of results has been received.

Whenever a worker lags behind its replica partners by more than a spec-
ified threshold — the threshold takes into account the relative speed of the
workers — the supervisor initiates a replace operation, with the goal of sub-
stituting the behind-schedule worker. The rationale behind the task substi-
tution decision lies in the fact that a significant delay is a strong indication
that the task got delayed and possibly interrupted, and thus a fast replace-
ment is needed if a quick and balanced execution is sought. To further
speed up substitution, the substitute task should start from the last vali-
dated checkpoint, if available. To prepare for the replica substitution, the
supervisor requests, upon the next communication of a paired-worker, the
last validated checkpoint from this worker (not the digest, the entire check-
point file). Upon receiving it, it checks its validity through message digest
comparison, and creates a task which integrates the validated checkpoint
tile. This replace task is then scheduled to a requesting worker, which starts
the computation from the checkpoint execution point, thus skipping the
computation up to this point. From the point of view of the supervisor, the
newly scheduled task replaces the lost/delayed one, and thus the moni-
toring of execution proceeds as previously explained. Note that, in order

192 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

to prevent excessive replicas, replication should only be performed if the
number of replicas is below a predefined threshold.

8.6 Experimental Results

In this section, we confirm and extend the theoretical results obtained in
Section 8.4.2 through simulation. Specifically, we assign a number of tasks
to a set of workers, setting the duration of these simulated tasks before-
hand. Whenever a worker computes a segment, it randomly determines
whether that computation is wrong or correct (once a segment is wrong,
all the remaining segments from that worker are also considered as erro-
neous). The total time of the computation, 7, is the time at which the
last replica finishes its last checkpoint, regardless of whether it is correct
or wrong. Assume that checkpoint C; was the first one to be wrong and
that the last replica finished C; at time Tiy. We are interested in the random
variable W = T — Ty, which represents the benefit of using intermediate
checkpoints relative to the state-of-the-art compare-at-end. In particular, the
metric we use to quantify the gain compared to the compare-at-end is the
relative value W/T.

We started by considering the same parameter settings that were used
to generate Figure 8.4. So, we set an uniform p, ~ 0.0253 for all execution
segments, considering homogeneous segments, and a two-replica scheme,
which corresponds to p = 0.05. As expected, in Figure 8.5 (page 193) we got
a curve that closely follows the theoretical prediction. Then, we studied the
impact of considering different durations for the segments and different er-
ror probabilities for each of the computed segments. We used two different
random distributions for this: uniform and truncated Gaussian. To main-
tain consistency, the average values for the error probability and for the
segment duration were the same as for the fixed case, p, and T, respec-
tively. In the uniform distribution, the actual error probability was chosen
uniformly from the interval [0.5p,,1.5p,) (which is always inside the inter-
val [0, 1]), while the duration was chosen using the same distribution in the
interval [0.5T,1.5T). For the Gaussian distribution, we considered averages
of p, and T, and standard deviations of 30% of the average. Additionally,
we truncated the values of p, and T to be inside the ranges [0.5p,,1.5p,]
and [0.57,1.5T], respectively. In Figure 8.5, we show the average result of

8.6. EXPERIMENTAL RESULTS 193

fixed —— ‘ ‘
uniform --->----

2 09 I gaussian -~ x-
T o8
=
= 0.7
©
€
B 0.6
[$} X
S 05
x
[0}
2 04
[}
2
& 03
[S]
5 02
=
[}
D 04 f

0

0

20 40 60 80 100 120 140 160 180 200
of checkpoints

Figure 8.5: Benefit (W) relative to expected maximum time (7") (obtained experi-
mentally).

varying the number of checkpoints for 300 different trials. As we can see,
the curves overlap.

The most interesting conclusion from these results is that the particular
random distribution that controls the duration and the errors of the seg-
ments does not seem to make any significant difference, at least for the
same averages. This would not be true if, for instance, the average dura-
tion of segments i and j was different for segments i and j°>. We believe
on a simple and intuitive reason for this: on average the slowest replica
should finish checkpoint i around time i - %, where T is the time at which
the slowest replica finishes the task. Although some particular cases may
not follow this trend, our experimental results confirm this intuition for the

average case.

SHowever, note that it would not make much sense to consider different average durations for
different segments, unless we were targeting a particular application with a well-known behavior.

194 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

8.7 Related Work

In this section, we review related work, namely checkpoint-based appro-
aches to error detection.

Antonelli et al. [] proposed a distributed checkpoint-
based technique for sabotage-tolerance. Similarly to our approach, the
scheme addresses sequential computation that can be split in multiple con-
secutive temporal segments. To certify a given checkpoint C;, the supervi-
sor creates a verification task. This task references the checkpoint to verify
and holds the network contact details of the worker which performed the
computation. The task is then assigned to a worker node (verifier), which
uses the network contact details to request the checkpoint from the worker
being scrutinized. After receiving the checkpoint, the verifier loads it and
executes the task up to the next checkpoint, that is, Cj. It then computes
the message digest of the checkpoint and sends it as a result to the su-
pervisor. Finally, the supervisor compares the digest to the other equiva-
lent digests. This distributed scheme is appealing since it distributes the
computation needed for verification of checkpoints through the workers.
However, some major issues are not addressed by the authors. For in-
stance, the scheme requires worker nodes to be directly addressable for
checkpoint transfer, thus restricting many nodes that are behind firewalls
and NATs to participate. Furthermore, workers need to keep some of the
checkpoints of the computed tasks and transfer them when requested, a
demand that might require meaningful space storage and network band-
width, especially with large individual checkpoints. Additionally, the di-
rect checkpoint transfer assumes that the worker is always available, which
is seldom the case in a volatile environment like desktop grid. Finally, pro-
moting direct contact between workers may foster collusion.

Agbaria and Friedman [] proposed a replica-
tion and checkpoint-based scheme to detect intrusions through anomaly
spotting. They resort to checkpoint comparison for the purpose of iden-
tifying intrusions in a Byzantine environment. Similarly to our approach,
the execution is split in n sequential phases, with a checkpoint being taken
by every worker node at the end of every phase. To support a maximum
of ¢t intruded nodes (each node executes a replica), the proposed scheme
requires ¢ + 1 replicas when no intruded node exists. However, when in-

trusion exists, the protocol needs additional stages, involving more than

8.8. SUMMARY 195

the 3 + 1 replicas which would be required by a straight Byzantine agree-
ment protocol. The unbalance is justified by the fact that intrusions are
rare and thus it compensates to have a lightweight scheme which is only
penalized when intrusions do occur. The protocol distinguishes between
workers (nodes that perform the computation and which can get intruded)
and auditors, which are responsible for assessing the integrity of the work-
ers. Specifically, the auditors are used to agree that all the 7 41 replicas
match. A major demand of the protocol lies in the required synchroniza-
tion, with workers having to send their checkpoints to the auditors within
a given time frame. This requires that the replica execution occurs simul-
taneously, a premise that might be hard to fulfill in a volatile environment
such as desktop grids. Furthermore, the checkpoints (or equivalently, a
message digest) need to be sent to the auditors at the end of every stage,
an operation that requires communication resources and might be difficult
if auditors are not directly addressable [|- Relatively to
the solution that we propose, our emphasis is more on the practicality of
the error detections schemes and its integration with current desktop grid
frameworks.

Wang et al. [] resorted to the comparisons of system
checkpoints for narrowing down configuration failures in the management
of Windows-based systems. Specifically, when a suspected to be configura-
tion failure occurs, a comparison between a pre-failure checkpoint and the
current state is performed to try to locate the cause of failure.

8.8 Summary

In this chapter, we proposed a strategy for early detection of errors by com-
paring equivalent checkpoints of redundant tasks executed over unreliable
desktop grid resources. We developed a theoretical model that estimates
the benefit of using intermediate checkpoints given a task length and task
segment error rate.

The main results of this chapter are the following;:

- Through simulations, we found that for a 5% error rate and a check-
pointing frequency of 20 times per task, the gain for the execution
time is as high as 35% relatively to the traditional approach where er-
ror detection is only performed at the end of the execution of a task.

196 CHAPTER 8. SABOTAGE TOLERANCE THROUGH COMPARISONS

- The benefits increase with higher checkpointing frequencies and/or
if the computing environment has an higher error rate. On the other
hand, smaller checkpointing frequencies and/or less error prone en-
vironments yield smaller benefits, if any.

In conclusion, the checkpoint compared methodology presented in this
chapter is appropriate for error-prone environments. In the next chapter,
we address the issue of attracting reliable and good performing resources
for volunteer computing.

Reputation and Trust
Management in Volunteer
Computing

In this chapter, we focus on reputation and trust management for volunteer
computing. We start by briefly analyzing key issues surrounding unique
identification of users over the Internet, namely under which conditions
such identification is possible, and how these conditions fit into public
computing projects and their resource donors. Then, we focus on reputa-
tion systems for public computing, proposing a volunteer invitation-based
mechanism for recruiting trusted resource donors. Specifically, we propose
and analyze an invitation-based reputation system for public computing
that we call Invitation System. This system mimics social behaviors to build
up a reputation network, with participation in a given public computing
project requiring an invitation from an already active donor. To promote
responsible invitations, inviters are linked to the behavior of their invitees,
being rewarded with credits proportional to their invitees” computing ef-
fort — the more the invitees produce, the bigger is the inviter’s bonus.

To complement the Invitation System, we outline a simple reputation
certification, upon which a volunteer can apply for an invitation to a desk-
top grid project by presenting credentials from public projects where the
volunteer has contributed to. In this way, reputation credentials can be
shared across projects.

197

198 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

9.1 Introduction

In trust relationships developed through the Internet, like the ones that oc-
cur in public computing — both project owners and resource donors should
trust each other — reputation systems can be important for setting initial
trust level []. For instance, the FeedBack Score rating mech-
anism of the popular auction site eBay [] has already proved that
a reputation system, even as simple as the +1/0/-1 evaluation system of
transactions!, is important to promote deals between persons that do not
know each other [].

Reputation systems play an important role because they collect, dis-
tribute and aggregate feedback about the behavior of participants and help
to decide whom to trust, implicitly encouraging trustworthy conducts. Re-
garding fault tolerance of volunteer desktop grid systems involved in pub-
lic computing projects, the existence of reputation systems can diminish the
requirements of the fault tolerance mechanisms, especially regarding detec-
tion and control of malicious users. For instance, supported by appropriate
reputation systems, fault detection systems can focus on resource donors
with no or low reputation, instead of spreading uniformly its efforts over
the whole population of resource donors [I

9.2 The Problem of Identity

In his seminal work, Douceur proved that environments where users (la-
beled as identities) can assume multiple identities are prone to Sybil attacks,
unless a logically centralized authority exists []. Indeed, by
impersonating multiple identities, it become feasible for malicious users to
gain control of a substantial part of the system? [. There-
fore, uniquely identifying a volunteer participant is one of the most serious
challenges faced by trust management systems for public computing.
Commonly used attributes like email addresses and IP addresses offer

few, if any, guarantees of persistent identification. For instance, a malicious

! An eBay’s user can classify the transaction she had with another user assigning a +1 (satisfied),
0 (s0-s0), and -1 (unsatisfied). The rank of a user is given by the arithmetic sum of all the users that
have classified her.

2The sybil designation stems from the 1973’s book “Sybil” written by R. Schreiber. In this book,
which is based on the author’s life, the main character suffers from multiple personality disorder,
impersonating multiple identities.

9.2. THE PROBLEM OF IDENTITY 199

user can easily and quickly create an email account in one of the many
free email providers for the sole purpose of anonymously engage into a
volunteer computing project. When, and if the malicious user behavior
is caught by the sabotage-tolerance system and the corresponding email
address is placed in a blacklist, the malicious volunteer can quickly create
a new email account, and rejoin the project under a new and unsuspected
identity.

Likewise, IP addresses are not suited for unique and persistent identifi-
cation of users, since most hosts are not directly connected to the Internet.
Rather, Internet access is performed through ISP’s or corporate’s firewalls,
possibly with a masqueraded and private IP address that can vary period-
ically. Therefore, under such dynamic conditions, IP addresses are mean-
ingless for identification purposes. Furthermore, mobile computing de-
vices like laptops allow their owners to easily connect from any place they
might be, further invalidating reliable identification through IP address,
since IP addresses change accordingly to the geographical location and to
the Internet provider. On top of that, resourceful users can also resort to In-
ternet anonymity services such as the The Onion Router (TOR) [

], which allows access under non-traceable IP addresses. Simi-
larly, Medium Access Control (MAC) addresses that could be used by ISP to
uniquely identify the networking hardware can also be spoofed. Conclud-
ing, both IP and MAC address cannot serve as a meaningful identification

mechanism, at least on systems where users cannot be trusted.

