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Abstract

Obstructive sleep apnoea-hypopnea syndrome is a sleep-related breathing disor-

der, with a signi�cant worldwide prevalence. Sleep is a human natural recurrent

state, which is of critical importance to several processes in human physiology. A

decrease in sleep quality, in the long term, may dangerously unbalance those pro-

cesses, leading to the development of diseases. Among the diseases linked with this

syndrome are some of the deadliest ones, as in the case of cardiovascular diseases,

and some of the diseases with higher rate values. An example of this group of

diseases is diabetes.

Snoring is one of the earliest and most common symptoms associated with ob-

structive sleep apnoea-hypopnea syndrome, and snoring generation is the result of

loss of sti�ness by the structures of the upper respiratory airway. Several factors may

lead to the loss of tissue sti�ness and snoring, but the most common one is fat de-

posits. Snoring follows the evolution of a subject from a healthy to the most severe

obstructive condition, and its evolution can deliver interesting results to evaluate

obstructive sleep apnoea-hypopnea syndrome.

Polysomnography is the gold standard, in sleep medicine, to evaluate sleep and

diagnosis obstructive sleep apnoea-hypopnea syndrome in-laboratory sleep studies.

Home studies use modi�ed versions of the gold standard polysomnography or other

simpler methods. In-laboratory sleep studies are expensive and the �rst night e�ect

may change results, while at-home sleep studies may lack important data, giving the

motivation to study and to develop a reliable solution based on the snoring signal.

The purpose of this work was the study of snoring, beginning with data acqui-

sition at the Centro de Medicina do Sono, together with the acquisition of tem-

perature, relative humidity, and gauge pressure. Snoring signal processing included

snore detection, data synchronization between the high-quality sound signal �le and

the polysomnography study from the same subject, and feature extraction using

di�erent methods. An extensive set of features was calculated from the snores and

analysed. Among the most relevant features are time duration, Kurtosis, band power

ratio, in-out band power ratio, and Shannon entropy. Empirical Mode Decomposi-

tion and Synchrosqueezed Wavelet Transform are methods also implemented in the

study of snores. The obtained results were compared against the subjects' medical

classi�cation group, their medical classi�cation group in terms of obstructive sleep

apnoea-hypopnea syndrome severity.

The relationship between snoring and the medical classi�cation group returned

promising results. Snore's time duration feature shows a consistent increase as

obstructive sleep apnoea-hypopnea syndrome worsens. It starts with the lowest
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value, µ = 1.106 s, for the Control group, and it increases always, to µ = 1.178 s, µ =

1.227 s, µ = 1.368 s, and µ = 1.493 s. A statistical analysis concludes that all data

organized according to the medical classi�cation groups, for this feature, come from

di�erent distributions. Shannon entropy feature delivers a linear relation, it increases

with the syndrome worsening when analysing data distribution and its quartiles.

This linear relationship is an important remark using parameters wp25c and wp50c.

The �rst parameter, wp25c, has values of 2.539, 4.254, 4.599, 7.967, and 19.938

bits, while wp50c has values of 6.198, 8.233, 10.101, 14.043, and 39.374 bits. Both

parameters' values are for an increased level of the syndrome's severity. Frequency-

domain features also revealed interesting relationships with medical classi�cation

groups. Band 8 of both band power ratio and in and out band power ratio features

has consistently increased mean values as the syndrome worsens. Band power ratio

has median values of 0.006, 0.007, 0.009, 0.013, and 0.019 for band 8, while in and out

band power ratio has median values of 0.006, 0.008, 0.009, 0.013, and 0.019. Finally,

a new method and almost unused in sleep studies, the Synchrosqueezed Wavelet

Transform, decomposed the signal in its most important components, up to 10, and a

statistic analysis identi�ed frequencies characteristic of a single medical classi�cation

group. Examples of medical classi�cation groups' characteristic frequencies are 2996,

1300, 1545, 2320, and 1146 Hz, for Control, Snorer, Mild, Moderate, and Severe

groups, respectively.

Keywords: Snoring; High-Quality Sound Signal; Obstructive Sleep Apnoea and

Hypopnea Syndrome; Signal Analysis and Processing; Feature Extraction; Single-

Channel Audio Acquisition and Analysis; Synchronization
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Resumo

A síndrome da apneia-hipopneia obstrutiva do sono é um distúrbio respiratório

do sono, com uma signi�cativa prevalência no mundo. O sono é um estado natural e

periódico do ser humano, de elevada importância na �siologia humana e na homeos-

tasia de diversos órgãos e processos. Perturbações no sono levam a uma diminuição

da sua qualidade e a distúrbios no equilíbrio desses processos, que levam ao apare-

cimento de doenças. Entre as possíveis doenças estão algumas das mais mortais a

nível mundial, como por exemplo as doenças cardiovasculares, e as doenças com as

mais altas taxas de crescimento, como é o caso da diabetes.

O ronco é um dos primeiros e mais comuns sintomas associados com a apneia-

hipopneia obstrutiva do sono, e a origem do ronco está relacionada com a perda da

�rmeza por parte das estruturas da via área superior. Existem vários factores que

podem contribuir para a perda da �rmeza, e que conduzem ao ronco, mas a mais

comum está relacionada com o aumento de peso e os depósitos de gordura. O ronco

está, normalmente, presente em todas as fases de desenvolvimento apneia-hipopneia

obstrutiva do sono, desde que o indivíduo é saudável até à forma mais severa da

síndrome. A própria evolução do ronco pode ser uma fonte de informação útil para

a avaliação da apneia-hipopneia obstrutiva do sono.

A polissonogra�a é o estudo de excelência, na medicina do sono, para avaliar o

sono e diagnosticar a apneia-hipopneia obstrutiva do sono em ambiente hospitalar.

Existem versões modi�cadas do estudo de polissonagra�a que são realizadas em casa,

assim como métodos mais simples de aquisição de apenas 2 ou 3 sinais. Os estudos

realizados em laboratório são dispendiosos e existe o efeito de dormir fora do lar

na primeira noite que pode contribuir para ter resultados diferentes, enquanto que

os estudos realizados em casa podem �car privados de informação relevante. Estas

observações dão a motivação para o estudo e desenvolvimento de uma solução �ável

baseada no sinal do ronco.

O objectivo deste trabalho consistiu no estudo do ronco, começando pela aqui-

sição de dados no Centro de Medicina do Sono em conjunto com a aquisição da

temperatura, humidade relativa e pressão. O processamento do ronco incluiu a sua

detecção, a sincronização do �cheiro áudio do ronco com o estudo de polissonogra�a

do mesmo indivíduo, a extração de características do ronco usando diversos méto-

dos. Um conjunto extensivo de características foi calculado a partir dos roncos e,

posteriormente, analisado. Entre as características mais relevantes estão a dura-

ção, Kurtosis, band power ratio, in out band power ratio, e a entropia de Shannon.

Os métodos Empirical Mode Decomposition e Synchrosqueezed Wavelet Transform
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também foram usados no estudo do ronco. As características do ronco foram com-

paradas com a classi�cação médica, de acordo com a severidade da apneia-hipopneia

obstrutiva do sono, dada aos indivíduos.

As relações entre o ronco e as classi�cações médicas deram origem a resultados

interessantes. A duração do ronco revela uma evolução consistente à medida que

a síndrome da apneia-hipopneia obstrutiva do sono piora. Começa por apresentar

um valor médio, µ = 1, 106 s, mais baixo para o grupo Controlo, e aumenta sempre

de um grupo para o seguinte, µ = 1, 178 s, µ = 1, 227 s, µ = 1, 368 s, e µ = 1, 493

s. A análise estatística conduzida a esta característica, e organizada de acordo com

a classi�cação médica, revela que todos os grupos vêm de distribuições diferentes.

A entropia de Shannon apresenta uma evolução linear, um aumento na entropia

corresponde a um agravamento da condição clínica, quando se analisa a distribuição

dos dados e dos seus quartis. Esta observação constitui um marco importante,

alcançado a partir do uso dos parâmetros wp25c e wp50c. O primeiro parâmetro,

wp25c, apresenta valores de 2,539, 4,254, 4,599, 7,967, e 19,938 bits, enquanto que o

parâmetro wp50c apresenta valores de 6,198, 8,233, 10,101, 14,043, e 39,374 bits. Os

valores apresentados para os dois parâmetros estão ordenados por ordem crescente

de severidade da síndrome. As características extraídas no domínio das frequências

também deram relações interessantes com os grupos das classi�cações médicas. A

banda 8 das características band power ratio e in and out band power ratio tem uma

evolução consistente com o agravamento da severidade. A característica band power

ratio apresenta valores de mediana de 0,006, 0,007, 0,009, 0,013, e 0,019, enquanto

que a característica in and out band power ratio apresenta valores de mediana de

0,006, 0,008, 0,009, 0,013, e 0.019. Por �m, um método novo e ainda pouco explorado

na medicina do sono, a Synchrosqueezed Wavelet Transform, decompões o sinal nas

suas componentes mais importantes, até um máximo de 10, e uma análise estatística

identi�cou frequências características para cada classi�cação médica. Um exemplo

de uma frequência característica para cada classi�cação médica é a frequência de

2996, 1300, 1545, 2320, e 1146 Hz, para o grupo Controlo, Ressonador, Ligeiro,

Moderado, e Grave, respectivamente.

Palavras-Chave: Ronco; Sinal Áudio de Alta Qualidade; Apneia e Hipopneia

Obstrutiva do Sono; Análise e Processamento de Sinal; Extração de Características;

Aquisição e Análise de Canal Único de Áudio; Sincronização
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Chapter 1

Introduction

The �rst chapter focus on the problem addressed by this thesis, giving a deep

overview of the problem and enlightening the motivation to study new methods and

develop new tools to help medical sta� in the diagnosis of Sleep-Related Breath-

ing Disorders (SRBD), speci�cally Obstructive Sleep Apnoea-Hypopnea Syndrome

(OSAHS).

The chapter ends with the presentation of the thesis's objectives and an overview

over each chapter.

1.1 Topic

Sleep is a natural state in human biology, and can be characterized as a state

of reduced responsiveness to external stimuli and reduced activity. This state is

characterized by being easy to reverse, usually returning to the state of wakefulness,

and it is absolutely fundamental in human biology, but without clear evidence of

death by sleep deprivation. Its importance can be assessed by the amount of time

each human spent in it, roughly a third of his lifetime [1].

Historically, and during several centuries, sleep was considered a passive state,

without any type of activity, a state between wakefulness and death. No signi�cant

breakthroughs happened in the comprehension of sleep until the 19th century [2,

3]. During the 19th century, some sleep observations were made, with important

discoveries, such as the case of the Cheyne-Stokes respiration and the description of

the clinical symptoms associated with narcolepsy [2,4]. However, it was not until the

20th century that major breakthroughs occurred in the sleep medicine �eld, with the

discovery, for example, of di�erent patterns in the brain electrical activity during

wakefulness and during sleep, and the discovery of Rapid Eye Movement (REM)

sleep (duality of sleep) [2].

Sleep medicine physicians learned to identify normal sleep pro�les, among the

human population, and, more important, to identify deviations from normal sleep,

in which sleep shifts from a normal/healthy to a pathological pro�le. OSAHS is
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a type of sleep disorder, in which the upper respiratory airway collapses, partial

or completely, and the air�ow, respectively, decreases or is inexistent due to the

obstruction. Untreated, this sleep disorder may worsen over time, decreasing the

patient's life quality in the long term. Although there is no clear link between sleep

deprivation and death, OSAHS, and other SRBD, decreases sleep quality and it

has a strong impact on the human being function during the wakefulness state. If

OSAHS persists over time, the impact of this disorder increases, with direct conse-

quences in several human functions, as the case of the brain, the immune system,

the cardiovascular system, and the endocrine system. Patients with OSAHS have

to deal with serious problems during the day, damaging both personal life and work

performance. Sleep modulates human function, but, it is also modulated by a great

number of factors, both internal and external, as on the case of alcohol, tobacco,

ca�eine, and drugs. In the end, OSAHS has a huge impact in the patient's quality of

life, with the patient having less lifetime of full health, and in the economy [3,5, 6].

Sleep medicine physicians use the gold standard multichannel Polysomnography

(PSG), but also other types of sleep studies, to diagnosis OSAHS. PSG is a time-

consuming and expensive study and requires the presence of a sleep technician for

an all-night patient monitoring in a clinical/hospital facility, which means sleeping

in a strange environment.

1.2 Focus and Scope

World prevalence of OSAHS was estimated 6% in women and 13% in men. This

estimation was performed in an adult population between 30 and 70 years old, from

the Wisconsin Sleep Cohort study project [7]. More recently, a review of literature

focused on 17 studies from 16 countries and estimates a prevalence of around 1

thousand million people, men, and women aged between 30 and 69 years old, with

OSAHS. The social burden of OSAHS is huge, as well as the economic burden, with a

2015 report estimating a cost of 12.400 million US dollars spent in the diagnosis and

treatment of this condition, only in the USA [8]. Accordingly to this estimation, sleep

impairment by OSAHS hits around 13.0% of the world population, patients only,

not considering the patients' families. Solutions are required to �ght these numbers,

performing early diagnosis and introducing policies to prevent the emergence of new

cases, as in the case of �ghting the pandemic of obesity, an associated OSAHS risk

factor. New diagnosis methods must be considered to help physicians in the early

diagnosis, by increasing sleep studies at a reduced cost.

The present research work focus on the study of snoring in subjects who under-

went in-laboratory PSG study, without the application of treatments for SRBD. A

particular SRBD was under analysis, OSAHS, and the interest related to the study

of snoring is on its onset. Snoring is one of the �rst symptoms associated with OS-

2



INTRODUCTION

AHS, and it can start even before a subject meet the criterion for OSAHS diagnosis.

For this reason, snoring is of high interest to follow the evolution of OSAHS, from

a healthy subject with sporadic snoring to a OSAHS patient. Characteristics asso-

ciated with snore sound changes with the evolution of the subjects condition [9,10].

1.3 Relevance

As previously stated, OSAHS is a serious condition, worsening the life of millions

of individuals. OSAHS patients may develop other diseases, decreasing, even more,

their quality of life, and among the diseases associated with OSAHS are the cardio-

vascular diseases and diabetes. The �rst one is the leading cause of death worldwide,

while the second is increasing steadily over the past decades [11�13]. These data give

the right perspective about OSAHS and the importance of managing this problem.

Research addressing OSAHS problematic is extensive, and it has di�erent pur-

poses. From the study of how OSAHS in�uences and changes a speci�c human

function, the development of sleep questionnaires, diagnosis and the application of

treatments, reviews in the topic, to the development of classi�cation algorithms to

predict and help in the diagnosis of the patient's severity, the search for "obstruc-

tive sleep apnoea" returned a total of 35.478 results at the PubMed website, from

1953 to the present day (March 2021). Alternatives to the current medical tools

have been developed and tested using data from the PSG, or from an independent

source, performing multichannel or a single-channel analysis with the implementa-

tion of a wide number of methods [14�17]. Although OSAHS is widely investigated,

this project used, the overall, methods in a unique con�guration, relating snores'

features, in the time-domain, frequency-domain, time-frequency domain, and statis-

tical features, with OSAHS severity. A new method was also proposed to assess the

disorder.

1.4 Objectives

The project's original purpose was the study of human respiratory sounds. Nor-

mal respiratory sounds exist and they are produced by the structures, tissues and

organs, of the respiratory system, their characteristics are not homogeneous and they

are, strongly, dependent of the anatomic origin [18,19]. Abnormal, or adventitious,

respiratory sounds exist when changes, or interferences, occur in the respiratory

system, and they are classi�ed in either of one of these 2 classes: continuous or

discontinuous [20,21]. Wheezes are an example of continuous abnormal respiratory

sound class, while crackles are an example of discontinuous abnormal respiratory

sound class. Abnormal respiratory sounds may appear due to several factors: dis-

eases, human behaviour, accidents, or foreign objects, partially, blocking the normal

air�ow [22,23].
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The study of human respiratory sounds was proposed to M.D. José Moutinho

dos Santos, head of the Centro de Medicina do Sono (CMS) at the Centro Hospitalar

e Universitário de Coimbra (CHUC). The goal was the de�nition of the procedure

to acquire normal and adventitious respiratory sounds in the laboratory, under his

supervision. Although M.D. José Moutinho dos Santos acknowledged the problem

associated with abnormal respiratory sounds, he suggested to change the study to

a scienti�c area with a greater interest. The head of the CMS suggested to study

snoring and OSAHS, since it is, typically, one of the �rst symptoms to appear in

this syndrome. The development of methods to study snoring and OSAHS would

be helpful to physicians in the clinical diagnosis of this syndrome. Following the

advice of M.D. José Moutinho dos Santos, the meeting �nal result was a shift in the

thesis's main purpose to study snoring, and how it relates with OSAHS. OSAHS is

a sleep-disrupting condition, and it may worsen as time goes by to a severe clinical

assessment where it is most likely for the patient to lose quality of life, develop other

health issues, and, ultimately, die.

The gold standard evaluation tool in sleep medicine to study SRBD is PSG, a

multi-parameter study, in which several sensors are used to acquire signals from

di�erent anatomical regions. This study is performed in a clinical facility, under

the supervision of a sleep technician the entire night, with each patient sleeping in

a di�erent room. The complete procedure may last for up to 11 hours, starting

with patient reception, preparation, monitoring, and �nishing by awakening the

patient and detaching the sensors from the patient. The need for physical space

and the continuous presence of a sleep technician allocate precious and expensive

resources to perform the study. PSG requirements include wire connections between

the sensors, either analogue or digital, and a local data concentrator unit. Those

wires may interfere with the patient's sleep, thus interfering with the PSG results.

An unfamiliar sleep environment may also unsettle the patient psychological state,

resulting in modi�cations in the sleep patterns, with consequences in the results of

the PSG study.

The development of a tool to help physicians in OSAHS diagnosis, based on

single signal analysis, is of major importance and the ultimate objective. Snoring is

one of the earliest symptoms in OSAHS development, being this symptom's signal a

natural target to analyse and to �nd correlations between the signal's features and

the clinical data. The project's objective was not to replace PSG study as the gold

standard in sleep medicine, but instead to develop a tool able to perform a snore

evaluation and deliver data to help physicians in the clinical decision. The project

kick-o� milestone was the establishment of a protocol between the research group

Lab. de Instr., Eng. Biomédica e Física da Radiação (LIBPhys) from the University

of Coimbra, at the time known as Grupo de Electrónica e Instrumentação, and the
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CMS of the CHUC. At the development stage, getting a high-quality snore signal was

the fundamental concern, and, for that reason, the sound signal acquire, important

to the development of the work, by the PSG study was not considered for feature

extraction. This also means there are no strings attached between the project and

the PSG study in the future, if the project achieved the desired results. The snor-

ing study was performed using a high-resolution audio signal device, independent

of the PSG equipment, to acquire sound for the entire night. Together with the

audio device, an ad-hoc electronic device was developed to acquire Slow Variation

Parameters (SVP), temperature, relative humidity, and pressure. Data acquisition

from the audio device, together with data from the SVP, questionnaires, and clinical

data, PSG and its reports, represented the entire data set, with the patients' set

selected by M.D. José Moutinho dos Santos based on clinical reports. Pre-processing

step included data synchronization between the high-resolution audio signal and the

PSG data, while the most important �nal milestone was the implementation of a

new method, only applied in a few published scienti�c journals in the sleep �eld,

the Synchrosqueezed Wavelet Transform, and the correlation, with clinical bene�ts,

between snores' features and clinical data.

This work aims to answer the following questions:

• Research question 1: Is it possible to use a single signal to assess OSAHS?

• Research question 2: Which snore's features are the most valuable to assess

OSAHS?

• Research question 3: Is snore signal a reliable source of information to

assess OSAHS?

1.5 Contribution to Science

This section brie�y summarizes the major contributions of this thesis to science

in sleep medicine sleep, in particular, to improve knowledge over OSAHS and its

assessment using data from a single channel, the snore signal. Major contributions

are organized in 2 areas, in terms of feature analysis and terms of method.

• Feature analysis: The application of feature analysis in OSAHS and in snore
signal isn't state-of-the-art work. However, data were analysed and processed

in unique ways, delivering more knowledge to science. In this case, Shannon

entropy highlights from the remaining features, clearing showing promising re-

sults for future development of new devices to assess OSAHS. The statistical

results showed signi�cant di�erences among all medical classi�cation groups,

which come from di�erent data distributions. Parameter selection revealed,
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from the Shannon entropy feature, a consistent trend in all medical classi-

�cation groups, Control (Co), Snorer (Sn), Mild (Mi), Moderate (Mo), and

Severe (Se) (�gure 5.43). Parameters wp25c and wp50c have linear relationship

with medical classi�cation groups. As the syndrome worsens, the parameters'

values increase. The �rst parameter starts with a value of 2.539 and increases

to 4.254, 4.599, 7.967, and 19.938 bits. The second parameter has values of

6.198, 8.233, 10.101, 14.043, and 39.374 bits.

• Method: The Synchrosqueezed Wavelet Transform (SWT) is a recent method

to analyse data in the time-frequency plane. Current state-of-the-art shows

it has been barely exploited in the sleep medicine �eld, in particular, in the

study of OSAHS and in the study of snoring. Snores' decomposition shows

a clear separation between the di�erent frequency components, especially, for

the higher components. The histograms, for each medical classi�cation group,

highlight the most common frequencies. The selection of those frequencies

revealed which ones are characteristic of a single medical classi�cation group

and, even more, are more interesting to select (present in the highest number

of patients). A possible frequency to characterize Co medical classi�cation

group is the 2996 Hz component, present in 4 of the patients, with the highest

single patient contribution to the histogram of 42.9%, and 31 Hz away from

the closest frequency (from the frequency list of the other medical classi�ca-

tion groups). The application of the same procedure, led to the selection of

the 1300, 1545, 2320, and 1146 Hz frequency component for the remaining

medical classi�cation groups, respectively, Sn, Mi, Mo, and Se (for mode de-

tails see Table 5.31 and Table 5.32). SWT method is also a candidate for the

development of commercials devices to assess OSAHS through snoring.

1.6 Thesis Structure

This thesis presents the developed methodology to study the high-resolution

snoring signal as an alternative to the gold standard PSG for OSAHS. The single

channel snoring signal records data from one of the earliest symptoms related to

OSAHS, which allows tracking the syndrome from the beginning. The structure of

this thesis can be systematized as follows: The Introduction presents the subject

discussed in this thesis, the OSAHS and one of its earliest symptoms, snoring, en-

hancing the relevance and the contribution of the developed work to the knowledge

in science. Sleep and Sleep Disorders develops the thematic further, introducing

physiologic sleep, discussing its architecture, how sleep modulates other systems of

the human body, and how it is modulated by multiple agents. Finally, this chapter

presents the gold standard in the sleep medicine �eld to study sleep, PSG.
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The State of the Art chapter reviews the literature in the sleep medicine �eld,

presenting state-of-the-art methods to study sleep and its disorders, from play-

ful/informative mobile applications, covering current medical tools, and scienti�c

research on, mostly, algorithms.

Materials and Methods presents the followed methodology to answer the ques-

tions raised in Introduction. It starts with the presentation of the layout, protocol,

and the equipment of the sleep medical centre, CMS, the population sample, and it

continues with a detailed description of the types of equipment used to acquire SVP

and high-resolution audio signals. At the end of the chapter, di�erent methods for

signal processing and analysis were implemented to synchronize data and extract

features from snoring and relate it with medical data, from PSG and its reports.

The Results chapter presents information for the di�erent steps in the high-

resolution snoring signal processing. From the synchronization between this signal

and the PSG data, following feature extraction, and the relationship between medical

data and research data, several tables and �gures are available to ease the interpre-

tation of the achieved results. Finally, the results from the statistical analysis are

presented.

Chapter Discussion analyses the main �ndings and the main contributions to

science, while chapter Conclusion presents the �nal conclusions, and future direc-

tions to make automatic sleep assessment faster, cheaper and reliable. Finally, the

scienti�c contribution to the knowledge in this �eld is available.

7



Chapter 2

Sleep and Sleep Disorders

This chapter introduces the concept of sleep, its structure, and the role of sleep

in homeostasis. Sleep quality, sleep fragmentation, and sleep deprivation are related

and they are modulated by a great number of factors, like stress, alcohol, and drugs.

The sleep medicine �eld deals with sleep-related problems and the most im-

portant tool to diagnose and track those health issues is the PSG study. It is a

multi-parameter study with a special focus on neural activity of the head and in the

respiratory muscles.

One of its parameters, the snoring, is very interesting because it is one of the

earliest symptoms of OSAHS and it is present in the entire evolutionary process.

2.1 Introduction

Natural selection promoted the human species evolution towards a cyclic be-

haviour on a daily basis, known as circadian rhythm. Throughout a full day, a

subject, of the human species, goes through di�erent levels of activity. Sleep is one

of the natural and reversible daily states in the human species. Besides the sleep

state, wakefulness is an important state corresponding to the period of time with

the highest activity. A state transition from wakefulness to sleep may be linked by

a third state, drowsiness [24].

Sleep is recognized as a state of behavioural quietness, with eyes, usually, closed

and there are ongoing complex physiologic and behavioural processes. Other less

frequent behaviours may occur during sleep as is the case of sleepwalking and teeth

grinding [3]. While asleep, a subject decreases its consciousness and its response to

both internal and external stimuli to a point of little or even no response at all. The

reduction of response to external stimuli is, however, selective. It depends on the

origin of the stimulus, for example, the probability to awake due to a crying baby is

higher than another sound of the same intensity [1]. This state has the lowest level

of activity present in the circadian rhythm [3].

Sleep hygiene is essential to promote the quantity and quality of sleep. Together
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with other conditions, inadequate sleep hygiene may boost SRBD, like insomnia.

The last hours of the day, before going to bed, play an important role in sleep

hygiene. Specialists do recommendations to keep or improve sleep hygiene. The

�rst one is to take a time to relax and, then, go to bed, a cool, dark, quiet, and

comfortable space, at the same hour. Wake up at the same hour and having regular

meals. Avoid the consumption of products containing nicotine, ca�eine, and alcohol

before going to bed. Nicotine and ca�eine are stimulants, and alcohol is responsible

for sleep fragmentation [1, p. 7; 3, p. 869; 25, p. 98].

Sleep and wakefulness regulation is controlled by 3 components. The �rst 2

components, circadian rhythm and sleep homeostasis, work together to regulate

timing and consolidation. Sleep homeostasis regulates sleep pressure by increasing

it while a subject is awake and decreasing it when a subject is asleep [4, 26]. The

process behind the circadian rhythm helps to keep a subject awake during the day.

There are 2 peaks in which is less likely to fall asleep. The �rst one occurs late

in the morning while the second one occurs early in the evening [4, 27, 28]. Sleep

and wakefulness pattern follows the day and night cycle, but an internal circadian

clock keeps the mechanism working even without external time evidence. The last

component in sleep and wakefulness regulation is sleep inertia. Sleep inertia may

last from 30 minutes to 4 hours, depending on the sources. It may also occur after

oversleeping, and naps exceeding 30 minutes [1, 4].

2.2 Sleep Characterization

2.2.1 Sleep Architecture

Normal human sleep pattern is heterogeneous throughout the night and it is

organized in 2 distinct types of sleep: the Non-Rapid Eye Movement (NREM) sleep

stage and the REM sleep stage. The NREM sleep stage is further organized in

NREM1 or N1, NREM2 or N2, and NREM3 or N3. Figure 2.1 is a representation

of the sleep architecture.

REM NREM

NREM2 NREM3NREM1

Figure 2.1: The sleep architecture organized in its di�erent sleep stages for a healthy human, accordingly with the
American Academy of Sleep Medicine (AASM) scoring manual.
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The sleep onset starts with N1 sleep in a typical and healthy adult human,

evolving, chronologically, to N2, then to N3, and, �nally, to REM. The completion

of a sleep cycle occurs when sleep enters in REM sleep, and it starts a new one when

sleep returns to N1 or N2 sleep. Figure 2.2 is a representation of a hypnogram, a

two-dimension graphic of the sleep architecture over time. Sleep pro�le is clear, with

the predominant sleep stage and the respective transition.

A whole night of sleep may have 3 to 5 sleep cycles, each of which lasts between

90 and 120 minutes, and the contribution of each sleep stage to a sleep cycle changes

overnight [4, 24, 25]. Sleep stage contributions to overall sleep are dramatically dif-

ferent with a subject spending, approximately, 5% to 10% of the Total Sleep Time

(TST) in the N1 sleep stage, while sleep is in the N2 sleep stage between 45% and

55% of the time. The last REM sleep stage, N3, represents between 15% to 20%

of the TST, and it is higher in the �rst sleep cycles than in the last sleep cycles.

REM sleep stage contributes to overall sleep with values between 20% and 25% of

the TST, lasting more time at the sleep's end [3, 4, 24,25].

2.2.1.1 Non Rapid Eye Movement 1 Sleep

Healthy adult subjects fall asleep, usually, in the N1 sleep stage. Low Amplitude

and Mixed-Frequency (LAMF) signals are characteristic of this sleep stage, and they

encompass frequencies, mostly, between 4 to 7 Hz. During the N1 sleep stage there

is lack of sleep spindles and K-complexes not associated with arousals. There is the

possibility of slow eye movements occurring [24]. N1 is light sleep, from which the

subject can wake up easily.

2.2.1.2 N2 Sleep

N2 sleep stage has sleep spindles or K-complexes not associated with arousals.

Sleep spindles have a frequency range from 11 to 16 Hz, being the frequency range

between 12 and 14 Hz more common, and duration between 0.5 and 2 seconds. The

�rst sleep spindles start, gradually, to increase in amplitude, and the last ones lose,

gradually, their amplitude [24,25,29]. K-complexes start with a hard negative wave

Figure 2.2: A hypnogram of a healthy and adult subject [24].
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and progresses with a slower positive wave. They last for, at least, 0.5 seconds [24,

25]. Eye movements, typically, stop and the electrical signal has a lower amplitude

than when a subject is awake, although those signals oscillate [3, 24].

2.2.1.3 N3 Sleep

N3 sleep stage is considered to be deep sleep, the hardest phase of NREM sleep

to awake from. The transition from N2 to N3 sleep stage depends on the existence

of slow-wave activity, a brain activity between 0.5 and 2 Hz with peak-to-peak

amplitude higher than 75µV. When more than 20% of the time of an epoch has

slow-wave activity, the sleep is at the N3 sleep stage [3, 24]. For this reason, N3 is,

also, known as Slow-Wave Sleep (SWS). An epoch is de�ned as a period of time of

30 seconds, the basic unit of time for PSG scoring. Further discussion about PSG

will be presented ahead.

2.2.1.4 Rapid Eye Movement Sleep

As the name suggests, the REM sleep receives its name because an exclusive

characteristic of this type of sleep, the fast movement of the eyes. Skeletal muscle

atonia is responsible for this behaviour. The skeletal muscle atonia is the result

of the decrease in the activity of the electrical control signals by the neurons. The

electrical signal, in the muscles, has, usually, the lowest amplitude of the entire sleep

period.

Brain electrical activity, in REM sleep, resembles its activity when a subject is

awake. REM sleep is known as paradoxical sleep because of this brain electrical

behaviour. In REM, brain electrical activity have LAMF activity, theta and beta

rhythms. Alpha waves are slower, 1 to 2 Hz, than the same type of waves present in

the wakefulness and in the N1 stage. Sawtooth waves, with frequencies in the theta

range, may, also, be present [4,24,30,31]. REM sleep is recognized as an active stage

of sleep, with an increase in energy consumption, when compared with NREM [25].

People dream more and dreams are more elaborated at this sleep stage [4].

REM sleep is classi�ed in two subclasses depending on the brain muscular and

eyes electrical activity. Tonic REM sleep is characterized by desynchronization of

the brain electrical activity, skeletal muscle atonia and absences of both re�exes,

monosynaptic and polysynaptic [30, 31]. Phasic REM sleep has rapid eye move-

ments in all directions, oscillations in the blood pressure and in heart rate, irregular

respiration, tongue movements, and myoclonic twitching of the facial and limb mus-

cles, and spontaneous middle ear muscle activity [30,31]. The classi�cation of REM

sleep in tonic and phasic is not, currently, recognized by the AASM in its scoring

manual.
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2.2.2 Sleep and Ageing

Sleep pattern is dynamic, it changes with age, and its duration decreases over

time. Newborns sleep, around, two-thirds of the day, with an, roughly, even dis-

tribution between REM sleep and NREM sleep, while young adults have a sleep

duration between 7.5 and 8.5 hours [3]. The elderly just need a few hours of sleep

per day and its major component is NREM sleep. Figure 2.3 presents the relation-

ship between the number of hours asleep and a subject's age. The number of hours

in both NREM and REM sleep is, also, represented.

After reaching adulthood, subjects have a percentage of REM sleep, almost,

steady throughout life, with values around 19% and 22%, depending on the sources.

It starts to decrease later in life, with values between 11% and 19% for subjects above

60 years old [32, 33]. REM sleep density, also, stay steady [34, 35]. Young adults

have a sleep e�ciency of 95%, but it starts to decrease immediately, achieving values

around 70% for subjects with more than 80 years old [1, 36, 37]. The percentage of

N3, deep sleep, also decreases with age, and evidence has been found of a decrease in

both the slow-wave activity and slow-wave density [38]. The percentage of N1 and

N2 sleep, and the wakefulness periods, during the night, also increase with ageing.

Sleep spindles decrease in number, amplitude and frequency [1, 3, 38].

Sleep architecture is also a function of age, with both genders having their sleep

structure modi�ed [3]. In men, N1 and N2 sleep stage percentage increases while

stage N3 and REM percentage decrease over time. Men spend 5.8%, 61.4%, 11.2%

and 19.5% of their time sleeping in, respectively, N1, N2, N3, and REM when aged

between 37 and 54 years old, while older men, above 70 years old, the percentage

value asleep is of 7.6%, 66.5%, 5.5%, and 17.8%. Women have a slight di�erence,

with N1 and N3 sleep stage percentage increasing, while N2 and REM sleep stage

percentage decreases over time. For the same age groups, the evolution of N1 goes

from 4.6% to 4.9%, N2 goes from 58.5% to 57.1%, N3 goes from 14.2% to 17.2%

and REM goes from 20.9% to 18.8% [3].

Figure 2.3: A representation of the relationship between the number of hours sleeping and ageing. The time spent
in both REM and NREM sleep is, also, represented [1].
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2.2.3 Gender and Sleep

Sleep pattern has slight di�erences between men and women, with men present-

ing more sleep impairment and disruption than women in advanced ages [38]. Men

have, always, higher percentage values of N1 sleep stage than women, of all ages, and

N1 sleep stage increases with ageing for men, while women don't correlate changes

in N1 sleep stage with ageing.

Men and women also have signi�cant di�erences in N2 and N3 sleep stages. Men

have higher percentage values of N2 sleep stage, and its weight in the overall sleep

increases with age, while women age with stable values of N2 sleep stage percentage.

N3 sleep state decreases with age in men, while it increases with age for women.

REM sleep is signi�cantly a�ected by age in both sexes, with a decrease over the

years, and men have lower REM sleep than women [33].

A study with the participation of 512 subjects with 25.3 ± 0.65 years old, 227

men and 285 women, analysed sleep duration and it found that women tend to sleep,

7.2±0.82 hours, more than men, 6.8±0.91 hours [39]. A study on circadian rhythm

analysed sleep patterns of 52 women and 105 men, aged between 18 and 74 years

old, with 33.1 ± 17.4 years old and it found that the women's circadian rhythm is

signi�cantly shorter, 24.09±0.2 hours, than the circadian rhythm of men, 24.19±0.2

hours [40]. Other factors, like the menstrual cycle, pregnancy, labour, lactation, and

menopause, may play an important role in sleep modi�cations in women [1,41].

2.2.4 The Function of Sleep

Sleep plays a critical role in the development of a healthy subject. Both the mind

and the body bene�t from good sleep hygiene, as well as the maintenance of home-

ostasis, and multiple functions are sleep-dependent. Sleep is recognized to be funda-

mental in survival, thermoregulation, promoting several brain tasks, the elimination

of toxins, the immune system, energy conservation, and in anabolic processes. Sleep

has, also, in�uence in performance, vigilance, attention, and concentration [4, 31].

Hereafter, some of the functions of sleep are described.

2.2.4.1 Brain Function

The brain is one of the structures of the human body taking more bene�t from

sleep. Sleep promotes an active consolidation of memory by reactivating the newly

formed representations [42]. Memory function is the result of the implementation

of 3 sequential processes. The �rst process is learning, in which a subject acquires

and encodes the information to create the memory. The consolidation process helps

to reinforce the newly formed memory, prone to disappear, while the recall process

accesses memories stored, which helps to strengthen memory [43]. Sleep links to

the second process, the consolidation process, although this process may, also, exist
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during wakefulness [43,44]. Researchers agree on the link between memory function

and sleep, however, the mechanisms behind the di�erent types of memories, their

consolidation, and which sleep phase is, still, a subject of analysis and discussion [45].

Some authors claim the existence of a clear separation between functions [5,43]. Each

sleep stage is associated with the consolidation of di�erent types of memory. For

example, N3 sleep is responsible for strengthening the consolidation of declarative

memory, while REM sleep is important in the consolidation of procedural memory.

Some authors defends a more complex structure for memory consolidation, with

NREM sleep and REM sleep playing a complementary role [46]. There are evidence

of N2 sleep to be linked with memory consolidation [46,47].

2.2.4.2 Immune Function

The immune system is a defensive mechanism to protect the host against diseases

and it has the ability to create memories. It remembers previous actions against

suspicious elements inside the body [6]. There is a theory that mimics the brain

memory formation to the immune system, with N3 sleep playing an important role

[48]. Tests in animals are in line with this theory [49]. An experiment in vaccination

against hepatitis A studied the e�ect of sleep deprivation the night following the

vaccination. The results suggest that sleep improves the immunologic response, by

increasing the formation of antibodies. Subjects who slept on the �rst night had 2

times more antibodies than those who does not, after 4 weeks [50]. Sleep deprivation

may, also, promotes in�ammatory response in healthy young subjects [51]. In other

words, sleep is healing.

2.2.4.3 Endocrine Function

Sleep impairment and disruption have a real impact on the regulation of glu-

cose [52,53]. Studies had con�rmed the relationship between the presence of SRBD

and the development of type 2 diabetes. Hypoxia is a common condition in SRBD,

and it is recognized to trigger the release of insulin antagonists, thus increasing in-

sulin resistance [54]. The prevalence of Sleep Apnoea-Hypopnea Syndrome (SAHS),

1.9% of the total male diabetic population, was found to be signi�cantly higher

(P < 0.001) than among male subjects without diabetes, 0.4%. Even lean young

subjects, without cardiometabolic diseases, may have an increased risk of developing

type 2 diabetes when in the presence of OSAHS. Results of the experiment show

OSAHS patients with a lower insulin sensitivity of 27% and an increase of 37% in

insulin secretion when compared with control subjects [55]. SRBD prevention is

fundamental to avoiding the development of metabolic diseases, but insulin resis-

tance due to intermittent hypoxia could be improved by performing high-intensity

exercises [56]. The relationship between sleep and the endocrine system is far more

complex, with sleep quality and quantity being important to maintaining hormonal
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balance. Growth hormone, prolactin, and sex hormones are examples of sleep-

dependent hormone production [57]. This relationship, between sleep and the en-

docrine system, is bidirectional, and melatonin is an example of the in�uence of a

hormone in sleep regulation [58]. The hormone promotes sleep and its production

occurs in low light and night periods. Impairment in the endocrine system balance

can a�ect sleep, signi�cantly [57].

2.2.4.4 Energy Function

Energy conservation has been linked with sleep as a function of it [59]. Energy

conservation during sleep is between 100 and 200 calories per day and, on average,

a man spends 2500 kcal, while a woman spends 2000 kcal [1, 31]. In NREM sleep,

the metabolic rate drops between 5% and 10%, when compared with wakefulness,

while it is similar in REM [1]. Some researchers claim these values are insu�cient

to consider energy conservation a function of sleep, considering that one-third of

the day is spent sleeping [31]. In an experiment with 7 healthy participants, 22± 5

years old, perform an energy consumption evaluation for 3 days. The �rst 24 hours

were normal, 16 hours of wakefulness and 8 hours of sleeping, followed by 40 hours

of wakefulness and 8 hours sleep. When compared with the �rst day, the second

day, sleep deprivation, had a signi�cant increase of 7% and on the third day, sleep

recovering, had a signi�cant decrease of 5% in energy consumption. A night period

comparison revealed a signi�cant increase of 32%, on sleep deprivation night, and

a signi�cant decrease of 4%, on sleep recovery night, in energy consumption when

compared with the �rst night. Low energy savings may be justi�ed as a balance

between metabolic savings and an increase in processes sleep-related [60]. Energy

consumption generates sub-products and they are accumulated by the body during

wakefulness. Sleep allows the removal of those waste sub-products from the brain,

avoiding an imbalance between oxidants and antioxidants. Some of those waste

products, from brain activity, are linked with neurodegenerative diseases [61].

2.2.4.5 Cardiovascular Function

The cardiovascular system links with sleep and its functioning are sleep stage

dependent. When compared with the wakefulness state, some of the cardiovascular

system parameters have the following behaviours. During NREM sleep, the heart

rate, the cardiac output, the blood pressure, and the cerebral circulation decrease,

the peripheral vascular resistance keeps steady or with a slight decrease, and the

cutaneous circulation increases. REM sleep separation in tonic and phasic allows

to understand the cardiovascular system better. The tonic sleep is similar to the

NREM sleep, with a di�erence in the cerebral circulation, it increases, in the periph-

eral vascular resistance, it decreases, and in the cutaneous circulation, it is variable.

In the phasic sleep, all but one of the previous parameters increase, and the cuta-

15



SLEEP AND SLEEP DISORDERS

neous circulation is variable [1, 4]. Sleep deprivation may trigger a brain response

to increase the production of white cells, with an experiment in mice showing the

increase in white cells production and the existence of more severe atherosclero-

sis [62] The response to sleep deprivation, also, triggers an in�ammatory response,

and [51]. A study on females, aged between 45 and 65 years old, and without coro-

nary heart diseases in the beginning, was performed to assess sleep duration and

coronary diseases. Of the 71617 females, there were 934 coronary issues reported.

After adjusting for diabetes and hypertension, females sleeping less than 5 hours per

day had an increase of 39%, when compared with females sleeping 8 hours. Over-

sleeping can be, also, harmful, with an increase of 37% for females sleeping more

than 9 hours [63]. Other studies con�rm these observations [64, 65]. Shift workers

are, also, prone to developing cardiovascular diseases, with a signi�cant risk of is-

chaemic heart disease higher than in day workers. The relative risk for shift workers

was 2.2, p < 0.04, when working for 11 to 15 years and 2.8, p < 0.03, when working

for 16 to 20 years under these conditions [66]. A study in a male population shows a

signi�cantly higher prevalence of SAHS in subjects with hypertension, 0.96%, than

in subjects without hypertension, 0.34% (p < 0.05) [67].

2.2.4.6 Respiratory Function

The respiratory system decreases its activity during sleep. The respiratory drive,

the upper respiratory airway dimension, and the chest wall muscles activity decrease

during sleep, more during the REM sleep than during the NREM sleep. The respi-

ratory pattern is regular in each of the NREM sleep, but it changes in the transition

from one sleep stage to the next one. In REM sleep, it is widely accepted the ex-

istence of chest muscle atony in all muscles but one, the diaphragm muscle keeps

its function, but more recently, new evidence point to a second muscle keeping its

function, the parasternal intercostal [1, 68].

Figure 2.4: The relationship between respiratory rate and ageing from birth to the age of 18 years old. At the age
of 18 years old, respiratory rate is similar to young adults [69].
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The upper airway resistance is higher in sleep than in wakefulness, with the

highest values of resistance being measured in NREM sleep [1,70]. Oxygen demands

are correlated with body activity, the higher the activity. the higher is the demand

for O2. The respiratory system response is to change the volume of air inhaled, in

each breath, and the respiratory frequency. During sleep, body activity decreases,

the demand for O2 decreases, and the respiratory rate, also, decreases. In healthy

adults, the respiratory rate, at rest, is between 10 and 18 breaths per minute, with

an average of 12 breaths per minute [3, 69]. Figure 2.4 has the evolution of the

respiratory rate at paediatric age. Subjects who are 18 years old, already have a

respiratory rate of an adult.

2.2.4.7 Social Behaviour and Mood

How we sleep and how long we sleep in�uence our social behaviour. A recent

experiment by [71] found that the lack of sleep induces subjects to loneliness and

to avoid social interactions. Those behaviours are known to increase the mortality

risk [72]. Sleep a�ects the mood during the wakefulness state [73].

2.2.4.8 Thermoregulation

Another function of sleep is in temperature regulation [42]. There is a temper-

ature drop immediately after the transition from the wakefulness state to NREM

sleep [74]. The drop in temperature is, probably, due to the drop in metabolic

rate and due to vasodilatation [1]. The body temperature drops between 1 and

2ºC [59]. The transition from NREM sleep to REM sleep is followed by an increase

in temperature [74,75].

2.2.5 Sleep Modulation Factors

A great number of factors may have a decisive factor in sleep modulation, and

they are related to physiological function, but also to how we live.

2.2.5.1 Physical Exercise

The link between exercise and sleep is not fully acknowledged since most of the

studies were performed on good and/or young sleepers [76]. Intense physical training

in the hours before bed can disrupt sleep [24]. A subject performing regular exercise

has less REM sleep, which acts as an anti-depressant over time [77]. Regular exer-

cise increases SWS and TST, and it decreases Sleep Onset Latency (SOL) in good

sleepers [78]. Subjects with SRBD may improve their sleep quality by executing

moderate physical exercises [76]. Acute exercise have the same e�ect in REM sleep,

SWS, TST, SOL. REM sleep latency also increases [78]. Children and young adults,

with sleep quality, improve SOL by performing exercises 2 to 3 hours before bed-

time [77]. Older adults may, also, improve their sleep by performing exercises [79].
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Exercises may help in sleep duration, especially, if associated with depressive symp-

toms [80]. Nevertheless, exercise and sleep may compete for time, but exercise must

not be performed at the expense of the duration of sleep [81].

2.2.5.2 Tobacco

Smoking is associated with a longer SOL and REM latency, and a decrease in

TST (higher periods of awake time during the night), in SWS and in sleep e�-

ciency [82, 83]. Active smokers are not the only ones that have their sleep changed

by tobacco smoke, and passive smokers also have a modi�cation in their sleep. Ap-

proximately 40% of the Japanese adolescents that never smoke are passive smokers,

and a survey used several parameters to evaluate the quality of their sleep and identi-

�es that passive smokers have, generally, worst scores when compared with subjects

that never have been neither active smokers nor passive smokers [84]. A study, in-

volving the nicotine e�ect on the brain, had discovered sleep spindles modulation

by this molecule. Nicotine is known to enhance cognitive function, and the study

reported that nicotine changes sleep spindles amplitude, density, and duration [29].

2.2.5.3 Alcohol

Alcohol abuse is acknowledged to be sleep disruptive [24]. A paper review anal-

ysed the alcohol impact on sleep for 3 levels of consumption, low (0.15 ≥ x ≥
0.49mg/kg), moderate (0.5 ≥ x ≥ 0.74mg/kg), and high (≥ 0.75mg/kg), and for

sleep data from the �rst half of the night and from full night studies. Most of the

studies analysed sleep quality after the subjects drank a single dose of alcohol, right

after going to bed. Data analysis for the �rst half of the night reported, for most of

the studies, an increase in SWS and a decrease for both SOL and Wake After Sleep

Onset (WASO) for all the levels of alcohol consumption. REM sleep changed with

the di�erent levels of consumption. There is a balance, for low levels of consumption,

between studies reporting an increase and the studies reporting a decrease in REM.

Moderate and high levels of consumption had, respectively, a prevalence of studies

reporting an increase and a decrease in REM. Most of the studies focusing in full

night sleep analysis reported an increase in WASO and in the latency of REM onset.

REM sleep increased for low levels of consumption but decreases for the remaining

levels. SWS decreased for low levels of consumption, increased for high levels of con-

sumption and it there is a balance between studies reporting a decrease and those

reporting an increase for moderate levels of consumption [85]. Alcohol changes brain

function at the neurotransmitter level. Drinking alcohol improves sleep in the �rst

half of the night for non-alcoholic subjects but it induces sleep disruption, especially,

in the second half of the night [86�88].
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2.2.5.4 Ca�eine

The consumption of ca�eine before bed may change sleep, even in low doses

[24, 89]. Ca�eine is well known to interfere in sleep homeostasis, by slowing down

sleep build-up during wakefulness [90]. In fact, drinking co�ee in the afternoon, up

to 6 hours before going to bed, may disrupt sleep. A study analysed the e�ects of

drinking co�ee, by ingesting a 400 mg ca�eine pill, in a population of 12 healthy

subjects without SRBD. Pill intake occurred 0, 3, or 6 hours before the subjects went

to bed [91]. The results showed, for example, a reduction of sleep by 1 hour, SWS

by 22 minutes and sleep e�ciency by 9%, and an increase in WASO by 8 minutes

and in SOL by 24 minutes, for subjects taking the pill 6 hours before bedtime.

