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ABSTRACT 

The modulation of neuroinflammation has been increasingly recognized as a viable approach 

to slow down or even halt the progression of several disorders of the central nervous system 

(CNS), such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, 

multiple sclerosis, among others. The search for therapeutic molecules targeting microglia – 

the immune cells of the CNS – has been gaining momentum in the field of neurodegeneration, 

not only to decipher the molecular mechanisms of microglia-mediated neurotoxicity but also 

to find promising targets to reach the limelight of clinical research. One of the most important 

group of cytokines implicated in neuroinflammation is the interleukin 1 (IL-1) family, a well-

characterized cluster that plays a critical role in inflammatory responses. Importantly, a 

growing body of evidence is showing that blocking the IL-1 signalling pathway via 

interleukin-1 receptor type 1 (IL-1R1) reduces neuroinflammation and delays disease 

progression. Notably, while there is a substantial body of research on the effects of IL-1R1 in 

such pathological processes, no small molecule modulators of this receptor have been reported 

to date. 

This project focused on the modulation of harmful neuroinflammatory responses associated 

with specific microglia subtypes, using IL-1R1 as a model target, via small molecules 

discovered through computational techniques and tested in human CHME3 microglial cell 

lines. The first goal was to identify and prioritize regions in the IL-1R1 ectodomain (ECD) 

surface prone to small-molecule binding, using three binding site prediction algorithms. The 

predictive druggability landscape analysis of IL-1R1 led to the identification of two potential 

druggable regions that may disturb pro-inflammatory cytokine binding. 

Given that IL-1R1 regulates IL-1 signalling in two forms - as a membrane-bound form and as 

a soluble ECD – the conformational dynamics of these two forms, with particular focus on a 

particular predicted binding site, was studied and compared by long timescale all-atom 

molecular dynamics (MD) simulations. These simulations revealed that major differences 

between the two IL-1R1 forms appear to be mainly governed by rearrangements of the linker 

connecting the D2 and D3 domains of the ECD, leading to different structure-dynamics 

behaviours. Representative protein conformations of both forms were extracted from the MD 

runs based on physicochemical features of the IL-1R1 binding site. 

The amount of structural data generated by the MD simulations coupled with experimental 

data motivated the implementation of an integrated structure-based virtual screening (VS) 

protocol targeting the ECD of IL-1R1, combining (i) three-dimensional (3D) pharmacophore 

modelling, (ii) clustering by maximum common substructures (MCS), (iii) molecular docking, 

and (iv) 3D shape similarity. Six receptor-based pharmacophore hypotheses were generated 
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on the IL-1R1 binding site, which allowed the retrieval of 27.206 virtual hit compounds from 

a CNS-tailored virtual screening deck of 19.3 million compounds. As a post-screening filter, 

said screening hits were docked into IL-1R1, with the best candidates ranked via quantitative 

analysis of protein-ligand interactions and pharmacophore fitness levels. Twenty-one 

commercially available compounds were selected based on the best docking results and 3D 

shape similarity to a dataset of compounds exhibiting relevant bioactivity data, and taking in 

consideration chemical diversity. Compounds were acquired from their respective chemical 

vendors for in vitro evaluation. 

The selected compounds sought out by the VS campaign were evaluated in vitro in terms of 

aqueous solubility and cytotoxic activity in human HepG2 cancer cell lines and CHME3 

microglial cell lines. Thereupon, microglia-based phenotypic screenings were employed to 

search for small molecules able to modulate the effects of microglial pro-inflammatory 

activation. Three compounds displaying the best solubility and toxicity profiles were tested at 

20 μM in human CHME3 microglia after activation with a pro-inflammatory cytokine 

interferon-γ (IFN-γ). Two compounds were able to prevent upregulation of the inflammatory 

axis IL-1R1/IL-1β/IL-6/NRLP3/iNOS in microglia upon incubation with IFN-γ, as well as to 

reduce IFN-γ-induced activation of nuclear factor-kappa B (NF-κB). Our findings point out 

that these compounds exert regulatory effects in microglia polarization by potentially 

inhibiting the IL-1R1/Myd88/NF-κB signalling pathway. 

To sum up, this project was pioneer in discovering small molecule modulators of microglia-

induced neuroinflammation, via an integrated medicinal chemistry approach encompassing 

the utilisation of computational methods and in vitro studies in human microglia. As a result, 

two molecular entities that modulate microglial pro-inflammatory markers and 

autocrine/paracrine signalling mediators have been discovered.  Considering the current 

advanced state of this project, we firmly believe that the results achieved herein gathers 

conditions to “hit-the-ground running” for modulating microglia pro-inflammatory 

phenotypes and uncontrolled neuroinflammatory processes. 
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RESUMO 

A modulação da neuroinflamação tem sido cada vez mais reconhecida como uma abordagem 

viável para retardar ou mesmo parar a progressão de várias doenças do sistema nervoso 

central (SNC), como a doença de Alzheimer, doença de Parkinson, esclerose lateral 

amiotrófica, esclerose múltipla, entre outras. A procura de moléculas com potencial 

terapêutico direcionadas à microglia - as células imunes do SNC – tem vindo a despertar 

atenção no campo da neurodegeneração, não apenas para decifrar os mecanismos moleculares 

de neurotoxicidade mediados pela microglia, mas também para encontrar alvos terapêuticos 

que possam alcançar a prática clínica. Um dos grupos de citocinas mais importantes implicado 

na neuroinflamação é a família da interleucina-1 (IL-1), um conjunto que desempenha um 

papel fundamental nas respostas inflamatórias. Vários estudos têm vindo a demonstrar que o 

bloqueio da via de sinalização da IL-1 através do recetor tipo 1 da interleucina-1 (IL-1R1) leva 

à redução da neuroinflamação e retarda a progressão de doença. Curiosamente, embora exista 

um grande conjunto de estudos sobre o IL-1R1, até ao momento não foram reportadas 

pequenas moléculas moduladoras da sua atividade biológica. 

O propósito subjacente a este projeto centra-se na modulação de respostas neuroinflamatórias 

prejudiciais devidas a fenótipos polarizados da microglia, usando o IL-1R1 como modelo de 

estudo principal, através de pequenas moléculas identificadas com o auxílio de métodos 

computacionais de descoberta de fármacos e testadas em linhas celulares de microglia humana 

CHME3. O primeiro objetivo consistiu em identificar e priorizar regiões à superfície do 

domínio extracelular (ECD) do IL-1R1 com tendência para ligarem pequenas moléculas, 

usando três algoritmos de previsão de locais de ligação. A análise preditiva de locais de ligação 

no IL-1R1 levou à identificação de duas regiões propensas à interação com pequenas 

moléculas, que após a ligação, podem perturbar a interação das citocinas pro-inflamatórias. 

Dado que o IL-1R1 regula a sinalização da IL-1 sob duas formas – como uma forma 

transmembranar e como um ECD solúvel – a variabilidade conformacional destas duas 

formas, com particular foco num local de ligação previsto, foi estudada e comparada através 

de simulações de dinâmica molecular (DM). Estas simulações revelaram que as principais 

diferenças entre as duas formas do IL-1R1 parecem ser devidas, em grande parte, a rearranjos 

conformacionais do “linker” localizado entre os domínios D2 e D3 do ECD, o que por sua vez 

leva a diferentes comportamentos estrutura-dinâmica. Conformações proteicas 

representativas de ambas as formas foram extraídas das corridas de DM com base em 

características físico-químicas do local de ligação do IL-1R1. 

A quantidade de estruturais gerados pelas simulações de DM juntamente com dados 

experimentais motivou a implementação de um protocolo de rastreio virtual (VS), baseado na 
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estrutura, direcionado ao ECD do IL-1R1, que integra (i) modelação tridimensional (3D) de 

farmacóforos, (ii) agrupamento de estruturas químicas com base na máxima subestrutura 

comum (MCS), (iii) acoplamento molecular, e (iv) pesquisas de similaridade tridimensionais 

baseadas na forma. Inicialmente, 6 hipóteses de farmacóforo foram construídas usando o local 

de ligação previsto do IL-1R1, o que permitiu identificar 27,206 compostos a partir de uma 

biblioteca virtual personalizada de 19,3 milhões de moléculas previstas passarem a barreira 

hemato-encefálica e chegarem ao SNC. Este conjunto de compostos foi sujeito a estudos de 

acoplamento molecular, e filtrados por meio de análise quantitativa de interações proteína-

ligando e níveis de complementaridade com o farmacóforo. Foram selecionados 21 compostos 

disponíveis comercialmente com base nos melhores resultados de acoplamento molecular e 

pesquisas de similaridade 3D contra um conjunto de compostos com dados de bioatividade 

relevantes, tendo em consideração a diversidade química. Para validar o trabalho 

computacional executado, os compostos foram adquiridos aos respetivos fornecedores para 

avaliação in vitro. 

Os compostos selecionados através do protocolo de VS foram testados experimentalmente in 

vitro para averiguar a sua solubilidade aquosa e atividade citotóxica em linhas celulares de 

hepatoma humano (HepG2) e de microglia humana CHME3. Em seguida, foram realizados 

ensaios fenotípicos na microglia a fim de identificar compostos capazes de modular os efeitos 

da ativação pro-inflamatória da microglia. Os três compostos com melhores perfis de 

solubilidade e toxicidade foram testados na concentração de 20 μM na microglia CHME3 após 

ativação com a citocina pró-inflamatória interferão-gama (IFN-γ). Destes, dois compostos 

demonstraram capacidade para reverter a indução de mediadores pro-inflamatórios IL-

1R1/IL-1β/IL-6/NRLP3/iNOS juntamente com uma redução de ativação do NF-κB na microglia 

após incubação com IFN-γ. Os nossos resultados indicam que estes compostos exercem efeitos 

reguladores na polarização da microglia possivelmente através da inibição da via de 

sinalização IL-1R1/Myd88/NF-κB. 

Em suma, este projeto foi pioneiro em descobrir compostos moduladores da neuroinflamação 

mediada pela microglia, através uma abordagem integrada de química medicinal que 

incorpora a utilização de métodos computacionais e estudos in vitro em microglia humana. 

Como resultado, foram descobertas duas entidades moleculares que modulam os marcadores 

pro-inflamatórios da microglia e mediadores para sinalização parácrina e autócrina. 

Considerando o atual estado avançado deste projeto, acreditamos que os resultados aqui 

mencionados reúnem condições para o desenvolvimento de novas moléculas moduladoras da 

fenótipos pro-inflamatórios da microglia e neuroinflamação descontrolada.  
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THESIS OUTLINE 

The research described in this thesis entails the application of in silico and experimental 

methodologies towards the identification of novel, neuroinflammatory small molecule 

modulators, via targeting strategies focused on an essential cytokine receptor involved in the 

inflammatory landscape. This thesis is organized in six main chapters – including a general 

introduction and the core results divided into five chapters - along-with an epilogue, an 

appendix, a section with references and a last page containing the relevant publications 

ensuing from this PhD project. 

Part I starts with a brief overview on the role of neuroinflammation in neurodegenerative 

diseases, with special emphasis on microglial activation and its implications in 

neuroinflammatory responses. The relevance of microglial modulation in the context of 

neurodegeneration is discussed, along with some promising compounds and targets proposed 

to modulate microglial functions in the central nervous system (CNS).  Interleukin-1 receptor 

type 1 (IL-1R1) is introduced as a potential target in neuroinflammation, in view of its 

involvement in the neuroinflammatory complex landscape. A short review of currently known 

IL-1R1 therapeutics is also provided.  The second half of the chapter focus on the Medicinal 

Chemistry of neuroinflammation via computer-aided drug design (CADD) approaches. These 

facets represent the engine of this project, and an introduction to the basic principles and 

fundamental techniques in molecular modelling is provided, with special attention to the main 

methodologies employed throughout the project. The application of CADD approaches for 

designing and discovering neuroinflammatory modulators is also included in this review. 

Phenotypic screening strategies for the discovery of small molecule modulators under the light 

of their potential implementation in the neuroinflammation field is discussed. The final section 

of this chapter outlines the objectives of this thesis.   

Part II focuses on the application of structure-based approaches to predict and evaluate IL-

1R1 putative binding sites and interactions for the design of IL-1R1 small molecule 

modulators. The analysis of the available structural data on IL-1R1 is provided, with an 

emphasis on the interactions of IL-1R1 with other molecules, and the results of structural 

quality evaluations are reported. The chapter also presents a summary of the different 

methods used to predict druggable binding sites. A thorough examination comprising three 

different binding site prediction methods is conducted to map and prioritize suitable binding 

regions on the surface of IL-1R1. 

Part III deals with the results of molecular dynamics (MD) simulation studies performed on 

two biologically active IL-1R1 forms. An exhaustive comparative analysis of the 

conformational dynamics between the soluble and membrane-bound IL-1R1 ectodomains 
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(ECDs) is presented, focusing on the conformational stability and flexibility of ligand binding 

sites predicted in Part II. For each IL-1R1 form, representative binding site conformations are 

extracted from the MD simulations for virtual screening (VS) purposes.  

Part IV reveals the implementation of a multi-layered VS approach towards the identification 

of novel, small molecule neuroinflammatory modulators of pharmaceutical interest. Amongst 

the techniques employed at different steps of the VS workflow are: (i) receptor-based 

pharmacophore modelling; (ii) pharmacophore-based VS; (iii) molecular docking; and (iv) 

three-dimensional (3D) shape similarity methods. The filtering of virtual libraries of chemical 

compounds using molecular descriptors predicted for blood-brain barrier (BBB) permeability 

is approached. From the VS procedure, 21 compounds, predicted as promising starting points 

in the development of novel and selective IL-1R1 modulators are identified and acquired from 

their respective chemical vendors for in vitro evaluation. 

Part V reports the results of a setup array of experimental assays designed to assess the 

solubility and toxicity profiles of the compounds carefully chosen via the VS protocol. A brief 

review is provided on the human cell lines selected for cytotoxicity and cell viability assays in 

this chapter. The utilisation of in silico methods for the prediction of compound promiscuity is 

also carried out.  

Part VI describes the implementation of an in vitro phenotypic-based screening assay for 

interrogating the ability of three VS selected compounds to modulate microglial pro-

inflammatory activation. Considerations about the interleukin-1 (IL-1) signalling pathways in 

microglia are discussed as well as the expression of IL-1R1 in this cell type. The experimental 

validation of the in silico results allowed the identification of promising modulators of 

microglia-mediated neuroinflammation.  

The Epilogue reflects on the findings and future perspectives of this project and provides a 

brief overview of my own perspectives in the field of neurodegeneration drug discovery. 
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 PART I 

General Introduction 

 

 

 

“Shaped a little like a loaf of French country bread, our brain is a crowded chemistry lab, 

bustling with nonstop neural conversations. Imagine the brain, that shiny mound of being, 

that mouse-gray parliament of cells, that dream factory, that petit tyrant inside a ball of bone, 

that huddle of neurons calling all the plays, that little everywhere, that fickle pleasuredome, 

that wrinkled wardrobe of selves stuffed into the skull like too many clothes into a gym bag.” 

 

Diane Ackerman,  in  An Alchemy of Mind: The Marvel and Mystery of the Brain
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1.1. Targeting Neuroinflammation: The Common Thread in 

Neurodegenerative Diseases 

The usage and meaning of “neuroinflammation”, a word deriving from the combination of the 

Greek neuron (for nerve, sinew, tendon) with the Latin noun inflammatio, has been in constant 

evolution and remodelling. The name has been wrongly associated with encephalitis, a type 

of acute brain inflammation with tissue-infiltrating blood-borne immune cells (Graeber et al., 

2011). Neuroinflammation actually refers to the response of the central nervous system (CNS) 

to injury and disease sparked by complex immune networks, coordinated by the activation of 

glial cells (microglia, astrocytes and oligodendrocytes) and neuron-glia interactions. The 

increasing awareness of the involvement of the immune system, not only in the progression 

but also directly related to the onset of CNS diseases, fuelled a renewed interest in the field in 

recent years (Craft et al., 2005; Brambilla, 2019; Guzman-Martinez et al., 2019). Indeed, 

neuroinflammation has been linked to Parkinson’s disease (PD) (Troncoso-Escudero et al., 

2018), Alzheimer’s disease (AD) (Heppner et al., 2015; Ardura-Fabregat et al., 2017), 

amyotrophic lateral sclerosis (ALS) (McCauley and Baloh, 2019) and other CNS disorders, such 

as multiple sclerosis (Bjelobaba et al., 2017), traumatic brain injury (Simon et al., 2017), 

depression (Brites and Fernandes, 2015) and schizophrenia (Müller et al., 2015), among others. 

Despite the involvement of different molecular triggering mechanisms in the above-

mentioned diseases, a common feature of all is the activation of glial cells to a state that 

prompts an exacerbated secretion of pro-inflammatory factors. Importantly, microglia and 

astrocytes are the glial cell types responsible for mediating neuroinflammation in response to 

various stimuli, polarizing into pro-inflammatory and anti-inflammatory states with the 

release of multiple cytokines and chemokines, modulating the function of the neighbouring 

neurons. These dynamic behaviours are crucial for maintaining homeostasis of the brain 

microenvironment. However, in neurodegenerative diseases and aging, changes in the 

immune system triggers an amplification of the initial immune response and consequently a 

shift towards a pro-inflammatory immune microenvironment resulting in neuronal cell death 

and ultimately chronic neurodegeneration (Hickman et al., 2018).  

Within this context, modulation of neuroinflammatory cytokine networks has emerged as an 

appealing strategy aiming to halt, or at least slow down, the induction and progression of 

neurodegenerative diseases. The identification of target macromolecules and the search for 

drugs able to modulate neuroinflammation is of central importance in the development of 

therapeutics for neuroinflammation-associated neurodegenerative diseases. To date, however, 

few small molecules with promising in vivo efficacy to modulate neuroinflammation-

associated effects were developed. This is mainly due to unexpected side effects by targeting 
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peripheral inflammation responses rather than being selective to glia-associated mediators 

and pathways that prevail in CNS-inflammation. 

1.1.1. Neuroinflammation:  a Yin and Yang (dys)harmony 

Traditionally, the brain has been considered an immuno-privileged system, derived from the 

presence of the blood-brain barrier (BBB) and the apparent inability to elicit immune responses 

against danger signals originating within the CNS. However, throughout the years, it has 

become clear that this immune-privileged status of the CNS is not as solid as it might be, as it 

is deeply interconnected with the peripheral inflammatory responses, towards the ultimate 

goal of protecting and preserving the integrity of the CNS (Lucin and Wyss-Coray, 2009). 

Importantly, the complex web of molecular connections and interactions that prevail between 

the BBB cellular machinery (astrocytes, pericytes, and endothelial cells), the CNS 

“housekeeping” cells (microglia, astrocytes and oligodendrocytes) and the peripheral immune 

cells, are critical for the regulation of neuroinflammatory responses. In this sense, 

neuroinflammation is a coordinated cell-mediated immune response to damaged nervous 

tissues, stimulated by factors such as the normal aging process, environmental factors, trauma, 

stroke, diabetes, infections, toxins and drugs. This process is driven primarily by microglia 

activation, leading to an increased expression of inflammation-related miRNAs (inflamma-

miRs), secretion of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6, tumour 

necrosis factor (TNF)-α, the high mobility group box protein 1 (HMGB1), free radicals and 

reactive oxygen species (ROS), and release of small extracellular vesicles, usually designated 

as exosomes. To re-establish normal levels, microglia also releases several anti-inflammatory 

and neuroprotective agents such as IL-4, IL-13, IL-10 and transforming growth factor (TGF)-β 

(Sochocka et al., 2017; Guzman-Martinez et al., 2019). Notably, all these components summon, 

amplify, spark, calm, and transform one another, endowing CNS with an absurdly intricate 

network of cells and molecules able to promote and maintain homeostasis. 

However, just as the CNS immunity holds the “tools” to repair and protect the brain, glial cells 

can also become overstimulated. When that happens, there is a shift toward more reactive glia 

phenotypes, resulting in an elevated expression and release of pro-inflammatory cytokines 

and ROS, together with reduced expression and release of molecules involved in reparative 

processes, such anti-inflammatory cytokines. In fact, this persistent activation of the immune 

system, mediated by microglia and astrocytes, alongside the periphery-to-CNS inflammatory 

crosstalk, has been implicated in a wide range of CNS diseases, including classic 

neuroinflammatory disorders like multiple sclerosis and neurodegenerative diseases such as 

AD, PD or ALS, and neuropsychiatric disorders, as depression and schizophrenia (Brambilla, 

2019).  A summary of the most well-known neuroinflammation-associated diseases and 

related conditions is provided in Table I.1. 
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Table I. 1 - Aetiology and immune profile of representative examples of neuroinflammatory conditions. 

Disease 
Aetiology-based 

proposal 
Innate immune response 

Adaptive immune 

response 
References 

AD 

β-amyloid 

(amyloid plaques) 

Tau 

(neurofibrillary 

tangles) 

↑ microgliosis and 

astrogliosis 

↑TNF‐α ↑IL-1β ↑IL‐6 

↑IFN‐γ ↑IL‐10 

↑complement 

↑chemokines 

↑NLRP3 

↑TLRs 

↑antibody and T‐

cell response 

(Blum-Degena et 

al., 1995; 

Monsonego et al., 

2003; Heneka et 

al., 2013; 

Brosseron et al., 

2014; Wu et al., 

2015; D’Anna et 

al., 2017) 

PD 

α-synuclein intra-

neuronal 

inclusions 

↑microgliosis and astrogliosis 

↑TNF‐α ↑IL‐1β ↑IL‐6 

↑IFN‐γ ↑IL‐10 

↑complement 

↑chemokines 

↑NLRP3 

↑TLRs 

↑antibody and T‐

cell response 

(Reale et al., 2009; 

Qin et al., 2016; Li 

et al., 2018; 

Tansey and 

Romero‐Ramos, 

2018; Anderson et 

al., 2021) 

ALS 

Genetic 

mutations  

Sporadic nature 

↑microgliosis and astrogliosis 

↑TNF‐α ↑IL-1β ↑IL‐6 

↑IL-8 

↑IFN‐γ 

↑S100B 

↑NLRP3 

↑chemokines 

↑ROS 

↑CD4+, ↑CD8+ T‐

cells 

(Kamo et al., 

1987; Migheli et 

al., 1999; Johann 

et al., 2015; 

Gustafson et al., 

2017; Hu et al., 

2017; Jin et al., 

2020) 

MS 
Autoimmune 

Viral 

↑microgliosis and astrogliosis 

↑TNF‐α ↑IL-1β ↑IL‐6 

↑S100B 

↑NLRP3 

↑ROS 

↑Heat Shock 

Proteins 

↑neurotrophins 

↑antibody and T‐

cell response 

 (Stelmasiak et al., 

2000; Barateiro et 

al., 2016; Burm et 

al., 2016; Barros 

and Fernandes, 

2021) 

HD Huntingtin 

↑microgliosis 

↑TNF‐α ↑IL-1β and ↑IL‐6  

↑IL‐10 

↑chemokines 

↑ROS 

Not reported 

(Björkqvist et al., 

2008; Silvestroni 

et al., 2009; 

Labadorf et al., 

2015) 

Depression Multifactorial 

↑microgliosis  

↑TNF‐α ↑IL-1β and ↑IL‐6 

↑chemokines 

↑ROS 

↑T‐regulatory cell 

response 

(Liu et al., 2012; 

Brites and 

Fernandes, 2015; 

Ng et al., 2018; 

Patas et al., 2018) 

Ageing Natural event 

↑glia senescence 

↑pro‐inflammatory  

cytokines 

↑ROS 

↓Natural Killer cell response 

↓T‐cells 

(Brites, 2015; 

Whiting et al., 

2015; Lee et al., 

2017) 

Table abbreviations: Alzheimer’s disease (AD); Parkinson’s disease (PD); amyotrophic lateral sclerosis (ALS); multiple 

sclerosis (MS); Huntington’s disease (HD); interleukin-1β (IL-1β); interleukin-6 (IL-6); tumour necrosis factor-α (TNF‐α); 

interleukin-8 (IL-8); interleukin-10 (IL-10); S100 calcium-binding protein B (S100B); interferon-γ (IFN‐γ); NLR family pyrin 

domain containing 3 (NLRP3); reactive oxygen species (ROS); toll-like receptors (TLRs). 

Adapted from Stephenson et al., 2018 
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One of the most well-known examples of a disease featuring neuroinflammation is AD, a 

progressive neurodegenerative age-associated condition accounting for 60 to 70% of the 

estimated 50 million people globally who suffer with dementia (Livingston et al., 2020). The 

pathogenesis of AD requires the contribution of multiple factors, of which two have been 

considered the main hallmarks: the presence of amyloid-β-peptide (Aβ) plaques and 

neurofibrillary tangles (aggregates of hyperphosphorylated tau protein) in the brain. 

However, it has been reported for decades that the brains of AD patients present signs of a 

persistent inflammation response, leading people to question whether AD leads to 

inflammation or inflammation leads to AD. Only more recently, in parallel with the 

exponential growth of epidemiological and genetic linkage data regarding microglial and 

astrocytic neurobiology, it was recognized that the immunological mechanisms are active 

players in the onset and progression of AD pathophysiology (Metcalfe and Figueiredo-Pereira, 

2010; Heneka et al., 2015; Heppner et al., 2015). Essentially, activated microglia and astrocytes 

(albeit in a lower fashion) secrete a variety of inflammatory mediators (pro-inflammatory 

cytokines, prostaglandins, free radicals and complement system), but do it so in an 

exaggerated and chronic manner, leading to neuroinflammation and neurodegeneration in a 

vicious cycle, which drives AD pathogenesis. Indeed, these cells surround amyloid plaques 

and react to Aβ with a pro-inflammatory phenotype endowed by cytokine expression (e.g., IL-

1β, IL-6, TNF-α) that may initially limit amyloidosis but ultimately becomes exacerbated and 

neurotoxic. The presence of activated microglia near amyloid plaques suggests that Aβ 

accumulation may trigger a persistent microglial activation (Mizuno, 2012; Heppner et al., 

2015; Leng and Edison, 2020). Recently, a statistical analysis of human post-mortem cortex 

conducted by Felski et al. estimated that activated microglia interaction with Aβ plaques leads 

to increased accumulation of tau pathology and subsequent cognitive decline, positioning 

tangle pathology downstream of morphologically activated microglia (Felsky et al., 2019). 

Among the many inflammatory pathways implicated in the disease, signalling through IL-1β 

reportedly worsens AD pathogenesis (Sciacca et al., 2003; Kitazawa et al., 2011). At the 

molecular level, IL-1β is regulated by the NLR family pyrin domain containing 3 (NLRP3) 

inflammasome, a central hub for cytokine production that initiates downstream inflammatory 

cascades in response to endogenous danger signals (Figure I.1). Upon stimulation, this 

inflammasome assembles into a multiprotein complex, activating the proteolytic processing of 

precursor proteins, leading to the biological active forms of IL-1β and IL-18, two important 

pro-inflammatory mediators which are significantly increased in AD brains (Licastro et al., 

2000; Heneka et al., 2013; Italiani et al., 2018; Paik et al., 2021). 
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Figure I. 1 - Mechanism of NLRP3 activation upon cellular stress. First a priming signal, i.e., pathogen- or damage-

associated molecular patterns (PAMPs/DAMPs) are recognized by tumour necrosis factor receptors (TNFRs), 

interleukin-1 receptor family members (ILRs) or toll-like receptors (TLRs), leading to the activation of the 

transcription factor nuclear factor-kappa B (NF-κB) and subsequent upregulation of NLR family pyrin domain 

containing 3 (NLRP3), pro-interleukin-1β (pro-IL-1β) and pro-interleukin-18 (pro-IL-18). Structurally, the NLRP3 

protein contains a pyrin domain (PYD), and the ASC (the adaptor molecule apoptosis-associated speck-like protein) 

is formed by PYD and caspase recruitment domain (CARD) domains. Upon activation, the NLRP3 protein interacts 

with ASC via PYD, and the CARD domain of ASC recruits the CARD domain of pro-caspase-1 to form NLRP3–

ASC–pro-caspase-1 complex. This assembly leads to the activation of caspase-1 (casp-1), which cleaves inactive pro-

IL-1β and pro-IL-18 into active pro-inflammatory IL-1β and IL-18 cytokines, thereby activating inflammatory 

pathways. The activated inflammasome is also involved in an inflammatory form of cell death termed pyroptosis, 

as casp-1 is implicated in the cleavage of the C-terminal domain of Gasdermin D, which forms pores in the plasma 

membrane, releasing the cellular content into the extracellular environment and, consequently, increasing 

inflammation (Adapted from Zhou et al., 2016; Paik et al., 2021). 

In parallel, other studies have been undertaken to understand the complex immune 

mechanisms and identify potential neuroinflammatory biomarkers or novel therapeutic 

targets in AD. For instance, Heneka et al. observed a significant reduction in AD symptom 

severity in vivo upon NLRP3 gene deficiency in APP/PS1 mice, and concluded that Aβ-induced 

activation of the microglial NLRP3 inflammasome may boost AD progression (Heneka et al., 

2013). More recently, the authors demonstrated a direct link between NLRP3 inflammasome 

activation and tau aggregation and pathology (Ising et al., 2019). In addition to the NLRP3 

gene, genome-wide association studies (GWAS) have identified rare structural variants of key 

protein-coding genes relevant to microglial function and inflammation, including TREM2, 

PLCG2, ABI3, CD33 and CR1, considered to be risk factors for AD (Guerreiro et al., 2013; 

Durrenberger et al., 2015; Jansen et al., 2019). 
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Chronic neuroinflammation is also implicated in PD, the second most common progressive 

neurodegenerative disorder. The core of PD is characteristically ascribed to the accumulation 

of aggregated forms of misfolded α-synuclein (Lewy bodies) in the substantia nigra area of the 

brain. These abnormal protein aggregates have been deemed as a critical factor responsible for 

cellular homeostasis imbalance and progressive degeneration of dopaminergic neurons. 

However, although these molecular mechanisms underlying α-synuclein propagation in PD 

still remain elusive, the involvement of numerous innate and adaptive inflammatory processes 

in the brain and in the periphery of PD patients is increasingly recognized (Hirsch and Hunot, 

2009; Troncoso-Escudero et al., 2018). McGeer et al. first reported the presence of large 

numbers of activated microglial cells in the brains of patients with PD, at post-mortem 

(McGeer et al., 1988). Hereafter, further post-mortem and in vivo imaging studies have 

confirmed the involvement of microglia in PD (Barkholt et al., 2012; Béraud et al., 2013). Also, 

a relationship between neuroinflammation and α-synuclein has been observed, as the 

overexpression of this peptide promote microglia polarization toward pro-inflammatory 

phenotypes. More recently, some studies have established a link between α-synuclein-specific 

T cells and cytotoxic immune responses in preclinical and early motor PD (Sulzer et al., 2017; 

Lindestam Arlehamn et al., 2020). Importantly, several reports have described up-regulated 

expression of major histocompatibility complex (MHC), T-lymphocyte infiltration and 

increased levels of inflammatory factors such as TNF-α, interferon-γ (IFN-γ), epidermal 

growth factor (EGF), TGF-α, TGF-β, IL-1β, IL-6, IL-2, inducible nitric oxide synthase (iNOS) 

and free radicals in the striatum and substantia nigra of PD patients (Mogi et al., 1994; Vawter 

et al., 1996; Vroon et al., 2007; Karpenko et al., 2018). 

This tangled network of cytokines and immune molecules, microglial activation and sustained 

neuroinflammation emerge also as a prominent feature in ALS. Fundamentally, this non-cell-

autonomous disease is characterized by motor neuron degeneration leading to progressive 

muscle weakness, paralysis and ultimately death (Lobsiger and Cleveland, 2007; McCauley 

and Baloh, 2019). Mutations in about a dozen of genes had already been identified as risk 

factors for ALS in humans. Of these, the main ones are the Cu, Zn superoxide dismutase 1 (SOD1), 

TAR DNA binding protein (TDP-43), fused in sarcoma (FUS) and chromosome 9 open reading frame 

72 (C9orf72), responsible for 5-10% of ALS cases. The remaining 90–95% of ALS are sporadic 

in nature meaning there is no known cause or mechanism for the disease. Amongst the several 

intrinsic mechanisms proposed for neuronal death in ALS, the involvement of microgliosis 

and astrogliosis is now believed to be essential in the disease onset and/or progression 

(Yamanaka et al., 2008; Geloso et al., 2017). Indeed, a complex pathological interplay subsists 

between motor neurons and neighbouring glia at an early stage of the disease, long before 

neuronal cell death, and the degree of inflammatory responses correlates with disease 

progression (McCauley and Baloh, 2019). For instance, in SOD1 transgenic mouse models, 
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activated microglia were shown to increase their number in the spinal cord over the course of 

ALS, moving between protective (clearance) and damaging (persistent neuroinflammation) 

roles (Gerber et al., 2012). The activation of astrocytes and microglia is heterogeneous and 

brain-region-specific, still, it is plausible that both cells shift at a pre-onset phase to a more 

neuroprotective profile, to help mitigate tissue damage and restore homeostasis (Zhao et al., 

2013). In contrast, during ALS slowly progressing phase, persistent microglial expression and 

secretion of pro-inflammatory markers such as IL-1β, IL-6, TNF-α, iNOS, cyclooxygenase-2 

(COX-2) (Maihofner et al., 2003), as well as NLRP3 inflammasome (Deora et al., 2020), leads to 

neuronal dysfunction, contributing to disease progression. Several studies have reported 

dysregulated cytokine profiles in the cerebrospinal fluid (CSF) and serum of ALS patients 

during disease progression (Martínez et al., 2017; Mishra et al., 2017). In parallel, the 

dysregulation of miRNAs, namely miR-124, miR-146a and miR-155, has also been shown to 

influence the pathobiology of ALS (Parisi et al., 2013; Cunha et al., 2017; Barbosa et al., 2021; 

Vaz et al., 2021). 

Collectively, the neuroinflammatory landscape in these CNS diseases holds up the notion that 

the overstimulation of the immune response is a major determinant in the pathophysiology of 

these diseases. Three main factors appear to be key across all the cited diseases, in many 

respects complementary in nature: i) cytokines, whether in a damaging or protective capacity 

(or both) are involved in the different disease stages, holding pleiotropic and systemic effects, 

and displaying variations in number and phenotypic features on all cell types; ii) glial cell 

activation is an early and persistent feature in the course of the disease, whose phenotype and 

function may change over time; iii) a whole constellation of neuron-glia interactions sustain 

and propagate the neuroinflammatory cascade (Brambilla, 2019).  

Although our full understanding on the contribution of the immune system to 

neurodegenerative disorders still remain to be elucidated, several reviews can be found in the 

literature providing a thorough overview of neuroinflammation molecular pathophysiology 

(Brites and Vaz, 2014; Heppner et al., 2015; Troncoso-Escudero et al., 2018). 

1.1.2. Microglia: the key immune cells at the crux of neuroinflammation 

For a tiny cell type comprising approximately 5 to 15% of the total cells in the brain, currently 

there seems to be no room for doubt that microglia have an outsize impact on 

neuroinflammation and neurodegeneration (Frost and Schafer, 2016; Tavares‐Gomes et al., 

2021). These cells are found ubiquitously throughout the brain and spinal cord, and are 

thought to have hematopoietic origin, being derived from myeloid precursor cells from yolk 

sac, seeding the CNS very early during embryonic development (Butovsky and Weiner, 2018). 

Interestingly, the first mentions of this type of glial cells can be traced back to Frank Nissl in 
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1899, who used the term stäbchenzellen or rod cells to describe them (Nissl, 1899), and Alois 

Alzheimer in 1907, reporting the presence of large deposits of glia cells in the vicinity of the 

Aβ plaques (Alzheimer, 1907). Nonetheless, Río-Hortega was the first to provide a clear 

identification of microglia in the brain, alongside a description of some of their functional 

features such as migration and phagocytosis (Rio-Hortega, 1939). From then on, it was 

recognized that microglia function extends beyond its scavenger role onto a highly dynamic 

and multipurpose immune cell population, playing a fundamental role in the maintenance of 

CNS homeostasis. 

Importantly, the idiosyncrasies and peculiarities that characterize microglia as the most 

prominent players in maintaining normal CNS function are owed to their phenotypical and 

functional versatility (Figure I.2). Indeed, in a non-stimulated state (resting or surveillance) 

microglia are constantly sensing their close environment with their long ramifications, 

whereas upon activation by an immune challenge, they undergo morphological changes to an 

amoeboid shape, shifting their gene expression pattern. Notably, this remarkable plasticity 

allows microglia to maintain and/or restore homeostasis, held by a carefully orchestrated 

ballet of processes like phagocytosis, cytokine production, antigen presentation and cell 

proliferation. Simultaneously, microglia are an important component in the protection and 

remodelling of synapse plasticity, and modulation of the activity and/or viability of astrocytes, 

oligodendrocytes, endothelial cells, and neurons (De Schepper et al., 2020). 

 

Figure I. 2 - Activation and polarization of microglia during neuroinflammation. In the steady-state, the 

amazingly mobile fine branches of ramified microglia provide extensive surveillance and show a rapid chemotactic 

response to immune challenges. Microglia interact with neurons and astrocytes and secrete neuroprotective factors 

such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), nerve growth factor (NGF) 
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and interleukin (IL)-10. However, these cells can acquire different activation states in response to specific stimuli. 

Following recognition of lipopolysaccharides (LPS), interferon-γ (IFN-γ), IL-1, aggregated amyloid-β or α-

synuclein, microglia shift to a pro-inflammatory phenotype, characterized by the upregulation of the major 

histocompatibility complex (MHC) class II, the release of pro-inflammatory cytokines, i.e., IL-1β, IL-18, IL-6, tumour 

necrosis factor (TNF)-α, transcription of pro-oxidant molecules including inducible nitric oxide synthase (iNOS) 

and cyclooxygenase-2 (COX-2), increased levels of miRNA (miR)-155 and downregulation of miR-124 and IL-10. 