OpenlD? has recently emerged as distributed identity framework aim-
ing to act as a single point of authentication for services accessible over
the web [. OpenlD relies on the concept that any-
one can identify themselves on the Internet through an URL. Thus, to login
to an OpenlD-enabled website, the user only needs to type her OpenID
URL. The website will then query the user’s OpenlD provider to checkout
the validity of the given authentication. If the authentication credentials
are accepted, the user will then be allowed in the website, being properly
identified. This way, OpenlD allows for single-sign-on, upon which the
user only needs to authenticate with an OpenlID identity provider. Although
OpenlD is still a work in progress, the fact that it has been endorsed by ma-

3http://openid.net/

200 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

jor computer players like VeriSign, Microsoft and IBM, to name just a few,
gives some positive prospects about its future.

Ironically, although an important issue, unique and reliable identifica-
tion of users, if at all possible, also raises major privacy issues as the Pen-
tium III's unique identifier flaw demonstrated some years ago [

;]. Indeed, when Intel announced the inclusion of an
unique identification ID on every Pentium III processors for the purpose
of promoting more responsible transactions over the Internet, a chorus of
protests emerged from end user associations worried with the privacy and
freedom implications of such identification scheme. In consequence, the
ID feature was dropped*. Another example of an universal identification
system that has often be criticized and failed to gain acceptance is the Mi-
crosoft Passport [I°.

Unique identification schemes might discourage honest volunteers, not
only because of the burden that unique identification schemes would prob-
ably impose, but also for the loss of privacy they might represent for vol-
unteers, or at least be perceived as such. After all, volunteers are providing
added value to the system, with practically no tangible reward in exchange.
Therefore, should a valid and verifiable identification be required for vol-
unteering resources, it would probably demote many potential volunteers
to donate their resources. Thus, in this work, we rely on the traditional
identification system, based on email addresses, knowing that it does not
guarantee uniqueness of users. However, apart from saboteurs who aim
at disrupting the volunteer projects without gaining any direct rewards, all
other volunteers, including lazy cheaters, have strong interests in keeping
their identity throughout the project, in order to keep adding up the credits
they gain by processing workunits.

9.3 The Invitation System

In this section, we present, to the best of our knowledge, a novel approach
based on invitations to build network of honest and devoted volunteer
nodes for public computing. The system resorts to participating volunteers

“4In practice, the processor identifier is still available as a BIOS option, which is off by default.

5The failure reasons for the Passport system were not solely due to low adhesion of users, but they
were also caused by e-commerce web sites refusing to adopt Microsoft technology over the concern
that Microsoft could create a huge database of users.

9.3. THE INVITATION SYSTEM 201

to recruit other workers, rewarding or penalizing the recruiters accordingly
to the performance and accuracy of their invitees. We name the system, In-
vitation System, or IVS for short.

9.3.1 Overview

The Invitation System mimics human social relationships to create a trust-
worthy community of volunteers, with volunteers inviting other users to
volunteer resources, implicitly vouching for their guests” trustworthiness.
InIVS, a user can only enroll as a volunteer in a desktop grid project through
an invitation sent by another volunteer who is already contributing to the
project.

Invitation System resorts to email addresses for identifying users and
communicating with them. For IVS, an invitation is merely a specially
crafted communication string sent to an invitee’s email address, and which
allows the invitee to register in the public computing system. Although
it is weakened by the aforementioned email identification fragilities, this
scheme eases the setup procedure reducing it to a few emails exchange and
some input from the invitee®. Note that this email-based registration ap-
proach is similar with what currently happens in the registration process
of the major public computing projects.

To insure that invitations are made in a rationale way, inviters are re-
warded or penalized accordingly to the behavior of their guests. The goal
is to make the inviters, up to a certain level, responsible for the behavior
and performance of the participants that have joined through their invita-
tions. Under the IVS approach, a volunteer participant who has proved her
honesty, worthiness and commitment to the public computing project by
having properly computed the tasks it was assigned to, is granted with a
certain number of invitations cards that she can distribute to known users
who want to join the volunteering network.

The contribution of a participant is evaluated through the amount of
work performed for the project. This is measured in credits, while the ac-
curacy of results can be assessed through sabotage tolerance measures such
as replication, as previously seen in Chapter 8. To motivate volunteers to
recruit participants via their invitation cards, inviters receive a bonus given

The input is needed to prevent automatized registration schemes associated with self-invitation,
as we describe in Section 9.3.7.

202 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

by a profit function W (x,n), where x is related to the computing contribu-
tion achieved by participants that have enrolled through their invitations,
and n corresponds to the link depth between inviter and invitee, as ex-
plained later on Section 9.3.3. Reciprocally, when an invitee returns an in-
correctly computed results, the inviter is penalized by the withdrawal of
L(x,n) amount of credits. The goal of the reward/penalty mechanism is to
motivate volunteers to carefully choose the users they invite to join the vol-
unteering network: a good invitation yields credits, while a badly chosen
invitee provokes loss of credits.

A basic outline of a new worker joining the volunteer project through
an invitation is given in Figure 9.1. Specifically:

1. The invitee receives the invitation.
2. The invitee requests its activation to the project supervisor.
3. The supervisor registers the new worker.

4. Next, a regular work cycle follows, with the new worker requesting
a task.

5. The worker receives the task.
6. The worker processes the task.

7. Having completed the task, the worker sends the results back to the
supervisor.

After having properly processed some tasks and earned the correspond-
ing credits, the worker might receive some invitation cards, while the orig-
inal inviter is awarded with W (x, 1) bonus credits, with x corresponding to
the credits earned by the invitee node, and n = 1 indicating a direct link
between the inviter and the invitee.

Although the reliance of IVS over credit rewards and penalties for mo-
tivating responsible behaviors might seem fragile, the importance of the
credit-based rewarding system for public computing cannot be understated.
In fact, although in most projects credits are merely virtual, and do not
translate in any tangible asset, a significant number of volunteers donate
their resources primarily for the thrill of earning credits and to compete
with other volunteers []. To spur the competition

9.3. THE INVITATION SYSTEM 203

Supervisor

@)) (7
(1

(6)

Figure 9.1: Workflow of the Inviter-Invitee Relationship.

spirit, most volunteer computing projects maintain a publicly accessible
classification of donors, with volunteers ranked by the amount of credits
they earned’. Indeed, many volunteers are more focused on the classifi-
cation competition than on the scientific goal that is being tackled by the
computing project. Anecdotal evidences have been reported of volunteers
engaging in freshly created projects having as main motivation the fact that
an early participation strengthen their chances of toping the project’s credit
ranks. These credit-driven volunteers are sometimes referred as crunch-
ers []. Further evidence of the credit importance is demon-
strated by the vigorous complains expressed in the user forums which are
linked to the most popular public projects (like SETI@home,Einstein@home
and alike), about credit related issues such as accountability and delay in
the attribution of credits. An additional confirmation of the influence of
credit rewarding mechanism is given by the efforts performed by skilled
participants to optimize the binary executables and the subsequent rapid
adoption of such binaries by volunteers eager to boost their credit earn-
ings, as reported in Chapter 2 (see Section 2.6.2).

Regarding credits, invitation-based systems allow an additional credit-
based classification: sorting inviters by the amount of credit bonuses they
earned through invited nodes. This might spur the competition among
credit-oriented participants, further fostering invitations and the conse-

quent participation in resource volunteering.

7See for instance, http://boincstats.com/

204 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

9.3.2 Invitation Cards

In IVS, the invitation cards, which allow already contributing volunteers to
invite other users, are distributed by the system in accordance to the volun-
teer’s performed computation, measured by the number of correctly com-
puted tasks. Specifically, whenever a volunteer® completes a given amount
of credits (say, invitation, i), the system assigns invitation,,,qs to the vol-
unteer. The volunteer is then free to send invitation cards to resource own-
ers (henceforth invitee) as long as the invitees are not already registered in
the public computing project’.

It should be noted that an invitation card has no physical existence, it
is merely a specially crafted URL, with a limited time-validity, which is
recognized by the project as an invitation of a member to an invitee. This
invitation is sent through email to the invitee. When the invitee accesses
the invitation’s URL for the first time, a registration procedure is initialized,
which if successful, yields a user ID to the invitee, and the corresponding
right to volunteer resources to the project. The registration step is similar
to what is usual in web-based registration systems, with protection against
automated registration and alike (for instance, resorting to a CAPTCHA-
based system to defer automated registering [D.

9.3.3 Relationship Threshold Distance

The relationship distance between two related nodes is the number of gen-
erations that separate the two nodes, considering that one is ascendant of
the other and thus has either directly invited the second one (direct link)
or another ascendant. We designate this metric as the relationship distance
(RD). Over time, the chain of volunteers evolves, with participants that
were once invited, receiving invitation cards to distribute and so on. An in-
teresting issue of the system relates to the link strength, if any, that should
exist between inviters and non-directly invited descendants. As the name
implies, a non-directly invited descendant is a participant that has received

81n this context, a volunteer designates the human who can have several machines engaged in the
project under a same user ID.

90bviously, an already registered user can always enroll under a newly created ID, using a dif-
ferent email address to receive another invitation. However, from the point of view of the system
the two addresses correspond to two different users. Moreover, the user is not able to merge the
credits of her two registrations and thus yields no practical benefits from it. We tackle this issue in
section 9.3.7.

9.3. THE INVITATION SYSTEM 205

Level 0

Level 1

Level 2

Level 3

Figure 9.2: An Example of an Invitation System Tree.

an invitation through a former invitee of an inviter, and therefore was not
directly invited by the participant. Formalizing, a n'"-generation descen-
dant is a user that was invited by a participant that was herself invited by
a (n—1)" generation descendant and so forth. The relationship distance is
given by n.

The Relationship Threshold Distance (RTD) designates the relationship
distance to consider for penalty/rewarding. Beyond RTD, invitee-inviters
links are not considered. For instance, RTD= 1 means that relationship is
only considered between inviter and direct invitees (i.e., between nodes
with single-unit relationship distance). A RTD= 2 extends the penalty/re-
warding relationship to 2-level invitees and so forth.

Figure 9.2 represents three levels of a simple inviter-invitee relation-
ship tree, with a relationship threshold distance sets to 2. For the sake of
clarity not all ascendant links are shown. Function F(x,n) designates the
reward /penalty function between inviter and invitee. Note that the cardi-
nality of the inviter-invitee relationship is 1 : N, since, while an invitee can

only have one inviter, an inviter might have many invitees.

206 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

9.3.4 Bootstrapping the Invitation System

To bootstrap the invitation system, that is, to recruit the beginner nodes
when a volunteer project is launched, initial invitations need to be sent by
project coordinators and alike to credible and willing to participate users.
Thereafter, over time, a list of inviters will emerge, as a way to reward the
most dedicated participants for their efforts and honesty to the volunteer
project. These inviters will then recruit other participants and so on.

9.3.5 Management Overhead

A potential limitation of the invitation system is the overhead that it might
induce on the supervisor side of the volunteer project. Indeed, inviter-
invitee relationships need to be kept by the supervisor, and the relationship-
tree might, especially in a wide-scale project, become unmanageable or, at
least, absorb significant resources. Dependent on the RTD, updating the
credits of participants might require expensive resources from the supervi-
sor of the project. However, records of nodes’ relationships can be limited
depending on the RTD defined for the project. Thus a balance is needed,
between the overhead to support for managing and updating the relation-
ship tree, and the depth of information that the computing project wants to
retain relatively to its volunteers.

9.3.6 Collusion Avoidance

By its knowledge regarding the relationships of worker nodes (who has in-
vited who), the invitation system can diminish the possibility of collusions,
especially in systems that resorts to redundancy for result verification. In-
deed, to preclude collusion, the system scheduler should only distribute in-
stances of a same tasks to non-related worker nodes. This way, the project
avoids having related participants in the same voting group.

Although more accurate than the random approach followed by cur-
rent public computing systems!?, the strength of this collusion avoidance
feature is limited by the RTD sets by the system. Furthermore, nodes can
always collude by hiding their relationships, resorting to different and non-

10For instance, BOINC distributes redundant task randomly, only checking that a worker is not
assigned with a redundant instance of a same task that it has previously computed.

9.3. THE INVITATION SYSTEM 207

related inviters, although this is certainly harder to achieve than it is in
open projects (i.e., non-invitation dependent).