Other studies reported ca�eine intake, 200mg, 16 h prior to bedtime may disrupt

sleep [92]. Sleep duration and non-restorative sleep are inversely proportional, and

the higher the intake of ca�eine, the higher the risk of non-restorative sleep for the

same amount of sleep duration, especially for low values [93]. Ca�eine may have

a stronger sleep disruption e�ect in older adults than in younger adults [94]. High

consumption of ca�eine, ≥ 300mg/day, by women during pregnancy and nursing

did not increase awakening frequency in their 3-month-old babies [95]. A ca�eine

abstinence study reported sleep quality did not improve, signi�cantly, for ca�eine

doses up to 120mg [96].

2.2.5.5 Medication

Medications are an important tool in Medicine to �ght or prevent diseases, or

to perform a diagnosis. Sleep disruption can be mitigated by using the appropriate

medication. Sleeping pills target neurotransmitter brain cells to regulate their activ-

ity and promote sleep. Pharmaceutical industries have a wide o�er of sleeping pills

and they change sleep architecture. There are sleeping pills, benzodiazepines, e�ec-

tive in the treatment of insomnia and awakenings in short periods of time [97, 98].

Those pills have relatively long periods of elimination half-life (>5 hours) and can

be a hazardous condition during the day, causing sleepiness or drowsiness. While

e�ective in the short term, the long-term use of these medications is not proven to

be e�ective. Addiction may occur with these and other medications, for example,

barbiturates, chloral hydrate, and clomethiazole [99, 100]. Z-medication sleeping

pills, zolpidem, zopiclone, and zaleplon, also improve insomnia and they belong to

a group of sleeping pills with a short half-life. Elimination of half-life is fast as 1h,

which means an individual can have a normal daytime lifestyle, without somnolence

and drowsiness, due to the medication e�ect. On the other hand, high rates of

half-life may be too fast to sustain sleep throughout the night [99]. Factors like

the dose or group age may have an in�uence in the existence of sleep architecture

changes [97, 101].
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2.2.5.6 Substance abuse

Substance abuse is a world problem, with addiction-associated problems. Drug

consumption, and its in�uence on sleep, are strongly related to the used substance

[102]. A report from 2017 estimated that 5% of the world population used drugs,

at least once in 2015, and 0.6% had drug use disorders and they require treatment

[103]. Data from 2015 and compiled from the World Health Organization, the

United Nations O�ce on Drugs and Crime and the Institute for Health Metrics and

Evaluation pointed to a prevalence, among the adult population, of 3.8%, 0.77%,

0.37%, and 0.35% for, respectively, cannabis, amphetamine, opioid and cocaine in

the last year [104]. In the same year, a report analysed the consumption habits

in 24 European countries. A total of 18% of the teenagers, between 15 and 16

years old, had already consumed cannabis, and less than 5% consumed other drugs

(MDMA/ecstasy, amphetamine, cocaine, methamphetamine, and hallucinogens).

Estimation of drug consumption, at least once, among older individuals, between

15 and 64-years-old, was estimated to be around 25%. The prevalence was higher

among male individuals, 56%, with cannabis being the most consumed drug [105].

In the United States of America, during the year 2016, 18% of the population used

illicit drugs (including the misuse of prescribed medication) [106].

The in�uence of substance abuse on sleep is well known to induce disruptive

e�ects and to increase the di�culty to fall and stay asleep [107]. Generally, the con-

sumption of illicit drugs, both acute and chronic, is associated with the deterioration

of sleep. Acute consumption of both cocaine and ecstasy leads to an almost sup-

pression of REM sleep. SOL increases with cocaine and high doses of cannabis, TST

decreases with cocaine and ecstasy long-term consumption. An increase in WASO

and N1 and a reduction in N2 is associated with ecstasy long-term consumption.

REM sleep decreases with cannabis. Low doses of cannabis may improve SOL, but

it is followed by arousals [108]. Withdrawal also has implications in sleep architec-

ture [102]. In the case of cocaine, SOL, TST and sleep e�ciency deteriorates, but

with an improve in REM. REM sleep time increases signi�cantly in the �rst nights,

but it decreases in the following nights [109]. SWS patterns follow an inverse pat-

tern. Cannabis withdrawal increases SOL, WASO and REM, and it decreases SWS.

There are bene�ts from the consumption of cannabis, specially cannabis-based pills,

with improvements when the patients have chronic pain [108].

2.2.5.7 Behaviours

Healthy sleep habits include going to sleep when sleepy, but keeping, always, a

schedule for bedtime and to awake, with a proper number of sleeping hours. Napping

is a potential factor to disrupt sleep quality. The best practices for a good night of

sleep require a routine to relax before going to bed. It is also recommended to ease
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the mind, by avoiding worrying and brainstorming, and to neither eat large meals nor

drink lots of liquids. The natural night is a good regulator of the circadian rhythm,

by controlling the release of melatonin. The bedroom must be quiet, relaxing, at a

comfortable temperature, with no or little light, and be used in tasks. Pet animals

may be responsible for awakenings during the night, and they must be locked away

from the bedroom. When there is an incapacity to fall asleep, the individual must

get up after 20 to 30 m in bed [1, 1, 4, 24].

2.2.6 Sleep Deprivation

Sleep deprivation is a common and relevant condition in our society and it is

linked to a vast number of factors. The most visible and immediate e�ect of this

condition is Excessive Daytime Sleepiness (EDS). It may be reversed by some vari-

ables, like activity, temperature, drugs, and motivation among others, in the early

phase. A study in sleep deprivation found that an individual is capable of delivering

a subjective analysis of the degree of EDS up to some point. Beyond that point, the

individual is unable to recognize that the condition is getting worse [110].

Work shift forces workers to, continuously, disrupt the sleep-wake cycle. In the

United States, the most common alternate shift, the afternoon to midnight schedule,

represents 6.8% of the total workforce [111]. Health problems, being capable of

disrupting sleep, social or work pressures, and volunteer acts are other factors leading

to sleep deprivation. As a consequence, health issues arise from this condition,

like mood and performance impairments, in positive feedback, which leads to the

deterioration of quality of life [112]. Insulin resistance, response time and accidents

(they increase), and memory, performance, concentration, cognition, vigilance and

attention (they decrease) may be unbalanced by sleep deprivation [24,31,113].

EDS may arise from sleep deprivation and their related factors lead to the in-

crease in mortality and the number of years lived with disability. In its most severe

form, on the edge of falling asleep, is present in 13.1% of the population of Iceland

and Sweden [114]. Professional drivers are more sensitive, and EDS can signi�cantly

predict truck accidents (Odd Ratio = 1.73, CI95%=1.15�2.61) [115]. Young drivers

are also more susceptible to accidents because even when they are aware of their

sleepiness they keep driving [116].

Structural changes, in sleep, occurred in the nights of sleep recovery, after sleep

deprivation, with an increase in SWS rebound in the �rst night at expense of the

other sleep stages. In the second night there is, usually, REM rebound [25].

All age groups su�er from sleep deprivation, and students reported to their teach-

ers they are sleepy, with some data pointing to a range between 40% and 80%,

country-based data [117, 118]. A Swedish study focuses its analysis on the adult

population, aged between 30 and 65 years old, and their sleep deprivation problems.
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From the population under analysis, 28% of the women and 21% of the men had too

little sleep [119]. The e�ects of sleep deprivation in the di�erent group ages have a

di�erent impact. The younger the individuals are the more susceptible to the e�ects

of sleep deprivation they seem to be [3, 4, 31].

2.2.7 Sleep Medicine

Sleep medicine is the �eld dedicated to the study and comprehension of normal

sleep and the application of treatments for SRBD. Until the 19thcentury, the sleep

study focused on a subjective analysis of information provided by the sleeper and

the observation of the sleeper's behaviour during sleep. The study of sleep evolved

signi�cantly in the 20th, especially, in the second half, and, at this point, systematic

methods, to study sleep, started to be implemented. Acoustic external stimuli, with

di�erent levels of sound intensity, were used to study the depth of sleep and the

e�ects of sleep deprivation. The use of questionnaires and scales to assess sleep were

some of the methods implemented [120,121].

Until the 20thcentury, most scientists and physicians believed that sleep was a

passive and homogeneous state, without scienti�c interest. At the time, they un-

derstood sleep as a chain of events, with subjects entering this state as a result of

a decrease in sensor input and, as a consequence, a decrease in brain activity. Nev-

ertheless, some remarkable observations have been made. Jean-Jacques de Mairan

observed the existence of an endogenous circadian rhythm, by keeping plants all day

in the dark. John Cheyne and William Stokes were the �rst to describe the Cheyne-

Stokes respiration, and Jean Géllineau was the �rst to describe narcolepsy [4, 122].

Hitherto, there was not any distinction between sleep and other states, like comma

or hibernation, in the minds of scientists and physicians. This was the main line of

thought until the discovery of REM, in the 20th [3].

The 20thcentury was a time when major discoveries were made in this �eld,

leading to a huge leap forward in the understanding of the importance of sleep. In

the 1920s, Hans Berger recorded brain electrical activity in subjects and, then, he

was able to observe electrical di�erences between the sleep state and awake state.

Nathaniel Kleitman observed that subjects awake all night were, typically, less sleepy

and impaired in the morning than in the middle of the night [3, 122]. The brain's

electrical activity, and the di�erent patterns associated with sleep, were described

by Loomis, among others [123].

The discovery of REM sleep was a de�nitive turning point in the general accep-

tance of the importance of sleep. In the 1950s, Eugene Aserinsky and Nathaniel

Kleitman started to register the electrical activity around the eyes and they ob-

served bursts of electrical activity, REM sleep. The increase in heart rate and the

existence of irregular respiration led them to associate, REM sleep with dreaming.
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To con�rm this assumption, they performed awakenings in the subjects when REM

was occurring and when it was not. The sleep cycle, and its duration, were later

found by William Dement and Nathaniel Kleitman when they decided to do full-

night recordings. They, also, calculated the average amount of REM percentage,

between 20% and 25%, and they observed that the amount of REM sleep was less

common at the beginning of the sleep than later in the night [3, 31, 122].

2.2.8 Sleep Study - Polysomnography

The term PSG was coined to describe a study performing data recording of syn-

chronized multiple physiologic parameters during sleep. Nowadays, it is considered

the gold standard in the sleep medicine �eld and it allows the study of sleep, to en-

hance the knowledge about normal sleep and its disorders, the diagnosis of SRBD,

and the assessment of the treatment.

The �rst known compilation of rules, with global acceptance, to score data from

PSG was suggested by Allan Rechtscha�en and Anthony Kales and it was published

in 1968, the R&K Manual. The R&K manual was the �rst world reference, for

decades, for sleep laboratories until 2007 [121, p. 96]. In that year, AASM published

the The AASM Manual for the Scoring of Sleep and Associated Events, a new manual

to gather and add state-of-the-art information in the scoring process. Since that

year, AASM is the responsible to keep updated the most important manual in the

world in sleep assessment.

Those subjects with medical prescriptions to undergo a PSG study, in the sleep

laboratory, should prepare to sleep away from home. At the CMS, the overall process

starts at 21h30m, with the sleep technicians following the protocol to prepare the

subject to perform the PSG study. Sleep technician asks for details about the

subjects, sleep habits, anthropometric data, medication, and consumption habits

are among the typical questions. The sleep technician starts the patient's session,

on the computer, and, then, the subject's preparation starts with the measurement

of the head, which is followed by the placement of the sensors on the skin's surface.

The multi-parametric PSG records are detail in the following sections.

A local concentrator receives all the signals and provides the �rst data process-

ing techniques, implementing signals' ampli�cation, �ltering and digitization. Data

collected from the subject was transmitted, via cable, to a computer room, in a ded-

icated room. This room has computers with the appropriated software to manage

data storage and data visualization. Both physicians and sleep technicians can vi-

sualize, and perform o�ine scoring to assess the subjects' sleep quality. An infrared

webcam, with video and audio capability, also streams data to the dedicated room,

providing more information about the patient's sleep quality [4].

Sleep technicians must ensure the skin-sensor interface has low impedance values
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and proceed to correction if necessary. At the onset of sleep time, subjects lay on

the bed and the PSG data acquisition, for sleep evaluation, starts, by pressing

the software lights out button. Sleep technicians are an all-night vigilance to help

subjects and solve acquisition problems.

The full-night PSG has a �exible time duration and, at the CMS, the study must

have, at least, 6 hours of data acquisition and, in normal situations, it does not

need to exceed 8 hours. Around 7 a.m., sleep technicians end the data acquisition

procedure, formally by pressing the software lights on button, and woke up the

patients. Sleep technicians detach sensors, in most cases, from the subjects, and

they �nish the reports of each subject.

2.2.8.1 Channels

The study of sleep, based on PSG, is versatile, and the number of channels as

well as the type of data collected is adjusted to the requirements of each patient [4].

Data collected for the PSG study may be categorized into 3 di�erent types. The bio-

electrical potentials are electrical signals produced by the body, and the brain, the

eyes, the heart, and speci�c skeletal muscles activity are important to understand

sleep and they are collected to have, respectively, the Electroencephalogram (EEG),

the Electrooculogram (EOG), the Electrocardiogram (ECG) and the Electromyo-

gram (EMG). Non-electrical physiological signals are collected by sensors known as

transducers, and they work by converting non-electrical physiological signals into

electrical signals. The snore, the oronasal respiration, the thoracic and abdomi-

nal respiratory movements, and the body position are collected using transducers.

Auxiliary devices are the third category and the pulse oximetry sensor is the most

common example.

2.2.8.1.1 Electroencephalography Most of the PSG studies use 6 derivations

from the complete EEG, according to the International 10�20 System of Electrode

Placement, to monitor the brain electrical activity. A complete EEGmay be required

to rule out epilepsy. At the CMS, the PSG derivations are the O1, C3, F3, O2, C4

and F4. The �rst 3 are a reference to M2 while the remaining 3 are a reference to

M1.

The O1/M2 and the O2/M1 derivations are important to assess occipital electri-

cal activity, the C3/M2 and the C4/M1 to assess central electrical activity, and the

F3/M2 and the F4/M1 for the frontal electrical activity. The occipital derivations

are suitable for alpha rhythms detection, while the central derivations are suitable

for the detection of spindles and the frontal derivations allow to identify of K com-

plexes and slow-wave activity. The CMS team uses reusable electrodes of gold cup

or silver-silver chloride type [25,31].
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2.2.8.1.2 Electrooculography The movements of the eyes are recorded by the

E1/M2 and E2/M1 derivations. An electrode, E2, is located near the outer canthus,

with an o�set of 1 cm above the horizontal line of the right eye. The second electrode,

E1, has the same location in the left eye, but 1 cm below the horizontal line of that

eye [31]. Data from EOG are necessary to assess REM sleep. The same type of

electrodes used in EEG are used in EOG [25].

2.2.8.1.3 Electrocardiography ECG signal records data from a single deriva-

tion and it allows to monitor heart electrical activity. The �rst electrode position

is 2 to 3 cm below the midpoint of the right clavicle. The second electrode position

must be in the midpoint of the left clavicle and below the breast crease. ECG uses

a type of electrode equal to the ones used in EEG [31].

2.2.8.1.4 Electromyography The EMG monitors skeletal muscle electrical ac-

tivity from 3 di�erent areas of the body, chin, left, and right leg. A single derivation

monitors the electrical activity of each area. The chin electrodes placement is 2

cm apart to detect bruxism, while each leg has also two electrodes 2 cm apart to

evaluate leg movements. EMG uses also the same electrodes used in EEG [25].

2.2.8.1.5 Respiratory Sensors The monitor of the respiratory function uses 4

di�erent sensors, 2 sensors monitor the oronasal air�ow, and 2 sensors monitor chest

and abdominal movements. The nasal cannula is a pressure sensor to, exclusively,

monitor nasal air�ow, and it is placed under the nasal area, and above the upper

lip. It has 2 tubular prongs directed to the nostrils. The thermistor is sensitive

to temperature and monitors air�ow from both the mouth and the nose. It has 2

temperature-sensitive wires and it must be placed between the nose and the upper

lip, atop the cannula. Monitoring the thoracic and abdominal movements requires

the use of the chest and the abdominal respiratory inductance plethysmography,

respectively [31].

2.2.8.1.6 Oxygen Saturation Pulse oximetry is a method to measure Oxygen

Saturation (Pulse Oximetry) (SpO2) in the blood, it is non-invasive and it performs

measurements, usually, in the index �nger.

2.2.8.1.7 Body Position The body position sensor is a piezoelectric sensor,

and, at the CMS, is attached to the chest respiratory inductance plethysmography,

located between this respiratory sensor and the subject's body.

2.2.8.1.8 Snoring A piezoelectric sensor monitors the upper respiratory airways

to detect snoring, and its placement is in the neck.

2.2.8.2 PSG Score

PSG score requires, at least, an additional 2h to analyse data, search for abnor-

mal events, and to deliver reports. The fundamental time for sleep evaluation is 30
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seconds, one epoch. The AASM rules for sleep scoring split sleep evaluation in 5

stages. Each epoch can be scored with one, and only one, of the following stages.

The �rst one is stage W, which represents epochs of wakefulness. The remaining 4

stages are related to sleep architecture, REM sleep and NREM sleep, divided into

N1, N2, and N3.

2.2.8.2.1 Stage W Wakefulness does not belong to the architecture of sleep but

it plays an important role in sleep evaluation. The human state wakefulness is char-

acterized by parameters from EEG, EMG and eye movements. Immediately before

sleep onset, EEG is characterized by low amplitude signals, with the predominance

of alpha and beta activity. Muscle activity is higher during wakefulness which may

increase artefacts in the EEG. Eyes may present movements in multiple directions,

vertical, horizontal, or oblique, and in slow or fast movements [31]. EMG activity is

often higher, at the chin, in this stage than in each one of the sleep stages.

Individuals with the capacity to generate alpha activity, with their eyes closed,

should have an epoch scored as awake when they are more than 50% of the time

with alpha activity over the occipital region. In the absence of alpha activity, the

score rules state that one of the following criteria, if veri�ed, is enough to score the

epoch as W. Eye blinking at a frequency between 0.5 and 2 Hz, the existence of

eye movements in reading behaviour, or the presence of irregular conjugate REM,

together with normal or high EMG activity at the chin.

2.2.8.2.2 Stage N1 An epoch is classi�ed as an N1 sleep stage when alpha

rhythm attenuates, it represents less than 50% of the epoch, and it is replaced by

LAMF, theta activity, present in more than 50% of the epoch. Entering in N1 is

often followed by a decrease in chin activity.

Some individuals can't generate alpha rhythm with their eyes closed, and for

these cases, stage N1 starts when the �rst of the following criteria appears. There

is theta activity and background frequencies with a decrease of, at least, 1 Hz when

compared with stage W, vertex sharp waves in the EEG, or slow eye movements in

the EOG.

2.2.8.2.3 Stage N2 The rules to de�ne the beginning of stage N2 demand to

look to the epoch under evaluation, but, also, to the previous epoch. The epoch

under evaluation must not exceed 6 seconds of slow-wave activity, a feature of N3.

It is N2 if the �rst half of the epoch under evaluation or the second half of the

previous epoch has K-complexes not associated with arousals and/or a sequence of

sleep spindles.

The subject continues in sleep stage N2 in the presence of LAMF, and even in

the absence of K-complexes not associated with arousals or sleep spindles when they

exist, at least one, in the previous epoch. Sleep is no longer in stage N2 when there
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is a transition to stage W, N3, or R, an EEG arousal, resulting in a transition to N1

or W, or the existence of a major body movement followed by slow eye movements

and LAMF, but without neither sleep spindles nor K-complexes not associated with

arousals. In the case of existing slow eye movements, the epoch following the major

body movement is scored as N1. In the case of the absence of slow eye movements,

after the major body movement, the epoch is scored as N2.

2.2.8.2.4 Stage N3 To score an epoch as N3, the epoch must have, at least, 6

seconds of slow-wave activity. Sleep spindles may be present, and eye movements

are, usually, absent. The EMG signal, at the chin, is variable, but typically lower

than at stage N2, and can be as low as in stage R.

2.2.8.2.5 Stage R Stage R, REM sleep, exists in the presence of LAMF, low

amplitude EMG signal at the chin, which is, typically, the lowest amplitude values of

the entire sleep, and REM. Sleep stays in stage R even in the absence of REM when,

following a score of stage R epochs, EEG continues to show LAMF, but without K-

complexes and sleep spindles, and chin activity stays at the typical REM level. The

end of stage R occurs when there is a transition to stage W or N3, EMG chin signal

increases above the typical REM level and with criteria to score the epoch as N1 are

met, or arousal followed by LAMF and slow eyes movements. If the last criterion is

met, the epoch must be scored as N1. Stage R also ends if a major body movement

occurs and it is followed by slow eye movements and LAMF but without sleep K-

complexes associated with arousal and sleep spindles. The epoch after the major

body movement must be scored as N1. The last rule to end score sleep as R is the

existence of K-complexes not associated with arousal or sleep spindles in the �rst

half of the epoch, without REM and even if the EMG chin signal is at the typical

stage R level. Those epochs in these circumstances should be scored as N2. The

transition between stage N2 and stage R may occur in other cases. The �rst rule

states to score R in the absence of REM when the EMG shin signal drops to the

typical REM levels or there are neither K-complexes not associated with arousals

nor sleep spindles. A second rule states to score N2 when the EMG shin signal

clearly drops to the typical REM levels in the �rst half of the epoch, there are K-

complexes not associated with arousals and sleep spindles, and there are not REM.

The third, and �nal rule, states to score stage R in the absence of REM when the

EMG shin signal is at the typical REM levels the entire epoch, or there are neither

K-complexes not associated with arousals not sleep spindles.
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2.3 Sleep Disorders

2.3.1 Physiology of Respiration

Air �ows from a space of higher pressure to a space of lower pressure. In the

inspiration phase, the respiratory muscles lower the pressure, below the atmospheric

pressure, inside the lungs. The chain of events leads to lower pressures along the

entire respiratory airway and to an air movement inward. In the expiration phase,

the process inverts with the respiratory muscles increasing the pressure inside the

lungs. In the respiratory airway, the air pressure, also, increases to expel air from

the lungs into the atmosphere. A decrease in the air pressure, inside the respiratory

airways, promotes the collapsibility of those structures, but several muscles are

responsible to keep the airway open.

Tonic activity stimulates upper airway patency, while the phasic activity, during

inspiration, responds to the negative pressure re�ex and acts in the muscles responsi-

ble for the upper airway patency. The upper respiratory muscles are activated �rst

and they reach the maximum response to inspiration before the respiratory mus-

cles [3]. The control, both phasic and tonic activity, of the muscles responsible for

the upper airway patency, di�ers from the state of wakefulness to the state of sleep.

During wakefulness, the activity is higher than while asleep, but the decrease is

di�erent from muscle to muscle. The tensor palatini muscle, with tonic activity, has

a higher decrease than the genioglossus, the palatoglossus, and the levator palatini,

all with phasic activity [3]. The behaviour of the tensor palatini muscle, in activity,

is compensated by the genioglossus muscle. Both muscles are under the control of

the same central nerve drive. Muscles responsible for respiratory movements may

also change their work pattern in sleep. This results in an increase in upper air-

way resistance and a decrease in its aperture [3]. The necessary muscle activity to

keep upper airway patency changes with orientation [124]. A higher level of activity

is necessary when an individual changes the upper respiratory airway axis from a

transversal orientation to an anteroposterior orientation [3, 125].

2.3.2 Adult Obstructive Sleep Apnoea Hypopnea Syndrome

Sleep disorders are responsible for the increase of di�culty in breathing, dur-

ing sleep, are acknowledged as SRBD, and the most common disorder is the SAHS.

SAHS is classi�ed as OSAHS or Central Sleep Apnoea-Hypopnea Syndrome (CSAHS),

depending on the source of the disorder, but can also be classi�ed as Mixed Sleep

Apnoea-Hypopnea Syndrome (CSAHS), if it is a combination of both OSAHS and

CSAHS [126]. The beginning of the respiratory event CSAHS is characterized by

the absence of respiratory e�ort and the complete cessation of the respiration with-

out both thoracic and abdominal movements. At the end of the CSAHS event and,
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gradually, movements resume [127, 128]. A fourth type of SAHS, complex sleep

apnoea-hypopnea syndrome, was identi�ed in patients undergoing OSAHS treat-

ment. Those patients may have persistence or an increase in central apnoeas or

hypopnoeas [126]. Episodes of CSAHS are the result of the reduction, or absence,

of a central nerve drive over the respiratory muscles and the absence of respiratory

e�ort [129,130].

OSAHS, more common than CSAHS, is related with the obstruction of the upper

respiratory airway albeit respiratory muscles continue to work [129]. The blockage

decreases air�ow when it is partial, but, when there is a total blockage, air�ow is in-

existent throughout the respiratory structures. The limitations in air�ow have direct

consequences on the availability of O2, on which the cells of the body relay to work

normally. The human body needs a minimum amount of O2 to function properly,

and when the air�ow goes below the necessary minimum, arousals or awakenings

occurred [131]. These events interrupt sleep, leading to sleep disruption, and are

responsible for the decrease in sleep quality.

Patients with OSAHS, and their families, are not fully aware of the implications

of this condition and, often, they underestimate the e�ects and consequences of living

with it undiagnosed and untreated. Lack of attention to this condition may be linked

with the disorder itself, once there is not an immediate and associated disability that

raises a red �ag, a life threatening, or a signi�cant life disability event. Instead, the

�rst symptom associated with OSAHS is, often, snoring, a sleep abnormal sound,

capable of disrupting the sleep partner, but with a slow, progressive implementation

over the years, both in frequency (number of events) and loudness. All neglect the

initial symptoms, and other symptoms may also emerge in the meantime, and the

diurnal consequences, like EDS, may be misleading with other causes.

To measure OSAHS and understand its severity, a method was developed, which

relies on the Apnoea-Hypopnea Index (AHI) parameter. The AHI is the result of

the calculation of the number of apnoeas (A) and hypopnoeas (H) per hour (t) of

TST:

AHI =
A+H

t
(2.1)

Results interpretation for the AHI splits data in 4 categories. Those subjects with

an AHI≤5 are considered healthy, belonging to the Sn group if they snore, otherwise,
they belong to the Co group. An AHI≥5 suggests an OSAHS patient, using the AHI

parameter to organize OSAHS patients, by their severity, in 3 medical classi�cation

groups. The medical classi�cation groups, by increasing order of OSAHS severity,

are identi�ed as Mi, Mo, and Se, and a patient is classi�ed, in the respective class,

when its AHI obeys the following criteria: 5>AHI≥15, 15>AHI≥30 and 30>AHI,

respectively [132].
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Further research revealed the existence of hypersomnolence among subjects with

a normal AHI but in the presence of SRBD similar to apnoeas. They discovered the

existence of di�erent respiratory events with implications for the normal function of

sleep. Those events are responsible for �ow limitations during inspiration, abnormal

respiratory e�orts, and cortical arousals, and they were named Respiratory E�ort-

Related Arousal (RERA) [133]. To respond to these new �ndings, which have a

substantial impact on sleep quality, a second parameter was de�ned to replace AHI,

and it is known as the Respiratory Disturbance Index (RDI) parameter. The classi-

�cation of OSAHS patients remains the same, but the de�nition of RDI is di�erent.

This parameter also takes into account RERA events, that do not ful�ll the criteria

to be scored either as apnoeas or as hypopnoeas [134]:

RDI =
A+H +RERA

t
(2.2)

2.3.2.1 Epidemiology

OSAHS epidemiology has been studied for decades, and one of the �rst studies

about OSAHS pointed to a prevalence of 9% in women and 24% in men [135]. This

estimation is outdated, since it was performed a long time ago and, nowadays, the

population, in the most a�ected countries, is older and fatter. Current values for

OSAHS vary, depending on the criteria, but it was estimated a SRBD prevalence,

in the United States and in 2012, of 6% in women and 13% in men, for an AHI≥15.
The population set was constituted by an adult population between 30 and 70 years

old, from the Wisconsin Sleep Cohort Study, but pregnant women were excluded

from this study [7]. A major conclusion of this study is the evolution of SRBD,

with an increase in prevalence between 14% and 55%, depending on the subgroups,

and an evolution from the baseline, years from 1988 to 1994, to the years 2007

to 2010. A study subsampled data from a questionnaire from the Municipally of

Uppsala in Sweden, and the questionnaire's goal was to study "Sleep and Health in

Females". They found that 50% of the women, between 20 and 70 years old, had

an AHI≥5 [136]. In Iceland, a study found that 43.1% of the population had an

AHI≥5 [137]. In Asia, OSAHS prevalence was 16% in women and 27% in men, in

a study performed over 457 Korean subjects [138]. There is, also, evidence of sleep

problems in Africa, with a survey, in 4 di�erent countries and in subjects with more

than 50 years old, reporting sleep problems in 15% of the population.

Estimation of the world prevalence of OSAHS is not easy but some authors

predict values between 4% to 10% for the adult population [139]. OSAHS prevalence

over the world is not homogeneous and there are several factors responsible for this

distribution. Studies about the global prevalence of OSAHS are uncommon. E�orts

have been made and a paper review focused on 17 papers from 16 countries to do
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data extrapolation for the remaining countries was made by [8]. Estimated values

are overwhelming, since, almost, 1 billion, one-eighth, of the world population has

OSAHS, with an AHI≥5, for men and women between 30 and 69 years old. The

population with an AHI≥15 was estimated to be more than 400 million. The biggest

countries, by population, have the highest numbers of OSAHS in terms of absolute

values. However, and somehow surprisingly, the extrapolation raises bigger concerns

about OSAHS in countries, like Brunei, Malaysia, and the Maldives, where three-

quarters of the population, in that group age, had an AHI≥5. A second review paper

reviewed data for 24 studies and it found, for an AHI≥5, a prevalence between 9%

and 38%, peaking as high as 90% in men and 78% in women, for advanced age

groups [140]. Mo and Se AHI have a global prevalence between 6% and 7%, and the

highest incident is among middle-aged men [7].

2.3.2.2 Anatomy of the Upper Respiratory Airway

The upper respiratory airway must perform several actions: swallowing, phona-

tion, olfaction, and respiration, which includes warming and the humidi�cation of

the air [141]. The anatomy of the upper respiratory airway encompasses the larynx,

the pharynx, and the nose, although mouth breathing may occur in some situations,

such as the case of intensive exercise or during sleep. Some references include the

extrathoracic trachea [3], albeit the book de�nition for upper airway is not consis-

tent [3]. A detailed diagram of the respiratory tract is in Figure 2.5.

The trachea and the larynx have cartilaginous structures, which give support,

and the collapse of those structures is very unlikely. Some diseases change the

anatomy of those structures, and they may contribute to their collapse and the

worsening of OSAHS [142,143]. Structures without rigid support are more likely to

develop obstructions to air�ow, which is the case of the pharynx.

2.3.2.2.1 Pathophysiology and Risk Factors of OSAHS The pathophysi-

ology of OSAHS is in�uenced by multiple factors [145]. Anatomical modi�cations,

like neuromuscular drive and weight gain, are among the decisive factors in the

development of OSAHS. The low neuromuscular drive is associated with low ac-

tivity in the respiratory dilator muscles, which increases the probability of airway

collapse [146].

The most important anatomic factor, believed to occur in OSAHS, is a higher

value of the total body fat, although is not an essential condition. More important

than the total body fat is the upper body fat in the risk of developing OSAHS [141].

Fat deposits, around the upper respiratory airway, are heterogeneously distributed

across the neck, which increases neck circumference, becoming a OSAHS predic-

tor [124, 146]. Those deposits may narrow the calibre of the airway passage, but

also increases the force of gravity, which may lead to the collapsibility of the same
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passage. The decrease in the calibre will increase air�ow resistance. Narrowing the

upper respiratory airway results in a decrease in its diameter and in an increase

in airspeed, and according to the Bernoulli equation, an increase in airspeed leads

to a decrease in air pressure. Intraluminal pressure drops even more than in nor-

mal conditions, which promotes a higher degree of collapsibility of the respiratory

structures. Lung volume at the end of the expiration phase may play a role in the

development of OSAHS [141]. The cross-sectional area and the lung volume are

directly related, which means that when the lung volume lowers, the cross-sectional

area decreases and there is an increase in the probability of collapse [146].

One of the muscles responsible for the upper airway patency, the genioglossus,

has higher EMG activity in OSAHS patients than in the control group when wake-

fulness [147]. The muscle could increase its EMG activity to compensate for the

higher degree of collapsibility of those structures. Even muscle cells adapt to the

development of OSAHS, with an increase in the representation of type II muscle cells

and a decrease in the representation of type I muscle cells [141]. Healthy middle-aged

men, without snoring or upper airway obstruction, have a muscular activity, in the

upper respiratory airway, in values midway between those of healthy young adults

and patients with OSAHS. This suggests an evolution towards the OSAHS, with the

emerge of this condition, and the speed to reach it, depending on several factors.

During sleep onset, upper airway muscle activity decreases, with similar values in

young and middle-aged adults, but with a higher fall in OSAHS. The underlying

cause may be linked with the loss of the wakefulness stimulus rather than the loss

of responsiveness to the negative pressure [147].

Excessive �uids in the body have an impact on airway mechanics. Fluids migrate

from lower regions, considering the standing position, of the body, as the case of

the legs, to higher regions, as the case of the neck and head, at night [146]. A

subject can still develop OSAHS even in the absence of anatomical or neuromuscular

factors [148]. Being men increases the probability of developing the syndrome when

compared with women because men tend to have fat more deposits in central regions

and longer airways than women. Menopause has been described as another factor to

OSAHS [146]. The increase of fat deposits in the upper respiratory airways appears

to have a greater impact on men than on women. Anatomical measurements of the

tongue, total soft tissue volume, and lateral pharyngeal wall linked genetic factors

with OSAHS, while Afro-Americans have an increased risk of developing OSAHS at

an earlier age than Caucasian [141].

2.3.3 Snoring

The study and comprehension of OSAHS as a health problem was a major step

in the treatment of this syndrome. Snoring comprehension as a symptom of OSAHS,
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besides the previous thinking of just an acoustic inconvenient, helped �nd solutions

to solve or mitigate the syndrome [3].

Snoring is one of the �rst and one of the most common symptoms of OSAHS

and can be induced by a great number of causes [129,149,150]. Snoring generation

comes from the vibration of the structures of the upper respiratory airway when a

subject breaths, while asleep.

2.3.3.1 Epidemiology

OSAHS patients have snoring symptoms in 70% to 95% of the cases, making this

symptom common in this disorder [151]. Snoring prevalence was estimated to be

27.8% in men and 15.3% in women, in the 1990s, with the study achieving its results

in a questionnaire made to a population of 1222 Hispanic-American adults [152].

Nowadays, the snoring prevalence in the global adult population is around 32% [3].

Other sources found a prevalence of snoring in 19% to 29% of women and in 32% to

52% of men of middle-age or older [153]. Di�erent sources of data point to di�erent

ranges with some defending higher prevalence values [154]. Another source reports

snoring prevalence as low as 7.9% in women and 19.1% in men for the same age

groups [31].

Subjects often don't are aware of their condition as snorers, or even, as OSAHS

patients. They rely on bed partners, or close relatives, to acknowledge the problem

and report it. Although snoring is not a homogeneous problem across the world

and the existence of ethnic di�erences in the snoring prevalence is well accepted, the

study of snoring shows the existence of diverging results. The comparison between

objective and subjective methodologies showed how divergent the results may be [3].

2.3.3.2 Pathophysiology

The genesis of snoring is complex, but it is often located in the soft tissues of

the upper respiratory tract. Such tissues are the soft palate, the pharyngeal walls,

the uvula, the epiglottis, and the tongue [25, 150]. Snoring may be the result of

the vibration of a single or multiple anatomical sites and research has been done to

perform the identi�cation of those sites using automatic algorithms. Sound char-

acteristics are depending on the site of obstruction [25]. A review paper identi�es

the soft palate as the source of the lower frequencies of snoring, while the higher

frequencies are generated by the tongue [150]. In [155], both single and multi sites

of obstruction were analysed, and a multi-variable approach allowed to predict ob-

struction, in both single and multiple sites. In [156], an analysis of di�erent features,

and classi�ers were implemented to evaluate their performance to identify the sites

of obstruction. A multi-feature analysis with a random forest classi�er reported the

best results, 78%, against 86% performance by human specialists.

In order to keep the upper airway patency, the central nervous system is con-
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tinuously sending commands to the muscles [3]. This process can be voluntary, but

it is, mainly, an autonomous process that occurs permanently while in either wake-

fulness or asleep. While asleep, the central nervous system decreases its activity

over the respiratory system muscles, and the decrease in the triggering mechanism

increases the odds of airway closure [1]. Upper airway patency is state-dependent,

sleep vs wakefulness, but also stage-dependent. In healthy young adults and during

SWS those muscles have more activity than in the other stages, N1, N2, and REM.

Data from OSAHS patients show a decrease in the number of obstructions while in

slow-wave activity [157,158].

The heterogeneous behaviour of the muscles responsible for the upper airway

patency changes the intrinsic characteristics of snoring. Snoring loudness and snor-

ing frequency is higher in SWS than in N2 or in REM sleep [159]. An automatic

algorithm was able to identify, with an accuracy of 81%, if they belong to NREM

sleep or to REM sleep [160]. The algorithm used arti�cial neural networks after

selecting a total of 43 features.

Snoring onset occurs when the soft tissues lost their sti�ness and the respiratory

airway patency decrease. The loss of tissue sti�ness leads to the generation of

turbulent air�ow through those structures and sound, snoring, is created. Although

it can happen in any phase of respiration, it is more common during inspiration.

A paper for automatic snoring detection found that 97.5% ±2.2% of the breathing

cycles have an inspiration phase much louder than the expiration phase [161].

2.3.3.3 Risk Factors

Smoking, alcohol consumption, drugs, medications, nasal congestion, sleep de-

privation, and being overweight are some of the risk factors for the development of

snoring. Sleep position plays, also, an important role in snoring, with the supine

position the most critical to snoring.

Subjects without OSAHS but with snoring are described as primary snorers, and

they have an increased risk of developing cardiovascular diseases [162,163]. There are

evidence of the importance of snoring in sudden death [3], and in the modi�cation

of the voice, hoarseness development, with statistically signi�cant di�erences [164].
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Figure 2.5: Diagram of the respiratory system's respiratory tract [144].
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Chapter 3

State of the Art

The State of the Art chapter gathers the most important information about

the latest developments in sleep medicine. Instead of solely focusing on scienti�c

research, this chapter presents how, currently, the study of sleep is performed by

the sleep medicine �eld. New technologies bring new tools to explore and analyse

sleep disorders from a new perspective. The forthcoming of smartphones increased,

drastically, the hardware capabilities and software complexity when compared with

the previous mobile phones. They allowed the development of mobile applications,

and for this purpose, the development of applications to track sleep.

The State of the Art chapter starts by presenting mobile applications capable of

performing some degree of sleep analysis. Then, there is a review of medical devices

used in a hospital environment, followed by the most important research performed

in the latest years in this area.

3.1 Mobile Applications

Smartphone applications present an advantage over other devices because the

smartphone is a multi-purpose device and it is extremely portable, accompanying

the owner all the time and everywhere. Smartphones' popularity has been increasing

over time, reaching 3500 million users in the year 2020, around 44.9% of the world

population, and with an estimate of 3800 million users in the following year [165].

Smartphone usage is higher in countries with the highest population, like China,

India, and the USA, with, respectively, 851, 346, and 260 million smartphone users.

Adjusting smartphone users to the country population, the highest percentage val-

ues of smartphone users are in several European countries, with the United Kingdom

at the top (82.9%). United Arab Emirates (82.1%), EUA (79.1%), Canada (73.8%),

Taiwan (72.0%), South Korea (70.4%) and Australia (69.3%) also have high per-

centage values [166].

Among the most important examples, in smartphone applications, are access to

communications. With a phone call, an SMS, an e-mail, or other types of communi-
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cations, like Whatsapp, a person is, constantly, connected to the world. Sleep-related

smartphone applications have been developed to perform sleep analysis. Such tools

are not medical devices and they can't be used as a substitute to perform medical

diagnoses.

The primary target of these applications is recording and analysing snore, using

the microphone embedded in the smartphone. From the collected data, a statistical

pro�le is generated and examples of snoring are available to listen [167]. Raw data

storage as well as building up statistic information across several nights deliver a

more trustful analysis and, potentially, an evolution pro�le. Apnoea evaluation is

a feature available in some sleep-related applications. The implemented algorithm

searches for absences in breathing sounds, followed by the appearance of sudden and

loud sounds, to identify an apnoea.

Actigraphy is a tool widespread to evaluate sleep at home, but, also, daily activity

[168, 169]. Smartphones have embedded 3D accelerometer sensor capable of deliver

information to perform actigraphy [170,171]. Smartphones should be worn close to

the human body, without any relative movement between them, to detect human

activity and work properly. At sleep, the use of objects in touch with the body may

disrupt sleep and a less invasive approach may be preferred. For that, the logical

decision is to place the smartphone next to the sleeper, in the bed. In situations like

this, an alternative to actigraphy exists and is known as the sonar method. This

method needs access to both speaker and microphone to work properly [170].

The learning mechanism considers an initial period dedicated, only, to learning

sleep patterns. Sleep study encompasses tracking and splitting sleep in, solely, 2

phases to trigger the alarm: a deep and a shallow sleep phase. After the learning

period, the user sets the clock alarm to an hour and the smartphone application adds

�exibility by adjusting the hour to a more appropriate moment when the subject is

in a shallow sleep [170�172]. Among the features included in the application is the

capability to activate anti-snoring measures. The application's algorithm performs

snore detection in real time and, in the presence of snores, the smartphone emits

sounds intending to stop snoring. Statistics are available, and it includes sleep

duration, noise, snoring, sleep cycles, and the amount of deep sleep, in percentage.

Data storage enables to study of data trending from the previous nights and it gives

advice, to improve sleep quality patterns [170�173].

Business models associated with smartphone applications are broad. The imple-

mented business models use one of the following strategies: a free-to-use, a pay-to-

use, free-to-use with in-app products purchasing, and a free trial. The free-to-use

version has fewer features available than the pay-to-use version [170]. In-app prod-

uct purchasing allows users to add new features, by purchasing features, to the

application's basic edition [167, 173, 174]. The free trial version may have all the
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features available but, only, during a limited time [173,175].

Few sleep-dedicated applications have been tested and compared with the gold

standard for sleep evaluation, the PSG study. One study tested smartphone ap-

plications Sleep Time, MotionX 24/7, and Sleep Cycle against the gold standard,

and all of them had poor results [176]. High variability in the results can, also,

be expected due to hardware di�erences implemented in the di�erent models and

brands of smartphones [177].

All the applications presented had more than 50000 downloads and they were

classi�ed, at least, with 4 stars, as of July 2019.

3.2 Wearables

The method to acquire electric brain activity is of harder implementation than

the methods required to acquire the remaining signals of the PSG study. EEG

monitoring requires more electrodes, precise relative positioning between them, and,

often, placed among hair, guaranteeing a good contact between the sensor and the

skin surface. Muse S is a wearable headband, placed around the forehead, and it

acquires electrical brain activity, but also, breath, heart, and body movements. The

wearable connects to the smartphone's app to send data to it, which is then analysed

to decide which bird songs should be played by the earbuds. The equipment tries to

help people relax to fall asleep easier, but it also tracks sleep overnight, identifying

sleep stages, sleep position and body movements, and heart rate by using EEG,

accelerometer, gyroscope, and photoplethysmography. The smartphone's app uses

Bluetooth 4.2 to connect to wearables, and it integrates features like bird song

selection, pre-sleep, and sleep history, showing the progress of the signals measured

and sleep stages [178].

Wristbands were developed primarily to track physical activity. Fitbit is a well-

known brand, one of many companies, of consumer electronics to monitor biomedical

signals. They develop wristbands to track physical activity but it also has sleep

monitoring applications. Their wristbands record data and deduce a person is asleep

when the body is at rest and after the body is quiet for 1 hour. For a better sleep

visualization, an app is available to install on the smartphone, and it comes with

information regarding snoring and time spent awake, restless, and asleep. Evaluation

of sleep stages is, generally, possible in wristbands with heart rate measurement

capability. SpO2 is also a feature available to track sleep. Sleep results are available

to see in either the wristband or the app [179,180].

Smartwatches are also multi-purpose devices, with the latest models developed to

mimic smartphones, capable of supporting apps, an operating system, and wireless

connectivity. They also track biomedical signals at the wrist, applying a similar

work principle, to study sleep. Acquired data allow calculating SpO2, heart rate,
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breathing, and to do sleep staging. Besides the previous parameters, sleep results,

score, time asleep in each one of the sleep stages, graphics, and historic, are available

for consultation either in the smartwatch or the smartphone's app. Garmin is one

of the brands supporting sleep tracking in their smartwatches [181,182].

Tracking sleep is also available in ring-type wearables, although they aren't so

acquainted and common as the previously presented wearables types. The Oura ring

tracks movements using a 3D accelerometer or by importing data from a third-party

app, like Apple Health or Google Fit. The decision-making process classi�es data

into one of the following 3 groups: active, at rest, and asleep (naps included). It

acquires more data, to calculate heart rate, heart rate variability, and respiration,

using infrared photoplethysmography, with a sampling rate of 250 Hz. Finally,

it acquires temperature data using a negative temperature coe�cient sensor with

a sensitivity of 0.1ºC. The available app for smartphones allows to have a visual

representation of all acquired data, and their processing, like sleep stage, but also

audio and videos to help, for example, in sleeping. Future upgrades include SpO2

sensing [183].

Withings is a non-wearable sleep tracker but is worth mentioning in this section.

It is a sleep tracking pad, placed under the mattress, plugged in, and capable of

detecting sleep stages and their duration, awakenings, and heart rate, and it has a

built-in microphone to help track snoring. There are sleep sensors to control and

adjust the lights and the thermostat to set the best sleep conditions. An app receives

all data and it displays them to be observed by a person [184].

3.3 Medical Evaluation Tools

3.3.1 Questionnaires

Sleep-related questionnaires are used as both a research and a medical tool to

perform sleep evaluation, but questionnaires are subjective tools, sometimes �lled

by non-professional agents, like the patient himself or his bed partner. Question-

naires may be used to study sleep in either the paediatric or adult population. The

adult population, the population under study in this project, has di�erent types of

questionnaires available. Figure 3.1 organizes some of the existent questionnaires by

the subject in analysis, accordingly to the Thoracic website [185]. However, there

are more questionnaires to assess sleep, and in 2 di�erent articles, [186, 187], more

of them are listed.

3.3.1.1 Sleep Apnoea

3.3.1.1.1 Sleep Disorder Questionnaire Sleep Disorder Questionnaire was

originally suggested in 1994 by M.D. A. Douglass and its development was based

on other 2 questionnaires, the Sleep questionnaire and the Assessment of Wakeful-
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ness [188]. It encompasses a total of 175 questions, with the �rst 152 questions

using a grading scale from 1 (Never) to 5 (Always). The patient selects the answer

which �ts better his case. The remaining questions, 23, are multiple choice, also 5,

to evaluate some quantitative variables, like the number of hours asleep and weight.

Di�erent sources suggest di�erent periods to consider when answering the question-

naire, with the previous month and the previous 6 months the common suggestions

to be considered. The questionnaire focuses their questions on sleep apnoea, nar-

colepsy, Periodic Limb Movement (PLM) and psychiatric sleep disorders [185,186].

M.D. A. Douglass tested the questionnaire on 519 people, of whom 435 were

patients with sleep disorders. People were grouped into 5 groups, control, sleep

apnoea, narcolepsy, psychiatric and nocturnal myoclonus, achieving a sensitivity

between 65% and 88%, and speci�city between 46% and 81% [188].

3.3.1.1.2 Berlin Questionnaire Berlin questionnaire was �rstly published in

Annals Of Internal Medicine by a group of researchers, led by M.D. Nikolaus C.

Netzer, in 1999. It is used to �nd patients with Sleep Apnoea, and it asks about

risk factors, snoring, wake time, sleepiness, fatigue, obesity, and hypertension. The

questionnaire has 14 questions divided into 3 categories. The �rst one evaluates

snore severity, the second one evaluates EDS and the �nal category evaluates hy-

pertension. It asks also for height, weight, age, and gender to know about obesity.

The application of this questionnaire resulted in a sensitivity of 86%, a speci�city of

77%, a Positive Predictive Value (PPV) of 89%, and a likelihood ratio of 3.8% for

RDI≥5. The patient set was 744, of whom 100 underwent sleep studies [189].