The IFN-γ receptor (IFNGR) signalling increases iNOS expression. Activated microglia release both nitric oxide 

(NO) and reactive oxygen species (ROS) targeting damaged neurons or cells undergoing apoptosis. Toll-like 

receptors (TLRs), via high mobility group box protein 1 (HMGB1), LPS or misfolded proteins, tumour necrosis 

factor receptors (TNFRs) and interleukin-1 receptor family members (ILRs) signalling pathways drive nuclear 

factor-kappa B (NF-κB) activation, resulting in the expression of cytokines as well as of the NLR family pyrin 

domain containing 3 (NLRP3). Activation of the NLRP3 inflammasome in microglia induces IL-1β and IL-18 

maturation. In turn, the release of these cytokines promotes astrogliosis and neuronal dysfunction, creating a 

positive feedback loop that drives additional cytokine production and primes local microglia for inflammasome 

activation. When activated alternatively by IL-4, transforming growth factor (TGF)-β, or IL-13 microglia attain anti-

inflammatory/homeostatic states prompting neuroprotection through secretion of IL-4, IL-10 and TGF-β, as well as 

upregulation of IGF-1, arginase 1 (Arg1), chitinase 3-like protein 3 (Ym1), found in inflammatory zone (Fizz1) and 

interleukin-1 receptor antagonist (IL-1Ra). These phenotypes also show a downregulation of the pro-inflammatory 

miR-155 expression and an upregulation of miR-124. All the above-mentioned mediators are differently expressed 

in microglia in accordance with their phenotype upon activation, which in turn exhibit a wide spectrum of 

possibilities depending on stimuli. (The two represented microglia phenotypes are a simplified view of the different 

activation profiles) 

However, microglia can also promote neuronal dysfunction and degeneration in case of 

prolonged or chronic stimulation, losing gradually their functionality. Under pathologic 

conditions, such as exposure to misfolded proteins (as occurs in many neurodegenerative 

disorders), infections, or CNS injury, an uncontrolled and amplified neuroinflammatory 

response can lead to detrimental outcomes. Indeed, persistent neuroinflammation can impair 

the ability of microglia to clear debris, contributing to synaptic loss and neuronal degeneration, 

in a vicious cycle (Hickman et al., 2018). 

In recent years, a dramatic increase in our understanding of the crosstalk between microglia 

and other cell types in the CNS and periphery has been witnessed, revealing their potential as 

therapeutic targets. As such, targeting the dark side of microglia have been gaining 

momentum for the modulation of neuroinflammation (Priller and Prinz, 2019). 

1.1.2.1. Microglia homeostasis: a finely tuned mechanism 

Microglia have been firmly established as a key cellular component in brain development and 

homeostasis. Microglia-driven neuroimmune responses are shaped by a whole array of 

interactions within the CNS cellular microenvironment. These communications involve a 

plethora of ligand (commonly termed signals) and receptor interactions, resulting in tightly 

regulated biological functions, including cell migration, phagocytosis, the induction of 
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acquired immunity, and secretion of factors including cytokines, prostaglandins, ROS and 

growth factors. Fundamentally, the multifunctional roles of microglia are designed to sense 

disturbances and elicit appropriate microglial responses to maintain homeostasis (De 

Schepper et al., 2020). 

Gene expression profiling of microglia showcased diverse phenotypes exhibiting multifaceted 

roles and significant spatiotemporal variation, dependent on specific brain environments, in 

development and immune modulation (Grabert et al., 2016). Indeed, these cells seem to 

display a spectrum of cellular forms that express a homeostatic core signature and others that 

appear to assume a more pro-inflammatory profile. Overlying this diversity, microglia are also 

dynamic, and may switch between different states (physical and/or biochemical changes) in 

response to different stimuli. Several phenotypes have been already characterized in 

conditions such as aging or disease (Caldeira et al., 2014; Keren-Shaul et al., 2017; Olah et al., 

2020). 

Under normal circumstances, microglia display a more uniformly quiescent and “silent” 

phenotype, spaced throughout the brain, processes extended, actively patrolling their 

microenvironment for subtle changes or the presence of pathogens. In this state, microglial 

cells strongly sense and regulate the proper function of the neuronal networks, ensuring CNS 

homeostasis and function (Nimmerjahn, 2005). Microglia produce physiological levels of pro- 

and anti-inflammatory cytokines such as IL-1β, IL-10 and TNF-α, and various trophic factors 

and synaptogenic signals, which are involved in synaptic plasticity, learning and memory 

(Blank and Prinz, 2013; Donzis and Tronson, 2014). Interestingly, several reports suggest that 

the chemokine C-X3-C motif ligand 1 (CX3CL1) and CD200, expressed by neurons, interact 

with microglia CX3C chemokine receptor 1 (CX3CR1) and CD200 receptor, respectively, 

keeping microglia in this steady-state, acting also as fundamental players in synaptic pruning, 

synaptic plasticity and adult neurogenesis (Cardona et al., 2006; Shrivastava et al., 2012). 

Additionally, microglia secrete TGF-β, insulin growth factor 1 (IGF-1) and brain-derived 

neurotrophic factor (BDNF), promoting the differentiation and survival of neurons. Besides 

these beneficial roles on neuronal activity, microglia also promote neuronal death via soluble 

factors, such as nerve growth factor (NGF) and ROS (Butovsky and Weiner, 2018). 

Microglia ability to detect potential stimuli that disturb CNS homeostasis is intimately linked 

to the expression of a hallmark cluster of genes (sensome) and their corresponding proteins, 

known as pattern recognition receptors (PRRs) (Hickman et al., 2013). These include toll-like 

receptors (TLRs), inflammasome-forming nucleotide-binding oligomerization domain (nod)-

like receptors (NLRs), and triggering receptor expressed on myeloid cells (TREMs), among 

others. Importantly, they recognize and bind danger-associated molecular patterns (DAMPs, 

e.g., Aβ or α-synuclein) and pathogen-associated molecular patterns (PAMPs, e.g., virus or 
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bacteria, such as lipopolysaccharides), sparking microglial activation. As a result, a cascade of 

molecular events occurs, leading to either a pro- or anti-inflammatory response, promoting 

either neuroprotection or neuronal damage. Moreover, microglia suffer visible morphological 

changes, with a clear increase in amoeboid microglial density, acquiring specific functions, 

including phagocytosis, and secretion of cytokines, chemokines, ROS and trophic factors (De 

Schepper et al., 2020). In the brain, this neuroinflammatory response is of paramount 

importance to protect the CNS. 

The binary M1/M2 classification of pro-inflammatory and anti-inflammatory microglia have 

classically been used to distinguish and characterize the phenotypic predilections of such cells. 

The implication of such dichotomy was that the physiological roles of macrophages were 

sufficiently well understood to extrapolate it to microglia, without respect to the dissimilarities 

between these two myeloid populations. Currently, there is a broad consensus on the 

oversimplification and limited nature of this classification scheme (Ransohoff, 2016). 

Accordingly, microglia exist in a continuum of transcriptional states combined with tightly 

packed networks of separate expression profiles, likely based on their exposure to different 

stimuli. Activation of microglia results in increased expression and production of pro-

inflammatory cytokines (e.g. IL-12, IL-6, IL-1β, TNF-α), oxidative metabolites (ROS and iNOS) 

and inflammatory-related microRNAs (miRNA-155, miRNA-27b, miRNA-326). Moreover, 

there is also increased production of chemokines such as IL-8 and monocyte chemoattractant 

protein 1 (MCP-1), which can recruit other microglia and peripheral macrophages to the injury 

site. Oppositely, it is now known that microglia adopt a more anti-inflammatory/homeostatic 

phenotype that counterbalances and resolves the preceding pro-inflammatory response. This 

shift toward an anti-inflammatory milieu is characterized by the expression of anti-

inflammatory markers such as IL-4, IL-10, IL-13, IL-1Ra, TGF-β, arginase 1 (Arg1), IGF-1, 

chitinase 3-like protein 3 (Ym1), and anti-inflammatory miRNA-124, miRNA-146a, miRNA-21 

and miRNA-223 (Lee et al., 2002; Graeber et al., 2011; Brites, 2020). Their function is deeply 

involved in dampening neuroinflammation, by counteracting pro-inflammatory signalling 

pathways and inducing a regenerative/repairing polarization. 

These chameleon‐like behaviours of microglia are inherently synchronized with astrogliosis, 

as astrocytes are activated by a multitude of molecules (e.g., inflammatory cytokines) released 

by CNS damaged cells, neighbouring glia and infiltrating immune cells, particularly T-cells 

(Vainchtein and Molofsky, 2020). While the exact mechanisms by which astrocytes operates in 

the brain remain elusive, it is clear that these cells also release cytokines and chemokines, 

modulating the neuroinflammatory response and supporting homeostatic neuronal function. 

Recently, Damisah et al. revealed, through photochemically induced neuronal apoptosis, a 

precisely and complementary phagocytic response of both microglia and astrocytes in the 
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removal of apoptotic cells, that may be critical for maintaining brain homeostasis (Damisah et 

al., 2020). 

1.1.2.2. Microglial dysregulation in chronic neuroinflammation 

Under healthy conditions, microglia can deal with small deviations in homeostasis. However, 

under more severe and chronic conditions, an uncontrolled and sustained activation of 

microglia may lead to neurodegeneration. Indeed, microglia chronic activation by abnormal 

protein aggregates, such as Aβ and α-synuclein aggregates, or by lipopolysaccharide (LPS), or 

even injury, can drive microglial dysregulation, responding exaggeratedly to stimuli 

generating a strong pro-inflammatory microenvironment. In other words, activated microglia 

may act as a double-edged sword being either protective or detrimental, either by reducing in 

early phases the stimuli through increased phagocytosis, clearance and degradation, though 

the progressive accumulation of such immune challenge may promote a chronic stimulation 

of microglia, resulting in a low-grade pro-inflammatory status (Craft et al., 2005; Hickman et 

al., 2018). 

Aging and aging-related neurodegenerative diseases are associated with signs of chronic 

neuroinflammation. In such conditions, microglia display reduced motility and impaired 

phagocytosis, thereby altering their ability to mount a normal response to injury, releasing 

dysregulated quantities of pro-inflammatory cytokines and ROS. For instance, in vitro 

administration of Aβ to cultured CHME3 microglial cell line influenced their phagocytic 

properties, inducing an increased expression of key innate-associated and pro-inflammatory 

markers such as IL-1R1 and iNOS, microglial cell death, and reduced secretion of BDNF 

(Hjorth et al., 2010). In microglia, TLRs bind fibrillary Aβ and are essential for microglial 

activation, resulting in the generation of archetypical pro-inflammatory cytokines (TNF-α, IL-

1β, IL-6, IL-12, IL-23), chemokines and stress-associated neurotoxic factors (ROS, iNOS) (Jana 

et al., 2008; Reed-Geaghan et al., 2009). These inflammatory mediators may further enhance 

their production by acting in an autocrine manner or by paracrine signalling and activation of 

astrocytes. 

Irrefutably, chronic neuroinflammation mediated by microglial cells is a major 

pathophysiological contributor to neuronal dysfunction. Activated microglia, together with 

reactive astrocytes, pump out tons of inflammatory products sparking widespread 

neuroinflammation and neurodegeneration. Importantly, a key central regulator of immunity 

has been postulated to play a central role in these microglia-mediated neuroinflammatory 

responses, the pro-inflammatory transcription factor nuclear factor-kappa B (NF-κB) p65/p50 

heterodimer. Multiple receptors converge on the canonical NF-κB signalling activation such 

as tumour necrosis factor receptors (TNFRs) and interleukin-1 receptor family members 
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(ILRs), TLRs or ROS. This process is known to trigger the translocation of NF-κB into the 

nucleus and the expression of pro-inflammatory genes, involving the activation of the NLRP3 

inflammasome. Noteworthy, enhanced microglial NF-κB inflammatory activity have been 

linked to neuroinflammation-related neurodegeneration in ALS, AD and PD (Frakes et al., 

2014; Ju Hwang et al., 2019; Bellucci et al., 2020). Zhang et al. reported in mice that the 

hypothalamic NF-κB activity changed over their lifespan. In this work, while activation of NF-

κB in hypothalamic neurons by IκB kinase-β (IκK-β) shortened the lifespan of mice alongside 

an accelerated aging status, delivery of IkBα, an NF-κB negative regulator, revealed a 

neuroprotective effect. The number of microglia exhibiting activated NF-κB was enhanced 

with age in the hypothalamus, overproducing pro-inflammatory cytokines such as TNF-α. In 

contrast, inhibiting microglial NF-κB activation abolished the age-induced increase of 

hypothalamic microglia and also prevented microglial TNF-α expression (Zhang et al., 2013). 

With such example in mind, it is clear that the aberrant activation of the NF-κB cascade amplify 

pro-inflammatory signals and contribute to chronic and progressive neuronal loss. 

Importantly, understanding the homeostatic balance of molecular interactions between 

microglia, neurons and astrocytes, as well as establishing correlations between certain 

microglial phenotypes and some diseases is of utmost significance to get a more detailed 

foundation of the roles of microglia in neurodegeneration. Moreover, the elucidation and 

characterization of microglial activation profiles can also shed light on the "best/ideal" windows 

of opportunity to slow neuroinflammation-associated neurodegeneration processes. 

1.1.2.3. Microglial modulation as a pharmacological strategy in 

neurodegenerative diseases 

Microglia are positioned at the “epicentre” of neuroinflammation and consequently, 

neurodegeneration and aging processes. In the past few years, in parallel with an increased 

understanding of microglial biology, a major focus and effort has shifted to microglia, and in 

particular to disease-associated microglia (DAM) phenotype as a major perpetrator of 

neurodegenerative diseases (Keren-Shaul et al., 2017; Deczkowska et al., 2018). In this regard, 

the therapeutic modulation of microglia-induced inflammation in the CNS is right in the 

spotlight of the pharmaceutical research field, being widely pursued. Multiple strategies have 

been employed to find new druggable targets and active compounds for microglia modulation 

and, consequently neuroinflammation, creating a pipeline of potential therapeutics. In Table 

I.2 it is highlighted ten candidates that are object of various drug discovery stages, ranging 

from early discovery to Phase 3 studies. 
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Table I. 2 - Neuroinflammation-targeted pipeline of potential therapeutics. 

Representative 

compound 
Type 

Phase of 

development 

Discovery 

method 
MOA/Target Activity 

ALZT-OP1 

(cromolyn with 

ibuprofen) 

(Zhang et al., 

2018) 

Combination 

Small 

Molecule 

Repurposed - 

Phase 3 
Phenotypic 

Unknown, 

possibly via 

histamine. 

COX-2  

Cromolyn inhibits 

Aβ and supress 

cytokine release; 

ibuprofen 

dampens the 

neuroinflammatory 

response 

AL002 

(Wang et al., 

2020) 

Monoclonal 

antibody 
Phase 1 

Target-

based 

TREM2 

receptors 

Promote microglial 

clearance of 

amyloid and other 

toxic proteins 

Dapansutrile 

(Lonnemann et 

al., 2020) 

Small 

molecule 
Preclinical Phenotypic 

NLRP3 

inflammasome 

Prevents the 

activation of 

caspase-1 and the 

maturation and 

release of IL-1β 

DAPPD 

(Park et al., 2019) 

Small 

molecule 
Preclinical Phenotypic 

Unknown, 

possibly 

NLRP3 

inflammasome 

Promote microglial 

phagocytosis, 

lowering pro-

inflammatory 

signalling 

GV-971 

(Xiao et al., 2021) 

Small 

molecule 
Phase 3 Phenotypic Unknown 

Restore the gut 

microbial profile; 

Reduced microglial 

activation and 

decreased cytokine 

release 

Inzomelid 

(MCC950-related 

compound) 

(Coll et al., 2015) 

Small 

molecule 
Phase 1 Phenotypic 

NLRP3 

inflammasome 

Inhibits NLRP3-

dependent ASC 

oligomerization 

Montelukast 

(Lai et al., 2014) 

Small 

molecule 

Repurposed - 

Phase 2 

Target-

based 

Leukotriene D4 

receptor 

antagonist 

Attenuation of 

microglial 

activation and p38 

MAPK expression. 

MW-189 

(Van Eldik et al., 

2020) 

Small 

molecule 
Phase 1 Phenotypic Unknown 

Reduction of glial 

pro-inflammatory 

cytokine 

overproduction 

Neflamapimod 

(Duffy et al., 

2011) 

Small 

molecule 
Phase 2a 

Target-

based 

p38 mitogen 

activated 

protein kinase 

alpha 

Shifts microglial 

activation from a 

pro-inflammatory 

to a phagocytic 

state. Inhibition of 

key inflammatory 

mediators IL-1β 

and TNFα. 

Table abbreviations: amyloid-β (Aβ); cyclooxygenase-2 (COX-2); interleukin-1β (IL-1β); NLR family pyrin domain containing 

3 (NLRP3); the adaptor molecule apoptosis-associated speck-like protein (ASC); p38 mitogen-activated protein kinases (p38 

MAPK); Triggering receptor expressed on myeloid cells 2 (TREM2); tumour necrosis factor-α (TNF‐α). 
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As mentioned above, microglia, once activated, can acquire a wide repertoire of immune 

profiles, ranging from a pro-inflammatory to a homeostatic signature, and from an increased 

phagocytic phenotype to an anti-inflammatory polarized state. Several reports have shown 

that small molecules, through interaction with microglial proteins, can modulate microglial 

functional polarization or molecular signatures. These molecules can be categorized based on 

their target and microglial response, according to the following features: (i) compounds that 

decrease pro-inflammatory microglial responses; (ii) compounds that enhance reparative and 

anti-inflammatory microglial phenotypes; (iii) compounds that promote the transition of 

microglia from a pro-inflammatory to more homoeostatic/phagocytic phenotypes (Lan et al., 

2017). Interestingly, in these three categories two fundamentally different treatment strategies 

are being considered: searching of new molecules (novel chemical scaffolds) and repurposing 

existing drugs. 

Effective molecules that act on microglia to selectively turn down the pro-inflammatory 

microenvironment have been widely described (Figure I.3). Amongst them are fingolimod 

(approved for multiple sclerosis) (Aytan et al., 2016), deferoxamine (Zhang and He, 2017), 

minocycline (Kobayashi et al., 2013), pinocembrin (Zhou et al., 2015), resveratrol (Wiedemann 

et al., 2018), rifampicin (Acuña et al., 2019) and bioactive compounds extracted from various 

plants such as curcumin (Ghasemi et al., 2019) and rosmarinic acid (Lv et al., 2019). Waterson’s 

group developed a CNS-penetrant small molecule, MW-189, which selectively targets 

microglia supressing pro-inflammatory cytokine overproduction and their long-term 

neurotoxic effects (James et al., 2012). MW-189 just completed phase 1b trials and will enrol in 

phase 2 clinical trials for the treatment of patients with acute brain injuries such as traumatic 

brain injury or haemorrhagic stroke (Van Eldik et al., 2020). Meanwhile, Coll et al. reported 

that a sulfonylurea-containing compound, MCC950, was able to specifically inhibit NLRP3 

activation, in multiple NLRP3-dependent mouse models and in ex vivo samples from 

individuals with Muckle-Wells syndrome (Coll et al., 2015, 2019). More recently, Gordon et al. 

have shown that this compound, in multiple rodent PD models, reduced α-synuclein-

mediated microglial NLRP3 activation and downstream neuroinflammation, improving 

motor performance (Gordon et al., 2018). Together with other observations, this work supports 

the hypothesis that the modulation of the NLRP3 signalling network may represent a valuable 

therapeutic strategy for neurodegeneration. 
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Figure I. 3 - Chemical formulae of eight compounds that decrease the pro-inflammatory microglial response.  

Some molecules holding the ability of enhancing microglial anti-inflammatory phenotypes or 

inducing a microglial phenotype switching from pro-inflammatory to anti-inflammatory have 

also been reported (Figure I.4). Sinomenine, a compound found in a Chinese medicinal plant, 

Sinomenium acutum, was shown to reduce the levels of pro-inflammatory IL-1β, IL-6, TNF-α, 

and ROS, released by BV-2 microglia in vitro, and to increase the levels of the anti-

inflammatory mediators IL-10 and Arg1 in primary microglia exposed to erythrocyte lysate 

(Yang et al., 2014; Shi et al., 2016). Likewise, the loop diuretic drug, furosemide, inhibited the 

production of multiple pro-inflammatory biomarkers, including TNF-α, IL-6, NO, COX-2, and 

iNOS, in LPS-stimulated SIM-A9 mouse microglial cell line and promoted microglial 

phagocytosis and the expression of anti-inflammatory IL-1Ra and Arg1 (Wang et al., 2020). In 

a recent study, Park et al. described that N,N'-Diacetyl-p-phenylenediamine (DAPPD), a 
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simple synthetic molecule composed by a benzene ring with 2 acetamide groups at the para 

position, decreased inflammatory cytokine expression and promoted microglial Aβ 

phagocytosis in two mouse models of amyloidosis, by inhibiting the NF-κB pathway-

mediated activation of microglia through Aβ. Moreover, this acetaminophen derivative 

decreased the expression of NLRP3 and ASC, two members of the NLRP3 inflammasome 

complex. According to the authors, in the presence of DAPPD, microglia expressed more 

homeostatic and anti-inflammatory genes, such as IL-4, TGFB1, and ARG1, and less pro-

inflammatory markers, including IL-6, TNF-α and IL-1β (Park et al., 2019). Importantly, the 

examples here mentioned denote that instead of having different and specific targets, most 

compounds share common pathways and players involved in microglial activation and 

neuronal dysfunction.  

 

Figure I. 4 - Chemical formulae of three compounds that promote the transition of microglia from a pro-

inflammatory to a more homoeostatic/phagocytic state.  

From the pharmacological point of view, a critical aspect of potential microglia modulators is 

indeed the need to specifically target the DAM cells showing exacerbated pro-inflammatory 

states without downregulating homeostatic microglia or peripheral tissue macrophage 

populations. Unfortunately, microglia cannot be easily accessed in the CNS. The BBB, formed 

by a closely packed network of blood vessels, endothelial cells and pericytes, regulates the 

influx and efflux of molecules in the CNS compartment (Chow and Gu, 2015). This system 

constitutes an efficient barrier not only for toxins but also a wide range of therapeutic agents 

falling outside of the preferred zones for molecular weight, lipophilicity, and polar surface 

area (Mikitsh and Chacko, 2014). Hence, the intersection between selective small molecules 

targeting microglial neurotoxic phenotypes and the physicochemical properties required for 

CNS penetration is critical for development of efficacious strategies to modulate microglia-

induced neuroinflammation. 
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1.1.3. Target fishing within the neuroinflammation haystack 

The impetus for targeting neuroinflammation in neurodegenerative conditions arose as a 

result of epidemiological observations showing that individuals given some non-steroidal 

anti-inflammatory drugs (NSAIDs) seemed to be at a lower risk of developing AD than the 

general population (Breitner et al., 2011). Even though randomized clinical trials have failed 

to establish the efficacy of NSAIDs in either the primary prevention or the treatment of AD, 

they paved the way for several drug programs targeting harmful neuroinflammation and new 

discoveries emerging on promising drug targets. Indeed, as the neurodegeneration field 

branches out its therapeutics search beyond Aβ, tau, α-synuclein, some neuroinflammation 

players are showing glimmers of promise.  Over the last decade, a number of quite plausible 

targets for immunomodulation emerged from the shadows: (i) NLRP3, a cytosolic protein 

complex that assembles in response to cellular damage or infection, prompting the secretion 

of pro-inflammatory cytokines that can damage the CNS (Heneka et al., 2013); (ii) triggering 

receptor expressed in myeloid cells 2 (TREM2), a microglial surface receptor which promotes 

microglial phenotype switching and sustains microglial response to pathology (Shi and 

Holtzman, 2018); (iii) HMGB1 protein, an inflammatory factor released by astrocytes, 

microglia, and neurons that triggers neuroinflammation by stimulating multiple receptors, 

specifically TLR4 and receptor for advanced glycation end products (RAGE) (Takata et al., 

2004; Yang et al., 2020); and (iv) glycogen synthase kinase-3β (GSK-3β), expressed in astrocytes 

and microglia that regulates the production of inflammatory molecules and has been found at 

high levels in the brains of AD patients (Yuskaitis and Jope, 2009). These pathways may 

represent important targets to develop novel and effective disease-modifying treatments for 

the neuroinflammation-associated neurodegeneration processes. Unfortunately, to date, no 

effective therapeutics achieved approval, despite many studies showing their efficacy in 

mouse models. 

Neuroinflammation is an early feature of almost all neurodegenerative diseases, driven by 

many events apparently different but strongly dependent one on the other. Given the sheer 

complexity of neuroinflammation signalling networks, it is of utmost importance to compile 

evidence linking certain protein or peptide “players” to neuroinflammation, and that 

modulating the target would result in therapeutic benefit. Importantly, properties of a 

promising candidate target might include: (i) altered expression in neuroinflammatory-

associated diseases; (ii) confirmed role in the pathophysiology and exacerbation of 

neuroinflammation and/or is disease-modifying; (iii) genetic link between the target and 

inflammation; (iv) having a mechanistic link between dysregulated immune responses and 

neuronal dysfunction; and (v) demonstration of beneficial effects when modulated in an in 

vitro or (preferably) in vivo models of neuroinflammation (Biber et al., 2019). 
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One crucial aspect of target fishing is the druggability of the target (Owens, 2007). The concept 

of “druggability”, disclosing the intrinsic ability of a given genome/proteome to be targeted 

by a drug, is closely linked with the presence of a group of features sitting in a more or less 

concealed region of a protein target. The spatial arrangement of these (polar) features in a 

characteristic fashion is both required and responsible for the specific and strong (non-

covalent) binding of a ligand endowed with an appropriate arrangement of complementary 

features. When these features are lacking or are mostly nonpolar/hydrophobic, the target is 

often considered “undruggable”. Thus, an undruggable protein lacks potential binding sites 

in which a small molecule can bind, thereby meaning that a small molecule intervention with 

the protein would be extremely difficult if not impossible (Moll and Carotta, 2019). 

Considering the inherent risks of target fishing, in this project while seeking to identify key 

proteins involved in the neuroinflammatory landscape, suitable for targeting, specific criteria 

was considered: 

• Upstream/downstream position of the proteins in the neuroinflammatory signalling 

networks; 

• Availability of 3D structural data of the target, deposited in the Protein Data Bank (PDB) 

(Berman et al., 2000); 

• Known target modulators and its propensity to bind small organic molecules. 

• Correlations between the target and neuroinflammation highlighted and confirmed by 

experimental data. 

1.1.4. Interleukin-1 receptor type 1 (IL-1R1): the question-mark-

shaped target 

One of the most well-established group of cytokines capable of orchestrating inflammatory 

responses, by inducing the expression of pro-inflammatory molecules in both peripheral 

(PNS) and CNS environments is the IL-1 family. Within this group, the first interleukin ever 

purified, IL-1, is found in two distinct isoforms: IL-1α and IL-1β. It stands as a pleiotropic 

cytokine with multiple biological activities, far from restricted to promoting inflammation, 

including (i) development and maturation of immune cells, (ii) fever, (iii) regulation of insulin 

levels and lipid metabolism; (iv) and regulation of stress response through modulation of the 

hypothalamic-pituitary-adrenal (HPA) axis (Sims and Smith, 2010; Mantovani et al., 2019). The 

biological effects of IL-1α and IL-1β are mediated by binding to the IL-1 receptor type 1 (IL-

1R1). The IL-1/IL-1R1 signalling axis is essential to the activation and regulation of the immune 

response against PAMPS or DAMPS. Importantly, the IL-1 inflammatory cytokine has been 

shown to be upregulated in a wide range of human pathologies, ranging from monogenic 
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autoinflammatory diseases such as cryopyrin-associated periodic syndrome (CAPS) and 

familial Mediterranean fever (FMF), to rheumatoid arthritis, type 2 diabetes mellitus and 

neurodegenerative diseases (Dinarello and van der Meer, 2013). Hence, the regulatory role of 

IL-1R1 in the inflammatory cascades has attracted a lot of interest and attention in the drug 

discovery field since its discovery.  

The story of IL-1R1 unfolds in the early 1980s, even before molecular cloning and 

characterization of IL-1α and IL-1β, as scientists had already started to identify the receptors 

for these two cytokines. In 1985, the first biochemical characterization of an IL-1 receptor was 

published, identifying an approximately 80 kDa transmembrane molecule with high affinity 

to IL-1, predominantly expressed by T-lymphocytes and fibroblasts (Dower et al., 1985). Three 

years later, Sims and colleagues reported the genetic sequence of IL-1R1, clearly demonstrating 

both IL-1α and IL-1β use the same receptor to deliver their information (Sims et al., 1988).  In 

1991, the existence of a second IL-1 receptor, the IL‐1 receptor type 2 (IL-1R2), was recognized, 

a 66 kDa glycoprotein characterized by the lack of the intracellular domain (McMahan et al., 

1991). In about a year, in 1992, it became clear that IL-1R1 stimulated the NF-κB signalling 

pathway - the same pathway activated by TNF-α - while IL-1R2 did not, this one serving as an 

endogenous inhibitor of IL-1 (Stylianou et al., 1992). Also, it was confirmed that both receptors 

existed as soluble ectodomain forms, functioning as receptor-like decoys and thus, limiting IL-

1 activity (Symons et al., 1995).  

While current treatments for most CNS pathologies, arguably, hold limited efficacy, IL-1R1 

represents a worthwhile target in the search for neuroinflammation-associated CNS diseases 

therapeutics, due to its central role in neuroinflammation. Importantly, a growing body of 

evidence is showing that blocking the IL-1R1 signalling via pharmacologic or genetic means 

in different experimental models of said CNS diseases leads to reduced neuroinflammation 

and delayed disease progression (Wohleb et al., 2014; Newell et al., 2018; Yamanaka et al., 

2021). Still, while there is substantial body of research on IL-1R1, there have been no small 

molecule modulators reported to date. As such, our interest in human IL-1R1 as a model target 

is linked not only to its involvement in disease, but also to the many peculiarities that render 

it a particularly challenging target. 

1.1.4.1. The IL-1 family of ligands and receptors 

There are 11 members in the IL-1 cytokine family, including seven agonists (IL-1α, IL-1β, IL-

18, IL-33, IL-36α, IL-36β, and IL-36γ), three receptor antagonists (IL-1Ra, IL-36Ra, and IL-38), 

and one anti-inflammatory cytokine (IL-37). Importantly, these cytokines exert their effects 

through binding to a group of cell surface receptors, the interleukin-1 receptor (IL-1R) family 

members (Boraschi et al., 2018). The structural hallmark feature of this family consists in the 
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presence of immunoglobulin (Ig)-like domains in their extracellular ligand-binding region 

(Martin and Wesche, 2002; Ireland, 2008). Ig-like domains include 10 members of the IL-1R 

family: IL‐1R1, IL-1R2, the regulatory receptors ST2 (IL-1RL1) and the single immunoglobulin 

IL‐1R related molecule (SIGIRR) or IL-1R8, the IL‐18 receptor (IL-18R)α, the IL-36 receptor (IL-

1RL2), the co-receptors IL-1 receptor accessory protein (IL-1RAcP) and IL-18Rβ, the 

interleukin-1 receptor accessory protein-like 1 (IL-1RAPL1) and IL-1RAPL2 (Boraschi et al., 

2018; Dinarello, 2018; Fields et al., 2019). All members of this superfamily share a Toll/IL-1R 

homologous region (TIR) in the intracellular signalling domain, except IL-1R2 which only 

contains a short cytoplasmic tail, unable to induce intracellular response. This TIR domain is 

responsible for some shared downstream signalling mechanisms and cell activation, being 

heavily involved in the regulation of adaptive immune responses and maintaining 

homeostasis (Narayanan and Park, 2015; Toshchakov and Neuwald, 2020). 

Within the complex regulatory networks of IL-1 pathways, the soluble cytokines IL-1α and IL-

1β, despite only sharing 27% amino acid sequence homology, adopt similar 3D structures and 

interact with the same receptor, the IL-1R1. Instead of the typical ligand-induced receptor 

activation, IL-1R1 engages a heterotrimeric complex to initiate downstream signalling. 

Fundamentally, binding of the agonists IL-1α or IL-1β to the extracellular domain of IL-1R1 

(IL-1R1-ECD) triggers the recruitment of an accessory receptor, IL-1RAcP, resulting in a 

functional receptor complex that initiates IL-1R1 signalling cascades (Figure I.5) (Thomas et 

al., 2012; Günther et al., 2017). 

 

Figure I. 5 - An illustration of the IL-1β/IL-1R1/IL-1RAcP ternary complex. Binding of the IL-1 cytokine (coloured 

in pink) to the membrane-bound IL-1R1-ECD (coloured in green) recruits transmembrane IL-1RAcP (coloured in 

lime), initiating intracellular signalling via the TIR domains (coloured in blue). Both IL-1R1 and IL-1RAcP can 
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participate in the negative regulation of IL-1 signalling when cleaved to their soluble ECD forms. The lipid bilayer 

(cell membrane) is represented in yellow and transmembrane domains are coloured in red. The image was 

generated using imported VMD visualization states (Humphrey et al., 1996) uploaded in the Blender software 

(Kent, 2015). Figure abbreviations: IL-1, interleukin-1; IL-1R1, interleukin-1 receptor type 1; IL-1R1-ECD, extracellular 

domain of IL-1R1; IL-1RAcp, interleukin-1 receptor accessory protein; TIR domain, the toll-interleukin-1 receptor homology 

domain. 

The IL-1/IL-1R1/IL-1RAcP complex lead to the dimerization of the TIR domains of IL-1R1 and 

IL-1RAcP proteins, providing an anchor point for the recruitment of the myeloid 

differentiation primary response protein 88 (Myd88) (see Figure I.6). This protein-protein 

interaction sparks the recruitment of other signalling molecules such as the IL-1R-associated 

kinases (IRAKs) and TNF receptor-associated factor 6 (TRAF6) to the protein complex. 

Subsequently, multiple intracellular phosphorylation and ubiquitination processes culminate 

in the activation of the p38 mitogen-activated protein kinase (MAPK) pathway, the c-Jun N-

terminal kinase (JNK) and NF-κB. These changes result in the upregulation of mRNA 

transcription for inflammation-associated genes encoding IL-6, IL-8, iNOS, MCP-1, COX-2, 

IκBα, IL-1α and IL-1β (Sims and Smith, 2010; Cohen, 2014). Besides agonists IL-1α and IL-1β, 

IL-1R1 also binds an endogenous antagonist, IL-1Ra, which is not able to trigger IL-1R1 

association with IL-1RAcP, therefore competitively blocking IL-1 signalling through IL-1R1 

binding. IL-1R1 binds the three ligands, IL-1α, IL-1β, and IL-1Ra, with comparable affinities 

(0.1 to 1 nM Kd) (Dripps et al., 1991; Arend et al., 1998; Fields et al., 2019). 

 

Figure I. 6 - Schematic representation of interleukin-1 signalling. Upon binding of IL-1α/β to the extracellular 

domain of membrane-bound receptor IL-1R1, IL-1RAcP is recruited, and signalling is initiated by the interaction of 

the intracellular TIR domains of the two polypeptide chains. When IL-1Ra binds IL-1R1, the IL-1RAcP is not 
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recruited, thereby blocking signalling. Similarly, when IL-1β binds IL-1R2, no signalling occurs as IL-1R2 lacks a 

cytoplasmic TIR domain. IL-1 signalling may also be inhibited by soluble forms of the receptor, sIL-1R1 and sIL-

1R2, lacking the transmembrane and intracellular regions of the native form, binding both IL-1α, IL-1β and sIL-

1RAcP. Adapted from Martin et al., 2021. Figure abbreviations: IL-1, interleukin-1; IL-1R1, interleukin-1 receptor type 1; 

IL-1Ra, interleukin 1 receptor antagonist; IL-1RAcP, interleukin-1 receptor accessory protein; IL-1R2, interleukin-1 receptor 

type 2; TIR domain, the toll-interleukin-1 receptor homology domain; IRAK, interleukin-1 receptor-associated kinases; TRAF6, 

tumour necrosis factor receptor associated factor 6; TAK1, transforming growth factor-β-activated kinase 1; TAB, TAK1-

binding proteins; p38 MAPK, p38 mitogen-activated protein kinases; JNK., c-Jun N-terminal kinase; IKKβ, I kappa B kinase 

β; NF-κB, nuclear factor-kappa B; AP-1, activator protein 1. 

The biological activities of IL-1 are also modulated through soluble IL-1 receptors (sIL-1R) 

(Symons et al., 1991; Garlanda et al., 2013). Post-translational shedding of the extracellular Ig 

domains is the major mechanism responsible for the release of soluble IL-1 receptors (sIL-1R1, 

sIL-R2 and sIL-1RAcP) from cell membranes (Elzinga et al., 2009; Hayashida et al., 2010). In 

the extracellular environment, the soluble extracellular IL-1R1 domain (sIL-1R1) may capture 

IL-1 molecules in solution, acting as a decoy, preventing signal transduction. Furthermore, 

sIL-1R1 binds IL-1Ra, limiting the effects of this IL-1 receptor antagonist on the membrane-

bound receptor. Similarly, sIL-1R2 binds IL-1β with high affinity and recruits sIL-1RAcP, but 

does not initiate intracellular signalling, also acting as a decoy receptor. In contrast to sIL-1R1, 

IL-1Ra binds with weak affinity to this soluble decoy and both IL-1Ra and sIL-1R2 cooperate 

in the negative regulation of IL-1 (Smith et al., 2003; Schlüter et al., 2018). 

The amplifying power of this signalling pathway is remarkable. The interaction of IL-1 with 

transmembrane IL-1R1 catalyse the activity of numerous intracellular molecules with 

fundamental mechanisms of immunoregulation. The domino-like cascade of IL-1 activity and 

signal amplification continues to intensify at every step of the pathway. Importantly, positive 

modulators (receptor agonists) and negative modulators (receptor antagonists, decoy 

receptors) cooperate to regulate the inflammatory response. However, an uncontrolled and 

sustained activation of immune cells by abnormal protein aggregates, such as Aβ plaques and 

α-synuclein aggregates, may drive IL-1R1 signalling dysregulation, generating a strong pro-

inflammatory microenvironment, thus resulting in pathological outcomes. IL-1 signalling has 

been implicated in several inflammatory diseases, prompting the need to find druggable 

therapeutic targets within the components of the IL-1 inflammatory pathway (Garlanda et al., 

2013; Mantovani et al., 2019).  

1.1.4.2. Gene structure and expression 

Human IL-1R1 is encoded by the IL-1R1 gene, which is located on the long arm of chromosome 

2 at band 2q12. The gene spans approximately 74 kilobase pairs comprising 14 exons and three 

distinct promoters lacking both TATA and CAAT boxes. These three promoters (referred to as 

exons 1A, 1B and 1C) generate transcripts with different 5′-untranslated regions (Sims et al., 
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1995; Ye et al., 1996). While little is known about the regulatory mechanisms involving these 

promoters, their presence suggests that different cells may employ different IL-1R1 promoters 

to activate IL-1R1 transcription, allowing cell type-specific regulation of this receptor (Chen et 

al., 2009). Investigations on the genomic structures of the IL-1 receptor family suggest that IL-

1R1, IL-1R2, IL-1RAcP, IL-1RL1 (ST2), IL-18Rα, IL-1RL2 and IL-18Rβ derived from ancestral 

gene duplications of a common proto-IL-1R (Copeland et al., 1991; Rivers-Auty et al., 2018). 

Murine and human IL-1R1 proteins show 69% identity at the amino acid level. In both, the IL-

1R1 and IL-1R2 genes are adjacent, encoding similar transmembrane regions but only having 

a 28% homology in their extracellular domains (Dale and Nicklin, 1999).  