9.3.7 Preventing Misuse

A possible misuse of the system would be for a participant who holds sev-
eral machines to invite herself under a new identifier, trying to benefit for
the bonuses conceded to inviters for well-behaved participants. For in-
stance, a user with three machines could, in a first instance only register
one machine, and when granted invitation cards, use them to enroll her
other two machines under a newly created identities. However, even if
the sum of credits achieved by the multiple identifiers of the same user
are superior to the credit granted to a single identifier with multiple ma-
chines, these credits are spread across multiple identifiers and might not
be much fruitful in terms of ranking, except if identifiers are allowed to
group as teams. Furthermore, self-invitation of multiple-machine volun-
teer could be further discouraged by rewarding the volunteering of multi-
ple machines in such a way that self-invitation would not yield additional
earnings relatively to multiple machine owners. For instance, an owner
with n machines engaged on the desktop grid project would receive an ex-
tra amount of credits proportional to n and to the number of computed
credits.

A more subtle problem with self-invitation regards saboteurs, that is,
resourceful cheaters that are determined to undermine the results of the
computation without yielding any real benefit, except for the denial of ser-
vice they provoke. Saboteurs can resort to successive self-invitation until a
registered worker is beyond the relationship threshold distance, and thus
no longer connected to the first inviter. Then, this worker can be used to
inject fake results. This can be somewhat mitigated by keeping, for the sole
purpose of audition, the whole registration link level between inviters and
invitees. This means using a somewhat limited RTD for credits rewards
and penalties, but an unlimited RTD in order to have a proper registra-
tion history. Note, that in order to shorten the registration history, users
who have been inactive for a somewhat long period (for instance, one year)
could have their registration information deleted from the system. Another
issue that might render sabotage through self-invitation less appealing is
the fact that the invitation and registration processes require human pres-

208 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

ence and, thus a saboteur would need to go over a reasonable amounts of
tedious self-invitations and registrations to create anonymous accounts for
sabotage.

9.4 Relationship Between Inviter-Invitees

In this section, we study the relationship model between inviters and in-
vitees. Specifically, we analyze how the error rate of workers, which we
model as a random variable, and the rewarding factors set by the project
managers influence the relationship among nodes, namely between (a) in-
viter and potential invitees, and between (b) inviter and invitees. For this
purpose, we change the error rate and the rewarding factors and assess the
effects on the recruiter nodes, using as metric the amount of credits that
a recruiter can expect to earn. Our approach is based on the assumption
that an inviter aims to maximize her earnings, accommodating her behav-
ior to achieve this goal. For this purpose, we propose a theoretical model
aggregating several parameters, such as the probability of error of a recruit,
governed by the random variable E, the n-RTD between inviter and invitee,
and the error penalty function 6(i). With this model, we aim to quantify the
expected credit earning E[W] for inviters and the factors that shape it.

9.4.1 Theoretical Analysis

In an Invitation System, the credits earned by a volunteer node are given
by the sum of (a) the self-computed tasks, (») the bonuses originated by the
credits earned by invitees, and (c) the penalties suffered due to erroneous
computations of linked invitees. This is represented by Equation 9.1. Since
Cself_computed 15 the sole responsibility of the node and thus it is not influ-
enced by any inviter-invitee relationship the worker might be in, we focus
on the other two terms, Cponus and Cpenaiy-

Chonus corresponds to the sum of all the bonuses awarded to the node
due to the positive participation of its invitees. Specifically, the bonus
yielded by an invitee to a n-relationship distance (RD) inviter is given by
W (x,n), where x represents the amount of credit earned by the invitee’s
computation, and »n stands for the RD between the node and the recruited
worker. Conversely, the penalty induced by a inviter-invitee relationship
is given by L(x,n). Defining ¢(n) as the function that returns the counts of

9.4. RELATIONSHIP BETWEEN INVITER-INVITEES 209

Parameter | Meaning

Chode Total of credits belonging to node
Cself_computea | Credits earn by computing tasks
Chonus Credits earn through invitees’ bonus
Chpenalty Credits lost due to invitees’ errors
P Probability for the occurrence of an error
RD Relationship Distance
RTD Relationship Threshold Distance
o(n) Function that returns the counts of workers located at dis-
tance n of their inviter
0(i) Penalty factors function (i is the number of errors)
W (x,n,0(i)) | Bonus function of a n’" level invitee
L(x,n,0(i)) | Penalty function of a n”” level invitee

Table 9.1: Parameters, functions and constant definitions.

workers located at a n—RD distance of their inviter node, and considering
the system-wide constant RT D,,,, as the maximum RD taken into account
for inviter-invitee’s relationships, Equation 9.1 can be rewritten as Equa-
tion 9.2.

Cnode = Lself_computed + Cbunus - Cpenalty (9 1)
RTDm(l.’(¢(«/)
Cnode = LCself_computed + Z Z W(xi7j7j) _L(xi,jaj) (92)

j=1 i=1

To manage the vulnerability of the invitation system to erroneous work-
ers that produce several wrong results in a time frame 7, we resort to
blacklisting. Specifically, after E,. errors for results computed within a
time frame 7', the faulty worker is blacklisted. Moreover, the penalty func-
tion, L(x,n), that affects the inviter’s credit when one of its n-RD invitee
produces an erroneous result, should be proportionate to the so far con-
tributed gain of the invitee, that is, W(x,n), and should increase with con-
secutive errors of the worker. Therefore, we model host computing errors
in the time frame T through the random variable E, and consider P as the
probability of the occurrence of an error (i.e., P = P(E > 0)), and P, as the
probability of an invitee to erroneously compute i results in a T time frame
(i.e., P, = P(E =1i)). The expected penalty L(x,n,0(i)) for a recruiter node is

210 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

given by Equation 9.3, with 6(i) being a function that yields penalty factors
that increase accordingly to the number i of erroneous results. Considering
Equation 9.3, the expected credit gain E[W(x,n,0(i))] of an inviter with a
n-RD invitee is shown in Equation 9.4.

Emax

L(x,n,0) = Z P, W (x;,n).0(i) (9.3)
i=1
E[W(x,n,0(i))] = (1 — Pe) . W(x,n) — imPgi.W(x,-,n).e(i) (9.4)

i=1

We now study the effects of P; and the associated P, as well as the
importance of the penalty function 6(i) over the expected credit gain of an
inviter. Specifically, we determine the P; threshold of a potential worker
relatively to (i), above which it becomes unprofitable to invite a worker.

We set €4 to 3, meaning that at the third error within a time frame T
the invited worker is blacklisted, with all her results being discarded. Ad-
ditionally, we assume that P, = (P,)’, and that P, = Y./"% P;,. Regarding
8(i), we consider it to be i times the integer constant a, that is, 6(i) = i.c.
This way, 6(i) controls the penalty level for erroneous results. For instance,
considering o = 1/2 (and consequently, 8(i) = i/2), means that the first er-
ror costs the inviter half of the bonus she has earned so far with the er-
roneous invitee (i.e., W(x,n)/2), that a second error induces an additional
penalty of W(x,n) and a third one (and final one, since we set €, to 3)
costs further W(x,n).3/2 credits. This means that an invitee delivering 3
erroneous results within the considered time frame T will cost its inviter
3.W(x,n) credits before getting blacklisted!!. The cumulated penalties rela-
tively to various o penalty factor for the linear model are given in Table 9.2
(page 211).

The ratio E(x,n,0)/W(x,n), which corresponds to the gain that an in-
viter can expect from an invitee, is plotted in Figure 9.3 (page 211) with P,
varying between 0.0 and 1.0, and a sets to 1/4, 1/2, 1, 2 and 4, respectively.
It can be seen that even in the most penalizing scenario, which occurs for
o = 4, the expected gain turns negative solely for probability of errors near
15%. This error rate is high, corresponding roughly to an average of one

1t should be noted that W(x,n) increases between errors, that is, the worker produces valid
results between errors. Thus, to be more precise, we should consider W;(x,n) as the gain yielded by
the worker until the i-th error.

9.4. RELATIONSHIP BETWEEN INVITER-INVITEES 211
o 1"error | 2"error 3error | Cumulated
o=1/4 | W(x,n)/4 | W(x,n)/2 | 3W(x,n)/4 | 3W(x,n)/2
o=1/2| W(x,n)/2 | W(x,n) | 3W(x,n)/2 | 3W(x,n)
oa=1 W (x,n) 2W (x,n) 3W(x,n) 6W (x,n)
o=2 | 2W(x,n) | 4W(x,n) | 6W(x,n) 12W (x,n)
o=4 | 4W(x,n) | 8W(x,n) | 12W(x,n) | 24W(x,n)

Table 9.2: Penalty factors yield by varying o in the linear model.

E(w) relatively to PE (linear)

1 ki
0.75 *x,

4
“"h oa=2 o]
H T, a=4 B
2] Fray,
2 +a,|
= 0.5 By
=]
3 g % .
~ DD !’ +"‘
= 025 o 8
a
g o ‘:‘
o
E 0 o Ly’
L o *
o = "
2] *
8 025 2. x,
[a; "
B *
=U. o
05 *
a]
a *
. »
-0.75 : 2
*
o x
_1 o *

0.4 0.5 0.6 0.7 0.8 0.9 1
P(E>0)

Figure 9.3: E(x,n,0)/W (x,n) ratio for the linear penalty model.

bad result out of seven. This might indicate that either the machine is de-
fective or the user is maliciously messing up with the results. Anyway, in
Invitation System the worker should be quickly blacklisted for committing
Enax €rrors, with the corresponding inviter harshly penalized in 24.W (x,n)
credits. The plot also shows that smaller values of o result in less penalty.
For instance, with o = 1/4 the expected gain for an inviter only becomes
zero for error rates bigger than 55%. This can be seen with more accuracy
on Figure 9.4 that plots the E(x,n,0) /W (x, n) ratio yielded by varying o from
0 to 4, for Pz =1%, 5%, 10% and 20%. From the plot, we can observe that, as
expected, higher error rates yield higher penalties.

To further assess the effects of 6(i) over the expected gain, we set a cubic
penalty model, upon which 8 = i*>.a. Comparatively to the linear model,
this penalty scheme is interesting in the sense that the penalty for first error

212 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

E(w) relatively to PE (linear)

0.9

0.7 o
0.6 Hoty

03

0.2 B
01 b
0.2 i

0.3 oy

ratio E(w) / W(x,n)
o

05
jg'$ P(E>0)=0.01
: P(E>0)=0.05
08 P(E>0)=0.10 x
-0.9 P(E>0)=0.20 ©
0 05 1 15 2 25 3 35 4
a

Figure 9.4: Effects of varying rates on the penalty (linear model).

ot 1"error | 2"%rror | 3“error | Cumulated
o=1/4 | W(x,n)/4 | 2W(x,n) | 27TW (x,n)/4 | 9IW(x,n)
o=1/2 | W(x,n)/2 | 4W(x,n) | 27W(x,n)/2 | 18W(x,n)
o=1 W (x,n) 8W (x,n) | 27W(x,n) 36W (x,n)
oa=2 | 2W(x,n) | 16W(x,n) | 54W(x,n) T2W (x,n)

o=4 | 4W(x,n) | 32W(x,n) | 108W(x,n) | 154W(x,n)

Table 9.3: Penalty factors yield by varying o in the cubic penalty model.

remains the same (that is, i.c), but increases sharply for subsequent errors,
thus penalizing inviters whose workers commit more than one error. The
cumulated penalties relatively to various o penalty factors for the cubic
model are given in Table 9.3. Figure 9.5 plots the E(x,n,8)/W (x,n) ratio for
the cubic penalty model.

In conclusion, adopting 6(i) = i*.a,k € X yields smooth penalties, with
the negative impact to the inviter’s gains being more noticeable when the
corresponding invitee commits multiple errors. This fosters inviters to seek
reliable invitees in order to profit from the inviter-invitee partnership.

Relatively to invitees, the fact that a single casual error is lowly penal-
ized means that a single error will not cause a major hurdle to the inviter-
invitee relationship. However, abnormally high error rates (for instance,
above 10%) augments the probability of multiple errors and thus trigger

9.5. SHARING REPUTATION ACROSS VOLUNTEER PROJECTS 213

E(w) relatively to PE (cubic)

a=1/4 +
1 e a=1/2 i
d:"‘ a=1 x
® ok, a=2 a
0.75 |7 ax a=4 .
D‘ +0
= 05 o
X o * '
2 025 - .
~ * +
B o ox .
o or . p
9 o +
8 -0.25 * *
o *
*
'05 o] x
-0.75 K *
> “
-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P(E>0)

Figure 9.5: E(x,n,08)/W (x,n) ratio for the cubic penalty model.

harsher penalties. In fact, high error rates mean that either the machine
or its configuration is faulty or that the computation is being sabotaged by
the machine’s owner. Either way, the invitee is providing no added value
to the project and thus should be withdrawn from the computation, with
the inviter accordingly made responsible. Note that if the invitee has ma-
licious intentions of perturbing the computations by faking or tampering
with results, she will be able to forge a new email identity and seek a new
invitation. However, it is expectable that the malicious worker will soon
run out of inviters, exhausting her contacts and thus being forced out of
the project.