3.3.1.1.3 STOP BANG STOP BANG questionnaire was proposed by Frances

Chung and his colleagues in 1998 to evaluate OSAHS in surgical patients. It analysis

Excessive Daytime Sleepiness 

Narcolepsy

Circadian RhythmInsomnia

Questionnaire

Restless Legs Syndrome

Sleep Quality

Sleep Apnoea

Cataplexy questionnaire

Epworth Sleepiness Scale (ESS)

Stanford Sleepiness Scale (SSS)

Insomnia Severity Index (ISI) Morningness-Eveningness Questionnaire (MEQ)

Munich Chronotype Questionnaire (MCTQ)

The Sleep Timing Questionnaire (STQ)

International Restless Legs Scale (IRLS)

Augmentation Severity Rating Scale (ASRS)

Restless Legs Syndrome Quality of Life Questionnaire (RLSQoL)

Functional Outcomes of Sleep Questionnaire (FOSQ)

Pittsburgh Sleep Quality Index (PSQI)

Sleep Disorders Questionnaire (SDQ)

Berlin Questionnaire

STOP BANG

OSA50

Self efficacy in Sleep apnea (SEMSA)

Calgary Sleep Apnea Quality of Life Index (SAQLI)

Figure 3.1: Sleep-related questionnaires grouped according with the purpose of their evaluation. Questionnaires are
organized in 7 subgroups and their target is the adult population [185].
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the risk for sleep apnoea and it addresses postoperative complications, due to an

increased risk associated with OSAHS, trying to predict them. The questionnaire

has been validated in primary care patients and it has 8 questions, and its name

addresses each one of those questions, snoring, tiredness, observed (anyone watches

the patient stop breathing), pressure (blood pressure), body mass index, age, neck

circumference, and gender. The original article tested the questionnaire on 2467 pa-

tients, 27.5% of them at high risk of developing OSAHS. The questionnaire sensitive

for Mi, Mo and Se OSAHS groups was 83.6, 92.9 and 100%, respectively. Predictive

values vary depending on the population, with a sensitivity of 86% in primary care

patients, 62.5% in patients in the process of pulmonary rehabilitation, and ranging

from 57% to 68% in sleep laboratory patients [190].

3.3.1.1.4 OSA50 OSA50 is a questionnaire with 4 questions to address sleep

apnoea and was proposed by M.D. C. Chai-Coetzer and his colleagues in 2011. The

questionnaire's goal is OSAHS evaluation, by asking for obesity, snoring, apnoea,

and age (under or above 50 years old), with a scale from 0 to 3 to the �rst 2

items and a scale from 0 to 2 for the other 2. The validation of this questionnaire

encompasses the study of 157 patients with ages between 25 and 70 years old. Two

subgroups were created and they have a similar number of patients, with the �rst

group, composed of 79 patients, for development, and the second group, composed

of 78 patients, for the validation purposes. The validation group had a sensitivity

of 88%, a speci�city of 82%, a PPV of 56% and a Negative Predictive Value (NPV)

of 96% [191].

3.3.1.1.5 Self e�cacy in Sleep Apnoea Self e�cacy in Sleep Apnoea mea-

sures the expectancy for OSAHS and Continuous Positive Airway Pressure (CPAP)

before treatment in adults, and it also evaluates adherence-related cognitions. It has

26 questions, grouped in 3 di�erent categories, to evaluate risk perception, outcome

experiences and treatment self-e�cacy [185]. The �rst category has 8 questions,

while the second and third categories have 9 questions each. The patient answers

each question grading them on a scale from 1 to 4, depending on his statement's

agreement. Weaver and his colleagues are the authors of this questionnaire and

to test its performance, a study was developed with 213 patients, recently diag-

nosed with OSAHS. Most of them were men, 60%, 55% were Caucasian and 39%

were Afro-American, with 47.72±12.25 years old, and a Body Mass Index (BMI) of

38.08±9.66 kg/m2. Patients came from 3 di�erent clinics, clinics 1, 2, and 3 with,

respectively, 38, 22, and 153 patients. Statistical analysis was implemented to eval-

uate the test-retest reliability, using a set of 20 patients, from clinic number 2, to

do the Self-e�cacy in Sleep Apnoea a second time. The reliability coe�cients, the

ratio of true score variance to the sum of true score variance plus error variance, were
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estimated by calculating the test-retest Pearson correlation coe�cient. It returns a

result of 68% (P=0.001), 77% (P�0.0001), and 71% (P=0.0005) for perceived risk,

outcome expectancies, and treatment self-e�cacy, respectively [192].

3.3.1.1.6 Calgary Sleep Apnoea Quality of Life Index Calgary Sleep Ap-

noea Quality of Life Index was designed to evaluate the quality of life in the previous

4 weeks in adults by M.D. W. W. Flemons and his co-worker Marlene Reimer. The

questionnaire addresses topics in 4 distinct domains, daily functioning (11 ques-

tions), social interactions (13 questions), emotional functioning (11 questions), and

symptoms (5 questions). In cases where the patient undergoes a clinical treatment, a

�fth domain, treatment-related symptoms (5 questions), can be also added to study

the negative impact on the quality of life of the treatment. Domain symptoms have

21 questions and the option to include even more symptoms, but the 5 most im-

portant symptoms should be selected to include in the questionnaire analysis. The

�fth domain also has more questions, 26 �x questions, and it allows to include more

symptoms not contemplated in the previous questions, with the 5 most important

symptoms selected and used in the questionnaire evaluation. The response to each

question uses a scale from 1 to 7. The development of this questionnaire started

with 133 questions and the need for determining which ones were most commonly

experienced and were most important to patients with sleep apnoea. Three hundred

patients were selected to participate in the development of this questionnaire, and

those with disorders, other than sleep apnoea, or who lived outside the Calgary city

were discarded, remaining, in the end, 163 patients [193].

3.3.1.2 Sleep Quality

3.3.1.2.1 Functional Outcomes of Sleep Questionnaire Functional Out-

comes of Sleep Questionnaire is a questionnaire to assess sleepiness e�ects on the

daily ability of a person to function and it has 2 versions, a short version with 10

questions and a longer version with 30 questions. The original version, the longer,

was developed by a team of researchers led by Ph.D. Terri Weaver in 1997. Questions

are organized into 5 domains, activity level (9 questions), vigilance (7 questions),

intimacy and sexual relations (4 questions), general productivity (8 questions), and

social outcome (2 questions), and each question uses a scale from 0 to 5. The

questionnaire was originally analysed to verify its validity and reliability using 3

samples, with 153, 24, and 51 individuals. Sample 1 consisted of 133 individuals

for the �rst time in a SRBD appointment and an additional 20 healthy individuals,

while individuals in samples 2 and 3 all had OSAHS. Individuals, the 133 individuals

in sample 1 and all individuals in samples 2 and 3, are 49.11±13.04, 41.75±9.14,
and 49±9.76 years old, and an RDI of 35.96±32.15, 50.67±32.71 and 28.44±24.54,
respectively. The 20 healthy individuals from sample 1 are 43.17±8.20 years old.
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Sample 1 was used to assess both the validity and reliability of the questionnaire.

The analysis of the results from the validity test shows signi�cant di�erences be-

tween the 2 subgroups in sample 1, patients (n=133) and healthy subjects (n =

20), with overall results of 68.05±21.24 and 89.59±8.64 (p=0.0004), respectively.

Reliability determination was performed using the Pearson correlation in a set 0f 32

patients (sample 1). The retest was performed 1 week after the �rst appointment,

and the results go from 81% to 90% for all the domains [194].

More recently, a short version was developed by Chasens to decrease the time

necessary to respond to all questions and to be more practical in clinical and re-

search implementation. The shortened version has 10 questions, representing all 5

domains. To test this new version, 3 samples were created, one with 155 patients

(AHI of 63±31 and 46.3±9.18 years old) was used to develop the questionnaire.

The second sample, with 51 subjects (AHI of 51±28 and 48±10 years old) was used
to test the design of the questionnaire. A third sample, with 57 subjects (AHI≤5
and 43.17±7.54 years old) was used as the control group, without SRBD. The short

version performs similarly to the longer version in terms of internal consistency

(Cronbach α of 0.87 vs 0.95, above the minimum criterion of 0.70), and the Total

score, pretreatment, was robustly associated with (r=0.96, P≤0.0001). After post-
treatment, both questionnaires detected a large change in the Total score (r=0.97,

P≤0.0001), with clinical relevance [195].

3.3.1.2.2 Pittsburgh Sleep Quality Index Pittsburgh Sleep Quality Index

was developed to measure sleep disturbance and typical sleep routines in the past

month. Created by M.D. Daniel Buysse and his colleagues, it has 19 questions,

organized into 7 domains, subjective sleep quality, sleep latency, sleep duration,

habitual sleep e�ciency, sleep disturbances, use of sleeping medications, and daytime

dysfunction, and rated on a scale from 0 to 3. The validation of this questionnaire

was performed using 3 groups of subjects, group 1 with 52 healthy subjects, working

as the control group, group 2 and are consisted of, respectively, 34 and 62 poor

sleepers. Poor sleepers in group 2 had depressive disorder, while patients in group

3 had a disorder of initiating and maintaining sleep (subgroup 1) or disorders of

excessive somnolence (subgroup 2). Groups 1, 2, and subgroups 1 and 2 had an

average of 59.9, 50.9, 44.8, and 42.2 years old, respectively. The internal homogeneity

had a global reliability coe�cient of 0.83 (Cronbach's α), which is an indicator of

a good degree of internal consistency, meaning that the domains measure di�erent

features to evaluate sleep. The questionnaire was completed twice by 99 patients

to verify the performance consistency. The test-retest reliability was implemented

together with paired t test and the Pearson product-moment correlations. The

paired t test reveals no signi�cant di�erences between both answers and the Pearson

correlations results showed the existence of stability (0.85 and p≤0.001) [196].
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3.3.1.3 Restless Legs Syndrome

3.3.1.3.1 International Restless Legs Scale International Restless Legs Scale

questionnaire was designed to study, on a subjective scale, the severity of Restless

Legs Syndrome (RLS) in the previous week. It has 10 questions organized into 2

domains, the subjective assessment of primary features of RLS and the intensity and

frequency, associated with sleep problems. The questionnaire uses a 5-scale grading

system, with 0 meaning no RLS and 4 meaning severe RLS. The International RLS

Study Group created a task force to develop this questionnaire with the partici-

pation of 20 centres, from which 17 centres contributed with RLS patients and 14

with control patients. In the end, 407 subjects participated in this study to validate

the questionnaire, from which 196 had RLS and 209 were control subjects. Results

for the internal consistency, using the Cronbach α parameter, were 0.93 and 0.95,

(p≤0.001) for the �rst (n=196) and second (n=187) questionnaire, respectively, and

separated by 2 weeks. From the total of 196 patients with RLS, 9 lost the follow-up

between the �rst and the second questionnaire. Patients were asked to �ll the �rst

questionnaire twice, each time with a di�erent examiner and in the absence of the

other examiner, which helped the patient clarify any doubts. Two weeks later, in

the second questionnaire, the presence of a second examiner was optional, but, when

present, the blind mechanism remains. The inter-examiner reliability was assessed

using the intra-class coe�cient and achieved a score of 0.93 and 0.97 (p≤0.01) for
the �rst and second questionnaires. The test-retest reliability was conducted on 145

patients and the di�erence was not signi�cant [197].

3.3.1.3.2 Augmentation Severity Rating Scale Augmentation Severity Rat-

ing Scale questionnaire was the e�ort promoted by the European RLS Study Group,

which created a task force led by Diego García-Borreguero. The questionnaire goal

was to provide a quantitative measure of the severity of worsening of RLS symptoms

during treatment. It starts with a baseline evaluation and continues its evaluation

throughout the treatment phase. Each question, in a total of 3, has a grading scale

from 0 (no changes) to 8 (severe augmentation). The evaluation of the questionnaire

was performed with the participation of 60 subjects, 36 of which are augmentors

(worsening of RLS symptoms) and 24 are non-augmentors, with 53±13 years old.

Global test-retest reliability was 0.72 and the inter-examiner reliability was 0.94.

Correlation between items were high for item 2 and 3 (0.662), moderate between

item 1 and 2 (0.3419) and poor between item 1 and 3 (0.144). Cronbach α was

0.62 [198].

3.3.1.3.3 Restless Legs Syndrome Quality of Life Questionnaire Restless

Legs Syndrome Quality of Life Questionnaire assesses the impact of RLS on daily

life, emotional well-being, social life, and work life in the previous 4 weeks. The
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questionnaire addresses topics in the overall life impact (10 questions), employment

(1 question), sexual interest (2 questions), and work (5 questions). Thirteen of

the questions used a 5 grading scale, while the remaining 5 questions have either

a numerical or dichotomous response, with low scores meaning a low quality of

life. The validity and reliability of this questionnaire were tested in a study with

a population of 85 subjects. The population age was 62.4±14 years old, of which

63.5% were women, 36% were in paid employment, and, of those, 86.7% worked

day shifts. The internal consistency calculation results in a Cronbach's α of 0.92,

and the test-retest reliability has a mean di�erence between baseline and week 2

of -0.1±15.7 for the total sample. The di�erent is very low and not statistically

signi�cant (t=-0.05, p=0.96) [199,200].

3.3.1.4 Circadian Rhythm

3.3.1.4.1 Morningness-Eveningness Questionnaire Morningness-Eveningness

Questionnaire was developed to assess morningness and eveningness by Horne and

Ostberg, focusing the questions on the subject's desire, such as the preference to

awake and go to sleep hours. The questionnaire has 19 questions with multiple scale

gradings. There is a scale grading from 0 to 5 (2 questions), from 1 to 5 (3 ques-

tions), from 1 to 4 (13 questions), and from 0 to 6, but in steps of 2 (1 question).

Subjects scoring 41 or below are considered of evening type, while a score of 59 or

higher suggests subjects are of morning type. In between those values, subjects are

considered of intermediate type. Almost half of the population, 49.8%, was classi�ed

as morning type, while only 5.6% of the population was classi�ed as evening type.

Studies about the internal consistency were conducted, achieving a Cronback's α of

0.83 [185].

3.3.1.4.2 Munich Chronotype Questionnaire Munich Chronotype Question-

naire was developed to assess subjects' sleep times, self-reported light exposure, and

self-assessed chronotype, splitting data analysis by work and free days by Till Roen-

neberg and his colleagues for the previous 4 weeks. The questionnaire has a total

of 19 questions, which are organized into 4 domains, work schedule, work day sleep

schedule, free day sleep schedule, and self-assessment of chronotype. Some questions

must be rated from 0 to 6, but the majority require answers without the scale, as the

example of the time at which the subject must get up. The �nal score ranges from 16

to 86, with the lowest values indicating a subject of extreme-late chronotype [201].

3.3.1.4.3 The Sleep Timing Questionnaire The Sleep Timing Question-

naire's goal was to assess habitual bed and wake times, and it was suggested by

Ph.D. Timothy Monk and Daniel Buysse and their colleagues. The questionnaire is

18 questions long, focusing on 2 domains, good night time and good morning time,

in a single administration. The test-retest reliability was performed on 40 subjects,
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although a single administration goal, with a period of less than a year, with the re-

sponse from the �rst administration not available to bias the second administration

results. Those were healthy subjects with 46.3±20.5 years old, and the results point

to a positive correlation in both periods, 0.705 in bedtime, and 0.826 in waketime

(p≤0.001). It also estimates SOL and WASO, with reliable correlation of -0.707 in

bedtime and -0.739 in waketime (p≤0.001) between the questionnaire and a 2-week

sleep diary. The 2 measurement instruments were less than a minute apart [202].

3.3.1.5 Insomnia

3.3.1.5.1 Insomnia Severity Index Insomnia Severity Index is a question-

naire to assess the subjective symptoms, nature, severity, and impact of insomnia.

It was developed by Ph.D. Charles Morin and it is a brief self-report tool to mea-

sure the patient's perception of his insomnia and it has 7 questions. The domains

evaluated by this questionnaire include the severity of sleep-onset and sleep mainte-

nance di�culties, the satisfaction with current sleep pattern, the interference with

daily functioning, the notice-ability of impairment attributed to the sleep problem,

and the degree of distress or concern caused by the sleep problem. Each question

rates from 0 (no problem) to 4 (very severe problem), with higher scores suggest-

ing more severe insomnia. The internal consistency was calculated in a study with

the participation of 145 patients. Eighty-four women and 61 men with 41.4±13.1
years old responded to the questionnaire in their �rst appointment. The internal

consistency was evaluated using Cronbach's α coe�cient, with a result of 0.74, and

the concurrent validity was assessed using sleep diaries and achieving an average of

0.54. The correlation coe�cients were signi�cant for p=0.01 [203].

3.3.1.6 Excessive Daytime Sleepiness

3.3.1.6.1 Epworth Sleepiness Scale Epworth Sleepiness Scale goal is the as-

sessment of daytime sleepiness with 8 self-administrated questions, using a 4-scale

grading system (0-3). The questionnaire asks subjects to rate their predisposition

to dozing o� or falling asleep in a range of situations or activities, common to most

people in, almost a daily routine. All questions were grouped in a single domain,

the propensity of falling asleep. M.D. Murray Johns developed this questionnaire in

1991, introducing modi�cations in 1997. A total of 180 subjects completed the ques-

tionnaire, of which 30 subjects were controls, and 150 patients with various sleep

disorders, snoring, OSAHS, narcolepsy, idiopathic hypersomnia, insomnia, and PLM

disorder. Patients answer the questionnaire during their �rst appointment. Sta-

tistical tests using the one-way ANOVA revealed signi�cant di�erences between all

groups, control, and the patient groups, with di�erent disorders (F=50.00; df=6,173;

p≤0.0001). One-way ANOVA for the Epworth Sleepiness Scale of primary snores

and the 3 levels of OSAHS severity showed signi�cant di�erences between these
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groups (F=23.11; df=3,82; p≤0.001). All 55 OSAHS patients presented a signi�cant
correlation between the questionnaire and the RDI (0.550, p≤0.001), and between

the questionnaire and the minimum SpO2 (-0.457, p≤0.001). The questionnaire

also presented a signi�cant correlation with sleep latency (-0.379, p≤0.001) for the
patients (n=138) who underwent PSG [204].

3.3.1.6.2 Stanford Sleepiness Scale Stanford Sleepiness Scale is a question-

naire to quantify progressive steps in sleepiness at a speci�c time, and it was proposed

by E. Hoddes and his colleagues. The questionnaire has a single question and it uses

a 7-scale grading system, with the lowest score, 1, meaning feeling active, vital alert,

or wide awake, and the highest score, 7, meaning almost in reverie, sleep onset soon,

lost struggle to remain awake. Five healthy college students participate in the study

to evaluate the relationship between this questionnaire and decrements in mental

task performance. It also evaluates if sleepiness, measured by the questionnaire, in-

creases following sleep deprivation. The researchers found that the questionnaire's

scores were, on average, signi�cantly elevated in the following 24 h of sleep depriva-

tion. The questionnaire is good to predict the performance in the execution of tasks

related to alertness [205].

3.3.1.7 Narcolepsy

3.3.1.7.1 Cataplexy questionnaire Cataplexy questionnaire has 51 questions,

organized into 3 domains, muscle weakness trigger, type of attack, and other con-

cerning injury or witnessed by others, and developed by Emmanuel Mignot and

his colleagues. Nine hundred and eighty-three subjects �lled the questionnaire (639

men, 344 women) with an average of 48.32 years old, and data was analysed in a

study to develop and validate the questionnaire. Two groups were created based

on the evidence of clear-cut cataplexy (de�ned as "brief episodes of weakness in the

knees, jaw, face, or neck triggered by laughter, joking, anger, elation, happiness, or

excitement with game playing" [206]), 63 patients had, while the remaining 920 did

not have. Non-narcoleptic subjects were found to experience muscle weakness when

there are various intense emotions (1.8% to 18.0%), or athletic activities (26.2% to

28.8%) [207].

3.3.2 Sleep Prediction Algorithms

3.3.2.1 Morphometric Models

Morphometric models uses craniofacial parameters to do OSAHS prediction.

Several measurements of the oral cavity, BMI, and neck circumference were the

parameters originally used to develop this model. The 6-month prospective study

with the participation of 300 patients, in their �rst appointment, collected the pa-

rameter values to build the model. A sensitivity of 97.6%, a speci�city of 100%,
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PPV of 100%, and NPV of 88.5% was achieved. Two people, one experienced physi-

cian and one non-experienced physician measured morphometric parameters in 20

patients and their results were compared to assess how similar data were. The cor-

relation coe�cient was 0.992, representing a high degree of reliability. Test retest

reliability was executed by an experienced physician in 10 patients, measured in the

�rst and follow-up appointment, and the correlation coe�cient was 0.994 [208].

3.3.3 Sleep Assessment

The diagnosis of OSAHS, and other SRBD, follows rules, guidelines, and it uses

equipment to record data. The PSG is the gold standard in the evaluation of SRBD,

but it is not the only tool for sleep assessment. In fact, sleep diagnosing tools can

be organized into 2 major groups depending on the place of assessment, home sleep

assessment, and in-laboratory sleep assessment, and in 4 di�erent types, Type I,

II, III, and IV. The ones without a sleep technician following the data acquisition

procedure are classi�ed as Type II, III, or IV [209].

3.3.3.1 Monitoring At Home

At-home sleep assessment usually uses less equipment, is less costly, but allows

the patient to sleep in a well-known environment, which may recreate the normal

patient's sleep more easily. This type of sleep evaluation has potential disadvantages

because it uses fewer sensors and there is not a sleep technician available to do real-

time monitoring and to do sensor placement correction. It is also impossible to

initiate sleep treatment during at-home sleep monitoring. AASM calls this type of

evaluation, home sleep apnoea testing. [209].

Type III and Type IV PSG do not use sensors to monitor electrical activity in

the brain, EEG, and in the muscles, EOG and EMG. It is not possible to know sleep

time which represents a problem with both AHI and RDI de�nitions. For these levels

of sleep studies, a new de�nition exists, the respiratory event index, which uses the

recording time parameter to calculate the index value.

3.3.3.1.1 PSG Level II Type II PSG sleep study uses the same sensors as the

PSG in-laboratory gold standard study, but the di�erence is in the absence of a

sleep technician to monitor data acquisition [209].

3.3.3.1.2 PSG Level III Type III PSG sleep study measures limited cardiopul-

monary activity, by measuring respiratory e�ort, using either the chest or the ab-

dominal respiratory inductance plethysmography, or both. It also acquires data

from air�ow (cannula), sleeping position, and oximetry (oxygen saturation and heart

rate) [209].

3.3.3.1.3 PSG Level IV Type IV PSG sleep study measures very few param-

eters, and it is used to track patients to perform a more complete sleep study.
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Oxygen saturation and heart rate or just the cannula are the measured parameters.

Sometimes, those 3 parameters are acquired together [209].

3.3.3.1.4 Actigraphy Actigraphy is a method to monitor rest and activity cy-

cles by measuring the subject's movements, and, normally, used on the wrist, with

the ankle and the trunk as alternative locations. It can continuously record data

for long periods of time, weeks, or even more time. This method has been used in

the sleep medicine �eld for, at least, 40 years to monitor SRBD and disturbances in

the circadian wake rest cycle [168]. Several studies had compared actigraphy results

against PSG results and they suggested that actigraphy can estimate TST, sleep

percentage, and WASO [169]. The use of actigraphy is recommended, in adults, to

estimate sleep parameters in patients with insomnia disorders, TST (when there isn't

an alternative) in at-home sleep monitoring in patients with SRBD, and total sleep

time in patients with suspected insu�cient sleep syndrome, to assess patients with

circadian rhythm sleep-wake disorders, and to monitor TST before Multiple Sleep

Latency Test in patients with suspected central disorders of hypersomnolence [210].

3.3.3.2 In-Laboratory Monitoring

3.3.3.2.1 PSG Level I Type I PSG level is the most complete medical tool,

and the gold standard in the sleep medicine �eld, to assess sleep and its disorders.

The study can track for OSAHS and other sleep disorders diagnosis, but also assess

their severity. It quanti�es respiratory events, and their physiologic consequences,

such as the case of hypoxia, arousals, and awakenings, responsible for the daytime

symptoms [211].

It is recommend in the diagnose of SRBD and as a preoperative procedure, to re-

peat in cases of a previous negative result in PSG for strong evidence of OSAHS and

after weight loss of, at least, 10% to assess the necessity of continuation for CPAP

treatment, to follow-up after surgery for Mo or Se OSAHS, if OSAHS symptoms

return after surgery and after oral appliance adjustment for OSAHS. Type I PSG

level is also recommended to assess the application of the correct positive airway

pressure treatment and to repeat sleep assessment when a weight gain of, at least,

10% exists and when symptoms return.

Performed in a health facility, with sleep technicians undertaking the task, it

requires a wide range of equipment and software, besides being time-consuming.

PSG equipment requirement is versatile, without a rigid protocol when concerned

with the type and number of sensors used. Most of them are always present, but

there are a few used only when required. PSG studies have 6 inputs to monitor

electrical brain activity, EEG, 1 input to monitor each eye activity, EOG, 1 input

to monitor muscle activity at the chin, 1 input to monitor the electrical activity

of the heart, ECG, 1 cannula, 1 thermistor, 1 piezoelectric sensor for snoring, 1
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abdominal respiratory inductance plethysmography, 1 chest respiratory inductance

plethysmography, 1 body position attached to the previous sensor, 1 pulse oximetry,

and 1 input to monitor each leg muscle activity. This is the usual setup used at the

CMS, but more sensors may be required, like the sensor to do capnography.

3.3.3.2.2 Multiple Sleep Latency Test Multiple Sleep Latency Test was de-

signed to evaluate the clinical signi�cance of excessive daytime sleepiness. The

subject undergoes the test during the daytime, following a methodology of naps, of

20 minutes duration each, including an interval of 2 hours between naps. The �rst

nap, from a total of 4 to 6 naps, starts, also, 2 hours after the initial awakening in

the morning. At the CMS, Multiple Sleep Latency Test is implemented after a PSG

study [3, p. 1625]. The CMS uses the EEG, EOG, EMG at the chin, and the ECG

to perform the multiple sleep latency test.

Subjects are instructed not to try to stay awake and let themself fall asleep,

to leave the bedroom during the intervals, and not to engage in intense activities.

Finally, the room should be quiet and dark.

3.3.3.2.3 Maintenance of Wakefulness Test The objective of the mainte-

nance of the wakefulness test is to check the capability of the subject to stay awake,

by giving him instructions to stay awake. The test assesses the alertness capacity,

when the order/asked to, during the day in a quiet, and non-stimulating environ-

ment, in a very low light environment. The subject sits and he is not allowed to have

any activity, like watching TV or reading. The protocol is similar to the multiple

sleep latency test, with the laboratory monitoring his activity by acquiring from

the same parameters. It starts 2 hours after the initial morning awakening, and

there is a 2 hours interval between test sessions. The test duration does not have

a standardized time duration, and it may vary between 20 and 60 minutes. A test

session �nishes when there are 3 consecutive epochs of N1 sleep, or a single epoch

of N2, N3, or REM sleep [3, p. 1627].

3.4 Medical Tools for Treatment

OSAHS is a treatable/manageable condition with a great variety of many avail-

able treatments, considering the speci�cities of each clinical case.

3.4.1 Weight

Weight is one of the anthropometric parameters which increases the risk of devel-

oping OSAHS. By losing weight, a patient with OSAHS decreases, especially in obese

patients, signi�cantly assessment parameters, as is the example of AHI. Evidence of

this statement was found in seven randomized controlled trials, 519 subjects, which

concluded a mean decrease in AHI of 6 events per hour [212]. Weight loss may
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be achieved by changing the patient's diet or, in extreme cases of overweight, the

patient may undergo bariatric surgery [213, 214]. Weight loss proved to be more

e�cient for men than for women [215].

3.4.2 Lifestyle Therapy

Subjects with SRBD may improve their sleep quality with the implementation

of some lifestyle changes. Consumption habits, smoking, co�ee, and alcohol, are

recognized as decreasing sleep quality and increasing sleep fragmentation. Quitting

smoking, stopping drinking alcohol, and stopping ingesting co�ee, at least a few

hours before bedtime, may improve sleep [1, p. 7; 3, p. 869; 25, p. 98]. Subjects

with allergies may also improve sleep by taking medicine to relieve nasal conges-

tion [216]. Avoiding the consumption of illicit drugs, besides its consumption being

a world scourge, help sleep stability and normal functioning [108,109]. Nevertheless,

some illicit drugs may help in the improvement of sleep quality in some particular

conditions [108]. Some medical drugs can also change sleep patterns, and in sit-

uations like this, the patient and the physician should discuss the possibility of a

medication change (dose or a di�erent medication) [25, p. 58].

3.4.3 Positional Therapy

Positional therapy is a strategy to treat positional OSAHS since some patients

have a predominance of OSAHS when sleeping in the supine position. By using

objects on the back, the patient is discouraged from sleeping in the supine position,

and there is a decrease in the AHI [213] [214]. This method appears to work in

patients with SRBD due to heart failure [211]. An alternative to the use of objects

in the back is a device with vibrotactile feedback. Set in the neck, it vibrates when

the patient is in the supine position [216].

3.4.4 Oxygen Therapy

The application of oxygen therapy during sleep decreases the severity of CSAHS

and Cheyne-Stokes Respiration by approximately 50%. The therapy also improves

hypoxaemia levels related to apnoea in a period ranging from 1 night and 3 months,

the quality of life, and the cardiac function. The evolution of the AHI is remarkable

with values of 20.0±11.5 at baseline to 8.6±10.5 12 weeks later for the population

under oxygen therapy, and values of 19.5±11.3 at baseline to 18.7.6±12.2 12 weeks

later for the control population [217]. The impact associated with an oxygen-based

therapy is not well established, and the consequences are still unknown [211].

3.4.5 Oral Appliance Therapy

Oral appliances therapy prevents the collapse of the respiratory airway, and they

are useful to improve sleep quality and prevent snore [213]. Mandibular advancement
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devices may signi�cantly decrease AHI in subjects with retrognathism [211]. These

devices are custom-made and they use both upper and lower jaws, and their teeth,

to force the mandible in a forward position or by holding the tongue in position

[218,219]. Mo to Se OSAHS patients may use an oral appliance device if they can't

tolerate CPAP [216].

3.4.6 Nasal Dilators

Nasal dilators prevent nostrils collapse by opening the nasal passage, increasing

air�ow, and decreasing nasal resistance (di�erent types of nasal dilators at Figure

3.2). There are 2 types of nasal dilators, the �rst one, internal dilators, are inserted

inside the nostrils to keep airway passage open, while the second type, external

dilators, is a nasal strip placed outside the nose, and it works by pulling out the

nostrils [214]. The use of internal nasal dilators helped to signi�cantly decrease

the CPAP operating pressure from 11.4±1.5 to 10.8±1.5 (p=0.012) in 21 patients

[220]. The number of studies on nasal dilators and their e�ectiveness as a OSAHS

treatment is reduced and, so far, there are few pieces of evidence of nasal dilators

as a good treatment for OSAHS [214,221]. The nose has minor implications on the

pathogenesis of the OSAHS, but it plays a role in snoring [222].

3.4.7 Medication-Based Therapy

Several family groups of medication have been tested in the treatment of SRBD.

A class of medication, acetazolamide, had resulted in the decreasing of the number of

AHI and in increasing oxygen saturation in patients with heart failure and CSAHS

[211]. Medication-based treatments for OSAHS are available but lack to be e�ective

in clinical results [213,214].

(a) (b)

Figure 3.2: Types of nasal dilators. In (a), an example of an internal nasal dilator and in (b) an example of an
external nasal dilator. Both �gures are from [167].
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3.4.8 Electrical Stimulation

Respiratory muscles are responsible to keep the upper respiratory airway open

to allow people to have normal breathing, but in OSAHS patients this function is

impaired. A possible therapy to solve OSAHS is the implementation of electrical

stimulation to the hypoglossal nerve, which controls the genioglossus muscle, a res-

piratory muscle. A trial with 8 Mo or Se patients analysed this therapy during 6

months. A statistically signi�cant decrease in AHI was achieved from a range of 48

to 52, at baseline, to a range of 17 to 23 (p<0.001) just with a month of nerve stim-

ulation. Sleep results also show a decrease in N1 and an increase in SWS [214]. A

5-year cohort study reported statistically signi�cant improvements in the assessment

of PSG parameters. Throughout the 5 years period, the AHI evolved from 32.0±11.8
at baseline (n=126), to 15.3±16.1 after 12 months (n=124), and to 12.4±16.3 at

the end of the study (n=71) [223].

Phrenic nerve stimulation is the stimulation of the phrenic nerves using a device

developed for such a task. They control breathing by sending commands to and

receiving information from the diaphragm. Used to improve health, it is used to treat

CSAHS or Cheyne-Stokes Respiration. Results showed a substantial improvement

in central respiration events by 50%. A study points to a reduction in 55% of the

AHI in 3 months and for a population of 57 patients [211].

3.4.9 Surgery

Surgery is an invasive method and it is applied as a last resort to help improve the

patient's quality of life. A type of surgery is bariatric surgery, which has the objective

of decreasing the patient's weight. Patients may underwent bariatric surgery if they

have, at least, a BMI of 35 kg/m2.

OSAHS is high among overweighted patients, with a direct relationship with an

increasing in BMI. Those patients may undergo bariatric surgery, but there are no

guarantees in solving by itself SRBD [213,214]. A cohort study on bariatric surgery

was performed with 24 overweight patients. At baseline, before surgery, the patients

were 47.9±9.3 years old, and they were assessed again 1 year later. The patients

evolved from a BMI of 51.0±10.4kg/m2 to 32.0±5.5kg/m2 (p≤0.001), and from a

AHI of 47.9±33.8 events per hour to 24.5±18.1 events per hour (p≤0.0001). All but
1 patient did not have resolution of OSAHS [224].

Bariatric surgery has di�erent procedures available, and laparoscopic sleeve gas-

trectomy, biliopancreatic diversion, or Roux-en-Y gastric bypass are some examples

available. A review of 69 studies, a total of 13900 patients, reports a great impact

of the surgery in OSAHS, with 75% of the patients improving their OSAHS scores.

The biliopancreatic diversion procedure was the most successful procedure achieving

99%, at least, in improving the patients' OSAHS (82.3% had OSAHS resolution).

53



STATE OF THE ART

The laparoscopic sleeve gastrectomy was the least successful with 86%, at least, in

improving the patients' OSAHS (72% had OSAHS resolution) [225]. An increase

in the patients' weight is possible and should be closely followed up to control that

weight evolution. Review studies reported the lack of a clear de�nition of weight to

regain, and the scarce research and report about this thematic [226].

Other anatomical sites can be targeted by di�erent surgical procedures. Nose

treatments include septoplasty (septum correction), polypectomy (polyps removal)

and turbinectomy (partial or total turbinate bones removal) [218]. Uvulopalatopharyn-

goplasty is a procedure targetting the soft palate, at the back of the top of the

mouth. Its objective is to remove or reposition tissues, soft palate, uvula, tonsils,

and muscles in excess, in that area, to have the airway wider. Laser-assisted uvu-

lopalatoplasty targets the soft palate and the procedure uses a laser to scar and

sti�en the tissue. Although less painful than the uvulopalatopharyngoplasty, is also

less e�ective [213, 218]. Radiofrequency volumetric tissue reduction is a treatment

solution for patients with Mi to Mo OSAHS. The target tissues are the soft palate,

tonsils, and tongue and it cauterizes the tissues to shrike them. The genioglossus

advancement and the hyoid suspension procedure target the advancement of the

major tongue and a piece of bone of the jaw, and the hyoid bone, respectively, to

open space behind the tongue. The midline glossectomy and lingualplasty is a pro-

cedure to perform a partial removal of the back of the tongue to make it smaller and

the airway wider. Maxillomandibular osteotomy and advancement is for Se OSAHS

cases, where the upper and/or lower jaw are move forward [219]. Palatal implants

may be used in snoring or Mi patients, and the procedure inserts �ber rods in the

soft palate to sti�en it, decreasing �uttering. Surgical procedures to treat snoring,

outside the nose, include radiofrequency surgery of the soft palate, Laser-assisted

uvulopalatoplasty, and palatal implants to improve �utter [227].

A surgical procedure to treat SRBD, changes local anatomy and, as a conse-

quence, the resonance chamber of the upper respiratory also changes. An analysis

of the fundamental frequency and the �rst and second formant frequencies of the 5

Italian vowels was performed before and after surgery. The fundamental frequency

was unchanged, but the formant frequencies were signi�cantly di�erent. These pa-

tients underwent surgeries in di�erent anatomic locations [228].

3.4.10 Positive Airway Pressure Therapy

Positive airway pressure refers to all treatments based on a stream of compressed

air into the respiratory airway. The machine connects to the patient through a tube

with a mask at one end, either nasal or facial, and it is the interface machine-patient,

to equalize air pressure between them, and higher than the atmospheric pressure.

The higher pressure prevents the collapse of the upper respiratory airway structures,
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allowing normal breathing, and improving the patient's quality of life and the sleep

assessment parameters.

Therapy prescription requires an in-laboratory sleep evaluation to optimize ma-

chine con�gurations. The mask should be selected, facial or nasal, and di�erent

brands, accordingly to patients' face morphology and the capacity to eliminate air

leaks between the mask and the face. Air pressure con�guration, in cmH2O, should

be balanced between low pressure, to avoid air leaks, and high pressure, to be ef-

fective (to avoid the collapse of the respiratory airway structures) in the treatment

of the sleep disorder. Usually, air pressure is con�gured between 4 and 20 cmH2O.

It is necessary for some time to adapt to the new environment, during which the

patient may have headaches or stomach bloating, just to name a few, which should

be temporary [216,229].

3.4.10.1 Continuous Positive Airway Pressure

CPAP-based treatment uses a single pressure, in-laboratory pre-determined, dur-

ing the entire night, and in both inspiratory and expiratory phases. It was de-

veloped by Colin Sullivan in 1981, Australia [229]. Besides improving sleep as-

sessment parameters, studies reported a reduction in hypertension [230], daytime

sleepiness [231], an improve in blood oxygenation [232], and in mortality [233,234].

CPAP is to OSAHS treatment, as the PSG is to OSAHS assessment [214,219].

3.4.10.2 Bilevel Continuous Positive Airway Pressure

Bilevel Continuous Positive Airway Pressure (BiPAP) is an evolution of the

CPAP treatment because it uses 2 pressures, one to the inspiratory phase, and a

second, lower than the �rst, to the expiratory phase. By using 2 di�erent levels of

pressure, the lungs may work more e�ciently. Spontaneous BiPAPmachines work by

switching air pressure as a response to a shift in the respiratory phase. In more severe

pulmonary disorders, such as the case of chronic obstructive pulmonary disease and

emphysema, it may be necessary for the BiPAP machine sets the respiratory rate.

The treatment of CSAHS using BiPAP is also e�ective. These machines may use

pressures up to 30 cmH2O [229].

3.4.10.3 Auto Continuous Positive Airway Pressure

An auto titration positive airway pressure machine has some intelligence incorpo-

rated because it has the capability of adjusting air pressure as a response to changes

in the respiratory patterns. The incorporated algorithm allows pressure variations

across the night, which means the machine can decide to not interfere when the pa-

tient has normal respiratory patterns, and it helps when the respiration is abnormal,

with snoring or abnormal sleep events [229].
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3.4.10.4 Servo

The Adaptive Servo-Ventilation is a type of ventilatory therapy to treat SRBD,

especially, central sleep apnoea by using 2 di�erent pressures. Ventilation pressure

during the expiratory phase may be adjusted to control obstructive events, but it

di�ers from the other therapies, BiPAP and CPAP, by featuring a dynamic pressure

adjusting capability, from a respiratory cycle to the following one, in the inspiratory

phase and by normalizing the respiratory rate to a prede�ned value [235].

3.5 Highlights of PSG Research

3.5.1 PSG Automatic Scoring

The diagnosis of OSAHS is PSG-dependent, and its scoring is critical to achiev-

ing accurate and precise results. Manual scoring of PSG studies is the current gold

standard, but an automatic scoring, with equivalent results to the manual scoring,

would increase speed, and dramatically decrease scoring time, since a sleep tech-

nician spends a couple of hours to complete the task. Notwithstanding, there are

di�erences in scoring among sleep technicians. AASM has an inter-scorer reliabil-

ity program to estimate the epoch by epoch agreement between sleep technicians.

The latest results of this program show overall inter-scorer reliability for scoring

respiratory events of 93.9% (κ=0.92). Epochs without respiratory events had an

agreement of 97.4%, while epochs had an overall agreement of 88.4% (κ=0.77) for

the existence of some type of respiratory event. Obstructive sleep apnoea, central

sleep apnoea, and hypopneas had an agreement of 77.1% (κ=0.71), 52.4% (κ=0.41),

and of 65.4% (κ=0.57), respectively [236]. A second, prospective, study on inter-

scorer agreement achieved strong evidence of an agreement among experienced sleep

technicians among the 9 Sleep Apnea Genetics International Consortium centers.

The study included a total of 15 PSG to score, and each epoch was evaluated to

sleep stage, arousals, apnoeas, and hypopneas, using AASM guidelines. Nine sleep

technicians, 1 from each site, score all the PSG studies, and the intraclass correla-

tion coe�cient was used to do agreement analysis. The results for the inter-scorer

agreement returned intraclass correlation coe�cient of 0.95 for AHI, 0.77 for total

apnoeas, 0.80 for total hypopneas, and 0.68 for arousals index [237].

Important research e�orts have been made to implement an automatic solution

by exploring the computational resources. The most important milestone, in the de-

velopment of an automated solution, is to achieve, at least, the same manual scoring

performance. One of the �rst projects to use computational resources to score PSG

studies was developed in the SAMOA project, using an integrated software program,

in which the algorithm uses the information gathered during the entire medical pro-

cess of the SAHS diagnosis. The software integrates conventional programming with
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"arti�cial intelligence techniques" while dealing with di�erent time references [238].

The development of automatic algorithms is a state-of-the-art concern in the

research community, intending to put machines performing repetitive tasks as well

as complex tasks. In sleep, they have been developed to do automatic sleep stage

classi�cation [239�244], OSAHS events detection [245, 246], EDS detection [247],

OSAHS severity [248], and sound classi�cation [249,250].

A study with 70 PSG studies conducted a research to assess automatic scor-

ing of those PSG �les, and inter-scorer agreement was also tested, using 10 sleep

technicians. Automatic scores were compared with the manual scoring and using

intraclass correlation coe�cient, the results showed a great amplitude, depending on

the parameter analysed. Some parameters had very good results, like global AHI,

AHI in REM sleep, and obstructive apnoea with values above 0.9. Other parameters

had poor results, all below 0.6, as is the case of arousals in REM, sleep stage N1 and

N3, and latency to REM. Details about the methods used in software development

for automatic scoring were not detailed [251,252].

More recently, new approaches have been implemented to improve automatic

scoring results and to improve reliability in those results among medical sta�. A

so-called "human-computer sleep scoring" (HCSS) system was proposed, and it is a

middle term between fully automatic and fully manual scoring. Implement in 30 PSG

already manually scored, they were again manually scored by 2 sleep technicians.

Scoring a sleep stage for a long period reveals a low level of disagreement, but

when there are constant stage changes the disagreement increases. The concept

performs automatic scoring in regions of high reliability, and low disagreement,

using stage change distance, stage change frequency, and slow wave-related features,

as their metric to de�ne those regions as high or low. High disagreement regions

were manually scored by a sleep technician. The overall agreement between the

HCSS system and the manual scoring was 89.74% and 91.10% for sleep technicians

1 and 2, respectively (κ=0.84 and κ=0.86). A comparison was made between a

fully automatic and the HCSS system, splitting PSG in terms of sleep e�ciency,

a threshold of 85% (good vs poor sleep quality). For subjects with good sleep

e�ciency, the agreement was 84.74% between the fully automatic system and the

initial manual score, 88.88% between HCSS system and sleep technician 1, and

89.53% between HCSS system and sleep technician 2. For subjects with poor sleep

quality, the agreement felt for 79.02% between the fully automatic system and the

initial manual score, 88.44% between HCSS system and sleep technician 1, and

87.27% between HCSS system and sleep technician 2 [253]. The HCSS system

performed better than its fully automatic version, although the latter should have

been compared against manual scoring of sleep technicians 1 and 2.

57



STATE OF THE ART

3.5.2 Data Acquisition

3.5.2.1 Channels

The con�guration of the PSG study allows using a great number of sensors,

besides the use of other equipment, only for research purposes, for data acquisition.

Data from PSG o�er di�erent combinations in channel analysis with 2 degrees of

freedom: the number of channels and the type of channels selected. Some studies

were conducted using more channels than the typical PSG study, increasing the

number of EEG channels to 21 (following the International 10�20 system) [241]. An

example of parallel data acquisition to PSG is the use of non-contact microphones

to acquire and analyse snoring in patients [239,254].

Data from EEG, EOG, and chin EMG channels were used in [15,16], while data

from abdominal and thoracic movements and pulse oximetry were used in [255].

Single channel-based research was performed using the EEG [17, 240, 256], but also

EOG [257], ECG [258,259], EMG [260,261], pulse oximetry [247,262�264], cannula

and thermistor [265,266], abdominal and thoracic belt sensors [127], and the snoring

piezoelectric sensor [137,267].

3.5.2.2 Hardware

Multiple studies used only data collected from the equipment of the sleep med-

ical centres, and from the questionnaires performed by the sleep technicians. This

methodology does not require more equipment for data acquisition, speeding up the

acquisition phase [15, 241, 255, 258, 262]. A methodology following data acquisition

from both the sleep medical centres data and from research equipment is also very

common. Research equipment may improve data quality by using better �lters, in-

creasing sampling frequency, using a di�erent type of sensor (e.g. non-contact vs

contact microphone), by increasing the number of channels in one particular type

of signal (increasing the EEG channels to 21, following the International 10�20 sys-

tem)), or by increasing the the number of channels in one particular signal of signal,

but in di�erent anatomical areas [239,241,260].

Snoring analysis follows di�erent methodologies, varying in the number of micro-

phones and their type (non-contact vs contact microphones). Researchers may use

more microphones, but the most common methodology uses either 1 or 2. Contact

microphones, of piezoelectric type, are placed in the neck, close to the upper respi-

ratory airway (trachea). Non-contact microphones are placed at a distance between

30 to 100 cm to the head (due to subject movements in bed), above the head, and

it usually uses directional con�gurations, like hypercardioid patterns [137,239,268].

Analogue sound acquisition is digitized at a sampling frequency between 8 kHz and

44.1 kHz and 16 bits of resolution [137,239,268,269]. The microphone may also be
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used in a contact pro�le and during the day, with the subjects awake [248].

3.5.3 Feature Extraction

3.5.3.1 Anthropometric Features

Anthropometric data are collected in the questionnaires, together with the dis-

eases and medication, and consumption habits, and are useful to evaluate OS-

AHS. Some of the anthropometric features used in this �eld includes the neck cir-

cumference [248, 270], height [248, 271], weight [248, 271], craniofacial shape [272],

age [248,271], gender [248,270,271], Mallampati score [248], race [272], position [263],

and genetic factors [272].

3.5.3.2 Time-Domain

Time-domain features are calculated directly from the time series. The sleep

medicine �eld, regardless of the type of signal under analysis, had already imple-

mented a long set of feature extraction methods, and the hereby list is a compilation

of those features. The features' list used in this research �eld includes time duration

[246,264], area [246], amplitude [264], maximum and minimum [243], zero-crossings

[254, 273], Hjorth parameters (activity, mobility and complexity) [240], Empirical

Mode Decomposition (EMD) [258, 264], detrended �uctuation analysis [274, 275],

mutual information measure [276], matched �ltering [277], period-amplitude analy-

sis [273,278], energy [15,16,254], likeness method [279], canonical detection method

[279], and Fujimori's method [280,281].

3.5.3.3 Frequency-Domain

Frequency-domain features can not be directly calculated from the time series,

but rather from the signal transformation into its representation in the frequency

domain. The Fourier Transform (FT) is the most widely used mathematical oper-

ation to transform the time series signal in its equivalent in the frequency domain,

with its frequency components [268].

Due to the stochastic nature of the PSG data, the analysis of the distribution of

power over the frequency range may help to characterize better those signals. The

Power Spectral Density (PSD) estimates the spectral density of the signals, and

several methods are available to calculate the signal's PSD, which are grouped in

one of these 2 classes: parametric or non-parametric methods [262]. The parametric

methods are known as model-based methods, assuming the model for data, and

they work based on the estimation of the model's parameters. Then, the estimation

of the PSD is achieved by replacing the model's parameters in the expression of

the PSD. Non-parametric methods rely on the calculation of the FT of the signal's

estimate autocorrelation, and they have limitations associated with spectral leakage

and resolution. Weak signals are masked and hard to detect in the PSD and to
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overcome resolution issues and improve PSD estimation, data has to have long data

records. Non-parametric methods used windowing which adds distortion due to

window e�ects, but they are more robust than parametric models, which may contain

spurious frequency peaks if the assumed model is wrong.