The expression of IL-1R1 can be influenced by genetic polymorphisms. In humans, single 

nucleotide polymorphisms (SNPs) have been identified in IL-1R1 and associated with severe 

hand osteoarthritis (Näkki et al., 2010), knee osteoarthritis (Smith et al., 2004), aggressive 

periodontitis (Kamei et al., 2014), inflammatory bowel disease (Latiano et al., 2013), type 1 

diabetes (Bergholdt et al., 2000) and asthma (Mahdaviani et al., 2009). Moreover, Vasilyev et 

al. demonstrated that IL-1R1 SNPs could be one of the factors influencing the expression of 

membrane-bound IL-1R1 on immunocompetent cells (Vasilyev et al., 2015).  Some groups 

postulate that individuals carrying IL-1R1 polymorphisms may be more susceptible to the 

action of IL-1 due to their increased expression of cell surface IL-1R1 proteins. Still, despite a 

clear association in these reports revealing a strong link between the distribution of 

polymorphisms along IL-1R1 sequence and predisposition to human diseases, the exact 

mechanisms by which these SNPs affect IL-1R1 physiological levels and consequently, IL-1 

signalling, remains uncertain.  

The regulation of IL-1R1 expression is likely to play a major role in controlling the effects of 

IL-1 since very few receptors are required for IL-1 signal transduction. Indeed, Sims et al. 

reported that in human THP-1 monocyte-like cells and murine 70Z/3 pre-B lymphoma cells, 

fewer than 20 receptors per cell were sufficient to mediate IL-1 signalling (Sims et al., 1993).  

Gene expression signatures of IL-1R1 have been reported in T helper 17 (Th17) cells (Chung et 

al., 2009), circulating T-cells (Klarnet et al., 1989; Jain et al., 2018), insulin-producing β cells 

(Benner et al., 2014), fibroblasts and endothelial cells (Song et al., 2018), and immature nature 

killer (iNK) cells (Hughes et al., 2010). IL-1R1 gene levels has also been found in innate immune 

cell types including neutrophils, macrophages, eosinophils, basophils and mast cells 

(Garlanda et al., 2013a). IL-1R1 expression can be regulated, both positively and negatively, by 

inflammation-related factors and other stress signals. The involvement of IL-1R1 in the brain 

has been linked to the pyramidal cell layer of the hippocampus, dentate gyrus, cerebellum, 

pituitary gland, and hypothalamus (Cunningham et al., 1992; French et al., 1999). In a recent 

study, Liu et al. employed genetic knock-in reporter mice to investigate the IL-1R1 

cytoarchitecture and cell-type-specific roles in the CNS (Liu et al., 2019). They demonstrated 



 
 

26 
 

that ventricular IL-1R1 regulates monocyte recruitment, endothelial and ventricular IL-1R1 

regulates IL-1-induced microglial activation and endothelial IL-1R1 mediates sickness 

behaviour, leukocyte recruitment, and neurogenesis (Liu et al., 2019). Small amounts of mRNA 

have been found in glial cells under basal conditions (Pinteaux et al., 2002), contradicting other 

studies which showed that IL-1R1-mediated signalling drives the activation of astrocytes (Lin 

et al., 2006). Under physiological conditions, expression of IL-1 and its receptors is low in the 

CNS compartment. However, levels of this cytokine increase dramatically after injury, and IL-

1 elevation is associated with many neurodegenerative diseases. As such, under pathological 

conditions, IL-1R1 may be induced by IL-1β itself, elevating the mRNA levels of this receptor 

on glial cells. The significant expression of IL-1R1 in microglia will be further discussed in Part 

VI. 

1.1.4.3. Molecular structure 

IL-1R1 is a transmembrane signalling receptor composed of a 319-amino acid ectodomain 

sitting on top of a question-mark-shaped structure supported by a transmembrane domain 

(TM) and an intracellular 217-amino acid TIR domain. Vigers et al. have laid the groundwork 

for the structural elucidation of the IL-1R1 ectodomain (IL-1R1-ECD), describing the 3D crystal 

structure of this region determined at 2.5 Å resolution (Figure I.7A) (Vigers et al., 1997). The 

ectodomain folds into three Ig-like domains (D1, D2 and D3). Each domain is characterized by 

an extensive β-structure composed of seven to nine strands, arranged in a two-layer sandwich, 

and are stabilized by disulfide bonds involving pairs of highly conserved cysteine residues in 

the IL-1 receptor family (Figure I.7B). The two Ig-like domains, D1 and D2, are linked by a 

disulfide bond, separated from D3 via a 6-amino acid flexible linker lacking secondary 

structure. Thus far, there are five crystal structures of the IL-1R1-ECD published in the PDB 

(Berman et al., 2000). The exact structure of the TIR domain is unknown to date. 
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Figure I. 7 - (A) Molecular structure the IL-1R1 ectodomain. The coordinates were retrieved from the PDB (PDB 

entry 4GAF). Ig-like domains are labelled as D1 (orange), D2 (green) and D3 (blue), and the 6-amino acid flexible 

linker located between D2 and D3 represented in yellow. (B) Alignment of IL-1R1, IL-1R2, IL-18Rα, ST2 and IL-

36R ectodomains. The β-strands were assigned using the DSSP algorithm (Kabsch and Sander, 1983), and are 

shown for the IL-1R1 sequence (a1-g1 located in D1, a2-g2 located in D2 and a3-g3 located in D3, represented as 

blue arrows). Brown circles show the conserved cysteine residues, and the connectivity between the disulfide bonds 

in the IL-1R1 structure is represented by brown dashed lines. IL-1R1 shares 25,5%, 18,4%, 19,6% and 29,3% sequence 

identity with IL-1R2, IL-18Rα, ST2 and IL-36R, respectively. The alignments were generated using the Clustal 

Omega Server (Sievers and Higgins, 2018). Adapted from (Tsutsumi et al., 2014). Figure abbreviations: IL-1R1, 
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interleukin-1 receptor type 1; IL-1R2, interleukin-1 receptor type 2; IL-18Rα, interleukin-18 receptor-α; ST2, defined as 

interleukin-33 receptor; IL-36R, interleukin-36 receptor.  

Protein-protein interactions between IL-1β and IL-1R1 take place at two sets of interfaces 

located between D1-D2 and at D3, plus a hydrogen bond formed between IL-1β and the 

flexible linker. Upon complex formation, the IL-1R1 structure essentially does not change, 

maintaining the core β-structure and domain fold. In total, the cytokine IL-1β display a buried 

surface area within the interface of IL-1R1 of 1932 Å2 over 47 residues. The binary complex IL-

1β/IL-1R1 sparks a conformational change in the D3 domain of IL-1R1, helping to develop an 

interaction with the accessory protein IL-1RAcP (Figure I.8). On the heterotrimeric complex 

formation, the overall architecture between IL-1β/IL-1R1 does not change, presenting a root 

mean square deviation (RMSD) of 1.4 Å. Interestingly, the inhibitory complex of IL-1β with 

the decoy receptor IL-1R2 and IL-1RAcP share high structural similarity with the IL-1β/IL-

1R1/IL-1RAcP complex, characterized by a RMSD of 1.8 Å between their Cα-atoms. 

 

Figure I. 8 - The structure of interleukin-1β (IL-1β), interleukin-1 receptor type 1 (IL-1R1) and interleukin-1 

receptor accessory protein (IL-1RAP) heterotrimeric complex. The coordinates were retrieved from the PDB (PDB 

entry 4DEP). IL-1β cytokine is coloured in pink, the extracellular domain of IL-1 receptor type 1 (IL-1R1-ECD) is 

coloured in cyan and the extracellular domain of IL-1 receptor accessory protein (IL-RAcP-ECD) is coloured in lime. 

Crucial residues involved in the protein-protein interfaces are shown as balls.  

The characteristics of IL-1R1 interactions and the protein-protein interfaces crucial for ligand 

binding will be further discussed in Part II of this thesis.  
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1.1.4.4. Pipeline of IL-1 therapeutic modulators 

The excessive stimulation of the IL-1/IL-1R1 molecular networks is associated with the 

pathogenesis of several disorders, extending from autoinflammatory diseases such as Familial 

Mediterranean fever (FMF) and Deficiency in IL-1 receptor antagonist (DIRA), to rheumatoid 

arthritis, type 2 diabetes, cancer and neuroinflammation-associated neurodegenerative 

diseases. Consequently, IL-1 has drawn considerable attention as a potential therapeutic 

target. Numerous avenues for blocking interleukin-1 in this broad spectrum of diseases have 

been exploited by the pharmaceutical industry or academia in the last decades (Table I.3). 

Table 3. Summary of therapeutic agents available or in development for the modulation of IL-1 activity. 

Therapeutic 

agent 
Type Target 

Phase of 

development 
Company 

Therapeutic 

indication 

Anakinra 

Recombinant 

form of human 

IL-1Ra 

IL-1R1 Approved 

Amgen  

(now Swedish 

Orphan Biovitrum) 

Rheumatoid 

arthritis (Furst, 

2004) 

Gout (So et al., 

2007) 

CAPS (Koné-Paut 

and Galeotti, 

2014) 

Type 2 Diabetes 

(Larsen et al., 

2007) 

Cardiovascular 

disease (Abbate 

et al., 2013; Kron 

et al., 2021) 

Rilonacept 

Fusion protein 

of IL-1RAcP, 

IL-1RI, and 

IgG-Fc 

IL-1β 

IL-1α 

IL-1Ra 

Approved Regeneron 

Recurrent 

Pericarditis 

(Klein et al., 2021) 

CAPS (Hoffman, 

2009) 

Gout (Terkeltaub 

et al., 2009) 

Canakinumab 

Human IgG1 

monoclonal 

antibody 

IL-1β Approved Novartis 

CAPS (Lachmann 

et al., 2009) 

TRAPS (Gattorno 

et al., 2017) 

HIDS/MKD 

(Sánchez-

Manubens et al., 

2019) 

Type 2 Diabetes 

(Rissanen et al., 

2012) 

Still’s disease 

(Sfriso et al., 

2020) 
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Gevokizumab 

Human IgG2 

monoclonal 

antibody 

IL-1β Halted Xoma 

Behcet's Uveitis 

(Tugal-Tutkun et 

al., 2018) 

LY2189102 

Human IgG1 

monoclonal 

antibody 

IL-1β Phase II Lilly 

Type 2 diabetes 

(Sloan-Lancaster 

et al., 2013) 

Bermekimab 

(MABp1) 

Human IgG1 

monoclonal 

antibody 

IL-1α Phase II XBiotech 
Atopic Dermatitis 

(Bieber, 2021) 

MEDI-8968 

(AMG108) 

Human IgG2 

monoclonal 

antibody 

IL-1R1 Phase II MedImmune 
COPD (Calverley 

et al., 2017) 

Isunakinra 

(EBI-005) 

Human IL-1β 

and IL-1Ra 

chimeric 

protein 

IL-1R1 Halted 
Eleven 

Biotherapeutics 

Dry eye disease 

(Goldstein et al., 

2017) 

AF10847 peptide IL-1R1 Preclinical Array BioPharma -- 

rytvela peptide IL-1R1 Preclinical 
Elim 

Biopharmaceuticals 
-- 

Inzomelid Small molecule 
NLRP3 

inflammasome 
Phase I 

Roche (previously 

Inflazome) 

CAPS (Chauhan 

et al., 2020) 

Belnacasan         

(VX-765) 
Small molecule Caspase-1 Halted 

Vertex 

Pharmaceuticals 

Rheumatoid 

arthritis 

(Wannamaker et 

al., 2007) 

Epilepsy (Maroso 

et al., 2011) 

Table abbreviations: interleukin-1 receptor type 1 (IL-1R1); interleukin-1α (IL-1α), interleukin-1β (IL-1β); interleukin-1 

receptor antagonist (IL-1Ra); NLR family pyrin domain containing 3 (NLRP3); Cryopyrin-associated periodic syndrome 

(CAPS); TNF receptor-associated periodic syndrome (TRAPS); Hyperimmunoglobulin D Syndrome/Mevalonate Kinase 

Deficiency (HIDS/MKD; Chronic obstructive pulmonary disease (COPD). 

 

Several reviews can be found in the literature describing in great detail potential 

pharmacotherapies developed to modulate IL-1 pathways (Dinarello et al., 2012; Fields et al., 

2019). For the sake of concision, the next paragraphs focus only on therapeutics directly 

targeting IL-1R1. 
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Efforts to specifically target IL-1R1 have been focusing on antibodies or chimeric cytokine 

biologics (Figure I.9):  

 Anakinra (Kineret®, Amgen), a recombinant non-glycosylated form of the natural 

human IL-1Ra, distinguishable by the addition of an N-terminal methionine residue, 

reached the US and Europe drug markets in 2001 and 2002, respectively, to treat 

rheumatoid arthritis. Fundamentally, this molecule targets the IL-1R1-ECD, 

competitively inhibiting IL-1α and IL-1β binding and thus, blocking intracellular 

signal transduction. Anakinra is rapidly removed from the body by renal filtration due 

to its small size (17,3 kD). However, it requires daily self-administration via 

subcutaneous injection, which may result in adverse side effects such as injection-site 

reactions, missed doses and, ultimately, decreased patient treatment compliance 

(Furst, 2004; Kaiser et al., 2012). Interestingly, a recent study reported that anakinra 

crosses a human in vitro model of the BBB derived from human umbilical cord blood 

stem cells, at a 4-7-fold higher rate than the monoclonal antibodies bermekimab (IL-1α 

antagonist) and canakinumab (IL-1β antagonist) (Sjöström et al., 2021). 

 EBI-005 (isunakinra), a human IL-1β and IL-1Ra chimeric protein, developed in 2013 

by Eleven Biotherapeutics, has been shown to bind IL-1R1 at a higher affinity than IL-

1β (KD = 0.014 nM for EBI-005; KD = 2.0 nM for IL-1β). This biologic was optimized for 

topical ocular administration in patients with dry eye disease and allergic 

conjunctivitis (Hou et al., 2013). However, Phase III clinical trials were halted after EBI-

005 failed to achieve primary endpoints. 

 The monoclonal antibody (mAb) AMG108 (licensed to AstraZeneca and Medlmmune 

and now termed MEDI-78998) binds IL-1R1-ECD, blocking IL-1β-mediated signalling 

pathways. In preclinical studies, this human mAb has shown efficacy in models of 

osteoarthritis, though, no significant clinical benefits were observed in Phase II trials 

(Cohen et al., 2011).  
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Figure I. 9 - Main strategies targeting interlukin-1 signalling. Therapeutic approaches targeting IL-1R1 include a 

recombinant form of IL-1Ra (anakinra), a chimeric IL-1Ra-IL-1β protein (Isunakinra), a fully human monoclonal 

antibody (MEDI-896), and peptides AF10847 and rytvela. Rilonacept stands as an engineered dimeric fusion protein 

consisting of the ECDs of the human IL-1R1 and IL-1RAcP linked to the Fc portion of human immunoglobulin G1 

(IgG1), acting as decoy receptor, binding IL-1α, IL-1β and IL-1Ra. Monoclonal antibodies (mAb) antagonizing IL-

1β are canakinumab, gevokizumab and LYS2189102, whilst bermekimab works by blocking IL-1α. The small 

molecules inzomelid and glyburide directly inhibit NLRP3 inflammasome activation, while belnacasan specifically 

inhibits caspase-1 and consequently the maturation of pro-IL-1β into the respective active form. The figure was 

prepared using BioRender. Adapted from (Kopf et al., 2010). Figure abbreviations: IL-1, interleukin-1; IL-1R1, 

interleukin-1 receptor type 1; IL-1Ra, interleukin 1 receptor antagonist; IL-1RAcp, interleukin-1 receptor accessory protein; 

ECD, extracellular domain; TIR domain, the toll-interleukin-1 receptor homology domain; NLRP3, NLR family pyrin domain 

containing 3. 

While biologics targeting IL-1R1-ECD work relatively well at modulating IL-1 activity, an 

early goal of the field was to discover agonist or antagonist peptides with potential 

pharmaceutical application. In fact, it was back in 1996 that Yanofsky et al., by screening 

peptide phage display libraries, identified numerous small peptides binding to human IL-1R1-

ECD, inhibiting IL-1-mediated cellular responses. By comparing their activity with IL-1α and 

IL-1β, they identified three different peptides exhibiting an IC50 below 3 nM (Yanofsky et al., 

1996). One such peptide, AF10847 (21 amino acids), was later crystalized with IL-1R1 by Vigers 

et al., revealing an unexpected induced conformational change in the receptor. Indeed, the 

peptide interact with the D1-D2 interface of the IL-1R1-ECD, and at the same time D3 

undergoes a 170° rotation when compared to that of IL-1R1:IL-1β crystal structure (Vigers et 

al., 2000). Importantly, these data demonstrated the possibility of different orientations 

between structural domains (D1, D2, D3) of the extracellular domain of IL-1R1 and shed light 

on the ability of IL-1R1 to adopt multiple conformations that can be exploited by small 
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molecule modulators. Almost a decade later, a selective D-peptide antagonist of IL-1R1, 

termed rytvela, was developed based on the flexible portions of the IL-1RAcP, showing efficacy 

and potency in a broad variety of in vitro IL-1β-dependent assays (Quiniou et al., 2008) and 

more recently, in reducing inflammation in models of neuro-retinal degeneration (Dabouz et 

al., 2020). Approximately at the same time, a short peptide (ilantide) derived from the IL-1Ra, 

capable of binding to the IL-1R1-ECD, was shown to be able to reduce the inflammation state 

in the CNS and pancreatic islets (Klementiev et al., 2014).  

Although most IL-1R1-ECD targeting therapeutics are antibodies and peptides, they share the 

shortcomings of presenting generally large molecular weight, difficult dosing frequency, no 

simple production and inconsistent or unfavourable pharmacokinetic (ADME) profiles. Small 

molecule therapeutics may represent a more versatile option, combining adequate 

pharmacological properties (lower molecular weight, small polar surface area and lower 

hydrophilicity) and even potential allosteric modulation, which may in turn open avenues for 

the development of alternative solutions for targeting IL-1R1. 

1.1.4.5. Why target IL-1R1 for immunomodulation in the CNS? 

IL-1, IL-1R1 and its downstream mediators play pivotal roles in the modulation of 

inflammatory responses against immune challenges. IL-1 has been shown to be involved in a 

wide range of human pathologic conditions which have a high prevalence and pose a striking 

socioeconomic burden. This double-edge sword behaviour raises one important question: Is 

IL-1 a harmful driver of disease, a protective response, or something in between? We speculate 

it may be all the above, subject to dependency on cell subtypes, signalling proteins involved 

and stage of disease progression. 

Once IL-1 is synthetized in the brain, it is plausible to deem a function for it in the biology of 

the CNS. Indeed, IL-1 has been associated with the regulation of fever (Nakashima et al., 1989), 

sleep (Krueger et al., 1998), neurogenesis (Koo and Duman, 2008) and modulation of long-term 

potentiation (del Rey et al., 2013). Interestingly, low levels of IL-1 have been hypothesized to 

help consolidate memory, whereas higher levels of IL-1 impair sensory function and memory 

(Depino et al., 2004; Gui et al., 2016). In a neuroinflammatory setting, IL-1, in particular IL-1β, 

is intimately involved in the CNS's innate immune response to injury, infections, or exposure 

to misfolded proteins. Once activated in response to injury, microglia and astrocytes represent 

the main source of IL-1β, and when secreted, it may further stimulate its own production in 

an autocrine/paracrine fashion and the release of other pro-inflammatory mediators, by 

binding to IL-1R1. Importantly, this dynamic signalling network of IL-1β production in 

activated glia ensures that injury signals are further propagated in the cellular milieu, driving 

potent neuroinflammatory changes in the brain (Figure I.10).  
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Figure I. 10 - CNS cellular communication of interleukin-1 signalling in neuronal injury. In the normal brain, 

expression of IL-1 is low, but acute CNS injury causes a sharp increase in IL-1 production. Different CNS cell types 

express IL-1R1, thereby enabling them to respond to IL-1β in an autocrine manner, as well as a paracrine manner, 

after neuronal injury. Upon IL-1/IL-1R1 interaction, these different cells can produce a wide range of pro-

inflammatory and immune-regulatory mediators that contribute to neuronal death or survival through different 

signal transduction pathways. The figure was prepared using Servier Medical Art. Figure abbreviations: CNS, central 

nervous system; IL-1, interleukin-1; IL-6, interleukin-6; IL-10, interleukin-10; IL-1Ra, interleukin-1 receptor antagonist; IL-

1R1, interleukin-1 receptor type 1; TNF-α, tumour necrosis factor-α; NO, nitric oxide; PGE2, prostaglandin E2; NGF, nerve 

growth factor; BDNF, brain-derived neurotrophic factor.  

Excessive IL-1R1 activation underlies a wide range of different CNS pathological conditions 

characterized by a strong neuroinflammatory component such as AD (Griffin et al., 1989; 

Holmes et al., 2003; Italiani et al., 2018), PD (Mogi et al., 1996; Tanaka et al., 2013), ALS 

(Meissner et al., 2010; van der Meer and Simon, 2010), multiple sclerosis (Hauser et al., 1990; 

McGuinness et al., 1997; Seppi et al., 2014), traumatic brain injury (Wang et al., 2006; Chung et 

al., 2019), Creutzfeldt-Jakob disease (Bertani et al., 2017), HIV-1 encephalitis (Zhao et al., 2001) 

and age-related macular degeneration (Hu et al., 2015). The biochemical basis by which IL-1 

exerts neurodegeneration effects is still elusive. However, some clues to possible 

mechanism(s) are emerging (Liu and Quan, 2018). There is evidence that sustain NLRP3 

inflammasome activation and IL-1 production in microglial cells playing a key role in 

neuroinflammation associated with AD. In a recent study, Ising and colleagues observed that 

mice lacking the NLRP3 inflammasome fail to induce the calcium/calmodulin-dependent 

protein kinase type II subunit alpha (CaMKIIα), which plays a critical role in tau 
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hyperphosphorylation and aggregation in AD. By contrast, microglia-derived IL-1β via 

NLRP3 activation increases the levels of CaMKIIα and promotes tau aggregation in neurons. 

Noteworthy, blocking the IL-1β signalling pathway through the administration of IL-1Ra, the 

natural antagonist which directly targets IL-1R1, hampered the effects of CaMKIIα and, 

consequently, tau phosphorylation (Ising et al., 2019). These data elucidates the role of 

microglial IL-1β in tau pathology, and is consistent with results from other studies (Bhaskar et 

al., 2010; Mancuso et al., 2019).  

The role of IL-1β in neurodegeneration following ischemic brain injury has been the subject of 

a significant number of studies. This cytokine levels increase at an early stage (from 0 to 3 h 

post-ischemia), with the main source of IL-1β postulated to be microglia, and is sustained on 

later stages due to a delayed expression by astrocytes, neurons, endothelial cells and other 

immune cells (Minami et al., 1992; Pinteaux et al., 2009). On one hand, in animal models of 

cerebral ischemia, IL-1β has been shown to markedly increase cell damage and exacerbate 

injury (Stroemer and Rothwell, 1998; McColl et al., 2007). On the other hand, a wealth of 

preclinical studies reported that blocking IL-1 signalling through the administration of IL-1Ra 

provided neuroprotective effects, with decreased tissue loss and attenuated cognitive deficits, 

in ischemic stroke (Loddick and Rothwell, 1996; Clausen et al., 2016; Pradillo et al., 2017). 

Likewise, reduced neuronal damage has been observed after IL-1Ra exposure or treatment 

with anakinra in TBI experimental models (Toulmond and Rothwell, 1995; Newell et al., 2018; 

Evans et al., 2020). Further experimental studies by Basu and colleagues using IL-1R1 knockout 

mice revealed that the absence of IL-1 signalling after brain injury have a direct correlation 

with a substantial reduction in microgliosis and astrogliosis as well as with IL-6 and COX-2 

production, highlighting the importance of this receptor in microglial activation (Basu et al., 

2002; Lin et al., 2006). Together, these and similar observations prompted both IL-1Ra and 

anakinra to clinical trials for ischaemic and haemorrhagic stroke, yielding significant 

reductions in the levels of inflammation and improving cognitive function when given to 

patients in the early stages after a stroke (Emsley et al., 2005; Galea et al., 2018; Smith et al., 

2018). 

Amongst other relevant reports, a recent study showed that lack of the interleukin 1 receptor 

8 (IL-1R8) or excessive IL-1β signalling impacts neuron synapse morphology, plasticity and 

function, through the over activation of IL-1R1. Both strategies led to the upregulation of the 

mechanistic target of rapamycin (mTOR) pathway and increased levels of the epigenetic 

regulator methyl-CpG-binding protein 2 (MeCP2), which is critically involved in neurological 

diseases characterized by defective plasticity, impaired cognition and intellectual disability. 

Interestingly, pharmacological treatment with anakinra restored MeCP2 expression and 

cognitive deficit in IL-1R8-deficient mice, highlighting that the inhibition of IL-1 signalling 
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may be efficacious for treating neurological diseases through immune system modulation 

(Tomasoni et al., 2017; Mantovani et al., 2019). 

Despite promising in vitro and in vivo results in models of CNS diseases, the complexity of 

translating findings from animal studies to humans through feasible clinical trials, along with 

some contradicting data retrieved in human studies, seem to have faded the interest of 

pharmaceutical companies in IL-1R1 drug discovery. Nevertheless, the studies reviewed here 

make a strong case for IL-1R1 as a key player in CNS pathological conditions. Under 

pathological conditions, IL-1R1 is robustly activated by IL-1 secreted by surrounding glial 

cells, and the resulting inflammatory signals may be too strong for the CNS to override. 

Increasing impetus for exploring IL-1R1 as a therapeutic target is being derived from 

mounting non-clinical and clinical evidence on the use of IL-1R1-antagonizing biologics (e.g., 

anakinra) showing encouraging correlation with the substantial reduction of disease-linked 

microgliosis and astrogliosis, as well as of production of pro-inflammatory players like IL-6 

and COX-2.  

Altogether, given its direct role in modulating IL-1 overexpression and a myriad of other pro-

inflammatory mediators involved in the neuroinflammatory landscape, as well as in 

sustaining inflammation in chronic neurodegeneration, targeting of IL-1R1 in specific tissues 

or organs, particularly the CNS, may still reveal itself a valuable therapeutic strategy against 

neurodegenerative diseases. 

1.2. Medicinal Chemistry of Neuroinflammation   

Despite the unprecedented investments in drug R&D, alongside major advances in the 

understanding of the molecular mechanisms of neurodegeneration, the number of approved 

disease-modifying therapeutics is almost null and only palliative treatments are available. For 

almost two decades, billions of dollars of research money were funnelled for example to the 

amyloid cascade hypothesis, disfavouring competing molecules, such as therapeutics directly 

targeting neuroinflammation (Sheridan, 2009; Makin, 2018). Fortunately, a paradigm shift in 

scientific thinking is well underway. Recognition of the necessity of neuroinflammation 

research for the successful development of game-changing therapeutics for neurodegenerative 

diseases is now a key goal of scientific community. 

The ability to modulate neuroinflammatory responses via medicinal chemistry endeavours 

can open up exciting new avenues for translating this approach to clinical trials to intervene 

in human neurodegenerative disorders – from early target identification, hit and lead 

discovery, through recognition of synthetically accessible and medchem-friendly chemistry, all 

the way to the optimization of lead compounds - moving towards more innovative 

approaches, aiming to discover new targets or new chemical entities. The far-reaching scope 
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of neuroinflammation in neurodegenerative processes poses fundamental questions that must 

be addressed when structuring drug discovery efforts:  What are the most promising targets or 

molecular networks? Should we target upstream or downstream regulators of neuroinflammation? Do 

our lead molecules fulfil the molecular determinants to cross the blood-brain barrier? What is the best 

screening strategy? Target-based or phenotypic screening? Such questions are key to a successful 

lead discovery campaign. 

The pharmaceutical industry is increasingly integrating computer-assisted drug design 

(CADD) methods in the identification of a few small molecules that can serve as basis to 

further optimization and development of a new drug. Among CADD techniques, virtual 

screening (VS) has already proved to make hit identification more goal-oriented, enabling the 

cost-effective evaluation of large virtual chemical libraries to identify sets of chemical 

structures with higher likelihood of binding to and interfering with a selected pharmacological 

target of interest, which must then be tested in an adequate in vitro assay. We could argue that 

neuroinflammation is not a standard area which could be approached following classical 

strategies in drug design. Indeed, the sheer complexity of the CNS together with the presence 

of the BBB, across which most therapeutic agents need to permeate, adding a further 

pharmacokinetic hurdle, and a lack of validated biomarkers ends in low success rates in CNS 

drug development. From this perspective, CADD methodologies coupled with suitable 

experimental assays can be exploited to streamline and accelerate the quest for potential lead 

molecules, by objectively assessing the tractability of potential targets and guide the design of 

tailored bioactive CNS small molecule modulators.  

The following sections will focus on the relevance of phenotypic screening versus target-based 

approaches (section 2.1.) and the application of CADD techniques (section 2.2) for the 

identification of potential neuroinflammatory small molecule modulators.    

1.2.1. Phenotypic vs. Target-based screening 

The process of lead discovery typically begins with either phenotypic or target-based 

screening approaches. The concept of phenotypic screening implies running an unbiased 

experimental screen to quantify measurable effects in cells (or the whole organism) and 

discover compounds that produce desired phenotypic changes. This approach is performed 

in a predictive cellular setting, without making assumptions about a specific target or a 

mechanism of action. Typically, this mechanism is only deconvoluted in later stages. In 

contrast, target-based screens establish early a particular target of interest, with target-specific 

readouts used to identify promising compounds which only later, often during the lead 

optimization stage, see their potential modulatory activity in a proper biological assay 
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confirmed (Haasen et al., 2017). It is hard to argue about one approach over the other, and they 

are often regarded complementary of each other.  

Over the last two decades, advances in high-throughput screening (HTS) technologies and 

chemogenomics sparked the development of rational tailored target‐based approaches to 

identify selective and specific high-affinity compounds for a particular target. Nonetheless, 

the  efficacy in discovering disease-modifying therapeutic agents seems no different from the 

phenotypic-centric approach that has dominated the drug discovery scene in the 20th century, 

particularly when considering first-in-class compounds (Wagner, 2016). Currently, 

phenotypic assays are increasingly being integrated in the early stages of compound screening 

(Warchal et al., 2016). This is supported by the more and more complex cellular assay systems, 

including immortalized cell lines to primary cells, co-cultures, patient-derived cells, tri-

dimensional (3D) cultures and organoid constructs - able to mimic disease-driving phenotypes 

alongside more robust assay readouts (Fang and Eglen, 2017).   

Targeting neuroinflammatory-associated neurodegeneration processes is admittedly a 

daunting and challenging task. Put simply, a detailed understanding of the inflammatory 

processes involved in neurodegeneration is still unclear, there is an absence of validated 

therapeutic targets, reliable biomarkers and limited predictive validity of preclinical 

pharmacological models. So, phenotypic screening has a lot of appeal for finding completely 

new entry points or targets for CNS drug discovery, particularly grounded on two key 

considerations: (i) historically, much of the successful CNS drug development has been an 

empirical and in many cases serendipitous process, with some examples of recently approved 

CNS first-in-class drugs discovered using phenotypic screens being memantine (dementia 

treatment), levetiracetam (epilepsy treatment), rufinamide (epilepsy treatment) and 

ziconotide (severe chronic pain treatment) (Zhang et al., 2014; Swinney and Lee, 2020); (ii) the 

state of the CNS field, where there are high attrition rates for small molecules or the low-

hanging fruit for target identification and validation is almost exhausted, is simultaneously a 

warning signal and an invitation - “if you can’t drug it, turn it into a phenotypic screen” – to 

increase the chances of actually finding promising molecular entities (Brown and Wobst, 2020). 

The target-agnostic nature of phenotypic screening entails the possibility of (i) identifying 

compounds that have a thus far unrecognized target or novel mechanism of action; (ii) 

discovering treatments for diseases for which even the root cause is unknown; (iii), a more 

direct in vivo and clinical translation than target-based approaches since the biological systems 

used are more robust and complex and different from isolated targets; (iv) potential to find 

desirable polypharmacology and (v) possibility to identify multiple disease relevant effects, 

not just one effect via one target. Nevertheless, phenotypic screens are often more time-

consuming and expensive, and are associated with a more challenging hit validation due to 
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potential risk of false positives through non-selective/specific mechanisms and risk of 

unwanted mechanisms. Moreover, compound optimization via SAR is more complex than a 

target-based program due to cellular permeability, cell transport mechanisms, membrane 

interactions and off-target activities (Warchal et al., 2016).  

Ultimately, a main advantage in performing phenotypic approaches is that discoveries may 

hold a greater chance of success in more advanced stages of drug development. Phenotypic 

screens expose candidate compounds to proteins in more biologically relevant contexts than 

screens involving purified proteins. Still, the major barrier to these approaches has been 

understanding the mechanisms of action following initial discovery. Notwithstanding, current 

advances in robust target deconvolution strategies should improve the identification of such 

mechanisms (Sydow et al., 2019; Brown and Wobst, 2020). 

1.2.2. The role of computer-aided drug design: exploring the 

potential in neuroinflammation 

Today, the influence of CADD in health sciences plays a major role in the R&D paradigm, 

helping scientists understand disease mechanisms and which treatments work best to 

modulate them, exploring ideas where solutions cannot be found analytically, and 

experimental testing are not feasible or takes too much time. CADD has always been able to 

react and follow the changes in the drug discovery environment and has been increasingly 

incorporated in the current medicinal chemistry toolbox, with its usefulness and impact 

tending to increase in the coming decades. The fast growth of freely-available bioactivity 

resources, e.g., PubChem (Kim et al., 2016) or ChEMBL  (Gaulton et al., 2012) has sparked a 

new generation of powerful data-driven computational methods for numerous applications 

such as VS, and enhanced the involvement of academia in drug discovery campaigns. 

(Sliwoski et al., 2014; Dar et al., 2019).  

The drug discovery process typically starts by the discovery and characterization of a 

molecular target and/or biochemical mechanism implicated in a disease of interest (e.g. 

disease-related genetics, genomics, proteomics, interactomics, etc.). While the process of target 

validation is complex and runs in parallel with (and transcends) the entire drug discovery and 

development process all the way to post-marketing and drug surveillance, the identification 

of a protein target is often the starting point of lead discovery and optimization endeavours. 

At this stage, CADD tools allow a more extensive coverage of chemical space, rendering the 

overall discovery process more exhaustive and efficient (Sliwoski et al., 2014). In practical 

terms, CADD can dramatically reduce the number of compounds for experimental testing. 

When compared to experimental HTS and combinatorial chemistry, CADD can increase the 

number of novel hits due to its targeted search, by deconstructing molecular interactions that 
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create therapeutic activity whilst predicting analogues with improved activity. In the drug 

discovery paradigm, CADD usually comprises three main goals: 

1. De novo design of compounds: by consecutively adding functional groups or by 

merging together different fragments into new chemotypes – based on existing 

knowledge of active compounds and/or a target molecular structure; 

2. the VS of large compound libraries: to prioritise sets of predicted active molecules 

(virtual hits) to be experimentally tested; 

3. the optimization of lead compounds: towards improved target affinity and/or activity 

(primary pharmacodynamics), target selectivity (secondary pharmacodynamics), 

bioavailability on target compartments or organs (pharmacokinetics, a.k.a. ADME), 

metabolism and toxicity profiles. 

Nowadays, it is becoming difficult to compartmentalise or categorise CADD techniques. 

Nevertheless, they have been historically segregated into two main classes depending on the 

existing structural information – either on the pharmacological target at hand or known 

bioactive compounds: 

1. Receptor-based approaches rely on the knowledge of the 3D structure of the target, 

most often a protein, and focus on predicting its interactions with a specific ligand. 

These methods typically make use of available information on protein-ligand complex 

structures and include, by order of increasing complexity and computational cost: 

receptor-based pharmacophore modelling and searches, molecular docking, and 

molecular dynamics simulations. 

2. Ligand-based techniques are relevant where no experimentally determined 3D 

structures of the molecular target are available, but some reference substrates or 

inhibitors are known. Here, approaches like ligand-based pharmacophore modelling 

and searches, molecular similarity-based methods including fingerprint-based and 3D-

based searches, and quantitative structure-activity relationships (QSAR) can be 

explored. 

In the next subsections, a basic introduction to some of the CADD methodologies exploited in 

this project is provided. For further information, I point the readers to references (Sliwoski et 

al., 2014; Genheden et al., 2017). Also, we highlight and discuss some of the latest efforts 

encompassing ligand-based approaches (QSAR, 3D-shape similarity, pharmacophore 

modelling), structure-based drug design (SBDD) approaches (homology modelling, docking, 

pharmacophore modelling, molecular dynamics simulations), and combined approaches 

(virtual screening) covering different inflammatory target classes. 
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1.2.3. Virtual Screening 

In lead discovery projects, HTS is a commonly used standard technique to identify 

pharmacologically active compounds. However, these screens require expensive equipment 

and labour, and the costs associated are high and hit rates low. VS represents an in silico 

method that allows the screening of vast compound libraries, typically with thousands to 

millions of molecular structures, more quickly and cost-efficiently, filtering (“like a funnel”) 

promising candidates for further synthesis and experimental testing. Importantly, by making 

predictions as to which molecules are most likely to bind the target, VS narrows the search to 

a few, high-potential candidates (Lavecchia and Giovanni, 2013; Walters and Wang, 2020). 

Coverage and diversity of the chemical space is a key consideration when selecting a 

representative subset of compounds to be tested either by target-based or phenotypic 

screening approaches.  

Structure-based and ligand-based are the two main approaches of VS (Figure I.11). Ligand-

based VS strategies uses information about known active compounds to identify candidate 

compounds for experimental evaluation. This approach assumes that structurally similar 

compounds have identical biological effects, and can be performed via 3D-QSAR modelling, 

similarity or substructure searching and pharmacophore or 3D shape matching. Structure-

based VS is employed when the 3D structure of the target is known, typically using molecular 

docking or structure-based pharmacophores to select compounds predicted to establish 

optimal interactions with the binding site of the protein. Regularly, pharmacophore-based 

screenings are preferred over docking as an initial filter to remove molecules which do not 

hold essential pharmacophoric and physicochemical features for binding. On the other hand, 

docking can be used in later stages for a more detailed evaluation or post-filtering of virtual 

hit compounds (Shoichet, 2004; Gimeno et al., 2019). 
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Figure I. 11 - Structure- and ligand based-methods for virtual screening. Depending on the availability of 

structure information, a structure-based approach or a ligand-based approach is used. The former relies on using 

information from the three-dimensional (3D) structure of the protein and ligand-based strategies use information 

on the biological and physicochemical properties of bound ligands. Figure abbreviations: VS, virtual screening; 3D-

QSAR, three-dimensional quantitative structure-activity relationships. 