9.5 Sharing Reputation Across Volunteer Projects

The invitation-based system can be extended so that it supports commen-
dation of participants across multiple volunteer projects. The basic goal is
to allow a volunteer who is already participating in a public project (or has
participated in the past), to apply for an invitation in another project pre-
senting as references a virtual certificate provided by the project(s) where
she is currently participating (or had participated). This virtual certifi-

cate holds the applying worker’s performance and trustworthiness metrics,

214 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

E(w) relatively to PE (cubic)

0.9 4
08 |
0.7

06 La Bl

. o] "‘lem

0.5

0.4 o -””X,‘
0.3 "

0.2 e

01 ‘ e ¥
0.2 % e
0.3 a
0.4 o

-0.5 g, B

06 " P(E>0)=0.01

0.7 - P(E>0)=0.05
-0.8 b P(E>0)=0.10 x
-0.9 2 P(E>0)=0.20 =©
0 0.5 1 15 2 25 3 35 4
a

ratio E(w) / W(x,n)
o
F,
;

Figure 9.6: Effects of varying rates on the penalty (cubic model).

such as the ratio of successful tasks completed, position in performance
rankings, and so on.

Note that the participation of a volunteer in multiple projects is not a
novelty, and its actually promoted by the BOINC platform, which allows
for a volunteer to donate resources to several projects, specifying the avail-
able CPU time distribution to be allocated to each project. For example, a
resource involved in three projects, can be set up so that 50% of the CPU
time goes for project A, 30% for project B, and the remaining 20% for project
C. The rationale for promoting the support of multiple projects, which from
the individual point of view of a project might seem counterproductive
since the project risk losing exclusivity of resources, lies in the fact that
many projects have downtime (for hardware and software maintenance,
and reparation of the server infrastructure), and shortage of tasks (for in-
stance, when transitioning from one experiment to another). Thus, partic-
ipation in multiple projects helps to cope with a particular project down-
time, besides allowing volunteers to donate resources for several causes
they might find worthy.

9.6. RELATED WORK 215

9.5.1 Implementation

In terms of implementation, the virtual recommendation certificate could
be an URL, unique to the pair participant/project, hosted by the project
from which the participant is requesting references. The virtual certifi-
cate would be sent to the volunteer’s registered email, on request, and
would have a limited time validity. Thus, when applying for an invitation
to another project, the volunteer participant could attach its reference cer-
tificate(s) (the volunteer might already be participating in more than one
project). Then, the project from which the volunteer is seeking an invita-
tion could consult the reference certificate(s), analyze the metrics provided
there, and decide accordingly whether it should or not deliver an invitation
to the requesting volunteer.

The project-based reference certificate has the advantage of being sim-
ple, since it only requires a project to setup a secure web services capa-
ble of providing participation metrics of a given participant. In fact, the
BOINC framework already gives free web access to the work records of
volunteer computers. This way, reference certificates should be straightfor-
ward to implement. A further benefit of the reference certificate would be
to promote that a volunteer uses the same identification (i.e., email address)
across all the projects in which the volunteer already participates or has
participated. To further stimulate adoption of single identifications across
projects, a credit boost (or any other form of reward) could be assigned to
volunteers signing up with the same identification across projects.

9.6 Related Work

Invitation-based systems are not a novelty in the Internet. Indeed, the so-
cial networking site Orkut [] and Google’s email system, Gmail
[], were initially only accessible through invitations, requiring
an introduction from an already register member. The invitation system
allowed to maintain a certain knowledge over the relationships between
users, and principally to limit the number of users during the beta testing
stage!?. Contrary to the above mentioned invitation schemes, Invitation

12S00n after it was launched, in April 2004, Gmail’s invitations were highly praised, and approx-
imately 50,000 of them were actually auctioned and traded in eBay, with prices rising up to 100 US
dollars []. This was mostly motivated by the fact that early users of the Gmail service

216 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

System strongly connects the inviter with the invitee behavior. In fact, by
having the inviter rewarded or penalized accordingly to the invitee’s be-
havior and dedication, our proposed invitation system promotes responsi-
ble use of invitations.

Danezis et al. proposed a social-based scheme for managing access
to open and partially anonymous publishing, filtering out inappropriate
posters by having other users reporting on unacceptable behavior they
might spot (for instance, inappropriate or provoking comments, spam, etc.)
[]. Similarly to our approach, the system is built-up
upon invitations. Whenever an user wants to post, she needs to identify
the inviter that introduced her to the system. However, users that want to
object a post need to identify their whole system path. This whole path is
comprised of all the inviter-invitee chain upon root, and allows to uniquely
identify an objector at the system-level (the scheme does not require true
identity), implicitly making them responsible for their objections. Addi-
tionally, if any other user wants to contest the objection, the contester can
take responsibility of the post, having her full system path appended to the
post jointly with the objector’s path. A possible problem that might arise
with this methodology is related to the size of the user-root path, which will
increase over time. However, this potential problem should rarely happen
mostly due to the properties of scale free networks, which are usually ex-
hibited by social-based networks. In fact, in such environments a small
percentage of users are responsible for a large percentage of invitations,
thereby limiting the size of the user-root path [I

Tribler is a peer-to-peer system proposed by Pouwelse et al [

]. The system aims to integrate social relationships into peer-to-
peer networks. The goal is to explore social groups to promote cooperation
over peer-to-peer file sharing, avoiding the pitfalls of today’s peer-to-peer
file sharing like fake files, virus and malware-infected files. Moreover, Tri-
bler includes support for sharing of preference lists among members ("bud-
dies" in Tribler’s jargon). Specifically, preference lists are spread over the
members by way of the BuddyCast algorithm that resorts to epidemic pro-
tocols for efficient data sharing. By default, the preference list of a peer
is filled by her last downloaded files. Additionally, Tribler incorporates a

had much higher probability of being able to pick their desired user name, since email addresses
were assigned in a first come first served basis.

9.7. SUMMARY 217

recommendation engine, which based on a user preference list is able to sug-
gest a list of files that might interest the user. Tribler also promotes faster
Bittorrent-like downloads by allowing cooperative download, upon which
the idle upload bandwidth of idle online buddies can be used. In fact, to
discourage the so-called free riders, the Bittorrent protocol requires a bal-
anced upload/download, a demand that might impede users with asym-
metrical Internet connections in which the allowed upload traffic is much
smaller and slower than the download one. By requesting the non-used
upload capability of buddies, Tribler allow users to cooperatively down-
load chunks of a file, and thus promote faster downloads. Under Tribler’s
model, the main reward for resource donors is social recognition.

9.7 Summary

In this chapter, we exploited the possibilities of strengthening the robust-
ness of results by way of a wiser selection of resource donors, resorting
to volunteers’ social relationships. Specifically, we propose the Invitation
System upon which potential volunteers can only integrate a computing
infrastructure by way of invitations addressed by workers that have sig-
nificantly and positively contributed to the project. To motivate workers
to invite other resource donors, inviters are rewarded by receiving a bonus
proportional to the credits earned by the invited workers. However, to
promote responsible invitations, inviters are penalized whenever an invi-
tee produces an erroneous results by losing credits, with the penalty in-
creasing with consecutive errors of an invitee. To further foster respon-
sibility and motivation of inviters, bonuses and penalties can go beyond
the inviter-invitee direct link, with the performance and behavior of n-level
descendants of an invitee also impacting, although in a lesser degree, the
n-level ascendants’ rewards and penalties. Note that the Invitation System
still requires a result verification mechanism (such as replication). In fact,
the system itself strongly relies on the accuracy of the result validation sub-
system for enforcing proper bonuses and penalties.

To complement the Invitation System, namely for inviters to assess po-
tential candidates to invitation, we outline a simple mechanism upon which
a want-to-be resource donor can present credentials from her contribu-

tion to other public computing projects. This involves public computing

218 CHAPTER 9. REPUT. AND TRUST IN VOLUNTEER COMPUTING

projects to make accessible the credentials of their donors, detailing their
main positive (tasks successfully completed) and negative contributions
(abandoned and erroneous tasks) to the project in question. Thus, when-
ever a want-to-be resource donor applies for an invitation, she can present
her credentials allowing the inviter to form a more precise assessment of
the pros and cons of an invitation.

10

Conclusion and Future
Work

In this final chapter, we outline the major contributions of the thesis, and
we trace venues for future work.

10.1 Conclusions

In this thesis, we have addressed some issues related to a more efficient
exploitation of desktop grid resources. This was mostly done through the
adaption of dependable and fault-tolerant mechanisms such as checkpoint-
ing and redundant computing, and the proposal of new techniques for sabo-
tage tolerance. A common goal in our work was to speed up the execution
of applications, namely to improve turnaround time for submitters. For
this purpose, we focused on issues like the reduction of wasted computa-
tion, faster detection of faulty computations and on diminishing the level
of verification and/or redundancy needed for certifying results.

As confirmed by the 77-day long study presented in Chapter 3, a vast
amount of resources goes unused in institutional environments, where many
computers that are primarily dedicated to interactive usage like e-office and
communication applications have a low level of resources utilization (CPU,
memory and disk). In particular, the average CPU idleness tops 97%, while
memory usage averages 60%. Jointly with studies that focus on Internet-
wide resources, these values emphasize what can be gained from harvest-
ing institutional resources.

In Chapter 4 and Chapter 5 we proposed some methodologies based on
shared checkpoints to improve turnaround time over private checkpoint-
ing policies, by making checkpoints more accessible. Additionally, when

219

220 CHAPTER 10. CONCLUSION AND FUTURE WORK

coupled with replication, sharing checkpoints can yield major performance
improvements, depending on the volatility of resources and on the length
of individual tasks. Specifically, more volatile environments or/and length-
ier tasks increase the benefits of shared methodologies over private check-
pointing schemes. The studied prediction-based policies also performed
well with medium- and long-sized tasks, and were more suited to stable
environments.

Another conclusion drawn from this work is that sharing checkpoints
over the Internet can significantly improve turnaround time of executions.
In fact, as reported in Chapter 6, the chkpt2chkpt scheme that promotes
checkpoint sharing over the Internet yields good benefits when the rate of
tasks interrupted for long period of times (relatively to task’s duration) is
above 5%. This means that on volatile environments with fail-crash failures
and with relatively long tasks (several hours or days) a DHT-based scheme
can bring significant performance benefits.

While a DHT-based shared checkpointing scheme yields strong advan-
tages, resilient and scalable implementations of open DHT are practically
non-existent, thus rendering difficult a real implementation of chkpt2chkpt.
Nonetheless, as seen in Chapter 7, desktop grids can organize themselves
in federations such as institutional and peer-to-peer ones, with appropriate
checkpointing methodologies adapted to these topologies.

Sharing checkpoints are not the sole manner to speed up executions
in desktop grid environments. Checkpointed states of partial execution
points can be combined with redundant executions — another widely used
dependability mechanism in Internet-wide desktop grids — to promote faster
detection of errors. Indeed, as seen in Chapter 8, checkpoint-based compar-
ison mechanisms can speed up the spotting of errors, allowing repairing
measures (rescheduling of faulty executions) to be activated sooner than it
would have been possible with usual schemes, which can only detect errors
when a majority of workers has finished their tasks.

Checkpointing is not the sole dependability mechanism whose wise us-
age can enhance the performance of soft deadline applications. In fact,
the Invitation System introduced in Chapter 9, fosters the cautious recruit-
ment of volunteers for desktop grid projects by rewarding recruiters with
a bonus indexed to the productivity of the recruited hosts. However, to

counter invitations to bad performers, recruiters who invite workers that

10.2. MAIN CONTRIBUTIONS 221

produce erroneous results are penalized with the withdrawal of virtual
credits. This simple scheme raises the average quality of volunteers.

10.2 Main Contributions

We now summarize the main contributions drawn from the work presented
in this thesis:

1. In Chapter 3, we showed that the idleness level of desktop grid re-
sources is very high, especially for CPU, which for the academic envi-
ronment that we studied, had an average idleness as high as 97.94%.
This confirms the 95% CPU idleness empirical rule. Likewise, the
equivalence ratio was 0.51, similar to the values found by Arpaci et
al. [] but smaller than those found by Kondo et al.

[I

2. Proper management of checkpoints, especially sharing of checkpoints
amongst desktop grid nodes can speed up the execution of applica-
tions comprised of independent tasks, by reducing the level of com-
putation to be redone when failures occur and interrupt the compu-
tation. This is shown in Chapter 5 for institutional desktop grids con-
fined to local area environments.