The parametric class encompasses the moving average, the autoregressive, and

their junction in the autoregressive moving average [282, pp. 987]. From these

methods, other approaches were developed to calculate PSD, including time-varying

autoregressive, time-varying autoregressive moving average, autocorrelation, Burg,

covariance, modi�ed covariance, Yule-Walker, Burg, and Kalman �ltering [240,245,

249,269,283�286]. The non-parametric methods include the periodogram, the correl-

ogram, and modi�ed versions of the �rst 2 [282, pp. 974]. Among the modi�ed ver-

sions are the Welch [246,248,262,263,287], Bartlett [288,289], Blackman-Tukey [290],

Capon (Minimum Variance Spectral Estimator) [288, 291], multi- window spectral

estimator [268], Daniell [292, 293], and Lomb-Scargle [247] have being used in OS-

AHS research. Figure 3.3 presents the organization of the PSD methods and it gives

examples of methods in each subgroup.

From the di�erent available mathematical tools to get the signal in the fre-

quency domain, several features can be calculated, including the total spectral power

[15,240,246,262,263], symmetry coe�cient [239], spectral power [239,240,243,294],

power ratio [15,239,240,246,262,263], spectral centroid [15,239,240,242,250], spec-

tral spread [242, 250], spectral decrease [242], spectral roll-o� [242, 250], spectral

slope [242], spectral density [241], maximum and minimum [243], power at central

frequency [240], respiratory frequency [246], spectral edge frequency [295], spectral

�ux [250], spectral �atness [242], and spectral correlation [294].

Power Spectral

Density
Parametric

Non

Parametric

Modified

Periodogram Correlogram

Low

Resolution

High

Resolution

Capon
Maximum

entropy

AR and ARMA

MUSICMin-Norm

LinearPropagatorESPRIT

Subspace

based

Determinant Maximum

Likelihood

Model fitting

based

Stochastic Maximum
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Figure 3.3: How PSD methods organize in di�erent categories. The main division is between the parametric and
non-parametric groups. Examples of modi�ed low-resolution non-parametric methods are the Welch, the Bartlett,
and the Blackman-Tukey. Among the parametric methods, there are the autoregressive (AR), the autoregressive
moving average (ARMV), the multiple signal characterization (MUSIC), and the estimation of signal parameters via
rotational invariance techniques (ESPRIT). These methods have been used in the sleep medicine �eld, to a better
comprehension of the OSAHS.
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3.5.3.4 Time-Frequency Analysis

Real-world data, in particular biomedical signals, are non-stationary signals,

in which the frequency composition of the signal changes over time, and where

new frequencies emerge, others disappear, and some change their overall impor-

tance in the signal structure. Time-frequency analyse focus on the study of the

signal, simultaneous, both in the time and in the frequency domain, and it is quite

popular in OSAHS studies. Methods like short-time fourier transform [240, 268],

wavelets [16, 240, 257, 258, 296], constant Q transform [268], mel-frequency cepstral

coe�cients [250, 268], synchrosqueezed wavelet [127], matching pursuits [297], joint

time and time-frequency analysis [298], Hilbert�Huang Transform [296], Wigner-

Ville distribution [299], and Choi-Williams distribution [296] were already used to

deliver signal's features.

3.5.3.5 Non-Linear Methods

Non-linearity is of interest in many areas, including mathematics, engineering,

and biology, and they are, also, implemented in OSAHS �eld study. The following

non-linear methods have been used in the study of sleep and SRBD. It is the case of

the correlation dimension [240,246,300], Lyapunov exponents [240,246,300], fractal

dimension [240,300], Hurst exponent [240,243,300], Higuchi Fractal Dimension [246,

297], dimensional complexity [240], central tendency measure [262,264,287], Lampel-

Ziv complexity [246, 262�264, 287], synchronization likelihood [301], recurrence plot

[300, 302], phase space plot [300], delay vector variance [303], Green-Savit measure

[304], fuzzy sets [305], petrosian fractal dimension [243], mean curve length [243],

mean energy [243], mean Teager energy [243, 295], temporal energy [243], energy

[243], and correlation exponent [306] methods.

3.5.3.6 Statistical Methods

Getting features from statistical methods is domain-independent, and features

as the case of mean [239, 240, 259, 262, 263, 287], mode [239], median [240, 262],

variance [239, 259, 262, 263, 287], standard deviation [239, 240, 259, 307], root mean

square [240, 259], percentiles [246], skewness [239, 240, 262, 263, 287], kurtosis [239,

240,262,263,287], correlation coe�cient [16], and entropy (Boltzmann-Gibbs, Tsallis,

Shannon, Spectral, Sample, Maximum, Approximate, Kolmogorov-Sinai) [241, 243,

246,257,262�264,276,287,300,308�312] have been used in sleep, and particularly, in

OSAHS research.

3.5.3.7 Other Methods

Other methods may be implemented to get features as the case of independent

component analysis [244,313], principle component analysis, tomography [128,313],

EEG generation model [277], coupled oscillators model [314], and random walk
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theory [315].

3.5.4 Feature Selection

Feature extraction may generate a set of features unsuitable for classi�cation,

and a pre-classi�cation step should be designed to select the appropriate features.

Feature selection eases downstream processing and analysis by reducing the number

of features, redundant or insigni�cant features, used by the classi�er, and choos-

ing the best features to have discriminant capability among the di�erent medical

classi�cation groups. Methods for feature selection can be classi�ed accordingly

with the existence of label information or search strategy. Label information-based

classi�cation organizes methods in supervised, semi-supervised, and unsupervised,

while search strategy-based classi�cation organizes them in a �lter, wrapper, em-

bedded, and hybrid methods [316�320]. Wrapper methods have a high computa-

tional requirement and perform feature selection based on the classi�er performance

over di�erent feature subsets. Analysing the results for the di�erent subsets, it

predicts the bene�ts of adding or removing a feature [245]. Methods like genetic al-

gorithm [271,287,297], particle swarm optimization [271], arti�cial neural networks

(back propagation) [271], logistic regression [271], F-score [246], recursive feature

elimination [246], k-nearest neighbourhood [245], support vector machine [271], de-

cision tree (C4.5) [271], random forest and stepwise [250], unpaired t-test [248],

Wilcoxon test [245], and non-parametric Kruskal-Wallis one-way analysis of vari-

ance [242] were already used in this �eld.

3.5.5 Classi�ers

All methods implemented in data processing and analysis return a matrix of

data to perform classi�cation by �nding a model capable of discriminating the ex-

isting classes or concepts [321�324]. Several classi�ers have been tested in the sleep

medicine �eld research. Arti�cial neural networks [240,243,245,247,270], bootstrap

aggregation [242], fuzzy classi�cation [244], logistic regression [239, 248, 287, 307],

maximum likelihood [249], linear discriminant analysis [258], quadratic discriminant

analysis [258], support vector machine [127,243,246,250,325], hidden Markov model

[250,267], decision tree [15,250], k-nearest neighbours algorithm [243,245,250,276],

theory of evidence [326], Bayesian classi�er [327], and conditional random �eld [328]

are some of the classi�cation methods used. A common practice in classi�ers is the

creation of hybrid classi�ers to improve performance, as the case of the rule-based

case-based hybrid classi�er [329], or the neuro-fuzzy classi�er, which works well with

no a priori information [276].
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3.5.6 Statistical Analysis

Statistics is the science related to collecting and analysing data, and it works in

2 directions. Sampling a population to do descriptive statistics of the sample, mean,

and standard deviation, among other methods, and to do inferential statistics, to

infer a characteristic of the population based on a sample from the same population.

Data from the sample can be classi�ed as categorical, ranked (ordinal), discrete, or

continuous, and hypothesis testing consists of the formulation of a question to test

the population's sample. Hypothesis test methods are classi�ed as parametric and

non-parametric. Parametric methods are selected when it is possible to assume

that the sample data comes from a speci�c data distribution, and non-parametric

methods are used when the knowledge about the population's sample distribution is

reduced, and they typically need more data to achieve statistical signi�cance for the

same degree of con�dence. These methods test the veracity of the null hypothesis,

against the alternative hypothesis, and there 2 types of errors associated with the

test. Type I error happens when the hypothesis test �nds a signi�cant di�erence,

with the rejection of the null hypothesis, but there is no di�erence. Type II error

happens when the hypothesis test does not �nd a signi�cant di�erence, no rejection

of the null hypothesis, but there is a di�erence.

Choosing the correct statistical tool to evaluate the sample is of high importance,

and several methods are available to evaluate statistical signi�cance. Table 3.1

presents a possible method to apply depending on the variables' conditions, type

and number.

The statistical analysis of data does not follow a straight rule to implement the

methods available, but rather guidelines and each case should be carefully analysed.

As in any research �eld, sleep and OSAHS study use statistical tools to know if

there is statistical signi�cance among the groups, and some examples are presented

below. The non-parametric Mann-Whitney U test and the Kolmogorov�Smirnov

test were used in [262, 286, 287], the non-parametric Kruskal-Wallis test and the χ2

test were used in [263], the ANOVA test was used in [137, 257, 260, 278, 300], the

Fisher'spartial least-squares di�erence was used in [260], the Student's t-test was

used in [137], MANOVA test and the Bonferroni test were used in [274], one-way

ANOVA and Kolmogorov�Smirnov test were used in [286], the Student's t-test and

the paired Student's t-test were used in [283], and the two-tailed z-test was used

in [330].

63



STATE OF THE ART

Table 3.1: Statistical methods for hypothesis testing in 1 of 2 scenarios, without or with 1 independent variable
(predictor). The dependent variable (predicted) under evaluation may be of type interval, ordinal, or categorical.
Hypothesis testing depends on the sample (nature of the independent variables) and the nature of the dependent
variable. This table is based in [331]. *Assumption of normal distribution for hypothesis testing.

Independent Variables
(IV)

Nature of
Dependent
Variables

Test

0 IV (1 sample) Interval* One-sample t-test
0 IV (1 sample) Ordinal or Interval One-sample median
0 IV (1 sample) Categorical (2

categories)
Binomial test

0 IV (1 sample) Categorical χ2 goodness-of-�t
1 IV (2 independent

samples)
Interval* Unpaired sample t-test

1 IV (2 independent
samples)

Ordinal or Interval Wilcoxon-Mann Whitney
test

1 IV (2 independent
samples)

Categorical χ2 test

1 IV (≥2 independent
samples)

Interval* One-way ANOVA

1 IV (≥2 independent
samples)

Ordinal or Interval Kruskal Wallis

1 IV (≥2 independent
samples)

Categorical χ2 test

1 IV (2 dependent samples) Interval* Paired sample t-test
1 IV (2 dependent samples) Ordinal or Interval Wilcoxon signed ranks test
1 IV (2 dependent samples) Categorical McNemar

1 IV (≥2 dependent
samples)

Interval* One-way repeated
measures ANOVA

1 IV (≥2 dependent
samples)

Ordinal or Interval Friedman test

1 IV (≥2 dependent
samples)

Categorical (2
categories)

Repeated measures logistic
regression
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Chapter 4

Materials and Methods

This chapter focuses on the methods for data acquisition in this thesis. Due

to the nature of the data, and prior to starting data acquisition, a formal request

was submitted to the Ethics Committee of the CHUC to gather data. The main

sources of data were a commercial, high-quality, audio device, the PSG study and

its reports, and the questionnaire to the patient.

This project was developed, mainly, on a laptop with an Intel i7-3610QM @

2.3GHz CPU, with 6 GB of RAM (later upgraded to 10 GB) in the MS Windows

environment. Tasks related to data storage, data management, and data processing

were performed in MATLAB software, a licensed product from Mathworks. Most of

the tasks were executed using the 32-bit MATLAB R2012a software version. Later,

the implementation of a speci�c method required the use of a more recent version,

the 64-bit MATLAB R2017b.

The implementation of the project followed two independent paths, as summa-

rized in the diagram of Figure 4.1. In one direction, the steps followed from data

acquisition to data processing and analysis, and in the second direction which work

was developed by the medical centre and which was developed by the research team.

These topics are described below.

Feature

Extraction

Snore

Detection

Sleep

Scoring

Sleep

Reports

Data

Correlation

PSG/Sound File

Synchronization

PSG

Slow Variation

Parameters

Acquisition AnalysisProcessing

Sound

Data

Analysis

Sleep

Medicine

Analysis

Figure 4.1: A diagram representing the entire process. From the di�erent steps to data interpretation, data acqui-
sition, processing and analysis, to the di�erent purposes, clinical and research [332].
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4.1 The Protocol between LIBPhys-UC and CHUC

Prior to data acquisition, a formal request to access the installations of the

CMS was submitted to the ethical committee and to the board of directors of the

CHUC. The request should answer important questions. A description of the work,

its goals, and the scienti�c framework supporting it was presented, with reference

to the physical healthcare facility requiring clearance. The strategy for the project

setup, the informative conversion with the patients and their agreement (with signed

formal documents), and the template of the questionnaire was also clari�ed. A

declaration should also guarantee the existence of no �nancial costs, associated with

this project, to the CHUC.

4.2 CMS Healthcare Facility

The CMS functions on a shift work basis, with di�erent tasks assigned to the day

shift and the night shift. During the day, there are several tasks assigned to sleep

technicians and M.D.s. Sleep technicians, among other tasks, review sleep studies

and teach patients to use sleep screening devices. M.D.s have medical appointments

to attend with their patients in the facility division M1 or M2 (see Figure 4.2). They

decide the patients' treatment and which patients perform portable sleep studies, at

home, and which ones must be assessed at the clinical facility.

4.2.1 Night Shift

The night shift is dedicated to performing PSG studies and it begins at 21h30m,

with 2 sleep technicians welcoming a maximum of 4 patients. The CMS has 4 beds,

R1 to R4 in Figure 4.2, and the sleep technicians must manage the assignment of

patients, to the rooms, following criteria, like the patient's weight. The preparation

starts with a questionnaire to the patient, which includes anthropometric questions

and the gathering of diverse information, on the impact in sleep.

EXIT

R2 R1

D1 D2

B2

M1

R3 R4 P1 L1 B1

S1

Figure 4.2: A partial layout of the CMS, including only the �oor where the PSG study took place. PSG studies were
perform in rooms R1 to R4, while sleep technicians monitored data acquisition in M1, and medical appointments
are at D1 and D2. S1 is for sleep equipment storage.
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The sleep technician starts sensor placement in the head, with its measurement

to a correct EEG placement. Following the EEG placement, the EOG and the EMG

are the next ones. The area under the electrode should be properly clean, with an

abrasive material, to remove dead tissues and to decrease the impedance of the skin

surface to acceptable ohmic values. The signal conductivity also improves using a

conductive paste, placed between the skin surface and electrode, they use cup gold

electrodes. To hold the sensors in position the entire night, the technicians use a

combination of gaze with either plaster or colloid. The upper limit for EEG and

EOG ohmic values are 5kΩ, and 10kΩ for EMG and ECG. Between the same type of

electrodes, the ohmic values should be as closely matched as possible. ECG, snore,

and EMG leg movements sensors placement require the use of an abrasive product

to clean the skin surface and to reduce impedance.

The remaining sensors are transducers and do not require the application of

abrasive materials to improve conductivity. The nasal cannula is a pressure sensor

and the thermistor is a temperature sensor. They do not need skin contact and

they only require a proper placement in the front of the nose and the mouth. The

thoracic and the abdominal belt sensors rely upon the movements of expansion and

contraction of the thorax and the abdomen. The body position sensor does not

measure any intrinsic body signal, but rather, the relative position of the body to

the external environment. The pulse oximetry sensor measures O2 saturation in the

index �nger, which obliges the nail to be in its natural state, which means, without

any type of painting or polishing. Adhesive tape should be used to help to secure

the di�erent sensors in place.

Electrodes are connected to a local device and each room has its acquisition

system, with the CMS using 2 di�erent hardware models of acquisition systems.

One hardware model is in rooms R1 and R2 and the second is in rooms R3 and R4.

All data go to computers, one computer for each room, in division M1 (see Figure

4.2), where sleep technicians monitor the PSG study. There are di�erent acquisition

systems in the market and they may have di�erent ampli�cation, �ltering, and

calibration settings, but they must follow AASM guidelines as close as possible.

Patients' preparation ends before midnight with all of them going to sleep around

midnight and data, for sleep assessment, starts to count after marking this moment

in the acquisition software. During the night, sleep technicians keep a close look at

the data to assess their quality and patients' sleep quality. Poor data quality requires

sleep technician intervention, for example, of a sensor detachment, and poor sleep

quality may require the application of sleep treatment to the patient. The end of

data acquisition is scheduled to be around 7 a.m. The �nal procedure included the

removal of sensors, their cleaning, and the writing of reports to describe the patients'

sleep.
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4.2.1.1 PSG Equipment

PSG data acquisition was performed in 4 bedrooms (layout in Figure 4.2), with

rooms R1 and R2 using the SomnoStar z4 (Viasys), and rooms R3 and R4 using the

Jaeger to receive, to amplify and to send data to M1 room, through an Ethernet

cable. Sleep technicians monitor the PSG study in room M1, using 4 computers,

each computer receiving data from one of those devices, with the SomnoStar 9.1f

software.

4.3 Population Characterization and Subject Sam-

pling

The selection of patients to participate in this study was the result of a discus-

sion between the sleep technicians, under the advice of M.D. José Moutinho dos

Santos, and the researcher responsible for gathering data. The selection method

to participate in this study was not probabilistic, in the sense that each individ-

ual does not have the same probability of being sampled. The method followed a

non-probabilistic sampling known as convenience sampling and was based on the

presence of the subject in a well-de�ned geographic location, the CMS [333].

Patient selection criteria included a full basal PSG study, which means that

patients scheduled to perform a PSG study with the application of a nasal or an

oro-nasal mask for sleep treatment were, immediately, excluded. Sleep technicians

performed real-time sleep evaluation and there were patients meeting the criteria

for the immediate application of treatments (mask). The PSG sleep study was no

longer a basal type study, but rather a split-night study, which met the exclusion

criteria. The decision to include only PSG basal studies is related to a modi�cation

in the snore signals properties by using masks and the corresponding increased air

pressure inside the upper airway structures. Another exclusion criterion was related

to the sound acquisition device performance, which often failed to complete a sound

acquisition. Overall, 165 patients were invited to participate in this project and, due

to multiple causes, the exclusion criteria process resulted in 67 patients validated,

an acceptance rate early 41%. The entire sequence of patient selection is in Figure

4.3, with all the criteria leading to the �nal selection.

At the beginning of data acquisition, the normal functioning of the CMS included

a 4-night schedule per week to perform PSG studies, but it changed to 5 nights per

week, later. From the date of the �rst acquisition to the date of the last acquisition,

the period of acquisition lasts for 373 days, which is equivalent to nearly 53 weeks.

This means a mean of nearly 3 data acquisitions per week. The main reasons to get

a mean below of 4 data acquisitions per week were related to holidays, vacations,

and the missing of patients suitable to participate in the study.
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All patients selected to participate in this study received a brief description of

the project, with an emphasis on aspects directly involving the patients, like data ac-

quisition and questionnaires. Patients willing to participate in the study should give

formal consent and answer a questionnaire. The questionnaire focused on 3 main

areas, anthropometric information, medical history, and consumption habits. The

anthropometric information included questions about age, gender, weight, height,

and cervical perimeter. The medical history focused on diseases related to OS-

AHS, the beginning of OSAHS and related complaints, medication, and nocturia.

The questionnaire also had questions regarding the intake of co�ee and alcohol and

smoking, including consumption frequency. The questionnaire should be more com-

plete with questions regarding the consumption of drugs, bedding time, and the

number of hours of sleep.

The �nal set of 67 patients, 41 males, and 26 females was classi�ed by the M.D.

José Moutinho dos Santos in 1 of the 5 possible medical classi�cation groups. Results

from PSG scoring helped to classify as non-OSAHS patients, either a Co or a Sn

subject, or as OSAHS patients, with increasing severity from Mi, to Mo and to Se. A

detailed statistical characterization of the population is in Table 4.1, with separation

by gender and with the inclusion of some of the collected anthropometric data. To

know the complete and detailed data of the questionnaire see Appendix B.

165 patients selected

to enter in the study

2 patients refused to participate 

69 patients did not �nished

sound acquisition

15 patients received sleep treatment

11 patients were classi�ed mainly

with respiratory e�ort

1 patient had poor quality signal

in the PSG snore sensor

163 patients went for

sound acquisition

94 patients completed

sound acquisition 

79 patients were

evaluated by the M.D.

67 patients ful�lled

inclusion criteria

68 patients were

classi�ed with OSAHS

Figure 4.3: The implementation of exclusion criteria to the patients from the moment they were selected to partic-
ipate in the study.
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Table 4.1: Patients' anthropometric, age and gender data organized according to their medical classi�cation group.
There are 5 medical classi�cation groups: Co, Sn, Mi, Mo, and Se. The mean, µ, and the standard deviation, σ, of
the patients' height, weight, cervical perimeter (Cervical P.) and age are the statistical information available in the
table. The number of males and females in each medical classi�cation group is also available [332].

Parameter Non-OSAHS OSAHS

[µ± σ] Co Sn Mi Mo Se

Height (cm) 167±11 167±10 166±11 167±9 170±8
Weight (kg) 76±20 77±23 77±11 91±20 88±17

Cervical P. (mm) 386±45 393±46 390±35 418±40 436±50
Age (years) 43±15 49±15 49±10 55±12 56±12

Gender
M 4 14 7 8 8
F 5 10 6 5 0

4.4 Data Acquisition "Channels"

4.4.1 Sound Acquisition

The �rst important decision to make was related to the sound acquisition device.

The development from scratch of an ad-hoc device for sound recording was discussed

against the option of using a commercial device. During the decision-making process,

pre-emptive actions were taken, in the case of a decision favouring the development

of an ad-hoc device, and exhaustive research on commercial microphones and a

short list of microphones was created along with some of their most important

characteristics. Both options, the commercial sound acquisition device and ad-hoc

device, have strengths and weaknesses. Table 4.2 presents all the weighting factors

considered for each case.

Prior snoring studies have been performed between the LIBPhys and the CMS

[334]. A dedicated solution was developed to perform data acquisition, but consider-

able levels of noise were always present due to the electrical grid. Filters were unable

to suppress the majority of the noise, resulting in poor values of signal-to-noise ratio.

Another decisive factor was the developing time necessary to get ready an ad-hoc

device. Hardware design and assembly, and the implementation of tests require sev-

eral months to ensure that all hardware and software function as expected. Investing

the required amount of time in the development of a dedicated solution knowing the

problems associated with noise �ltering was considered a hazard, and, in the end,

a commercial solution was preferred. A brief search for commercial sound acqui-

sition devices led to the selection of the H4n, from the Zoom Corporation (Figure

4.4 (a)) [335]. From an economic point of view, the investment in the high-quality

sound acquisition H4n device pays o�, because the cost associated with this device

was less than 200e. Ad-hoc device development would surpass signi�cantly that

cost if the developing time and the price of the components to assemble were take
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Table 4.2: Advantages and disadvantages associated with a commercial device to perform sound acquisition against
the hypothesis of developing an ad-hoc device with the same purpose.

Commercial Device Ad-hoc Device

Advantages Disadvantages Advantages Disadvantages

Data acquisition
may start faster

Less control of
both the

acquisition and
storage phase

Broad control
over the data
acquisition
con�guration

Development
and test phases

delay
acquisition

phase

Reliability Allows to choose
the microphone

Electrical grid
50Hz noise is
hard to �lter

Economically
cheaper

Increase
available

information

in account.

The H4n device has 2 built-in non-contact stereo condenser microphones, in an

XY pattern and positioned at an angle of 90º or 120º. The orthogonal con�gura-

tion minimizes phase error while each microphone is unidirectional and presents a

cardioid polar pattern (Figure 4.4 (b)). Each microphone has a gain range between

+7dB and +47dB. H4n records sound either in stereo or in mono sound and stores

data in an SD card. All data recording sessions were performed in mono mode and

uncompressed, with a sampling frequency of 44.1 kHz and 16 bits of resolution. Data

was saved in a .wav �le type extension. Other H4n speci�cations are in Table 4.3.

The device creates a single �le at the beginning of a new acquisition session and has

the capability of addressing 232 bytes (2GB). Settings for the sampling frequency

and the number of bits of resolution create a constrain in the total acquisition time

of 6h45m. The constrain is within the time interval, establish by the PSG protocol,

of 6 to 8 hours.

4.4.2 Slow Variation Parameters

SVP were recorded using a combination of both commercial and ad-hoc hardware

(Figure (4.5)). The Arduino company develops open-source hardware and software

products for multi-purpose objectives and is capable of accepting expansion boards.

An Arduino Uno board was selected to work as an interface between a computer

and the custom-made expansion board.

4.4.2.1 Arduino Uno

Arduino Uno board functions based on a microcontroller ATMEGA328-PU and

it o�ers multiple options to be powered. The microcontroller works with a 5V
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Table 4.3: Main speci�cations of the sound acquisition device H4n.

Characteristics Description

Inputs Built-in stereo mic, 2 XLR inputs, 1 external
stereo mic

Sampling frequency 44.1/48/96 kHz
Resolution 16/24 bits
Storage Up to 32GB

Data Type MP3, WAV
USB USB 2.0

Outputs Monaural speaker/jack for headphones
Display 128 x 64 dots LCD with backlight

Phantom Power 24/48V, O�
Power Supply DC 5V 1A, 2 AA Batteries
Dimensions 73(W) × 156.3(D) × 35(H) mm
Weight 280 g

power supply and can be powered via a USB connection, an AC to DC converter,

or a battery. Its characteristics include a 10-bit Analog-to-Digital Converter, digital

and analogue ports, a serial communication protocol (I2C) and interrupts.

4.4.2.2 Ad-hoc Hardware

Ad-hoc hardware was developed to acquire temperature, relativity humidity, and

gauge pressure in the room. A single silicon chip, SHT25, was capable of delivering

both temperature and relativity humidity. Developed by the Sensirion AG company,

the sensor measures the temperature with a resolution of 14 bits, ±0.1ºC repeata-

(a)

(b)

Figure 4.4: The H4n high-quality, sound acquisition device. Built-in microphones in XY pattern (a). Microphone
sensitivity, in dB, for a frequency of 1 kHz (b). Left microphone sensitivity is represented in blue, while right
microphone sensitivity is represented in red. Microphone direction are represented by black arrows [335].
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bility and a low drift (≤0.02ºC/year), and the relativity humidity with a resolution

of 12 bits, ±0.1% RH repeatability and a low drift (≤0.5% RH/year). SHT25 is a

digital sensor with an I2C communication interface for user con�guration and data

reading. The MPXV7007GP analogue pressure sensor (from NXP Semiconductors)

measured small variations in the atmospheric pressure using a reference value (gauge

pressure). Capable of measuring in a pressure range between -7kPa and +7kPa, the

sensor has a maximum error of 5% and a sensitivity of 286 mV/kPa.

The design of the hardware included an Real-Time Clock (RTC), an EEPROM

memory (both from STMicroelectronics), and an ampli�cation circuit for the ana-

logue sensor. The RTC keeps track of the current time, with the aid of a 32768 Hz

crystal, to timestamp data acquisition. The M41T81S RTC has 8 bytes available

for the clock/calendar function, and it tracks time from the tenths of milliseconds

to the switch of the century. For the purpose of the work, seconds, minutes, hours,

days, months, and years were used to timestamp data acquisition. The M24512

EEPROM memory is a type of non-volatile memory capable of data retention for

decades. The memory organizes storage in a page con�guration of 128 bytes each,

with a maximum storage capacity of 64 KB. Both memory and RTC share the same

communication protocol with SHT25. Photography of the hardware is at Table 4.5,

connected to Arduino Uno.

External interrupts, triggered by the RTC, keep the pace for data acquisition.

The acquisition of a new set of data generates a block of 12 bytes distributed as

follows. Half of the bytes are for SVP measurements, 2 bytes per parameter, and

the remaining 6 bytes for the timestamp. Time and date were stored in the format

hh:mm:ss and dd/mm/yy, respectively. The data acquisition period was of 3 min-

utes, which allows writing data for almost 11.4 days to the memory before it runs out

of space. Measurements of data, using lower periods, were considered not suitable

due to the possibility of memory storage roll-over and data loss. For example, for

a period of acquisition of 1 minute, the memory would be full after 3.8 days, which

can be achieved in a weekend followed by a holiday the next Monday. Due to the

nature of the parameters, their variation is very slow and the period of acquisition

Figure 4.5: Hardware dedicated to the acquisition of SVP, temperature, relativity humidity and gauge pressure,
(green board) using an Arduino Uno (blue board) to manage data acquisition and to communicate with a computer.
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selected was convenient.

4.4.2.3 Ad-hoc Software

The data acquisition process needed 2 types of software, one to run in the Arduino

and to manage the data stream between the Arduino and the ad-hoc hardware. A

second software, running on a computer and to communicate with the �rst software,

to con�gure and read data from the �rst software.

The second software was developed in Microsoft Visual Studio C#, 2010 version,

with a Graphical User Interface (GUI). Its operation consisted of a serial communica-

tion, via USB port, to update RTC parameters, and to read both data and memory

and RTC status (Figure 4.6). Data from timestamped slow variation parameters

were saved in a Microsoft Excel �le.

The description of the �rst software is not presented in this section since its

functioning can not be dissociated from the hardware, previously discussed. The

Arduino Software Integrated Development Environment is an application to develop

software for the Arduino board and it was used to develop the data acquisition

software, using the 1.0 version.

Gauge pressure sensor is an analogue sensor, and Equation 4.1 and Equation 4.2

are in its datasheet to convert from volts to Pa.

Vout = VS · (0.057 · P + 0.5)± (PressureError · Temp.Factor · 0.057 · VS) (4.1)

VS = 5.0V ± 0.25Vdc (4.2)

Figure 4.6: Software interface for Arduino computer communication. The interface reads and updates RTC registers,
reads memory status and data storage in the memory.
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4.4.3 Data Acquisition Apparatus

Both the H4n and the acquisition device for SVP were installed in a general-

purpose framework and placed behind the bed (Figure 4.7). The ad-hoc hardware

position was not critical and it was installed in local 1 of the �gure (Figure 4.7 (a)).

The framework had 2 degrees of freedom to adjust the H4n microphone's direction

and point it, with the help of a LASER pointer, to the cushion and the midline of

the bed. The microphones were positioned around 70 cm above the patient's head.

Although there isn't a protocol to de�ne how sound acquisition should be done

in sleep studies, some researchers had chosen to acquire data from the perspective

above the patient's head. They selected a distance from the source to the acquisition

device of 30 cm [336] and 50 cm [337]. We used a higher distance to prevent incidents

with the patient.

The CMS had a maximum capacity of 4 beds, which means it could run 4 PSG

studies per night, with 2 sleep technicians monitoring the biomedical parameters.

Patients were assigned to bed following CMS criteria and, depending on where the

selected patient was placed, the setup might be moved to a di�erent room.

1

2

(a) (b)

Figure 4.7: Setup of the sound acquisition system. In (a), H4n is positioned at the upper right corner and the
ad-hoc hardware, although missing in this �gure, was placed in 1. A LASER pointer helps, in 2, to redirect H4n's
microphones to the midpoint of the bed's head. In (b), the �nal positioning for data acquisition during the night.
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4.5 PSG Analysis

4.5.1 PSG Scoring

The commercial software developed to acquire and store PSG data also allowed

to score the study and to identify sleep stage and abnormal medical conditions.

Among its features is the capability for automatic scoring, as an alternative to the

manual scoring performed by the sleep technicians. Nowadays, sleep technicians

do not completely rely on software algorithms and they choose to perform either

a 100% manual scoring or an automatic scoring followed by a manual recti�cation.

The software at the CMS was one of the few to allow to split the arousals into two

categories based on their duration: arousals and awake. The PSG scoring at the

CMS followed the rules established at the AASM guidebook, AASM Manual for the

Scoring of Sleep and Associated Events, from 2007.

4.5.2 PSG Reports Conversion

The PDF �le type was the standard implemented to generate medical reports

and it is a formatted �le type. A formatted �le type, in opposition to plain text,

can not be directly readable by a generic text editor or a computer program. The

PDF �les have information regarding heart rate, sleep events, sleep position, sleep

stage, and the beginning and the end of the PSG study, for sleep evaluation. The

appropriate software can convert PDF �les into a readable �le type, and some of

such tools are available online and with a free license. After testing some tools and

assessing the achieved results, the Xpdf software package was the selected tool. The

conversion from PDF to text used a particular tool, pdftotext.exe, part of a more

comprehensive package, version xpdfbin-win-3.03 [338].

4.5.3 PSG Study Visualization and Processing

4.5.3.1 Read European Data Format Data

Acquisition software stored PSG studies in 2 �les. The video signal from the

patient's room webcam was stored in a �le while the remaining data were gathered

in a single European Data Format (EDF) �le type. This work doesn't use and there

wasn't access to the video signal, but the second �le was of critical importance. In

order to ensure patients' con�dentiality, EDF �les don't have personal information.

The purpose of the development of the �le extension EDF was the creation of a �le

capable of storing medical signals. The header storages information like the begin-

ning and the end of data acquisition and the number of channels recorded. It has

multi-channel storage capability, allowing the con�guration of di�erent acquisition

frequencies, �lters, signal units, and other calibrations for each channel. The EDF

speci�cations were adopted by the sleep medicine �eld and they are, currently, the
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standard for PSG recordings [339].

The speci�cations for the EDF data format are available for free, which allowed

the development of software capable of reading the �le and of extract the desired

data. Several solutions were already available as EDF �le viewer, the EDFbrowser,

and the Polyman are some of the available solutions [339,340]. It is possible to �nd

online viewers [341] as well as applications for smartphones (OS Android) [342].

In this project, the purpose was to have not just an EDF viewer but a tool far

more powerful, to deal with a second entry, the H4n �le, and to allow access to data

in both �les. Although some scripts were available to run in MATLAB, the �nal

decision was the development of a tool adapted to the need of the project. A GUI

was developed, in MATLAB, to read, plot, and process the data from both the EDF

and the H4n �les.

4.5.3.2 PSG Graphical User Interface Development

The visualization of both the PSG study and the H4n high-quality sound data

was fundamental to understanding faster and better how data behaves. Throughout

the time dedicated to building our set of 163 patients, the sleep technicians had to

adjust the typical PSG con�guration to acquire more signals. From the �nal set of

67 patients all but 4 PSG studies had 20 sensors. Of the 4 remaining PSG studies,

1 of them had 19 sensors and the other 3 had 23 sensors.

At the CMS, the PSG study visualization follows a set of rules and they were

taken in account in the development of the PSG's GUI. Figure 4.8 is a screenshot

from the developed GUI to plot PSG data. Data were grouped according to their

type and the use of a map colour increases the easiness of data type identi�ca-

tion. From top to bottom, 2 signals (in blue) from the EOG, 6 signals (in black)

from the EEG, 1 signal (in orange) from the EMG chin, 1 signal (in red) from the

ECG, 2 signals (in green) from the EMG legs, 1 signal (in blue) from the snore, 1

signal (in grey) from the cannula, 1 signal (in pink) from the thermistor, 1 signal

(in magenta) from the chest belt, 1 signal (in brown) from the abdominal belt, 1

signal (in red) from the oximetry, and 1 signal (in black) from the sleep position.

The remaining channels were, usually, unused, and data stored for those channels

has no physiological meaning. An example of uncommon data acquisition is the

plethysmography.

The GUI is, essentially, a data viewer which justi�ed the large area dedicated

to plotting data, mainly to plot PSG data, but, also, a data processing tool. The

left side was reserved for the plot area, with the PSG data plotted at the top while

the H4n sound �le was plotted at the bottom. The viewer features include, for each

signal, its identi�cation is at its left, and a +/- button to adjust its vertical scale is

at its right. Time adjustments, for detail vs general data view, are controlled by the
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Set button and by the adjacent time value and units selection box. More features

available in this GUI include the PSG panel, which allows the control of which signals

should be plotted, and the listen capability of the snoring signal, from both �les. At

the right lower corner, the <, > and the Go To buttons are to navigate the data.

The last button allows for faster navigation, while the other 2 are for decremental

and incremental time jumps, respectively. The Sync Graph button synchronizes the

visualization of both �les, the Load button is to upload a new patient's data, and,

�nally, an PSG epoch identi�er

The processing tools, present in the PSG, include the calculation, manual and

automatic, of the time delay between both �les to synchronise them. The acquisition

of data unsynchronized created a problem related to the visualization. When �les

are synchronized, at the beginning and at the end of data acquisition, dummy data

should �ll time intervals when one of the acquisition �les has no data. The PSG

pauses also create useless sound chunks in the H4n �le (it hasn't corresponding data

in the PSG study). The PSG panel is for PSG processing and searching for pauses

in the study and calculating the respiratory frequency. The panel also calculates the

energy of the snoring signal, for a time interval of 0.1 s and without overlap, and

searches for energy peaks (snore candidates) and their peak boundaries.
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Figure 4.8: The developed GUI dedicates the majority of the area to plot data. The PSG data use the top plot
area while the bottom plot area was dedicated to the H4n sound �le. To the left are the labels associated with
each signal, in the case of the PSG study and the signal amplitude, in the case of the H4n �le. To the right are
the commands to manage all the GUI functioning. The buttons next to the PSG plot area, one for each signal,
are responsible for the regulation of the scale. In the upper right corner, the command allows to set the plot time,
duration either seconds or minutes, while the panel PSG Signals below controls which signals should be plotted.
The Listen command gives the user the capability to listen sound recording, either from the H4n �le or the PSG.
Processing tools are available in Sync Button and in PSG panel, with the �rst one dedicated to the synchronization
between the �les, manual and automatic. The PSG panel was design to work with PSG studies, to �nd pauses
(Break button) in the PSG, the respiratory frequency, calculate the snore signal energy, its energy peaks and their
boundaries (snores). The other commands allow to navigate in normal pace (< and > button) and in a faster way
(Go To button), to observe both �les either synchronized or unsynchronized (Synch Graph button), to identify PSG
epoch and to load a new patient's data.
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4.6 PSG and Sound Analysis Framework

The entire process of data acquisition and data processing results in the gener-

ation of multiple �les, with all of them ensuring the patient's con�dentiality. Data

related to the PSG and data resulting from the analysis and processing performed

by the implemented algorithms demand a high level of organization. The systematic

organization of the patients' �les is in Figure 4.9.

4.6.1 Data Management

Data collected from all the patients' questionnaires were gathered in a single �le.

To systematize the task, a proper software tool was developed (Figure 4.10). It has

the option to create, delete and edit the pro�le of the patient, as well as its session

questionnaire. It searches patients by their ID, order, either ascending or descending

and calculates both age and BMI. The �le to store the results, from data processing,

is selected here.

4.6.2 Feature Extraction Environment

Most of the data processing was concentrated in a single, user-friendly, GUI.

It also has the function to do pre-processing, visualization, and hearing tasks (see

Figure 4.11 for more details).

Figure 4.9: The implemented methodology for both �les and folders organization. The �rst level of organization
creates a folder for each patient, with the patient's ID as the folder identi�er. All these folders belong to a single
main folder, CHUC Data. The second level has a folder for each PSG performed by the patient. The folder's name
is the PSG date. All content from a single PSG is stored inside the second level. The questionnaire, the sound
�le, SVP data, PSG pauses and the di�erent synchronization methods are in here. Sub-folders Matlab Data and
Polysomnography are to store data from MATLAB processing and from PSG acquisition, respectively.
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Figure 4.10: Three panels help to manage the patients' questionnaire. The Patient panel adds, edits, deletes and
selects a patient. It also calculates patient's age and BMI, searches by the patients' ID and order either ascending
or descenting the patient by their ID. The Session panel manages the session of the selected patient. Sessions can
be created, or edited and selected. The View option load the complete information of that particular session to the
bottom panel. The last option, Load Matlab Data, pop-ups a new window to create a new, or select an existing,
�le to load and save data resulting from data processing.

Figure 4.11: A tool to perform features' extraction. The upper right panel implemented multiple methods to do
features' extraction. It also draws several results of the pre-processing phase and, by selecting a time span in the
image, a list of detected sound peaks is listed in the lower left panel to listen and to, manually, classify. The lower
right panel is dedicated to the study of snores around a medical event. The commands, in the upper left corner, are
dedicated to the multiple tasks, related with the pre-processing phase.
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4.7 High-Quality Audio Time-Series Analysis

4.7.1 Data Pre-Processing

The following topics are dedicated to explaining the methods implemented to

extract, from data, useful features to characterize the patients accordingly to their

pathology severity.

4.7.1.1 Snore De�nition

In this thesis, the de�nition of snore must obey the following premises:

• A sound acquired in both the piezoelectric sensor of the PSG study and in the

high-quality sound acquisition device;

• A short-duration increase in the sounds' energy obeying the rules identi�ed in

section 4.7.1.4, 4.7.1.5 and 4.7.1.7.

4.7.1.2 High-Quality Sound Energy

Several of the hereby described algorithms, make use of pre-processed time-series

variables determined from the original sound data streams. One of such data series is

the here called Energy. The energy data series should not be considered a particular

property of a snore or of any other type of event. In fact, the purpose is to make

use of such a data series in order to help in the identi�cation of events in the raw

data (like snores, glitches, etc.). In this scope, the energy data series results in a

time-series of local sums from the sequential application of the expression

E∗ =

Np∑
i=1

x2[i] (4.3)

where Np represents the width in the raw data that produces a value Ej of

energy corresponding to segment j. The generic expression for the energy array is

then given by

E[j] =

j×Np∑
i=(j−1)×Np+1

x2[i] (4.4)

The resulting array is a good approximation to the raw signal energy distribu-

tion over the whole time-series and gives an important hint of where to look while

searching for interesting information in the raw data. An important remark that

should be made here is that this energy array is calculated without introducing

overlapping segments. The introduction of overlapping would greatly increase the

processing e�ort with a limited improvement, at this level of pre-processing.
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Concerning the dimensioning of this expression, it was considered that a reason-

able interval to look for energy changes would be something in the order of 100 ms.

No great variations are expected within this time range, and this is a good compro-

mise with the amount of data to pre-process (around 2 GB for each patient record).

This basically means that each segment is summed over 4410 samples, considering

the original signal was sampled at 44.1 kHz and with 16 bits of resolution. Finally, it

should be mentioned that like most other processing algorithms, a direct application

of this expression is not possible mainly due to memory limitations. For this reason,

the original �le was sequentially processed in intervals of 300 seconds. The overall

process to calculate energy data series takes less than 120 s for each sound �le.

4.7.1.3 Energy Filtering

Raw real signals composition are most likely to have noise. Unwanted noise was

recorded together with the signal. This means that the original sound �le has both

signal and noise, and it was not removed by the calculation of the sound's energy

array.

In digital signal processing, convolution is a mathematical operation commonly

used to get a third signal, the output, from two signals. It reveals how a signal

modi�es the shape of the second signal. The linear time invariant system with an

impulse response, h[n], convolves with the input signal, x[n], and the result is an

output signal, y[n]. When the impulse response is a �lter, the name changes to �lter

kernel.

y[n] = x[n] ∗ h[n] (4.5)

Two �lters were implemented to reduce noise in the energy time series and before

using algorithms to identify snore events. From the de�nition of the frequency re-

sponse of a Linear Time-Invariant system, in Equation 4.6, both frequency responses

were inferred.

H∗[ω] =
+ inf∑

m=− inf

h[m] · e−i·ω·m (4.6)

The frequency response is the discrete time FT of the impulse response, h[m]. The

used �lters are of Finite Impulse Response type, which reduces the frequency re-

sponse to a �nite sum.

The �rst one was an one-dimensional high-pass �lter with the impulse response

h[n] =
[
1 0 −1

]
(4.7)

with 3 entries. The convolution between the input signal, energy time series, and the

�lter kernel produces a �ltered signal with p+ q − 1 entries, where p represents the

length of the input signal and q the length of the kernel �lter. Frequency response of
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this high-pass �lter is H[ω] in Equation 4.8. The magnitude, in dB, and the phase

for the respective frequency response are available in Figure 4.12.

H[ω] = 1− e−2·i·ω (4.8)

To remove low amplitude peaks and adjacent peaks, a second �lter, low-pass type,

was used in the �ltered energy array time series. The low-pass �lter was a moving

average �lter with 11 samples, L, and impulse response h[n] = 1
L
, 0 ≤ n ≤ L − 1.

The �nal result was an array with the same number of elements as the original

energy data series. The low-pass �lter has the following frequency response.

H[ω] =
1− e−i·ω·L

L · (1− e−i·ω)
(4.9)

The magnitude, in dB, and the phase of the frequency response, Equation 4.9, is at

Figure 4.13.

4.7.1.4 Gaussian Fit

The �ltered energy data series, Ef , had less noise and an excel in sound events

because of the nature of the mathematical expression to calculate the energy, x2.

Mathematical models were considered to search for energy peaks in the Ef array,

including polynomial, logarithmic, power, and trigonometric functions. Local data

analysis (data windowing) and the use of empirical methods identi�ed a bell-like

shape among the energy peaks, which led to the consideration of the Gaussian func-

tion as the most promising tool for data modelling. The de�nition of the Gaussian

function is at Equation 4.10

G(x)∗ =
1

σ ·
√

2π
· e−

(x−µ)2

2·σ2 (4.10)

Figure 4.12: The magnitude, (a), and phase, (b), of the high-pass �lter's frequency response used in the energy data
series.
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Equation 4.11 is a model of Gaussian type, with parameters a, b, and c, the

coe�cients to be modelled and to �t the data. To work properly, the Gaussian

model should not be implemented in the entire Ef array, but rather only after

slicing the �ltered energy time series with a sequential sliding rectangular window

and with overlapping.

G(x, a, b, c) = a.e−
(x−b)2

c2 (4.11)

At rest, a healthy adult human being has a respiratory rate between 10 and

18 breaths per minute, with an average of 12, meaning a single breath every 5

seconds [343, p. 175-176]. To get the same single sound event in more than one

window, the time chosen for the rectangular window length was 4 s with overlapping

of 3.5 s, i. e., 87.5%, meaning a 40-point window, wl, and stepping 5 points, sl, from

one window to the next one. This relationship between time and the number of

points comes from the energy calculation where a single energy value is calculated

using 4410 samples of a signal with a sampling frequency of 44.1 kHz.

If the �rst window is S[1] set, the second window is S[2] set, then the S[j] set

represents jth window. The �rst element of window S[j] is the value at Ef in the

position given by the element j of U set at the Equation 4.12. Following the same

thought, the last element of window S[j] is the value at Ef in the position given by

the element j of T set at the Equation 4.13. The number of elements of Ef is dl.

U = {i : i = 1 + sl · n ∧ i ≤ 1 + dl − wl} (4.12)

T = {i : i = wl + sl · n ∧ i ≤ dl} (4.13)

Figure 4.13: The magnitude, (a), and phase, (b), of the low-pass �lter's frequency response used in the energy data
series.
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n ∈ N0 (4.14)

The elements of the jth V set, Equation 4.15, has all the positions to read from

Ef to build the S[j] set, Equation 4.16.

V [j] = {k : k ≤ T [j] ∧ k ≥ U [j] ∧ k ∈ N} (4.15)

S[j] = {x : x = Ef [V [j]]} (4.16)

The implementation of this model in each window S must take into account a

set of criteria, some of them are constant and others are dynamically calculated.

These criteria de�ne boundaries, coe�cient starting values, and algorithm settings.

The chosen method to �t data was the non-linear least squares because it allows

controlling more parameters during the Gaussian model implementation, the exten-

sive number of functions that can be �t, the e�cient use of data, and due to its

capability to give good estimates over relatively small amounts of data [344]. The

algorithms available in the MATLAB software to use in the �tting procedure were

the Levenberg-Marquardt and the Trust-Region. Accordingly, with [345], the best

choice is the Trust-Region, an evolution of the Levenberg-Marquardt and a faster

algorithm. Although one disadvantage of the non-linear least squares is its sensitiv-

ity to outliers, the robust option wasn't used since the �ltering process implemented

minimized this problem. The maximum number of interactions was 400 and the

maximum number of evaluations was 600.

The algorithm required coordinates in order to search for a proper �t. The

parameter c was de�ned as a constant, and with the value of 0.01, after some trial

and error iterations. The remaining 2 parameters, a and b were both calculated

dynamically using the centroid of each window S. The de�nition of a centroid, C,

is

C∗ =

∑Np
i=1mi.ri∑Np
i=1mi

(4.17)

where Np represents the width of each window S, mi represents S[j] values and ri
represents the time of which one of this samples. The result for each centroid gives

the initial value to parameter b and the maximum value of S[j], around the centroid,

and considering a neighbourhood of 2 elements, gives the value of parameter a.