The Protein Data Bank (PDB) is an important repository of atomic coordinates describing 

proteins and other important biological macromolecules (Berman et al., 2000). Established in 

1971 at the Brookhaven National Laboratory, this database currently houses more than 174,000 

3D structures, most of which have been determined using X-ray crystallography and a smaller 

set determined using nuclear magnetic resonance (NMR) spectroscopy and cryo-electron 

microscopy (cryo-EM). Importantly, this increasing wave of structural knowledge, together 

with advances in protein structure determination techniques, is boosting VS and SBDD 

approaches, providing much more precise and accurate data and in greater amounts, as well 

as the elucidation of the molecular mechanisms of protein-ligand binding and functional 

selectivity.  

In recent years, the number and dimension of screening and bioactivity data repositories has 

expanded significantly. Chemical structure repositories such as ChEMBL (Gaulton et al., 2012), 

PubChem (Kim et al., 2016), ZINC (Irwin and Shoichet, 2005), DrugBank (Wishart et al., 2018), 

ChemSpider (Pence and Williams, 2010), among others, provide access to tens of millions of 

compounds for applications such as VS. Recently, Wang et al. assembled the open-access 

chemical library AICD (Anti-inflammatory Compounds Database) that explores the chemical 

space of anti-inflammatory compounds, by gathering over 79,781 small molecules with 

therapeutic potential for a total of 232 inflammation-related targets (Wang et al., 2019). In the 

field of immunology and inflammation, this dataset enriched in anti-inflammatory 
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compounds may be of relevance during in silico procedures, including pharmacophore 

modelling, molecular similarity searches and QSAR, leading to the identification of promising 

chemical entities for use in medicinal chemistry. 

1.2.3.1. Ligand-based Virtual Screening 

Ligand-centric approaches are based in the so-called Similar Property Principle, which states 

that molecules that are structurally similar are likely to have similar properties (Johnson and 

Maggiora, 1990). The fundamental applications of these methods spawn from (i) using a set of 

reference structures collected from known active compounds as query templates to find other 

compounds with similar physicochemical properties; to (ii) constructing Structure-Activity 

Relationships (SAR) models that predict biologic activity from chemical structures, suggesting 

chemical modifications with higher likelihood of yielding better molecules than random 

modifications. All these strategies are applied for in silico screening for compounds holding 

the biologic activity of interest, hit-to-lead, and lead-to-drug optimization, and also for the 

optimization of chemical absorption, distribution, metabolism and excretion, and 

pharmacokinetics (ADMET) properties (Acharya et al., 2011; Sliwoski et al., 2014).  

1.2.3.1.1. Molecular Similarity Searching: encoding and decoding chemical structures 

The application of computational algorithms for unbiased chemical similarity comparisons 

and database searching is fundamental in a lead discovery program. Molecular fingerprints 

are bit string representations of molecular structure and/or properties, wherein the absence 

(“0”) or presence (“1”) of a pre-defined substructure or fragment is recorded for each molecule. 

Two-dimensional fingerprints of a set of active molecules for a specific target allows for an 

easy comparison with compound databases by identifying and quantifying the overlapping 

elements between them. Such fingerprints are popular largely due to their speed and 

simplicity, being commonly applied for ligand-based VS, similarity searching and clustering 

(Sliwoski et al., 2014). However, they are usually not suited for scaffold hopping for example 

in a VS campaign, where generally novel molecules with similar scaffold profile are selected.  

3D overlay tools such as shape-matching algorithms, molecular interaction fields (MIFs) 

descriptors or pharmacophores take in account the 3D (descriptor) conformations of a 

molecule while performing 3D similarity searches. Indeed, they usually rely on conformer 

ensembles to sample the conformational space, enabling an increased probability of finding 

different core structures but with similar shape, pharmacophoric and physicochemical 

properties. One of the most widely used methods is the Rapid Overlay of Chemical Structures 

(ROCS) software, developed by OpenEye, which uses ligand superposition and shape-based 

similarity scoring to rank molecules by their 3D similarity (Rush et al., 2005). This method will 

be described in greater detail in Part IV.  
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Different strategies integrating molecular similarity searches in VS workflows have been 

reported for the identification of small molecule modulators for key protein targets involved 

in the inflammatory pathways. For example, Xu et al. reported the identification of a novel 

chemotype as a nuclear factor erythroid 2 p45-related factor 2 (Nrf2) pathway activator after a 

combination of 2D fingerprint-based and 3D shape-based similarity searching (Xu et al., 2015). 

The potential activation of the Nrf2 transcription factor, located in the cytoplasm of cells, may 

protect against oxidative stress and inflammation associated with neurodegenerative 

conditions (Nakano-Kobayashi et al., 2020). Starting from an initial activator presenting a 1,2,4-

oxadiazole group, a 2D fingerprint-based similarity analysis was computed against a 

ChemDIV collection of 699,674 compounds, yielding 37,104 similar virtual hits. Then, the 

authors conducted 3D-shape comparisons to filter the number of molecules to be tested 

experimentally, resulting in 12 promising virtual hits. Following in vitro experimental 

validations, the most potent compound was subjected to SAR studies, producing an active 

Nrf2 inducer shown to be active both in vitro and in vivo. Noteworthy, in LPS-treated mice, 

this compound was shown to reduce the levels of pro-inflammatory TNF-α, IFN-γ, IL-6, IL-

12, and IL-17, presenting low toxicity (Xu et al., 2015).  

Noha et al. devised a VS strategy targeting the I kappa B kinase β (IKK-β), a serine-threonine 

protein kinase critically involved in the activation of NF-κB. In this study, 3D similarity-based 

alignments performed with ROCS were used to trim down and prioritize virtual hits identified 

via ligand-based pharmacophores. Indeed, a set of compounds presenting high activity (IC50 

< 100 nM) and selectivity for IKK-β was used to develop a 3D pharmacophore model, which 

was employed to screen the National Cancer Institute (NCI) compound database. ROCS 

software was then used to compare the retrieved compounds with two highly active and 

structurally diverse IKK-β inhibitors. The resulting virtual hits holding the highest shape and 

feature overlap were selected for biological testing, where one compound showed inhibitory 

activity in the low micromolar range on IKK-β enzymatic activity in vitro and on NF-κB 

transactivation (Noha et al., 2011). 

In another study, Ha et al. combined ligand-based pharmacophore modelling and 3D shape-

based similarity to identify small molecule antagonists of the CXC chemokine receptor 2 

(CXCR2), a chemokine receptor expressed on various immune cells and known to play 

prominent roles in inflammatory pathologies. For this purpose, they virtually screened a 

database consisting of 5 million commercially available compounds with a validated ligand-

based pharmacophore hypothesis derived from known CXCR2 antagonists. Thirteen selected 

hit molecules bearing sulphonamide moieties were further prioritized by an initial cell-based 

screen, leading to a potent compound inhibiting CXCR2 activation with an IC50 of 360 nM. 

ROCS was employed to carry out 3D-shape similarity searches based on the docked pose of 

this promising compound. Subsequently, 102 additional sulphonamide compounds were 
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identified and evaluated in vitro, resulting in a selective CXCR2 signalling modulator (Ha et 

al., 2015).   

1.2.3.2. Structure-based Virtual Screening 

SBDD uses both the knowledge of the 3D structure of a protein and in silico techniques to 

identify putative small molecules with biological activity against a desired target. The last two 

decades have been marked by a rapid growth in experimentally solved protein 3D structures, 

providing an unprecedented level of insight into the structural determinants of protein-ligand 

interactions. Accordingly, in silico methods, as homology modelling, molecular docking, 

structure-based pharmacophore modelling and molecular dynamics are nowadays routinely 

applied in drug discovery for (i) exploiting the structure and target function, (ii) analysing and 

predicting ligand-target interactions, and (iii) performing VS and rational design of chemical 

modulators targeting a protein of interest (Anderson, 2003; Śledź and Caflisch, 2018). 

1.2.3.2.1. Proteins as pharmacological targets: identification and characterization 

In general lines, the first step in a lead discovery program consists of target identification and 

characterization, entailing the selection of a macromolecule implicated in a disease of interest. 

Receptors, enzymes, ion channels and transporters represent a wide group of 

pharmaceutically appealing targets for which many chemical modulators have been 

discovered, either by serendipity or design. These molecules exert their action by binding to 

the target protein and preventing it from catalysing a reaction, opening a channel pore, or 

activating signalling cascades. Novel targets are increasingly selected for drug discovery 

programs based on genomic and proteomic data (Schenone et al., 2013). Triaging which of 

these are the most viable for intervention by small molecules is, however, essential at the start 

of a medicinal chemistry project if resources are not to be wasted on non-productive screening 

efforts.  

This step includes the choice of protein target(s) which need to be efficacious, safe, meet 

clinical and commercial needs, and be druggable. Choosing the right targets for 

pharmacological interventions is especially complicated in complex diseases such as the ones 

of the CNS, due to their multifactorial nature, complex transcriptional activity, and lack of 

validated biomarkers. To shed light into novel and non-obvious “players”, cheminformatics 

tools can play a critical role at this stage, through text mining methods and resources like 

OpenTargets (Koscielny et al., 2017) or STRING (Mering, 2003), which allow the integration of 

relevant biomedical data from scientific literature, patents, genomics, proteomics, 

metabolomics, phenotyping and compound profiling to identify potential pathways and 

targets. In parallel, ligand similarity to known active compounds or protein binding site 

similarity assessments to available structural targets via 2D (molecular fingerprints), 3D 
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(shape and electrostatics) similarity searches or MIFs comparisons, can be used to predict 

potential biological targets. The identification and characterization of protein binding sites for 

ligand interactions are of paramount importance to guide targeted therapies and optimization 

of the molecule(s). Importantly, the detailed characterization of binding site features, such as 

volume and shape, as well as the distribution of surrounding residues, will direct drug 

discovery efforts to follow strategies commonly employed to target protein-ligand interaction 

pockets or protein-protein interaction sites (Katsila et al., 2016; Agamah et al., 2020). 

1.2.3.2.2. Molecular surface and protein binding sites 

The 3D architecture of a protein is highly complex, display conformational heterogeneity, 

translating in a topological surface quite irregular, containing smaller and larger clefts, as well 

as internal cavities. The way in which ligands interact with macromolecular targets include 

complementarities in shape and electrostatics between binding sites and the ligand. Typically, 

these binding regions represent an enzymatic active site, but may also be protein-protein 

interfaces, natural ligand binding pockets, regions that induce allosteric regulation of protein 

function or from an in silico perspective, computationally determined hot-spots favourable for 

ligand binding. Figure I. 12 exemplifies the irregular surface of a key protein involved in the 

neuroinflammation networks, the serine/threonine p38α mitogen-activated protein kinase 

(p38αMAPK) bound to small molecule inhibitor (PDB entry 4ZTH) (Roy et al., 2019). Different 

type of cavities can be perceived, including small pockets and larger cavities appropriate for 

ligand binding. 

 

Figure I. 12 - Surface representation of the serine/threonine p38α mitogen-activated protein kinase (p38αMAPK) 

bound to a selective and central nervous system (CNS)-penetrant inhibitor (PDB entry 4ZTH). 

Importantly, a priori characterization of binding pockets with topological and physicochemical 

parameters is required to assess the suitability of such regions to bind a molecule. Small 

molecule binding sites usually consist of deep concave pockets that can maximize favourable 

protein-ligand contacts. Typically, a binding site is lined with hydrophobic residues that are 
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critical for binding small molecules in aqueous environments. In addition, individual 

functional groups (including alcohols, thiols, thioethers, carboxylic acids, carboxamides, and 

a variety of basic groups) at defined locations on a protein’s surface can have huge effects 

when located at the core of a binding interaction (Sheehan, 2011; Guo et al., 2015).  

Nowadays, numerous computational approaches are employed to predict druggable protein 

binding sites, representing powerful tools to gain such structural knowledge, offering the 

unique ability to predict, model and dissect, at the atomic level, key protein-ligand 

interactions. Three different criteria are critical for the assessment of target druggability: (i) the 

presence or absence of a protein cavity with an appropriate volume and depth to 

accommodate a small molecule; (ii) the extent of structural, physicochemical and 

pharmacophoric properties of a drug-like molecule complementary to the protein binding site; 

and (iii) the shape and existence of sub-pockets or narrow clefts that can provide strong 

interacting hot-spots (Schmidtke and Barril, 2010; Fauman et al., 2011; Agoni et al., 2020). Still, 

it is worth empathizing that there is an entire universe of potential drug targets that don't 

really involves small molecule binding pockets at all. Protein-protein interactions represent 

one of the next major classes of therapeutic targets. For further information, I point the reader 

to references (Kuenemann et al., 2016; Scott et al., 2016) 

In many cases, 3D protein structures may contain a bound ligand, in which case it should be 

relatively straightforward to define the binding site. However, if no ligand is present (apo 

protein) or there are unoccupied allosteric sites it may be possible to use computational tools 

to identify potential binding regions. Prediction of protein binding sites (or hot-spots) can guide 

the design of molecules able to modulate the target´s biological function at a molecular level. 

During the last two decades, several algorithms have been proposed to address automated 

prediction and identification of protein binding sites and it is still a very active field (Xie and 

Hwang, 2015). In Part II, pocket identification computational strategies and the methods used 

in this project will be approached in greater detail.  

1.2.3.3. Homology modelling 

In the absence of experimentally determined protein structures, computational methods are 

used to predict 3D protein models, providing insight into the structure and function of these 

proteins. Specifically, if known 3D structures that are evolutionarily related (homologous) to 

the target sequence are available, such structural data is used to model the actual target and 

are also useful to complete or refine flexible parts of the protein, such as loop regions. The 

most detailed and accurate structural prediction method is homology modelling (Fiser, 2010). 

This technique is a specific type of comparative modelling to predict protein structures based 

on the premise that similar proteins sequences give rise to similar tertiary structures. 
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Fundamentally, the basic principles of homology modelling rely on the assumption that the 

structural conformation of a naturally folded protein is more conserved throughout evolution 

than its amino acid sequence.  Hence, proteins with similar sequence, at least 30% homology, 

tend to adopt the same fold (Rost, 1999; Koonin et al., 2002).  

Typically, all homology modelling methods encompass the following steps: (1) identification 

of related proteins to serve as 3D template structures for the target sequence (2) sequence 

alignment of the target and template proteins, (3) copying coordinates for aligned regions and 

constructing missing atom coordinates of target structure, (4) model generation, including 

backbone generation, loop and side-chain modelling, and (5) model optimization and 

validation (Sliwoski et al., 2014; Lam et al., 2017). Three of the most prominent and commonly 

employed computational resources for structure prediction through homology modelling are 

MODELLER (Šali and Blundell, 1993), Phyre2 (Kelley et al., 2015) and SWISS-MODEL 

(Schwede, 2003). 

Homology modelling main shortcoming is that it relies on the availability and identification 

of suitable template structures. Nonetheless, the importance and applicability of homology 

modelling is increasing with the increasing number of protein 3D structures in structural 

databases. Homology models contain critical information about the spatial arrangement of 

important residues in the protein, enabling the use of SBDD strategies.  

Over the last decades, the applicability of homology modelling to predict structural 

determinants of proteins involved in the inflammatory landscape have been explored: from 

key players involved in cytokine signalling such as interleukin-2 receptor (IL-2R), interleukin-

4 receptor (IL-4R) (Bamborough et al., 1994), interleukin-7 receptor (IL-7R) (Kroemer and 

Richards, 1996), interleukin-27 (IL-27) (Müller et al., 2019) and IFNs (Murgolo et al., 1993; Seto 

et al., 2008), through pattern recognition receptors like NOD1 (Majumdar et al., 2017), TLRs 

(Wei et al., 2009; Kubarenko et al., 2010), NLRP3 (Mekni et al., 2019; Samson et al., 2020), to 

other fundamental immune system players like P2X7 receptor (Bidula et al., 2019) or 

cathepsins (Fengler and Brandt, 2000).  

1.2.3.4. Molecular docking 

Molecular docking is a SBDD approach that attempts to predict non-covalent binding of a 

ligand to a target protein, in the 3D space (Brooijmans and Kuntz, 2003). In essence, ligands 

are fitted into a binding pocket of a protein, and typically ranked according to their predicted 

binding affinity or complementarity to the binding site. This technique can be applied for two 

different purposes, in hit identification (virtual screening) and in lead optimization. Docking 

programs allow the screening of massive virtual libraries of candidate molecules against 

targets of interest, in a feasible amount of time if reasonable computational resources are 
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available. Similarly, in lead optimization, analogues of a particular lead compound are docked 

and evaluated. These data are used to properly guide new synthetic chemistry efforts, 

prioritizing compounds for synthesis and experimental evaluation (Kitchen et al., 2004; 

Pantsar and Poso, 2018).  

Currently, there are several docking algorithms and software available. Based on the different 

ways to address flexibility in the representation of the protein-ligand system, docking methods 

can be classified as: (i) rigid-body, simplistic model where both molecules are rigid, 

considering only static geometric or physiochemical complementarities; (ii) semi-flexible, 

where one, usually the ligand is considered flexible; and (iii) flexible, which consider both 

receptor and ligand flexibility simultaneously during docking (Sliwoski et al., 2014; Huang, 

2018). In a methodological sense, all methods comprise two interrelated steps: ligand sampling 

and scoring. The first refers to the methods which are used to create different ligand 

conformations and aligning them within the binding site of the protein. The latter, the scoring, 

is required in the docking process for a quantitative estimation of the pose quality (Pantsar 

and Poso, 2018). 

The first challenge a docking program faces is the ligand and protein conformational freedom. 

To tackle the issue of conformational flexibility, docking programs often have built-in 

conformational generators for ligand structures and, in some cases, also for the receptor 

structures. Though less common, some programs perform rigid docking but accept multiple 

ligand (and sometimes receptor) conformations as input. Conformational sampling algorithms 

used in docking programs fall in three major types: systematic search, random or stochastic 

algorithms and simulation methods.  Systematic search algorithms sample all possible ligand 

binding conformations by exploring all degrees of freedom of the ligand, in a combinatorial 

way (Kitchen et al., 2004). In stochastic algorithms random conformational changes to the 

ligand are made. Such alterations are evaluated by using specific energy functions to 

determine if the position and torsion angles of each subsequently generated conformation is 

higher or lower in energy when compared to the previous one. In the end, the random changes 

may be accepted or rejected based on probabilistic criterion. AutoDock 4.0 (Morris et al., 1998) 

is an example of a docking program implementing this algorithm.  Simulation methods 

perform deterministic searches to adequately sample the system’s conformational space. These 

types of algorithms use energy minimization methods and molecular dynamics (MD) 

simulations, generating conformations by simulating the time-dependent movement of the 

molecules. (Kitchen et al., 2004; Salmaso and Moro, 2018). 

Docking programs also face the challenge of predicting binding affinities for the ligands in the 

pool of all possible sampled conformations and interactions established within a binding site, 

and this is accomplished using what are called scoring functions. The existing scoring 
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functions for protein-ligand interactions can be categorized into four main groups based on 

the underlying principles of their work: empirical, force-field based, knowledge-based and 

machine-learning-based scoring functions (Li et al., 2019).  Empirical scoring functions 

compute the fitness of protein−ligand binding by summing up the parametrized contributions 

of several individual terms, such as van der Waals, electrostatic interactions, hydrogen bonds, 

hydrophobic effects and the binding entropy, each representing an important energetic factor 

in protein−ligand binding (Guedes et al., 2018).  Force-field based scoring functions assess the 

binding energy by calculating electrostatic and Van der walls interactions between the atoms 

of the ligand and the protein, using Coulombic formulations and Lennard-Jones potentials, 

respectively (Kuntz et al., 1982; Morris et al., 1998; Li et al., 2019). Knowledge-based scoring 

functions are derived from the ever-increasing structural data available for protein-ligand 

complexes, by computing sum pairwise statistical potentials between protein and ligand 

derived from the inverse Boltzmann statistical distributions, i.e., the geometric features 

between atoms of the protein-ligand complexes (Kitchen et al., 2004; Kadukova and Grudinin, 

2017). Finally, machine-learning-based scoring functions extrapolate previously determined 

QSAR data into protein-ligand interaction evaluation (Deng et al., 2004), originating statistical 

models that compute protein-ligand binding scores when their properties as well as their 

interaction patterns are coded (Liu and Wang, 2015; Li et al., 2019).  

In the last decades, many researchers have made use of experimentally determined 3D 

structures or homology models of inflammatory targets to perform docking calculations 

toward the prediction of binding affinities of new ligands and evaluation of potential 

interactions with key residues. For instance, Zusso et al. applied docking simulations to five 

largely prescribed fluoroquinolones – ciprofloxacin, levofloxacin, moxifloxacin, ofloxacin, and 

delafloxacin – to interpret their binding modes to the interface between TLR4 and the co-

receptor myeloid differentiation protein-2 (MD-2). Binding of LPS to this complex triggers the 

activation of NF- κB, which increases the production of pro-inflammatory mediators such as 

TNF-α, IL-1β, IL-6 and ROS. From the docking analysis, compounds showed a dual 

mechanism of binding: (i) interacting with LPS recognition site in the MD-2 structure; or (ii) 

binding at the interface between MD-2 and TLR4 complex. Co-immunoprecipitation assays 

were used to confirm the inhibitory effect of ciprofloxacin and levofloxacin on TLR4–MD-2 

dimerization as well as LPS binding to the TLR4–MD-2 complex, validating molecular docking 

observations. Both compounds were able to reduce the LPS-stimulated inflammatory 

response, via modulation of the TLR4–MD-2/NF-κB pathway (Zusso et al., 2019).  

Accumulating studies have been trying to identify inflammation chemical modulators based 

on VS campaigns, using molecular docking as crucial component on hit identification and lead 

optimization. For example, Zhong et al. followed a structure-based VS strategy to identify 

TLR1-TLR2 protein-protein interface inhibitors. The authors docked a chemical library of 
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natural products and natural product-like compounds from ZINC database (>90,000 

compounds), using a crystal structure of the human TLR2-TLR1 heterodimer co-crystallized 

with the agonist triacylated lipopeptide Pam3CSK4 (PDB entry 2Z7X). The 17 best-scoring 

compounds at the interaction domain of the TLR1-TLR2 interface were selected for biological 

testing. Of these, one compound reduced the release of pro-inflammatory cytokines TNF-α 

and IL-6 induced by Pam3CSK4 in RAW264.7 macrophages. Moreover, this molecule was able 

to decrease IκBα and IKKα/β phosphorylation, together with a reduction in the expression 

levels of IκBα, which are essential for NF-κB activation (Zhong et al., 2015). 

In a recent study, De Leo et al. reported the discovery of 5,5′-methylenedi-2,3-cresotic acid as 

inhibitor of the HMGB1·CXCL12 heterocomplex, which act synergistically to activate the G-

protein coupled receptor CXCR4 and promote cell migration and inflammation. The authors 

performed structure-based VS using three different docking programs - Glide (Friesner et al., 

2004), AutoDock Vina (Trott and Olson, 2009), and AutoDock 4.2.6 (Morris et al., 2009) - and 

a ZINC subset containing 101,746 biogenic drug-like compounds selected according to 

Lipinski's rule of five. This compound dataset was docked against the functional domains, 

BoxA and BoxB, of HMGB1 (PDB entry 2YRQ). Virtual hits were selected based on energy 

ranking, distance filtering, visual inspection and ADME analysis. In total, the VS protocol 

yielded three sets of compounds for BoxA and three for BoxB for a total of 581 promising 

candidates. These molecules were post-filtered using a ligand-based pharmacophore query 

derived from known active HMGB1 inhibitors and clustered based on chemical diversity, 

using binary 2D linear fingerprints. From this procedure, 8 compounds representative of the 

clusters were tested for HMGB1 binding via NMR measurements, revealing 5,5′-methylenedi-

2,3-cresotic acid as a ligand of HMGB1. Subsequent NMR and docking studies established the 

dual activity of this compound on both HMGB1 and CXCL12 and the dissociation of the 

HMGB1·CXCL12 heterocomplex (De Leo et al., 2020).  

1.2.3.5. 3D pharmacophore modelling 

As defined by the International Union of Pure and Applied Chemistry (IUPAC), a 

pharmacophore is “the ensemble of steric and electronic features that is necessary to ensure 

the optimal supramolecular interactions with a specific biological target structure and to 

trigger (or to block) its biological response”. In other words, a pharmacophore describes: (i) 

the crucial, steric and electronic functions of molecules relevant for an optimal interaction with 

a protein target, and (ii) an abstract (simplified) representation accounting for common 

pharmacophoric properties of compounds regarding a target structure, and not a real 

molecule or association of functional groups (Langer and Hoffmann, 2006).  
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Within the context of Computer-Aided Drug Design (CADD), the concept of 

“pharmacophore” holds application in: 

1. Construction of pharmacophores models for ligand optimization, e.g. through 

bioisosteric replacements; 

2. Scaffold hopping, i.e. screening of robust virtual compound libraries comprising 

similar functional structures, for designing new active analogues bearing distinct 

scaffolds; 

3. Pharmacophore merging, meaning a single molecule bearing pharmacophoric features 

arising from two different partners, aiming at the design of new active compounds. 

In pharmacophore modelling, the interaction patterns of bioactive molecules with their targets 

are represented via a three-dimensional (3D) arrangement of abstract features, that encode 

typically six pharmacophore features: hydrogen bond acceptor (HBA), hydrogen bond donor 

(HBA), hydrophobic group (H), negatively charged group (N), positively charged group (P), 

aromatic ring (Ar). “Conventional” 3D pharmacophore features computed by the software 

LigandScout (Wolber and Langer, 2005) are illustrated in Figure I.13.  

 

Figure I. 13 - Schematic representation of pharmacophore features. Example of a three-dimensional (3D) 

pharmacophore model from a protein–ligand complex generated with the LigandScout software (Wolber and 

Langer, 2005).  LigandScout provides three geometric types of features: vector (hydrogen bond acceptors and 

donors, metal binding location for iron, magnesium and zinc atoms), point (hydrophobic interactions, negative 

ionizable areas, positive ionizable areas, exclusion volume) and plane features (aromatic rings). 

There are several pharmacophore modelling tools that, based on the input employed for model 

generation, can achieve different types of pharmacophores: 

1. Ligand-based pharmacophores: when a set of active ligands is available, it is possible 

to compute their shared pharmacophore using different algorithms. Several 

conformations of each active ligand are generated, matched and the best possible 

alignment is then used to derive the pharmacophore model. 
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2. Structure-based pharmacophores: protein-ligand interaction patterns are extracted 

from experimentally determined complexes, e.g. NMR spectroscopy and X-ray 

crystallography, deposited in PDB. 

3. Receptor-based pharmacophores: based exclusively on the topology of the binding site 

and in the absence of a ligand. Potential cavities are calculated on the protein surface 

and once the binding site is selected, the program automatically calculates 

pharmacophore features based on the residues lining that site. This automatically-

generated pharmacophore hypothesis can be manually refined to derive the final 

model (Langer and Hoffmann, 2006; Schaller et al., 2020). 

4. Molecular Dynamics-based pharmacophores: this type represents an extension of 

receptor-based pharmacophores, wherein a set of MD snapshots are used to generate 

“dynamic” pharmacophore models. The frequency with which specific features occur 

during the MD simulation in relation with stability of the PDB features can be used to 

refine the receptor-based pharmacophore models by adding or removing features and 

weighting their importance (Wieder et al., 2016). 

To date, several studies have reported the development or use of pharmacophore-based 

approaches towards VS protocols aiming to identify small molecule modulators of 

inflammatory responses. An overview of relevant reports concerning the application of 3D 

pharmacophore modelling within the inflammatory landscape is presented in Table I.4. 

During the last two decades, successful examples of the application of ligand-based 3D 

pharmacophores in VS campaigns targeting inflammatory mediators have been reported. In 

2008, Kim et al. applied ligand-based virtual screening to discover new chemical scaffolds for 

GSK-3β inhibition, starting from pharmacophore hypothesis generated with the HipHop 

module of the Catalyst program (Barnum et al., 1996), using a set highly active GSK-3β 

inhibitors. The best pharmacophore query comprised three HBA, one HBA and one H feature. 

This model was used for virtual screening against a library of 600,970 compounds, which was 

pre-filtered according to specific criteria (chemical diversity, drug-likeness via Lipinski’s rule 

of 5, ADME properties) yielding 26,970 compounds. 56 virtual hits were selected based on 

docking poses, structural diversity, and synthetic accessibility. From these, three compounds 

exhibited inhibitory activity in the low micromolar range in an enzyme assay for human GSK-

3β protein (Kim et al., 2008).  

In a study by Waltenberger et al, ligand-based 3D pharmacophore hypotheses were developed 

for the microsomal prostaglandin E2 synthase-1 (mPGES-1), a key enzyme involved in 

prostaglandin E2 (PG)E2 synthesis. The pharmacophore models were used to screen two 

compound databases, NCI (247,041 compounds) and SPECS (200,015 compounds), yielding 29 

chemically diverse compounds for biological testing. From these, nine compounds were 
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identified as novel bioactive substances (Waltenberger et al., 2011).  In a third example, Temml 

et al. rationalized a pharmacophore-based virtual screening campaign towards the discovery 

of dual 5-lipoxygenase-activating protein (FLAP) and soluble epoxide hydrolase (sHE) 

inhibitors., two pro-inflammatory targets playing an important role in the arachidonic acid 

pathways. Using a set of 11 known FLAP inhibitors, the authors generated two different 

ligand-based pharmacophore models using LigandScout, which were subjected to VS of a 

SPECS virtual library (202,920 compounds). Twenty virtual hits were prioritized for 

experimental testing by previously reported structure-based sHE models, resulting in one 

novel and potent dual inhibitor for sEH and FLAP with activities in the nanomolar range 

(Temml et al., 2017).  

Table I. 4 - Examples of pharmacophore modelling studies demonstrating the potential and wide variety of 

applications of pharmacophores for different targets involved in the inflammatory signalling pathways. 

Target Method Result Reference 

Complement C3 Structure-based One compound able to bind C3 
(Mohan et al., 

2018) 

COX-2 Ligand-based 
One potent and selective COX-2 

inhibitor 

(Palomer et al., 

2002) 

CXCR2 Ligand-based 
One selective CXCR2 signalling 

modulator  
(Ha et al., 2015) 

FLAP+sEH Ligand-based 
One novel and potent dual FLA 

protein/sHE inhibitor 

(Temml et al., 

2017) 

GSK-3β Ligand-based 
Three compounds with GSK-3β 

inhibitory activity  
(Kim et al., 2008) 

IKK-β Ligand-based 
Three compounds with IKK-β inhibitory 

activity 
(Noha et al., 2011) 

IL-15 Receptor-based 
One compound with IL-15 inhibitory 

activity 

(Quéméner et al., 

2017) 

IRAK-4 Structure-based 
Six potent and structurally diverse 

IRAK-4 inhibitors 

(Khanfar and 

Alqtaishat, 2019) 

mPGES-1 Ligand-based 
Nine novel chemical scaffolds inhibiting 

mPGES-1 

(Waltenberger et 

al., 2011) 

PPARγ Structure-based Five molecules as novel PPARγ ligands (Markt et al., 2008) 

p38α MAPK Structure-based 
Seven compounds with promising 

p38αMAPK inhibitory activity 

(Gangwal et al., 

2014) 

ROCK-I+NOX2 Structure-based 
Seven selective dual ROCK-I/NOX2 

inhibitors 

(Alokam et al., 

2015) 

TLR2 Receptor-based 
Eight structurally diverse  

antagonists of TLR2 

(Murgueitio et al., 

2014) 

TLR8 Structure-based 
Three potent and selective TLR8 

signalling inhibitors 
(Šribar et al., 2019) 

TRPV1 Ligand-based 
Two compounds with TRPV1 inhibitory 

activity 
(Feng et al., 2015) 

Table abbreviations: complement component 3 (C3); cyclooxygenase-2 (COX-2); CXC chemokine receptor 2 (CXCR2); 5-

lipoxygenase-activating protein (FLAP); soluble epoxide hydrolase (sEH); glycogen synthase kinase-3β (GSK-3β); interleukin-

15 (IL-15); interleukin-1 receptor-associated kinase 4 (IRAK-4); microsomal prostaglandin E synthase-1 (mPGES-1); 

peroxisome proliferator activated receptor-gamma (PPARγ); mitogen-activated protein kinase p38α (p38α MAPK); rho kinase 

(ROCK-I); NADPH oxidase (NOX2); toll like receptor 2 (TLR2); toll like receptor 8 (TLR8); transient receptor potential 

vanilloid type 1 channel (TRPV1). 
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In the next subsection, receptor-based pharmacophore modelling will be covered in more 

detail, as in Part IV receptor-based approaches are exploited in attempt to devise a set of 

specific and selective pharmacophore hypothesis for a target of pharmaceutical interest.  

1.2.3.5.1. Receptor-based pharmacophore modelling 

When only the structural information of protein targets is available (there is no or enough 

known ligands to use as training set), putative receptor-based 3D pharmacophores models can 

be generated through analyses of the topology and physicochemical properties of the target 

binding site. Essentially, the computed model represents a mirror image of idealized ligand 

pharmacophore features, i.e., potential protein-ligand interactions in the binding site. 

Nowadays, several programs can directly convert the 3D atomic structure of the protein 

binding site into a pharmacophore model -  Phase (Dixon et al., 2006), Catalyst (Greene et al., 

1994), AutoPH4 (Jiang et al., 2020) and LigandScout (Wolber and Langer, 2005). 

Because a priori knowledge of active ligands is not required, receptor-based pharmacophore 

models are not biased by the chemical space of previously identified actives (potential for 

scaffold hopping). In addition, these models allow the integration of excluded volume spheres 

to the pharmacophore, providing a more selective model to reduce false positives. In general, 

these excluded volumes attempt to penalize molecules occupying steric regions of the target 

protein that compounds cannot map. Importantly, in receptor-based pharmacophore 

modelling, an intensive examination of the binding site and its surrounding amino acids is 

critical for the estimation of the most relevant and potential interactions playing key roles in 

ligand binding. The main challenge faced in this approach is the numerous features generated 

(depending on the size and shape of the binding site), which make the corresponding 

pharmacophore very complex. These must be reduced to a reasonable number for screening 

purposes – an adequate balance between enough features to allow for specificity, but not too 

many of them, as this would be too restrictive and could lead to false negatives. At this stage, 

for instance, MD simulations can be applied to generate an ensemble of protein conformations, 

computing for each MD snapshot a pharmacophore model. Then, clustering of the aligned 

pharmacophores of the different snapshots can be performed to select the most representative 

features of that binding site (Wieder et al., 2017; Schaller et al., 2020).  

Once receptor-based pharmacophore hypotheses are formulated, 3D pharmacophores models 

can be screened against virtual libraries of molecules to find the ones that fit the models and, 

hence, possess the most appropriate spatial arrangement of chemical features to bind the 

target. The consideration of ligand flexibility in these virtual libraries is performed by either 

generating all possible conformations and creating conformer libraries prior to the screening 
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step, or alternatively by the exploration of the conformational space as each molecule is 

screened. Some software packages, such as LigandScout or Pharmit (Sunseri and Koes, 2016) 

perform virtual screening on a pre-computed dataset of conformers for each library molecule, 

while others, such as Phase, allow conformer generation during the screening step sacrificing 

virtual screening speed (Schaller et al., 2020).  

A successful application of receptor-based pharmacophore modelling in identifying lead 

compounds for inflammatory targets was demonstrated by Quéméner et al. by targeting the 

pleiotropic cytokine interleukin-15 (IL-15). The group generated a receptor-based 3D 

pharmacophore based on three residues, Asp8, Asn65 and Leu69, essential for the protein-

protein interaction with interleukin-2 receptorβ (IL-2Rβ). The model consisted of three 

pharmacophore features: (i) one HBA and one HBD centred on Asp8; (ii) one H feature located 

between Ile68 and Leu69; and (iii) ten exclusion volumes defined by the binding region. The 

3D pharmacophore was used for a VS campaign of 160,828 compounds derived from 

commercial and academic chemical libraries. A total of 24,115 molecules fulfilled the 

pharmacophoric requirements and were subjected to molecular docking studies where 240 

compounds were selected for biological testing. From these, 36 compounds were found to bind 

IL-15, to inhibit the binding of IL-15 to the IL-2Rβ chain or the proliferation of IL-15-dependent 

cells or both. One ligand showing inhibitory activity in the 10μM range was optimized via 

synthesis and SAR analyses, leading to a collection of derivatives with IC50 values close to 50 

nM in cell-based experiments (Quéméner et al., 2017).  

1.2.3.6. Molecular Dynamics simulations 

Molecular dynamics (MD) simulations are the archetypal computational technique to study in 

detail conformational changes in biomolecular systems at the atomic scale, gaining insight into 

time- and environment-dependent events, such as protein folding and unfolding processes or 

the impact of protein motions in ligand binding. The idea of MD is a simple one: calculate the 

forces acting on the atoms in a molecular assembly and analyse structural, dynamic and 

thermodynamic properties. This relationship is achieved by integrating Newton’s law of 

motion:  

𝑭𝒊  =  𝒎𝒊𝒂𝒊  =  𝒎𝒊

𝜹𝒗𝒊

𝜹𝒕
=  𝒎

𝜹𝟐𝒓𝒊

𝜹𝒕𝟐
 

Equation 1.1 

where the net force (F) for an atom (i) at a given time (t) is directly related to its mass (m) and 

acceleration (a). For each time step, the current positions (ri) and velocities (vi) can be used to 

calculate the change in the position of the particle in the system, resulting in a MD trajectory 

with positions as function of time. Numerical integration algorithms such as Verlet (Verlet, 
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1967) or leap-frog integrator (Cuendet and van Gunsteren, 2007) are employed to solve these 

equations and propagate the motion of the particles in a simulation. When adequate 

information on the movements of the individual atoms has been computed, it is possible to 

condense such data using methods of statistical mechanics to deduce microscopic system 

properties, i.e., velocities and positions, and equilibrium macroscopic system properties such 

as volume, pressure, temperature and number of particles (Rapaport, 2004). 

MD simulation algorithms have been implemented in a number of software packages, 

including, but not limited to GROningen Machine for Chemical Simulations (GROMACS) 

(Berendsen et al., 1995; Abraham et al., 2015), Chemistry at HARvard Macromolecular 

Mechanics (CHARMM) (Brooks et al., 2009), NAMD (Phillips et al., 2005), Assisted Model 

Building with Energy Refinement (AMBER) (Case et al., 2005) and Desmond (Bowers et al., 

2006). Constant improvements to the architecture and computing power extended the use of 

these algorithms to much larger systems including large macromolecular complexes, explicit 

solvent and/or membrane environment, greater conformational changes, and longer time 

scales. In recent years, MD engines have leveraged the acceleration of graphics processing 

units (GPUs), allowing now MD simulations to sample the protein conformational space more 

efficiently than ever before, thus providing more reliable data on the conformational flexibility 

and molecular motions of a protein. 