3. By resorting to a DHT-based watchdog (guardian) and to a checkpoint
sharing mechanism that form the chkpt2chkpt system (Chapter 6), we
have also improved turnaround performances of applications exe-
cuted over wide-area desktop grids, showing the benefits of Internet-
wide sharing schemes.

4. In Chapter 7, we proposed some extensions to the standard model for
organizing desktop grid nodes. The proposed model aims to deliver
a better usage of resources and broaden the type of applications to be
run over such environments. For instance, for institutional desktop
grids and for unstructured set of workers spread over the Internet,
a peer-to-peer organization with two-level nodes — super nodes and
regular ones — can allow for the reuse of input data sets and for check-

point sharing among worker nodes.

222

CHAPTER 10. CONCLUSION AND FUTURE WORK

5. In Chapter 8, we showed that dependability techniques like redun-

dant computing can be coupled with checkpointing to allow for a
faster detection of erroneous or/and of interrupted executions of in-
dividual tasks that comprise a distributed application. In this way,
through comparison of checkpoints from equivalent intermediate ex-
ecution points, errors can be detected at these partial execution points,
avoiding the need to wait for full completion or for full timeout, as it
is the case in schemes based on the comparisons of completed results.
Our technique allows for a speedier reaction (for instance, reschedu-
ling the computation), and therefore for a faster completion of the
whole execution. This is especially important in faulty environments.

. Invitation-based schemes, such as Invitation System that we proposed

in chapter 9, can potentially establish a more well-behaved and more
dedicated workforce. Additionally, to allow the enrollment of re-
source owners who do not know anyone that can address them an
invitation, it should be possible to share reputation among volun-
teer projects. This way, a worker who has already positively partici-
pated in other projects will have references that will ease her admis-
sion to an invitation-based project. All of these contribute for a more
sabotage-tolerant desktop grid environment.

10.3 Future Work

Much work can still be done in the area of dependability for desktop grids.

In this section, we briefly summarize some of the open issues in this re-

search field:

- We studied some prediction-based scheduling schemes coupled with

shared checkpointing. We believe that this study can be further re-
fined, adding new prediction methodologies and broadening the anal-
ysis to Internet-wide resources. The goal would be to exploit the com-
puter usage habits that might exist in institutional and wide-scale en-
vironments, adapting the dependability mechanisms to such environ-
ments. For instance, the checkpointing frequency of tasks executed at

a given machine could be fine-tuned in accordance with the avail-

10.3. FUTURE WORK 223

ability pattern of the machine, increasing during instable periods and
decreasing during more stable periods (e.g., weekends).

- Another venue for future work relates to the development of depend-
ability schemes targeting the federated and peer-to-peer topologies
that were introduced in chapter 7. By integrating the controlling
features of a centralized server-side and the resiliency and scalable
features of a peer-to-peer environment, this field of research seems

promising.

- Task mobility is still limited in desktop grids. As shown in this the-
sis, this mechanism is a valid solution for overcoming machine fail-
ures, but its adoption is still hindered by the difficulty of moving data
among nodes of desktop grids. Thus, smart and efficient data moving
and copying schemes are needed. In this area, some promising results
have been achieved with the Bittorrent protocol by Wei et al. [

1.

- System-level virtual machines such as VMuware, VirtualBox and QEMU,
to name just a few, are changing computing. Several characteristics
make virtualization appealing for public resource computing, both
from the developers and volunteers point of view. For instance, vir-
tualization provides for an easy deployment of the same computing
environment across all participating machines. This includes the op-
erating system and all the software stack that might be required by
the desktop grid application. Furthermore, having a unique and well-
known environment across all volunteers considerably eases the task
of the developers, since they only have to deal with a single platform.
The use of virtual machines for desktop grid computing also brings
an enhanced security for both volunteers and for desktop grid appli-
cations. Indeed, on the one hand, the sandboxing isolation offered
by system-level virtual machines makes the execution of a foreign
application by a volunteer machine much safer. In fact, virtual ma-
chines are often used in security-oriented environments for testing
potentially malicious software. On the other hand, virtual machines
can also contain volunteers from tampering with the virtual environ-
ment, although this cannot be totally prevented, since savvy users

will always be able to access the virtual environment. However, the

224

CHAPTER 10. CONCLUSION AND FUTURE WORK

most appealing feature from the point of view of dependability, lies
in the possibility of saving the state of the virtualized OS to persistent
storage. This is done in a transparent manner, requiring no inter-
vention nor modification of the operating system. This checkpoint-
ing feature allows simultaneously for fault tolerance and migration,
making possible the exportation of a virtual environment to another
physical machine, with the execution being resumed at the remote
machine. Thus, with all these features, virtual machines will most
certainly play an important, if not decisive, role in desktop grid com-
puting.

The precise accounting of computing resources is another area that
needs to be tackled for a wide adoption, not only of desktop grids, but
of general purpose grids. Indeed, even for current volunteer projects
were credits are merely virtual and bear no true economic value be-
sides prestige, significant complains are voiced. This can be seen in
the forums that are associated with the main public volunteer sys-
tems. Many volunteers question the fairness of the currently existing
credit accounting systems. Moreover, for wide-scale adoption of grid
computing, a way to fairly and properly reward resource contributors
is needed to gather interest of resource owners. Likewise, a market
for on-demand computing power is only viable if buyers or borrow-
ers trust the accounting scheme, i.e. that they are being accurately
charged for what their applications effectively consume. Therefore,
proper accountability of resources is an important open issue that is
part of the wider area of quality of services.

The climate problems associated to carbon emissions and the rising
costs of energy have fostered a more rationale use of energy. As the
number of computer and related infrastructures (routers, etc.) con-
tinues to grow, a significant effort is being made in rationalizing the
use of energy by computers. Thus, desktop grids face an additional
challenge: produce fast results but in a energy-wise manner. Under
such circumstances, fault tolerance assumes an important role, spe-
cially in the area of preserving computing results against failures like,
for instance, crashes of machines and alike. Likewise, dependability
techniques for certifying results will certainly need a major overhaul

10.3. FUTURE WORK 225

with energy-expensive schemes such as replication being avoided for
more energy-wise approaches. Thus, energy-aware scheduling and
fault tolerant methodologies will be important elements for future
desktop grids.

Allin all, finding proper solutions for these problems (and many others)
will certainly make desktop grids, and more broadly, grids, closer to attain
the commodity status that was forecasted in the seminal work of Foster et
al. []. The goal is to allow users to obtain comput-
ing power in the same simple way as we, today, plug electric appliances
to obtain electricity from the power grid. We strongly believe that this vi-
sion of grid computing is viable and that computing power as a large scale
utility will be a reality in the future. With this thesis, we hope to have con-
tributed to make this future closer and expect to proceed, in the next years,
to the coming of age of this reality.

226 CHAPTER 10. CONCLUSION AND FUTURE WORK

Bibliography

ACHARYA, ANURAG, & SETIA, SANJEEV. 1999. Availability and utility of
idle memory in workstation clusters. Pages 35—46 of: SIGMETRICS ’99:
Proceedings of the 1999 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems. New York, NY, USA: ACM
Press. 79, 80

ACHARYA, ANURAG, EDILALI, GUY, & SALTZ, JOEL. 1997. The utility of
exploiting idle workstations for parallel computation. Pages 225-234 of:
SIGMETRICS "97: Proceedings of the 1997 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems. New York,
NY, USA: ACM Press. 65, 71,79, 80

AGBARIA, A., & FRIEDMAN, R. 2005. A replication-and checkpoint-based
approach for anomaly-based intrusion detection and recovery. Pages 137~
143 of: Distributed Computing Systems Workshops, 2005. 25th IEEE Interna-
tional Conference on. Los Alamitos, CA, USA: IEEE Computer Society. 194

AL GEIST, W.G., HUSS-LEDERMAN, S., LUMSDAINE, A., LUSK, E., SAPHIR,
W., SKIELLUM, T., & SNIR, M. 1996. MPI-2: Extending the Message-
Passing Interface. Pages 128-135 of: Euro-Par '96: Proceedings of the Second
International Euro-Par Conference on Parallel Processing, Lyon, France, Au-
gust 1996. London, UK: Springer-Verlag. 71

ALLEN, B. 2004. Monitoring hard disks with SMART. Linux Journal,
2004(117). 51, 59, 69, 82

ANDERSEN, R., COPENHAGEN, D., & VINTER, B. 2006. Harvesting Idle Win-
dows CPU Cycles for Grid Computing. In: Proceedings of the 2006 Inter-
national Conference on Grid Computing and Applications (GCA-2006). 33

227

228 BIBLIOGRAPHY

ANDERSON, DAVID. 2004. BOINC: A System for Public-Resource Comput-
ing and Storage. Pages 4-10 of: Proceedings of the 5th IEEE/ACM Interna-
tional Workshop on Grid Computing, 2004, Pittsburgh, USA. 2, 3,12, 13, 14,
15,21,29,32,33,139, 177,182, 184, 185

ANDERSON, DAVID, CHRISTENSEN, CARL, & ALLEN, BRUCE. 2006. De-
signing a Runtime System for Volunteer Computing. Pages 126-135 of:
Proceedings of the ACM/IEEE SC2006 Conference, November 2006, Tampa,
Florida, USA. New York, NY, USA: ACM. 32, 34, 37

ANDERSON, DAVID P., & FEDAK, GILLES. 2006. The Computational and
Storage Potential of Volunteer Computing. Pages 73-80 of: Proceedings of
the IEEE International Symposium on Cluster Computing and the Grid (CC-
GRID’06). Los Alamitos, CA, USA: IEEE Computer Society. 1, 81, 159,
182

ANDERSON, D.P., CoBB, J., KORPELA, E., LEBOFSKY, M., & WERTHIMER,
D. 2002. SETI@home: an experiment in public-resource computing. Com-
munications of the ACM, 45(11), 56-61. 12, 16

ANDERSON, D.P., KORPELA, E., & WALTON, R. 2005. High-Performance
Task Distribution for Volunteer Computing. Pages 196-203 of: Proceedings
of 1st International Conference on e-Science and Grid Computing. Melbourne,
Australia. 32,154

ANDERSON, T.E, CULLER, D.E, & PATTERSON, D.A. 1995. A case for NOW
(Networks of Workstations). Micro, IEEE, 15(1), 54-64. 50

ANDRZEJAK, ARTUR, DOMINGUES, PATRICIO, & SILVA, Luis. 2005.
Classifier-Based Capacity Prediction for Desktop Grids. In: Integrated Re-
search in Grid Computing - CoreGRID Workshop, November 2005, Pisa, Italy.
8,93

ANDRZEJAK, ARTUR, DOMINGUES, PATRICIO, & SILVA, LUIS. 2006 (April).
Predicting Machine Availabilities in Desktop Pools. In: 10th IEEE/IFIP
Network Operations and Management Symposium (NOMS’'2006), 1-4 April
2006, Vancouver, Canada. 9

ANGLANO, C., & CANONICO, M. 2005. Fault-Tolerant Scheduling for Bag-
of-Tasks Grid Applications. Pages 630-639 of: Proceedings of the 2005 Eu-

BIBLIOGRAPHY 229

ropean Grid Conference (EuroGrid 2005). Lecture Notes in Computer Science,
vol. 3470. 126

ANGLANO, C., BREVIK, J., CANONICO, M., NURMI, D., & WOLSKI, R. 2006
(Sept.). Fault-aware Scheduling for Bag-of-Tasks Applications on Desk-
top Grids. Pages 56—63 of: Proceedings of 7th IEEE/ACM International Con-
ference on Grid Computing, Barcelona, Spain. 89

ANNAPUREDDY, S., FREEDMAN, M.J., & MAZIERES, D. 2005. Shark: Scaling
File Servers via Cooperative Caching. Pages 129-142 of: Proceedings of the
2nd USENIX/ACM Symposium on Networked Systems Design and Implemen-
tation (NSDI). June 2005, Boston, USA. 131, 147

ANTONELLI, DOMINIC, CORDERO, AREL, & METTLER, ADRIAN. 2004. Secur-
ing Distributed Computation with Untrusted Participants. Tech. rept. Uni-
versity of California at Berkeley. 194

ARAUJO, FILIPE, DOMINGUES, PATRICIO, KONDO, DERRICK, & SILVA, LUIS.
2006. Validating Desktop Grid Results by Comparing Intermediate
Checkpoints. In: 3th Integration Workshop, CoreGRID - Network of Excel-
lence. October 2006, Krakow, Poland. 10