The �tting algorithm returned an array with 3 values, to parameters a, b, and

c, which represent the best �t to the submitted data. The interpretation of these

values deserved some caution since the Gaussian function might lie outside the S[j]

window, especially, the mean value. This might happen when there is not a peak of

energy, a peak of energy is starting to appear or to disappear, or when there are 2
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peaks of energy in the S[j] window. To accept the values of the �tting process, the

mean value of the Gaussian �t should be inside the S[j] window. When inside the

S[j] window, the mean value represents a sound event and it was considered a snore

event candidate.

4.7.1.5 Sound Events Filtering

The Gaussian �t identi�ed sound events but this step did not distinguish between

the snoring sound and other sounds (noise). The �tting process only calculated the

parameters' values to get the best data �t and returned a set of points candidates to

be identi�ed as a sound event. Smart algorithms were necessary to analyse all the

detected sound events and discard non-snoring events. They are presented below as

well as the implemented algorithm sequence:

• The �rst criterion for the separation between a snore sound event and a noise

sound event was a selection based on the highest value peaks. A sequential

search was performed in the sound event data series and for each sound event,

ei, the position of the maximum value inside the boundaries [ti − rp
2
, ti + rp

2
]

replaces the old position. The ti parameter is the time where the sound event

ei was detected. The rp parameter is de�ned as the patient's mean respiratory

period and it was calculated based on the PSG study signals, more speci�cally,

the respiratory sensors. More details about the calculation of the patient's

mean respiratory period were discussed in section 4.5.3.2.

• The second criterion was the removal of electronic noise, a low amplitude, short

duration, and low frequency noise, and the strategy was to de�ne 2 threshold

values:

◦ The �rst one is the sound event energy peak;

◦ The second one is the cumulative energy around the sound event.

To analyse electronic noise without the interference of snoring, a period of

time was selected where it was most likely to have the absence of snoring

in the recording of the H4n device. Data acquisition, by the H4n device,

started immediately after the patient lies down on the bed, which means

he was awake and did not snore. The �rst 10 m of data recording were

chosen to study the electronic noise and to maximize the probability of

the absence of snoring. The cumulative energy of each sound event inside

the period of time of 10 m was calculated for 1 s around each sound event,

[ti − 1, ti + 1]. A 1 s time period was chosen because:

∗ Electronic noise is a single burst noise with a duration of a few ms;

∗ A single snoring sound lasts substantially more than the electronic

noise. Even if 2 s can not include all the snoring's energy, it ful�lls
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the purpose because the snore energy value will be much higher than

the electronic noise energy value.

The normal respiratory rate range at sleep of a healthy adult human being

is already known, which means the minimum respiratory period at sleep of

a healthy adult human being is 3.3 s. Using a value of 1 s to calculate the

cumulative energy, it was guaranteed the use only of the energy values of the

sound event ei and not the energy values of the neighbour sound events, in the

case of neighbour snores.

For both thresholds, the 10th percentile was calculated and then it was mul-

tiplied by a factor of 4 to give the �nal threshold values. The 10th percentile

was used to guarantee that the threshold value represents an electronic noise

and then it was multiplied by a factor of 4 to try to include the majority of

electronic noise events. Factor 4 was empirically chosen.

• After the calculation of the cumulative energy of each sound event only sounds

events with an energy peak above the peak threshold or, if not true, cumulative

energy above the cumulative threshold are not discarded.

• A third criterion discarded close sound events around the sound event ei, in

the time interval [ti− rp
2
, ti+

rp
2

]. Just the sound event with the highest energy

peak was not discarded.

The quality of the algorithm to detect snore events and discard noisy events was

evaluated and compared against a second algorithm, well known, developed to run

on MATLAB and known as the peakdet algorithm [346]. The comparison between

the algorithm implemented in this project and the peakdet algorithm, henceforward

identi�ed as Bellauer's algorithm, was performed in a consecutive 5 min window for

each patient. Bellauer's algorithm, version 3.4.05, accounts for a local maximum if

there is a point, between such local maximum and the previous one, with a value

lower by a prede�ned hard threshold. The 5 min window, which represents around

1.23% of the entire dataset, was randomly selected from a manually selected region

containing snores.

All the True Positive (TP), False Positive (FP), False Negative (FN), and True

Negative (TN) cases were grouped by patient, and a comparison was made at 2

di�erent levels. At the �rst level, the sensitivity (Equation 4.18), the speci�city

(Equation 4.19), the PPV (Equation 4.20), and the NPV (Equation 4.21) were

calculated for each medical classi�cation group and globally and, �nally, compared.

Sen =
TP

TP + FN
(4.18)
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Spe =
TN

TN + FP
(4.19)

Ppv =
TP

TP + FP
(4.20)

Npv =
TN

TN + FN
(4.21)

4.7.1.6 High-Quality Sound Data Distribution

The H4n recorded a signed signal with 16 bits of resolution, corresponding to

216 possible numbers, meaning that each analogue sample would be converted to a

digital number between −32768 and 32767. The 2 GB �le has 1,073,504,256 samples

to analyse the pro�le of the data distribution. A typical sound acquisition system

is engineered and calibrated to have a DC component of 0.

4.7.1.7 Snore Events Boundaries

Locating sound events represent the beginning of sound events detection, with

the de�nition of sound boundaries important to the following steps, the implemen-

tation of algorithms for feature extraction. The typical respiratory rate of a human

being at sleep (see section 4.7.1.4) was used to delimit the search for snore boundaries

to just 3 seconds around the snore event.

Sound behaves like a sin trigonometric function, with a 0 DC component and

lower pressure regions (troughs) intercalated with higher pressure regions (crests).

This behaviour does not help the boundaries search algorithm and, for that reason,

a di�erent approach was implemented, the study of the sound envelop.

m = {n : n ≥ 1 ∧ n ≤ 2 · Fs · tenv + 1;n ∈ N} (4.22)

Uk = {j : j = m− 2 · Fs · tenv + k − 1; j ∈ N} (4.23)

Envi[k] = max{Sdui[Uk]} (4.24)

k ∈ {1, ..., 265042; k ∈ N} (4.25)

The Sndi data series is the segment of sound �le representing the ith sound event.

The acquisition frequency of 44100 Hz, Fs, and the selection of a 3 s neighbourhood

to calculate the upper envelope, lead to a Sndi data series with 264601 elements.

The upper envelope, Envi, of Sndi was calculated, Equation 4.24, by �nding the
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maximum value around each element of Sndi using data from a neighbourhood of

10 ms, tenv, empirically set.

The calculation of the upper envelope, Envi, encompasses the implementation

of accessory techniques to improve the algorithm. Dummy data was incorporated in

the Sndi data series, with Fs · tenv elements added at the beginning and the same

number of elements at the end, all with 0 value, creating a new time series named

Sdui. A vector position, m, composed of 2 · Fs · tenv + 1 natural elements, from 1

to 883, was used to de�ne the length of time series data used in the calculation of

each envelop element.

A new set for vector positions, Uk, stores the Sdui positions for the calculation

of the kth element of the envelop (Equation 4.23). The highest sound value of Sdui
for the positions given by each set Uk was the kth element of the envelope Envi.

Later, the �rst Fs · tenv elements of the envelop Envi were discarded to have the

same number of elements of Sndi.

Snores have di�erent pro�les, depending, among other factors, on time dura-

tion, inspiration and/or expiration phase, and amplitude. High amplitude snores

are easier to detect than low amplitude snores, and di�erent de�nitions were imple-

mented to �nd snores' boundaries. Snores with higher amplitudes, highest envelop

value above 0.03, have a threshold of 5 times the 10th percentile of the upper enve-

lope positive values, and for snores with the highest envelop value below 0.03, the

threshold de�nition was 3 times the 10th percentile of the upper envelope positive

values. Snore's boundaries were calculated by splitting the upper envelope Envi
into 2 subsets. The �rst and the second subset contain the data before and after

the time instant of the snore detection, respectively. Each subset has a di�erent

purpose with the �rst subset assigned to search for the beginning of the snore while

the second subset is assigned to search for the end of the snore.

Using the previous threshold, each subset was transformed into a binary data

type subset, B, with a nel number of elements. Equation 4.26 removes small vari-

ations in sound using a �lter of 4410 elements, np = Fs · tp, with tp equal to the

time interval to calculate the energy time series (100 ms). The subset B may have

di�erent nel elements, which justi�es a correction factor in Equation 4.26,
100

np
.

Bsum[i] =
100

np
·
i+np−1∑
j=i

B[j] (4.26)

i ∈ {1, ..., nel − np + 1; i ∈ N} (4.27)

Data in each element of set Bsum only has little variations when compared with

its neighbourhood, since the overlapping of B is maximum, with only one element

replaced in a universe of np elements for each segment. Thereafter, noise present in
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the data has little impact, because one element represents only
1

np
∗ 100% = 0.02%

of the total number of elements. A steady increase in the number of elements above

the threshold in B leads to the surpass of the second threshold of 5%, applied to

Bsum, which de�nes the boundary between a snoring sound and just noise. Such

limit is much higher, around 250 times than the minimal possible variation of 0.02%

and noise interference in this calculation should be minimized. The closest point

before and after the detected snore where the limit of 5% is crossed was considered

as the boundaries of the respective snore.

Patients snore mainly during the inspiration phase but there are snores in the

inspiration phase as well as in the expiration phase [10, 347]. Adjacent periods of

snoring may exist and the algorithm discards them in the �rst approach, which

led to a complementary search by the algorithm to, eventually, expand the snore

boundaries. Not all the adjacent peaks of energy were considered, which means they

should last, at least, a 200 ms time duration and not be more than 1 s apart from

the main snore.

4.7.1.8 PSG and High-Quality Sound Synchronization

The synchronization of data between the PSG and the H4n �les was a crucial

milestone in the pre-processing data. Data synchronization enables the comparison

of medical results with the experimental/scienti�c analysis results, which may val-

idate the method, and use it in real-life applications. The synchronization of data

was accomplished by correlating the energy data series of the PSG snore channel and

the H4n sound �le (coarse correlation), and, then, the study of the clock mechanism

errors from both devices (�ne synchronization). The following sections focus on

the discussion of the coarse synchronization, with the implementation of 3 di�erent

approaches: manual, automatic, and automatic with manual adjustment.

4.7.1.9 PSG Study Pauses Detection

The �rst method was strongly based on the observation of both data, PSG and

H4n. At the beginning of H4n data acquisition, the patient followed the instructions

and generated a vocal sound to be registered in both recording devices, while during

each PSG acquisition, a log was created to register all pauses in the PSG study.

Manual synchronization did not make use of algorithms to search for pauses in data

acquisition, relying on the handwritten notes log.

Detection based on an algorithm is free of human mistakes, especially, in the

conditions the studies were performed, during the night-shift when the people are

tired. A pause resume sequence in the PSG study created a distinct behaviour in

data acquisition. The pause does not happen in the time instant selected by the

sleep technician, but rather in the transition from the current epoch to the next one,

91



MATERIALS AND METHODS

which narrows, signi�cantly, the time instants possible to pause the study.

The �rst detection method, the manual, was discarded and an automatic method

approach relied on the analysis of a single channel of the PSG study, the SpO2,

and in the transition from one epoch to the next one. The existence of a pause

resume sequence creates a visible discontinuity in data acquisition, with the SpO2

signal dropping to 0, or values close to it. The algorithm search criteria included a

SpO2 mean value above 50% in the epoch immediately before the transition under

evaluation, and a drop to values below 40% in the transition between epochs.

4.7.1.10 Synchronization of Data

Manual synchronization consisted in the use of the developed GUI for PSG and

H4n data visualization. The vocal sound wittingly generated by the patient was

the reference signal to perform the initial synchronization. PSG studies with pauses

required additional synchronizations, with the time reference for those cases, the

handwritten notes log. The manual synchronization relied on marking each point of

synchronization at the precise instant of time, �rst, in the PSG data visualization

area, followed by the same procedure in the H4n data visualization area. This

procedure should be implemented in the initial synchronization, and, when exists,

in all pause resume sequences, following a chronological order.

The automatic synchronization algorithm used the detected pauses to split both

energy arrays' data series into subsets, clusters. The formation of clusters from

the PSG sound energy data series relied, solely, on the pause resume sequence in-

formation. A new cluster was created, and �nished, at each one of those points.

During the preparation for the PSG study, sleep technicians needed to test PSG

data acquisition and, occasionally, pause resume sequences were introduced to the

study. When present, the last of those sequences was used to de�ne the beginning

of the �rst cluster. H4n energy data series clustering was not so straightforward and

it relied on information from the PSG data series clustering. Clustering the H4n

energy data series began with the detection of the vocal sound. The cluster's time

duration was set by the corresponding �rst PSG cluster. Building the following H4n

energy data series clusters required the knowledge of the previous synchronization

time delay, besides the time duration of the corresponding PSG cluster. For syn-

chronization purposes, the �rst and last epoch of each cluster (from both energy

data series) were removed due to the low probability of snores in those registers

(patient awake). The �nal synchronization cluster made use of the remaining H4n

data, and, from the corresponding PSG data, a smaller subset of data was selected,

with the same time duration. If the corresponding PSG cluster was shorter, then

the entire PSG cluster was used to perform the synchronization. A summary of the

data synchronization process is available in Figure 4.14. In PSG studies without
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pause resume sequences (after marking the start of sleep assessment point), there

was a single cluster in both PSG and H4n data.

The synchronization between clusters was performed by the implementation of

cross-correlation analysis. The cross-correlation analysis is a mathematical tool to

evaluate two data series similarity and the time shift to the point of more similarity

of one data series relative to the second one. The calculation of the time shift

was essential to get snores synchronized, besides the remaining data. The cross-

correlation de�nition, for continuous signals, is at Equation 4.28. Since data are

of discrete signal type, the cross-correlation de�nition for this type of signal is at

Equation 4.29.

w(t) = u(t) ? v(t) =

∫ +∞

−∞
u∗(τ) · v(τ + t)dτ (4.28)

w(t) = u(t) ? v(t) =
+∞∑

n=−∞

u∗[n] · v[n+ t] (4.29)

Pause

PSG Snore Signal

High-Quality

    Sound

Pause
Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Cluster p1 (t1 min)

Vocal Sound

Cluster p2 (t2 min) Cluster p3 (t3 min)

Cluster h1 (t1 min)

Cluster h2 (t2 min)

Cluster h3 (<t3 min)

Sync (Cluster 1) Sync (Cluster 2) Sync (Cluster 3)

Figure 4.14: Synchronization between PSG and the high-quality sound signal. The process starts with the detection
of pause-resume sequences (Step 1), in this case there are 2 Pauses, and the separation of data according with those
pauses (Step 2). The second part of the process is the implementation of synchronization between 2 clusters, usually,
of equal duration. Step 3 corresponds to the detection of Vocal Sound, while Step 4 starts synchronization, between
p1 and h1 and with a duration of t1 min, for the �rst cluster. Step 5 and 6 correspond to the synchronization of the
remaining clusters. The �rst and, usually, the last PSG epochs are discard due to lack of data in the high-quality
sound signal (Step 6). At the middle of data acquisition and if there is pause-resume sequence, high-quality sound
signal is discard due to lack of PSG data.

93



MATERIALS AND METHODS

4.7.1.11 Linear Equation Compensation

The patient's snores were, ideally, acquired by both the PSG and the H4n sensors.

The coarse synchronization calculated the time delays between the corresponding

energy time series clusters and, therefore, between both registers. A matrix of n

lines and m columns was built, for each cluster, and it represented, respectively,

the number of snores detected in the H4n data and the PSG data. The n × m

matrix has the time di�erence between the ith H4n energy peak and all the PSG

cluster peaks. The algorithm used the beginning of the energy peaks to calculate

the synchronization loss pro�le. A temporary snore pair was de�ned between the

ith H4n energy peak and the closest PSG energy peak. Pairs of peaks with a time

di�erence above 1 s were discarded and further analysis did not take them into

account.

Crystal oscillators are electronic components that made use of the mechanical

properties of the quartz crystal, which include an electrical signal with a precise

frequency. This frequency allows to keep track of time, for example, to give the

acquisition frequency, but they are not free of error. Several factors contribute to

the introduction of errors in the nominal frequency. Temperature is one of those

factors, introducing crystal errors on a daily and year cycle basis. Other sources of

errors are related to ageing and manufacturer procedures like impurities in crystal

growth, imprecision cut process of the device, and uneven thickness.

The PSG acquisition system and the H4n device run independently, which means

each one has its crystal oscillator, and the in�uence of the resultant error should

be di�erent. This means that the crystal nominal frequency does not correspond,

usually, to the, slightly shifted, crystal running frequency. This con�guration has

in�uenced the acquisition frequency, once it relies on the crystal mechanism. For

short periods, the accumulation of crystal errors is not enough to visualize it, which

is not the case in this project. To increase the quality of synchronization, a new

implementation, complementary to the �rst synchronization, should be applied to

decrease the delay between the detected snores representing the same sound.

All the CMS rooms, a total of 4, were used to record data, and each room had

its PSG acquisition system. A new level of synchronization was necessary, but this

time between the H4n device and each one of those PSG acquisition systems. The

best patients to study synchronization loss were the ones with a continuous PSG

data acquisition and the higher the number of detected energy peaks, the better.

Four PSG studies were selected, each one accomplished in a di�erent room.

A total number of 50 points were manually selected, for each patient, from the

graphic with the synchronization loss pro�le (pairs of peaks plotted). Empirical

observations revealed a constant rate in the synchronization loss pro�le, with a

linear regression model function best suiting those data. Linear regression tries to
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model the relationship between two variables X and Y and for a speci�c value x of

X, it can be possible to predict the value of Y [348, p. 15-30].

E(Y |X = x) (4.30)

This equation gives the expected value of variable Y when variable X has the

speci�c value x. In this practical application, the variable Y represented the de-

lay (synchronization loss) and the variable X represented the time since the last

synchronization. To be linear regression, the relationship between these 2 variables

must respect the equality

E∗(Y |X = x) = β0 + β1 · x (4.31)

with β0 and β1 representing, respectively, the interception of y axes and the slope of

the equation. The statistical process for estimating relationships between variables

is associated with an error. Including a new term in the previous equation

Yi = E∗(Y |X = x) + ei = β0 + β1 · x+ ei (4.32)

the error ei of Yi allows to have a regression E(e|X) = 0.

In order to decrease the error associated with the linear regression, the method

of the least squares was used to �nd the parameter values that best �t the data. In

a linear regression model, errors have a mean of zero, they are not correlated and

they have equal variance. In this situation, the best linear and unbiased estimator

is the least squares estimator. The goal of this method is to minimize the Sum of

Squared Errors (SSE), i.e., the di�erence between an observed value, yi, and the

�tted value, ŷi, given by the model.

SSE =
n∑
i=1

ê2i =
n∑
i=1

(yi − b0 − b1 · xi)2 =
n∑
i=1

(yi − ŷi)2 (4.33)

ŷi = b0 + b1 · xi (4.34)

The parameters b0 and b1 were chosen in order to get an equation of the line

near to yi, and ŷi was the ith �tted value of yi.

The coe�cient of determination is a tool used in statistical analysis to evaluate

how well data �t a statistical model and it returns a single value between 0 and

1. If the regression model �ts perfectly the data, all points lie exactly on the curve

and the value returned by the coe�cient of determination will be 1. When the

chosen regression model does not represent the data, at all, then the coe�cient of

determination will be 0. Generally, and using the value in percentage, it means that
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p% of the variation of variable y can be explained by the variation of variable x.

The (100− p)% can not be explained by x.

The coe�cient of determination, r2,

SST = SSR + SSE (4.35)

SSR =
n∑
i=1

(ŷi − ȳ)2 (4.36)

SST =
n∑
i=1

(yi − ȳ)2 (4.37)

r2 =
SSR

SST
= 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(4.38)

is the quotient between the sum of squares due to regression and the total sum

of squares [349, p. 268-270].

Linear regression returned the synchronization loss rate over time, which allows

the application of time corrections, and a �ne synchronization.

4.7.1.12 Snore Pairing

The accomplishment of �ne synchronization led to pairing peaks of energy, from

both records, and to the identi�cation of snores. A histogram of the time di�erence

distribution, between a peak energy from the H4n register and the closest energy

peak from the PSG data, gives the time delay pro�le and a maximum value to

consider both registers as the same snore. Data distribution resembles a Gaussian

function and data modelling was implemented using Equation 4.10. Fitting results

for the standard deviation, σ, and for the mean, µ, were used to de�ne the maximum

time delay of each bed. That upper limit was µ± 3 · σ.
A time threshold was calculated for each bed, and from the 4 calculated time

thresholds, the longest time value was chosen and applied to all the data.

4.7.2 Features Extraction

The characterization of the medical condition, using sound, relied on the ex-

traction of features from these sleep-related events. Henceforth, a list of methods

is presented for the purpose of feature extraction. The following sections organize

the description of the algorithm, for data processing, accordingly to the domain in

which the signal's features were extracted.

4.7.2.1 Time-Domain Analysis

Algorithms applied, for signal processing, in the time domain are described in

this section.
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4.7.2.1.1 Time Duration Snores' boundaries were calculated during the pre-

processing phase, which means that the calculation of the snores' time duration

was just the di�erence between the end and start of each snore. Some academic

researchers explored the feature Time Duration and its distribution to study snores

[161].

4.7.2.1.2 Signal Amplitude The Signal Amplitude feature is calculated by

searching inside the boundaries of the snoring sound for the maximum absolute

value. The amplitude of the signal is related to the energy of the signal and further

ahead this feature will be also presented.

4.7.2.1.3 Energy The energy was already used during the preprocessing phase

and details about Energy calculation are available at section 4.7.1.2. The principle

to calculate the snores' Energy here is the same and the calculation is delimited by

the boundaries.

4.7.2.1.4 Skewness The coe�cient of skewness is a statistical tool to evaluate

data distribution. With the coe�cient of skewness, it is possible to study data

distribution absence of symmetry.

The general de�nition for the calculation of the skewness value is [349, p. 18]:

γ∗1 =
µ3

µ
3/2
2

(4.39)

The calculation of the coe�cient of skewness is dependent on di�erent central

moments, and it is calculated by dividing the third central moment by the second

central moment.

γ∗1 =
E[(X − E[X])3]

(E[(X − E[X])2])3/2
(4.40)

The second central moment, or variance, is related to the standard deviation.

From this, the coe�cient of skewness is related to the standard deviation as follows:

γ∗1 =
E[(X − E[X])3]

(σ2)3/2
(4.41)

The �nal equation identi�es the coe�cient of skewness depending of the third

central moment normalized by the standard deviation raised to the third power:

γ∗1 =
E[(X − E[X])3]

σ3
(4.42)

The third central moment is already a measure of asymmetry of data distribution

of a random variable X and the presented coe�cient of skewness, γ1, is normalized

to get a skewness value independent of the measuring unit [350, p. 89-107].
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An example of symmetry is the Gaussian distribution with a mirror at the µ

position. For data distributions with this behaviour, Skewness value is 0 [351, p.

110]. When the coe�cient of skewness is rather positive this means that the bulk

of the data is at the left with a long tail to the right. When negative, this means

that the bulk of the data is at the right with a longer tail to the left [352, p. 75-83].

Data with this behaviour is, respectively, called skewed right and skewed left.

4.7.2.1.5 Kurtosis The third central moment is already a measure of the asym-

metry of data distribution of a random variable X and the presented coe�cient of

skewness, γ1, is normalized to get a skewness value independent of the measuring

unit [350, p. 89-107].

An example of symmetry is the Gaussian distribution with a mirror at the µ

position. For data distributions with this behaviour, the Skewness value is 0 [351, p.

110]. When the coe�cient of skewness is rather positive this means that the bulk

of the data is at the left with a long tail to the right. When negative, this means

that the bulk of the data is at the right with a longer tail to the left [352, p. 75-83].

Data with this behaviour is, respectively, called skewed right and skewed left.

γ∗2 =
µ4

µ2
2

(4.43)

The coe�cient of kurtosis, γ2, is the result of the division between the fourth central

moment and the second central moment squared [351, p. 111].

The general de�nition of a moment of a continuous random variable X is:

E[Xn] =

∫ + inf

− inf

xn · fX(x)dx (4.44)

The �rst moment, E[X], returns the expected value or mean of a random variable

X [353, Ch. 2, p. 11-17].

The general de�nition for the central moment of a continuous random variable

X is:

µn = E[(X − E[X])n] =

∫ + inf

− inf

(x− E[X])n · fX(x)dx (4.45)

The second central moment is the variance, var(X), and its de�nition is [352, p.

75-83]:

var(X) = µ2 = E[(X − E[X])2] (4.46)

The standard deviation value, σ, and the variance value are related as follows,

σ =
√
var(X). The �nal de�nition to calculate the coe�cient of kurtosis is:

γ∗2 =
E[(X − E[X])4]

(E[(X − E[X])2])2
=
E[(X − E[X])4]

σ4
(4.47)
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In the presence of a Gaussian distribution, the kurtosis value will be 3, named

mesokurtic. For kurtosis values lower than 3, data distribution is designated by

platykurtic and for kurtosis values higher than 3 those distributions are acknowl-

edged as leptokurtic [350, p. 99-104]. A platykurtic type means data are distributed

more evenly between all the points of the set, a �atter distribution, while leptokurtic

type means data is more concentrated near the mean value, data peak at the mean

value is more sharply and with longer tails [354].

4.7.2.1.6 Empirical Mode Decomposition Signal analysis in time-frequency

plane gave a powerful tool to a better understanding of the signal itself. New insights

to the signals allowed interpretation from a di�erent point of view, as an example,

the FT allowed to known which single-frequency sinusoidal functions were in the

signal and the importance of each one by calculating the associated energy. The basis

behind the transformation of a signal in the time domain to a signal in the frequency

domain is the purpose of the FT method. It uses a set of prede�ned templates to

perform the calculation of the inner product with the signal. Signal decomposition

in its constituents frequencies, using templates, has a negative impact as it can

in�uence data interpretation in the time-frequency plane. Also, the Heisenberg

uncertainty principle states that it is not possible to improve simultaneous both

frequency resolution and time resolution, more precisely, if frequency resolution is

improved then the time resolution worsens. The EMD appears has a solution to

overcome, or at least mitigate, this drawbacks related with non-stationary signals

and the appearance in the signal of local components, which may be of interest to

understand as much as possible. An example of decomposition is at Figure 4.15.

The EMD is a method belonging to a more extended tool, the Hilbert-Huang

Transform and it was presented by Huang in 1998 for time series analysis [355]. This

new method of signal decomposition is very recent when compared with other older

methods far more implemented as it is the case of the FT, from the �rst half of the

19th century, and the Wavelet Transform, from the beginning of the 20th century.

The development of solutions making use of the EMD shows con�dence and

use them in real-time devices is already addressed [356]. The method had already

been used to evaluate snoring in OSAHS and extracting features from the resulting

Intrinsic Mode Function (IMF). Mean and standard deviation were the retrieved

from the IMF. The results for the EMD method to detect snores and breathing

achieved an accuracy of 96, 3%± 5, 5%, sensitivity of 97, 8%± 1, 9% and speci�city

of 92, 8%±10, 6%. They were recorded from 5 patients, 2 females and 3 males, with

32 ± 16, 5 years old suspected of OSAHS. From the set, 2 were simple snores with

AHI of 5, 6±5, 2 and the remaining 3 were OSAHS patients with AHI of 22, 4±20, 7.

Data was recorded all night long with an ambient microphone, ME52, away from

the patient's head between 20 and 30 cm [357].
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Table 4.4: Advantages and disadvantages of the EMD method.

Advantages Disadvantages

EMD keeps signal in its domain
(Information preservation)

Does not always guarantee a perfect
instantaneous frequency under all

conditions
Non-linear and non-stationary time

series analysis
Lack of theoretical analysis

Data driven basis(Adaptive) -

The most interesting feature of the EMD is its capacity to break down the

signal without leaving the time domain. Other features of the EMD method are the

capacity to work well with non-linear and non-stationary data and it allows time

information preservation. The EMD method allows to decompose the original signal,

most likely a complex signal with multiple frequencies, in a �nite number of IMF

and the implementation of the Hilbert Transform over these IMF gives well-behaved

transformations. The time series decomposition performed by the EMD method is

based on the energy's extraction related with each time scale present in the original

time series.

Data analysis with, for example, FT and Wavelet Transform are based on pre-

de�ned functions. EMD has a di�erent approach since it relies on the local charac-

teristic time scale of the data [358]. This feature allows an adaptive decomposition

and, thereby, the EMD method could be more e�cient. The resulting IMF are ap-

proximately orthogonal. Table 4.4 has a brief list with the EMD method advantages

and disadvantages.

In neural data analysis, a comparison between EMD and FT methods proved

that the �rst method returned better both temporal and frequency resolution [358].

EMD method helped to determine the gamma-band activity to be mainly at the

highest frequency component.

Figure 4.15: Example of the EMD for the �rst fourteen IMF [359].
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The decomposition of time series by the EMD method gives a �nite number of

IMF, but their calculation should meet 2 rules [355,358]. An IMF candidate should

obey the following rules to be a de facto IMF:

1. The number of extrema and the number of zero crossings must not di�er more

than one unit in the entire data set;

2. At any point, the mean value of the envelope de�ned by the local maxima and

the envelope de�ned by the local minima is zero.

The process behind the IMF calculation is designated as the sifting process.

Figure 4.16 is a �uxogram and represents the sifting process with the key important

steps and how the algorithm should be implemented. The key important steps are

also enumerated in the following list [355,360]:

1. It starts by calculating all local maxima, extupp set, and all local minima,

extlow set, of the original time series, s(t);

2. Verify the current conditions of the procedure to infer if it can continue;

3. A �tting model, in this case a cubic spline interpolation, was used to connected

all the extupp set points. The procedure was repeated to the extlow set. The

�rst and the second cubic spline interpolation give, respectively, the upper

envelope, u(t), and the lower envelope, l(t), of the s(t);

4. Calculate the mean envelope, m(t) = u(t)+l(t)
2

;

5. Subtract the mean envelope to the original time series, h(t) = s(t)−m(t);

6. If h(t) does not match the criteria to be an IMF, then s(t) = h(t) and the

procedure returns to step 1;

7. If h(t) matches the criteria to be an IMF, it is stored;

8. Calculate the mean squared error, eIMF , between the actual s(t) and h(t);

9. If eIMF does not match the criteria, then s(t) = s(t)−h(t) and the procedure

returns to step 1;

10. If eIMF matches the criteria, it calculates the residue, r(t), of the original

time series s(t) and the procedure ends.

A cubic spline is a piecewise function of third-order polynomials and it does

not need of high computational requirements. The interpolation of a cubic spline

function relies on a set of p points, previously selected to create the cubic spline

function. The function passes through all the given p points.
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An IMF must retain what they call "enough physical sense of both amplitude and

frequency modulations" [355]. A de�nition was established to encompass this term,

to known when an IMF ful�ls this requirement and to stop the sifting process. The

current candidate to an IMF must be compared with the previous IMF candidate

by calculating the standard deviation, σ:

σ =
N∑
i=1

|hk−1[i]− hk[i]|2

h2k−1
(4.48)

The algorithm did not work in a satisfactory way, using Equation 4.48, since the

denominator was 0 in some cases. To avoid this problem, a new factor, NZD, was

incorporated in the denominator of the Equation 4.48.

σ =
N∑
i=1

|hk−1[i]− hk[i]|2

h2k−1 +NZD
(4.49)

Equation 4.49 resolves the previous problem with a chosen value to the NZD

factor of 10−4. The implementation of a threshold value was suggested, to accept

an IMF candidate as a de facto IMF [355]. Such threshold should have a standard

deviation value inside the limits σ ∈ [0.2, 0.3]. To this thesis, the chosen σ threshold

value was 0.3.

A self-control mechanism over the sifting process was implemented to avoid calcu-

lus perpetuation over time, and to end the process whenever justi�ed. The work�ow

of this mechanism corresponds to step 2 in the sifting process and Figure 4.17 sum-

marizes the process. The end of the sifting process does not follow a single rule, with

the algorithm adjusted to the research objective. For example, at [356] the sifting

process ends when 1 of these 2 conditions occurred:

• The set of IMF already discovered has 90% of the original signal power;

• A new discovered IMF has the dominant frequency in a prede�ned band.

Here, di�erent types of mechanisms were implemented to end the sifting process,

but there are 2 that can be considerer natural (all di�erent mechanisms are at

Figure 4.18). The �rst, and the most important one, is the comparison between the

current IMF and the previous IMF. The calculation of the eIMF , Equation 4.50,

between them, allows to infer if the process should stop. Decision making is based

on the comparison between the calculated eIMF and a threshold value. If eIMF

is lower than 10−9, then the sifting process stops. The second natural process is the

evaluation of the current s(t). When s(t) is a monotonic function, no more IMF can

be extracted and the sifting process stops.
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eIMF =
1

N

N∑
i=1

|imfk−1[i]− imfk[i]|2 (4.50)

The other types of mechanisms, altogether 3, are not natural but forced and

they take action when there is a huge number of attempts to �nd an IMF but

always without success. From these mechanisms, the simplest one is the de�nition

of an hard threshold to stop the sifting process when there are more than 10000

consecutive unsuccessful tries to �nd an IMF. The other 2 types of mechanisms

analyse periodically how the σ evolves. One of them searches for repetition patterns

in the σ and the second one searches for a σ evolution toward an asymptote, above

the chosen threshold value to considerer the candidate time series to an IMF as an

IMF. A diagram, with all the di�erent mechanisms to stop the sifting process, is

available in Figure 4.18, and the dynamic of the self-control mechanism is available

in Figure 4.17. At the end of the sifting process, the decomposition of the original

time series is represented by the following relationship:

s(t) =
n−1∑
i=1

imfi + r(t) (4.51)

Creating both upper and lower envelope of the signal, using cubic spline inter-

polation, can introduce overshoots, undershoots and swings at the beginning and at

the end of the data [355,361]. This e�ect on the time series decomposition transmits

for the next calculations and it will be clearly visible in the IMF. If left untreated,

the swings, initially present at the data tail, propagates inward and worsen data

corruption. A solution was implemented in the sifting process, and already previ-

ously performed by the literature, in order to eliminate the swing e�ect [361]. After

extupp and extlow calculation, the �rst point and the last point of the time series

were both considered as an extrema and added to both sets.

Procedure to Stop

the Sifting Process

Natural Forced

Monotonic

Function

�

Pattern

�

Assymptote

>= 10000

Consecutive �

IMFk-1 and

IMFk similar

Figure 4.18: Diagram of the di�erent mechanisms to stop the sifting procedure.
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The introduction of large swing e�ects by the cubic spline interpolation creates

a problem without an ideal resolution. When the algorithm only uses the maximum

and minimum calculated values, the decomposition might introduce swing e�ects

in some IMF. Adding the �rst and last point to extupp and extlow leads to more

IMF and to less similar of those IMF to single frequency pure sinusoidal waves.

The second solution increases computational requirements, spending more time in

the sifting process, and IMFs might lost, more easily, its single frequency sinusoidal

wave characteristic. These side e�ects were decisive to discard the solution to solve

the swing e�ect. After the EMD had been performed, 2 features, amplitude and

period, were selected to our database.

4.7.2.1.7 Period The period of each IMF of the EMD method was calculated

by �nding the maximum value and de�ning a region around it to calculate the period

using local maximum values.

4.7.2.1.8 Amplitude The amplitude of each IMF of the EMD method is the

global maximum value.

4.7.2.1.9 Shannon Entropy The entropy may be interpreted as a measure

of the disorder of a system. For this thesis, the formal de�nition of entropy in

the classical thermodynamics, dS = δQ
T
, isn't of interest, but, rather, the entropy

de�nition in the information theory �eld. Entropy, more precisely the Shannon

Entropy, in the information theory �eld is de�ned as

H∗ = −
∑
a∈A

p(a) · ln[p(a)] (4.52)

The Shannon Entropy depends on the probability mass function p(a) of each

element a and, by de�nition, when an element is not present in the set A, p(a) = 0

and 0 · log(0) = 0. Each element a of the set A is unique.

Instead of the natural logarithm, it is possible to implement a logarithm of a

di�erent base, such as base 2. The Shannon Entropy unit for a natural logarithm

is 'nats' and it is usually more suitable for mathematical purposes while the unit

for the logarithm of base 2 is 'bits' and it gives "more intuitive descriptions". The

logarithm of base 2 was selected to calculate the entropy [362, p. 17-18].

The probability mass function p of an element a of the set A is de�ned as the

quotient between the number of times that element a exists in the entire sound data

series si and the number of elements of the same data series, Equation 4.53.

p(a) =
# total of element a

# total samples
(4.53)

The mathematical equation implemented to calculate the entropy of snore ith is
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at Equation 4.54.

Hi = −
∑
a∈A

p(a).log2[p(a)] (4.54)

4.7.2.2 Frequency-Domain Analysis

Analysis of signals in the frequency domain gives important additional informa-

tion to characterize them. Although the transformation does not add new features

to the signal, its visualization and identi�cation improve in the frequency domain,

revealing previously hidden features. The FT is one of the oldest methods to perform

signal analysis in a di�erent domain, and it decomposes the signal in its constitute

frequencies. It uses a set of prede�ned functions, function as templates, to perform

the decomposition of the signal.

4.7.2.2.1 Power Spectrum Density using Welch Method Feature extrac-

tion in the frequency domain was accomplished by estimating the signal PSD. The

PSD of a time series signal provides its power distribution over the frequency range.

This type of analysis characterizes stationary random processes. PSD is de�ned as

the discrete time FT of the autocorrelation of a function x[n]:

P (f) =
+∞∑

k=−∞

r[k]e−j·2·πfk (4.55)

Where r[k] is the autocorrelation function of the random process x[n]. The

estimation of the PSD is a function of the data acquisition length. The longer the

data recording of the signal, the better the estimation of the PSD.

The study of non-stationary and stationary random processes is di�erent, and

a longer data acquisition does not guarantee an improvement in the estimation of

the PSD [363]. The calculation of the PSD may be performed by either parametric

or non-parametric methods. Parametric methods make use of a small number of

parameters, and based on assumptions (criteria), to create a model to estimate the

PSD [364, ch. 14]. These methods are capable of delivering estimations with better

resolution, than the non-parametric methods, which do not use parameters and the

respective parametric models for the PSD calculus. The calculation of the PSD,

based on non-parametric methods, relies on their strategy in the estimation of the

autocorrelation. Once they do not make use of models, they are robust and less

sensitive to noise [365].

The Periodogram method strategy uses the autocorrelation r[k], followed by

the calculation of the discrete time FT. Zero padding a time series, before discrete

time FT, might improve amplitude and frequency estimation, but not the frequency

resolution. PSD estimation is usually performed after signal windowing, and 2

important windows' features should be balanced to choose a type of window. The
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�rst feature is related to the width of the main window's lobe, with a lower width

meaning a better resolution. The second feature is related to the window's side-lobes,

and lower side-lobes improve the smoothing of the estimated spectrum [364, ch.

14] [282, ch. 14].

The Welch method is an evolution of the Periodogram method, with the in-

troduction of overlapping, usually between 50% and 75%, in the time series signal

segmentation. Data segmentation reduces the variance when compared with the

Periodogram method, but there is a trade-o� with the resolution since it worsens.

PSD estimation is the result of the average value for each PSD segment estima-

tion [364, ch. 14] [282, ch. 14].

PSD estimation was implemented using the Welch method, with overlapping

of 50%, and several features were calculated based on that estimation. Time series

segments were windowing by a Hamming window, with 42.5dB side lobe attenuation.

4.7.2.2.1.1 Frequency-Domain Features Using a binary search algorithm,

the �rst features retrieved were the fMaxPower, frequency with the highest PSD, and

the fn, frequencies for the quartile 25%, 50% and 75% of the PSD. PSD data was also

used to calculate the spectral centroid, fSpecCentroid (see Equation 4.56), standard

deviation frequency, fFreqSTD, (see Equation 4.57) and the coe�cient of symmetry,

fCoefSym (see Equation 4.58) [239].

fSpecCentroid =

∑N
i=1 fi · PSDi∑N
i=1 PSDi

(4.56)

fFreqSTD =

√∑N
i=1 f

2
i · PSDi∑N

i=1 PSDi

(4.57)

fCoefSym = 3

√√√√∣∣∣∣∣
∑N

i=1 f
3
i · PSDi∑N

i=1 PSDi

∣∣∣∣∣ (4.58)

The frequency bandwidth, calculated using the Welch method, was split into

10 bands in each snore to calculate the remaining features. adaptative The �rst

band was always from 0 to 100 Hz, and the remaining ones were determined using

adaptive calculation. Those 9 bands were calculated using a logarithm scale, base

10, from 100 Hz to the highest frequency in the PSD estimation of each snore. The

Band Power Ratio, fBPR, calculates the ratio between the sum of the PSD values

of frequencies inside each one of frequency bands and the sum of all PSD values,

while the In Out Band Power Ratio, fIOBPR, calculates the ratio between the sum

of the PSD values of frequencies inside each one of frequency bands and sum of all

PSD values outside that band. The Spectral Flatness, fSpecF lat, was also calculated

(Equation 4.59).
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fSpecF lat =

N

√∏N
i=1 PSDi∑N

i=1 PSDi

N

(4.59)

4.7.2.3 Synchrosqueezed Wavelet Transform

The SWT method was, �rstly, proposed to study auditory nerve-based models,

and to improve identi�cation by sound [366]. Originally, it was the result of merging

two methods, wavelets and reassignment. The synchrosqueezed starts with the

construction of the time-frequency plane, by decomposing the time series, using

wavelets. The idea behind the reassignment method is the analysis of the time-

frequency plane, in small portions of the representation, and it searches for close

energy concentrations and reallocates those small portions to a single concentration

[367]. The energy reallocation occurs in the frequency axis, which allows keeping

time resolution, and it sharpens the time-frequency plane representation. Allocation

factors rely on the local behaviour of the plane [368, 369]. A continuous wavelet

transform over the signal s, was implemented accordingly with the de�nition given

in [366]:

Ws(a, b) =

∫
s(t) · a−1/2 · ψ(

t− b
a

) · dt (4.60)

The ψ function is the chosen wavelet, with Ws(a, b) reallocated to concentrate the

time-frequency pro�le.

More recently, researchers improved the method to incorporate the concept be-

hind the EMD method [368]. Most of the time series are multicomponent, and the

construction of the time-frequency plane highlights the most important components,

at each instant of time, with the method returning components of IMF type. Con-

sidering signal s(t) might be a sum of amplitude-modulated frequency-modulated

intrinsic mode type components si(t),

s(t) =
N∑
i=1

si(t) =
N∑
i=1

Ai(t) · cos(φi(t)) (4.61)

where the Ai(t) is the amplitude with slow variations, and the φi(t) is the instan-

taneous phase. φ
′
i(t) and φ

′
j(t) are well separated in the time-frequency plane, for

i 6= j, which means that each si(t) might be considered an individual component.

Accordingly with the EMD method, the Instantaneous Frequency (IF), at time in-

stant t and for the ith component, is then ωi(t) = φ′i(t). Up to the �rst 10 IF of each

snore were calculated for future data analysis.

SWT is a recent tool for data processing, and the current literature in the OSAHS

�eld is scarce. Only 3 papers were found using SWT to study OSAHS. The �rst
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paper studied the use of SWT to detect sleep spindles, getting a maximum sensitivity

of 96.5% and speci�city of 98.1% [370]. The second paper used the method to detect

K-Complexes [371]. The third, and �nal, paper used the method to detect sleep

apnoeas and hypopneas by using a single ECG channel [372].

A downsample factor of 4 was implemented to each snore signal to decrease

computational costs associated with the SWT method. No signi�cant information

losses were expected and, before resampling, downsampling was performed using an

anti-aliasing �lter, using a Chebyshev Type I low-pass �lter, with a cut-o� frequency

at 0.8*(Fs/2)/R. Fs parameter represents the signal's acquisition frequency, while

R is the downsampling parameter, in this case, 4. SWT calculation was performed

using an analytic family wavelet family function, called Morlet.

4.7.2.3.1 Patients' Set Synchrosqueezed Wavelet Transform changes the signal

from the time-domain to the time-frequency domain, and the calculation of the �rst

up to 10 IF generated a great amount of data, which required a dedicated physical

storage unit and a 4 TB external hard drive was selected. The external hard drive

had the capability to store SWT data processing results for the �rst 1000 snores

of each patient, with the highest signal-to-noise ratio values, in the case they exist.

The total number of snores analysed with this method was 33,383.

4.7.3 Hypothesis Testing

A hypothesis testing procedure was implemented to analyse an assumption re-

garding the behaviour, and if the di�erences have statistical signi�cance, of fea-

tures among medical classi�cation groups. The �rst step was to test data with the

Kolmogorov-Smirnov test, which analyses data to check if the samples come from

a normal distribution. The signi�cance level (α) was set to 5%. Depending on

the result, if the null hypothesis is either rejected or not, a complementary test is

implemented.

The rejection of the null hypothesis, data don't come from a normal distribution,

led to the complimentary test, the Kruskal-Wallis H test. The test's null hypothesis

states that data in all groups come from the same distribution, and it was performed

to a 1% signi�cance level. When the test rejects the null hypothesis, a �nal a post-

hoc test is implemented to verify which groups come from a di�erent distribution.

The multiple comparison test identi�es those groups.

A second hypothesis testing procedure was implemented solely to analyse sound

event �ltering (section 4.7.1.5). The McNemar's test, a method to compare matched-

pairs data, was used to evaluate one sensitivity against the second sensitivity, and

one speci�city against the second speci�city. The method has several de�nitions, in-

cluding the classic (Equation 4.62) and the mid-p-value (Equation 4.63) de�nitions,

and they were compared against other de�nitions of the McNemar's test [373]. These
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2 de�nitions performed better than the other de�nitions, when compared to their

type I error rates and power. The classical method is considered the most powerful

de�nition and it should be implemented cautiously if it is used on small samples (the

paper only builds scenarios up to N≤100 samples), once it surpasses the nominal

type I error value of 5% in some case scenarios, at a maximum of 5.37% [373, 374].

The mid-p-value de�nition never violates the nominal type I error rate in all the

scenarios under analysis, and it has a power similar to the classical de�nition [373].

The test consists of the analysis of a 2x2 matrix, speci�cally the o�-diagonal

values, and the detection of snore/noisy sounds by one method but not by the second

method. Equation 4.62 to Equation 4.65 use the o�-diagonal values b, number of

snores detected by method 1 but not by method 2, c, number of snores detected

by method 2 but not by method 1, and n=b+c. The null hypothesis states that

both methods are equally likely in snore detection (sensitivity) and in noise rejection

(speci�city). The result of the classical classi�cation χ2 has chi-squared distribution

with 1 degree of freedom.

χ2 =
(b− c)2

(b+ c)
(4.62)

mid-p-value = 2 · [one-sided p-value− 1

2
· f(b|n)] (4.63)

one-sided p-value =

min(b,c)∑
b=0

f(b|n) (4.64)

f(b|n) =

(
n

b

)
(
1

2
)n (4.65)
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Chapter 5

Results

This chapter presents the most important results and �ndings associated with

this thesis. It starts with the presentation of results related to PSG scoring, and

their medical reports, and continues with the pre-processing phase. The last results

relate to data processing and analysis. Correlation of snore data with other sleep

parameters was also implemented.

5.1 Slow Variation Parameters

The development of both hardware and software to manage SVP data was not

ready when data acquisition began for the snoring signal. SVP data acquisition

began weeks later, and a total of 65284 data acquisitions were performed, with one

acquisition every 3 minutes. Unlike high-quality sound acquisition, the acquisition

of SVP data did not stop in the morning, but continues throughout the day, until

new commands were ordered to the device like a data read command.

All data in this section were the result of all SVP data acquisitions, including

patients excluded from the �nal set and periods without any PSG study ongoing.

There are 3 �gures to represent data from each SVP. The �rst �gure is a histogram

to understand how data behaves, in general, while the second and the third �gures

are of box plot type. In the second �gure, data are grouped accordingly with the

time of day of the register. Humans divide the day into 24 hours, and data was

placed in one of the 24 groups accordingly with the following rule. Datum belongs

to group n when its record was inside the time interval [n− 1, n[ h.

In the third �gure, data belonging to the same week were grouped. It was de�ned

as the beginning of a week on Mondays, with data recording starting on the 26 of

March, in a total of 39 weeks. No data were acquired during week 26.

5.1.1 Pressure

SVP gauge pressure presented very stable values as it shows Figure 5.1. With low

variability, a single value, 475 Pa, has almost two-thirds of all the records, presenting
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a standard deviation of 0.602 Pa.

Gauge pressure distribution was analysed for both times of the day and weeks.

Figure 5.2 has 24 box plots to describe gauge pressure distribution on an hourly

basis, using data quartiles. The n box plot has all the data acquired during the

time of the day comprehended between [n − 1, n[ h. As previously stated, almost

two-thirds of the data have a value of 475 Pa, and in Figure 5.2 the e�ect is clear.

Most of the time of the day, the quartiles and whiskers, of the box plot, have the

same value, the mode value.