Importantly, it is important to acknowledge that MD also has some limitations and pitfalls: (i) 

the force field define fixed charges with the atoms, preventing charge polarizability over time - 

polarizable force fields have been developed, however they require an extensive 

computational cost; (ii) chemical bonds cannot be broken or formed during a MD simulation 

and tautomer and ionization states are defined prior to the simulation, and thus chemical 

reactivity is not effectively described; and (iii) the selected time scales (nanoseconds to 

microseconds) may not be sufficient to describe certain dynamical properties, such as protein 

folding, ligand binding and unbinding processes, occurring at larger time scales (Ganesan et 

al., 2017). 

1.2.3.6.1. The motions of a protein 

Proteins are highly dynamic molecules that undergo conformational changes on temporal and 

spatial scales. A central aspect of all-atom MD is related to the wide range of timescales over 

which specific molecular processes in proteins occur (Figure I.14). The nature of protein 

internal motions can be categorized in: (i) local motions, including bond vibrations on the 

femtosecond timescale, side-chain rotamers on the pico- to the microsecond timescale and loop 

motions on the nano- to the microsecond timescale; (ii) rigid-body motions, such as helix, 

domain (hinge bending) and subunit motions on the nanosecond to second timescale; and (iii) 
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large-scale motions of secondary and tertiary structural elements, leading to larger domain 

motions and even both folding and unfolding events, typically taking milliseconds, seconds 

or more to occur (Henzler-Wildman and Kern, 2007). Failure to run a simulation long enough 

in order to gather sufficient amount of data or improper setup or insufficient equilibration of 

the initial structure(s) are common drawbacks in MD.  

 

Figure I. 14 - Timescale of protein dynamic events. The local motions occur on the timescale of femtoseconds (fs) 

to nanoseconds (ns), whereas collective motions (including rigid-body and large domain motions) occur on the 

timescale of microseconds (μs) to seconds (s). MD simulations cover the fs to millisecond (ms) timescale. 

From the sampling viewpoint, to properly assess these protein motions, not only does one 

need to have a long enough simulation, but also replicates of the simulation. Indeed, multiple 

simulations yield better sampling of protein conformational space than a single simulation - 

with a total sampling time equalling the aggregate sampling time of multiple simulations – 

allowing for more reproducible and reliable MD results (Knapp et al., 2018). Usually there is 

enough sampling for the faster local motions, however, sampling slow collective motions is 

challenging, often separated by high free-energy barriers. Notably, to overcome such 

problems, many enhanced sampling techniques have been developed and successfully 

employed, including steered molecular dynamics (Do et al., 2018), umbrella sampling 

(Kästner, 2011) and metadynamics (Barducci et al., 2011).  

The first MD protein simulation was of BPTI (bovine pancreatic trypsin inhibitor), a 58-residue 

globular protein which was simulated, along with four water molecules, for 9.2 picoseconds, 

in 1977 (McCammon et al., 1977). Three decades later, the longest published MD simulation 

was reported, a one millisecond-long MD simulation of BPTI fully-solvated with explicit 

hydrogen atoms, 100,000 times longer than the first one (Shaw et al., 2010).   
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1.2.3.6.2. The Empirical Energy Function (or force field) 

MD simulations are usually based on empirical molecular mechanics’ calculations, which are 

commonly referred to as force fields. The fundamental interacting unit, in molecular mechanics, 

is the atom, not individual electrons and their motions. The potential energy profile of a 

collection of atoms is calculated by adding up the energy terms that describe interactions 

between bonded atoms (bonds, angles and torsions) and terms that describe the non-bonded 

interactions, such as van der Waals and electrostatic interactions, which together constitute 

the empirical force field (Guvench and MacKerell, 2008). The most common mathematical 

expression representing the classical total potential energy of any molecule is: 

 

𝑽(𝒓𝑵) =  ∑ 𝑘𝑙

𝑎𝑙𝑙 𝑏𝑜𝑛𝑑𝑠
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Equation 1.2 

where the bonded terms represent the stretching of bonds (l), bond angle bending (θ), with 

the respective force constants kl and kθ, and the rotation of torsional angles (ω) representing a 

periodic rotation of a dihedral angle with periodicity n and phase γ, with Vn determining the 

energetic barrier height. Non-bonded interactions are parametrized in terms of partial charges 

qi for Coulombic (electrostatic) interactions, and the parameters εij and rij, defining the depth 

and width of the Lennard-Jones potential (van der Waals), respectively (Genheden et al., 2017). 

These two potentials describe the short-range non-bonded interactions. The evaluations of the 

long-range electrostatic interactions are often performed using the Ewald summation 

(Procacci and Marchi, 1996) and particle mesh Ewald (PME) methods (Essmann et al., 1995).  

The most prominent and commonly employed force fields are AMBER (Case et al., 2005), 

CHARMM (MacKerell et al., 1998), GROMOS (Schuler et al., 2001) and OPLS (Jorgensen et al., 

1996), designed for biological macromolecules. The MMFF (Halgren, 1996) and GAFF (Wang 

et al., 2004) have been developed for the description of small, drug-like molecules, whereas 

GLYCAM (Kirschner et al., 2008) was specifically developed for carbohydrates. Besides the 

choice of force field, the representation of water molecules is of paramount importance since 

most biological processes occur in aqueous environments. When explicitly treating the solvent, 

the most widely used models for parameterization of water molecules have been SPC/E 

(simple point charge) (Berendsen et al., 1987) and TIP3P (transferable intermolecular potential 

with 3 points) (Jorgensen et al., 1983).  
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1.2.3.6.3. Statistical ensembles in MD simulations 

The concept of ensemble is key in statistical mechanics, as averages corresponding to 

experimental observables are defined in terms of ensemble averages. MD simulations require 

that certain macroscopic parameters must be held constant to study the collection of all 

microstates of a system, i.e., all MD frames share the same macroscopic/thermodynamic state 

but may differ in the microscopic ones. Statistical ensembles are usually characterized by fixed 

values of macroscopic variables such as energy E, temperature T, pressure P, volume V, 

particle number N or chemical potential μ. Table I.5 denotes the different types of statistical 

ensembles employed in the MD simulations. 

Table I. 5 - Different ensembles in MD simulations. 

Ensemble Fixed Parameters 

micro-canonical ensemble (NVE) number of particles N, volume V and energy E  

canonical ensemble (NVT) number of particles N, volume V and temperature T 

isothermal–isobaric ensemble (NPT) number of particles N, pressure P and temperature T 

grand canonical ensemble (μVT) chemical potential μ, volume V and temperature T 

 

The canonical ensemble (NVT) (Richardson and Brinkley, 1960) and the isothermal-isobaric 

ensemble (NPT) (Corti and Soto-Campos, 1998) are commonly used in MD, with the latter 

being the most widely used as it more accurately reflects laboratory conditions, where 

pressure and temperature are usually known. Examples of thermostats used to maintain 

constant temperature are the Berendsen weak coupling method (Berendsen et al., 1984) and 

Nosé-Hoover (Braga and Travis, 2005), while common choices for barostats include the 

Langevin method (Feller et al., 1995), Berendsen (Berendsen et al., 1984) and the Rahman-

Parrinello method (Parrinello and Rahman, 1981). 

1.2.3.6.4. Setting up a MD simulation: key considerations 

A typical MD protocol consists of five main steps:  

1. Preparation of the initial structure(s): starting coordinates for each atom are retrieved 

from experimental data, such as X-ray crystallography, NMR, cryo-EM or structural 

modelling. Missing residues and missing atoms such as hydrogens are added, and 

atomic clashes eliminated. Furthermore, protonation states of ionisable groups are 

computed to ensure a proper system configuration for MD simulations.  

2. Energy minimization: prior to any simulation, the system undergoes a thorough 

energy minimization process, in a stepwise manner, to resolve any initial poor contacts 

and high-energy overlaps between atoms, without creating large distortions in the 
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overall structure. At each minimization iteration, the energy of the system is measured 

until a stable point or a minimum on the potential energy surface is reached. The 

resulting minimized structure is the underlying configuration about which 

fluctuations occur during the simulation. Two examples of widely used minimization 

algorithms are the Steepest Descent (Petrova and Solov’ev, 1997) and Conjugate 

Gradient (Fletcher, 1964). 

3. Equilibration: initial velocities (at 0 K) are randomly assigned to the atoms through a 

Maxwell-Boltzmann distribution and, subsequently, the system is simulated in gradual 

steps toward thermal equilibrium at the target temperature. Indeed, the purpose of the 

equilibration stage is to ensure that the kinetic energy in the system is distributed 

appropriately among all degrees of freedom. Properties such as potential energy, 

kinetic energy, temperature, volume, pressure, and RMSD are monitored to ensure the 

stable behaviour of the system. 

4. Production: once the system is in equilibrium the current velocities are used for 

production runs, in a simulated physiological environment. They are performed for 

the desired time scales, and the results of this stage are stored in a simulation trajectory, 

from which structural and energetics properties can be calculated and subsequently 

analysed (Braun et al., 2019). 

5. Analysis: an essential step, which converts the enormous raw data accumulated in the 

production run to meaningful information. RMSD and root mean square fluctuation 

(RMSF) plots serve as first-line investigational tools to identify and quantify structural 

deviations from the starting structure. In addition, RMSD profiles can be used to cluster 

multiple structures based on structural similarity. Alternatively, reduced 

dimensionality of data can be exploited to manage reasonable numbers of 

conformations. Principal component analysis (PCA) converts a set of correlated 

observations (movements of selected atoms in a system) to a set of principal 

components (PCs) which are linearly independent (or uncorrelated), thereby reducing 

the dimensions of the simulation data. Part III will focus on some practical aspects of 

molecular dynamics simulations and trajectory data analysis. 

Boundary conditions are an important requirement in any MD simulation. Given the limited 

number of solvent molecules in a MD simulation, this method allows the elimination of 

undesirable surface effects in finite size system, by treating it as infinite with the help of a unit 

cell. Periodic boundary conditions (PBC) are usually applied using a box with various 

geometries, a cubic box, a rhombic dodecahedron, or a truncated octahedron. This box which 

harbours the system of interest is replicated in different directions. In a methodological sense, 

when a molecule leaves the system on one face the periodic box, the equivalent periodic image 
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replaces it from the neighbouring box on the opposite side, leading to conservation of mass 

and number of particles (Genheden et al., 2017; Braun et al., 2019).  

Choosing an appropriate time step is also a critical aspect in MD, defining how frequently the 

integration of the equations of motion is performed, and thus determining the accuracy of the 

trajectory. Generally, smaller time steps provide a better approximation of the expected 

dynamics of the system, still, it takes a very long calculation time and increases computational 

costs. In order to reach a compromise between computational costs and accuracy, dynamics of 

the covalent bonds involving hydrogen atoms are usually constrained using integration 

algorithms, such as SHAKE (Ryckaert et al., 1977) and LINCS (Hess et al., 1997). For all-atom 

simulations with these constraints is possible to achieve time step values in the range of 1.5 to 

2 fs.  

1.2.3.6.5. Combining MD simulations with Virtual Screening: enhancing performance 

The integration of data on molecular flexibility during a VS campaign can substantially 

improve VS performances, namely when dealing with highly flexible targets and overcomes 

potential shortcomings associated with the choice of a single representative conformation for 

VS. MD simulations, despite their computational cost, are playing an ever-increasing role in 

structure-based VS strategies, allowing in silico approaches to expedite the modern drug 

discovery process.  Drug design applications of MD extends from predicting target flexibility 

(Cozzini et al., 2008), unveiling transient pockets on protein interfaces (Eyrisch and Helms, 

2007), generating ensembles of protein conformations for docking (Śledź and Caflisch, 2018), 

the validation and refinement of docking poses, and free energy calculations to understand 

protein-ligand binding (Miyata et al., 2010), to developing dynamic receptor-based 

pharmacophore models (Wieder et al., 2016) and optimizing protein structural models (Heo 

and Feig, 2018). Without much doubt, a key point for a successful VS campaign relies on the 

sampling accuracy and the ability to select the most representative conformations. For a 

broader view on the applications of MD in drug discovery, I recommend references (De Vivo 

et al., 2016; Salo-Ahen et al., 2020). 

The combination of structure-based VS protocols with MD simulations have been successfully 

applied in the field of inflammation. In a first example, Dileep et al. conducted an in silico 

approach towards the development multi-target-directed ligands against phospholipase A2 

(PLA2), lipoxygenase-5 (LOX-5) and COX-2 enzymes involved in the neuroinflammatory 

pathways. In this study, 67 hybrid molecules were designed by combining indole derivatives 

with selected NSAIDs, and 13 compounds, selected based on ADME and CNS-penetrant drug-

like properties, were docked to the active site of the enzymes. Based on calculated binding 

energies, the hybrids were clustered into three groups and MD simulations totalling 5 ns were 
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employed to evaluate the binding stability of the three clusters. From this analysis, it was 

concluded that one cluster had a significant larger departure from the initial position with 

RMSD values higher than 4 Å and thus, was not considered for further studies. The authors 

finally selected one cluster harbouring three hybrid compounds, based on established protein-

ligand interactions and better energy values compared to standard reference drugs, as 

promising neuroinflammatory modulators (Dileep et al., 2013).  

The transient receptor potential vanilloid type 1 channel (TRPV1) has recently demonstrated 

to play an important role in in the neuro-immune axis, being expressed in microglia and 

astrocytes. Importantly, this channel is attracting a lot of attention for the modulation of 

neuroinflammatory responses (Kong et al., 2017). Feng et al. constructed 3D homology 

tetramer models for the TRPV1, using solved cryo-EM structures of rat TRPV1 as templates. 

MD simulation studies of 10 ns were performed on the three best homology models to retrieve 

the top 3 conformations of each model with the lowest energy. To select and validate the best 

model, a pre-screening was performed using a training set consisting of 10 TRPV1 active 

compounds and 990 compounds randomly selected from the National Cancer Institute (NCI) 

database. The best validated TRPV1 model was used for docking analyses to explore the 

binding modes of known agonists and antagonists. Tyr511, Thr550, Arg557, Glu570, and 

Leu670 were identified as key residues for the interaction. At this stage, 50 ns MD simulations 

were conducted to assess the conformational changes of TRPV1 upon antagonist/agonist 

binding, revealing an asymmetric interface between hTRPV1 monomers. Finally, a ligand-

pharmacophore model was generated based on known antagonists and used to screen a 

library of 210,000 compounds from NCI, resulting in 15,672 compounds. From these, 38 

compounds were selected for experimental testing based on docking score and 

pharmacophore fitness levels, yielding two promising hits with activity as TRPV1 antagonists 

(Feng et al., 2015). 

1.3. Objectives of the Project 

In recent years, harmful neuroinflammation has been increasingly recognized as a major factor 

involved in the onset and progression of several neurodegenerative and CNS disorders. The 

modulation of neuroinflammatory processes holds potential prospects for halting, or at least 

slowing down, the exacerbation of such disorders. The wide intent behind this project was the 

discovery of new compounds targeting molecules and pathways associated to the neurotoxic 

effects of uncontrolled pro-inflammatory microglial subtypes that prevail during harmful 

neuroinflammation, through the combination of state-of-the-art in silico and experimental 

testing methodologies. By modulating acute/chronic neuroinflammatory responses, 

considerable progress – in the sense of new alternative therapies – may be achieved for 

neurodegenerative disorders without effective treatment options. 
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As a means to discover novel neuroinflammatory modulators, the key objectives of this project 

were: 1) the characterization of putative neuroinflammatory targets with integration of 

structural dynamics (via MD) to extract insights on their druggability; 2) the discovery of new 

chemical entities able to modulate neuroinflammatory processes employing a multi-layered 

CNS-tailored virtual ligand screening approach; and 3) experimental validation of the 

predicted targets elucidated in (1), using in vitro/cell methods and experimental assays testing 

potential modulators discovered in (2). 

From the viewpoint of the design of organic molecules to modulate neuroinflammation, IL-

1R1 is both an appealing target and a challenging one. The wide range of intracellular events 

linked to IL-1R1 highlights this protein as a possible upstream regulator of neuroinflammatory 

networks and justifies consideration of IL-1R1 as a plausible therapeutic target for the 

modulation of neuroinflammation. Notably, while there is substantial body of research on IL-

1R1, only sparse information is available in regard to small molecule ligands interacting with 

this protein. The availability of crystallographic structures of the IL-1R1 extracellular domain 

encouraged us to explore structure-based VS methods directed to the identification of 

compounds establishing optimal interactions within possible druggable cavities of IL-1R1. 

Coupled with an adequate in vitro model of human CHME3 microglia - together with the 

know-how extracted from several studies performed by Brites’s lab on CHME3 microglial 

responses to inflammatory stimuli - the goals of this project were to evaluate the ability of the 

VS compounds in modulating the IL-1R1 signalling pathway in microglial cells stimulated 

with the pro-inflammatory cytokine IFN-. From the Medicinal Chemistry point of view, we 

aimed to identify promising candidate compounds to be used as modulators of pro-

inflammatory microglial polarization and exuberant neuroinflammatory responses in 

pathological conditions. 
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PART II 

In silico druggability analysis on IL-1R1: Predicting “hot” 

and “warm” spots for small molecule binding 

 

 

 

“Codes are a puzzle. A game, just like any other game.” 

 

Alan Turing, in  The Imitation Game
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2.1. Introduction 

The interleukin-receptor type 1 (IL-1R1) belongs to a superfamily of receptors with pivotal 

roles in the immune system. Excessive stimulation of IL-1R1 is associated with the 

pathogenesis of several disorders, such as Familial Mediterranean fever (FMF), rheumatoid 

arthritis, type 2 diabetes, cancer and neuroinflammation-associated CNS diseases (Dinarello 

et al., 2012). Structurally, protein-protein interactions in crystallographic structures of the 

extracellular domain of IL-1R1 (henceforth referred to as IL-1R1-ECD) have been evaluated in 

numerous studies and provided insight into the molecular mechanisms behind the 

interactions of IL-1R1 with their natural ligands (Krumm et al., 2014; Fields et al., 2019). Thus 

far, IL-1R1-ECD targeting therapeutics rely on monoclonal antibodies and peptides. Both have 

major limitations including, generally large molecular weight, difficult dosing frequency, no 

simple production and inconsistent or unfavourable pharmacokinetic (ADME) profiles. 

Within the neuroinflammatory context, these properties are even more relevant and thus, 

small molecule therapeutics represent a more versatile option, combining adequate drug-like 

properties (lower molecular weight, small polar surface area and lower hydrophilicity) with a 

potential BBB permeation.  

In this chapter, one X-ray structure of the IL-1R1-ECD was selected upon structural quality 

evaluation and subjected to binding site prediction tools to detect potential pockets, or more 

broadly, any favourable regions (hot-spots) on the IL-1R1-ECD surface for interaction with 

small organic molecules. Yang provided the first hints on potential druggable binding sites in 

the IL-1R1-ECD surface (Yang, 2015), using the Schrödinger SiteMap algorithm (Halgren, 

2009). Three different regions on the receptor surface were predicted to bind small molecules: 

(i) the interface between domains 1 (D1) and 2 (D2); (ii) the flexible linker between the Ig-like 

domains D2 and domain 3 (D3) and (iii) the interface region between the D1 and D3 when IL-

1R1-ECD adopts a closed conformation. To add to the binding site analysis performed by 

Yang, we here pursuit the idea of combining multiple binding site prediction tools to obtain 

consensus but also different predictions, by combining their strengths and diluting their 

weaknesses. The motivation underlying such strategy was to infer from the crystallographic 

IL-1R1-ECD structure a comprehensive map of consistent predicted regions to bind small 

molecules toward the modulation of its biological function. 

The results presented in this chapter are also the foundation of the work presented in Parts IV, 

V and VI of this thesis, where an integrated receptor-based virtual screening protocol targeting 

a putative IL-1R1 druggable binding site and respective in vitro experimental validation is 

performed - towards the discovery of small molecule modulators of IL-1R1 and related 

molecular networks. 
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2.1.1. Structural data on IL-1R1 

Understanding the structural intricacies of IL-1R1 is pivotal not only to dissect general 

mechanisms of signal activation and inhibition via the IL-1 cytokines, but also to rationalize 

and predict feasible binding regions for the development of modulators. As of December 2021, 

a total of 5 crystal structures of protein complexes containing the IL-1R1-ECD could be found 

in the PDB (Figure II.1). Of these, four receptor-bound structures adopt an open conformation 

- PDB entries 1IRA (Schreuder et al., 1997), 1ITB (Vigers et al., 1997), 4DEP (Thomas et al., 2012) 

and 4GAF (Hou et al., 2013). The remaining structure corresponds to a closed conformation of 

IL-1R1 - PDB entry 1G0Y (Vigers et al., 2000). 

 

Figure II. 1 - Three-dimensional (3D) representations of the extracellular domain of interleukin-1 receptor type 

1 (IL-1R1-ECD)-ligand bound complexes available in the PDB. X-ray structure of IL-1R1-ECD bound (A) to a 

small antagonist peptide AF10847 (coloured in red), adopting a closed conformation (PDB entry 1G0Y); (B) to 

interleukin-1 receptor antagonist (IL-1Ra, coloured in blue) (PDB entry 1IRA); (C) to interleukin-1β (IL-1β, coloured 

in red) (PDB entry 1ITB); (D) to IL-1β (coloured in red) and the receptor accessory protein (IL-1RAcP, coloured in 

purple) (PDB entry 4DEP); and (E) to EBI-005, a chimera of human IL-1β and IL-1Ra (coloured in blue and red) 

(PDB entry 4GAF). 

Structurally, full-length IL-1R1 features an extracellular domain (ECD) containing three Ig-like 

domains (D1, D2 and D3), responsible for ligand recognition, a transmembrane (TM) α-helix 
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domain, and a cytoplasmic TIR domain responsible for initiating intracellular signalling. 

Vigers et al. reported the first crystallographic structure of the IL-1R1-ECD bound to IL-1β, 

solved at 2.5 Å resolution (PDB entry 1ITB) (Vigers et al., 1997). Importantly, these data 

provided a credible structural picture of the IL-1R1-ECD organization: i) D1 and D2 domains 

are tightly joint with a disulfide bridge that confers stability and structural rigidity to these 

domains, and ii) D3 domain is connected with a long and flexible linker to D2, which is able 

to move freely with respect to D1 and D2. The flexibility of this linker is crucial for positioning 

D3 for cytokine binding, allowing the formation of a stable complex and then recruitment of 

IL-1RAcP (Thomas et al., 2012). Structural alignment of the IL-1R1-ECD X-ray structures 

reveals structural differences in the D3 region, emphasizing the potential higher re-orientation 

ability of this domain when compared to the D1-D2 module. (Figure II.2-A). Interestingly, a 

structural complex of the IL-1R1-ECD with a small antagonist peptide is available (PDB entry 

1G0Y), showing a 170° rotation of D3 relative to a reference D3 in the IL-1R1:IL-1β complex 

(PDB entry 1ITB), and thus exposing an unexpected binding mode for the peptide (Figure II.2-

B) (Vigers et al., 2000). Recently, structural analyses employing a combination of small-angle 

X-ray scattering (SAXS) measurements with Molecular Dynamics (MD) simulations of the IL-

1R1-ECD revealed an ensemble of closed conformations where D3 was also rotated, 

highlighting the role of this linker’s flexibility-dependent function on two structurally similar 

IL-1R1 ectodomains – IL-1RAcP-ECD and IL-18Rβ-ECD (Ge et al., 2019).  

 

Figure II. 2 - (A) Structural alignment between the available open-bound conformations of the extracellular 

domain of interleukin-1 receptor type 1 (IL-1R1-ECD), revealing differences in the domain D3 (PDB entries: 1IRA, 

coloured in blue; 1ITB, coloured in pink; 4DEP chain B, coloured in orange; 4DEP chain E, coloured in yellow; 

4GAF, coloured in grey); (B) Rotation of the D3 in the closed-state (PDB entry 1G0Y, coloured in red) with respect 

to the IL-1R1-ECD open conformation (PDB entry 4GAF, coloured in grey). 
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2.1.2. The IL-1R1 ectodomain surface: a look at key interactions 

Fields et al. offered a remarkable analysis of the molecular mechanisms involving the IL-1 

signalling complex formation (Fields et al., 2019). The IL-1R1-ECD adopts a question-mark-

shaped architecture, forming two distinct binding regions, site A and B, which drive the 

interactions with IL-1 cytokines (Figure II.3). Site A of the receptor is located in the Ig-like D1 

and D2 interface, while the D3 domain harbours site B. Site-directed mutagenesis of IL-1β 

revealed that three important residues, Arg11 (Gehrke et al., 1990), His30 (MacDonald et al., 

1986) and Gln32 (Vigers et al., 1997), anchor the cytokine onto the receptor surface. The former 

two residues establish interactions with domain D2 of the IL-1R1-ECD - Phe111, Lys112, 

Gln113, Val124, Pro126 and Tyr127 – while the latter binds the D1-D2 interface – Ile14, Leu15, 

Val16, Gln108, Ala109, Ile110 and Phe111. Upon IL-1β binding, the contacts established at site 

B are essential to induce a conformational change in domain D3 of IL-1R1, further recruiting 

IL-1RAcP to initiate signal transduction (PDB entry 4DEP). In contrast, most of the interactions 

of antagonist IL-1Ra with IL-1R1 (PDB entry 1IRA) are established with domains D1 and D2, 

exhibiting only a few contacts with D3 (Schreuder et al., 1997). This binary complex is not able 

to recruit IL-1RAcP, pointing out that the D3 domain is fundamental for binding IL-1RAcP 

and consequently, required for signalling. Site-directed mutagenesis studies identified key 

residues at the IL-1Ra surface contributing to the strong binding interaction with IL-1R1-ECD 

- Trp-16, Gln-20, Tyr-34, Gln-36, and Tyr-147 (Evans et al., 1995). In a similar way to IL-1β, 

these residues establish contact mostly through a network of residues of the D1-D2 interface. 

 

Figure II. 3 - Structures of the binary IL-1R1-ECD:IL-1β (PDB entry 1ITB) and IL-1R1-ECD:IL-1Ra (PDB entry 

1IRA) complexes. In both panels, the IL-1R1-ECD is depicted in surface representation (gray), while IL-1β 
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(magenta) and IL-1Ra (lime) are shown in cartoon representations. The two binding regions are shown as spheres 

and coloured in blue (site A) and red (site B), respectively. Left panel: IL-1β interacts with the two sites on the 

receptor surface (IL-1R1-ECD residues involved are presented in blue and red). Right panel: IL-1Ra interacts mostly 

with site A (IL-1R1-ECD residues involved are presented in blue and red). Figure abbreviations: IL-1β, interleukin-1β; 

IL-1R1-ECD, extracellular domain of IL-1R1; IL-1Ra, interleukin 1 receptor antagonist. 

The core residues of the IL-1R1 antagonist peptide (referred to as AF10847), complexed with 

the X-ray closed conformation of the IL-1R1-ECD (PDB entry 1G0Y), establish interactions at 

the D1-D2 interface, stabilizing the IL-1R1-ECD in a closed conformation. Within the core, 

Gln15 makes multiple hydrogen bonds with Val16 and Ala109, being essential for receptor 

binding (Vigers et al., 2000). Therefore, from a pharmacological point of view, the D1-D2 

interface is a promising site for small molecule design because disrupting this interface could 

prevent cytokine binding (IL-1α and IL-1β) or stabilize the ectodomain in a closed 

conformation. Nonetheless, targeting the D3 domain may also represent a viable strategy, as 

small molecules can potentially impact on the relative orientation of this domain and further 

recruitment of IL-1RAcP. Pockets near both interfaces are thus good candidate sites for the 

development of small molecule therapeutics targeting IL-1R1. 

2.1.3. Binding site prediction and analysis 

A high-quality three-dimensional atomic structure of a target protein is a valuable resource to 

search for plausible binding sites for a putative ligand. The identification and characterization 

of potential binding sites represents the starting point for SBDD strategies. Typically, small 

molecule binding occurs inside pockets buried deep on the protein surface, allowing small 

molecules to establish strong physicochemical interactions. Usually, the identification of 

binding regions is relatively straightforward if small molecule binders have been discovered 

experimentally and/or the protein-ligand 3D complex structure is available. However, if only 

the apo structure of the target protein is on-hand, computational tools can be employed to 

predict surface pockets endowed with appropriate sizes, shapes and physicochemical 

properties to accommodate a complementary small molecule. These methods can be roughly 

divided into geometric, energy-based, sequence-based and structure-based similarity, 

machine learning and MD approaches (Simões et al., 2017; Zhao et al., 2020). Table II.1 lists 

some of the most widely used computational methods for binding site prediction. 
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Table II. 1 - Representative examples of commonly employed binding site prediction methods. 

Geometric methods 

Algorithm Type Pocket descriptors Reference 

DoGSiteScorer 

Grid-based 

Volume, shape, hydrophobicity (out 

of 40 descriptors) 
(Volkamer et al., 2012b) 

LIGSITECSC Volume, surface area (Huang and Schroeder, 2006) 

DLID 
Hydrophobicity, volume and 

buriedness 
(Sheridan et al., 2010) 

SiteMap 
Grid and 

energy-based 

Solvent accessible surface, exposure, 

hydrophobicity, volume and size 
(Halgren, 2009) 

    

SURFNET 

Sphere-based 

Shape (Laskowski, 1995) 

CASTp Volume, surface area 
(Liang et al., 1998; Tian et al., 

2018) 

Fpocket 
Tessellation-

based 

Volume, solvent accessible surface, 

hydrophobicity, polarity 
(Le Guilloux et al., 2009) 

Energy-based methods 

Algorithm Type Pocket descriptors Reference 

GRID 

Probe-based 

 (Goodford, 1985) 

Q-SiteFinder 
Noncovalent contacts between 

probes and amino acids 
(Laurie and Jackson, 2005) 

FTMap  (Ngan et al., 2012) 

Sequence-based and structure-based similarity methods 

Algorithm Type Pocket descriptors Reference 

ConSurf 

Evolutionary 

sequence 

conservation 

Conserved amino acids in functional 

regions 
(Glaser et al., 2003) 

    

FINDSITE 
3D template-

based 

Binding site similarity with 

proteins complexed with a ligand 
(Brylinski and Skolnick, 2008) 

Machine-learning methods 

Algorithm Type Pocket descriptors Reference 

DeepSite 
Convolutional 

neural network 

Physicochemical features of the 

protein atoms 
(Jiménez et al., 2017) 

    

P2Rank Random Forests 
Solvent accessible surface, 

physicochemical features 
(Krivák and Hoksza, 2018) 

MD-based methods 

Algorithm Type Pocket descriptors Reference 

MDPocket 

(extension of 

Fpocket) 

Tessellation-

based 

Volume, solvent accessible surface, 

hydrophobicity, polarity 
(Schmidtke et al., 2011) 

    

trj_cavity 
3D voxelized Grid-

based 
Volume (Paramo et al., 2014) 
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The basic principles behind the geometric approaches rests on the assumption that binding 

regions for ligands are usually clefts or cavities in a protein. As such, these methods scan the 

3D protein structure for the identification of pockets optimal in size and/or shape for small 

molecule binding. In general lines, geometric approaches fall into three main categories:  

1. Grid-based algorithms: the main idea consists on embedding the protein within a 3D 

grid. A grid point is assigned either as part of the protein (if within particular geometric 

distance from an atom center), otherwise as solvent. These points are categorized as 

“pocket points” depending on geometric criteria such as distance, solvent accessibility 

and depth.  

2. Sphere-based algorithms: this approach places sphere probes of radius r between the 

non-hydrogen protein atoms, reducing such radius if they intersect with any 

neighbouring atoms (pockets defined by the union of overlapping spheres). 

3. Tessellation-based algorithms: based on the concept of α-shape proposed by 

Edelsbrunner and Mücke for computing the 3D structure of a given set of points in 3D 

space based on the Delaunay triangulation (Edelsbrunner and Mücke, 1994).  

Energy-based methods detect pockets by computing non-bonded interaction energies between 

protein atoms and chemical probes. To do so, automated blind fragment-based docking is 

performed on the entire protein surface, where the contributions of electrostatic, van der 

Waals, hydrogen bonds, hydrophobic and solvent terms are evaluated. Basically, small 

molecule binding sites are determined to be at regions with the most favourable interaction 

energies between a molecular target structure and chemical probes. Consensus binding sites 

represent regions at which several probe molecules cluster (Henrich et al., 2009). 

Sequence-based or evolutionary methods are based on the premise that proteins with distant 

phylogenetic relationships may have conserved sequence regions leading to similar hot-spots 

and/or binding of similar small molecules. On the other hand, when considering available 3D 

structural information on proteins, structure-based similarity methods may be used to draw 

binding site comparisons based on known binding regions. In recent years, the increasing 

amount of data concerning small molecule binding sites has led to the development of several 

machine learning algorithms. The strength of these methods rely on their ability of to “learn” 

patterns of (i) complex specific molecular interactions between ligands and molecular target, 

such as hydrogen bonds, hydrophobic contacts or pharmacophoric features; (ii) 3D structural 

features such as solvent accessible surface area or volume/depth; and (iii) the amino acid 

sequence (Fuller et al., 2009; Xie and Hwang, 2015; Zhao et al., 2020).  

Molecular dynamics simulations are often employed to explore beyond the static experimental 

protein representations to identify prospective transient pockets that become apparent during 

conformational changes. In addition, MD can be used to study and characterize the dynamic 
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evolution of a binding pocket of interest during a simulation timescale (Feng and Barakat, 

2018). Indeed, changes in pocket descriptors, such as shape, volume, hydrophobicity and other 

relevant physicochemical features, which may arise due to protein internal flexibility, can be 

assessed with these methods.  

Importantly, all pocket detection methods have their own pros and cons with no individual 

method being the magic bullet. With this in mind, we used three open-access binding site 

prediction methods, i.e., DoGSiteScorer (Volkamer et al., 2012b), FTMap (Ngan et al., 2012) 

and Fpocket (Le Guilloux et al., 2009) to assess the IL-1R1-ECD structure for potential small 

molecule binding sites suitable for receptor-based drug-design strategies. The selection of 

these methods was based on two primary factors. First, the accessibility of the tools employed 

as open-source software, providing source code or a web-server for running the program, and 

where data is made available and can be visualized using other open-source software. 

Secondly, the utilisation of previous benchmark (or test) datasets to assess and compare the 

performance of the prediction methods, revealing overall good performances (Chen et al., 

2011; Volkamer et al., 2012a; Wakefield et al., 2020). 

2.2. Computational Methods 

The following subsections detail the computational methods employed to evaluate the 

structural quality of the IL-1R1-ECD crystallographic structures available in the PDB and to 

predict potential binding pockets in the IL-1R1-ECD surface. The BlendMol plugin (Durrant, 

2019) was used to produce high quality images of IL-1R1 structures from imported VMD 

visualization states (Humphrey et al., 1996) using the Blender software, an open-source 3D 

modelling and rendering program (Kent, 2015). 

2.2.1. Structure quality evaluation 

When selecting a 3D structure for SBDD programs, the experimental accuracy of the initial 

structural data is a critical factor that may impact the performance of these methodologies. The 

quality (accuracy) of a crystal structure is described by the resolution and the R-value. The first 

is a global number expressing the average uncertainty of all atoms in the structure, with high 

numbers corresponding to low resolution and vice-versa. The R-value expresses the level of 

agreement between the experimental observations and the structure factors predicted from 

the final structure. If the R-value is low (typically less than 20%) then the structure is most 

likely to be correct. Undoubtedly, any structural model, irrespective of it has been determined 

by experimental techniques or is purely computational, is prone to errors. These span from 

small atomic clashes, incorrect side-chain conformations, badly modelled flexible loops, 

wrongly placed water molecules to incomplete or totally inaccurate structural models (Joosten 
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et al., 2011; Read et al., 2011). In this work, we used the PROCHECK (Laskowski et al., 1993) 

software and ProSA-web server (Wiederstein and Sippl, 2007) to evaluate the structural 

quality of the IL-1R1-ECD X-ray structures deposited in the PDB (Table II.2), and select one 

structure to predict and characterize binding sites. PROCHECK provides a detailed residue-

by-residue assessment of their geometries, comparing the overall quality of the structure to 

that of high-quality experimental structures with similar resolution. Reliable models are 

expected to have more than 90% of amino acid residues in most favoured and additional 

allowed regions. The G-factor, which is calculated by PROCHECK, is a measurement of how 

unusual the structure is - G-factor values below −0.5 are unusual. The results of PROCHECK 

analysis are represented on a graphical Ramachandran plot endowed with information about 

the backbone dihedral angles psi (Φ) against phi (Ψ) distribution of the amino acid residues. 

The ProSA algorithm measures structure quality and energy profiles in terms of a Z-score. 

Table II. 2 - X-Ray crystallographic structures of IL-1R1 deposited at the Protein Data Bank (as of Dec. 2021). 

Table abbreviations: Interleukin receptor type-1 (IL-1R1); interleukin-1β (IL-1β); interleukin-1 receptor antagonist (IL-1Ra); 

interleukin-1 receptor accessory protein (IL-1RAcP). 

 

The criteria applied to select a relevant IL-1R1-ECD crystal structure from the PDB was based 

on the following: (i) resolution ≤ 2.5 Å; (ii) an R-value ≤ 0.25; and (iii) good quality structure 

revealed by the Ramachandran plot and ProSA-web based Z-score analysis. 

2.2.2. Hot-spot detection 

Hot-spot analysis and druggability assessments were performed using a combination of three 

computational methods – DoGSiteScorer (Volkamer et al., 2012b), FTMap (Ngan et al., 2012) 

and Fpocket (Le Guilloux et al., 2009) - to comprehensively predict ligand binding pockets and 

their respective druggability scores on the IL-1R1-ECD surface.  

PDB entry 
Resolution 

(Å) 

R-value 

(work) 
Pub year Description 

1G0Y 3.00 0.223 2000 
IL-1R1 complexed with antagonist peptide 

AF10847 

1IRA 2.70 0.213 1997 IL-1R1 complexed with IL-1Ra 

1ITB 2.50 0.229 1997 IL-1R1 complexed with IL-1β 

4DEP 

2 chains 
3.10 0.210 2012 

IL-1R1 complexed with IL-1β and IL-

1RAcP 

4GAF 2.15 0.215 2013 
IL-1R1 complexed EBI-005, a chimera of 

human IL-1β and IL-1Ra 
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DoGSiteScorer is an existing freely available implementation of a support-vector machine 

(SVM) which uses a Difference of Gaussian filter to learn from 3D protein structures and detect 

binding pockets and sub-pockets holding high likelihood of attracting and accommodating a 

drug-like ligand. This grid-based method calculates multiple geometrical properties, 

including pocket volume, size, shape and depth, as well as physicochemical features hydrogen 

bond acceptors and donors, amino acid composition and hydrophobicity ratio, for the 

predicted pockets. For druggability predictions, a subset of the above-referenced descriptors 

is incorporated into the SVM model, trained and tested on a non-redundant druggable dataset 

(Schmidtke and Barril, 2010). A simple druggability score (with values varying between 0 and 

1) is output for each pocket and respective sub-pockets. The higher the score the higher the 

likelihood of the pocket being druggable. (Volkamer et al., 2012a). 