ARPACI, REMZI H., DUSSEAU, ANDREA C., VAHDAT, AMIN M., L1U, LOK T.,
ANDERSON, THOMAS E., & PATTERSON, DAVID A. 1995. The interaction
of parallel and sequential workloads on a network of workstations. Pages
267-278 of: SIGMETRICS "95/PERFORMANCE "95: Proceedings of the 1995
ACM SIGMETRICS joint International Conference on Measurement and Mod-
eling of Computer Systems. New York, NY, USA: ACM Press. 1,78,79, 221

BALATON, ZOLTAN, GOMBAS, GABOR, KACSUK, PETER, KORNAFELD,
ADAM, KOVACS, JOZSEF, MAROSI, ATTILA CSABA, VIDA, GABOR, POD-
HORSZKI, NORBERT, & Kiss, TAMAS. 2007. SZTAKI Desktop Grid: a
Modular and Scalable Way of Building Large Computing Grids. Page
475 of: International Parallel and Distributed Processing Symposium. Los
Alamitos, CA, USA: IEEE Computer Society. 12, 39, 40, 156

BARHAM, PAUL, DRAGOVIC, BORIS, FRASER, KEIR, HAND, STEVEN, HAR-
RIS, TiM, HO, ALEX, NEUGEBAUER, ROLF, PRATT, IAN, & WARFIELD, AN-
DREW. 2003. Xen and the art of virtualization. Pages 164-177 of: SOSP "03:

230 BIBLIOGRAPHY

Proceedings of the nineteenth ACM symposium on Operating systems princi-
ples. New York, NY, USA: ACM Press. 18,173

BECKLES, B. 2005. Building a secure Condor pool in an open academic
environment. Pages 19-22 of: Proceedings of the UK e-Science All Hands
Meeting 2005. 28

BELLARD, F. 2005 (april). QEMU, a Fast and Portable Dynamic Transla-
tor. Pages 4146 of: Proceedings of the USENIX Annual Technical Conference,
FREENIX Track. April 2005, Anaheim, CA, USA. 18

BLAKE, CHUCK, & RODRIGUES, RODRIGO. 2003. High Availability, Scalable
Storage, Dynamic Peer Networks: Pick Two. Pages 1-6 of: Proceedings of
the 9th Workshop on Hot Topics in Operating Systems (HotOS-1X). May 2003,
Lihue, Hawaii, USA. 139

BOHANNON, JOHN. 2005a. DISTRIBUTED COMPUTING: Grassroots Super-
computing. Science, 308(5723), 810-813. 11,17, 23

BOHANNON, JOHN. 2005b. DISTRIBUTED COMPUTING: Grid Sport: Com-
petitive Crunching. Science, 308(5723), 812-812. 177, 203

BOLOSKY, WILLIAM J., DOUCEUR, JOHN R., ELY, DAVID, & THEIMER, MAR-
VIN. 2000. Feasibility of a serverless distributed file system deployed on
an existing set of desktop PCs. Pages 34—43 of: SIGMETRICS ’00: Proceed-
ings of the 2000 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems. New York, NY, USA: ACM Press.
65,79, 80, 82

BUTT, ALI RAZA, JOHNSON, TROY A., ZHENG, YILI, & HU, Y. CHARLIE.
2004. Kosha: A Peer-to-Peer Enhancement for the Network File System.
Pages 51-62 of: SC '04: Proceedings of the 2004 ACM/IEEE conference on Su-
percomputing. November 2004, Pittsburgh,PA,USA. Washington, DC, USA:
IEEE Computer Society. 147

BUTT, R., ZHANG, R., & HU, Y. C. 2003. A Self-Organizing Flock of Con-
dors. In: Supercomputing 2003. 47, 146

BYTEMARK. 2007. ByteMark’s Benchmark (http://www.byte.com/bmark). 60, 91

BIBLIOGRAPHY 231

CAPPELLO, F., DJILALL, S., FEDAK, G., HERAULT, T., MAGNIETTE, F., NERI,
V., & LODYGENSKY, O. 2005. Computing on large-scale distributed sys-
tems: XtremWeb architecture, programming models, security, tests and
convergence with grid. Future Generation Computer Systems, 21(3), 417-
437. 16,41

CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM, N., & SHENKER,
S. 2003. Making gnutella-like P2P systems scalable. Pages 407418 of:
Proceedings of the 2003 conference on Applications, Technologies, Architectures
and Protocols for Computer Communications, 2003. ACM Press New York,
NY, USA. 159

CHESSBRAIN. 2007. The ChessBrain Project (http://www.chessbrain.net/). 152,
171

CHIEN, ANDREW, CALDER, BRAD, ELBERT, STEPHEN, & BHATIA, KARAN.
2003. Entropia: architecture and performance of an enterprise desktop
grid system. J. Parallel Distrib. Comput., 63(5), 597-610. 2, 43, 81

CHol, S., BAIK, M., HWANG, C., GIL, J., & YU, H. 2004. Volunteer avail-
ability based fault tolerant scheduling mechanism in DG computing en-
vironment. Pages 366371 of: Proceedings of the 3rd IEEE International Sym-
posium on Network Computing and Applications (NCA'04), Cambridge, MA,
USA. 15

CHRISTENSEN, CARL, AINA, TOLU, & STAINFORTH, DAVID. 2005. The Chal-
lenge of Volunteer Computing with Lengthy Climate Model Simulations.
Pages 8-15 of: Proceedings of 1st International Conference on e-Science and
Grid Computing. December 2005, Melbourne, Australia. Los Alamitos, CA,
USA: IEEE Computer Society. 189

CIRNE, W., PARANHOS, D., COSTA, L., SANTOS-NETO, E., BRASILEIRO, F.,
SAUVE, J., SILVA, F., BARROS, C., & SILVEIRA, C. 2003. Running Bag-of-
Tasks applications on computational grids: the MyGrid approach. Pages
407-416 of: Proceedings of International Conference on Parallel Processing,
October 2003. 5, 88

CIRNE, W., BRASILEIRO, F., ANDRADE, N., COSTA, L.B., ANDRADE, A.,
NOVAES, R., & MOWBRAY, M. 2006. Labs of the World, Unite!!! Journal of
Grid Computing, 4(3), 225-246. 126, 173

232 BIBLIOGRAPHY

COHEN, B. 2003. Incentives Build Robustness in BitTorrent. In: First Work-
shop on the Economics of Peer-to-Peer Systems. June 2003, Berkeley, CA, USA.
145

CORKILL, D.D. 1991. Blackboard systems. AI Expert, 6(9), 40—47. 152

Cox, L.P., MURRAY, C.D., & NOBLE, B.D. 2002. Pastiche: making backup
cheap and easy. ACM SIGOPS Operating Systems Review, 36, 285-298.
131, 146

CREEGER, MACHE. 2005. Multicore CPUs for the Masses. ACM Queue, 3(7).
20

DANEZIS, G., & LAURIE, B. 2007 (april). Private Yet Abuse Resistant Open
Publishing. In: 15th International Workshop on Security Protocols. 216

DATASYNAPSES. 2007. DataSynapse (http://www.datasynapse.com). 21, 44
DIGIPEDE. 2007. Digipede (http://www.digipede.com/). 44

DINDA, P. 1999. The Statistical Properties of Host Load (Extended Version).
Technical Report CMU-CS-98-175. School of computer Science - Carnegie
Mellon University. 97

DINGLEDINE, R., MATHEWSON, N., & SYVERSON, P. 2004 (August). TOR:
The second-generation onion router. In: 13th USENIX Security Sympo-
sium. 199

DISTRIBUTED.NET. 2007. Distributed.net (http://wwuw.distributed.net). 29

DOMINGUES, PATRICIO, MARQUES, PAULO, & SILVA, Luils. 2005a. Dis-
tributed Data Collection through Remote Probing in Windows Environ-
ments. Pages 59-65 of: Proceedings of the 13th Euromicro Conference on Par-
allel, Distributed and Network-Based Processing (PDP’05), Lugano, Switzer-
land. IEEE Computer Society. 8, 50

DOMINGUES, PATRICIO, MARQUES, PAULO, & SILVA, LUIS. 2005b. Resource
Usage of Windows Computer Laboratories. Pages 469476 of: Interna-
tional Conference Parallel Processing (ICPP 2005)/Workshop PEN-PCGCS,
Oslo, Norway. 1,8, 11

BIBLIOGRAPHY 233

DOMINGUES, PATRICIO, ARAUJO, FILIPE, & SILVA, LUIS MOURA. 2006a.
A DHT-Based Infrastructure for Sharing Checkpoints in Desktop Grid
Computing. Pages 126-133 of: e-Science’06: Proceedings of the Second
IEEE International Conference on e-Science and Grid Computing, Amsterdam,
Netherlands. IEEE Computer Society. 10

DOMINGUES, PATRICIO, MARQUES, PAULO, & SILVA, LU1S. 2006b. DGSched-
Sim: A Trace-Driven Simulator to Evaluate Scheduling Algorithms for
Desktop Grid Environments. Pages 83-90 of: PDP '06: Proceedings of
the 14th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP’06), Montbéliard, France. IEEE Computer
Society. 9

DOMINGUES, PATRICIO, ANDRZEJAK, ARTUR, & SILVA, LUIS. 2006¢. Schedu-
ling for Fast Turnaround Time on Institutional Desktop grid. In: Second
CoreGRID Workshop on Grid and Peer to Peer Systems Architecture, Paris,
France. 8

DOMINGUES, PATRICIO, SILVA, JOAO GABRIEL, & SILVA, LUIS. 2006d. Shar-
ing Checkpoints to Improve Turnaround Time in Desktop Grid. Pages
301-306 of: 20th IEEE International Conference on Advanced Information Net-
working and Applications (AINA 2006), 18-20 April 2006, Vienna, Austria.
IEEE Computer Society. 9, 144

DOMINGUES, PATRICIO, ANDRZEJAK, ARTUR, & SILVA, LUIS MOURA. 2006e
(december). Using Checkpointing to Enhance Turnaround Time on In-
stitutional Desktop Grids. Pages 73-81 of: e-Science’06: Proceedings of the
Second IEEE International Conference on e-Science and Grid Computing, Am-
sterdam, Netherlands. 9

DOMINGUES, PATRICIO, SOUSA, BRUNO, & SILVA, LUIS MOURA. 2007.
Sabotage-Tolerance and Trust Management in Desktop Grid Computing.
Future Generation Computation Systems, 23(7), 904-912. 10

DOUCEUR, JOHN R. 2002. The Sybil Attack. Pages 251-260 of: IPTPS '01:
Revised Papers from the First International Workshop on Peer-to-Peer Systems.
London, UK: Springer-Verlag. 198

234 BIBLIOGRAPHY

DOUCEUR, J.R. 2003. Is remote host availability governed by a universal
law? ACM SIGMETRICS Performance Evaluation Review, 31(3), 25-29. 66,
68

DU, WENLIANG, JIA, JING, MANGAL, MANISH, & MURUGESAN, MUMMOOR-
THY. 2004. Uncheatable Grid Computing. Pages 4-11 of: ICDCS "04: Pro-
ceedings of the 24th International Conference on Distributed Computing Sys-
tems (ICDCS’04). Washington, DC, USA: IEEE Computer Society. 23, 178

EASTLAKE, D., & JONES, P. 2001. US Secure Hash Algorithm 1 (SHA1). RFC
3174 (Informational). 184

EBAY. 2007. eBay auction site (http://www.ebay.com/). 198
EINSTEIN. 2007. Einstein@home (http://einstein.phys.uwm.edu/). 6,12,151, 189

ELNOZAHY, E. N. (MOOTAZ), ALVISI, LORENZO, WANG, YI-MIN, & JOHN-

SON, DAVID B. 2002. A survey of rollback-recovery protocols in message-
passing systems. ACM Computer Survey, 34(3), 375-408. 85

FAN, ZHE, QIU, FENG, KAUFMAN, ARIE, & YOAKUM-STOVER, SUZANNE.
2004. GPU Cluster for High Performance Computing. Pages 47-58 of: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing, 6-12 Novem-
ber 2004, Pittsburgh, USA. IEEE Computer Society. 12

FEDAK, GILLES. 2003 (June). XtremWeb: une plate-forme pour I'étude expéri-
mentale du calcul global pair-a-pair. Ph.D. thesis, Université Paris XI. 40

FEDAK, GILLES, GERMAIN, C., NERI, V., & CAPPELLO, FRANCK. 2001.
XtremWeb: A Generic Global Computing System. Pages 582-587 of: 1st
Int’l Symposium on Cluster Computing and the Grid (CCGRID’01), Brisbane,
Australia. IEEE Computer Society. 2, 3, 21, 40, 41, 184