Figure 5.3 shows gauge pressure distribution over the weeks, which were also

represented in box plots. It con�rms the trend in Figure 5.2. For the 39 weeks,

most of the box plot parameters, both quartiles, and whiskers, are concentrated in a

single value, the mode value. At week 17, there is a data distribution distinct from

all others, where percentiles 25, 50, and 75 have di�erent gauge pressure values.

5.1.2 Temperature

The temperature reading presented has more variability, than the readings from

the gauge pressure sensor, with an indoor temperature range between 18.8 and

37.1◦C. The pro�le of the temperature distribution is in Figure 5.4.

Figure 5.5 is a histogram-type �gure, with temperature data organized on an

hourly basis. The most signi�cant modi�cation is in the �rst hours of daylight, with

a well visible decrease in temperature. Temperature tends to decrease slightly during

the night, and increase, also slightly, during the day. Maximum values were achieved

at the end of the day and the beginning of the next day. The lowest temperature

values were recorded when the PSG studies ended and the CMS opens.

Although the device measured indoor temperatures, the outdoor temperature

was capable of in�uencing indoor temperatures as seen in Figure 5.6. Season impact

on indoor temperature is visible. The period of higher temperatures, from week 17

to 25, corresponds to the period from the middle of July to the middle of September.

Lower temperatures are linked with the coldest months recorded, March and April,

and November and December.

Two particular weeks had temperature records di�erent from the others, with

wider Interquartile Range (IQR). Week 17, mid-July, had 2 data acquisitions with

signi�cant temperature di�erences. The mean temperature was higher on the �rst

day when compared with the second day. The mean temperature di�erence between

the �rst and the second day was of the was of 9.9◦C. The second week, week 25, also

had remarkable di�erences in the temperatures and, again, only 2 data acquisitions

were performed. The di�erence in the mean temperature was -5.4◦C, meaning the

second day was hotter.
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Figure 5.1: Histogram of all gauge pressure records. Gauge pressure has little oscillations, with only 5 di�erent
records. Mode value, 475 Pa, accounts for 65.8% of all pressure values, while minimizer and maximizer values of
473 and 477 Pa, respectively, and they accounts, together, to 0.8%.

Figure 5.2: Gauge pressure data were grouped in a hourly basis. The �rst hour of the day, 1, includes data belonging
to the range [0, 1[ h, while the second hour of the day, 2, includes data belonging to the range [1, 2[ h. The remaining
22 h of the day followed the same rule. Evidence of gauge pressure stability exists with most of the time of the day
with the same value for all the box plot parameters. Outliers were removed from the �gure.

Figure 5.3: A box plot to evaluate gauge pressure over the weeks. Gauge pressure shows evidences of stability on a
week basis, with the majority of the weeks with the same value for all the box plot parameters. The �gure does not
include outliers.
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Figure 5.4: Histogram of the temperature distribution with a temperature span of 1◦C. Two temperatures, 26 and
28◦C, have the highest number or records. The �rst one has a total of 9681 records, while the second one has the
maximum number of records, with a total of 9683 records.

Figure 5.5: Evolution of the temperature during the day in an hourly basis. Temperatures recorded in the �rst hour
of the day, [0, 1[, were grouped and their box plot is at position 1. Similar analysis was performed for the remaining
23 h of the day.

Figure 5.6: Evolution of the temperature over the weeks. Season impact in temperature is clearly visible, with
higher temperature values between week 17 and 25, and lower temperature values in weeks 1 to 7 and 35 to 39.
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5.1.3 Relative Humidity

Recommendations for relative humidity indoor point to values between 30% and

50% [375]. From the total number of records, 42107, or 64.5%, of them have their

values between the recommended limits for relative humidity. Figure 5.7 presents

an histogram for all relative humidity records. The remaining data are above the

30% to 50%, with 21928 records, 33.6%. Below the recommended range, there are

only 1.9% records.

Relative humidity has a smooth evolution throughout the day, achieving its high-

est value at the end of data acquisition, and its lowest value at the end of the

afternoon. The median amplitude, percentile 50, is 5.43%.

Unlike relative humidity behaviour in an hour analysis (Figure 5.8), the study

of its distribution throughout the weeks shows a behaviour less predictable. Figure

5.9 presents the relative humidity distribution over the weeks. The highest relative

humidity values happen in the last weeks, in the Autumn, while the minimum value

occurred in the summer. Four weeks have distinct behaviours when compared with

the remaining weeks. Two of those weeks are week 17 and week 25, and they

have a common factor. In each of these weeks, only 2 acquisitions (patients) were

performed. In week 17, data were acquired with signi�cant di�erences in relative

values. On the �rst day, the mean relative humidity value was 27.2%, while on the

second day it increased to 40.9%. In week 25, the �rst day had a relative humidity

mean value of 43.8%, while the second day had a relative humidity value of 28.4%.

The other two weeks, weeks 1 and 29, had data acquisition during more days.

Data acquisition lasted for 6 and 4 days, respectively, for weeks 1 and 29. During

the �rst week, daily mean relative humidity was 36.5%, 32.7%, 28.6%, 32.2%, 39.3%

and 41.5%. Week 29 had a daily mean relative humidity of 61.1%, 59.9%, 48.4%

and 47.2%.

5.1.4 Temperature vs Relative Humidity

The relationship between temperature and relative humidity was directly studied

in scatter plots. The parameter percentile 50, from both variables, was used in Figure

5.10 and in Figure 5.11.

In Figure 5.10, a scatter plot was built on an hourly basis. The pro�le of a

hysteresis-like curve exists and, considering the beginning of data at midnight, it

stars with a decrease in temperature and an increase in relative humidity. At the

7th hour of register, the trend changes to a decrease in both temperature and rela-

tive humidity. A few hours later, the temperature starts to increase while relative

humidity continues to fall. Seventeen hours after the beginning of the day, data

stabilizes without a clear trend during the next 4 hours. The observation of the last

4 hours reveals an increase in both variables. Figure 5.11 does not have the same
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hysteresis behaviour. Even so, dark blue and dark red dots, representing the coldest

months, have lower temperature registers.

Figure 5.7: Distribution of relative humidity values. The histogram identi�es the mode value at 47%, inside the
recommended window, 30% to 50%, for comfort.

Figure 5.8: Relative humidity data distribution in an hourly basis. Higher values were achieved during the night,
with a peak, 50.18%, just before PSG study ends. Daylight time decreases relative humidity values, achieving the
lowest value, 44.75%, at the end of the afternoon.
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Figure 5.9: Box plot of relative humidity for each week. Relative humidity achieved higher values in the �rst weeks
and in the end of data acquisition, the last 13 weeks. In the middle, summer time, relative humidity achieved its
lowest values.

Figure 5.10: A 3 variables scatter plot. In this Cartesian coordinate system, the variables are temperature, X-axis,
relative humidity, Y-axis, and the hours of the day, represented by a colour code. Both temperature and relative
humidity values are the percentile 50 calculated for each hour.

Figure 5.11: A 3 variables scatter plot. The temperature, X-axis, and the relative humidity, Y-axis, form the
Cartesian coordinate system. The third variable, time in number of weeks, is represented by a colour code. Both
temperature and relative humidity values are the percentile 50 calculated for each week.
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5.2 PSG Scoring

PSG scoring was performed by the sleep technicians at the CMS, but their results

were crucial to �nding useful relationships between medical and research data. A

resume of some of the most important results, coming from PSG scoring, is available

at Table 5.1. It splits the results, presented in terms of mean and standard deviation,

accordingly with the patients' medical classi�cation group. For each group, the

relative REM sleep and NREM, divided in N1, N2 and N3, sleep is presented along

with the total amount of RERA. The table also has the indices AHI and RDI,

important in sleep evaluation, and TST, in minutes.

The hypothesis testing was implemented to analyse the percentage of each sleep

stage, with a p-value of 0, the highest p-value≈ 10−7, for each sleep stage/medical

classi�cation group pair. With the null hypothesis rejected, the second test was

performed and the p-value calculated was 0.022, 0.962, 0.063, and 0.802, for the

di�erent percentages of sleep stage, N1, N2, N3, and REM, respectively. These

results don't allow to reject the null hypothesis, which means that data comes from

the same distribution.

The �nal number of 67 PSG studies resulted in the acquisition of 60292 epochs,

but not all the epochs count the same for sleep evaluation. Instead, the beginning of

data acquisition does not mean the beginning of data recording for sleep evaluation,

which starts later. Data for sleep evaluation start, and end, when the sleep technician

gives an input to the computer software to mark the beginning and the end of data

for sleep evaluation. Of the 60292 epochs, 1673 epochs were discarded, remaining

only 58619 epochs, in which 8 of them remained unclassi�ed, either as awake or in

one of the sleep stages, representing 0.01%. Each unclassi�ed epoch, epoch 35, 232,

707, 128, 58, 5, 679 and 9, belongs to a di�erent patient, with ID 63, 64, 77, 106,

126, 133, 134 and 147, respectively.

The patients took, on average, 42.2±44.5 epochs to fall asleep, from the moment

data acquisition e�ectively start to count for sleep evaluation. Taking in account

the medical classi�cation group of the patient, they fall asleep after 48.9 ± 37.3,

41.8± 40.9, 37.7± 40.2, 44.2± 67.4, 40.3± 30.6 epochs for Co, Sn, Mi, Mo, and Se

groups, respectively. Visual information regarding both Lights Out and First Sleep

epochs is at �gure 5.12. Table C.4, in Appendix C, has information about the �rst

epoch for sleep evaluation and the following �rst epoch of sleep.

5.2.1 Sleep Stages

The patient's hypnogram is the graphical chronological representation of the

patient's sleep, after scoring all PSG epochs, giving the sleep pro�le of the patient.

The hypnogram allows the physician to understand the patient's sleep as either
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Table 5.1: Patients' PSG results for important features in sleep evaluation, organized accordingly with their medical
classi�cation group. There are 5 medical classi�cation groups: Co, Sn, Mi, Mo, and Se. The mean value, µ, and
the standard deviation value, σ, for each medical classi�cation group were calculated for the di�erent sleep stages,
for the RERA, AHI, RDI and the TST [332].

Parameter
[µ± σ]

Co Sn Mi Mo Se

N1 (%) 17.5±15.0 15.4±8.3 17.5±9.8 16.6±8.3 33.7±20.0
N2 (%) 42.5±5.8 41.7±8.9 43.1±10.3 42.9±9.6 38.4±13.1
N3 (%) 26.2±15.4 27.2±12.0 24.2±8.4 22.7±9.6 13.1±9.3
REM (%) 13.7±6.5 15.6±6.0 15.1±5.1 17.8±7.3 14.9±6.9
RERA (#) 1.7±1.8 13.8±12.8 26.7±20.9 36.6±26.1 33.5±39.7

AHI 0.4±0.4 2.4±2.2 6.4±4.2 16.2±6.8 55.2±26.7
RDI 0.8±0.5 4.7±2.4 11.2±3.2 22.8±3.9 62.0±21.2

TST (min) 309±84 364±68 331±75 352±64 292±124

normal or disrupted, and how disrupted it is. The relationships between sleep stages

and other variables of the PSG study are presented below.

A total of 3523 epochs had their body position register identi�ed in position N,

from the 58611 epochs classi�ed as one of the sleep stages. This sleep position is in

fact a reference for a faulty acquisition, and there are di�erent causes responsible for

the problem. A bad sensor connection to the concentrator may justify the temporary

data missing, solved after the intervention of the sleep technician. Patients with ID

100, 104, 105, 112, 113, 130, 145, and 147 had their sleep position temporarily halted

in some epochs (max of 11), and all but patient ID 105 had the sleep position N in a

row. Patients with ID 52, 90, 107 and 126 had their sleep position unidenti�ed the

entire PSG recording time. A full night without sleep position may be the result of

a faulty sensor, depleted sensor batteries, or a bad connection. Table 5.2 presents

the distribution of the sleep position, in percentage, for each sleep stage. With

Figure 5.12: Lights Out and �rst sleep epoch for each one of the patients. Patients were coloured accordingly
with their medical classi�cation group. Sleep registers with a high number of epochs are likely associated to the
performance of a SIT test.
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Table 5.2: Distribution of the possible sleep positions, in percentage, accordingly with each sleep stage. The most
common sleep position is the back (B) position, closely followed by the left (L) position. The right (R) position was
still a common position, however half the B position, while the prone (P) sleep position was the preferred position
in rare occasions.

Body
Position

W
(%)

N1
(%)

N2
(%)

N3
(%)

R
(%)

L 33.8 32.1 33.9 41.6 32.1
R 18.0 20.3 21.1 18.8 23.6
P 1.3 1.7 2.4 2.5 2.4
B 47.0 46.0 42.6 37.1 41.9

23627 epochs (42.9%) registered in sleep position back (B), it was the preferred

sleep position, closely followed by the left (L) position (19204 epochs or 34.9%).

Finally, the less common sleep positions are the right (R) position, with 11122

epochs (20.2%), and the prone (P) position, occurring only in 1135 epochs (2.1%).

(a)

(b)

Figure 5.13: Histogram for all the PSG epoch registers for both heart rate and SpO2. Each epoch has a single entry
for heart rate and SpO2. Heart rate distribution, (a), reveals a 60 bpm mode value with 22 and 255 bpm being the
lowest and highest record values, respectively. O2 saturation registers, (b), with a 94% mode value, and more than
91.4% of the pulse oximetry registers with 90% or more of saturation.
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Histogram of the entire population under study (all epochs) for heart rate is

available at Figure 5.13 (a). Heart rate variability points to minimum and maximum

heart rate values of 22 and 255 bpm. A thumb rule for the maximum age-related

heart rate states to subtract 220 to subject's age [376]. Following this thumb rule

and the patients' pro�le for this project, all heart rate registers above 200 bpm were

discarded, in a total of 20 registers, 0.03% of all registers. The distribution of the

remaining heart rate registers was studied according with the respective classi�ed

sleep stage epoch or the patients' medical classi�cation group.

Oxygen saturation, measured by a pulse oximetry device, is an important marker

to evaluate gas exchange, and air�ow, in the respiratory system. Figure 5.13 (b)

is a histogram of the oxygen saturation distribution, with evidence that the vast

majority of the pulse registers is above 90%. Common values for oxygen saturation

are above 90%, while values between 70% and 90% are not so common. Extremely

rare are the cases of pulse oximeter reading below 70%, which raises another concern

related with the precise calculation of pulse oximetry at those levels [377,378]. A cut-

o� �lter was implemented with a value equal to the highest pulse oximeter possible

value, but without a single register. That value was 65%, and all pulse oximetry

register values below this value were removed, in total number of 1461 registers.

Figure 5.14 presents 2 relationships, one between heart rate and sleep stage

(Figure 5.14 (a)), and a second between O2 saturation and sleep stage (Figure 5.14

(b)). Both heart rate and O2 saturation present small to none variability in Q2

(median) values. Figure 5.14 (a) shows higher heart rates during sleep stage awake,

REM and N1, decreasing for N2 and N3 sleet stage. Q1 values are 59, 58, 57, 56

and 60 bpm for awake, N1, N2, N3 and REM sleep stage, and the Q3 values are 80,

75, 73, 72 and 76 bpm (same sleep stage order).

Figure 5.14 (b) shows that all the sleep stages have the same median, 94%, and

similar IQR, with the REM sleep stage presenting a slightly di�erent distribution,

more wide in both IQR and in the maximum-minimum di�erence. IQR value is 3

bpm for all but REM sleep stage, with a 4 bpm value. The mean and the standard

deviation acknowledge the stability observed with Q2 (93.9 ± 2.7%, 93.4 ± 3.4%,

94.0 ± 2.8%, 94.1 ± 2.2% and 93.4 ± 3.9% for awake, N1, N2, N3 and REM sleep

stages, respectively).

The hypothesis testing was implemented to evaluate the heart rate feature, with

a p-value of 0, for each heart rate/sleep stages group pair. With the null hypothesis

rejected, the second test was performed and the p-value calculated was 0, ≈ 10−299.

The rejection of the Kruskal-Wallis H test led to the implementation of the post-hoc

test. The result points to a signi�cant di�erence between all sleep stages once the

intervals are disjunct, as it is possible to see in Figure 5.15. Table 5.3 summarizes

this process. The same hypothesis testing procedure was implemented to evaluate
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SpO2 among sleep stages, and the results of both tests are similar, with the p-value

of 0, ≈ 10−37, to the last test. The multiple comparison post-hoc test points to

signi�cant di�erences only for N1 and N2 sleep stages, with the remaining sleep

stages with intervals not disjunct.

Di�erent types of sleep events are detected and registered in a epoch basis.

They are an important tracker for sleep disorders, and they give useful information

regarding sleep disruption, and which sleep events were responsible. Table 5.6 shows

how the detected sleep events are related with the di�erent sleep stages.

5.2.2 Medical Classi�cation Groups

Table 5.4 presents the distribution of sleep positions for each medical classi�-

cation group. Back (B) position is most common in the majority of the medical

classi�cation groups, changing number 1 position with left (L) sleep position in Co

and Mo groups. Prone (P) position is very rare in any medical classi�cation group.

Figure 5.16 presents 2 relationships, one is the relationship between heart rate

(a)

(b)

Figure 5.14: Two box plots to represent the relationship between the sleep heart rate and sleep stage (box plot a),
and the oxygen saturation and the sleep stage (box plot b). Both box plots were build after removing unwanted
data from the set (explained in the text). In graphic (a) and during awake stage, heart rate presents the highest
values, 68 bpm in Q2 (median), decreasing in REM and N1 sleep stages, both with 66 bpm, and it achieves the
lowest value, 63 bpm, in N2 and N3 sleep stage. Graphic (b) shows that pulse oximetry is not sleep stage dependent,
presenting a Q2 value of 94% for all the sleep stages.

122



RESULTS

Table 5.3: The application of the Kruskal-Wallis H test (**p-value<0.01) and the post-hoc test. The mean ranks
of each sleep stage and the minimum and the maximum give the intervals for analysis. All the intervals are disjunct
and all the sleep stages are considered signi�cantly di�erent for the heart rate data.

Parameter Aw ** REM ** N1 ** N2 ** N3 **

Mean Ranks 33167 31177 30014 27179 26554
Standard Error 147 196 191 123 161

Minimum 32883 30794 29643 26935 26245
Maximum 33451 31560 30385 27423 26862

Table 5.4: Distribution of the sleep positions, in percentage, accordingly with the patients' medical classi�cation
group.

Body
Position

Co
(%)

Sn
(%)

Mi
(%)

Mo
(%)

Se
(%)

L 21.2 42.7 21.8 34.7 43.4
R 26.0 17.6 31.4 14.4 17.6
P 4.2 2.1 1.3 0.2 3.6
B 48.6 37.6 45.5 50.7 35.4

and medical classi�cation group, while the second is the relationship between pulse

oximetry and medical classi�cation groups. The in�uence of OSAHS in health is

pretty clear in both parameters, with a consistent variation as the disorder worsens.

Figure 5.16 (a) shows evidence of augmented health risks when OSAHS severity is

higher, with higher Q2 heart rate values, a body response to arousals [379]. Per-

centile 25 (Q1) values tend to increase with the worsening of the OSAHS severity to

54, 56, 56, 63, and 62 bpm, while percentile 75 (Q3) values do not have a clear trend

with values of 75, 75, 69, 76 and 82 bpm. Mean and standard deviation values for

the Co, Sn, Mi, Mo and Se medical classi�cation groups are 63.8± 14.8, 65.7± 13.1,

**

**

**

**

**

Figure 5.15: Results from the multiple comparison test to the heart rate dataset. All sleep stages have signi�cant
di�erences between them (**p-value<0.01), once the intervals are disjunct.
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Table 5.5: The application of the Kruskal-Wallis H test (**p-value<0.01) and the post-hoc test. The mean ranks
of each medical classi�cation group test and the minimum and the maximum give the intervals for analysis. All
the intervals are disjunct and all the medical classi�cation groups are considered signi�cantly di�erent for the pulse
oximetry data.

Parameter Co ** Sn ** Mi ** Mo ** Se **

Mean Ranks 39220 35543 24261 20724 14861
Standard Error 187 113 163 151 199

Minimum 38857 35313 23948 20433 14472
Maximum 39583 35773 24574 21016 15250

62.4± 12.5, 70.5± 13.5 and 73.4± 14.3 bpm, respectively.

The behaviour of pulse oximetry registers with the worsening of the medical

classi�cation group is also interesting. Figure 5.16 (b) shows a consistently decrease

in the pulse oximetry from a healthy subject, Co group, to the most severe group,

Se. The mean and the standard deviation have the same pattern, with values of

95.4± 2.0%, 95.0± 1.9%, 93.5± 2.1%, 92.7± 2.7% and 90.7± 4.4%. Percentile 25

values are 94, 94, 93, 91 and 89 for an increase in OSAHS severity, and the percentile

75 values are 97, 96, 95, 94 and 94 (for the same order of OSAHS severity).

SpO2 and heart rate data distribution among the medical classi�cation groups

were analysed using hypothesis testing. Both tests returned p-value=0, to both

features. Post-hoc test results to the SpO2 feature, available in Figure 5.17, point

to signi�cant di�erences among all medical classi�cation groups once the intervals

are disjunct. Table 5.5 summarizes this process. On the other hand, post-hoc test

results to the heart rate feature point to signi�cant di�erences among the Mi, Mo,

and Se medical classi�cation groups.

Patients with a higher OSAHS severity have a poor sleep quality, associated with

sleep disruption caused by di�erent types of sleep events. The interference of sleep

events in the patients' sleep quality and how they relate with the patient's medical

classi�cation group is in detail in Table 5.7.
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(a)

(b)

Figure 5.16: The relationship between the patients' medical classi�cation group and two di�erent parameters, heart
rate and pulse oximetry, was plotted in a box plot. In graphic (a) is the box plot to relate heart rate and OSAHS
severity. The higher the level of OSAHS severity, the higher the heart rate, with Q2 values of 61, 68 and 73 bpm
for Mi, Mo and Se, respectively. Co and Sn medical classi�cation groups have heart rates (Q2 value) of 64 and 62
bpm, respectively. In graphic (b) is the box plot to relate pulse oximetry registers and OSAHS severity. Q2 reveals
a monotonically behaviour, with an inverse relationship between the O2 saturation and the OSAHS severity. Q2
saturation levels are 96%, 95%, 94%, 93% and 91% for Co, Sn, Mi, Mo and Se, respectively.

**

**

**

**

**

Figure 5.17: Results from the multiple comparison test to the SpO2 dataset. All medical classi�cation groups have
signi�cant di�erences between them (**p-value<0.01), once the intervals are disjunct.

125



RESULTS

T
a
b
le
5
.6
:
D
istrib

u
tio

n
o
f
ea
ch

sleep
ev
en
t
ov
er

th
e
d
i�
eren

t
sleep

sta
g
es.

T
h
e
ta
b
le
p
resen

ts
d
a
ta

a
s
th
e
av
era

g
e
n
u
m
b
er

o
f
sleep

ev
en
ts
d
etected

p
er

1
0
0
0
sleep

sta
g
es.

S
le
e
p
E
v
e
n
t

A
w
a
k
e

N
1

N
2

N
3

R
E
M

A
rousal

(P
atient

aw
akes

betw
een

3
to

10
seconds)

0.5
398.9

193.0
44.4

110.8
A
w
ake

(P
atient

aw
akes

betw
een

11
to

15
seconds)

0.0
75.4

26.0
7.8

25.5
O
bstructive

hypopnea
1.7

115.0
51.6

19.5
112.2

P
eriodic

leg
m
ovem

ent
0.5

41.3
60.6

87.2
5.0

R
E
R
A

0.3
55.7

41.1
5.8

20.1
O
bstructive

apnoea
0.2

58.3
18.4

5.9
42.2

C
entral

apnoea
0.2

3.2
0.5

0.3
2.6

L
eg

m
ovem

ent
0.9

12.9
8.6

5.8
13.2

SpO
2
desaturation

0.3
9.7

10.1
5.2

7.5
Snore

0.0
1.5

0.8
3.2

0.4
M
ixed

apnoea
0.0

0.3
0.0

0.0
0.1

R
E
M

sleep
disorder

0.0
0.1

0.0
0.2

0.3

126



RESULTS

T
a
b
le
5
.7
:
D
is
tr
ib
u
ti
o
n
o
f
ea
ch

sl
ee
p
ev
en
t
a
cc
o
rd
in
g
ly
w
it
h
th
e
p
a
ti
en
t'
s
m
ed
ic
a
l
cl
a
ss
i�
ca
ti
o
n
g
ro
u
p
.
T
h
e
ta
b
le
p
re
se
n
ts
d
a
ta

a
s
th
e
av
er
a
g
e
n
u
m
b
er

o
f
sl
ee
p
ev
en
ts
d
et
ec
te
d
p
er

1
0
p
a
ti
en
ts
.

S
le
e
p
E
v
e
n
t

C
o

S
n

M
i

M
o

S
e

A
ro
us
al

(P
at
ie
nt

aw
ak
es

be
tw
ee
n
3
to

10
se
co
nd

s)
80
3.
3

12
09
.2

90
0.
8

14
33
.1

18
35
.0

A
w
ak
e
(P
at
ie
nt

aw
ak
es

be
tw
ee
n
11

to
15

se
co
nd

s)
17
1.
1

16
3.
3

18
3.
8

21
8.
5

36
7.
5

O
bs
tr
uc
ti
ve

hy
po
pn

ea
16
.7

10
0.
4

25
9.
2

85
6.
2

15
63
.8

P
er
io
di
c
le
g
m
ov
em

en
t

18
3.
3

49
8.
8

34
7.
7

26
2.
3

41
7.
5

R
E
R
A

16
.7

13
6.
3

26
9.
2

36
6.
2

33
5.
0

O
bs
tr
uc
ti
ve

ap
no
ea

0.
0

27
.1

86
.2

12
0.
8

10
68
.8

C
en
tr
al

ap
no
ea

5.
6

15
.0

6.
2

5.
4

3.
8

L
eg

m
ov
em

en
t

57
.8

57
.9

67
.7

88
.5

56
.3

Sp
O

2
de
sa
tu
ra
ti
on

5.
6

24
.6

30
.8

20
.8

32
0.
0

Sn
or
e

0.
0

22
.9

7.
7

0.
8

0.
0

M
ix
ed

ap
no
ea

0.
0

0.
4

0.
0

0.
0

2.
5

R
E
M

sl
ee
p
di
so
rd
er

0.
0

2.
1

0.
0

0.
0

0.
0

127



RESULTS

5.3 High-Quality Sound Energy and Filtering

The characteristics associated with energy, in signal processing and using Equa-

tion 4.3, include the calculation of an array of non-negative values and an increased

highlight, from the baseline, of higher values. To �nish the energy calculation for

a single �le, the algorithm only takes less than 120 s to complete the task. The

outcome from the energy calculation, for a single patient, is in Figure 5.18. The

sound activity was not homogeneous, which means the patient did not snore the

entire night.

Figure 5.19 is a single patient 5 min segment from a high-quality sound acqui-

sition �le and its energy. Quiet regions have lower energy values, which is visible,

especially, in the second half of the �gure, while snores are more common and with

higher amplitudes in the �rst half. Energy calculation was performed for regions

of 0.1 s, without overlapping, which meant that snore amplitude and duration were

both crucial to highlight it from the energy's baseline. E�ects of the energy equation

are visible, with sounds in the quiet region with less relative amplitude, approaching,

visually, from a �at line.

Raw energy arrays have countless peaks of energy, most of them are noise, with

Figure 5.20 being an example of how both �lters worked together in a 5-minute

window. A 1-minute window, with increased detail over each energy peak, is avail-

able in Figure 5.21. In general, the �lters attenuated the energy array amplitude,

smoothing it and decreasing future workload by eliminating some of the existing

energy peaks.

Figure 5.18: Representation of the entire energy array of a single patient, with visible regions of higher sound
activity.
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Snores

Quiet

(a)

(b)

Figure 5.19: A 5 minute segment of a patient's sound record session, starting at minute 200 and ending at minute
205. The upper �gure, (a), is the representation of the high-quality acquired sound, in raw, while the lower �gure,
(b), is the result of the energy calculation for the same time span. Some snores were identi�ed as "Snores" in Figure
(a) to give be given as examples, while a area without snores is identi�ed as "Quiet" [332].

Figure 5.20: Data from a 5 minute segment of a single patient. The raw energy, in black, was �ltered by a low-pass
and a high-pass �lter. The �ltering process returned a �ltered energy array, in red, with less and smoother peaks.
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5.4 Gaussian Fit

The �ltered energy time series was windowing in 4 s windows, with 3.5 s overlap-

ping, to be modeled by a Gaussian function. The �nal result was an array of energy

peaks candidates to be identi�ed as the patient's snores. All the plots in Figure

5.22 and in Figure 5.23 came from the same patient. There are a total of 29 plots

to exemplify how modeling the energy time series worked. They are chronologically

ordered from top to down and from left to the right, with the �rst 15 plots in the

�rst �gure.

Although not quanti�ed, energy modeling can �lter and eliminate some local

maxima, which could be misunderstood as energy peaks. In Figure 5.22, both energy

peaks have, each one, 2 local maxima, but the Gaussian �t "see" just both energy

peaks, eliminating 2 potential candidates to energy peaks, and consequentially, to

snores. The transition between energy peaks is clear in both �gures, Figure 5.22

and Figure 5.23. When no energy peak exists in the selected window, the modeled

Gaussian function has its maximum outside that window, which is the exclusion

criterion for the presence of an energy peak.

Figure 5.21: Data from a 1 minute segment of a single patient. The results achieved with the �ltering process are
clear. Filters decreased the number of peaks and energy �uctuations are smoother.
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Figure 5.22: The achieved result for the application of a Gaussian function to model the �ltered energy time series.
This set of 15 images is the �rst, of 2 (the other is in Figure 5.23), and it gives an example of how modelling works
for 2 energy peaks, 1 of them shared with the second �gure. Original �ltered energy time series was windowing with
4 s window and overlapping of 3.5 s. The algorithm is capable of detecting 2 di�erent energy peaks because between
them there is a windows where the maximum of the Gaussian function is outside that windows. The chronological
order is top to down and then left to right.
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Figure 5.23: The second part, the �rst part is in Figure 5.22, of modelling the �ltered energy. With �ltered energy
windowing in a 4 s length and overlapping of 3.5 s, the transition from one energy peak to the following one is
visible. At that point, the Gaussian function has its maximum outside the window. The chronological order is, also,
top to down and then left to right.
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5.5 Sound Events Filtering

Detection of energy peaks, by modeling data with a Gaussian function, returns

an array of candidates to be identi�ed as snores. The �rst exclusion criterion was

already implemented by the modeling method itself, but more events were �ltered by

using other criteria. The di�erent exclusion criteria decrease the number of energy

peaks, at the end of the modeling process, from 507904 to 51458, the number of

snores sounds. This automatic process had a con�rmation rate, of energy peaks

being snore sounds, of 10.1%. Table 5.8 summarizes the number of energy peaks

identi�ed by the modeling process, and which ones were selected as snore sounds,

splitting data by patients' medical classi�cation group. The con�rmation rate, the

percentage of peak energy con�rmed as snore sounds, is also available.

The �ltering process for detected peaks of energy started with the rejection of

peaks of energy due to electronic noise. Figure 5.24 shows the impact of the elec-

tronic noise in sound acquisition. There is an example of this type of noise in Figure

5.24 (a), revealing a periodic behaviour associated with the electronic interference

of 3.1 s, Figure 5.24 (d). Figure 5.24 (b) has a more detailed pro�le of a single

electronic interference. Data in Figure 5.24 (a) was used to do energy calculation

and the result is available in Figure 5.24 (c), with the electronic interference en-

ergy emerging from the energy baseline, leading to its detection by the Gaussian �t

model.

(a) (b)

(c) (d)

Figure 5.24: Electronic noise in sound acquisition. The noise occurs periodically as visible in the example in (a).
A more accurate pro�le form this type of noise is available in (b). The impact of this electronic interference in
the detection of energy peaks is visible in (c), with its energy higher than the surrounding baseline. Distribution
of time di�erences between consecutive peaks of energy was calculated and plotted in (d). Electronic interference
periodicity was calculated with a result of 3.1 s.
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Table 5.8: This table presents the number of energy peaks detected when modelling the �ltered energy data series
with a Gaussian function. It also presents the number of snores and the percentage of accepted energy peaks as
snores. All data is organized accordingly with the patient's medical classi�cation group.

Co Sn Mi Mo Se

# Peaks Of Energy 71004 185368 97361 96268 57903
# Snores 1022 12117 10331 14680 13308

Con�rmation Rate (%) 1.4 6.5 10.6 15.2 23.0

Table 5.9: Thresholds mean values for each medical classi�cation group. The �rst line of threshold data is the mean
hard threshold to reject electronic noise using the peak of energy. The second line has the mean hard threshold to
evaluate peaks of energy below the previous threshold, by analysing the cumulative energy of each peak.

Energy [×10−3] Co Sn Mi Mo Se

Peak 114 109 114 111 112
Cumulative 298 291 421 292 291

The algorithm to reject noise, with electronic interference origin, used a hard

amplitude threshold, and each patient had its threshold, calculated from its sound

data. All peaks of energy detected above that threshold were not rejected, but

those below were not rejected only if the cumulative energy of the peak was above a

second hard threshold. Figure 5.25 is an example for the electronic interference noise

rejection. Table 5.9 has the mean values of both thresholds, organized by the medical

classi�cation group of each patient. The mean values of both thresholds, amplitude

and cumulative, calculated for all the patients are 111 and 318 a. u., respectively.

Figure 5.26 shows examples of peaks rejected by the sound event proximity �lter.

Figure 5.25: The �rst rejection step after the detection of peaks of energy using the Gaussian �t. All symbols, �, �
and ◦, represent a candidate to a snore sound. The presence of electronic noise is real and a hard threshold, dash
dot horizontal line, de�nes the limit to eliminate electronic noise. Peaks of energy above the de�ned threshold, �,
are not rejected, while the symbol ◦ represents those peaks below and rejected. The third symbol, �, represents
peaks of energy not rejected, despite below the threshold, due to their cumulative energy.
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Table 5.10: Analysis of the snore detection algorithm performance from a sample of 5 min of each patient. The
sensitivity, the speci�city, the PPV and the NPV were the statistical measurements calculated. The performance
was compared using the Bellauer's algorithm.

Algorithm Sensitivity Speci�city PPV NPV

Project 88.1 97.5 97.4 88.5
Bellauer 78.7 94.3 93.6 80.5

Table 5.11: Analysis of the snore detection algorithm performance by medical classi�cation group, and compared
with the Bellauer's algorithm. The used statistical tools were the sensitivity, the speci�city, the PPV and the NPV.

Medical
Group

Algorithm Sensitivity Speci�city PPV NPV

Co
Project 94.5 96.9 82.9 99.1
Bellauer 87.5 97.4 84.2 98.0

Sn
Project 87.2 95.6 95.1 88.5
Bellauer 73.9 96.1 94.9 79.1

Mi
Project 74.8 99.3 99.3 74.4
Bellauer 71.1 99.1 99.1 71.8

Mo
Project 93.9 99.5 99.8 87.8
Bellauer 78.9 94.4 96.9 66.4

Se
Project 97.9 100.0 100.0 96.7
Bellauer 98.3 70.9 84.4 96.3

Figure 5.26: Rejection of peaks of energy based in proximity. In this �gure, the energy time series is plotted together
with the remaining detected peaks of energy. The implementation of the proximity criterion rejected 3 peaks, one
at the beginning and one at the end of the �gure. Another rejected peak is, also, close to the end of the �gure.
Symbol 4 represents peaks of energy not rejected by the proximity criterion, while the symbol ◦ represents those
peaks rejected.
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The performance of the thesis's algorithm for the snores' detection and noises'

rejection was evaluated against the well know Bellauer's algorithm, using the TP,

FP, FN, and TN data. Table 5.10 and Table 5.11 summarize the results for both al-

gorithms' performance, using the parameters sensibility, speci�city, PPV, and NPV.

The �rst table presents overall results, with the project's algorithm performing bet-

ter in all parameters under analysis. The second table groups patients by their

medical classi�cation group, with the project's algorithm performing better in the

majority of the scenarios. The Bellauer's algorithm performed better in 4 scenarios,

in the detection of snores in the Se group, in the rejection of noise in Co and Sn

groups, and how the algorithm performs when it identi�es a snore in the Co group.

The di�erence in those 4 scenarios is small, reaching a maximum of 1.3% in the last

one, opposite to the other scenarios, where the maximum di�erence is 29.1% in the

rejection of noise in the Se group.

A hypothesis testing was implemented to analyse the achieved global results for

the sensitivity and speci�city, using the mid-p-value de�nition of McNemar's test.

A 2x2 matrix was built with the total number of snores detected, by both methods

(a), only by the project's method (b), only by the Bellauer's algorithm (c), and

not detected by neither one (d). An analogous second matrix was built to analyse

speci�city (rejection of noise). The mid-p-value de�nition of the test returned a p-

value≈0 for sensibility and a p-value≈0 for the speci�city, which means the rejection

of the null hypothesis, con�dence level (α) of 5%, in both cases.

5.6 High-Quality Sound Distribution

Data of the high-quality sound acquisition device show a deviation from the

expected 0 means value µ. A single patient data distribution is represented in

Figure 5.27, with a minimal deviation (µ = −1). The complete list has 48 patients

with this minimal deviation, 15 and 2 patients, respectively, with a deviation of -2

and -3. There are greater deviations, of -6 and -13, each one with just 1 patient.

The deviations are small and no actions were implemented to correct this shift.

Figure 5.27: Probability density function of a single sound �le. All sound �le samples were used to calculate the
distribution, ranging from -32768 to 32767.
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5.7 Data Synchronization

5.7.1 Pause Resume Sequences Detection in PSG Studies

Manual registration of the pause resume sequences in the PSG studies was the

responsibility of both sleep technicians and researchers, and Table 5.12 reports all

the sequences, handwritten. Accordingly, with the same table, most of the PSG

studies have continuous data acquisition, without pauses, and only 15 out of the

67 studies, 22.4%, of them were paused. The maximum number of pauses resume

sequences registered for a single PSG was 2, with 6.0% of the PSG studies in this

situation.

Lack of con�dence in the �rst method led to the rejection of the manual reg-

istration and an automatic algorithm was developed to search for pause resume

sequences using data from a single sensor, integrated into the PSG study, the SpO2

channel. The results for the second algorithm are available in Table 5.13 and in Ta-

ble 5.14. The �rst table reports all sequences correctly identi�ed, while the second

table reports all sequences misidenti�ed. To perform synchronization, the start of

data acquisition in the PSG study, t = 0s, is important, but not taken into account

in the current analysis. The analysis of the algorithm's performance points to a total

number of 35 PSG studies, 52.3%, with pause resume sequences. Of the 35 studies,

21 studies had a single pause, 10 studies had 2 pauses, 3 studies had 3 pauses and

1 study had 5 pauses, corresponding to 31.3%, 14.9%, 4.5% and 1.5% of the total

number of studies, respectively. Figure 5.28 is an example of a sequence properly

detected using solely the SpO2 channel.

Figure 5.28: A typical TP in the identi�cation of a pause resume sequence. It is located at t=9120 s and it shows
the moment at which SpO2, third channel from down to top, data drops to 0 value. Other channels observation
con�rms, at the same time instant, the pause resume sequence by observing data discontinuities in several channels.
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Although not desired, the algorithm also detected FPs pause resume sequences

in 10 studies, 14.9%, and all but 1 with just a single misidenti�cation. Patient

ID 90 was a particular case where the algorithm did not work so well, wrongly

identifying 5 pause resume sequences. Figure 5.29 is an example associated with a

misidenti�cation of a pause resume sequence, and all the cases of FPs have a pro�le

similar to this example.

5.7.2 Coarse Data Synchronization

The synchronization of a PSG cluster, a continuous acquisition process between 2

of the possible events: the beginning or the end of data acquisition, or pause resume

sequences, with the high-quality sound signal used the cross-correlation mathemat-

ical tool and results are available at Table 5.15. In order to know if all clusters were

properly synchronized, each cluster synchronization was evaluated, the necessary

corrections to the synchronization were made and the resume is available in Table

5.16. Figure 5.30 shows the relationship between the automatic synchronization and

the �nal synchronization of PSG study and the high-quality sound signal data. The

existence of a predominance relationship between both synchronization of the type

y = x denotes a correct automatic synchronization, but, nevertheless, some synchro-

nizations perform below the expectation. Most of them belong to the Sn group, a

counter-intuitive result, but partially explained by the uneven patient distribution

in each medical classi�cation group. Sn group has almost the double of patients of

the following groups, Mi and Mo.

The snore detection algorithm searched for snores in the high-quality sound

Figure 5.29: A typical FP in the identi�cation of a pause resume sequence. The FP is at time instant 4680 s and
it shows the moment at which SpO2 data drops to 0 value. The observation of the other data at the same time
instant do not show any data discontinuity, expected in real pause resume sequences.
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Table 5.12: Handwritten annotation, by either a sleep technician or the researcher, of the time at which occurred
the PSG studies pause resume sequences. Subjects are referred by their ID.

ID Pauses ID Pauses ID Pauses ID Pauses

49 - 80 23h56m 103 - 127 -
50 - 81 - 104 01h29m

and
02h59m

129 00h43m

51 02h24m 83 01h52m 105 - 130 -
52 05h43m 84 - 106 - 133 -
54 04h20m 86 - 107 - 134 -
57 - 87 03h27m 109 03h28m 136 -
58 - 89 04h25m 110 - 137 -
61 03h04m 90 - 112 - 138 -
63 - 91 - 113 - 139 -
64 - 92 - 114 - 141 -
67 - 94 - 115 - 142 -
68 - 96 - 116 - 143 -
70 - 97 - 118 - 144 -
73 01h01m

and
01h48m

99 - 119 - 145 02h35m
and

06h12m
77 - 100 - 120 - 146 -
78 01h14m

and
03h47m

101 - 125 - 147 05h18m

79 - 102 - 126 -

signal data, but also it searched for snores in the PSG data. The number of snores,

Snn, detected belonging to each cluster is available in Table 5.17 and the respective

time duration, td, of the clusters is available in Table 5.18. We can de�ne the

snore density, Snd, for each cluster as in Function 5.1, and snore density results are

available in Table 5.19, in number of snores per hour.

Snd =
Snn

(td/60)
(5.1)
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Table 5.13: Results for the performance of the algorithm in the detection of the PSG study pause resume sequences.
It made use of a single PSG sensor, the SpO2, and this table identi�es the sequences correctly detected. The table
reports the time, number of minutes after starting data acquisition, at which the pauses were detected. Time t
= 0 min is, also, a time instant for the beginning of data acquisition, the �rst, and present in all data �les. Its
inevitability presence does not require the algorithm to detect it, sparing some computational e�ort. Subjects are
referred by their ID.

ID Time
(min)

ID Time
(min)

ID Time
(min)

ID Time
(min)

49 1.5, 27,
115, 152
and 168

80 14 103 63.5 127 -

50 288 81 - 104 134, 219.5
and 449

129 10

51 1.5 and
195.5

83 153 105 - 130 127.5

52 1.5 and
391.5

84 0.5 and
26.5

106 63 133 -

54 315 86 3 107 - 134 -
57 1.5 87 61 and 290 109 209 136 -
58 1 89 284.5 110 - 137 2.5
61 166 90 - 112 - 138 4.5, 94 and

101
63 - 91 - 113 6.5 139 -
64 - 92 - 114 - 141 5
67 - 94 - 115 1.5 and 96 142 -
68 - 96 - 116 2 and

260.5
143 -

70 6 and 7 97 - 118 - 144 -
73 17.5 and

63.5
99 - 119 - 145 153.5, 255

and 359
77 - 100 - 120 406.5 146 301.5
78 107.5 and

254
101 - 125 223 147 3 and 325

79 55 102 - 126 -
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Table 5.14: Results for the performance of the algorithm in the detection of the PSG study pause resume sequences.
It made use of a single PSG sensor, the SpO2, and this table identi�es the sequences wrongly detected. The table
reports the time, number of minutes after starting data acquisition, at which the pauses were detected. Subjects
are referred by their ID.

ID Time
(min)

ID Time (min) ID Time
(min)

ID Time
(min)

49 - 80 - 103 240 127 -
50 - 81 - 104 - 129 -
51 - 83 - 105 - 130 -
52 - 84 - 106 69.5 133 -
54 118 86 - 107 - 134 -
57 349 87 - 109 362 136 -
58 - 89 - 110 - 137 39
61 - 90 40, 78, 88, 91 and

234.5
112 - 138 -

63 - 91 21.5 113 - 139 -
64 - 92 - 114 - 141 -
67 - 94 - 115 282 142 -
68 - 96 - 116 - 143 -
70 - 97 - 118 - 144 -
73 - 99 - 119 - 145 -
77 - 100 - 120 - 146 -
78 288 101 - 125 - 147 -
79 - 102 - 126 -

Figure 5.30: Results from the automatic synchronization between PSG and H4n data compared with the �nal
synchronization. In the independent axis, the representation of time for automatic synchronization, while in the
dependent axis, the representation of time is for automatic synchronization, but with manual adjustment. The
medical classi�cation group with more synchronizations out of the equation y = x was the Sn group.
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Table 5.15: Results for the automatic synchronization between PSG and high-quality sound signal data, with cross-
correlation applied to all the sound energy data series clusters. Negative values means that high-quality sound signal
were delayed related to PSG, discarding PSG data. Positive values means that high-quality sound signal were ahead
related to PSG, discarding sound signal data.

ID Time (s) ID Time (s) ID Time (s) ID Time (s)

49 -107.9,
-21.9,
227.7,

393.5 and
2284.6

80 -64.1 and
2555.9

103 -6024.3 127 -56.2

50 -241 and
-127

81 -290.8 104 -311.7, -92
and 85.6

129 -86.3 and
1325.1

51 -254 and
1831

83 -94.4 and
31.5

105 -139.8 130 -149.4 and
161.1

52 -213.2 and
-138.3

84 -109.6 and
-97.7

106 -3806.5 133 -277.8

54 -361.2 and
-360.7

86 -232.9 107 -3337 134 -276.9

57 -142 87 -3716.1
and

-1846.7

109 -280.3 and
-163.5

136 -80.1

58 -89.5 89 -241.5 and
2355.9

110 -156.7 137 -227.3

61 -220.4 and
30.4

90 -1339.7 112 -335 138 -324.8,
-248.2 and

709.7
63 -210.7 91 -185.4 113 -411.4 139 -1538.9
64 -219.3 92 -270 114 -70.9 141 -637.1
67 -473.6 94 -229 115 -140 and

-130.8
142 -147.6

68 -248.6 96 -80.6 116 -356.5 and
-7.3

143 -1356.1

70 -456 97 -944.8 118 -401.8 144 -3197.2
73 -180.3,

-158 and
25.9

99 -185.6 119 -317.8 145 -255.8,
-49.7, 59.8
and 1294.9

77 -177.1 100 -375.1 120 -152.2 and
-149.9

146 -560.2 and
-552.3

78 -309.9,
245.2 and
734.3

101 -173.1 125 -279.4 and
-237.1

147 -240.7 and
-149.3

79 -3298.6 102 -262.3 126 -265.7
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Table 5.16: Results for the automatic synchronization between PSG and high-quality sound signal data, with cross-
correlation applied to all the sound energy data series clusters. Negative values means that high-quality sound
signal were delayed related to PSG, discarding PSG data. Positive values means that high-quality sound signal were
ahead related to PSG, discarding sound signal data. After automatic synchronization, manual synchronization was
performed to improve �nal results. Patient ID 120 has 2 synchronizations but both have the same value. After the
last pause resume sequence, the amount of high-quality sound data was low, less than 104 s, and it was decided to
keep the same synch value.

ID Time (s) ID Time (s) ID Time (s) ID Time (s)

49 -107.9,
-21.8,

227.7, 357
and 524

80 -411.6 and
-121.5

103 -3842 127 -132.6

50 -329.7 and
-126.9

81 -222 104 -311.7,
-91.9 and

85.7

129 -263.1 and
-194.3

51 -254 and
9.5

83 -222.6 and
385.3

105 -139.6 130 -149.3 and
161.1

52 -150.2 and
-65.1

84 -193.2 and
-89.1

106 -3851.8 133 -122.1

54 -364.8 and
492.7

86 -209.6 107 -3571.4 134 -276.9

57 -142 87 -3754.6
and

-3240.5

109 -280.4 and
-163.5

136 -113

58 -89.3 89 -228.6 and
62.5

110 -151.4 137 -227.1

61 -220.3 and
30.6

90 -1339.6 112 -334.9 138 -324.7,
83.4 and
469.2

63 -210.8 91 -185.4 113 -411.2 139 -4329.4
64 -192.1 92 -518.3 114 -277.2 141 -341.6
67 -660.6 94 -229.1 115 -195.8 and

-144.6
142 -147.8

68 -251.4 96 -143.8 116 -189.6 and
-7.2

143 -2375

70 -457.3 97 -1160.8 118 -219.5 144 -3197.4
73 -169, -158

and 25.8
99 -181.7 119 -317.5 145 -255.9,

-49.8, 63.7
and 304.3

77 -177 100 -374.7 120 -150.9 and
-150.9

146 -560.2 and
-418.6

78 -183.9,
245.2 and
734.3

101 -173 125 -279.2 and
-237.1

147 -240.8 and
-149.3

79 -3298.7 102 -261.9 126 -197.7
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Table 5.17: Number of snores present in each patients' cluster. Subjects are referred by their ID.