FTMap performs rigid based docking of 16 probe-type molecules of varying size, shape, and 

polarity (ethanol, isopropanol, isobutanol, acetone, acetaldehyde, dimethyl ether, 

cyclohexane, ethane, acetonitrile, urea, methylamine, phenol, benzaldehyde, benzene, 

acetamide and N,N-dimethylformamide) using a Fast Fourier Transform (FFT) correlation 

approach, followed by energy minimization, rescoring and clustering. Probe clusters are 

ranked on the basis of their Boltzmann averaged energies and 6 clusters are retained per probe.  

Clusters of different probes are clustered using the distance between the centres of mass of the 

cluster centres to determine the so-called hot spots. The regions of the protein surface where 

the clusters of different probes overlap are more likely to be suitable binding sites, and the 

largest of overlapping areas are considered the main hot-spots (Kozakov et al., 2015).   

Fpocket is an open-source geometric tool employing the concepts of Voronoi tessellation and 

α-spheres. Voronoi tessellation is a numerical algorithm to divide a 3D spatial domain into 

completely interlocking cells (Voronoi, 1908), where the α-sphere centers define the vertices of 

this tessellation. The α-spheres contact four atoms at an equal distance and do not contain any 

atoms. The spatial organization of the protein surface and their shape influence the radius of 

the α-spheres. This means that buried protein regions would be filled with numerous small 

spheres compared with large spheres at the outer surface, while clefts or cavities result in α-

spheres of intermediate radius. These are then clustered to identify potential binding sites. At 

this stage, α-spheres are filtered by radius to remove the ones deemed too small to represent 

solvent accessible space (default parameters in Fpocket: minimum α-sphere radius - 3 Å; 

maximum α-sphere radius - 6 Å). The set of descriptors provided by this algorithm is related 

to: (i) α-spheres (number, density, polarity, radius); ii) physicochemical properties (solvent-

accessible surface area, hydrophobicity, polarity, charge) and iii) geometric properties (volume 

and flexibility). Furthermore, Fpocket provides a druggability score between 0 and 1, where a 

lower score implies that small molecules are not likely to bind to the cavity and values higher 

than 0.5 indicate a potential druggable binding sites (Le Guilloux et al., 2009).  
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2.3. Results and Discussion 

In this section, structural quality evaluations are presented for the available IL-1R1-ECD 

structures deposited in the PDB. Druggability analyses were performed to determine possible 

hot-spots on the receptor surface. Prior to applying the mapping procedures, the co-crystallized 

ligands and water molecules in the IL-1R1-ECD X-ray representations were removed. 

Druggability mapping was conducted with the DoGSiteScorer, FTMap and Fpocket 

algorithms.  

2.3.1. Structural quality evaluation 

All the IL-1R1-ECD X-ray structures retrieved from the PDB were subjected to structural 

quality evaluations with PROCHECK and ProSA-web server. The Ramachandran plot 

analysis obtained by PROCHECK and the Z-score determined by the ProSA-web server are 

depicted in Table II.3 and the plots are provided in Figure A-1 and A-2 of the Appendix, 

respectively. Overall, the quality of the six IL-1R1-ECD structures is acceptable, where most of 

the backbone phi and chi angles are present ≥95% in most favoured and allowed regions. 

However, it is worth mentioning that PDB entry 1G0Y holds less than 80% in most favoured 

regions with 1.4% of residues holding phi/chi angles in the outlier region. In all Ramachandran 

plots, this disallowed region is populated by Lys161. This residue is located in a tight loop turn 

connecting two β-sheets, at the D2 surface. The overall G-factor values of the IL-1R1-ECD X-

ray structures are lower than -0.5, highlighting the reliable stereochemical quality of the 

structures. The ProSA results showed Z-scores between -5.5 and -7.9, indicating no significant 

deviation from experimentally determined protein structures of similar lengths. 

Table II. 3 - Ramachandran plot statistics and ProSA-web Z-score for the IL-1R1-ECD X-ray structures. 

1 distribution of non-glycine and non-proline residues in the Ramachandran plot; Total number of non-glycine and non-

proline residues: 277 (1GOY); 278 (1IRA); 277 (1ITB); 261 (4DEP chain B); 273 (4DEP chain E); 272 (4GAF). 

X-ray 

structure 
Ramachandran plot1  

ProSA-web 

Z-score 

 
Most favoured 

regions 

Additional 

allowed regions 

Generously 

allowed 

regions 

Disallowed 

regions 
G-factor  

1G0Y 213 (76.9%) 50 (18.1%) 10 (3.6%) 4 (1.4%) 0.1 -7.60 

1IRA 249 (89.6%) 26 (9.4%) 1 (0.4%) 2 (0.7%) -0.1 -7.89 

1ITB 223 (80.5%) 46 (16.6%) 6 (2.2%) 2 (0.7%) -0.1 -7.33 

4DEP- 

chain B 
232 (88.9%) 22 (8.4%) 5 (1.9%) 2 (0.8%) -0.2 -5.56 

4DEP- 

chain E 
241 (88.3%) 28 (10.3%) 2 (0.7%) 2 (0.7%) -0.1 -7.02 

4GAF 240 (88.2%) 27 (9.9%) 4 (1.5%) 1 (0.4%) -0.1 -6.84 
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Guided by these results, alongside the global indicators of X-ray data quality – resolution and 

R-factor - the selection of a suitable IL-1R1-ECD X-ray structure for further studies fell upon 

the IL-1R1-ECD structure in complex with chimeric antagonist EBI-005. This structure holds 

highest structural resolution (2.15 Å) than the other IL-1R1-ECD crystallographic structures, 

suitable R-values and reliable Ramachandran and Z-plots.  

2.3.2. Putative IL-1R1 druggable binding sites 

The binding site architecture is a critical facet in molecular recognition. The average volume 

of a putative cavity favourable to bind small molecules is estimated to be between 100 and 

1000 Å3 (Liang et al., 1998; Pérot et al., 2010). Besides the volume, the ability of binding sites to 

be complementary with small molecules rely on their shape, structural flexibility, and 

physicochemical properties, such as hydrogen bonding and hydrophobic effects, and thus not 

all proper-sized pockets are druggable. Accordingly, the utility of binding site prediction 

programs is mainly determined by their ability to recognize and prioritize such regions 

suitable for interactions with molecules that may be optimized into a therapeutic drug 

candidate. 

Herein, binding site analyses were performed on the crystallographic open conformation of 

the IL-1R1-ECD at the best available resolution of 2.15 Å (PDB entry 4GAF). For the sake of 

comparison, additional druggability analyses were performed also on the available closed 

conformation of the IL-1R1-ECD (PDB entry 1G0Y), despite the high resolution of 3.00 Å. The 

druggability of the two crystallographic IL-1R1-ECD structures was first assessed using the 

DoGSiteScorer tool. Table II.4 presents the druggability scores and calculated descriptors for 

the major cavities identified on the IL-1R1-ECD open conformation (Figure II.4-A). According 

to the analysis, there are 10 identified potential binding pockets within the open conformation 

of the IL-1R1-ECD (pockets referred as PO). Three pockets PO_0, PO_1 and PO_2 show 

druggability higher than 0.70, large pocket volume, high depth as well as adequate 

hydrophobicity ratio, suggesting that there is a high chance of binding small molecules in 

those regions. In particular, the two predicted pockets PO_0 and PO_1 overlap with residues 

that are critical for ligand binding (see sub-section 2.1.2.), whereas PO_1 is positioned near the 

D3 domain. The decomposition of the largest predicted pocket (PO_0) to its sub-pockets 

(Figure II.4-B), reveals three buried regions PO_0_0, PO_0_1, PO_0_6 close to each other, with 

druggability scores of 0.54, 0.52 and 0.68, respectively. The residues lining these sub-pockets 

are: 

 PO_0_0: Leu15, Val16, Ser17, Ser18, Glu21, Asp23, Val24, Arg25, Pro26, Ala69, Cys104, 

Tyr105, Asn106, Ala109, Phe111, Pro126, Tyr127, Met128, Glu129, Phe130, Phe131, 

His180, Ile192, Thr193, Arg194 and Val195; 
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 PO_0_1: Glu11, Ile13, Ile14, Leu15, Arg25, Pro26, Pro28, Trp40, Ile92 and Tyr127; 

 PO_0_6: Arg25, Trp40, Leu64, Phe66, Tyr77, Ile92, Ser93, Ala94 and Phe96. 

These buried sub-pockets present volumes that seem appropriate for ligand binding and are 

surrounded by other smaller pockets, suggesting that the D1-D2 interface may be suitable for 

targeting by small molecule and even for fragment-based approaches. Additionally, the 

presence of PO_2, presenting the highest druggability score of 0.84, in the vicinity of PO_0 is a 

good indicator for the D1-D2 interface as an appealing binding site for small molecule 

therapeutics. Interestingly, a similar large binding pocket (volume of 1013.76 Å3), as the one 

located at the D1-D2 interface (PO_0), is also identified in the IL-1R1-ECD closed conformation 

(pockets referred as PC) (see Figure A-3 and Table A.1 of the Appendix).  Essentially, similar 

pocket-lining residues and evidence of a suitable degree of hydrophobicity constitute this 

predicted site (PC_1), highlighting that a potential hydrophobic small ligand candidate could 

bind to these pockets. Because the AF10847 peptide stabilizes IL-1R1-ECD in a closed 

conformation, the involvement of some of these residues in the binding of this peptide - Val16, 

Arg25, Ala109, Phe111, Tyr127, Glu129, Phe130 - suggests that small molecules bound in this 

region/sub-pockets may result in stabilization of the IL-1R1-ECD in a closed configuration. 

 

Figure II. 4 - Binding pocket prediction on the extracellular domain of interleukin-1 receptor type 1 (PDB entry 

4GAF), using the DoGSiteScorer tool. (A) Ten binding pockets are shown: PO_0 (red); PO_1 (blue); PO_2 (purple); 

PO_3 (mauve); PO_4 (dark grey); PO_5 (yellow); PO_6 (green); PO_7 (cyan); PO_8 (violet); PO_9 (brown). (B) The sub-
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pockets composing PO_0 are illustrated in detail, with respective volume and druggability scores. Seven sub-

pockets are shown: PO_0_0 (red); PO_0_1 (yellow); PO_0_2 (lime); PO_0_3 (blue); PO_0_4 (green); PO_0_5 (purple); 

PO_0_6 (cyan). 

Table II. 4 - Predicted pockets by DoGSiteScorer on the IL-1R1-ECD surface (PDB entry 4GAF). 

Pocket 
Volume 

(Å3) 

Surface 

(Å2) 

Depth 

(Å) 

Nº 

residues 

Hydrophobicity 

ratio 

HBA 

/HBD 

Drug 

Score 

PO_0 1209.78 1641.79 26.31 55 0.37 86/28 0.82 

PO_1 575.29 1161.23 15.32 25 0.36 48/27 0.71 

PO_2 490.77 605.27 22.21 27 0.38 29/16 0.84 

PO_3 191.44 398.74 11.78 10 0.51 18/4 0.43 

PO_4 179.47 464.04 9.93 9 0.42 20/11 0.29 

PO_5 159.15 384.20 12.30 10 0.44 14/10 0.42 

PO_6 144.36 446.18 8.91 11 0.58 16/6 0.27 

PO_7 128.54 225.34 8.65 11 0.31 18/4 0.26 

PO_8 122.51 218.92 8.29 10 0.44 6/8 0.24 

PO_9 110.54 276.53 6.81 10 0.33 12/8 0.18 

Table abbreviations: Hydrogen bond acceptors and hydrogen bond donors (HBA/HBD). 

 

The second top-ranked binding site PO_1, with a volume of 575.29 Å3, a surface area of 1161.23 

Å2 and a druggability score of 0.71, features residues of the flexible linker between D2 and D3, 

as well as D3 residues. Interestingly, substantial differences are found in the closed IL-1R1-

ECD conformation. Indeed, the pocket volume, surface and depth are nearly doubled (1288.51 

Å3, 2094.76 Å2 and 28.36 Å, respectively) when comparing the open and the closed 

conformation. Moreover, the druggability score increased to 0.81, indicating that this cavity 

should be able to harbour small molecule ligands. From the mechanistic standpoint, the 

conformational transition to a closed state may result in more stabilizing interactions, the 

domains pack close to one another, increasing the total hydrophobic surface, forming a more 

expanded binding pocket. Interestingly, the 170° rotational motion of the D3 in the closed 

conformation causes PO_8, which was predicted undruggable in the open conformation, to 

form an enclosed and druggable cleft (PC_2) at the D1-D3 interface. Similarly, to the AF10847 

peptide, small molecules binding at the interface between the D1 and D3 domains may 

stabilize the IL-1R1-ECD in a closed conformation. Of note, both PO_0 and PO_1 and PC_2 

binding sites are in line with the predictions performed by Yang (Yang, 2015).  

The druggability of the IL-1R1-ECD was further assessed using FTMap. In this energy-based 

method, the number of clusters of multiple probe types in a potential binding site determines 

the druggability of that site. In fact, a particular region is considered druggable if it binds at 

least 16 probe clusters (consensus site, CS) and bears at least one additional hot-spot nearby. 

Druggability mapping predicted three key hot-spots (Figure II.5 and Table II.5). Of these, the 

largest consensus site (CS1O) binds 20 probe clusters, whereas CS2O and CS3O present 17 and 

16 probe clusters, respectively. Visual analysis reveals that CS1O is located in the D3 region 
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(overlaps with PO_8 identified by DogSiteScorer). CS2O and CS3O are key hot-spots found near 

each other, located at the D1-D2 interface, respectively, and are positioned close to a secondary 

hot-spot harbouring 14 probes (hs4O) and two smaller binding 2 probes (hs7O and hs8O). More 

importantly, both CS2O and CS3O overlap with the DogSiteScorer mapping analysis at this 

interface, highlighting this region of the IL-1R1-ECD as a potential druggable binding site for 

small molecules. 

Figure II. 5 - Binding pocket prediction and druggability assessment on the extracellular domain of interleukin-

1 receptor type 1 (PDB entry 4GAF), using the FTMap tool. The D1-D2 surface representation enclosed by the 

black line is illustrated in detail. Eight binding hot-spots are shown: CS1O (red); CS2O (dark grey); CS3O (blue); hs4O 

(orange); hs5O (yellow); hs6O (light grey); hs7O (silver) and hs8O (mauve). Consensus sites (CS) denote regions 

binding 16 or more probes. Hot-spots (hs) denote regions binding less than 15 probes.  

Table II. 5 - Summary of FTMap druggability mapping results on the IL-1R1-ECD surface (PDB entry 4GAF). 

Hot-spot 
Probe 

clusters 

Probe 

composition 
Key IL-1R1-ECD residues 

CS1O 20 
ACD, ACN, ACT, ADY, AMN, BDY, 

BEN, BUT, CHX, DFO, DME, ETH, 

EOL, PHN, THS, URE 

Ser213, Pro214, Glu217, Leu229, 

Ile230, Trp243, Ile308 

CS2O 17 
ACD, ACN, ACT, ADY, AMN, BDY, 

BEN, BUT, CHX, DFO, DME, ETH, 

EOL, PHN, THS, URE 

Glu11, Ile13, Leu15, Arg25, Pro26, 

Pro28, Ile92, Tyr127 

CS3O 16 
ACD, ACN, ACT, ADY, AMN, BDY, 

BEN, BUT, CHX, DFO, DME, ETH, 

EOL, PHN, THS, URE 

Ile14, Val16, Ser18, Gln108, Ala109, 

Phe111, Lys112, 

hs4O 14 
ACN, ACT, ADY, BDY, BEN, DFO, 

DME, ETH, EOL, PHN, THS, URE 
Leu15, Asp23, Val24, Arg25, 

Tyr127, Glu129, Phe130 

hs5O 12 
ACD, AMN, BUT, DFO, EOL, PHN, 

THS, URE 
Ser18, Asn20, Glu21, Asn99, 

Pro191, Thr193 

hs6O 3 ACT, BEN, BUT Val233 ,Tyr261, Leu275, Thr277 
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hs7O 2 BDY, CHX Cy27, Leu29, Pro31, Glu62 

hs8O 2 DME, PHN 
Gln113, Val124, Pro126, Tyr127, 

Glu129 

Table abbreviations: acetamide (ACD), acetonitrile (ACN), acetone (ACT), acetaldehyde (ADY), methylamine (AMN), 

benzaldehyde (BDY), benzene (BEN), isobutanol (BUT), cyclohexane (CHX), N,N-dimethylformamide (DFO), dimethyl 

ether (DME), ethane (ETH), ethanol (EOL), phenol (PHN), isopropanol (THS), urea  (URE).  

 

Figure II.6 depicts the distribution of non-bonded and hydrogen bonding interactions 

between probes and the IL-1R1-ECD residues. Key residues participating in non-bonded 

interactions are Ile13 (5,6%), Ile14 (5,6%), Leu15 (6,1%), Val16 (4,2%), Arg25 (7,3%), Pro26 

(7,7%), Phe111 (4,9%), Tyr127 (5,2%), Leu229 (5,2%) and Ile230 (4,2%). Hydrogen bonding is 

mainly established with Ile14 (5,3%), Val16 (22,6%), Glu21 (4,1%), Arg25 (4,7%), Pro26 (8,2%), 

Glu129 (5,4%), Ser213 (5,3%) and Ile230 (15,6%). It is interesting to notice that most of these 

residues belong to the D1-D2 interface, emphasizing that this region is lined by key amino 

acids that may complement the molecular structure of small molecules to form aromatic, 

electrostatic, and hydrogen bonds. 

 

Figure II. 6 - Intermolecular (A) non-bonded and (B) hydrogen bond interactions between probes and residues 

for the open and closed conformations of the extracellular domain of interleukin-1 receptor type 1.  

When similarly examined for the number of bound probes, the IL-1R1-ECD closed 

conformation (PDB entry 1G0Y) present a similar consensus site (CS1C) to that of CS2O at the 

D1-D2 interface of the open conformation, while the region (hs5C) equivalent to CS3O is 

populated by 11 probe clusters (see Figure A-4 and Table A.2 of the Appendix). Likewise, 

these binding sites are surrounded by smaller secondary hot-spots that are important for ligand 

binding. A similar observation to that of PO_8 of DogSiteScorer can be made for the largest hot-

spot, CS1O, predicted in the open conformation. Upon open-to-closed conformational 

transition and respective D3 structural rearrangements, the establishment of D1-D3 

interactions reshapes this consensus site into two highly populated hot-spots binding 14 probe 
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clusters each (hs3C and hs4C in the closed-state). Residues Arg9, Glu11, Pro28, Leu29, Asn30, 

Ile90, Ser213, Pro214, Ala215, Glu217, Met219, Val221, Ile227, Gln228, Leu229, Ile230 and Ile308 

form this binding region at the D1-D3 interface. The conformational transition may also 

explain the new consensus site formed in the D2 region, potentially favouring the exposure of 

this binding site. 

Finally, for comparing the results obtained with the other two binding site prediction 

algorithms, Fpocket was also employed to scan the entire IL-1R1-ECD surface for potential 

small molecule binding sites. Figure II.7 illustrates the predicted pockets and Table II.6 

presents the calculated descriptors obtained using the Fpocket software package.  For the IL-

1R1-ECD open conformation, 13 pockets were identified, revealing one particular pocket (P1O) 

located in the D3 with a druggability score 0.717. This pocket is located in a region where both 

DogSiteScorer (pocket PO_7) and FTMap (hot-spot hs6O) also assigned a potential binding site, 

but, in this case, characterized by low druggability profiles. In the closed conformation (see 

Figure A-5 and Table A-3 of the Appendix), this binding region is predicted undruggable 

(P10C). It is worth noticing, that the D1-D3 interface is populated with a considerable pocket 

(P9C) with a volume of 481.16Å3, but yet, not predicted druggable.  

Surprisingly, all the predicted small molecule binding sites at the D1 and D2 regions (P2O, P3O, 

P5O, P6O, P7O, P10O, P11O, P12O and P13O) exhibit low druggability scores. Some of these 

pockets (P2O, P6O and P13O) overlap with the predictions made by both DogSiteScorer and 

FTMap at the D1-D2 interface. Notwithstanding, in the closed conformation Fpocket mapping 

yields a considerable larger pocket in the D1-D2 interface, presenting a druggability score of 

0.997 (P1C). This pocket comprises the residues Glu11, Ile13, Leu15, Val16, Ser17, Ser18, Asp23, 

Val24, Arg25, Pro26, Pro28, Ile92, Tyr105, Asn106, Ala109, Phe111, Tyr127, Glu129, Phe130, 

Phe131, Thr193, Arg194 and Val195, which form the pockets P2O, P6O and P13O in the open 

conformation. We argue that while in the closed structure this interface is more shielded from 

the solvent, and consequently more hydrophobic than that of the open conformation of the IL-

1R1-ECD, which results in increased predicted druggability. In contrast, in the open 

conformation these cavities are more exposed to the solvent, which may explain the lower 

druggability computed by Fpocket. 
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Figure II. 7 - Structural pockets identified by Fpocket, on the extracellular domain of interleukin-1 receptor type 

1 (PDB entry 4GAF). Twelve binding pockets are shown: P1O (red); P2O (salmon); P3O (orange); P4O (yellow); P5O 

(lime); P6O (violet); P8O (grey); P9O (mauve); P10O (cyan); P11O (purple); P12O (green); and P13O (blue). Expanded 

views are provided for P1O, P2O, P6O and P13O. 

Table II. 6 - Summary of Fpocket druggability mapping results on the IL-1R1-ECD surface (PDB entry 4GAF). 

Pocket 
Volume 

(Å3) 

Total 

SASA 

(nm2) 

Mean local 

hydrophobic 

density 

Druggability 

score 

Key residues 

IL-1R1-ECD 

P1O 613.27 148.04 21.56 0.717 

Asp239, Ile240, Ala241, 

Tyr242, Val249, Ile250, 

Glu259, Tyr261, Tyr262, 

Ser263, Leu275, Thr277, 

Lys298 

P2O 188.22 65.72 12.80 0.137 

Leu15, Val16, Ser17, Ser18, 

Tyr105, Asn106, Ala109, 

Phe111, Tyr127, Thr193, 

Arg194, Val195 

P3O 723.42 205.32 17.35 0.098 
Glu8, Arg9, Glu10, Tyr41, 

Asp44, Ser45, Lys46, Tyr78, 

Val80, Arg89, Lys91 

P4O 225.89 57.68 8.00 0.002 
Gln226, Ile227, Gln228, 

Asn280, Ile281, Ser282 

P5O 249.63 63.35 3.00 0.000 
His60, Lys61, Lys63, Trp65, 

Phe130, Lys132, Tyr183 

P6O 185.39 77.66 17.00 0.136 
Leu15, Val24, Arg25, Pro26, 

Tyr127, Glu129, Phe130 

P7O 212.86 66.92 3.00 0.000 
Ala19, Asn20, Ala69, Lys70, 

Val71, Glu72, Glu98 

P8O 203.79 64.36 3.00 0.000 
Ile250, Asp251, Glu252, 

Gly258, Glu259, Tyr261 
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P9O 219.24 77.50 4.00 0.000 
Trp245, Asn246, Ser248, 

Val249, Ile250, As251  

P10O 521.10 156.85 14.13 0.044 
Lys132, Asn136, Glu137, 

Lys138, Pro139, Lys140, 

Lys161, Asp162 

 P11O 142.40 69.94 1.00 0.000 
Gln53, Ala54, Ser55, Val67, 

Tyr185, Leu186, Lys188 

P12O 437.56 128.83 2.00 0.000 
Gln53, His60, Asn133, 

Glu134, Pro139, Tyr183, 

Thr184, Tyr185, Leu186 

P13O 240.85 91.67 13.00 0.021 
Glu11, Ile13, Leu15, Arg25, 

Pro26, Pro28, Ile92, Tyr127 

Table abbreviations: solvent-accessible surface area (SASA); extracellular domain of interleukin-1 receptor type 1 (IL-1R1-

ECD). 

 

Summing up, there are many similarities in the occurrence of binding sites in the IL-1R1-ECD 

open and closed conformations, i.e., amino acids at equivalent positions in these protein 

structures are identified as potential binding hot-spots by DoGSiteScorer, FTMap and Fpocket. 

Based on the location of the hot and warm spots revealed by the three strategies, these potential 

binding regions have been grouped in two distinct areas of the protein, that are proposed as 

two promising druggable binding sites to develop IL-1R1 small molecule modulators: 

1. The D1-D2 interface: All three strategies revealed a higher concentration of hot-spots at this 

interface in both open and closed conformations. In the open conformation, DogSiteScorer 

identified a large pocket PO_0 (volume of 1209.78 Å3), encompassing residues important 

for cytokine binding. Equally, FTMap provided two closely spaced consensus sites binding 

16 or more chemical probes with different sizes, shapes, polarity and hydrophobicity, 

reflecting the putative capacity of this region to bind small molecules. Intriguingly, 

Fpocket predicted pockets with low druggability scores at the D1-D2 interface (P2O, P6O 

and P13O). However, their moderate sizes (volumes of 188.82, 185.39 and 240.85 Å3) and 

relative hydrophobic nature may be significant for structure-guided strategies. Of note, 

predictions on the closed conformation revealed a similar large binding site in this 

interface using the three algorithms. All these observations point out that the D1-D2 

interface may own a topology favourable to small molecule targeting regardless of the 

conformation adopted.  

2. The D3 domain: The predicted binding pockets and druggability scores at this domain are 

more variable than that of the D1-D2 interface. All three methods were able to predict 

druggable hot-spots, however, they differ in their location. DogSiteScorer identified a large 

pocket in the D3 domain near the flexible linker with a volume of 575.29 Å3. In the closed 

conformation, the druggable site extends far beyond the linker, into the D2 domain, 

presenting large volume, depth and adequate hydrophobicity. Fpocket computed a large 

pocket with 613.27 Å3 and endowed with substantial hydrophobic density, however, this 
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pocket presents a low druggability score in the closed IL-1R1-ECD state. Among the hot-

spots produced by FTMap, a consensus site composed of 20 probes was predicted 

druggable, with no secondary cavities present nearby. Still, in the closed conformation this 

region contacts with the D1 domain, resulting in a larger surface and hydrophobicity. In 

addition, both DogSiteScorer and FTMap predicted pockets at the D1-D3 interface. Hence, 

we believe that the consensus site predicted by FTMap and the large pocket predicted by 

DogSiteScorer represent also valuable binding sites for SBDD experiments.  

Small molecule therapeutics targeting these two regions should be capable of interfering with 

cytokine biding or disrupting the more relevant and persistent protein-protein contacts, 

blocking the formation of the fully active heterotrimeric IL-1 signalling complex (IL-1β:IL-

1R1:IL-1RAcP). 

2.3.3. Ligand-binding site differences across IL-1R1 orthologs  

The information on whether a putative binding pocket on the target protein is structurally 

conserved may be relevant for the selection of an appropriate binding region for devising 

structure-based and virtual screening strategies. Differences in receptor structure and ligand-

binding properties between ortholog species should also be considered when performing 

pharmacological testing experiments, both from efficacy and safety viewpoints. The 

availability of the gene sequences and molecular structures from different organisms 

represents an opportunity to analyse differences in the composition and conformation of 

ligand-binding sites between orthologs. For comparison with the sequence and structure of 

human  IL-1R1 (Homo Sapiens, UniProt code P14778), herein we used the IL-1R1 sequences of 

the mouse (Mus Musculus, Uniprot code P13504) and the rat (Rattus Norvegicus, UniProt code 

Q02955), since both are the most common animals used in preclinical drug testing, and 

obtained their predicted molecular structures from the AlphaFold Protein Structure Database 

(Varadi et al., 2021) (Figure II.8-A). 

A comparison of the sequence and structure of the two large anchoring sites of IL-1β to the 

human IL-1R1 (hIL-1R1) and the rat IL-1R1 (rIL-1R1) reveals 8 conserved residues out of 19 

sequence-matched residues lining the receptor site A, and 9 conserved residues out of 16 

sequence-matched residues lining the receptor site B. These residues are 17 out of 35 residues 

that are also conserved in mouse IL-1R1 (mIL-1R1), overall revealing a sequence identity of 

42% and 47% for site A, respectively in the rat and the mouse, and of 56% and 50% for site B. 

We have also compared three putative binding sites predicted in the crystallographic structure 

of the IL-1R1-ECD (PDB entry 4GAF), by the algorithm DoGSiteScorer (Volkamer et al., 2012b). 

As anticipated, each of these regions, individually, are more conserved than the overall IL-1β 

binding sites A and B (Figure II.8-B and Figure A-5 of the Appendix).  

https://www.uniprot.org/uniprot/P14778
http://www.uniprot.org/uniprot/P13504
http://www.uniprot.org/uniprot/Q02955
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Figure II. 8 - Comparison of human, rat and mouse interleukin-1 receptor type 1 protein sequences and structure. 

Upper panel: (A) Structural alignment of rat (rIL-1R1, coloured in green) and mouse (mIL-1R1, coloured in blue) 

predicted structures (full-length) retrieved from the AlphaFold Protein Structure Database (Varadi et al., 2021) with 

the crystallographic structure of the extracellular domain of human IL-1R1 (hIL-1R1, coloured in yellow) (PDB 

entry 4GAF). The protein structures were superimposed using the MatchMaker tool of the UCSF Chimera 1.15 

software program (Pettersen et al., 2004). The D1-D2 surface representation enclosed by the black circle is zoomed 

in, as well as conserved and non-conserved residues for the largest pocket (PO_0) predicted by DogSiteScorer. 

Lower panel: protein sequence alignment for residues (one-letter code) comprising three “druggable” binding 
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pockets – PO_0_0 (B), PO_0_1 (C) and PO_0_6 (D) – predicted in the crystal structure of hIL-1R1 by DoGSiteScorer 

(Volkamer et al., 2012b). The sequence alignment was produced using the Clustal Omega Server (Sievers and 

Higgins, 2018). Conservation across orthologs is colour coded as green, for full conservation across the three 

orthologs (a whole green table line represents 100% conservation); yellow, for amino acid differences with similar 

side-chain properties; red, for amino acid differences with distinct side-chain properties. 

Three smaller pockets are detected within the largest pocket (PO_0) and receive high 

druggability scores (). The overall sequence identity between hIL-1R1 and rIL-1R1 and mIL-1R1 

is greater than 60%: (i) pocket PO_0_0 presents 7 and 9 non-conserved residues out of 27, with 

a sequence identity of 73 and 65% against rIL-1R1 and mIL-1R1, respectively; (ii) pocket PO_0_1 

presents 4 non-conserved residues out of 10 residues compared to both rIL-1R1 and mIL-1R1 

(sequence identity of 60%); and (iii) the smallest of these three pockets, PO_0_6, shows 1 and 2 

out of 7 non-conserved residues (sequence identity of 85 and 71% for rIL-1R1 and mIL-1R1, 

respectively). Out of the three orthologs, mIL-1R1 is the only one that does not present a 

negatively charged side-chain, i.e. either aspartate (D) or glutamate (E), at position 129, which 

is known to be involved in the interaction with IL-1β or IL-1Rα. In addition, neither mIL-1R1 

nor rIL-1R1 present a negatively charged residue at position 11 as in hIL-1R1, instead showing 

a glutamine (N). Within the core of the pocket, residue 26 is different across the three orthologs, 

with hIL-1R1 presenting a proline (P) and rIL-1R1 and mIL-1R1 showing a serine (S) and a 

positively charged lysine (K), respectively.  

Focusing on the predicted binding pocket PO_1, which is located in the D3 domain, this site 

presents a sequence identity of 60 and 68% to the hIL-1R1, respectively compared to the rat 

and the mouse. Significant differences between ortholgs pertain two residues of the 6-amino 

acid linker, human P206 and T207, which are mutated to arginine (R) and aspartic acid (D), 

respectively, in rIL-1R1 and mIL-1R1, and the presence of N301 in mIL-1R1 instead of H301 

observed in hIL-1R1 and rIL-1R1. Human IL-1R1 shares 55% and 48% amino acid identity with 

their rat and mouse orthologs at binding site PO_2, evidencing a lower degree of conservation 

between species in this region. Overall, the two top-ranked binding sites, PO_0 and PO_1, 

exhibit relatively high sequence and structural conservation, which is consistent with their 

performing an important structural or biological role, as some of the residues lining these sites 

are crucial for IL-1 cytokine interaction. 

2.4. Concluding Remarks 

In this chapter, structural quality evaluations have been conducted for all the IL-1R1-ECD X-

ray structures deposited in the PDB to identify the structure holding highest overall structural 

quality for SBDD approaches. The selected structure was then used as reference for the 

identification of discernible druggable binding sites on the IL-1R1-ECD surface. Our idea was 

to provide useful hints for the SBDD of small molecules able to bind IL-1R1 and modulate the 
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neuroinflammatory networks. To reach this goal, three different computational applications 

for binding pocket prediction were employed.  The detailed assessment and correlation of data 

from the different algorithms allows for the rationalization of targeting strategies. Importantly, 

the druggability landscape outlined in this chapter provided: (i) a potential druggable binding 

region located at the D1-D2 binding interface comprising of a collection of smaller pockets, 

which was predicted in consensus by the three applied methods; (ii) potential druggable hot-

spots populating the D3 domain, particularly in the region close to the flexible linker and the 

interface region between the D1 and D3 domains when IL-1R1-ECD adopts a closed 

conformation, albeit predictions and virtual druggability scores varied significantly between 

the three strategies. Overall, based on analyses disclosed here, together with the binding site 

analyses performed by others (Yang, 2015), it seems plausible that the highest scoring 

predicted pockets represent promising focus points for targeting IL-1R1. 

Despite the careful analysis carried out in this chapter, crystal structures being static snapshots 

of dynamic systems raise the possibility that different structures of the same binding site 

would be associated with contradicting druggability predictions. Hence, this implies the 

necessity to consider protein internal motions in predicting and characterizing binding sites 

and in designing new chemical binders. With this in mind, in Part III a careful analysis of the 

IL-1R1-ECD conformational space is conducted, with particular focus on the stability and 

conformational flexibility of the most relevant predicted putative binding sites.  

The application of our pocket detection protocol was able to suggest and prioritize plausible 

binding sites regardless a priori knowledge of small molecule binders. Still, an even better 

starting point could be provided by an IL-1R1-ECD complex with a small molecule, so that 

there will be more valid binding positions. Nevertheless, the initial clues for the rational design 

of IL-1R1 modulators have been presented here to some extent. 
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PART III 

Molecular Dynamics simulations of Soluble and 

Membrane-bound forms of IL-1R1: decoding the 

conformational landscape 

 

 

 

“All things are made of atoms, and everything that living things do can be understood in terms 

of the jigglings and wigglings of atoms.” 

 

Richard Feynman, in  Six Easy Pieces
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3.1. Introduction 

The interleukin-receptor type 1 (IL-1R1) is synthetized as an 80 kDa transmembrane protein 

featuring an extracellular domain (ECD) containing three Ig-like domains (D1, D2 and D3), a 

transmembrane (TM) α-helix domain, and a cytoplasmic TIR domain. This membrane-bound 

protein may also be cleaved by matrix metalloproteases to a soluble circulating form. Both the 

membrane-bound and the soluble forms of IL-1R1 are biologically active, regulating the 

inflammatory response through agonistic and antagonistic modulation of cytokine activity. 

The ECD is a molecular trait or common signature found in both IL-1R1 forms, vital for ligand 

recognition and binding (Dinarello, 1998; Fields et al., 2019; Mantovani et al., 2019). The 

“puzzling nature” of soluble and membrane-bound IL-1R1-ECDs make us raise questions and 

incite us to investigate the spectrum of conformations explored by the soluble IL-1R1-ECD in 

comparison with the membrane-bound IL-1R1-ECD: i) are conformational dynamics of the IL-

1R1 majorly affected by membrane environment? ii) do IL-1R1 structural and conformational 

preferences translate into substantial differences in ligand recognition? 

While extensive structural works on the soluble ECD portions of IL-1R1 have provided critical 

insights about the specificities of ligand binding to this protein, lack of a full-length receptor 

structure has hindered a comprehensive overview of the overall architecture and IL-1R1 

domain arrangements. In this regard, in this chapter we attempt to predict the structural 

organization of full-length IL-1R1. Starting off from a high-quality crystal structure of the apo 

form of IL-1R1-ECD, we compare the conformational ensembles sampled by molecular 

dynamics (MD) simulations on the full-length (IL-1R1 ECD-TM-TIR) membrane model and in 

the soluble protein (IL-1R1-ECD). To the best of our knowledge, the presented work is the first 

study of this receptor dynamics, in the soluble and membrane-bound forms, via ten individual 

600 ns MD runs, totalling 6 μs. 

Guided by the results of Part II, as part of our initial effort toward the prediction and 

characterization of potential binding sites in the IL-1R1-ECD surface, we argued if the dynamic 

conformational behaviours observed for the two IL-1R1 forms could reflect in different 

physicochemical and topological properties of potential binding sites. Herein, to approach this 

issue, we study the evolution of a predicted binding site located at the D1-D2 interface, 

throughout the MD trajectories. Pocket conformations were grouped based on relevant 

physicochemical properties, by applying a clustering algorithm (K-medoids) for partitioning 

conformations with different features in this binding site, aiming at identifying groups of 

snapshots with similar pocket properties. Subsequently, representative MD conformations 

were identified and extracted for each cluster, toward the implementation of the virtual 

screening (VS) protocol presented in the next chapter. 
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Altogether, our simulations expand the current understanding of the dynamic features of the 

soluble and membrane-bound forms of IL-1R1, corroborating and mounting on the 

observations of other authors (Yang, 2015, 2020; Ge et al., 2019). The incorporation of dynamic 

features such as the ones highlighted in the present work provide a better understanding of 

the differences between soluble and membrane-bound IL-1R1-ECD conformational landscape 

and thus, may help consolidate the rationale of IL-1R1 drug-discovery programs. 

3.2. Computational Methods 

This section describes the material and methods employed in (1) the preparation and 

refinement of the soluble IL-1R1-ECD structural model; (2) the prediction and refinement of a 

3D-model for the full-length IL-1R1; (3) the attachment of the resultant full-length IL-1R1 

model to a POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane; (4) the 

setup of all-atom MD simulations; and (5) the analyses of the MD trajectories including 

Principal Component Analysis (PCA) and clustering based on the backbone dihedral angles. 