FIGUEIREDO, RJ, DINDA, PA, & FORTES, JAB. 2003. A Case for Grid Com-
puting on Virtual Machines. Pages 550-559 of: 23rd International Confer-
ence on Distributed Computing Systems. 18

FOLDING @HOME. 2006. Folding@home (http://folding.stanford.edu/). 23

FORD, B., SRISURESH, P., & KEGEL, D. 2005. Peer-to-peer communication
across network address translators. In: Proceedings of the 2005 USENIX
Annual Technical Conference. 152

BIBLIOGRAPHY 235

FOSTER, 1., & KESSELMAN, C. 1998. The grid: blueprint for a new comput-

ing infrastructure. Morgan Kaufmann Publishers Inc. San Francisco, CA,
USA. 225

FRAYN, CM, & JUSTINIANO, C. 2004. The ChessBrain Project - Massively
Distributed Speed-critical Computation. Pages 10-13 of: Proceedings IC-
SEC Workshop on Grid Computing and Applications, Singapore. 152, 171

FRAYN, COLIN, JUSTINIANO, CARLOS, & LEwW, KEVIN. 2006. ChessBrain
II - A Hierarchical Infrastructure for Distributed Inhomogeneous Speed-
Critical Computation. Pages 13-18 of: Louls, SUSHIL J., & KENDALL,
GRAHAM (eds), IEEE Symposium on Computational Intelligence and Games
(CIG’06), 2006. IEEE. 172

GANGULY, A., AGRAWAL, A., BOYKIN, PO, & FIGUEIREDO, R. 2006. WOW:
Self-Organizing Wide Area Overlay Networks of Virtual Workstations.
Pages 30—42 of: 15th IEEE International Symposium on High Performance
Distributed Computing, 2006. 47

GELERNTER, D. 1985. Generative communication in Linda. ACM Transac-
tions on Programming Languages and Systems, 7(1), 80-112. 151

GENTZSCH, WOLFGANG. 2001. Sun Grid Engine: Towards Creating a Com-
pute Power Grid. Pages 35-39 of: Proceedings of the first IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid. Los Alamitos, CA,
USA: IEEE Computer Society. 29

GIMPS. 2007. GIMPS (http://www.mersenne.org/prime.htm). 29
GMAIL. 2007. gmail (http://gmail.google.com/). 215

GODFREY, P. BRIGHTEN, SHENKER, SCOTT, & STOICA, ION. 2006 (Septem-
ber). Minimizing Churn in Distributed Systems. Pages 147-158 of: ACM
SIGCOMM'06. 134

GRIDORG. 2007. grid.org (http://www.grid.org). 44

GUHA, S., DASWANI, N., & JAIN, R. 2006. An experimental study of the
Skype peer-to-peer VoIP system. In: Proceedings of 5th Int’l Workshop on
Peer-to-Peer Systems (IPTPS), 2006, Santa Barbara, CA, USA. 159, 161, 172

236 BIBLIOGRAPHY

GUPTA, ASHISH, LIN, BIN, & DINDA, PETER A. 2004. Measuring and Un-
derstanding User Comfort With Resource Borrowing. Pages 214-224 of:
HPDC '04: Proceedings of the 13th IEEE International Symposium on High
Performance Distributed Computing. Washington, DC, USA: IEEE Com-
puter Society. 50

GUPTA, R., & SEKHRI, V. 2006. CompuP2P: An Architecture for Internet
Computing Using Peer-to-Peer Networks. IEEE Transactions on Parallel
and Distributed Systems, 17(11), 1306-1320. 152

GUPTA, R., & SOMANI, A. 2004. CompuP2P: An Architecture for Sharing of
Computing Resources in Peer-to-peer Networks with Selfish Nodes. In:
Proceedings of second Workshop on the Economics of peer-to-peer Systems. 46

HAN, JAESUN, & PARK, DAEYEON. 2003 (September). A Lightweight Per-
sonal Grid Using a Supernode Network. Pages 168-175 of: P2P 2003
— Proceedings of 3rd International Conference on Peer-to-Peer Computing,
2003.(P2P 2003). 46, 174

HEAP, DG. 2003. Taurus - A Taxonomy of Actual Utilization of Real UNIX and
Windows Servers. Tech. rept. GM12-0191. IBM White Paper. 1, 11, 49, 81,
82

HOLOHAN, A., & GARG, A. 2005. Collaboration Online: The Example
of Distributed Computing. Journal of Computer-Mediated Communication,
10(4). 23, 39, 179, 202

Hu, HAIFENG, KAMINSKY, MICHAEL, GIBBONS, PHILLIP, & FLAXMAN,
ABRAHAM. 2006 (September). SybilGuard: Defending Against Sybil At-
tacks via Social Networks. Pages 265-276 of: ACM SIGCOMM'06. 198

HUGHES, GF, MURRAY, JF, KREUTZ-DELGADO, K., & ELKAN, C. 2002.
Improved disk-drive failure warnings. Reliability, IEEE Transactions on,
51(3), 350-357. 69

IPERF. 2007. Iperf - The TCP/UDP Bandwidth Measurement Tool
(http://dast.nlanr.net/Projects/Iperf/). 111

IYER, S., ROWSTRON, & DRUSCHEL, P. 2002. SQUIRREL: A decentralized,
peer-to-peer web cache". In: Principles of Distributed Computing (PODC
2002). 146

BIBLIOGRAPHY 237

KACSUK, PETER, PODHORSZKI, NORBERT, & KISS, TAMAS. 2005 (May). Scal-
able Desktop Grid System. Tech. rept. TR-0006. Institute on System Archi-
tecture, CoreGRID - Network of Excellence. 156

KAcCSUK, PETER, PODHORSZKI, NORBERT, & Kiss, TAMAS. 2007. Scalable
Desktop Grid System. Pages 27-38 of: High Performance Computing for
Computational Science - VECPAR 2006. Lecture Notes in Computer Sci-
ence, vol. 4395/2007. Springer Berlin / Heidelberg. 39

KIRKPATRICK, S., GELATT JR, CD, & VECCHI, MP. 1983. Optimization by
Simulated Annealing. Science, 220(4598), 671. 152

KNIGHT, WILL. 2006 (May). Programmer speeds search for gravitational waves.
http:/ /www.newscientisttech.com/article.ns?id=dn9180. 36

KONDO, DERRICK, ARAUJO, FILIPE, DOMINGUES, PATRICIO, & SILVA, LUIS.
2007. Result Error Detection on Heterogeneous and Volatile Resources
via Intermediate Checkpointing. In: CoreGRID Workshop on Grid Pro-
gramming Model Grid and P2P Systems Architecture Grid Systems, Tools and
Environments. June 2007, Hellas Heraklion, Crete, Greece. 10

KoNDo, D., TAUFER, M., BROOKS, CL, CASANOVA, H., & CHIEN, AA. 2004a
(April). Characterizing and Evaluating Desktop Grids: an Empirical
Study. In: Proceedings of the 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPSS04). 12,78, 81,126, 221

KONDO, DERRICK, CHIEN, ANDREW A., & CASANOVA, HENRI. 2004b. Re-
source Management for Rapid Application Turnaround on Enterprise
Desktop Grids. In: Proceedings of the 2004 ACM/IEEE conference on Su-
percomputing. Washington, DC, USA: IEEE Computer Society. 90, 125,
127

LARSON, S.M., SNow, C.D., SHIRTS, M., & PANDE, V.S. 2002. Fold-
ing@home and genome@home: Using distributed computing to tackle
previously intractable problems in computational biology. Computational
Genomics. 12

LIANG, J., KUMAR, R., & Ross, K.W. 2006. The FastTrack overlay: A mea-
surement study. Computer Networks, 50(6), 842-858. 159, 172

238 BIBLIOGRAPHY

LITZKOW, M., LIVNY, M., & MUTKA, M. 1988. Condor - A Hunter of Idle
Workstations. Pages 104-111 of: 8th International Conference on Distributed
Computing Systems (ICDCS). Washington, DC: IEEE Computer Society.
21,25

LITZKOW, M., TANNENBAUM, T., BASNEY, J., & LIVNY, M. 1997. Checkpoint
and Migration of UNIX Processes in the Condor Distributed Processing Sys-
tem. Technical Report 1346. University of Wisconsin-Madison Computer
Sciences. 29, 86

LODYGENSKY, O., FEDAK, G., NERI, V., CORDIER, A., & CAPPELLO, F.
2003a (March). Auger & XtremWeb : Monte Carlo computation on a
global computing platform. In: Proceedings of Computing in High Energy
and Nuclear Physics (CHEP2003). 40

LODYGENSKY, O., FEDAK, G., CAPPELLO, F., NERI, V., LIVNY, M., & THAIN,
D. 2003b (May). XtremWeb & Condor: sharing resources between Inter-
net connected Condor pool. Pages 382-389 of: 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2003). 25, 42

LONGBOTTOM, RoOY. 2007. Roy Longbottom’s PC Benchmark Collection
(http://homepage.virgin.net/roy.longbottom/). 60

LUTHER, A., BUYYA, R., RANJAN, R., & VENUGOPAL, S. 2005 (June). Al-
chemi: A .NET-Based Enterprise Grid Computing System. Pages 27—
30 of: Proceedings of the 6th International Conference on Internet Computing
(ICOMP’05). 29

MARTIN, A., AINA, T., CHRISTENSEN, C., KETTLEBOROUGH, J., & STAIN-
FORTH, D. 2005. On Two Kinds of public-resource Distributed Comput-
ing. Pages 931-936 of: Proceedings of the Fourth UK e-Science All Hands
Meeting. September 2005, Nottingham, UK. 12,16, 130, 139

MASSIE, M.L., CHUN, B.N., & CULLER, D.E. 2004. The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience. Parallel
Computing, 30(7), 817-840. 90

MAYER, UWE F. 2007. NBench Project (http://www.tux.org/ mayer/linux/b-
mark.html/). 60, 98

BIBLIOGRAPHY 239

MCcCARTY, B. 2003. Botnets: big and bigger. Security & Privacy Magazine,
IEEE, 1(4), 87-90. 16

McCULLAGH, DELLAN. 2000. Intel Nixes Chip Tracking ID.
http:/ /www.wired.com/news/politics /0,1283,35950,00.html . 200

MOLNAR, D. 2000. The SETI@Home Problem. ACM Crossroads Student Mag-
azine, September. 16, 178

MURPHY, B., & LEVIDOW, B. 2000. Windows 2000 Dependability. In: Pro-
ceedings of the IEEE International Conference on Dependable Systems and Net-
works. 69

MUSGROVE, MIKE. 2004. Trader, 15, Riding a Gmail Boom. Washington Post,
6th June 2004, June, FO1. 215

ORKUT. 2007. Orkut. http:/ /orkut.com/. 215
PARABON. 2007. Frontier - Parabon Computation (http://www.parabon.com/). 44
PASSPORT. 2007. Microsoft Passport (http://www.passport.net/). 200

PETROU, D., GANGER, G.R., & GIBSON, G.A. 2004. Cluster Scheduling
for Explicitly-speculative Tasks. Pages 336-345 of: Proceedings of the 18th
annual international conference on Supercomputing. ACM Press New York,
NY, USA. 88

PINEAU, J.F., ROBERT, Y., & VIVIEN, F. 2005. Off-line and on-line schedu-
ling on heterogeneous master-slave platforms. Research Report, 31. 94,
110

POUWELSE, J.A., GARBACKI, P., BAKKER, J. WANGAND A., YANG, J., IOSUP,
A., EPEMA, D., M.REINDERS, VAN STEEN, M.R., & S1ps, H.J. 2006 (Feb).
Tribler: A social-based peer to peer system. In: Proceedings of the 5th
International Workshop on Peer-to-Peer Systems (IPTPS). 216

QMC. 2007. QMC@home (http://qah.uni-muenster.de/). 12

RATNASAMY, SYLVIA, FRANCIS, PAUL, HANDLEY, MARK, KARP, RICHARD,
& SCHENKER, SCOTT. 2001. A Scalable Content-addressable Network.
Pages 161-172 of: Proceedings of the 2001 conference on applications, technolo-
gies, architectures, and protocols for computer communications. ACM Press.
146

240 BIBLIOGRAPHY

RECORDON, DAVID, & REED, DRUMMOND. 2006. OpenlID 2.0: a platform for
user-centric identity management. Pages 11-16 of: DIM "06: Proceedings of
the second ACM workshop on Digital identity management. New York, NY,
USA: ACM. 199

RESNICK, P., ZECKHAUSER, R., FRIEDMAN, E., & KUWABARA, K. 2000. Rep-
utation Systems: Facilitating Trust in Internet Interactions. Communica-
tions of the ACM, 43(12), 45-48. 198

RIVEST, R. 1992. The MD5 Message-Digest Algorithm. RFC 1321 (Informa-
tional). 184