ID Snores ID Snores ID Snores ID Snores

49 5, 314, 62,
3 and 668

80 3 and 1864 103 87 127 18

50 14 and 3 81 14 104 775, 81
and 1252

129 1 and 927

51 6 and 2 83 36 and 680 105 1819 130 11 and 55
52 228 and 0 84 8 and 11 106 34 133 8
54 232 and 10 86 106 107 376 134 1439
57 582 87 97 and 29 109 465 and

354
136 3

58 249 89 136 and
242

110 2 137 3465

61 364 and
302

90 83 112 107 138 196, 2 and
666

63 2365 91 879 113 1625 139 307
64 424 92 1084 114 98 141 777
67 705 94 676 115 1 and 44 142 1450
68 8 96 412 116 847 and

636
143 1075

70 425 97 2 118 137 144 16
73 3, 367 and

2562
99 69 119 2000 145 15, 6, 30

and 28
77 970 100 1838 120 756 146 379 and 28
78 402, 560

and 643
101 64 125 1077 and

783
147 1669 and

147
79 1942 102 146 126 2485
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Table 5.18: The time duration, in minutes, of each one of the patients' cluster. Subjects are referred by their ID.

ID Time (m) ID Time (m) ID Time (m) ID Time (m)

49 25.2, 88.0,
37.0, 16.0
and 229.0

80 7.1 and
393.0

103 405.7 127 405.7

50 282.5 and
119.8

81 405.7 104 128.8, 85.5
and 184.8

129 5.7 and
389.0

51 191.3 and
210.1

83 149.3 and
246.3

105 405.7 130 125.0 and
275.5

52 389.0 and
15.3

84 23.3 and
380.7

106 405.7 133 405.7

54 308.9 and
82.5

86 405.7 107 393.0 134 405.7

57 405.7 87 227.4 and
169.7

109 204.3 and
199.4

136 405.7

58 405.7 89 280.7 and
120.2

110 405.7 137 405.7

61 162.3 and
230.5

90 405.7 112 405.7 138 88.6, 7.0
and 296.9

63 405.7 91 405.7 113 405.7 139 347.4
64 399.3 92 405.7 114 405.7 141 405.7
67 405.7 94 405.7 115 92.7 and

312.1
142 405.7

68 405.7 96 405.7 116 257.3 and
145.3

143 405.7

70 405.7 97 385.2 118 405.7 144 394.7
73 14.7, 46,0

and 310.0
99 405.7 119 405.7 145 149.2,

101.5,
104.0 and

41.6
77 390.1 100 405.7 120 404.0 146 292.2 and

111.2
78 104.4,

146.5 and
139.5

101 405.7 125 218.4 and
186.7

147 321.0 and
83.2

79 392.0 102 405.7 126 405.7
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Table 5.19: Average number of snores per hour, snore density, present in each one of the patients' cluster. Subjects
are referred by their ID.

ID Snores
per hour

ID Snores
per hour

ID Snores
per hour

ID Snores
per hour

49 11.9,
214.1,

100.5, 11.3
and 175.1

80 25.2 and
284.6

103 12.9 127 2.7

50 3.0 and 1.5 81 2.1 104 361, 56.8
and 406.5

129 10.7 and
143.0

51 1.9 and 0.6 83 14.5 and
165.7

105 269 130 5.3 and
12.0

52 35.2 and
0.0

84 20.6 and
1.7

106 5.0 133 1.2

54 45.1 and
7.3

86 15.7 107 57.4 134 212.8

57 86.1 87 25.6 and
10.3

109 136.5 and
106.5

136 0.4

58 36.8 89 29.1 and
120.8

110 0.3 137 512.4

61 134.5 and
78.6

90 12.3 112 15.8 138 132.8, 17.1
and 134.6

63 349.8 91 130.0 113 240.3 139 53.0
64 63.7 92 160.3 114 14.5 141 114.9
67 104.3 94 100.0 115 0.7 and 8.5 142 214.4
68 1.2 96 60.9 116 197.5 and

262.6
143 159.0

70 62.9 97 0.3 118 20.3 144 2.4
73 12.3, 478.7

and 495.9
99 10.2 119 295.8 145 6.0, 3.6,

17.3 and
40.4

77 149.2 100 271.8 120 112.3 146 77.8 and
15.1

78 231, 229.4
and 276.6

101 9.5 125 296 and
251.7

147 312.0 and
106.0

79 297.2 102 21.6 126 367.5
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5.8 Linear Compensation

PSG and high-quality sound acquisition device working mechanism are inde-

pendent, each one has its own clock. Clock-associated errors change the nominal

frequency of the clock, which have implications for the calculation of the data ac-

quisition frequency. For short periods of time, such di�erences are not visible, but

in this project, data acquisition last for hours, which means they are visible, and

it leads to the loss of synchronization. Figure 5.31 has examples of how clock er-

rors lead to loss of synchronization. There is an example for a di�erent bed and it

reveals relationships of the same type, linear, but with di�erent linear coe�cients.

The linear relationship between the high-quality sound acquisition and each one of

these beds was calculated using data from these 4 patients. Coe�cients' results,

for the di�erent linear equations, are available in Table 5.20. The correction of the

deviation, using the slope coe�cient, can be used both in patients with no pause

resume sequences during data acquisition, as in the cases of Figure 5.31, as well as in

patients with pauses. In such cases, like in Figure 5.32, adjustments in the intercept

coe�cient must be applied.

(a) (b)

(c) (d)

Figure 5.31: Synchronization loss, measured in s as Time Delay, between the high-quality sound acquisition and the
PSG study as time goes by from the initial synchronization. Each �gure is an example for a di�erent PSG hardware,
with (a), (b), (c), and (d) representing synchronization loss in bed 1, 2, 3 and 4, respectively.
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Table 5.20: Coe�cients to perform �ne synchronization using a linear equation. Each bed has its own coe�cients,
calculated from a di�erent patient, which did not have any pause during data acquisition.

Bed ID Slope (·10-6) Intercept
(·10-3)

r2 (%)

1 100 21.6 -33.5 99.5
2 126 17.6 -38.1 99.3
3 142 -7.8 -3.4 94.6
4 63 -7.4 2.7 99.0

Table 5.21: The total number of snores paired for all patients, organized accordingly with their medical classi�cation
group. The average number of snores per patient is also available.

Parameter Co Sn Mi Mo Se

Snores
# 1022 12117 10331 14680 13308
µ 114 505 795 1129 1664

Figure 5.32: Evolution of the time delay between the 2 registers, from the PSG study and from the high-quality
sound acquisition, of the same snore throughout the entire data acquisition. Each point represents a snore and a
di�erent each symbol represents a di�erent cluster.

148



RESULTS

5.9 Snore Pairing

The data acquisition process should acquire snores, ideally, in both registers, the

PSG and in the high-quality sound device. Later, the algorithms implemented in

the processing phase are responsible to detect snores in both registers, and snore

pairing had the task to �nd both registers corresponding to the same snore sound.

Two registers, each one from a di�erent acquisition, were considered as being from

the same snore if they have a time di�erence closest to 0 than any other combination.

The time span between these 2 registers, to be considered the same snore sound,

should not be greater than one second. In the end, a total of 51458 snores were

paired (Table 5.17 present snores by each one of the patients' clusters), with their

distribution, according to their medical classi�cation group, available in Table 5.21.

The average number of snores per patient, for each medical classi�cation group, was

also calculated.

5.10 Snore Boundaries

The complete snores' de�nition includes the calculation of their boundaries. An

energy-based algorithm searched for evidence of energy values increasing above the

neighbourhood's baseline to calculate the beginning and the end of the snore. Figure

5.33 has multiple examples of the �nal result of boundaries' calculation. The �rst

�gure, Figure 5.33 (a), has several examples of well-behaved snores, i. e., fast changes

in energy values at the beginning and the end of the snore. In Figure 5.33 (b) a

low-energy snore was successfully detected and its boundaries de�ned. From Figure

5.33 (c) to Figure 5.33 (h), there are examples of snores in crescendo and snores

present in both the inspiratory and the expiratory phase.

Boundaries algorithm calculation was not able to deliver results for all the snores,

which compromises their de�nition, leading to the rejection of these snores. Table

5.22 resumes the �nal list of snores considered for feature extraction.
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Table 5.22: The �nal list of snores, organized by the patients' medical classi�cation group. Snores paired and
excluded from this list had not their boundaries successfully calculated [332].

Parameter Co Sn Mi Mo Se

Snores
# 974 12116 10124 14679 13301
µ 108 505 779 1129 1663

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.33: Examples of the achieved results for the boundaries calculation of each peak of energy. Multiple
examples show evidence for di�erent types of snores in the high-quality sound acquisition data. There are examples
for short-duration snores, low-amplitude snores, and snores with components in both inspiratory and expiratory
phase. The reasons for such snore variety wasn't the focus of this work, but it can be related with the anatomic
origin, the amount of tone lost, or weight. The beginning of a snore was represented by a dash and dot red vertical
line, while its end was represented by dash blue line.
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5.11 Time-Domain

5.11.1 Snores' Time Duration and Amplitude

Snores' feature extraction started with the calculation of the snores' time dura-

tion, amplitude, and Peak-to-Peak (PtP) amplitude. Table 5.23 characterizes those

features accordingly with the medical classi�cation group of the patients. The in-

crease in time duration has a direct relationship with the increase in the patient's

severity, while the standard deviation is very stable across the di�erent medical

classi�cation groups. The other 2 features, amplitude, and PtP amplitude does not

have evidence of a linear sleep severity relationship, with only a clear distinguish

di�erence from the Se medical classi�cation group to all other groups.

Time duration, amplitude, and PtP amplitude data distribution among the med-

ical classi�cation groups were analysed using hypothesis testing. Both tests returned

p-value=0 to the 3 features. The post-hoc test results to the time duration feature,

available in Figure 5.34, point to signi�cant di�erences among all medical classi�-

cation groups once the intervals are disjunct. Table 5.24 summarizes this process.

The post-hoc test results for the remaining features show that Co and Mo medical

classi�cation groups do not have signi�cant di�erences in both features, once their

intervals are not disjunct.

5.11.2 Energy

Following the de�nition of a snore, the energy of each snore was calculated for

data inside its boundaries, and no relationship was found between energy and med-

ical classi�cation groups. The hypothesis testing previously described returned the

same results achieved for both amplitude and PtP amplitude. Table 5.25 resumes

data from the energy feature.

**

**

**

**

**

Figure 5.34: Results from the multiple comparison test to the time duration feature. All medical classi�cation
groups have signi�cant di�erences between them (**p-value<0.01), once the intervals are disjunct.
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Table 5.23: The average, µ, and the standard deviation, σ, of 3 features retrieved from the snores. The snores' time
duration [332], amplitude and PtP amplitude are the features displayed in this table. Data are organized accordingly
with the medical classi�cation group of the patients.

Parameter Co Sn Mi Mo Se

Time
Duration (s)

µ 1.106 1.178 1.227 1.368 1.493
σ 0.497 0.558 0.517 0.608 0.516

Amplitude
(a.u.)

µ 0.036 0.029 0.046 0.037 0.082
σ 0.048 0.030 0.043 0.038 0.063

Amplitude
PtP (a.u.)

µ 0.066 0.053 0.083 0.067 0.151
σ 0.088 0.055 0.079 0.069 0.114

Table 5.24: The application of the Kruskal-Wallis H test (**p-value<0.01) and the post-hoc test. The mean ranks
of each medical classi�cation group and the minimum and the maximum give the intervals for analysis. All the
intervals are disjunct and all the medical classi�cation groups are considered signi�cantly di�erent for the time
duration feature [332].

Parameter Co ** Sn ** Mi ** Mo ** Se **

Mean Ranks 19908 21337 23541 26209 30785
Standard Error 474 134 147 122 128

Minimum 18823 21079 23262 25969 30536
Maximum 20993 21596 23820 26449 31034

5.11.3 Kurtosis and Skewness

Tools like kurtosis and skewness measure data distribution to understand the

relative heaviness of data in the tail and the distribution symmetry, respectively.

The application of such tools, in each snore, allowed to build the snores' pro�le in

the di�erent medical classi�cation groups. Table 5.26 and Table 5.27 present the

results for the kurtosis and skewness, respectively.

The kurtosis of normal distribution has a mesokurtic value, 3, while all medical

classi�cation groups have kurtosis values higher than that value. They are of the

leptokurtic type, which means more data in the tail than in a Gaussian distribution.

OSAHS medical classi�cation groups have higher kurtosis values as the severity also

increases, while non-OSAHS medical classi�cation groups have lower values, but

with the Co group presenting a higher value than the Sn group.

The skewness, Sw, values for all medical classi�cation groups points to fairly

symmetrical groups, because their values are |Sw| < 0.5. Skewness values in the

range 0.5 ≤ |Sw| < 1.0 are considered as moderately skewed, while |Sw| ≥ 1.0 are

considered highly skewed. Sn group is negatively skewed, or left-skewed, while the

other medical classi�cation groups are positively skewed, or right-skewed.

5.11.4 Empirical Mode Decomposition

Signal decomposition uses the EMD method to decompose the snoring sound

in its �rst up to 10 elementary components, with the remaining data known as
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Table 5.25: The energy feature analysed accordingly with the patients' medical classi�cation group. The parameters
average, µ, and the standard deviation, σ, are presented.

Parameter Co Sn Mi Mo Se

Energy
(a.u.)

µ 4.553 2.686 5.516 3.244 13.209
σ 35.266 9.112 32.927 15.184 22.387

Table 5.26: The kurtosis features analysed accordingly with the patients' medical classi�cation group. The param-
eters average, µ, and the standard deviation, σ, are presented.

Parameter Co Sn Mi Mo Se

Kurtosis
µ 5.026 4.571 4.978 6.026 8.032
σ 3.408 4.023 3.199 6.109 6.587

residuals. Figure 5.35 is an example of a snore undergoing signal decomposition

using the EMD method, where the 2 �gures are, in fact, the same snore sound.

In the �rst one, data are exclusively from the snore itself, with all data inside the

snore's boundaries, while in the second �gure there are also data 1 s around the snore,

revealing a very good signal-to-noise ratio. EMD decomposition was applied in data

from Figure 5.35 (a), and the decomposition results are available at Figure 5.36,

where the algorithm starts the decomposition by searching for the components with

the lower periods, the lowest component is in Figure 5.36 (a), evolving, progressively,

to the higher periods, with the higher period in Figure 5.36 (j).

Figure 5.37 reveals how IMFs distribution occurs for the signal amplitude. Data

was divided using 2 categories, the patients' medical classi�cation group, identi�ed

in di�erent colours, and the IMF component. A boxplot method was implemented

to study the relationship of each IMF with the medical classi�cation group. Se

highlights from the remaining groups in each IMF, and the comparison of the highest

IQR value, from a non-Se boxplot, to the IQR of the Se group returns a maximum

width of only 50.9%, in the Mi group at the �rst IMF. Signal's period was the second

parameter retrieved using this method, and Figure 5.38 reports the period of the

snore sounds for each medical classi�cation group calculated from each IMF.

A di�erent data arrangement was implemented to study EMD, splitting data ac-

cording to the respective amplitude range or period band. A total of 10 ranges/bands

were created, following a logarithm scale. The limits of each amplitude ranges

were 0.000∗10−3 to 1.000∗10−3, 1.000∗10−3 to 1.910∗10−3, 1.910∗10−3 to 3.649∗10−3,

3.649∗10−3 to 6.969∗10−3, 6.969∗10−3 to 13.313∗10−3, 13.313∗10−3 to 25.428∗10−3,

25.428∗10−3 to 48.570∗10−3, 48.570∗10−3 to 92.776∗10−3, 92.776∗10−3 to 177.213∗10−3,

and above 177.213∗10−3 a. u. Figure 5.39 shows the results for the range of ampli-

tudes organization. The limits of each period band were 0.000 to 10.000, 10.000 to

13.360, 13.360 to 17.848, 17.848 to 23.845, 23.845 to 31.856, 31.856 to 42.559, 42.559

to 56.858, 56.858 to 75.961, 75.961 to 101.482, and above 101.482 ms. Figure 5.40
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Table 5.27: The skewness features analysed accordingly with the patients' medical classi�cation group. The param-
eters average, µ, and the standard deviation, σ, are presented.

Parameter Co Sn Mi Mo Se

Skewness
µ 0.010 -0.011 0.079 0.005 0.002
σ 0.339 0.394 0.377 0.417 0.450

presents data for the di�erent bands.

5.11.5 Shannon Entropy

Shannon entropy was calculated for 3 di�erent cases, data exclusively from the

snore, from the snore and 1 s around the snore's limits, and the snore and 2 s

around the snore's limits. Table 5.28 presents the mean and standard deviation

Shannon entropy values for each case of each medical classi�cation group. Both

statistical parameters, mean and standard deviation, are very similar among the

di�erent cases, which led to the selection of the Shannon entropy of data solely from

the snore. Shannon entropy is almost proportional to the OSAHS severity, therefore

(a)

(b)

Figure 5.35: The same snore was represented in both �gures, (a) and (b). This snore was used as an example for
EMD decomposition, and the entire snore, data inside its boundaries, is at (a). In (b), the plot of the entire snore
and data 1 s around the snore was performed to show amplitude di�erences between the neighbourhood and the
snore itself.
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indicating that this may be a good indicator of the patient's stage in the evolution

of the pathology.

The hypothesis testing was implemented to test the Shannon entropy results

among the di�erent medical classi�cation groups, with both tests rejecting the null

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.36: The �rst 10 IMFs from the EMD decomposition of a single snore, snore in Figure 5.35. The decompo-
sition evolves from the lower periods, (a), to the higher periods, (j). Each graphic has the central region zoom in to
show the IMF periodicity.
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Table 5.28: The Shannon entropy feature was analysed accordingly with the patients' medical classi�cation group,
Co, Sn, Mi, Mo, or Se. The average, µ, and the standard deviation, σ, of the Shannon entropy snore events were
calculated for 3 cases. The calculus was performed solely to data inside snore's boundaries, 0s, [332] and including
data outside snore's boundaries, 1s and 2s.

Parameter Co Sn Mi Mo Se

Shannon
Entropy

0s
µ 3.489 3.665 3.857 3.732 3.954
σ 0.286 0.162 0.292 0.151 0.234

1s
µ 3.531 3.666 3.871 3.734 3.955
σ 0.123 0.155 0.270 0.135 0.231

2s
µ 3.531 3.666 3.871 3.736 3.960
σ 0.123 0.155 0.271 0.135 0.233

hypothesis, p-value of 0. Post-hoc test points to signi�cance di�erences between all

medical classi�cation groups, Figure 5.41, once all the intervals are disjunct (Table

5.29).

Entropy distribution of each patient was analysed, and 2 values were retrieved:

the percentile 25 (p25p) and the percentile 75 (p75p). The results comprising the data

referred to in Figure 5.42 can be represented as the statistical distribution of the

percentile di�erence (p75p − p25p) for each patient, grouped accordingly with their

medical classi�cation group and where outliers have been discarded. A minimal

Mi group deviation avoids a monotonic behaviour between all parameters of this

statistical distribution and OSAHS severity. A strictly monotonic behaviour exists

when subtracting the percentile 25 to the median (p50c − p25c). An increase in the

p50c − p25c is followed by an increase in the OSAHS severity, from a healthy subject

to a patient diagnosed with Se OSAHS. The obtained results for the 5 medical

classi�cation groups were 4.9×10−3, 5.8×10−3, 6.1×10−3, 9.0×10−3 and 31.0×10−3

bits for Co, Sn, Mi, Mo and Se, respectively. Table 5.30 resumes data from Figure

Figure 5.37: The EMD decomposition of snores occurs for a maximum of 10 IMFs. Independent axis was used to
represent each one of the 10 IMFs, while the dependent axis has information regarding the IMFs amplitude. The
graphic construction was based on boxplot, with data organized accordingly with 2 criteria. The �rst one was,
already, identi�ed, the 10 IMFs, and the second criterium was the patients' medical classi�cation group. For each
IMF, there are 5 boxplots, one for each medical classi�cation group, Co, Sn, Mi, Mo and Se. Outliers were removed.
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5.42.

Finally, the Mi group deviation was recti�ed using the weighting factor IQR and

percentile 75: IQR
p75c

. Figure 5.43 reveals that parameters of the entropy's statisti-

cal distribution, wp25c and wp50c, have an unambiguous correlation with OSAHS

severity. A correlation analysis was performed to evaluate the linear relationship

between those parameters. The calculated correlation coe�cient was 0.9967 and

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.38: Ten graphics representing, each one, a di�erent IMF from the EMD decomposition. EMD was performed
for the �rst 10 IMFs, if they existed, of the snores. Each graphic has 5 boxplots, one for each medical classi�cation
group, Co, Sn, Mi, Mo and Se, and all for the same IMF. The �rst IMF is in graphic (a), the second in graphic (b).
The remaining graphics follow the same logic, with the last IMF in graphic (j). Information in each boxplot are for
the IMF period, in ms, without outliers.
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p-value 0.0002, below the signi�cance level of 0.05, which means the rejection of the

null hypothesis (no relationship between the parameters). The correlation coe�-

cient lower and upper limit, for a con�dence interval of 95%, are 0.9486 and 0.9998,

respectively. The linear regression model uses the least-squares method and it re-

turns the equation y = 0.5152 · x− 0.0002 and the coe�cient of determination, R2,

to measure the goodness of �t, is 99.3%.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.39: Ten graphics representing, each one, a di�erent range of amplitudes from the EMD decomposition.
EMD was performed for the �rst 10 IMFs, if they existed, of the snores. The �rst amplitude range is in graphic
(a), the second amplitude range is in graphic (b), with the last amplitude range in graphic (j). Each graphic has 5
boxplots, one for each medical classi�cation group, Co, Sn, Mi, Mo and Se. Outliers were removed.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.40: Ten graphics representing, each one, a di�erent band from the EMD decomposition. EMD was
performed for the �rst 10 IMFs, if they existed, of the snores. The �rst band is in graphic (a), the second band is
in graphic (b), with the last band in graphic (j). Each graphic has 5 boxplots, one for each medical classi�cation
group, Co, Sn, Mi, Mo and Se. Outliers were removed.
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Table 5.29: The application of the Kruskal-Wallis H test and the post-hoc test (**p-value<0.01). The mean
ranks of each medical classi�cation group and the minimum and the maximum give the intervals for analysis. All
the intervals are disjunct and all the medical groups are considered signi�cantly di�erent for the Shannon entropy
feature [332].

Parameter Co ** Sn ** Mi ** Mo ** Se **

Mean Ranks 6399 17513 28879 22788 34971
Standard Error 474 134 147 122 128

Minimum 5313 17255 28600 22547 34722
Maximum 7484 17771 29157 23028 35220

Table 5.30: Statistical distribution of the p75p − p25p for each medical classi�cation group. The parameters' values
were taken from the boxplot in Figure 5.42 [332].

Parameter
[×10−3] (bits)

Co Sn Mi Mo Se

Maximum 15.9 39.2 94.0 59.0 122.5
p75c 13.4 19.8 52.0 36.3 85.2
p50c 8.3 12.0 11.2 20.8 62.8
p25c 3.4 6.2 5.1 11.8 31.8

Minimum 1.5 1.5 1.3 4.4 22.5

**

**

**

**

**

Figure 5.41: Results from the multiple comparison test to the Shannon entropy dataset. All medical classi�cation
groups have signi�cant di�erences between them (**p-value<0.01), once the intervals are disjunct.
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Figure 5.42: Statistical distribution of the percentile di�erence p75p−p25p. Subjects were grouped accordingly with
their medical classi�cation group. Outliers were discarded [332].

Figure 5.43: The wp50c and the wp25c parameters are directly proportional. The straight line was the result of a
linear regression performed with the points in the �gure. There is a progressive evolution in the OSAHS severity.
For low values, data suggest the subject is healthy, with the condition worsen as the values increase [332].
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5.12 Frequency-Domain

PSD estimation, using the Welch method, was the tool implemented to get fea-

tures from the sound signal in the frequency domain. Figure 5.44 presents data for

4 features, frequency with the highest PSD value, and the frequencies for the 1st,

2nd and 3rd PSD quartiles, each one located in a di�erent plot, (a) to (d), with data

displayed using box plots. Box plots organize data by the patients' medical classi�-

cation group, and all 4 present the same pattern, median follows OSAHS worsening,

with the exception of Mi. As an example, the median values for the frequency at

the highest PSD value was 83, 92, 127, 100, and 129 Hz values, for Co, Sn, Mi, Mo,

and Se, respectively.

Data decomposition was performed to evaluate the contribution of each patient

to the overall result of each medical classi�cation group, for the highest PSD fre-

quency feature. Figure 5.45 presents the contribution of each patient to its medical

classi�cation group box plot. The median standard deviation of each medical clas-

si�cation group, and for increased worsening conditions, was 52.5, 39.4, 21.5, 18.6,

and 29.3 Hz. A patient contributes with a di�erent number of snores and the median

standard deviation may not be the best comparison tool, but the analysis shows a

higher oscillation in the median in other medical classi�cation groups than in the Mi

class. IQR standard deviation corroborates the median standard deviation values,

by returning 91.2, 153.6, 37.5, 33.3, and 64.3 Hz. Results for the other 3 features are

similar, the Mi group consistently shows as one of the groups with the least disper-

sion. A single exception occurred to the 3rd quartile feature, where it has the highest

IQR standard deviation. The results, in increasing order of medical classi�cation

group severity, are 255.4, 296.1, 2256.6, 1333.7, and 1721.2 Hz.

Three additional frequency-domain features were selected to characterize medical

classi�cation groups, and their data distribution is in Figure 5.46. The 3 new features

are the central frequency, the frequency standard deviation, and the coe�cient of

symmetry, and their box plots are at Figure 5.46 (a), Figure 5.46 (b), and Figure 5.46

(c), respectively. Central frequency has no relationship with medical classi�cation

groups, visible in Figure 5.46 (a), with groups Sn and Mi failing to follow the increase

veri�ed in the median of the remaining groups. Frequency standard deviation and

coe�cient of symmetry have similarities with the �rst 4 frequency features, Figure

5.44, but with Sn group, instead of Mi group, not following an increase in the median

frequency as OSAHS worsens. The median of the frequency standard deviation

feature has values of 0.983, 0.898, 1.162, 1.186, and 1.389 kHz, while the median of

the coe�cient of symmetry has values of 2.069, 1.923, 2.230, 2.320, and 2.512 kHz.

Both features has their median values order by OSAHS severity, from a Co subject

to a Se patient.
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Patient contribution to the respective overall medical classi�cation group was

analysed to the coe�cient of symmetry and the frequency standard deviation fea-

tures. Figure 5.47 presents the results for the coe�cient of symmetry feature. The

(a) (b)

(c) (d)

Figure 5.44: Frequency distribution accordingly with the patients' medical classi�cation groups. The Welch non-
parametric method was applied in all snores to estimate PSD. Four �gures are represented here to identi�ed the
frequency, (a), with the highest PSD value, and the frequencies, (b), (c) and (d), for the 1st, 2nd and 3rd quartile
of the PSD estimation, respectively. Outliers are not visible.

(a) (b)

(c) (d)

(e)

Figure 5.45: How frequency at the maximum PSD distributes for each patient using the Welch method. Patients
were grouped by their medical classi�cation group, with plot (a), (b), (c), (d), and (e) representing the Co, Sn, Mi,
Mo, and Se medical classi�cation group. Each plot, representing a di�erent medical classi�cation group, has one
box plot for each patient. Outliers are not visible.
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median standard deviation of each medical classi�cation group was of 653, 659,

1116, 1287, and 974 Hz, ordering OSAHS by its severity, from no disorder (Co) to

higher degree of the disorder (Se), while the IQR standard deviation was of 619,

540, 1058, 552, and 620 Hz, considering the same order. Figure 5.48 has data from

each patient contribution for the frequency standard deviation feature. The same

comparison was made using the median and the IQR, and the results for the median

standard deviation were 541, 507, 955, 1357, and 911 Hz, and for the IQR standard

deviation was of 561, 510, 1108, 795, and 772 Hz, ordering by increasing severity of

OSAHS.

The last three frequency-domain features presented in this thesis, band power

ratio, in and out band power ratio, and band spectral �atness, have their results

available in Figure 5.49. Results for the band power ratio and the in-out band power

ratio features are very similar, with a single visible di�erence, in the �rst band. Inter-

esting results were achieved in band 8, where there is a monotonical behaviour, with

a direct relationship between the median of these features and the medical classi�ca-

tion groups. Median values in the 8th band for the band power ratio feature, Figure

5.49 (a), are of 6.5×10-3, 7.4×10-3, 9.2×10-3, 12.5×10-3, 18.7×10-3, while for the in
out band power ratio feature, Figure 5.49 (b), are of 6.5×10-3, 7.5×10-3, 9.2×10-3,
12.7×10-3, 19.0×10-3. If Co medical classi�cation group results are carefully not

taken into account, more bands have interesting results, which is the case of band 4

and band 10. The 4th band of the band power ratio feature (in out band power ratio

feature) has values of 19.8×10-3, 34.2×10-3, 48.3×10-3, and 57.0×10-3 (20.2×10-3,
35.4×10-3, 50.8×10-3, and 60.4×10-3), while the 10th band of the band power ratio

feature (in out band power ratio feature) has values of 0.7×10-3, 0.9×10-3, 1.2×10-3,

(a) (b)

(c)

Figure 5.46: PSD estimation using the non-parametric Welch method. Three �gures, each one with data from a
di�erent frequency feature, present data in a box plot type �gure, splitting their content by the di�erent medical
classi�cation groups. Figure (a), (b), and (c) are for the central frequency, the frequency standard deviation, and
the coe�cient of symmetry, respectively. Outliers are not visible.
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and 1.6×10-3 (0.7×10-3, 0.9×10-3, 1.2×10-3, and 1.6×10-3). Spectral �atness results
do not present evidences of an useful tendency in both the median and the IQR,

Figure 5.49 (c), to help in OSAHS diagnosis.

(a) (b)

(c) (d)

(e)

Figure 5.47: How the coe�cient of symmetry distributes for each patient at the using the Welch method to calculate
PSD. Patients were grouped by their medical classi�cation group, with plot (a), (b), (c), (d), and (e) representing
the medical classi�cation group Co, Sn, Mi, Mo, and Se. Each plot, representing a di�erent medical classi�cation
group, has one box plot for each patient. Outliers are not visible.
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(a) (b)

(c) (d)

(e)

Figure 5.48: How the frequency standard deviation distributes for each patient at the using the Welch method to
calculate PSD. Patients were grouped by their medical classi�cation group, with plot (a), (b), (c), (d), and (e)
representing the medical classi�cation group Co, Sn, Mi, Mo, and Se. Each plot, representing a di�erent medical
classi�cation group, has one box plot for each patient. Outliers are not visible.
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(a)

(b)

(c)

Figure 5.49: The full range of frequencies, from the application of Welch's method in each snore, was divided in
10 bands, using a logarithmic, base 10, scale. The scale goes from 0 Hz to the maximum frequency retrieved, from
each snore, in the full range. In this graphic data are, also, organized in the respective medical classi�cation group
of each patient, Co, Sn, Mi, Mo and Se. Data in (a) is the ratio between the sum of PSD values inside the band
and the total sum of PSD values. The di�erence from (a) to (b) is that in (b) the ratio is between the sum of PSD
values inside the band and the sum of PSD values outside the band. Figure (c) is the spectral �atness for each
band. Outliers are not visible.
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5.13 Synchrosqueezed Wavelet Transform

SWT method application to a time-domain signal results in a Na by N matrix,

with N the number of samples of the time-domain signal and Na the number of

scales calculated by Matlab using the formula,

Na = 32 · (floor(log2(numel(X)))− 1) (5.2)

where �oor and numel are Matlab functions, respectively, to round a value to the

closest lower integer value and to calculate the number of elements of a matrix,

in this case a vector, and variable X is the time-domain signal. An example of the

transformation of a time-domain signal to the time-frequency plane is in Figure 5.50,

with blue colour representing the lowest energy data, while higher energy values were

located in the time interval, roughly, between 0.5 s and 1.3 s. This time interval

matches the snore location in time and those frequencies characterize this snore.

IFs calculation searched for the frequencies with the maximum energy in each

sample of the signal in the independent axis, to calculate the �rst 10 IFs. So, at

each time instant t, the method searched for the 10 highest energies. An example

of the IFs calculation is at Figure 5.51, in which a speci�c frequency range did not

hold its position in the same IF. This means, at time instant, t, a frequency range

may be in the �rst IF, the highest energy value, and a few moments later it can

be in a di�erent IF. The analysis of the entire picture, Figure 5.51, allowed the

identi�cation of the frequency ranges generated while the snore existed.

IFs decomposition identi�es the most important frequencies belonging to a spe-

ci�c snore sound, but each frequency has a �nite width associated, and Figure 5.52

shows an example of a snore sound histogram decomposition. Snore sound charac-

teristic frequencies were calculated from the respective histogram, with frequencies

Figure 5.50: The calculation of the time-frequency plane of a snore signal, in the time domain, using SWT. SWT
was applied to the snore as well as to the previously 0.5 s and the following 0.5 s of data around the snore. The
snore region, between 0.5 s and 1.3 s, had higher energy values.
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below 50 Hz discarded. The calculation made use of an upper envelope to remove

low amplitude peaks.

SWT method was implemented to decompose 33383 snores, resulting in 319300

frequencies, and the corresponding histogram identi�es the most promising frequen-

cies to characterize each medical classi�cation group. Co, Sn, Mi, Mo and Se medical

classi�cation groups contributed, respectively, with 19999, 89815, 66363, 85078 and

58045 frequencies. Six histograms in Figure 5.53 present frequency distribution, one

for the overall frequency distribution (Figure 5.53 (a)) and the remaining 5 corre-

spond to a di�erent medical classi�cation group (Figure 5.53 (b) to Figure 5.53 (f)).

Each histogram has frequencies highlighted from baseline and they are characteristic

of its medical classi�cation group. Those highlighted frequencies were selected and

marked with red dots, becoming candidates to be de�ned as a characterization fre-

quency for the group to which belong. The list of those frequencies is in Table 5.31,

where the frequency organization relies on the frequency di�erence between them. A

frequency di�erence less or equal to 20 Hz was considered to be the same frequency

Figure 5.51: The �rst 10 instantaneous frequencies extracted from the time-frequency plane. These frequencies are
the most important, once they have higher energy values, at each instant t.

Figure 5.52: A histogram of frequencies of a single snore, blue. Data to build the histogram come from the 10 IFs.
The upper envelope, red, �lters low amplitude peaks.
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among the di�erent medical classi�cation groups, in which frequencies unique to a

single medical classi�cation group were the true candidates to be a characterization

frequency. The 4377 Hz frequency is an example of a frequency unique to a medical

classi�cation group, in this case, the Se group. The number of patients and the

weight of their contributions were analysed, for each one of those candidates.

An algorithm searched for all the frequencies, and respective patients, with the

exact value of each unique frequency, and Table 5.32 summarizes the performed

analysis, and the results show a heterogeneous distribution. There were unique

frequencies, strongly, supported by a single patient, as in the case of the 4113 Hz

frequency, in Co group. Just 2 patients gave a contribution to this frequency, with

the highest contribution being 77.8%. Other unique frequencies were more inter-

esting because more patients gave a contribution and the contribution's weight of

a single patient is lower. A good example for this case is the third frequency, 2320

Hz, of the Mo group, in which the highest contributive weight is 28.6% and, almost,

all the patients of that group contributed (11 of 13).

(a) (b)

(c) (d)

(e) (f)

Figure 5.53: Six histograms, in blue, representing di�erent cases of frequency distribution. The frequencies were
selected from the �rst histogram performed for each snore. Histogram (a) contains frequencies from all patients.
Histograms (b), (c), (d), (e) and (f) contain, only, frequencies of Co, Sn, Mi, Mo and Se patients, respectively. Red
dots are the dominant frequencies in each medical classi�cation group.
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Table 5.31: Dominant frequencies of each medical group.

Frequency (Hz)

Non-OSAHS OSAHS Non-OSAHS OSAHS

Co Sn Mi Mo Se Co Sn Mi Mo Se

4482 4466 1146
4416 4425 4419 1033

4377 987 996
4194 4206 956

4147 873
4113 831

3669 730
3475 3478 671 690 708 690

3380 641
3224 583

3115 524
3027 473 478 475 478

2996 373
2452 2461 336

2364 2362 300 298 309 296 298
2320 248

2237 2250 225 219
2164 2180 2145 199 195 194 198 199

2093 163 158 162 162 167
2025 140

1870 128 129 129 131 129
1789 118 117

1682 1687 101 102 102
1545 93 92 94

1492 81 81 81 81 82
1382 70 71 69

1300 64 63 60
1263 52 50 50 50 50
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Table 5.32: A statistical summary about the selected frequencies, i. e., highlighted frequencies present in, just, one
of the medical groups. The table presents statistical information about the contributions that lead those frequencies
to highlight from the baseline. The same row does not represent the same frequency value, and medical classi�cation
group frequency sets are unrelated. The �rst row is reserved for the highest frequency, with their values, in each
column, in descending order. The elements in the % columns point the highest contribution, in percentage value, of
a single patient for that frequency. The columns N tell the number of patients with that frequency. Only frequencies
with the exact value of the selected frequency were considered.

Non-OSAHS OSAHS

Frequency Co Sn Mi Mo Se

Order % N % N % N % N % N

1st 77.8 2 53.3 5 36.4 6 65.8 6 44.4 4
2nd 66.7 2 42.9 8 29.4 6 27.3 7 42.9 4
3rd 42.9 4 33.3 8 47.8 7 28.6 11 38.9 5
4th 54.2 4 66.7 5 75.8 5 39.4 7 50.0 6
5th 20.0 10 30.7 11 27.8 9 39.5 5
6th 34.3 8 38.5 5
7th 38.6 6 69.0 5
8th 44.2 8
9th 24.1 10
10th 32.0 11
11th 37.9 9
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Chapter 6

Discussion

The Discussion chapter is dedicated to the interpretation of the results, and the

discussion of the signi�cance of the �ndings in the light of what is currently known

to science.

6.1 Slow Variation Parameters

Figure 5.2 and Figure 5.3 give a clear picture about the gauge pressure trend. Its

low variability is pretty steady during the day and over the weeks of data acquisition,

with, according to Figure 5.2, higher variability during the �rst daylight hours. Dur-

ing the weeks of data acquisition, gauge pressure values distribution also presents

an IQR>0, especially in week 16, with di�erent values for each quartile. The de-

crease of gauge pressure, observed in Figure 5.2, matches patients awakening, from

PSG study, and CMS opening to receive patients for daily medical appointments.

Doors and windows open and air �ows inside the building, leading to �uctuations

in pressure.

The silicon gauge pressure MPXV7007 sensor has a working range of ±7 kPa,

which is far away from being achieved. After signal �ltering and ampli�cation, using

hardware, the gauge pressure data range 5 Pa. To improve signal resolution, the

selection of a gauge pressure sensor with a lower range is required. NXP has a

silicon gauge pressure sensor with a lower range in its portfolio, the MPXV7002,

with a working range of ±2 kPa, which may be not enough. Other brands may have

better solutions, but they were not investigated. The poor signal resolution has an

immediate consequence, the impossibility of using this data to compare with other

data, both clinical and non-clinical data. Figure 5.3 has no data for week 26 because

during this time interval no acquisition was made in the laboratory.

Indoor temperatures play an important role in health, where too low or too high

temperatures are not comfortable and present a hazard to human health. Cold

temperatures in�ame the respiratory system and may contribute to worsening res-

piratory diseases, like asthma or Chronic Obstructive Pulmonary Diseases. It also
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promotes vasoconstriction, which can promote cardiovascular diseases, among them

are strokes and coronary heart disease. World Health Organization recommended a

low indoor temperature limit of 18◦C, in 2018.

High temperatures also play a role in the quality of life, with the body's response

to high temperatures, and its capacity to cool, being a decisive factor to perceive

it as comfortable or not. External factors, like relative humidity, in�uence the ca-

pability to decrease body temperature. In respiratory and cardiovascular patients,

children and older subjects are more susceptible to higher temperatures. World

Health Organization recommendation for a high-temperature limit is not de�ned,

and several studies point to di�erent upper acceptable limits. The World Health Or-

ganization guideline presents multiple studies with upper limits ranging from 25◦C

to 30◦C, with the Mediterranean cities presenting an average of 29.4◦C [380]. Fol-

lowing those limits, Figure 5.4, in section 5.1, shows that 95.4% of the temperature

records are in the range between 18◦C and 29◦C, the temperature comfort range,

and suitable for the realization of PSG studies.

Results for the gauge pressure data �uctuation at the �rst hours of the day, the

consequence of opening doors and windows of the CMS, are con�rmed by the tem-

peratures, with a sharper decrease in temperature around 8 a.m. Relative humidity

readings also decrease at this time of the day.

Temperature and relative humidity �uctuations in weeks 17 (higher median and

IQR) and 25 (higher IQR) are remarkably di�erent from the remaining weeks. Each

week under analysis has the device acquiring data for 2 days. To justify these

di�erences, an analysis of the environmental conditions is presented, with the help

of historical data. Weather recordings for the time under analysis came from 2

di�erent sources [381,382]. One of the sources, [382], has records from a nearby city

in the district of Coimbra, Cernache, located at the latitude of 40.1500◦ N and the

longitude of -8.4670◦ W, elevation 179 m. It has consistent records of temperature

maximum values. The second source returns data for the city of Coimbra, never

referring to which weather station is and its location, but, rather, presenting a list of

nearby weather stations. Maximum and minimum values are consistently presented

in the second source.

The analysis to week 17 reveals a temperature maximum value of 33◦C for day

1 and of 28◦C for day 2, accordingly with [382], and of 32◦C for day 1 and of 27◦C

for day 2, accordingly with [381]. Temperature minimum values are also available in

the second source, with values of 16◦C and 14◦C for day 1 and day 2, respectively.

A decrease in the maximum temperature of 5◦C helps explain the high variability

in temperature, but without a register with low periods of data acquisition, a rela-

tionship can not be completely established. Week 25 has an increase in temperature

from day 1 to day 2, with a temperature maximum value of 29◦C for day 1 and of
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34◦C for day 2, accordingly with [382], and of 29◦C for day 1 and of 33◦C for day 2,

accordingly with [381]. The second source reports minimum temperatures of 15◦C

and 18◦C, respectively. Week 25 has a change in temperature of the same magni-

tude as week 17, accordingly to [382], which can also explain the high variability in

temperature. No daily registers were found to analyse relative humidity data with

o�cial records.

The XY plot for the relationship between temperature and relative humidity

every week shows no interesting relationship between them, but the hour basis XY

plot presents a hysteresis curve. After midnight, temperature decreases due to low

human activity, patients start the study around midnight, and relative humidity

increases, human presence may explain the rise. At the end of the PSG study, and

when CMS opens, temperature decreases faster in the following couple of hours, go-

ing along with the decrease in the relative humidity. In the middle of the morning,

the temperature starts to increase, a probability due to the increase in the envi-

ronmental/external temperature, and the relative humidity keeps falling, sharply

after lunch. Relative humidity reaches stable values around 17h, and until 21h,

which matches the time interval pause in the CMS to attend patients. After the

pause, 21h, the night shift starts to do PSG studies, and the relative humidity keeps

raising. The temperature continues to increase, probably due to the presence of

patients, sleep technicians, and undergraduate students.

6.2 PSG Scoring

Manual scoring presents a challenge to the sleep medicine �eld, without a com-

pletely inter-scorer agreement among sleep technicians. Human error is also a con-

cern, with the possibility of missing the score of some epochs. Here, the number

of unclassi�ed epochs reaches 0.01%, below 5% are not considered to in�uence re-

sults [383], and they were dropped, instead of imputation.

Sleep architecture changes considerable, considering the medical classi�cation

mean, in Se patients. Although there aren't statistically signi�cant di�erences for

each sleep stage, among medical classi�cation groups, there is an evident increase

in the N1 sleep stage and an evident decrease in the N3 sleep stage for Se class. Ac-

cordingly, with these results, OSAHS starts to have an impact on sleep immediately,

with the N3 sleep stage mean value decreasing as the disorder severity worsens. Co

and Sn subjects have similar mean N3 sleep stage values, respectively 26.2% and

27.2%, decreasing a little in Mi and Mo patients, to 24.2% and 22.7% respectively.

Se patients have half of the N3 sleep stage, when compared to Co subjects, with a

mean value of 13.1%. N1 sleep stage is the second sleep stage with changes, in this

case, only for the Se group, with a mean value of 33.7%, against the 17.5% for Co

subjects. Sleep architecture modi�cations have an impact on several body functions,
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such as the case of memory and immune function impairment.

Snoring and OSAHS severity are sleep position-dependent, with the back sleep

position the worst to snore and to promote obstruction of the respiratory upper

airway. Overall, the back position is the favourite position to sleep, with 42.9% of

the epochs recorded with the body in such position. Sleep position therapy may

improve the quality of sleep by reducing both snoring and OSAHS, and it may be

the case with Se group. Patients of this group have the smallest percentage of sleep

in the back position, but still very high, and sleep position therapy can be more

implemented in this group, but also Mi and Mo patients. Starting early with the

therapy may postpone the evolution of the symptoms (snoring), and the progression

of OSAHS.

Higher IQR (Figure 5.14 (a)) in sleep stage awake, 21 bpm, suggests more ir-

regularity in the heart rate rhythm. IQR may be higher in the awake stage due to

the body's response to arousals, and the need to stabilize O2 levels in the blood by

increasing air�ow. During the other sleep stages, IQR is very regular, with a value

of 16 bpm for all but the N1 sleep stage, with a value of 17 bpm. Their mean values,

and standard deviation, supports the heart rate variability during sleep. The mean

and standard deviation values, in mean descending order, are 70.3±14.8, 67.8±12.6,

67.1± 12.4, 64.9± 12.7, 64.1± 13.9 bpm, for awake, REM, N1, N2 and N3 stages,

respectively. Sleep stage order in mean heart rate follows the expected results, with

higher values when awake, followed by REM sleep, where brain activity is higher

than in NREM, to consolidate memory and adjust emotional responses. NREM

sleep has the lower heart rates, with a decrease in muscle activity, from light to deep

sleep, and lower O2 requirements. Processes like tissue repair and cell regeneration

occur at this point.

Pulse oximetry records present a high number of 0 value readings (visible in

Figure 5.13 (b)), probably due to the detachment of this device from the �nger.

The analysis of valid pulse oximetry data shows no statistically signi�cant di�erences

between all sleep stage groups, only N1 and N2 are, and the reason could be related

to the need to keep the concentration of O2 high at any time. The relationship

between pulse oximetry and medical classi�cation groups is more interesting, with a

clear decrease as OSAHS worsens. OSAHS worsens and obstructive events increase

in number and duration, which means a decrease in blood O2 saturation for longer

periods, with important consequences for human health.

6.3 High-Quality Sound Signal

The data distribution deviation from 0 is most likely related to the conditions in

which the calibration of the device took place, its microphones, and the conditions

for data acquisition. This project targets the high-quality sound signal to �nd the
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most important relationships between medical data and research data, to develop

new methods to diagnosis OSAHS, and to hasten its treatment. Its pre-processing

is of fundamental importance, with the energy calculation, �ltering techniques, and

sound events detection. Preliminary results reduce the number of candidates, de-

tected by the Gaussian �t model from 507904 to a �nal number 51458 of snore

sounds, which means a rejection of 89.9%. The electronic interference noise rejec-

tion algorithm uses 2 thresholds, and their global means are very similar to the mean

values calculated for each medical classi�cation group. This observation is expected

since the calculation was performed in the �rst minutes of data acquisition when the

patient is awake, and for that reason not snoring. The cumulative energy is higher

in Mi medical classi�cation group due to 2 patients, since both patients had longer

conversations with sleep technicians, just after the beginning of sound acquisition.

A comparison between snore detection methods, the project's method, and Bel-

lauer's method shows a high performance of the implemented method for this

project, surpassing it in almost all parameters under analysis. With higher speci�city

and sensitivity values, the method better discards non-snore signals and identi�es

snore signals, respectively. The mid-p-value de�nition of McNemar's test con�rmed

the existence of signi�cant di�erences between the methods, for both sensitivity and

speci�city. The test justi�es the implementation of the new method to detect snores

and to avoid the misidenti�cation of noise as snores, improving the results achieved

with Bellauer's method.