The sequence of human IL-1R1 (Homo Sapiens, UniProt code P14778) was used to create the 

full-length IL-1R1 protein, by means of structural modelling methodologies. The quality of the 

structural models was evaluated using PROCHECK v.3.5.4 (Laskowski et al., 1993). MD 

simulations were run on a dual Intel® Xeon® CPU E5-2680 @2.70GHz, using message passing 

interface (MPI) parallelization, managed by Minho Advanced Computing Centre (MACC). 

MD simulation data were visualized using VMD v.1.9.3. (Humphrey et al., 1996) and analysed 

with RStudio 1.2.5033 (RStudio Team, 2020). The BlendMol plugin (Durrant, 2019) was used 

to produce high quality images of IL-1R1 structures from imported VMD visualization states 

using the Blender software (Kent, 2015). 

3.2.1. Protein structure of soluble IL-1R1 (ECD) 

As of December 2021, the PDB (Berman et al., 2000) holds 5 crystal structures of protein 

complexes containing the IL-1R1-ECD, with 100% coverage of the UniProt sequence encoding 

for the human IL-1R1-ECD. PDB entry 4GAF (chain B - IL-1R1-ECD) was selected because of 

its higher structural resolution (2.15 Å) (Hou et al., 2013). Then, the co-crystallized ligands and 

water molecules were removed, missing residues were modelled via structural modelling 

using MODELLER v9.19 (Šali and Blundell, 1993), and the best model selected on the basis of 

the lowest value of the DOPE score (Shen and Sali, 2006). The final model for soluble IL-1R1 

comprises 319 residues. 

https://www.uniprot.org/uniprot/P14778
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3.2.2. Structural assembly and refinement of a full-length IL-1R1 

A structural model for the full-length multi-domain IL-1R1 has been assembled by combining 

molecular modelling and MD simulations. The crystal structure of the IL-1R1-bound ECD was 

obtained from the PDB (chain B from PDB entry 4GAF), determined at 2.15 Å resolution, and 

prepared as described in sub-section 3.2.1. Next, the 20-residue TM peptide was modelled as 

a single α-helix via use of a MODELLER script (Sali, 2008), and PDB entry 1T3G for TIR 

domain (Khan et al., 2004) was chosen as template structure for homology modelling by using 

PDB’s BLAST utility (Altschul et al., 1990). This crystal structure of the TIR domain of IL-

1RAPL1 (Interleukin 1 Receptor Accessory Protein Like 1) holds 34% sequence identity (E-

value of 1e-13) with the TIR amino acid sequence of IL-1R1, and has been solved at 2.3 Å 

resolution (Khan et al., 2004). Despite the low sequence similarity, the two proteins belong to 

the same family of structurally similar receptors, the IL-1 Receptor Family (Boraschi et al., 

2018), thus both protein domains adopt a similar global fold, despite some differences in the 

positioning of TIR domain secondary structural elements (Toshchakov and Neuwald, 2020). 

For each model, a 1000-step steepest descent energy minimization was carried out to remove 

initial steric clashes using GROMACS software version 2019.3 (Abraham et al., 2015, 2019). All 

three individual models were aligned on the same axis using GROMACS tool gmx editconf and 

patched between the C- and N-terminal residues of adjacent domains using UCSF Chimera 

version 1.12 (Pettersen et al., 2004). Finally, the resulting full-length model was again energy 

minimized with an additional loop refinement step, using the MODELLER software in 

Chimera (Pettersen et al., 2004), to correct irregularities on the constructed peptide bonds. The 

final full-length IL-1R1 model presents 527 residues (IL-1R1-ECD - 319 residues; TM - 20 

residues; TIR – 184 residues). 

3.2.3 Construction of the full-length IL-1R1 membrane system 

The full-length IL-1R1 model was embedded in a pre-equilibrated POPC bilayer containing 

332 lipids by aligning the center of mass of the IL-1R1 TM domain with that of the membrane, 

using the gmx mdrun membed tool in GROMACS 2019.3 (Wolf et al., 2010). The overlapping 

lipids with the protein were removed, resulting in a total of 324 membrane lipids. Periodic 

boundary conditions were applied in all directions of a cubic simulation box, the system 

solvated using the TIP3P water model (Jorgensen et al., 1983) and neutralized with the 

addition of sodium and chloride ions at a 100 mM concentration. The resulting total number 

of atoms was 212.017. 
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3.2.4 MD simulations of full-length IL-1R1 membrane system 

All-atom simulations were performed with GROMACS 2019.3, using the Amber99sb-ILDN 

force field (Lindorff-Larsen et al., 2010) for the protein and Berger parameters (Berger et al., 

1997) for the POPC lipids. Energy minimization was carried out using the steepest descent 

algorithm for 50000 steps to remove close contacts between the IL-1R1 atoms and solvent or 

lipid bilayer. Equilibration of the protein-membrane system started with a 100 ps simulation 

under NVT conditions at 303 K. All bonds lengths were constrained with the LINCS algorithm 

(Hess et al., 1997), with a 2 fs time step. Electrostatic interactions were treated by using the 

particle-mesh Ewald (PME) method (Essmann et al., 1995), with a short-range cutoff of 12 Å. 

The cutoff distance of the van der Waals interaction was also of 12 Å. The temperature was 

coupled to the V-rescale thermostat (Bussi et al., 2007) with a time constant of 0.1 ps. Position 

restraints were applied first to all heavy atoms, and then backbone, and finally Cα-atoms, 

using a force constant of 1000 kJ/mol/nm2. After NVT, a 10 ns NPT equilibration was 

performed, with pressure kept constant at 1 bar by using a semi-isotropic Parrinello-Rahman 

barostat (Parrinello and Rahman, 1981). The temperature was kept at 303 K using the Nose-

Hoover thermostat (Braga and Travis, 2005), maintaining the position restraints from the NVT 

phase. After these equilibration steps, restraints were removed and five independent 

production runs, each for 600 ns, were performed starting from different initial velocities. 

3.2.5. MD simulations of soluble IL-1R1 (ECD) 

MD simulations in explicit solvent were performed for the isolated IL-1R1-ECD, using 

Amber99sb-ILDN force field (Lindorff-Larsen et al., 2010). The model was solvated with TIP3P 

water (Jorgensen et al., 1983) in a truncated octahedron box. The resulting total number of 

atoms was 164.708. After the entire system was neutralized with counter ions, 10000 steps of 

energy minimization were performed with the steepest descent algorithm. Temperature and 

pressure couplings were performed for 750 ps and 1 ns each, with V-rescale thermostat (Bussi 

et al., 2007) and Berendsen barostat (Berendsen et al., 1984), respectively. All other MD 

simulation settings were the same as described for the full-length IL-1R1 membrane system. 

Production simulations of 600 ns were performed in quintuplicate, starting from different 

initial velocities. 

3.2.6. Principal Component Analysis 

PCA was performed to extract the collective motions of the IL-1R1-ECD sampled in the MD 

simulations. The covariance matrix was constructed using the gmx covar function in 

GROMACS 2019.3 to define the backbone conformational space of the MD structures. Next, 

the MD trajectories were projected onto the first four eigenvectors, using 10000 frames per 
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trajectory (1 frame each 60 ps), with an initial RMS-fit to the starting MD snapshot Cα-atoms 

to remove the rotational and translational motions. To understand the global motions of the 

IL1R1-ECD, porcupine plots were generated and visualized via the modevector.py script from 

Pymol (Schrödinger LLC, 2020). Five crystal structures of IL-1R1-ECD bound to different 

ligands were used in the PCA as reference points in the conformational space sampled by the 

two IL-1R1-ECD forms - PDB entries 4DEP two ECD chains (Thomas et al., 2012), 4GAF (Hou 

et al., 2013), 1G0Y (Vigers et al., 2000), 1IRA (Schreuder et al., 1997) and 1ITB (Vigers et al., 

1997). 

3.2.7. Clustering based on the backbone dihedral angles of the linker 

Conformational clustering based on the backbone dihedral angles, phi (φ) and psi (ψ), of the 

flexible linker residues was performed using the Partitioning Around Medoids (PAM) 

clustering method (Reynolds et al., 2006). Proline (Pro) 206 was not included due to limited 

number of ψ and φ possibilities owed to its 5-membered ring. The silhouette width value was 

used to select the best number of clusters obtained with the PAM algorithm. This value 

measures the quality of a clustering, where the optimal number of clusters k is the one that 

maximizes the average silhouette over a range of possible values for k (Kaufman and 

Rousseeuw, 1990). Representative structures of each cluster were chosen based on the medoids 

concept, i.e., structures closest to the absolute average of each cluster. Clustering was 

performed using 10000 frames of the linker region per MD trajectory (1 frame each 60 ps), after 

alignment of the Cα-atoms in each frame to the starting MD snapshot. 

3.2.8. Pocket characterization on MD trajectories 

The changes in the volume and shape of the binding site, located at the D1-D2 interface, 

estimated using Fpocket (Le Guilloux et al., 2009) were calculated throughout the MD 

trajectories with MDPocket (Schmidtke et al., 2011). This software is an extension of Fpocket, 

allowing the analysis of several physicochemical and geometric descriptors (for example, 

pocket volume, polar and apolar surface areas, hydrophobicity and polarity measures, pocket 

density and average radius, local hydrophobic density, etc.) for the pocket of interest. Before 

using MDPocket, 10000 MD snapshots of the soluble and membrane-bound IL-1R1-ECD 

proteins were superimposed onto each other, through least squares superposition of all Cα-

atoms in each snapshot. 

To visualize the space sampled by the pockets, PCA was performed based on physicochemical 

and geometric descriptors, to efficiently extract the most relevant pocket descriptors. Then, 

pocket conformations were grouped based on the selected descriptors, by applying the PAM 

clustering method. Similarly, to sub-section 3.2.7., the silhouette width value was used to select 
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the best number of clusters obtained with the PAM algorithm. For each cluster, representative 

conformations were extracted. 

3.3. Results and Discussion 

To characterize the conformational behaviour of membrane-bound IL-1R1-ECD, in this study 

a structural model was developed in which the full-length IL-1R1 is anchored to a POPC 

membrane. For both the soluble and membrane-bound IL-1R1-ECDs, five independent 600 ns 

long MD simulations, at 303 K, have been performed, totalling 3 μs for each system. In the 

following paragraphs, a detailed analysis of these simulations is presented.  

 

Figure III. 1 - Initial configurations of soluble and full-length membrane-bound interleukin-1 receptor type 1 

(IL-1R1). (A) Structural organization of the soluble IL-1R1. Ig-like domains are labelled as D1, D2 and D3 and arrow 

indicates the 6 amino acid flexible linker (B) Overall architecture of the full-length IL-1R1 in a POPC membrane. 

3.3.1. Structural quality and stability assessment of the full-length, 

membrane-bound IL-1R1 

Figure III.1 depicts the overall structures of both the soluble, X-ray derived IL-1R1 and the 

modelled, membrane-bound, full-length IL-1R1. The quality of both structural models 

(prepared as described in the Methods section) was assessed and validated using PROCHECK 

(Laskowski et al., 1993). The models were also evaluated using the ProSA-web server 

(Wiederstein and Sippl, 2007), which measures structure quality and energy profiles in terms 

of a Z-score. The final snapshot (t = 600 ns) of each MD run was also assessed for quality using 

the same methods. The Ramachandran plot analysis obtained by PROCHECK and the Z-score 



 
 

98 
 

determined by the ProSA-web server are depicted in Table III.1 and the plots are provided in 

the Appendix (Figure B-1 and B-2). Analysis of the soluble and membrane-bound IL-1R1 

structures show that the backbone phi and chi angles of >95% of the residues fall within 

favoured and allowed regions, highlighting the high quality of the models. The Z-scores for 

the soluble and the full-length IL-1R1 were -7.06 and -5.81, respectively, falling within the 

range of values of the known proteins determined by X-ray. Analysis of the final snapshot of 

each MD run revealed that the backbone angles remain within the favoured regions of the 

Ramachandran plot, and the respective Z-scores obtained do not disclose significant 

deviations from experimentally determined protein structures of similar size. Secondary 

structure assignments across the MD trajectories, obtained via the DSSP algorithm, reveal that 

the three Ig-like domains are mostly preserved across the 600 ns of simulation, with only subtle 

alterations. The changes in protein secondary structure along the soluble and membrane-

bound IL-1R1 MD simulations are provided in Appendix (Figure B-3 and B-4). 

Table III. 1 - Ramachandran plot statistics and ProSA-web Z-score for initial structural models and the five MD 

runs of soluble and membrane-bound full-length interleukin-1 receptor type 1 (IL-1R1). 

1 distribution of non-glycine and non-proline residues in the Ramachandran plot: 2 final snapshot from the simulation; Total 

number of non-glycine and non-proline residues: 286 (soluble IL-1R1); 467 (full-length IL-1R1). 

 

 

IL-1R1  Ramachandran plot1 Z-score 

  
Most favoured 

regions 

Additional 

allowed 

regions 

Generously 

allowed 

regions 

Disallowed 

regions 
 

Soluble 

Pre-MD 250 (88.7%) 27 (9.6%) 3 (1.1%) 2 (0.7%) -7.06 

S12 243 (85.0%) 38 (13.3%) 4 (1.4%) 1 (0.3%) -7.87 

S22 253 (88.5%) 30 (10.5%) 0 (0%) 3 (1.0%) -7.34 

S32 239 (83.6%) 42 (14.7%) 3 (1.0%) 2 (0.7%) -7.24 

S42 238 (83.2%) 41 (14.3%) 5 (1.7%) 2 (0.7%) -7.75 

S52 237 (82.9%) 43 (15.0%) 5 (1.7%) 1 (0.3%) -7.53 

Full-

length 

Pre-MD 385 (82.4%) 65 (13.9%) 12 (2.6%) 5 (1.1%) -5.81 

M12 396 (84.8%) 60 (12.8%) 6 (1.3%) 5 (1.1%) -7.25 

M22 388 (83.1%) 72 (15.4%) 4 (0.9%) 3 (0.6%) -7.16 

M32 392 (83.9%) 69 (14.8%) 4 (0.9%) 2 (0.4%) -6.99 

M42 386 (82.7%) 73 (15.6%) 5 (1.1%) 3 (0.6%) -6.73 

M52 388 (83.1%) 72 (15.4%) 5 (1.1%) 2 (0.4%) -7.19 
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The structural stability of the POPC membrane in the presence of full-length IL-1R1 protein 

was examined by computing the surface area occupied by each lipid (area per lipid), lipid 

order parameters and mass density profiles across the membrane, and equilibrium properties 

were compared with those from the literature. The area per lipid (ApL) is defined as the lateral 

membrane area (XY-dimension) of the simulation box divided by the number of lipids in one 

leaflet (Shahane et al., 2019). ApL values for the five membrane-bound IL-1R1 MD runs (M1-

M5) are reported in Figure III.2A. The average ApL values calculated for the POPC system 

were 0.643 ± 0.007, 0.639 ± 0.007, 0.636 ± 0.007, 0.639 ± 0.007 and 0.637 ± 0.007 nm2, respectively 

for M1, M2, M3, M4 and M5 – consistent with previous experimental and simulation ApL 

values of POPC membranes (Poger and Mark, 2010; Poger et al., 2016). The mass density 

profiles for multiple system components along the z-axis are plotted in Figure III.2B. Across 

the five membrane-bound IL-1R1 MD runs, the phospholipid bilayer density profiles are 

generally maintained: i) the water density in the hydrophobic membrane’s core is null (0), 

implying that no water molecules reach the interior of the bilayer; ii) the headgroup densities 

are distributed between 36 and 37 Å, roughly corresponding to the thickness of the lipid 

membrane (Poger and Mark, 2010; Shahane et al., 2019); iii) the acyl chains are fully packed in 

the bilayer core (distances between 31 and 32 Å). Altogether, the calculated membrane 

environment density profiles point out to a correct organization of the bilayer hydrophilic and 

hydrophobic moieties holding the full-length IL-1R1. Deuterium order parameters (-SCD) of the 

sn1 and sn2 acyl chains in phospholipids (Figure III.2C and III.2D) indicate that the membrane 

has not transitioned into a gel-like state and, overall, are in good agreement with order 

parameters for a pure POPC bilayer – as determined experimentally and from MD simulations 

(Ferreira et al., 2013; Piggot et al., 2017).  
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Figure III. 2 - Bilayer stability parameters throughout five MD runs (M1, M2, M3, M4 and M5) of the full-length 

interleukin-1 receptor type 1 in a POPC membrane. (A) Area per lipid (ApL) of the POPC bilayer; (B) Mass density 

profiles of the various components of the POPC bilayer; Deuterium order parameter SCD profiles of the sn1 (C) and 

sn2 (D) lipid acyl chains. 

3.3.2. Conformational dynamics of soluble and membrane-bound 

IL-1R1-ECDs 

In this work, MD simulations have been used to study the conformational dynamics of soluble 

and membrane-bound IL-1R1, particularly focusing on the ECD region, with the key goal of 

obtaining structural insights of receptor dynamics and ECD transitions between the open and 

closed states. The root mean square deviation (RMSD) and the root mean square fluctuation 

(RMSF) were computed for the soluble and membrane-bound IL-1R1-ECDs after alignment of 
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the coordinates of Cα-atoms from all systems, using the starting MD snapshot as reference. 

Analysis of the RMSD profiles (Figure III.3) revealed significant conformational changes 

compared to the starting structure for the soluble IL-1R1. In the 2nd and 3rd replicas (S2 and 

S3), the ECD rapidly adopts a stable, closed conformation after ≈ 6 ns (average Cα-RMSD of 

16.5 ± 0.02 Å and 16.9 ± 0.04 Å, respectively), mediated by D1/D3 beta-sheet interactions, 

preserving this rigid state along the rest of the trajectories. Two main conformational changes 

in IL-1R1-ECD are observed in the S5 replica throughout the simulation: (i) during the first 30 

ns of simulation, it adopts an open, extended configuration, and (ii) it then undergoes an open-

to-closed transition with significant structural rearrangements on D3 between 30 and 350 ns – 

with the respective RMSD values afterwards approaching those observed in the two replicas 

sampling the stable, closed state. These rearrangements can be ascribed to a twisting motion 

of D3 relative to D1-D2, dictated by the flexible linker. The remaining two runs, S1 and S4, 

show the ECD exhibiting wider variations in terms of RMSD profiles, mostly characterized by 

rapid increasing and fluctuating values until the end of the simulation. The mean Cα-RMSD 

of S1 and S4 is 18.8 ± 0.22 Å and 20.6 ± 0.24 Å, respectively, denoting a larger departure from 

the initial structure on average, compared with the other replicas. Interestingly, in S1 and S4 

the D3 region undergoes a twist relative to the other two domains, allowed by the flexible 

linker connecting D2 and D3, with the ectodomain adopting a twisted, skewed conformation 

that looks considerably distinct from both the closed and the initially open conformations. 

 

 

 

 

 

 

 



 
 

102 
 

 

Figure III. 3 - Variation of the root mean square deviation (RMSD) of all Cα-atoms of the extracellular domain 

of interleukin-1 receptor type 1 (IL-1R1-ECD). (A) five 600-ns soluble IL-1R1-ECD MD simulations (S1, S2, S3, S4 

and S5); (B) five 600-ns membrane-bound IL-1R1-ECD MD simulations (M1, M2, M3, M4 and M5). 

The RMSD profiles of the membrane-bound IL-1R1-ECD follow essentially a similar trend to 

that of soluble ECD. Interestingly, during the first 100 ns of the M1 and M5 trajectories, IL-

1R1-ECD explores an open configuration in a higher extent before transitioning into a more 

stable closed state. This is in contrast with what is observed in replicas of the soluble system 

transitioning into a similar closed state after around 6 ns of simulation (S2 and S3). The mean 

Cα-RMSD values in M1 and M5 are of 14.1 ± 0.07 Å and 14.1 ± 0.06 Å, respectively, suggesting 

that the membrane-bound IL-1R1-ECD shows lower deviations than those seen in the soluble 

form. Higher average RMSD values of 16.7 ± 0.3 Å and 14.8 ± 0.3 Å were computed for 
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trajectories M2 and M4, where IL-1R1-ECD adopts an extended and twisted open 

conformation in the later snapshots of the simulations – implying that the interdomain twist 

motion occurring between D3 and D1/D2 is a common feature shared by the two forms. 

However, in the M3 trajectory the ectodomain remains in a remarkably stable open 

conformation throughout the whole simulation length, without the occurrence of structural 

rearrangements around the flexible linker – resulting in a mean Cα-RMSD of 10.9 ± 0.2 Å. 

The MD trajectories show that the conformational stability of the IL-1R1-ECD is higher when 

bound to a lipid bilayer, in comparison to the soluble form, even though, on average, the 

diversity of geometrical parameters is also less sampled in the membrane environment across 

the total 3 μs of simulation. Other structural properties such as the radius of gyration (Rg), 

intramolecular hydrogen bond networks (HBintra) and the solvent-accessible surface area 

(SASA) of the soluble and the membrane-bound ECDs were evaluated. Table III.2 shows that 

the ectodomains adopting a closed conformation in the soluble (S2 and S3) and in the 

membrane-bound IL-1R1 (M1 and M5) present similar Rg values, whereas a clear increment 

in Rg is observed for the systems exploring open conformations. Interestingly, in the S5 

trajectory, the transition from the open to a somewhat distinct closed configuration is reflected 

in a slightly higher Rg when compared to the Rg calculated across those trajectories where the 

ECD largely adopted closed conformations. These differences seem to be ascribed to the 

interdomain rotational motion of the flexible linker. In S5, less intramolecular hydrogen bond 

formation is verified in comparison with those trajectories sampling closed ECD 

conformations, suggesting that the hydrogen bond framework of the IL-1R1-ECD may be 

altered due to the rotational motions of the flexible linker across the earlier 350 ns. The higher 

number of HBintra observed for the soluble and the membrane-bound IL-1R1-ECD closed states 

points out that this conformation could be thermodynamically more stable. The closed 

conformations also expose a higher SASA across the soluble and the membrane-bound IL-1R1-

ECDs (mean SASA between 180 and 182 nm2), which is consistently below the SASA values in 

the open conformations (mean SASA between 184 and 197 nm2). These structural properties 

extracted for the simulations are in good agreement with the ones computed for the closed 

(PDB entry 1G0Y) and open (PDB entry 4GAF) IL-1R1-ECD X-ray structures. Intriguingly, the 

number of HBintra observed for the closed conformations was systematically lower than the 

HBintra value of the IL-1R1-ECD closed crystal structure, indicating the transitional pathway to 

this structure as not been sampled during the simulation timescale. 
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Table III. 2 - Average values of multiple structural properties across five MD trajectories of soluble IL-1R1-ECD 

(S1, S2, S3, S4 and S5) and five MD trajectories of POPC-anchored IL-1R1-ECD (M1, M2, M3, M4 and M5). 

Reference values computed for the open (PDB entry 4GAF) and closed (PDB entry 1G0Y) crystal structures are 

presented. 

1 reference structure used as starting point for MD simulations. 

Table abbreviations: root mean square deviation (RMSD); radius of gyration (Rg); intramolecular hydrogen bonds (HBintra); 

solvent-accessible surface area (SASA). 

 

Figure III.4 shows the RMSF of Cα-atoms compared with RMSF values derived from the 

crystallographic B‐factors of IL-1R1 (PDB entry 4GAF). The latter were obtained using the 

relationship RMSF = (3B/8π2)1/2. The RMSF values correspond mainly to the N- and C terminal 

tails of the ECD and to loop regions. It is clear that both soluble and membrane-bound ECDs 

present significant mobility differences between replicas of the two systems. The MD 

trajectories where the soluble IL-1R1-ECD undergoes a conformational transition into a stable 

closed-state (S2 and S3) exhibited modest and nearly superimposable Cα-atom fluctuations, 

whereas larger Cα-atom fluctuations are detected in the MD trajectories where the membrane-

bound IL-1R1-ECD majorly explore a closed configuration (M1 and M5). On the contrary, in 

those trajectories where IL-1R1-ECD adopts open twisted configurations, significantly larger 

fluctuations on the Cα-atoms of all residues are seen, with a somewhat expected sharp peak 

observed between residues 201 and 206. These residues comprise the flexible linker between 

D2 and D3. The higher RMSF values indicate that all three domains are prominently changing 

their spatial orientations throughout the simulations, due to the interdomain movements 

mediated by the flexible linker. Comparisons between the soluble and the bilayer-bound ECD 

System Average RMSD (Å) Rg (nm) # HBintra  SASA (nm2) 

4GAF 1 --  3.0 229 179.4 

1G0Y 16.8 2.2 249 174.4 

S1 18.8 ± 0.22 2.9 ± 0.17 234 ± 7 178.7 ± 4.25  

S2 16.5 ± 0.02 2.2 ± 0.06 240 ± 8 173.0 ± 2.74  

S3 16.9 ± 0.04 2.2 ± 0.04 241 ± 7 172.7 ± 3.13  

S4 20.6 ± 0.24 2.8 ± 0.20 233 ± 7 178.9 ± 3.77  

S5 15.6 ± 0.20 2.4 ± 0.19 234 ± 8 176.4 ± 4.50  

M1 14.1 ± 0.07 2.3 ± 0.18 239 ± 7 175.8 ± 4.28  

M2 17.3 ± 0.13 3.1 ± 0.08 231 ± 7 184.7 ± 2.88  

M3 11.7 ± 0.11 3.3 ± 0.15 232 ± 7 186.3 ± 2.60  

M4 15.6 ±0.18 3.0 ± 0.15 233 ± 8 183.2 ± 3.13  

M5 14.1 ±0.06 2.3 ± 0.18 238 ± 7 175.3 ± 4.35  
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indicate that the former exhibits higher structural flexibility and more pronounced 

configurational transitions than the latter. This is likely due to the higher conformational 

freedom enjoyed by the soluble ECD, allowing it to explore a diversity of backbone 

conformations in higher extent compared to the membrane-bound ECD. 

 

Figure III. 4 - Variation of the root mean square fluctuation (RMSF) of all Cα-atoms profiles as function of 

residue number for the extracellular domain of interleukin-1 receptor type 1 (IL-1R1-ECD). (A) five 600-ns 

soluble IL-1R1-ECD MD simulations (S1, S2, S3, S4 and S5); (B) five 600-ns membrane-bound IL-1R1-ECD MD 

simulations (M1, M2, M3, M4 and M5). The line coloured in yellow represents the fluctuations derived from the 

crystallographic B-factors of IL-1R1-ECD (PDB entry 4GAF).  

To get further insight into the structural dynamics of both IL-1R1-ECD forms, the MD runs 

were analysed in terms of the interdomain hinge angles between D3/D1 and D3/D2. The 

flexible linker mediates conformational changes in solution, with hinge-bending and hinge-

twisting motions moving the domains together (closed conformation) and apart (open 

conformation). The hinge angle was computed by measuring the relative displacement 

between the center of masses of the two domains in the XY-plane. Figure III.5 illustrates the 

comparison of the interdomain hinge angles (ϕ) distributions for soluble and membrane-

bound IL-1R1-ECDs within the timescale of the MD simulations. For both forms, two defined 

clusters of D3/D1 hinge angles are accessible, sampling both the closed and open 

conformations. In the soluble structure, most of the D3/D1 angles for closed conformations 

(prevalent in S2, S3 and S5) is concentrated within the 110° to 125° range, while the range on 

the open and twisted conformations (sampled by S1 and S4) is broadened, ranging between 

150° to 180°. In line with the RMSD analysis, the S5 trajectory samples open extended 

conformations during the first 30 ns, reaching its largest angle of 171.5° at 23.4 ns, which 
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gradually closes up to ≈115°. Likewise, comparable patterns are observed for the membrane-

bound ECDs, however two important differences stand out when comparing to the soluble 

state: (i) attachment to a membrane appears to limit the sampling of open-to-closed transitions, 

solely converging to a similar hinge angle (ϕ ≈120°) after ≈100 ns (M1 and M5), and (ii) a 

smaller hinge angle distribution (fluctuations between 150° and 172°) is observed in the open 

conformations (M2, M3 and M4) when compared to the corresponding structures of the 

soluble ECD (mostly sampled by S1 and S4). This last observation agrees with the hinge angles 

distributions of D3 relative to D2, where the soluble ECD exhibits larger interdomain 

movements in S1 and S4, whereas M2, M3 and M4 sample a narrow angle distribution within 

the conformational space. Importantly, these differences seem to sustain the view that the IL-

1R1-ECD is more flexible in a soluble form predominantly due to the enhanced flexibility of 

the intrinsically flexible linker between D2 and D3.  

 

Figure III. 5 - Distributions of the interdomain hinge angles of the extracellular domain of imterleukin-1 

receptor type 1 (IL-1R1-ECD) throughout the whole simulation length. (A and C) D1-D3 and D2-D3 hinge angles 
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for the soluble IL-1R1-ECD (S1, S2, S3, S4 and S5) and (B and D) D1-D3 and D2-D3 hinge angles for the membrane-

bound (M1, M2, M3, M4 and M5) IL-1R1-ECD. 

3.3.3 Principal Component Analysis of soluble and membrane-

bound IL-1R1-ECDs MD trajectories 

PCA was performed on protein backbone atoms to further study and help us focus on 

differences of conformational dynamics between the soluble and membrane-bound IL-1R1-

ECDs. In essence, this technique converts a set of correlated observations, e.g. movements of 

selected atoms in a system, to a set of principal components (PCs) which are linearly 

independent, containing for example the dominant trends explaining rigid-body domain 

motions. The 2D plots of Figure III.6 depict the distribution of conformations along the 

PC1/PC2 and PC3/PC4 for both the soluble and the membrane-bound IL-1R1-ECD structures 

extracted from the ten independent MD trajectories. The positions for the five available 

experimental structures of the IL-1R1-ECD were reported to map reference points onto the 

subspace spanned by the essential PCs. Figure B-5 in the Appendix shows the resulting PCs 

analysis scree plot, indicating the proportion of variance accounted for by the principal 

components. The porcupine plots for the of the four most representative PCs are presented in 

Figure B-6. In both IL-1R1-ECD forms, the first two eigenvectors (PC1 and PC2) obtained from 

the PC analysis capture more than 85% of the total variance, suggesting that these vectors 

approximately describe the essential subspace of both systems. Movement along the first 

component (PC1) describes a collective motion from the closed to the open state, resulting in 

a change in the hinge angles, whereas the second (PC2) pertain the collective twisting motions 

of domains D1-D2 with respect to D3. PC3 and PC4 each account for only 2.2-7.7% and 1.9-

3.0% of the observed variance in the soluble and membrane-bound ECD structures, 

respectively. This PCs represent motions of the D3 domain of IL-1R1 twisting about the flexible 

linker.  

As seen from Figure III.6, the conformational landscape explored by the two IL-1R1-ECDs 

reveals relevant differences: (i) most of the soluble ECD conformations were mapped into two 

distinct regions of the conformational space, with a small number of intermediate 

conformations connecting them, i.e., adopting closed conformations in which the D1 and D3 

domains contacted each other (-25 < PC1 < 15) and open extended, skewed states (20 < PC1 < 

50); (ii) in the membrane-bound IL-1R1-ECD is observed a higher number of intermediate 

open states between the closed and open twisted conformations. Furthermore, the area 

spanned by PC1 and PC2 was much larger in the case of the soluble IL-1R1-ECD in comparison 

to the membrane-bound form, suggesting a higher degree of amplitude motion and, thus, 

flexibility of the soluble ECD structure. Interestingly, both IL-1R1-ECD forms sampled the 

entire conformational space covered by the X-ray structures deposited in the PDB, in the first 
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two PCs. However, non-overlapping areas of the conformational space between the MD 

simulations and the X-ray structures were observed in PC3 and PC4, despite their low 

contribution. This is clearer for the membrane-bound IL-1R1-ECD, which failed to capture 

essential structural dynamics in these two PCs of the five structures solved experimentally, 

whilst the soluble form was not able to sample the closing of the ECD with a 170º rotation of 

D3 relative to D1-D2, as verified in the closed antagonist-bound IL-1R1-ECD (PDB entry 

1G0Y). These results point out to notable differences in the twisting motions of the two IL-1R1-

ECD forms. 

 

Figure III. 6 - Projections of the conformations adopted by the extracellular domain of interleukin-1 receptor 

type 1 (IL-1R1-ECD) onto the PC1-4 essential subspace. The experimental structures of IL-1R1-ECD (shown in 

yellow triangles) used as reference points are depicted with text labels. Sampled areas of (A and C) the five soluble 

(S1, S2, S3, S4 and S5) space; (B and D) five membrane-bound (M1, M2, M3, M4 and M5) IL-1R1-ECD MD 

simulations, in the two-dimensional PC1-PC2 and PC3-PC4 space. 
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A closer look at the plots of Figure III.6 reveals interesting details on the conformational 

sampling of soluble versus membrane-bound IL-1R1-ECDs. While the ECD structures that 

explicitly adopt a closed configuration in the soluble system (prevalent in S2 and S3) exhibit 

transitions from open to closed states in a more confined subspace, the membrane-bound IL-

1R1-ECDs visiting closed conformations (M1 and M5) sample wider intermediate structures 

on the transition pathway. We hypothesize that the open-to-closed conformational transition 

observed only later in the course of the MD trajectory for the membrane-bound IL-1R1-ECD 

is intimately linked with the limited ECD translational and rotational degrees of freedom 

owing to the presence of the lipid bilayer. Conversely, the higher conformational flexibility of 

the soluble ECD results in less intermediate states, suggesting this transition occurs on 

relatively short timescales. Hence, the different conformational profiles of soluble and 

membrane-bound IL-1R1-ECDs may explore alternative closed-state populations. As 

mentioned above, the RMSD and RMSF curves, as well as the hinge angle distribution for the 

membrane-bound IL-1R1-ECD simulations also seem to support this interpretation (Figures 

III.3, III.4 and III.5). Indeed, the restricted flexibility of the membrane-bound IL-1R1-ECD is 

supported by the open configurations, where each replica (M2, M3 and M4) visits a more 

confined conformational space when compared to the soluble ECD (S1 and S4). 

3.3.4. Clustering of soluble and membrane-bound IL-1R1-ECDs MD 

trajectories 

The flexible linker connecting D2 and D3 domains is of primary importance for the 

conformational dynamics of IL-1R1. As such, we performed a clustering analysis based on the 

backbone dihedral angles (φ, ψ) of this linker to determine and compare the extent of 

accessible conformations of this region sampled by the soluble and membrane-bound IL-1R1-

ECDs. Here, we build on the idea of using the torsion angles of this region to better examine 

and map out the conformational states and transitions of the two IL-1R1-ECD forms. The sin- 

and cos-transformed scaled dihedral angles were classified into clusters using PAM method. 

The average silhouette method was used to estimate the optimal number of clusters (k) for 

each IL-1R1-ECD form. The clusters were ranked by the number of structures. Figure III.7 

illustrates the silhouette analysis for the soluble and membrane-bound IL-1R1-ECDs. In the 

case of the soluble ECD, the best silhouette width value was obtained for 8 clusters, whereas 

k=4 provided the best score for the membrane-bound counterpart. Importantly, this standard 

metric provides evidence for a wide dispersal of linker orientations in the soluble system, and 

a need to choose a higher k to an optimal partitioning of the sampled dihedral angles given 

that the flexible loop shows the highest fluctuation in this IL-1R1-ECD form. 
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Figure III. 7 - Average silhouette width of different number of clusters (k) for the backbone dihedral angles (φ, 

ψ) of the flexible loop connecting D2 and D3 domains. Silhouette scores for (A) the soluble and (B) membrane-

bound interleukin-1 receptor type 1. 

Figures III.8 and III.9 provide information on the cluster populations and backbone dihedral 

angles (φ, ψ) of residues Leu201, Glu202, Glu203, Asn204 and Lys205 for each cluster 

representative. For the sake of illustration, only clusters holding >5% of the total population 

are represented in Figure III.8. Furthermore, the representative IL-1R1-ECD conformations 

derived from their backbone torsion angles of the linker were aligned to the D3 domain of the 

crystal structure (PDB entry 4GAF) to better visualize and compare the conformational 

dynamics between the soluble and membrane-bound receptors. Among the 8 clusters 

extracted from the soluble ECD simulations (Figure III.8A), backbone dihedral angle 

populations contributing to closed IL-1R1-ECD conformations are found in five clusters – 1S 

(21.9%), 3S (18.2%) 5S (10.3%), 7S (4.3%) and 8S (2.6%). The most populated, third and eighth 

clusters comprise the closed states prevalent across S2 and S3 trajectories, whereas the fifth 

and seventh clusters contain the structurally distinct closed conformations adopted by the 

soluble IL-1R1-ECD throughout the S5 trajectory. The major difference between these two 

different groups of conformations resides in the orientation of the Phi (φ) angle of Asn204, 

which differs significantly (Figure III.9A). We hypothesize that during the transition from 

open to closed IL-1R1-ECD, deviations on Asn204φ causes the linker in 5S and 7S to twist, 

allowing D3 to rotate relative to domains D1 and D2, yielding twisted-closed conformations. 

Indeed, the backbone ϕ angle adopted by Asn204 in these 5S and 7S conformations 

characterized by 85° and 110° rotations, respectively, agrees well with the Asn204φ angle 

measured in the closed IL-1R1-ECD X-ray structure (PDB entry 1G0Y), where D3 is rotated 

almost 170° relative to the first two domains of the receptor. Most the linker orientations 

sampling IL-1R1-ECD closed conformations undergo a change Glu202ψ and/or Glu203ψ 

angles (Figure III.9B), suggesting that the open-to closed conformational transition is 
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dependent on changes in these dihedral angles. The remaining clusters are densely populated 

with open twisted conformations. Clusters 2S (21.7%), 4S (15.3%) and 6S (5.9%) contain linker 

configurations inducing open twisted, skewed IL1R1-ECD states. As evident from Figure 

III.9D, residues Glu203ψ and Asn204ψ angles have relatively large deviations in these 

conformations, when compared to the open IL-1R1-ECD X-ray structure (PDB entry 4GAF). 

Accordingly, variations in these dihedral angles may drive the conformational change to 

twisted open states. 

 

Figure III. 8 - Cluster representative structures of the extracellular domain of interleukin-1 receptor type 1 (IL-

1R1-ECD) with a zoomed view of flexible linker orientations, derived from a clustering approach for linker 

conformations based on backbone dihedral angles (φ, ψ). Representative conformations for (A) the soluble and 

(B) membrane-bound IL-1R1-ECD MD simulations. All structures were aligned to the D3 domain of the X-ray 

structure of open IL-1R1-ECD configuration (PDB entry 4GAF), which is shown in dark green. Represented clusters 

of soluble ECD: Cluster 1 [1S] (green); Cluster 2 [2S] (red); Cluster 3 [3S] (blue); Cluster 4 [4S] (yellow); Cluster 5 

[5S] (purple); Cluster 6 [6S] (brown). Represented clusters of membrane-bound ECD: Cluster 1 [1M] (blue); Cluster 

2 [2M] (red); Cluster 3 [3M] (orange); Cluster 4 [4M] (yellow). 