ROSENBERG, J. 2006. Interactive Connectivity Establishment (ICE): A
Methodology for Network Address Translator (NAT) Traversal for Of-
fer/ Answer Protocols. draft-ietf-mmusic-ice-08 (work in progress), March.
152

ROSENBERG, J., WEINBERGER, J., HUITEMA, C., & MAHY, R. 2003. STUN -
Simple Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs). RFC 3489 (Proposed Standard). 152

ROSENBERG, J., et al. 2004. Traversal Using Relay NAT (TURN). draft-
rosenberg-midcom-turn-05 (work in progress), July. 152

ROSETTA. 2006. Rosetta@home (http://boinc.bakerlab.org/rosetta/). 12

ROWSTRON, ANTONY, & DRUSCHEL, PETER. 2001 (Nov). Pastry: Scalable,
distributed object location and routing for large-scale peer-to-peer sys-
tems. In: IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), Heidelberg, Germany. 146

RUSSINOVICH, M., & COGSWELL, B. 2006. Sysinternals - PsTools
(http:/fwww.sysinternals.com/). 55

RYu, KD, & HOLLINGSWORTH, JK. 2004. Unobtrusiveness and Efficiency
in Idle Cycle Stealing for PC Grids. In: Proceedings of 18th International
Parallel and Distributed Processing Symposium (IPDPS’04), Santa Fe, New
Mexico, USA. 74, 80

SARMENTA, L.F.G., & HIRANO, S. 1999. Bayanihan: Building and studying
web-based volunteer computing systems using Java. Future Generation
Computer Systems, 15(5), 675-686. 183

BIBLIOGRAPHY 241

SARMENTA, LUIS F. G. 2002. Sabotage-tolerance mechanisms for volunteer
computing systems. Future Gener. Comput. Syst., 18(4), 561-572. 178, 180,
182,186, 198

SCHALLER, RR. 1997. Moore’s law: past, present and future. Spectrum,
IEEE, 34(6), 52-59. 20

SCHNEIER, BRUCE. 1999. Why Intel’s ID tracker won’t work.
http:/ /news.zdnet.com/2100-9595_22-513519.html . 200

SETIL. 2007. SETI@home (http://setiathome.berkeley.edu/). 6,12, 20

SHUDO, K., TANAKA, Y., & SEKIGUCHI, S. 2005. P3: P2P-based middle-
ware enabling transfer and aggregation of computational resources. In:
Proceedings of IEEE International Symposium on Cluster Computing and the
Grid, 2005 (CGrid 2005). 45, 173

SILVA, L. M., & SILVA, J. G. 1998. System-Level Versus User-Defined
Checkpointing. Pages 68-74 of: Proceedings of the The 17th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’98). Washington, DC, USA:
IEEE Computer Society. 2, 23, 86, 184

SIMAP. 2007. SIMAP@home (http://boinc.bio.wzw.tum.de/boincsimap/). 15, 189

SiT, E., CATES, J., & CoXx, R. 2003. A DHT-based Backup System. In:
Proceedings of the 1st IRIS Student Workshop. 131, 146

SON, SECHANG, & LIVNY, MIRON. 2003. Recovering Internet Symme-
try in Distributed Computing. Pages 542-549 of: Proceedings of the 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid,
May 2003, Tokyo, Japan. Los Alamitos, CA, USA: IEEE Computer Soci-
ety. 17,184, 195

STAINFORTH, D., KETTLEBOROUGH, J., MARTIN, A., SIMPSON, A., GILLIS,
R., AKKAS, A., GAULT, R., COLLINS, M., GAVAGHAN, D., & ALLEN, M.
2002. Climateprediction.net: Design Principles for Public-Resource Mod-
eling Research. Pages 32-38 of: Proceedings of the 14th IASTED International
Conference: Parallel And Distributed Computing And Systems. 12

STOICA, ION, MORRIS, ROBERT, KARGER, DAVID, KAASHOEK, FRANS, &
BALAKRISHNAN, HARI 2001. Chord: A Scalable Peer-to-Peer Lookup

242 BIBLIOGRAPHY

Service for Internet Applications. Proceedings of the 2001 SIGCOMM con-
ference, 31(4), 149-160. 130

SUTTER, HERB. 2005. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s Journal, 30(3). 20

SZTAKI. 2007. Sztaki Desktop Grid. (http://szdg.lpds.sztaki.hu/szdg/). 6,12

TANNENBAUM, T., WRIGHT, D., MILLER, K., & L1vNY, M. 2001. Condor -
A Distributed Job Scheduler. Beowulf Cluster Computing with Linux. MIT
Press, October. 25, 26, 28

TAUFER, M., ANDERSON, D., CicorTl, P., & BrROOKS III, CL. 2005a. Ho-
mogeneous Redundancy: a Technique to Ensure Integrity of Molecular
Simulation Results Using Public Computing. Pages 119-127 of: Proceed-
ings of 19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS’05), 2005. 18, 38, 178

TAUFER, MICHELA, TELLER, PATRICIA J., ANDERSON, DAVID P., & CHARLES
L. BROOKS, III. 2005b. Metrics for Effective Resource Management in
Global Computing Environments. Pages 204-211 of: Proceedings of 1st
International Conference on e-Science and Grid Computing. Melbourne, Aus-
tralia. Los Alamitos, CA, USA: IEEE Computer Society. 127, 183

THAIN, D., TANNENBAUM, T., & L1vNY, M. 2005. Distributed computing
in practice: the Condor experience. Concurrency and Computation Practice
and Experience, 17(2-4), 323-356. 15, 28, 144, 146

TRITRAKAN, K., & MUANGSIN, V. 2005 (March). Using Peer-to-Peer Com-
munication to Improve the Performance of Distributed Computing on
the Internet. Pages 295-298 of: 19th International Conference on Advanced
Information Networking and Applications (AINA 2005), vol. 2. 145

TUNSTALL, C., MCDONALD, R.L., & COLE, G. 2002. Developing WMI Solu-
tions: A Guide to Windows Management Instrumentation. Addison-Wesley
Professional. 52

UNITEDDEVICES. 2007. United Devices, Inc. (http://www.ud.com). 2,21, 43, 44

VAZHKUDAI, S., MA, X., FREEH, V., STRICKLAND, J., TAMMINEEDI, N., &
ScoTT, S. 2005 (nov). FreeLoader:Scavenging Desktop Storage Resources

BIBLIOGRAPHY 243

for Scientific Data. In: Supercomputing 2005 (SC’05): Int’l Conference on
High Performance Computing, Networking and Storage, Seattle, Washington,
USA. 146

VERBEKE, J., NADGIR, N., RUETSCH, G., & SHARAPOV, 1. 2002. Framework
for Peer-to-Peer Distributed Computing in a Heterogeneous, Decentral-
ized Environment. In: Proceedings of the 3rd International Workshop on Grid
Computing. Springer. 45, 174

VIRTUALBOX. 2007. VirtualBox (http://www.virtualbox.org). 18
VMWARE. 2007. VmWare, Inc. (http://www.omware.com). 18

VON AHN, Luis, BLUM, MANUEL, & LANGFORD, JOHN. 2004. Telling hu-
mans and computers apart automatically. Communications of ACM, 47(2),
56-60. 204

WANG, YIN-MIN, VERBOWSKI, CHAD, & SIMON, DANIEL R. 2003.
Persistent-state Checkpoint Comparison for Troubleshooting Configura-
tion Failures. Pages 311-316 of: Proceedings of International Conference on
Dependable Systems and Networks, 2003. IEEE Computer Society. 195

WATTS, DJ, & STROGATZ, SH. 1998. Collective dynamics of 'small-world’
networks. Nature, 393(6684), 409-10. 216

WEI, BAOHUA, FEDAK, GILLES, & CAPPELLO, FRANCK. 2005. Collabora-
tive Data Distribution with BitTorrent for Computational Desktop Grids.
Pages 250-257 of: ISPDC "05: Proceedings of the 4th International Sympo-
sium on Parallel and Distributed Computing. Washington, DC, USA: IEEE
Computer Society. 145, 223

WENG, C., & Lu, X. 2005. Heuristic scheduling for bag-of-tasks applica-
tions in combination with QoS in the computational grid. Future Genera-
tion Computer Systems, 21(2), 271-280. 126

WILKINSON, BARRY, & ALLEN, MICHAEL. 2004. Parallel Programming: Tech-
niques and Applications Using Networked Workstations and Parallel Comput-
ers. 2 edn. Prentice Hall. 21

ZHou, D., & Lo, V. 2005. Wave Scheduler: Scheduling for Faster Turn-
around Time in Peer-based Desktop Grid Systems. In: 11th Workshop on

244 BIBLIOGRAPHY

Job Scheduling Strategies for Parallel Processing (ICS 2005), Cambridge, MA.
45,126

ZHou, D., & Lo, VIRGINA. 2006. WaveGrid: A Scalable Fast-Turnaround
Heterogeneous Peer-Based Desktop Grid System. In: 20th International
Parallel & Distributed Processing Symposium (IPDPS), April 2006, Rhodes,
Greece. 47,146

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Organization of the Dissertation
	Reading Map

	Publication Record

	Desktop Grids
	Motivation for Desktop Grids
	Characterization of Desktop Grids
	Generic Nomenclature

	Strengths and Limitations of Desktop Grids
	Strengths
	Limitations

	Components of a Desktop Grid
	Desktop Computers
	Communication Networks
	Middleware for Desktop Grid

	Types of Desktop Grids
	Major Desktop Grid Middleware
	Condor
	BOINC
	XtremWeb
	GridMP
	P2P-based Architectures

	Summary

	Resource Usage in Desktop Grids
	Introduction
	The WindowsDDC Framework
	Experiments and iterations
	Remote Execution
	Post-collecting code

	Methodology and Monitored Metrics
	Methodology
	Monitored Metrics

	Experiment
	Computing Environment
	Settings and limitations

	Results
	Machines Availability
	Stability of Machines
	Group Stability
	User Sessions
	Global Resource Usage
	Weekly Analysis
	Equivalence ratio

	Related Work
	Summary and Discussion

	Fault-Tolerant Scheduling
	Introduction
	Fault Tolerance and Checkpointing
	Institutional Desktop Grids
	Bag-of-tasks Applications
	Turnaround Time of Bag-of-Tasks Applications

	Scheduling Policies
	Scheduler Knowledge
	FCFS
	FCFS-AT
	FCFS-TR
	FCFS-TR-DMD
	FCFS-PRDCT-DMD

	Segmented Execution with Shared Checkpoints
	Example of a segmented execution

	The DGSchedSim Simulator
	Requirements
	Input
	Output

	Summary

	Evaluation of Fault-Tolerant Scheduling
	Computing Environment
	Machines

	Trace
	Characterization of the Trace
	CPU Idle Threshold

	Main Results
	Ideal Execution Time
	Simulated Tasks

	Presentation of Results
	Shared versus Private Checkpointing
	Shared-based Policies

	Related Work
	Summary and Discussion

	Sharing Checkpoints over Wide-Scale Desktop Grids
	Introduction
	Motivation
	Overview
	Description of chkpt2chkpt
	Basic Components
	Processing a Task
	Starting and Resuming a Task
	Separation of Processing and Storage
	Managing the Checkpoints

	Garbage Collection
	Evaluation
	Related Work
	Summary

	Desktop Grid Topologies for Sharing Input Data and Checkpoints
	Introduction
	Levels of Cooperation
	Assessing the Benefits of Cooperation

	Federating Institutional Desktop Grids
	Overview
	Functions of the LPS

	Desktop Grids for Unrelated Peers
	A Model for Grouping Unrelated Peers
	Costs of Replicating Checkpoints

	Related Work
	Summary

	Sabotage Tolerance through Comparisons of Checkpoints
	Introduction
	Results Validation Techniques
	Majority Voting
	Spot-checking
	Credibility-based Validation

	Assumptions and Definitions
	Comparison of Equivalent Checkpoint Digests
	Reducing the Time to Detect an Error
	Theoretical Analysis

	Checkpoint-based Task Replication
	Experimental Results
	Related Work
	Summary

	Reputation and Trust Management in Volunteer Computing
	Introduction
	The Problem of Identity
	The Invitation System
	Overview
	Invitation Cards
	Relationship Threshold Distance
	Bootstrapping the Invitation System
	Management Overhead
	Collusion Avoidance
	Preventing Misuse

	Relationship Between Inviter-Invitees
	Theoretical Analysis

	Sharing Reputation Across Volunteer Projects
	Implementation

	Related Work
	Summary

	Conclusion and Future Work
	Conclusions
	Main Contributions
	Future Work

	Bibliography