6.4 Data Synchronization and Snore Pairing

Single-channel-based automatic algorithm for the detection of pause-resume se-

quences in the PSG studies performs better than a multi-channel-based automatic

algorithm. The single-channel-based automatic algorithm works with SpO2 data,

which has a behaviour similar to an on/o� interrupt when the sequence occurs. The

PSG software responds to a pause-resume sequence waiting for the completion of

data acquisition for the current epoch. SpO2 data are usually close to the maximum

value of 100%, and when the software resumes data acquisition its values drop to

0% for a few ms. SpO2 binary-like behaviour simpli�es algorithm data analysis and

improves results of the multi-channel-based automatic algorithm, which searches for

data discontinuities, and their detection in several channels.

Synchronization between PSG and high-quality sound signal data splits PSG

data in clusters using single-channel-based automatic algorithm results to detect

pause-resume sequences. A cluster, from patient ID 120, represents a particular case

since one of the pause resume sequences occurred in an advanced stage of PSG data

acquisition. The synchronization of the last cluster was not performed because the

pause was at a time instant 24390 s, while high-quality sound signal data acquisition
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stops after 24493.4 s, already taking into account the synchronizations previously

performed. The high-quality sound signal remaining total time was solely 103.4 s

and it is very likely that after this time the PSG data acquisition was still halted.

Even if the PSG data acquisition resumes before the high-quality sound signal ends,

the remaining time was too short to perform a good synchronization. Nevertheless,

the patient was awake after the pause resume sequence at a time instant 24390 s,

and no research interest exist for the purpose of the thesis. The following results do

not take into account this particular pause.

A higher number of snores may help get better synchronization results, and the

number of snores per patient is directly proportional to OSAHS severity. Achieved

results do not con�rm this assumption, with examples of some of the highest snore

densities falling to return good synchronization results. Coarse synchronization

faces a problem, intrinsic to data acquisition with 2, or more, devices with di�erent

acquisition clocks. Devices' clocks have errors associated, which have implications in

the modi�cation of their nominal frequency, and a complete synchronization in the

entire cluster is very hard. Reduced cluster duration is one more factor to fail a good

synchronization, with some clusters last only a few hundred seconds, once there isn't

enough time to patients fall asleep and snore. Co subjects snore almost nothing, with

implications in the cross-correlation method, and in the desired synchronization.

Snore pairing �nds the �nal pair match of both registers, with the required

adjustments from the �nal synchronization process. The mean number of snores per

patient increases, as expected, with the increase of OSAHS severity. However, not

all the pairs have their boundaries successfully calculated, resulting in the rejection

of those pairs, and in the decrease of snores available to perform feature extraction.

An increase in OSAHS severity keeps meaning an increase in the mean number of

snores per patient.

6.5 Feature Extraction and Analysis

Time-domain features show a direct link between the number of snores and their

duration in time and OSAHS severity. A patient classi�ed having a Se type of

OSAHS snores more and they last longer than the other types of OSAHS, and non-

OSAHS subjects, classi�ed either as Co or as Sn. Anatomical modi�cations of the

upper respiratory airway may explain this observation, with a decrease in tissue

sti�ness, and the decrease in neuromotor control also interferes with the correct

function of the structure. Regardless of the conditions behind the increase of OS-

AHS, amplitude and PtP amplitude do not behave with the same relationship. This

suggests that these 2 types of amplitudes are independent of OSAHS severity, with a

remarkable increase only in the Se group. Energy feature copies both amplitude fea-

tures when analysed taking into account the patients' medical classi�cation group,

178



DISCUSSION

although energy de�nition does not rely on a single acquisition, as is the case of am-

plitude. Energy and both amplitude similar behaviour suggest that the evolution of

snores throughout the medical classi�cation groups is continuous as long as it lasts,

and not just an instantaneous response.

Kurtosis and skewness are statistical tools to evaluate data distribution, and

the results obtained for each medical classi�cation group point to heavy tails, or

to the existence of a large number of outliers, while the skewness has low mean

values, suggesting the existence of symmetrical data distribution among all medical

classi�cation groups. However, the standard deviation of the skewness for each

medical classi�cation group is high, but still inside the range for symmetrical data

distribution.

EMD is a method to get the fundamental components of a signal without leaving

the time domain. When studying EMD components, its application in snore sounds

reveal a higher amplitude in IMF components 5 to 7. Each IMF presents a boxplot

consistently di�erent from all the other boxplots. The Se group has higher parameter

values than the other medical classi�cation groups, which is also consistent with

the results obtained for both amplitude features. Snore signal periodicity was the

second parameter retrieved from the EMD method. Naturally, the components'

period increases for higher IMF, but there isn't evidence of a trend between the

periodicity and the medical classi�cation group of each IMF. When studying EMD

in amplitude ranges or period bands, values increases as the range/band increases,

but inside the same range/band, no important di�erences were visible.

Shannon entropy was calculated for 3 di�erent scenarios, and the achieved results

point to no di�erences, with data organized accordingly with the patients' medical

classi�cation group, among them, which led to the selection of data inside snores'

boundaries. Entropy distribution led to the selection of 2 particular parameters,

p75p and p25p, among each patient with the boxplot of each medical classi�cation

group for the p75p − p25p showing a striking e�ciency in discriminating the OSAHS

severity. All the parameters in this statistical distribution have an almost monotonic

behaviour, and are strongly correlated to the OSAHS severity, although with a small

deviation in the case of the Mi class. The combination of parameters, from the

statistical distribution in Figure 5.42, proves to be even more valuable to assess

OSAHS severity. The results for the p50c−p25c calculation present a very interesting

relationship with OSAHS severity, with an increase in the p50c − p25c di�erence

meaning worsening OSAHS severity. The introduction of the correction factor IQR
p75c

eliminates the Mi class minimal deviation, and creates a strong correlation between

OSAHS severity and wp25c and wp50c parameters. The coe�cient of determination

is close to 1 and positive, meaning a strong positive, direct, relationship between

both parameters.
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The �rst 4 frequency features under analysis follow the same pattern of the

Shannon entropy feature, with the deviation in the frequencies from the Mi group

restraining a strong relationship between these features and the OSAHS severity. A

deeper analysis of the contribution of each patient to the medical classi�cation group

overall results revels that both Mi median and IQR standard deviation have some of

the smaller values, which may rule out the possibility of a single, or a low number of,

the patient be responsible for the Mi behaviour, in the evolution of the highest PSD

frequency feature. From the following 3 frequency features under analysis, central

frequency has no interesting link to OSAHS, but the other 2, coe�cient of symmetry

and frequency standard deviation, are related to the medical classi�cation group with

the Sn group exception. Sn group has a lower standard deviation, in both features,

which may point to the absence of a single, or a low number of, patients causing

the �uctuation in the trend. From the 3 remaining frequency-domain features, 2 of

them (band power ratio and in and out band power ratio) present interesting results,

with 3 bands, 4, 8, and 10, presenting a strong relationship with OSAHS severity.

SWT method is relatively recent and widely unexplored in the sleep medicine

study. The decomposition of the time-domain signal to the time-frequency plane

o�ers an alternative to the better-known methods. In this work, SWT delivers

the decomposition of the snoring sound in its IMF, and the �nal result delivers

frequencies speci�c to a medical classi�cation group.

6.6 Integrative Discussion

Not all features tend to have a trend as OSAHS worsens, which means they

are most likely of no scienti�c interest, at least, to use as a OSAHS predictor.

Sleep stage data distribution among medical classi�cation groups is an example of a

feature without interest to study OSAHS, with hypothesis testing results revealing

no signi�cant di�erence among those groups (results point to all the data coming

from the same distribution).

Features with signi�cant di�erences only among some medical classi�cation groups

should be analysed more carefully. For example, features like SpO2 aren't ideal to

study sleep stages (only signi�cant di�erences in N1 and N2 sleep stages), and

features like amplitude, PtP amplitude and energy aren't ideal to study medical

classi�cation groups (all features have all groups but Co and Mo coming from di�er-

ent distributions). Heart rate showed interesting results and it can be considered a

promising feature in sleep assessment (in this case to assess OSAHS severity). The

hypothesis testing for this feature points to signi�cant di�erences only in OSAHS

patients (Mi, Mo, and Se medical classi�cation groups). Although not ideal (signif-

icant di�erences aren't for all medical classi�cation groups), it has the best results

for the OSAHS patients groups, which are the most important ones.
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The most interesting features are the ones presenting signi�cant di�erences for

all groups. Heart rate is an example of signi�cant di�erences among all sleep stages.

Signi�cant di�erences among all medical classi�cation groups were found for the

SpO2, time duration, and Shannon entropy feature. The time duration feature has a

consistent evolution throughout the medical classi�cation groups, with values always

increasing. Shannon entropy presented the same pattern after some adjustments to

data.

Two methods deliver the most important contributions to science in this the-

sis, and they were Shannon entropy and SWT. Shannon entropy results are very

interesting since no other study shows that entropy is so well related with OSAHS

severity in the parameters selected, which results in a candidate to develop a tool to

access this syndrome. SWT is a recent method, with a small global implementation

in all research �elds, which includes OSAHS sleep study �eld.
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Chapter 7

Conclusion

Conclusion chapter presents the most relevant remarks, which features or meth-

ods have promising results to continue development in future work. Finally, a re-

search contribution section lists papers published.

7.1 General Overview

OSAHS is a serious worldwide medical condition, with a signi�cant incidence, but

a lack of awareness by the general population. The disorder's typical evolution spans

several years, and both OSAHS patients and, usually, their families underestimate

symptoms and misidentify them as a normal evolution. Media coverage should raise

awareness but other medical conditions receive more attention, such as the case of

cardiovascular diseases and diabetes, probably due to their impact on morbidity and

mortality. Sleep and its associated disorders play a critical role in body and mind

functioning, with sleep contributing to the normal function of several organs, tissues,

and biochemical processes. Fighting and preventing OSAHS and other SRBD bring

extra bene�ts to heath, once it is proven to exist a link between sleep quality and

those diseases.

The data acquisition �nal list has 67 subjects, organized into 5 medical classi�ca-

tion groups, which represents a good number when compared with other researches.

Most of them have a similar number of subjects, but there are studies with higher

numbers (in order of thousand) but, also, with a lower number (in order of a dozen)

of subjects. Observation of OSAHS impact in sleep structure con�rms what is al-

ready known, especially, with modi�cations in N1 and N3 sleep stages weight in the

overall sleep, which means disturbances in the subjects' physiology. The well-known

in�uence of the sleep position in OSAHS is con�rmed by the achieved results, with

the back position worsening sleep apnoea, increasing AHI, than other positions. The

study con�rms the back position as the preferred position, which means the impor-

tance of sleep medicine physicians to invest time with the patient, explaining their

concerns and encouraging them to implement techniques to avoid the worst posi-
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tion to sleep. OSAHS consequences exist and corroborating evidence of its health

impairment was found in data for this thesis. Obstructive events lead to a decrease

in SpO2 and the higher the number of events, which means an increase in OSAHS

severity, the higher is the overall impact in the �nal SpO2 distribution. Heart rate

increases when the body responds to an obstructive event, and data distribution

follow the increase in OSAHS severity, with higher values as the disorder worsens.

SpO2 and heart rate data also follow the pattern described in the literature.

SVP data were the focus on several sleep studies to address their in�uence on

sleep and its disorders, but here, data were used to access patients' sleep conditions.

SVP weren't compared with medical data, but gauge pressure doesn't show promis-

ing results, mainly due to the sensor, with a gauge pressure range much higher than

the real range required. Data from the remaining 2 SVP, relative humidity and

temperature, point to data acquisition inside the recommended relative humidity

and temperature limits, bringing comfort to the patient and, consequently, quality

to the acquisition itself.

Sleep centres face a reproducibility sleep problem, with the �rst night e�ect.

Together with the use of sensors attach to the skin, the patient's sleep could be

modi�ed and the study may not record a typical night of sleep. Remote sensing

presents an advantage over other acquisition devices, data acquisition doesn't re-

quire skin contact and, consequently, is less likely to interfere with the patient's

sleep. Tracking sounds by using an energy-based algorithm allows the implementa-

tion of a fast method to enhance sound events, with the help of �lters, a high-pass

�lter, and a low-pass �lter, to smooth the energy array (removing low amplitude

peaks and merging close peaks) and to highlight higher sound amplitudes. Gaussian

�t isn't a fast method to detect sound events, with overlapping explaining part of the

time consumed in the process, but it has the advantage of �tting properly the win-

dowing points, the window size takes into account the average breathing frequency

of a human being at rest, and potentially returning a sound event, and discarding

close local maxima. The sound events �ltering process lowers the con�rmation rate

of sound events and is identi�ed by the Gaussian �t, specially in healthy and snoring

subjects. Sound detection algorithm comparison with a reference algorithm proves

the quality of the detection and rejection steps, with better performance in the 4

parameters analysed, sensibility, sensitivity, PPV, and NPV. With very good speci-

�city, the algorithm guarantees that almost all noise is rejected. Sensitivity doesn't

achieve the level of speci�city, but, it still, is a good value for snore detection and,

although it isn't ideal, the �nal high number of snores has a good snore population

to study each medical classi�cation group.

Data synchronization was of critical importance to relate medical data with re-

search data, and the manual register of pause-resume sequences would help complete
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the task. The goal wasn't achieved probably due to tiredness, in-laboratory sleep

studies are prepared and performed during the night shift, and sleep technicians'

main concern, is the correct functioning of PSG data acquisition. The lack of a com-

plete pause-resume sequence list led to the development of a pause-resume sequence

automatic detection algorithm, which performed very well to do synchronization

in 2 steps. The synchronization leads successfully to 2 problems, a consequence

of having 2 clock-independent acquisition devices, the �rst is the data acquisition

initial o�set and additional middle o�sets. The �rst automatic synchronization has

pragmatic issues which required manual intervention to improve synchronization

at the beginning of the cluster. An answer to this intervention may reside in the

second problem, approached next. The second problem is related to the intrinsic

characteristic associated with the crystal oscillator, frequency errors, responsible to

deliver a constant frequency for the device to work properly. The synchronization

allows the study of relationships between snores' features and medical data, as in the

case of di�erent medical events. Snore density can't explain why some automatic

synchronization did not perform so well, but a possible explanation is related to low

amplitude snores.

An increase in OSAHS severity means more snoring, but, also, means each snore

lasts for more time, which may be related to the loss of muscular tone. These pieces

of evidence con�rm the results presented in other scienti�c papers. Other features

present interesting relationships with OSAHS severity, which is the case of Kurtosis,

Shannon entropy, and band 8 of both band power ratio and in and out band power

ratio. Considering 2 major subgroups, OSAHS, grouping Mi, Mo and Se medical

classi�cation groups, and non-OSAHS, grouping Co and Sn medical classi�cation

groups, features present promising results for the OSAHS subgroup. Coe�cient of

symmetry, frequency standard deviation, band 4 and 10 of both band power ratio

and in and out band power ratio belong to this group of features.

Although not fully exploited, and it should be done in the future, previously

named features are serious candidates to develop future solutions to help physicians

in the prevention and diagnosis of OSAHS.

7.2 Main Remarks

During the development of the work, several methods were exploited to know

which ones could be used in OSAHS prediction. Most of them fail to deliver in-

teresting results, as in the case of features like amplitude, energy, and Skewness of

snores. The following remarks summarize the best results achieved for the di�erent

methods and features implemented in the work.

• Remark 1: Snore's time duration shows partial, but important results. Al-

though statistical results don't reveal a clear separation among all medical
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classi�cation groups, the most important groups have it. Data from the OS-

AHS groups, Mi, Mo, and Se, come from di�erent distributions, and they have

a consistent evolution as OSAHS worsens, snore's mean time duration evolves

from 1.106, 1.178, 1.227, 1.368, to 1.493 s, for Co, Sn, Mi, Mo, and Se groups,

respectively.

• Remark 2: Snore's Shannon entropy delivers the most promising results for

an immediately practicable application. Shannon entropy's mean values don't

follow a consistent evolution in OSAHS. The calculation of the Shannon en-

tropy solely was of 3.489, 3.665, 3.857, 3.732, and 3.954 bits, for data inside

snore's boundaries and for Co, Sn, Mi, Mo, Se medical classi�cation groups,

respectively. Nevertheless, statistical results points to signi�cant di�erences

among all groups. Further development over Shannon entropy used box plot,

and its parameters wp25c and wp50c to analyse data distribution. The imple-

mentation of correction factors deliver a consistent evolution of all medical

classi�cation groups (�gure 5.43). Parameter wp25c values are 2.539, 4.254,

4.599, 7.967, and 19.938 bits, while wp50c has values of 6.198, 8.233, 10.101,

14.043, and 39.374 bits. Both parameters' values are ordered by increase OS-

AHS severity.

• Remark 3: SWT is a recently proposed method to do signal decomposing

in the time-frequency plane and is barely used in the sleep medicine �eld

and, in particular, in snoring. The work identi�ed characteristic frequencies

speci�c to each medical classi�cation group, and well represented, in terms

of the number of patients. These frequencies, and the method itself, are an

important contribution to science. An example of those characteristic is 2996,

1300, 1545, 2320, and 1146 Hz, for the Co, Sn, Mi, Mo, and Se, respectively.

The work provides data and guidelines for the use of snoring signals in the sleep

medicine �eld to evaluate OSAHS. Finally, it answers a�rmatively to the questions

raised in 1.4, showing the possibility of distinguishing OSAHS using a single PSG

channel, in this case, acquired with an independent device with better audio specs.

Several di�erent features deliver interesting results to do OSAHS assessment, which

con�rms snore signal as a reliable source of information.

7.3 Future Work

Sleep importance is well documented and tackling its disorders, speci�cally OS-

AHS, should be a top priority in medicine. Improving sleep awareness should focus

on 2 areas: preventing new cases and tackling the existing ones. Sleep prioritiza-

tion should start with the youngest at school and home, with programs to create
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healthy sleep patterns and food ingestion, and to educate in physical training. Me-

dia coverage of the health-related subject and its diseases should raise awareness

of more diseases, besides the most common ones, such as the case of cardiovascular

diseases, diabetes, and cancer. The second area of intervention is to track and tackle

the disorder by specialists in the sleep medicine �eld. PSG multi-parametric gold

standard study is the best tool available to monitor OSAHS and to help physicians

understand the subject's sleep pattern, however, it has a high cost.

Monitoring OSAHS with remote sensing has the advantage of not interfering with

a patient's sleep and it does not have the risk of invalid data due to skin detach-

ment. A device should be developed with hardware capability to acquire sound and

perform digital signal processing, to do feature extraction and analysis, including in

the development of the most promising features discovered in this project. Before

implementing this step, a new phase should be implemented to con�rm the results

of this thesis, using a larger set of patients, and, preferably, including patients from

the original set, to evaluate their evolution as the disorders worsen or stay stable,

in the same medical classi�cation group.

PSG and its medical reports generate a huge amount of data, with the only part

being used for the thesis, and more extensive and exhaustive analysis and correlation

with research data may reveal important links. Snores' features should be compared

with epoch-based scoring medical data, as in the case of scoring medical events, heart

rate, or SpO2. The comparison should be implemented between snores' features in

epochs of consecutive lack of medical events with snores' features in epochs with

the presence of medical events. The evaluation of the snores' features should also

be performed immediately before and immediately after medical events. The most

promising methods and features found in this work should be further exploited to

con�rm the �ndings.

New SVP data acquisition should go along with new sound acquisitions, but the

�rst version of the SVP board must be replaced by an improved, second version.

The second version must include hardware improvements, including an upgrade

to improve gauge pressure signal resolution. SVP data processing only relates the

di�erent SVP variables, while future e�orts should study relationships between these

variables and relevant medical data.

The e�ort invested in the development of areas such as robotic and arti�cial in-

telligence, and present-day real-life examples give an idea of a future where machines

replace a human being in routine or complex tasks. Sleep medicine will probably

rely one day on these areas, and PSG scoring algorithms will improve their quality

to deliver human-like trustworthy reports. Sleep monitoring bene�ts from the de-

velopment of hardware to acquire and process data, to incorporate more complex

and better algorithms. To achieve this goal, huge databases should exist to develop
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arti�cial intelligence algorithms.

7.4 Research Contribution

In this section, a list of the contributions made during the period of time dedi-

cated to the development of this work is as follows:

1. Marçal, T. A. S., dos Santos, J. M., Rosa, A., and Cardoso, J. M.

R., OSAS assessment with entropy analysis of high resolution snoring audio

signals, Biomedical Signal Processing and Control 61 (Aug 2020), 101965.

DOI: 10.1016/j.bspc.2020.101965

2. Marçal, T., Antunes, B., Ferreira, R., Correia, C., Pires, D.,

Matos, A., and Simões, J. N., Wireless Multi-Physiological Signal Moni-

tor for Clinical Discharge and Readmissions Criteria Setting and Ambulatory

Usage, Proceeding of 2015 IEEE 4th Portuguese Meeting on Bioengineering

(ENBENG) (Feb 2015), pp. 1-6. DOI: 10.1109/ENBENG.2015.7088846

3. Marçal, T., Simões, J. B., dos Santos, J. M., Rosa, A. R., and

Cardoso, J., Snoring Analysis on Full Night Recordings based in the Energy

and Entropy in PSG Basal Studies, Proceedings of BIOSIGNALS 2013 6th

International Conference on Bio-Inspired Systems and Signal Processing (Feb

2013), pp. 221-227. DOI: 10.5220/0004245202210227
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Appendix B

Questionnaires' Information

Table B.1: Anthropometric data questioned to the patients. Patients are identi�ed by their unique ID. Patient's
gender means 1 is male and 0 is female. Sleep related symptoms were also questioned for excessive daytime sleepiness
(EDS), insomnia and snore. Patients were tag with 1 for the symptoms they have, while their absence were tag
with 0. The onset data referred to the beginning of those symptoms.

ID Gender Height Weight Cervical
Per.

Age EDS InsomniaSnore Onset

(cm) (kg) (mm) (years) (years)

49 1 167 92 480 65 0 0 1 16
50 1 166 75 400 42 1 0 1 6
51 1 170 58 385 77 0 0 1 20
52 1 167 70 400 44 1 0 1 31
54 0 165 110 380 32 0 1 1 8
57 1 178 85 400 52 1 1 1 8
58 0 156 90 415 55 0 1 1 6
61 1 176 90 410 62 1 1 1 1
63 0 154 88 370 66 1 1 1 8
64 0 153 61 330 46 1 1 1 6
67 1 160 62 445 28 1 0 1 10
68 1 165 80 430 59 0 1 1 15
70 1 167 86 430 44 0 0 1 19
73 1 170 77 400 44 0 0 1 24
77 0 162 79 370 47 1 1 1 3
78 0 154 68 370 53 0 1 1 6
79 0 168 70 370 61 0 1 1 7
80 0 144 57 420 66 0 1 1 3
81 0 169 85 380 55 0 1 1 2
83 0 159 90 430 65 1 1 1 10
84 0 171 71 320 44 1 0 1 2
86 1 165 70 380 32 0 1 0 3
87 1 170 68 390 35 1 1 0 0
89 1 178 75 410 49 1 1 1 8
90 1 190 85 400 42 1 0 1 4
91 1 175 90 430 48 1 0 1 1
92 1 165 80 435 54 0 0 1 5
94 0 156 61 320 39 1 0 1 25
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96 1 165 73 395 72 1 0 1 20
97 0 160 58 340 35 1 0 1 25
99 0 160 69 360 41 1 1 1 4
100 1 167 90 425 57 0 1 1 5
101 0 162 55 330 40 1 0 1 7
102 0 160 62 400 69 1 0 1 10
103 0 159 64 310 50 1 1 1 10
104 1 160 88 450 66 0 1 1 40
105 1 159 65 400 67 0 1 1 10
106 1 175 82 425 38 1 1 1 7
107 1 186 90 400 35 0 0 0 36
109 1 169 80 395 50 1 0 1 20
110 0 160 66 340 36 1 0 1 15
112 1 176 88 430 60 0 0 0 3
113 1 155 89 450 54 0 0 1 20
114 0 165 58 340 27 1 1 1 2
115 1 186 83 420 47 1 0 0 2
116 1 178 109 480 45 0 1 1 4
118 1 158 67 410 53 1 0 1 30
119 1 169 85 450 60 1 0 1 10
120 1 178 82 405 51 0 0 1 2
125 1 179 160 465 26 0 0 1 0
126 0 160 72 365 49 1 0 1 5
127 0 156 76 390 45 1 0 1 2
129 1 169 74 405 72 0 0 1 20
130 1 180 77 420 73 1 0 1 2
133 0 159 58 365 50 1 0 1 25
134 1 185 110 440 41 1 0 1 10
136 0 153 65 340 16 1 1 1 16
137 1 164 96 450 45 1 1 1 1
138 1 171 110 550 68 0 0 1 0
139 0 159 57 350 62 1 0 1 10
141 1 175 90 410 57 1 0 1 10
142 1 180 140 475 39 0 0 1 6
143 0 164 115 390 35 1 1 1 25
144 1 180 73 375 33 0 1 0 4
145 1 181 123 490 67 0 1 1 20
146 1 173 77 400 71 0 0 1 20
147 0 156 68 360 59 0 0 1 1
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Table B.2: Patient frequency habits to wake at night to go to urinate, nycturia, and to consume alcohol, tobacco
and co�ee. Alcohol consumption may be either wine or beer, respectively, 1 and 2, with a 0 in Alcohol column
meaning absence of alcohol consumption. It was postulated that 1 glass of wine and 1 beer means 250 mL. Data for
tobacco are presented as the number of cigarettes smoked per day, with 1 pack of cigarettes containing 20 cigarettes.
Volume of co�ee intake was not quanti�ed. In columns Nycturia, Alcohol, Tobacco and Co�ee, the value 0 means
the absence of that particular habit. Otherwise, the habit exists.

ID NycturiaNycturia
Freq.

Alcohol Alcohol
Freq.

Tobacco Tobacco
Freq.

Co�ee Co�ee
Freq.

(# ·
night−1)

(L ·
day−1)

(# ·
day−1)

(# ·
day−1)

49 1 1 0 0 0 0 1 2
50 1 1 0 0 0 0 1 2
51 1 2 1 0.5 0 0 0 0
52 1 1 1 0.143 1 2.9 0 0
54 0 0 0 0 0 0 1 1
57 0 0 1 0.2 0 0 1 1
58 1 2 0 0 0 0 1 4
61 1 2 1 0.625 0 0 1 3
63 1 2 0 0 0 0 0 0
64 1 1 0 0 0 0 1 1.5
67 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 1 1
70 0 0 0 0 1 12.5 1 4
73 0 0 0 0 0 0 1 3
77 0 0 0 0 0 0 1 1
78 1 3 0 0 0 0 1 1.5
79 1 3 1 0.5 0 0 1 2
80 1 1 0 0 0 0 1 1
81 1 2 1 0.071 0 0 1 2
83 1 3 0 0 0 0 0 0
84 1 1 0 0 0 0 0 0
86 0 0 0 0 1 16.5 0 0
87 1 1 1 0.143 1 7 1 1
89 1 4 1 0.625 0 0 1 1.5
90 0 0 2 0.25 0 0 1 3
91 1 1 0 0 1 1.5 1 3
92 0 0 0 0 0 0 1 2
94 0 0 0 0 0 0 1 1
96 1 1 1 0.75 0 0 0 0
97 0 0 0 0 1 20 0 0
99 1 1 0 0 0 0 1 1.5
100 1 1 1 1 0 0 1 1
101 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0
103 1 2 0 0 0 0 1 3
104 1 5 1 0.25 0 0 1 1
105 1 3 1 1 0 0 1 2
106 1 1 1 0.625 0 0 1 3.5
107 0 0 0 0 1 11 1 5.5
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109 1 1 1 0.5 0 0 1 2.5
110 0 0 0 0 0 0 1 2
112 1 2 1 0.25 0 0 1 2
113 1 1 0 0 1 20 1 4
114 0 0 0 0 0 0 0 0
115 1 2 0 0 0 0 1 2
116 0 0 1 0.7 0 0 1 2
118 0 0 1 0.5 0 0 1 4
119 0 0 1 0.5 0 0 1 3
120 1 1 2 0.5 0 0 1 1
125 0 0 0 0 0 0 0 0
126 1 1 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0
129 0 0 2 1.815 1 20 1 3
130 1 2 1 0.75 0 0 1 1
133 1 1 0 0 0 0 1 2
134 0 0 0 0 1 30 1 4
136 0 0 0 0 0 0 0 0
137 1 1 1 0.5 0 0 1 1.5
138 1 3 1 0.5 0 0 0 0
139 1 1 0 0 0 0 1 1
141 1 1 1 1.125 0 0 1 3
142 1 1 0 0 0 0 1 5.5
143 1 1 0 0 0 0 1 1
144 1 1 0 0 0 0 1 1
145 1 3 0 0 0 0 0 0
146 1 2 0 0 0 0 1 1
147 1 3 0 0 0 0 1 1
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Table B.3: A list of diseases questioned to the patients, identi�ed by its unique ID, to know if they have the disease.
The patient has the disease if the value is 1. Otherwise, the disease is absence.

ID Hyper-
tension

Cardio-
vascular

Pulmonary Epilepsy Diabetes Cholesterol

49 0 1 0 0 0 0
50 0 0 0 0 0 1
51 0 0 0 0 1 0
52 0 1 0 0 0 0
54 0 0 1 0 0 0
57 0 0 0 0 0 0
58 0 1 1 0 0 0
61 1 0 1 0 0 0
63 1 0 1 0 0 1
64 0 0 0 0 0 0
67 0 0 0 0 0 0
68 0 0 0 0 0 0
70 1 0 0 0 0 0
73 0 0 0 0 0 0
77 0 0 0 0 0 0
78 0 0 1 0 0 0
79 0 0 0 0 0 1
80 0 0 0 0 0 1
81 1 0 0 0 0 0
83 1 1 0 0 0 0
84 1 1 0 1 1 0
86 0 0 0 0 0 0
87 0 0 0 0 0 0
89 0 0 0 0 0 1
90 0 0 1 0 0 1
91 0 1 0 0 0 1
92 0 0 0 0 0 0
94 0 0 0 0 0 0
96 0 0 0 0 0 0
97 0 0 0 0 0 0
99 0 0 0 0 0 0
100 0 1 0 0 0 0
101 0 0 0 0 0 0
102 0 0 0 1 0 1
103 0 0 1 0 0 0
104 0 0 1 1 1 0
105 0 0 0 0 0 0
106 0 1 0 0 0 0
107 0 0 0 0 0 0
109 0 1 1 0 0 0
110 1 0 0 0 0 0
112 1 0 0 0 1 0
113 1 1 0 0 0 0
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114 0 0 1 0 0 0
115 0 0 0 0 0 1
116 1 0 0 0 0 1
118 1 0 1 0 0 0
119 0 1 0 0 1 0
120 0 0 1 0 0 0
125 0 0 0 0 1 0
126 0 0 0 0 0 0
127 0 1 0 0 0 0
129 0 1 0 0 0 0
130 0 1 0 1 0 0
133 0 0 0 0 0 0
134 0 0 0 0 0 0
136 0 0 0 0 0 0
137 0 0 1 0 0 0
138 0 1 0 0 1 0
139 0 0 0 0 0 1
141 0 1 0 0 0 0
142 0 0 0 0 0 0
143 0 0 0 0 0 0
144 0 0 0 0 0 1
145 1 1 1 0 0 0
146 0 1 0 0 0 0
147 0 1 0 0 0 0
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Table B.4: Patients with sleep disorders often have other medical conditions associated. Here, a list of such
conditions under treatment is available.

ID Medicine

49 Blood pressure, blood thinners, vasodilation and
asthma.

50 Prostate.
51 Blood thinners and vertigo.
52 Blood pressure, blood thinners, antidepressants and

cholesterol.
54 Pulmonary emphysema.
57
58 Sleeping pills, anxiolytic and hypertension.
61 Bones, lungs and thyroid.
63 Hypertension, stomach, prophylaxis of patients with

thromboembolic disorders and neuropathic pain.
64 Depression, thyroid and hormone treatment.
67
68 Hypertension and depression.
70 Hypertension.
73
77 Sleeping pills and headache.
78 Depression.
79 Hypobulia, pain killers, arthrosis and depression.
80 Depression, CNS stimulants, respiratory function,

cholesterol, thyroid, dizziness and gastric regulation.
81 Hypertension and sleeping pills.
83 Parathyroid, hypertension, iron de�ciency,

antidepressants, CNS stimulants, anxiolytic,
cardiovascular diseases, constipation and gastric

protection.
84 Diabetic, hypertension and epilepsy.
86
87 Anxiolytic.
89 Cholesterol and prostate.
90 To avoid alveoli impair due to a previous pulmonary

emphysema.
91 Heart.
92 Cholesterol and hypertension.
94 Birth control pill.
96
97 Birth control pill.
99
100 Hypertension and cholesterol.
101
102 Pain killers, hypertension, epilepsy, cholesterol, Iron

de�ciency and folic acid, anxiolytic, peptic ulcer,
osteoarthritis, Crohn disease, polycythemia reduction,

remove swelling in heart failure.
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103 Gastric protection drugs, anxiolytic, depression, muscle
spasm and anti-in�ammatory.

104 Hypertension, sleeping pills, stomach protector.
105 Sleeping pills, hypertension, blood thinners.
106
107 Anxiolytic.
109 Asthma, gastric protector.
110 Birth control pills.
112 Hypertension, diabetes.
113 Hypertension, alcohol, cholesterol, uric acid.
114 Antiallergics, bronchodilators and anti-in�ammatory

drugs.
115
116 Cholesterol and hypertension.
118
119 Diabetes, cholesterol, hypertension, peptic ulcer,

arterial thromboembolism prophylaxis.
120 Bronchodilators and nasal drops.
125 Diabetes.
126
127 Cholesterol, hypertension and arterial

thromboembolism prophylaxis.
129 Cholesterol, hypertension and secondary stroke

prophylaxis.
130 Epilepsy, hypertension, cholesterol, depression, blood

thinners and benign prostatic hyperplasia.
133 Hypertension, folic acid and rheumatoid arthritis.
134 Hypertension.
136 Birth control pills.
137 Hypertension, depression, Awakening drugs and.
138 Cholesterol, hypertension, diabetes and sleeping pills.
139 Depression and involuntary contraction of muscles.
141 Blood thinners, cholesterol, hypertension and gastric

protector.
142
143 Menstruation and ovulation pills.
144
145 Hypertension, cholesterol, anxiolytic, asthma, angina,

remove swelling in heart failure and prophylaxis of
thromboembolic disease.

146 Hypertension, cholesterol, anxiolytic and osteoarthritis.
147 Joint pills and cardiac dysrhythmia.
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Appendix C

PSG Scoring Results

Table C.1: Number of events of type RERA, apneas or hypopneas identi�ed in PSG scoring. Obstructive and
central sleep may be either apnea or hypopnea, while there is only mixed apneas. These events were also identi�ed
as beloging to either a NREM stage or a REM stage.

ID
Respiratory

Apnea and Hypopnea Events

E�ort
Obstructive Central Mixed

Apnea Hypopnea Apnea Hypopnea Apnea

NR R NR R NR R NR R NR R NR R

49 5 1 4 2 13 1 0 0 0 0 0 0
50 20 1 0 0 0 0 4 3 0 0 0 0
51 27 6 0 0 1 0 0 0 0 0 0 0
52 35 3 0 0 5 6 0 0 0 0 0 0
54 57 18 2 1 8 55 0 0 0 0 0 0
57 9 1 0 0 7 14 0 0 0 0 0 0
58 10 1 18 0 55 1 0 0 0 0 0 0
61 0 0 3 7 0 14 3 0 0 0 0 0
63 17 4 19 26 57 35 0 0 0 0 0 0
64 23 2 8 4 26 5 0 0 0 0 0 0
67 2 2 8 21 1 4 4 1 0 0 0 0
68 28 0 0 1 6 4 0 0 0 0 0 0
70 8 3 0 0 0 0 1 0 0 0 0 1
73 0 0 205 43 243 25 0 2 0 0 0 0
77 21 11 0 0 16 71 0 0 0 0 0 0
78 15 3 3 5 3 12 1 0 0 0 0 0
79 23 1 3 1 41 11 0 0 0 0 0 0
80 22 0 0 0 8 0 0 0 0 0 0 0
81 3 0 0 0 0 0 0 0 0 0 0 0
83 4 2 1 4 68 73 0 0 0 0 0 0
84 7 3 2 2 0 0 0 0 0 0 0 0
86 17 2 1 0 2 2 1 1 0 0 0 0
87 3 0 0 0 0 0 3 0 0 0 0 0
89 23 1 0 0 0 0 0 1 0 0 0 0
90 10 0 5 3 3 2 0 0 0 0 0 0
91 29 3 6 5 48 39 6 0 0 0 0 0
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92 80 0 63 1 5 9 0 0 0 0 0 0
94 33 14 0 0 3 7 1 0 0 0 0 0
96 3 0 1 0 8 0 0 0 0 0 0 0
97 5 0 0 0 1 0 0 0 0 0 0 0
99 74 3 0 0 8 2 2 1 0 0 0 0
100 29 6 15 0 13 19 0 0 0 0 0 0
101 0 1 0 0 4 1 0 3 0 0 0 0
102 5 1 0 0 3 5 0 0 0 0 0 0
103 10 0 0 0 1 0 0 0 0 0 0 0
104 38 0 8 1 95 23 0 0 0 0 0 0
105 95 0 34 50 126 0 0 0 0 0 0 0
106 24 1 0 0 2 4 1 0 0 0 0 0
107 49 13 0 0 2 0 0 1 0 0 0 0
109 16 4 4 13 19 9 0 1 0 0 0 0
110 19 1 0 0 4 1 3 0 0 0 0 0
112 79 3 14 0 31 1 0 0 0 0 0 0
113 3 0 7 12 15 30 0 0 0 0 0 0
114 0 3 1 6 6 36 0 3 0 0 0 0
115 3 0 0 0 0 0 0 0 0 0 0 0
116 17 3 0 0 65 63 0 0 0 0 0 0
118 34 2 1 3 69 23 0 0 0 0 0 0
119 77 3 1 0 20 12 0 1 0 0 0 0
120 0 0 0 0 0 3 0 1 0 0 0 0
125 15 0 0 0 45 3 0 0 0 0 0 0
126 14 4 2 1 33 9 0 0 0 0 0 0
127 0 0 0 0 0 4 1 0 0 0 0 0
129 6 0 14 28 57 17 0 0 0 0 0 0
130 0 2 0 0 8 0 6 0 0 0 0 0
133 2 0 0 0 0 1 0 0 0 0 0 0
134 17 0 30 1 278 40 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 0 0
137 2 3 165 46 261 26 0 0 0 0 0 0
138 0 0 81 1 21 0 0 0 0 0 0 0
139 15 0 14 0 16 0 1 0 0 0 0 0
141 59 6 87 2 113 21 0 0 0 0 2 0
142 5 2 36 6 108 45 0 0 0 0 0 0
143 0 0 0 0 4 11 0 0 0 0 0 0
144 0 0 0 0 0 2 0 0 0 0 0 0
145 2 0 0 0 2 2 0 0 0 0 0 0
146 27 0 0 0 18 12 0 0 0 0 0 0
147 13 7 7 16 29 18 0 0 0 0 0 0
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Table C.2: Results from the PSG scoring with highlights on their �nal medical evaluation classi�cation performed
by M. D. José Moutinho dos Santos. The RDI parameter is the most important one to do the classi�cation. TST
parameters indicates the amount of time, e�ectively, asleep and the remaining parameters, the percentage of sleep
spent in each sleep stage.

ID Medical
Evalua-
tion

RDI TST N1 N2 N3 REM

(#events
h

) (m) (%) (%) (%) (%)

49 Sn 5.7 275.5 30.3 38.3 20.9 10.5
50 Sn 4.3 388.5 14.9 41.2 27.8 16.1
51 Sn 7.7 265.5 18.6 57.6 12.6 11.1
52 Sn 7.1 413.0 34.3 38.6 15.0 12.1
54 Mo 22.7 373.0 8.6 46.1 24.1 21.2
57 Sn 4.4 423.5 14.6 41.6 20.9 22.9
58 Mi 15.0 340.0 36.0 25.1 26.3 12.5
61 Sn 5.2 309.0 13.6 39.5 35.9 11.0
63 Mo 24.8 381.5 10.5 44.2 29.9 15.5
64 Mi 11.3 361.5 20.6 48.7 23.2 7.5
67 Sn 7.1 362.5 9.0 53.5 17.8 19.7
68 Mi 9.2 254.0 21.1 35.4 32.3 11.2
70 Sn 2.2 355.0 16.3 44.4 21.1 18.2
73 Se 92.0 338.0 26.0 38.9 21.3 13.8
77 Mo 18.7 382.0 2.9 24.6 37.8 34.7
78 Sn 7.7 326.5 14.2 34.0 40.0 11.8
79 Mi 15.8 303.0 17.0 49.5 18.2 15.3
80 Sn 6.1 294.5 13.2 34.6 52.1 0.0
81 Co 1.5 121.0 53.3 41.3 0.0 5.4
83 Mo 21.7 421.0 6.7 34.7 41.0 17.7
84 Sn 1.9 436.0 8.3 43.8 31.9 16.1
86 Mi 3.6 428.5 14.1 50.4 19.3 16.2
87 Co 1.3 284.0 17.3 42.3 30.5 10.0
89 Sn 4.7 317.0 31.4 39.1 12.0 17.5
90 Mi 9.2 149.5 38.1 42.1 15.4 4.3
91 Mo 22.5 362.0 17.3 47.5 14.8 20.4
92 Se 40.3 235.5 24.4 55.0 9.3 11.3
94 Sn 7.7 451.5 16.4 44.5 19.3 19.8
96 Sn 2.3 314.5 24.3 16.2 46.3 13.2
97 Co 1.0 361.5 13.7 46.1 18.8 21.4
99 Mi 13.2 410.0 8.7 35.0 36.7 19.6
100 Mi 12.9 382.0 10.5 44.9 22.5 22.1
101 Sn 1.3 431.5 12.9 45.4 24.6 17.1
102 Sn 4.0 207.5 8.0 30.4 51.3 10.4
103 Sn 1.6 423.0 22.1 50.6 18.7 8.6
104 Mo 27.9 354.5 27.9 42.3 23.8 5.9
105 Se 62.5 293.0 17.9 37.2 29.5 15.4
106 Sn 5.1 380.0 7.5 46.1 27.5 18.9
107 Mi 13.2 296.5 15.5 31.2 35.2 18.0
109 Mi 10.5 376.5 14.1 47.8 20.1 18.1
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110 Sn 4.5 377.5 12.2 49.7 17.5 20.7
112 Mo 22.7 338.0 24.4 33.4 21.4 20.7
113 Mi 13.5 297.5 11.6 66.2 8.1 14.1
114 Sn 7.7 431.0 1.7 45.1 23.1 30.0
115 Sn 0.4 455.0 7.1 44.3 28.0 20.5
116 Mo 26.7 332.0 19.1 41.3 18.7 20.9
118 Mo 21.2 374.0 24.3 51.2 14.7 9.8
119 Mo 18.5 369.5 21.0 43.4 13.0 22.6
120 Co 0.9 274.5 23.7 48.5 14.9 12.9
125 Sn 8.6 440.0 7.4 27.8 44.2 20.6
126 Mi 9.7 389.5 15.5 42.4 25.0 17.1
127 Co 0.8 372.5 10.1 36.0 32.8 21.2
129 Se 38.2 191.5 21.1 45.4 9.7 23.8
130 Sn 2.9 332.5 21.5 51.4 15.0 12.0
133 Co 0.6 313.5 19.5 52.6 15.0 12.9
134 Se 62.7 350.5 29.7 53.4 5.8 11.1
136 Co 0.0 422.0 3.8 33.9 40.0 22.3
137 Se 66.6 453.0 25.9 36.1 17.7 20.3
138 Se 90.9 68.0 78.7 19.1 0.0 2.2
139 Mi 8.6 320.5 4.7 42.1 32.9 20.3
141 Se 43.2 402.5 45.7 21.9 11.4 21.0
142 Mo 30.4 399.0 24.6 51.5 7.9 16.0
143 Sn 2.8 320.0 10.9 44.2 30.3 14.5
144 Co 0.4 314.5 13.0 41.3 33.5 12.1
145 Co 1.1 316.5 3.0 40.8 50.7 5.5
146 Mo 21.5 159.0 7.5 62.3 21.1 9.1
147 Mo 16.6 325.5 20.7 35.5 27.2 16.6
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Table C.3: Identi�cation of other sleep events from PSG scoring. The following table presents, for each patient,
each event totals.

ID MChg AR Awake LM PLM SN MA RBD

49 7 74 18 150 150 0 0 0
50 0 40 1 0 0 0 0 0
51 0 135 10 15 12 0 0 0
52 0 167 15 59 53 14 0 0
54 0 162 16 70 49 0 0 0
57 0 216 29 44 40 0 0 0
58 0 153 21 0 0 0 0 0
61 0 96 2 20 10 0 0 0
63 0 92 17 0 0 0 0 0
64 0 162 14 68 65 0 0 0
67 0 65 4 0 0 0 0 0
68 0 49 16 1 0 0 0 0
70 0 99 15 4 0 0 1 0
73 0 158 35 0 0 0 0 0
77 0 136 19 19 0 0 0 0
78 0 118 13 0 0 0 0 0
79 0 68 25 6 0 0 0 0
80 0 58 21 2 0 0 0 0
81 0 135 22 17 5 0 0 0
83 0 142 13 6 0 0 0 0
84 0 98 29 7 4 1 0 0
86 0 98 20 6 4 0 0 0
87 0 25 11 28 0 0 0 0
89 0 173 35 6 5 0 0 0
90 0 53 19 17 9 0 0 0
91 0 126 14 31 12 0 0 0
92 0 121 77 0 0 0 0 0
94 0 253 14 0 0 0 0 0
96 0 143 14 198 184 39 0 5
97 0 70 20 167 160 0 0 0
99 0 175 16 4 0 0 0 0
100 0 105 7 164 136 0 0 0
101 0 266 33 324 322 0 0 0
102 0 28 4 0 0 1 0 0
103 0 157 29 325 296 0 0 0
104 0 221 32 4 4 0 0 0
105 0 334 13 193 177 0 0 0
106 0 70 8 43 38 0 0 0
107 0 67 24 172 172 0 0 0
109 0 58 29 3 0 0 0 0
110 0 179 35 2 0 0 0 0
112 0 161 21 199 175 0 0 0
113 0 42 2 27 27 10 0 0
114 0 59 12 35 4 0 0 0
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115 0 41 4 1 0 0 0 0
116 0 111 18 81 67 0 0 0
118 0 136 31 0 0 0 0 0
119 0 136 22 0 0 0 0 0
120 0 122 31 7 0 0 0 0
125 0 237 23 101 90 0 0 0
126 0 56 29 13 4 0 0 0
127 0 31 3 9 0 0 0 0
129 0 64 16 170 157 0 0 0
130 0 67 17 0 0 0 0 0
133 0 138 19 1 0 0 0 0
134 0 169 24 4 0 0 0 0
136 0 35 13 0 0 0 0 0
137 0 351 48 5 0 0 0 0
138 0 19 18 7 0 0 0 0
139 0 85 17 59 35 0 0 0
141 0 252 63 0 0 0 2 0
142 0 225 61 47 34 1 0 0
143 0 63 7 138 121 0 0 0
144 0 111 25 3 0 0 0 0
145 0 56 11 1 0 0 0 0
146 0 118 11 0 0 0 0 0
147 0 97 9 0 0 0 0 0
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Table C.4: The columns to the right of the patient's ID columns have the �rst epoch from which data recording are
considered for the purpose of sleep evaluation. Those epochs are marked with a Lights Out label. The end epoch,
for sleep evaluation, were marked with a Lights On label, but that information is not present here. The �rst epoch
of sleep, after Lights Out, is availabe in the First Sleep Epoch column.

ID Lights
Out
Epoch

First
Sleep
Epoch

ID Lights
Out
Epoch

First
Sleep
Epoch

49 7 83 103 130 144
50 13 24 104 12 37
51 13 112 105 6 37
52 6 18 106 128 162
54 13 37 107 121 168
57 8 32 109 12 29
58 4 51 110 6 40
61 14 40 112 13 23
63 9 47 113 17 161
64 8 27 114 11 16
67 24 52 115 8 24
68 10 108 116 8 46
70 17 66 118 9 16
73 2 42 119 12 73
77 11 12 120 6 44
78 8 59 125 12 15
79 111 119 126 8 22
80 15 94 127 6 84
81 9 84 129 10 69
83 9 27 130 8 51
84 9 61 133 5 129
86 8 25 134 11 58
87 126 146 136 5 15
89 9 23 137 9 21
90 47 77 138 13 116
91 9 31 139 146 162
92 19 40 141 16 25
94 10 15 142 7 31
96 6 59 143 80 118
97 40 64 144 109 161
99 8 15 145 10 29
100 14 40 146 20 282
101 7 49 147 9 54
102 10 204
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