For the membrane-bound IL-1R1-ECD, the distribution of linker orientations in the clusters is 

different (Figure III.8B). The most populated cluster (1M) in the membrane-bound system 

comprises approximately 62,0% of backbone dihedral angles defining open conformations 

very similar to the open crystallographic structure. Indeed, backbone dihedral angles of 1M 

largely agree with the experimental data in this regard (Figure III.9C and III.9D). The 

population of dihedral angles representing closed ECD conformations is associated to cluster 

2 (2M), containing 16,5% of the total ϕ and ψ angles. This cluster reproduces similar effects in 

phi and psi angles distributions as observed in clusters 1S, 3S and 8S (Figure III.9A and III.9B). 

Moreover, from this analysis it can be appreciated that the flexible linker of the soluble form 
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samples a wider range of closed conformations as compared to the membrane-bound IL-1R1-

ECD system. The third (3M) and fourth (4M) clusters represent orientations of the backbone 

dihedral angles leading to open, twisted conformations, holding 11,8% and 10,2% of the total 

population, respectively. A comparable pattern of changes in Glu203ψ and Asn204ψ angles 

was found in these linker orientations, consistent with the observations made on the soluble 

system (Figure III.9D). Overall, comparison backbone dihedral angles (φ, ψ) extracted from 

the 5 residues composing the flexible linker of the soluble and membrane-bound IL-1R1-ECD 

demonstrates that the former samples a wide array, and far from its starting point, 

conformational populations, whereas the membrane-bound IL-1R1-ECD seems to undergo 

conformational changes with more limited structural deviations. Therefore, it can be 

concluded that the allowed backbone-dihedral angle conformational space is more restricted 

in the membrane-bound IL-1R1-ECD.  

 

Figure III. 9 - Comparison of the calculated backbone dihedral angles, ϕ (A and C) and ψ (B and D), for the 

representative clusters of the extracellular domain of interleukin-1 receptor type 1 (IL-1R1-ECD) with those 

measured in the X-ray structures. The black solid line denotes the open IL-1R1-ECD (PDB entry 4GAF) and the 
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dashed line denotes the closed, twisted IL-1R1-ECD conformation (PDB entry 1G0Y). Represented clusters of 

soluble ECD: Cluster 1 [1S] (light blue); Cluster 2 [2S] (red); Cluster 3 [3S] (dark green); Cluster 4 [4S] (mauve); 

Cluster 5 [5S] (blue); Cluster 6 [6S] (light green). Represented clusters of membrane-bound ECD: Cluster 1 [1M] 

(green); Cluster 2 [2M] (orange); Cluster 3 [3M] (blue); Cluster 4 [4M] (brown). 

3.3.5. Conformational dynamics of a putative binding site 

The predicted binding site, located at the D1-D2 interface of the IL-1R1-ECD surface (Figure 

III.10), was analysed with MDpocket (Schmidtke et al., 2011). To assess the stability of the 

pocket and its propensity to anchor small molecules, a characterization by means of two 

descriptors was performed: the pocket volume and the mean local hydrophobic density 

(Figure III.11). While the former reflects the size of the pocket, which is fundamental to the 

establishment of interactions with compounds, the second is a powerful predictor of the 

druggability of a binding site. The average volume of the pocket was ~ 411 Å3 and 354 Å3 for 

the soluble and membrane-bound IL-1R1-ECDs trajectories, demonstrating that both forms 

sample similar pocket volumes during the simulations. Likewise, the mean local hydrophobic 

density distributions are quite similar in the soluble and membrane-bound IL-1R1-ECDs, 

presenting average values of 53,7 and 49,9, respectively. These observed similar values are 

coherent with a higher stability of the D1 and D2 domains throughout the simulations, which 

can be related to a disulfide bond holding together these two domains, and highlights that 

irrespective of the IL-1R1-ECD form and conformational changes adopt, they minimally 

impact the geometrical and physicochemical environment of this potential binding region.  

 

Figure III. 10 - Pocket located at the D1-D2 interface of the extracellular domain of interleukin-1 receptor type 1 

(IL-1R1-ECD), detected with Fpocket. The pocket is formed by two adjacent sub-pockets (coloured in blue). The 

grid points lining the pocket were used as input for MDPocket.  
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Figure III. 11 - Box-plot of the pocket volumes changes and mean local hydrophobic densities observed during 

the molecular dynamics simulations of the soluble and membrane-bound interleukin-1 receptor type 1. The 

volume is coloured in light blue and mean local hydrophobic density in yellow.  

A PCA was performed to analyse and compare the contribution of the MDPocket’s molecular 

descriptors to the physicochemical diversity explored by the putative IL-1R1 pocket during 

the MD simulations. The descriptors were projected onto the first two eigenvectors (PC1 and 

PC2), which capture ~60% of the pocket variability (Figure B-7 and Table B-1 in the Appendix) 

for the two IL-1R1 forms. Overall, similar contributions were found on the soluble and 

membrane-bound IL-1R1 forms, with the pocket volume, solvent accessible surface area and 

apolar solvent accessible surface area presenting a higher influence in PC1, while the 

proportion of polar atoms and of apolar alpha spheres influences PC2 in a higher extent. These 

observations highlight parallel physicochemical properties between the pockets of soluble and 

membrane-bound IL-1R1-ECDs.  

To extract representative pocket conformations for VS, the conformations of the pocket were 

clustered based on the molecular descriptors, using the PAM algorithm. In a similar manner 

to sub-section 3.3.4, the optimal number of clusters was estimated with the silhouette method, 

yielding k=3 as the best score for both forms (see Figure B-8 in the Appendix). Table III. 3 

presents the main physicochemical features of the three extracted pocket conformations per 

IL-1R1-ECD form as well as the population of each cluster.  Details on the application of these 

conformations in VS are presented in the Part IV. 
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Table III. 3 - Summary information about the representative pocket conformations extracted from the soluble and 

membrane-bound IL-1R1-ECD simulations. Four MDPocket descriptors computed for the cluster representative 

conformations are depicted, as well as the size of each cluster. 

Table abbreviations: solvent-accessible surface area (SASA). 

3.4. Concluding Remarks 

In this chapter, we conducted all-atom MD simulations totalling 6 μs of IL-1R1 in a soluble 

form and inserted in a POPC lipid bilayer to compare the conformational landscape explored 

by the ectodomain (ECD) of both forms. Multiple MD runs allowed the exploration of the 

conformational space accessible to proteins through distinct structural pathways. Our MD 

simulations showed that the stability of the soluble and membrane-bound IL-1R1-ECD 

structures was maintained throughout the simulation timescales, without evidence of 

unfolding of secondary structure elements (i.e., α-helices and β-sheets). In addition, the full-

length IL-1R1 protein remained stably bound to the POPC membrane, whose biophysical 

properties stayed consistent during the respective simulations. To the best of our knowledge, 

this is the first time that the full-length membrane-anchored IL-1R1 has been dynamically 

reproduced in silico.  

The comparative conformational analysis of the two IL-1R1-ECDs forms suggests that the 

transition from open to closed states throughout the MD trajectories does not occur in a similar 

fashion – as imprinted in their Cα-RMSD profiles. PCA analysis reveals that the membrane-

bound ECD visits more intermediate open conformations than the soluble ECD, before fully 

transitioning to the closed state, whereas the open-to-closed transition of the soluble IL-1R1-

ECD is less populated by intermediate states. While both soluble and membrane-bound forms 

are able to sample a large population of open ECD conformations, our simulations 

demonstrate that the soluble receptor is able to explore to a higher extent the rotational 

System Cluster 
Cluster 

size (%) 

Volume 

(Å3) 

SASA 

(Å2) 

Proportion 

polar atoms 

Mean local 

hydrophobic 

density 

Pocket 

soluble 

1 53.2 577.45 348.66 35.90 63.45 

2 23.8 398.50 239.64 27.94 52.51 

3 23.0 343.95 181.07 29.17 77.60 

Pocket 

membrane 

1 49.9 339.05 213.68 33.33 68.88 

2 28.0 528.22 325.70 39.13 66.54 

3 22.1 176.66 112.31 56.25 10.33 
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flexibility enabled by the linker connecting D2 and D3. By contrast, membrane-bound IL-1R1-

ECD exhibits reduced conformational mobility. We thus contemplate that the distinct 

conformational path-ways observed are most likely induced by different degrees of D3 

mobility via the flexible linker. In this sense, membrane anchoring and the close contact 

between the ECD of IL-1R1 and the lipid-bilayer surface seems to limit the conformational 

dynamics of the IL-1R1-ECD, when compared to the soluble form. 

The flexibility of protein loops, i.e., the ability to adopt multiple conformations, is often critical 

to biological function and molecular recognition. These flexible, short regions allow significant 

hinge movements of structural domains, while maintaining the individual domains' 3D shape. 

To understand these movements in the IL-1R1-ECD, we measured the deviations in the hinge 

angles of the two ECD forms. We observed considerable differences in the overall distribution 

of hinge angles, revealing a wider mobile hinge-like motion of the soluble IL-1R1-ECD. Indeed, 

the hinge angles between D1-D3 ranged from 110° to 180°, compared to 120° to 172° angles 

occurring in the membrane-bound ECD. Hand-in-hand with the analysis of structural 

properties, these results suggest that the soluble and membrane-bound forms could favour the 

open, closed, and intermediate conformations of the ECD differently, which could reflect on 

different ligand recognition patterns and, hence, biological activity.  

From our PCA results, the good overall agreement of our simulations with experimental data 

suggests that we have captured much of the essential structural dynamics of the two IL-1R1-

ECD forms in the first two principal components (PCs), accounting for more than 85% of the 

total variation. Still, a notable difference between the soluble and membrane-bound IL-1R1-

ECDs stand out when looking to PC3 and PC4, indicating different twisting motion patterns 

and low collinearity with the IL-1R1-ECD structures solved experimentally. These differences 

pointed to distinct arrangements of the flexible linker as the basis for the markedly different 

structure-dynamic relationships between the two IL-1R1 forms and the experimental data. 

With this in mind, the linker conformations sampled from the MD simulations were clustered 

based on the backbone dihedral angles (φ, ψ) of this region. For the soluble IL-1R1-ECD, a 

higher number of clusters was obtained, reflecting the extensive conformational diversity of 

the soluble system, suggesting a higher intrinsic interdomain flexibility of the linker in this IL-

1R1 form. The dihedral angle changes on the closed and open-twisted conformations were 

similar in both forms: (i) the major contributions for closed conformations came from 

deviations on Glu202ψ and/or Glu203ψ angles; and (ii) changes in Glu203ψ and Asn204ψ 

torsion angles were mostly correlated with the adoption of open-twisted IL-1R1-ECD states. 

Interestingly, the soluble ECD features linker orientations leading to twisted-closed 

conformations characterized by 85° and 110° D3 rotations relative to D1-D2. Contributions to 

these conformations came in a great extent by changes of Asn204φ angle. Given the 

resemblance of these conformations with the twisted-closed IL-1R1-ECD crystallographic 
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structure, we expect that this structure should largely be sampled when the timescale of the 

simulations is extended in the future. 

A single crystal structure only captures one conformation, providing limited information 

about a protein’s dynamic behaviour, which can be an essential regulator of ligand recognition 

and binding. Therefore, it is important to consider the dynamic properties of proteins when 

predicting binding pockets. The geometrical and physicochemical evolution of a potential 

binding pocket located at the D1-D2 interface was assessed for the two IL-1R1 systems. 

Overall, the pockets behave similarly during the MD simulations, with a cumulative volume 

and mean local hydrophobic density comparable between forms. PCA was used to reduce 

cavity descriptor dimension to efficiently cluster and select representative pocket within a 

large set of conformations, yielding for each IL-1R1 form three cluster representative 

conformations.  

The most relevant question of our work is arguably whether, and if so, how, the soluble form 

differs from the membrane-bound IL-1R1-ECD, in particular in relation to the structural and 

conformational preferences. It is concluded that major differences between the soluble and 

membrane-bound IL-1R1-ECDs appear to be mainly governed by the rearrangements of the 

linker connecting the D2 and D3 domains. We hypothesize that, in the soluble environment, 

in the absence of the structural restraints imposed by the lipid-bilayer, the φ/ψ torsional angles 

of the D2-D3 linker have a wider range of accessible values, whereas when anchored to a 

membrane the torsion angles of the linker are limited to a smaller set of possibilities, yielding 

limited and distinct IL-1R1-ECD conformations. Since both forms of IL-1R1 occur 

physiologically, our results contribute to the understanding of the distinct structure-dynamics 

behaviours of the soluble versus membrane-bound forms of IL-1R1, which may be of 

particular relevance in the context of therapeutic targeting of both ECD forms. 
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PART IV 

An innovative, multi-layered, receptor-based virtual 

screening protocol targeting the extracellular domain of 

IL-1R1: a tale of hide and seek 

 

 

 

“...the only simplicity to be trusted is the simplicity to be found on the far side of complexity.” 

 

Alfred North Whitehead
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4.1. Introduction 

The meteoric rise and ease of access to high powered computing cloud-based infrastructures 

and resources together with the rapidly increasing availability of protein 3D structures and 

public molecular databases have spurred the field of virtual screening (VS) forward at a rapid 

pace. In essence, the aim of VS consists on the prioritization of hit compounds for experimental 

validation among a large tailored virtual library, improving hit rates and the chemical 

diversity of the hits. The synergistic use of different and versatile cheminformatics tools (e.g., 

molecular docking, pharmacophore modelling and molecular similarity searches and 

analyses) at different steps of the VS workflow is critical to discover novel scaffolds and to an 

overall increase in chemical diversity of the hit list. Equally important, at an early stage of the 

VS workflow, screening libraries can be trimmed down using specific physicochemical 

properties according to the structural requirements of the biological target in question or the 

biodistribution to be attained, e.g., Lipinski’s Rule-of-Five for drug-likeness or blood-brain 

barrier (BBB) permeation.  Given their relevance within the context of the present chapter, a 

detailed explanation of the molecular filters used herein to tailor chemical libraries is provided 

in the next subsection. 

In this chapter, a novel virtual screening pipeline with filtering layers was designed to discover 

IL-1R1 small molecule modulators. The key features of the designed framework include: a) 

receptor-based pharmacophore mapping using experimental and representative molecular 

dynamics (MD)-based IL-1R1 structures obtained in Part II and Part III of this work; b) 

pharmacophore-based virtual screening using a chemical library meeting the physicochemical 

criteria for BBB permeability; c) clustering of chemical structures by maximum common 

substructures (MCS); d) a hierarchical filtering approach based on a molecular docking stage 

and subsequent ranking via established protein-ligand interactions and pharmacophore 

fitness levels; e) compound prioritization within the top-ranked molecules via docking results 

and 3D-shape comparisons against a compound dataset holding relevant bioactivity profiles; 

and f) selection of promising compounds for biological evaluation based on chemical diversity 

and commercial availability. 

Pharmacophore modelling and searches are computationally very efficient, enabling the VS of 

very large databases, either in a ligand-based or structure-based manner. The pharmacophore 

concept encodes a 3D map – with respect to a molecular structure – that represents a minimal 

set of features that adapt to the complementary casting mold of a target binding site. 

Importantly, a number of studies showed that the integration of information obtained from 

MD simulations can be useful to refine pharmacophore models by statistically characterizing 

the occurrence frequency and interaction patterns of pharmacophoric features (Sydow, 2015; 

Wieder et al., 2016). Here, we compared receptor-based pharmacophore models obtained from 
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a IL-1R1 X-ray structure with the pharmacophore models derived from representative MD 

conformations obtained in the previous chapter. The main goals of this effort were (i) to 

identify consensus features among MD conformations and compare with those incorporated 

in static pharmacophores models and (ii) to derive and characterize the most important 

pharmacophoric features on IL-1R1 binding site for VS endeavours.  

One of the core elements of this VS framework has its roots in the basic dogma of Medicinal 

Chemistry, which asserts that structurally related small molecules often share similar 

properties and bind to the same target proteins. The modern understanding of molecular 

similarity analysis derived from the Similar Property Principle implies that close analogues may 

be either all active (albeit to a varying degree) or inactive, and thus screening too similar 

compounds may result in redundancy. With this in mind, in order to perceive shared scaffolds 

and thereby emphasize the extent and type of chemical (dis)similarities in the VS hit 

compounds, the MCS - the largest common part between two or more molecules excluding 

hydrogen atoms - was computed for each hit compound (Raymond and Willett, 2002).  

To reduce the number of compounds to purchase, to undergo experimental testing and 

ultimately to synthesise, docking simulations were employed to predict and rank VS hits 

within each MCS cluster as putative binders to the IL-1R1 binding site. On the basis of chemical 

diversity, ranking of binding modes through intermolecular interactions with important 

amino acid residues in the binding site and fitness to the respective pharmacophore model, 

were integrated as a filtering criterion, allowing prioritization of compounds in each cluster. 

Subsequently, a 3D shape-based molecular similarity analysis was envisaged for compound 

prioritization based on known bioactivity values and thus, improve the hit rate and the 

identification of potential bioactive small molecules. The final selection of screening 

candidates (cherry picking) resulted from the combination of all conducted analysis, i.e., by 

manually inspecting docking poses, 3D-shape similarity scores, structural diversity and 

prioritized by factors such as commercial availability and intellectual property considerations. 

4.1.1. The CNS physicochemical property space 

From the pharmacological viewpoint, targeting the pro-inflammatory IL-1R1 may hold 

promise as a therapeutic strategy for central nervous system (CNS) diseases featuring 

neuroinflammation. Still, low CNS bioavailability of therapeutic agents have been constantly 

puzzling the scientific community due to the presence of the BBB. More than 98% of small 

molecules do not cross the BBB, whereas larger molecules essentially never succeed 

(Pardridge, 2007). Therefore, an important aspect to take into consideration during the 

screening/design of IL-1R1 small molecule modulators, within the setting of 

compartmentalized CNS inflammation, is their ability to cross the BBB.  
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The landmark study by Lipinski et al. famously derived a set of physicochemical properties 

for an adequate oral bioavailability profile of drugs, which became known as Lipinski’s Rule 

of Five, given the fact that all numbers are multiple of five (Lipinski et al., 2001). These widely 

accepted and commonly applied rules for drug-likeness have spawned several studies 

attempting to fine-tune the physicochemical characteristics for optimal CNS exposure 

(Hitchcock and Pennington, 2006; Wager et al., 2010; Mikitsh and Chacko, 2014; Rankovic, 

2015). Importantly, the main molecular parameters determining the ability of compounds to 

cross membranes include the molecular weight (MW), topological polar surface area (tPSA), 

lipophilicity, commonly expressed as octanol/water partition coefficient (clogP), the number 

of hydrogen-bond donors (HBD) and acceptors (HBA), ionization state (pKa) and rotatable 

bond (RB) count. Overall, numerous authors suggest a window of opportunity for designing 

CNS-penetrant compounds based on the following medchem rules: 

 MW < 450 Da; 

 LogP values between 2−5; 

 PSA < 90 Å2; 

 HBA ≤ 7 and HBD ≤ 3; 

 RB ≤ 8. 

In this chapter, we approached the search for potential novel and chemically diverse IL-1R1 

small molecule modulators by using a CNS-tailored virtual screening deck, assembled via the 

CNS-critical physicochemical parameters above referred. It is worth emphasizing, 

nevertheless, that the exact cut-off values for each of these parameters are still an on-going 

subject of continuous research and debate in the scientific community. These strict rules were 

used to trim down a library of more than 162 million compounds, yielding an in silico library 

endowed with molecules holding physicochemical properties matching those for BBB 

permeability.  

4.2. Computational Methods 

In this section, I detail the computational methods and parameters employed at different steps 

of the established VS framework against IL-1R1 (Figure IV.1). Since this protocol is a cascade 

of steps, the output of one step is the input for the following.  
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 Figure IV. 1 - Schematic representation of the applied virtual screening cascade. This figure was inspired by a 

similar scheme in (Pérez-Regidor et al., 2016). Figure abbreviations: BBB, blood-brain barrier; MW, molecular weight; 

logP, octanol-water partition coefficient; RB, rotatable bonds; PSA, polar surface area; HBA, hydrogen bond acceptors; HDB, 

hydrogen bond donors; MCS, maximum common substructure. 

4.2.1. Receptor-based pharmacophore modelling 

LigandScout software v. 4.4.5, an industry-standard pharmacophore modelling package 

provided by Inte:Ligand (Wolber and Langer, 2005), was used to develop receptor-based 

pharmacophore models for IL-1R1. LigandScout allows for the generation of pharmacophore 

hypotheses based on the binding site topology, guided by the structural, physicochemical and 

pharmacophoric characteristics of that region. The computed 3D pharmacophore models 

contain idealized ligand pharmacophoric features - hydrophobic interactions (H), hydrogen 
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bond donors/acceptors (HBD/HBA), positive/negative ionisable areas (P/N) and aromatic 

rings (Ar) - together with a series of excluded volumes defining areas sterically hindered by 

the macromolecular environment and the shape of the binding site. The resultant 3D query 

pharmacophore models may then be screened against virtual libraries of compounds. 

In Part III, we investigated the conformational flexibility of a binding pocket in the 

extracellular domain of IL-1R1 (IL-1R1-ECD), located at the D1-D2 interface. The idea was to 

study the differences between representative MD pocket conformations and an initial X-ray 

predicted binding site. Briefly, this site remained quite stable throughout the MD simulations, 

suggesting that this could be a viable region for small molecule binding. Due to the 

considerable size of the pocket and based on the different sub-pockets composing this cavity 

(see Part II), the pharmacophore models devised in this chapter were generated for two regions 

(Figure IV.2): i) a sub-pocket located at the core of the D1-D2 interface (henceforth referred to 

as sub-pocket 1); and (ii) a cavity formed primarily on three β-sheets located at the D1 region 

(henceforth referred to as sub-pocket 2).  

 

Figure IV. 2 - Predicted sub-pockets on the extracellular domain of interleukin-1 receptor type 1 used for 

pharmacophore modelling. Sub-pocket 1 (cyan) and sub-pocket 2 (red) are shown in a VDW (van der Waals) 

representation. 

To carry out receptor-based pharmacophore perceptions in both sub-pockets, the following 

IL-1R1-ECD conformations were selected: (i) representative pocket conformations extracted 

from the MD clustering analysis (three cluster centroids for both soluble and membrane-

bound IL-1R1-ECD – see Part III); (ii) six random selected MD conformations (three for each 

IL-1R1-ECD form); (iii) and the IL-1R1-ECD X-ray structure (PBD entry 4GAF). In total, 13 
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receptor conformations were used for 3D pharmacophore modelling. The pharmacophore 

models derived from the MD simulations and from the X-ray structure were then compared 

in a related manner as described by Wieder et al. (Wieder et al., 2016). A merged 

pharmacophore model was generated consisting of all features that are seen either in the 

experimental PDB structure or any of the MD-derived conformations, and their frequency was 

used to prioritize features in the model using the following considerations: 

1. PDB pharmacophore features or MD-derived features present more than 80% of the 

time in the IL-1R1-ECD structures were considered essential; 

2. PDB pharmacophore features or MD-derived features present more than 50% of the 

time in the IL-1R1-ECD structures were considered important; 

3. PDB pharmacophore features or MD-derived features present less than 50% of the time 

in the IL-1R1-ECD structures were considered not significant. 

The pharmacophore features were considered identical (and the frequency count was 

incremented) if the interacting environment residue(s) and the feature type were the same. On 

the basis of feature occurrence and their interaction patterns, three pharmacophore hypothesis 

combining predicted essential and important features were constructed for each sub-pocket. 

4.2.2. Pharmacophore-based virtual screening 

The resultant pharmacophore models were used as a 3D query to retrieve chemical 

compounds complementary to the pharmacophore features. Pharmacophore-based virtual 

screenings were performed using the online platform Pharmit (Sunseri and Koes, 2016), which 

enables the user the importation of pharmacophores from external programs such as 

LigandScout. For each defined combination of pharmacophore features, we selected and 

searched the pre-built compound databases available in Pharmit: 

1) ZINC comprising 121,278,048 conformers for 12,996,897 molecules; 

2) ChemBL24 comprising 22,744,939 conformers for 1,719,488 molecules; 

3) ChemSpace comprising 235,890,796 conformers for 47,283,676 molecules; 

4) MolPort comprising 106,341,521 conformers for 7,357,237 molecules; 

5) ChemDiv comprising 20,709,131 conformers for 1,395,657 molecules; 

6) NCI (National Cancer Institute) Open Chemical Repository comprising 1,589,632 

conformers for 150,298 molecules; 

7) PubChem comprising 443,659,442 conformers of 91,563,581 molecules.  

The choice of filter definitions was a paramount aspect in this project, considering our goal of 

identifying small molecules that, besides being capable of targeting IL-1R1, could hold the 

ability to effectively crossing the BBB and thus, modulating neuroinflammation. Before 



 
 

126 
 

performing pharmacophore-based virtual screenings, filtering of the above-mentioned 

compound libraries was based on a combination of empirical medchem rules for BBB 

permeation: MW ≤ 450 Da; PSA ≤ 90 Å2; 2 ≤ LogP ≤ 5; HBA ≤ 7; HBD ≤ 3; RB ≤ 8. In total, our 

final screening pool (number of molecules) for pharmacophore-based virtual screening 

consisted of: 

1) ZINC comprising 5,257,020 molecules; 

2) ChemBL24 comprising 565,226 molecules; 

3) ChemSpace comprising 4,122,050 molecules; 

4) MolPort comprising 3,309,363 molecules; 

5) ChemDiv comprising 499,071 molecules; 

6) NCI (National Cancer Institute) Open Chemical Repository comprising 19,147 

molecules; 

7) PubChem comprising 5,512,033 molecules.  

During the search, a maximum number of 100 conformers were generated for each molecule 

and geometrical cut-off criteria was applied, using the receptor as exclusive shape, meaning 

that compounds clashing with the receptor structure were discarded (tolerance of 1 steric 

clash). Afterwards, redundant molecules between databases were eliminated based on their 

structural identity using their InChI (IUPAC International Chemical Identifier). 

4.2.3. Clustering via Maximum Common Substructure 

The Konstanz Information Miner (KNIME) is an open-source visualization software for data 

mining workflows, providing an excellent platform for cheminformatics and drug discovery 

(Berthold et al., 2008). The default implementation in KNIME integrates a wide range of nodes 

for cheminformatics purposes. In this project, to analyse (and visualize) the extent and type of 

chemical diversity in the VS compound datasets derived from each pharmacophore, scaffolds 

were grouped into hierarchical clusters by considering their MCS as a measure of similarity. 

This was accomplished via the Molecular Substructure miner (MoSS) (Borgelt et al., 2005) 

(Figure IV.3), a node in KNIME used for frequent molecular substructures and discriminative 

fragments in compound datasets. 
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Figure IV. 3 - KNIME workflow employed to cluster molecular structures based on their Maximum Common 

Substructure (MCS). This workflow relies in three main steps: (1) calculating molecular distances using the 

maximum common substructure as a metric of similarity (MoSS MCSS Molecule Similarity node), (2) hierarchical 

clustering (Hierarchical Clustering (DistMatrix) node), and (3) assigning a threshold (distance threshold = 0.85) for 

cluster assignment (the Hierarchical Cluster Assigner node).  

4.2.4. Molecular docking 

Each MCS cluster was docked into its respective IL-1R1 sub-pocket using AutoDock v. 4.2.6. 

(Morris et al., 1998). The crystal structure of IL-1R1-ECD (PDB entry 4GAF) was used for this 

purpose. This receptor structure and all ligands were prepared using AutoDockTools v. 1.5.6 

(Morris et al., 2009), by converting all files to PDBQT format, adding and merging non polar 

hydrogens, and computing Gasteiger charges. AutoGrid v. 4.2.6 was used to generate atom-

specific affinity maps, electrostatic and desolvation potential maps for AutoDock, employing 

the default grid points and spacing of 60 and 0.375 Å, respectively, and a distance-dependent 

dielectric of -0.1465. The grid box for molecular docking was generated around the binding 

site residues of the protein. The Lamarckian genetic algorithm, as implemented in AutoDock, 

was used to generate orientations/conformations of the ligands. Ten docking runs were 

performed, with an initial population of 150 random individuals and a maximum number of 

27,000 generations and 2,500,000 energy evaluations. Water molecules were excluded from the 

docking calculations. All other parameters were kept at their default values. 

The scoring of the generated docking poses of the compounds within each MCS cluster was 

calculated using the AutoDock scoring function. Clearly, selection of only a few poses on the 

basis of the docking score might be unsuitable for IL-1R1, not only because of the well-known 

limitations of the scoring functions (Leach et al., 2006; Warren et al., 2006) but also lack a 

reference small molecule ligand bound to IL-1R1 to validate docking poses. Therefore, the 
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binding poses from the most populated/representative cluster for each docked molecule were 

considered for further analyses, despite the binding energy of the poses.  

4.2.5. Quantitative analysis of protein-ligand interactions 

The interactions between the docked poses of the compounds and the IL-1R1 residues lining 

the binding site were analysed in a programmatic way using an in-house script integrating the 

BINding ANAlyzer (BINANA) - a python-implemented algorithm for analysing ligand 

binding (Durrant and McCammon, 2011). The BINANA algorithm makes use of the AutoDock 

outputs to characterize key binding features: (i) close contacts receptor and ligands below or 

equal 2.5 Å and below or equal 4.0 Å; (ii) hydrogen bonds (distance cutoff = 4.0 Å and angle 

cutoff ≤ 40°); (iii) hydrophobic contacts; (iv) salt bridges; and (v) π-interactions, involving π-π 

stacking interactions between aromatic rings, T-stacking or edge-face interactions 

(perpendicular interactions of aromatic rings) and cation-π-interactions. 

4.2.6. 3D Molecular similarity against the PubChem Bioassay 

database 

Molecular shape complementary is known to correlate strongly with biological activity (Rush 

et al., 2005; Kortagere et al., 2009). It is therefore tempting to search for small molecules, with 

reported biological activity, holding shape complementarities to the VS hits, in order to filter 

and prioritize compounds from a large library to a number small enough for biological testing. 

The PubChem BioAssay database is an open-access repository providing bioactivity 

information of compounds tested in biological assay experiments, where each assay is 

referenced by a unique AID identifier (Wang et al., 2012). A single biological assay reports 

experimental activity results for a set of small molecules over a specific biological target, which 

in most cases is a protein. As of December 2021, 293 million bioactivity outcomes from more 

than one million assays were available in this database. The vast amount of available data 

allows for the development of 3D similarity searches against compound datasets exhibiting 

relevant biological activities on specific targets or molecular networks of interest. 

In this project, with the aim of prioritizing compounds for experimental testing within the top-

ranked VS compounds - not only by the docking poses achieved – we performed 3D shape 

similarity comparisons between the 919 top-ranked compounds and one dataset from the 

PubChem BioAssay database - AID-743279. This dataset contains 17,187 active compounds 

able to inhibit NLRP3 inflammasome signalling via cell-based phenotypic screening, using IL-

1β downregulated levels as a read-out.  This PubChem bioactivity dataset was selected based 

on the following criteria: 
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1. Small molecules with bioactivity signatures against IL-1R1-related proteins and 

molecular networks tested in adequate phenotypic assay; 

2. Since the assay detects IL-1β reduction as the desired outcome, it is plausible that some 

of these compounds may target IL-1R1. 

The comparison between compounds endowed with suitable pharmacophoric and 

physiochemical features to target IL-1R1 binding sites, and compounds with known biological 

data within the IL-1R1 signalling pathway may be useful to prioritize compounds for further 

experimental validation. Therefore, we leveraged these data as a reference to identify small 

molecules with similar 3D molecular architectures to a relevant active dataset, with the goal 

of identifying selective compounds that may be useful as tool or even lead compounds in a 

neuroinflammation experimental setting.  

4.2.6.1. Conformer generation 

Chemical structures, represented as SMILES, were obtained from the PubChem BioAssay AID-

743279. Molecules were subjected to the following pre-processing workflow, based on 

OpenEye Scientific Software tools: (1) tautomer selection; (2) pKa normalization; (3) low-

energy 3D conformer generation; (4) partial charges calculation; and (5) generation of 3D 

conformers (see Figure IV.4). 

The first two steps of this workflow comprise tautomer generation and selection, and pKa 

prediction and selection, using tautomers and fixpka modules implemented in QUACPAC 

v.1.7.0.2 (OpenEye Scientific Software, 2013). By default, the tautomer generator program uses 

a reasonable function to obtain a representation regarding the physiologically preferred form, 

i.e. low-energy (the function works with a form of the molecule with formal charges removed), 

neutral pH (ionization states not enumerated) and aqueous-phase tautomers. Next, for pKa 

normalization, fixpka program was used to obtain molecules in their most energetically 

favourable ionization state at pH 7.4. 

In the third task, single low-energy 3D conformers of compounds were calculated with the 

oeomega module (classic mode) implemented in OMEGA v.3.0.0.1 (Hawkins et al., 2010; 

OpenEye Scientific Software, 2019), followed by calculations of AM1BCC partial charges, 

using the module molcharge (method am1bccsym) implemented in QUACPAC v.1.7.0.2. 

(OpenEye Scientific Software, 2013). 

The aim of the last task was to generate multiple conformers for all molecules in the PubChem 

dataset, calculated with the oeomega module (rocs mode) implemented in OMEGA v.3.0.0.1. 

The conformer ensembles were generated with a maximum of lowest-energy 50 conformers 

being retained. 
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Figure IV. 4 - Flowchart for the 3D-shape similarity measurements. Molecule pre-processing and shape-based 

overlays used in this workflow were performed with OpenEye software package. 

4.2.6.2. Shape and chemical similarity 

3D-shape similarity comparisons were performed using ROCS v.3.2.2.2 (Rapid Overlay of 

Chemical Structures) (OpenEye Scientific Software, 2018). ROCS is a shape-based ligand-

centric superposition method, which aligns molecules based on their volume represented by 

a set of atom-centred Gaussian functions. This representation of atoms allows a fast shape 

comparison of molecules due to the straightforward calculation of molecular overlaps 

providing sufficient speed for VS of large chemical databases. This method evaluates 

molecular similarity by measuring the shape and chemical (colour) definitions of two 

compounds (Figure IV.5), calculating Tanimoto coefficients from aligned overlap volumes: 

 

𝑻𝒂𝒏𝒊𝒎𝒐𝒕𝒐𝒂,𝒃 =
𝑶𝒂,𝒃

𝑶𝒂 + 𝑶𝒃 − 𝑶𝒂,𝒃
 𝒙 𝟏𝟎𝟎 

Equation 1.1 

where Oa,b is the aligned overlap volume between molecules a and b, Oa is the volume of 

molecule a and Ob is the volume of molecule b. The colour component included in ROCS take 
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the electrochemical feature types of overlapping groups - hydrogen bond donors/acceptors 

(HBD/HBA), positive/negative ionisable areas (P/N), hydrophobic interactions, and aromatic 

rings (Ar) - into consideration. The 3D overlays of chemical structures are ranked using a 

TanimotoCombo score, which consists of equally contributing components that assess the 

degree of volumetric (ShapeTanimoto) and chemical match (ColorTanimoto) similarity upon 

alignment. This score ranges between 0 (no overlap/similarity) and 2 (excellent shape and 

chemical-feature match). 

 

Figure IV. 5 - Schematic representation of the superposition of two molecules performed by the Rapid Overlay 

of Chemical Structures (ROCS) algorithm. The figure was adapted from (Kumar and Zhang, 2018). 

Using OpenEye ROCS v.3.2.2.2, 919 low-energy conformers of the VS top-ranked compounds 

were overlaid with up the 17,187 active compounds retrieved from PubChem BioAssay 

database - AID-743279. Compounds holding a TanimotoCombo score higher than 1.2 were 

analysed in detail and considered for experimental testing. 
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4.3. Results and Discussion 

In the following sub-sections, we report the results obtained for the VS procedure 

implemented to identify chemical scaffolds binding to the predicted sub-pockets on the IL-

1R1-ECD surface. The results are presented for each stage of the VS protocol. 

4.3.1. Receptor-based pharmacophore modelling 

Two sub-pockets within the D1-D2 interface region of the IL-1R1-ECD, harbouring key 

residues involved in cytokine binding, were selected as the target for searching small molecule 

modulators of IL-1R1. 3D pharmacophore queries were devised for each sub-pocket by 

combining the feature frequency information derived from the X-ray structure of IL-1R1 and 

from MD representative conformations of the pocket of interest. As mentioned in the Methods 

section, the frequency count of pharmacophore features may be useful to validate or optimise 

static pharmacophore models, since additional information on dynamics can be reasonably 

used to prioritize important pharmacophore features. A detailed analysis of the occurrence 

percentages of pharmacophoric features using the PDB and MD conformations is provided in 

Table IV.1. By analysing the frequency profile of individual pharmacophore features, it can 

be recognized that the PDB features appear more stable than the MD-derived ones. In other 

words, all IL-1R1 conformations analysed display high frequencies for most PDB features and 

low frequencies for the MD-derived features. Still, a higher degree of stability differences is 

perceived on hydrogen bond features when compared to the other feature types. We argue 

that the definition of hydrogen bond interactions encoded in LigandScout might explain these 

differences. This software assign hydrogen bonds features by applying direction and distance 

constraints, i.e., the interaction partners must be within a specified angle range and nearer 

than a certain distance threshold limit. On the other hand, hydrophobic or charged features 

have a distance constraint only. As such, subtle changes in the geometry of the binding site 

environment may lead more easily to different acceptor-donor pairs classifications as 

hydrogen bonds. 
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Table IV. 1 - Statistic variations of the pharmacophoric features in the IL-1R1 conformations. 

Sub-pocket 1  

 
Merged 

features 
PDB features MD-derived features 

Feature type Total1 Total1 >80% 2 >50% 3 Total1 >80% 2 >50% 3 

Hydrophobic 12 8 4 6 4 0 1 

N 1 1 1 1 0 0 0 

P 4 3 2 3 1 0 0 

Aromatic 5 3 2 3 2 0 1 

HBA 6 2 1 1 4 1 2 

HBD 9 5 1 3 4 0 2 

Sub-pocket 2  

 
Merged 

features 
PDB features MD-derived features 

Feature type Total1 Total1 >80% 2 >50% 3 Total1 >80% 2 >50% 3 

Hydrophobic 14 10 3 7 4 0 1 

N 2 1 1 1 1 0 1 

P 3 2 2 2 1 0 0 

Aromatic 5 3 2 3 2 0 0 

HBA 6 3 0 2 3 0 1 

HBD 8 5 1 4 3 0 1 
1 total frequency count for a particular feature type; 2 number of instances of a particular feature type present >80%; 3 number 

of instances of a particular feature type present >50%. 

Table abbreviations: negative ionizable (N): positive ionizable (P); hydrogen bond acceptors (HBA); hydrogen bond donors 

(HBD); Protein Data Bank (PDB); Molecular dynamics (MD). 

 

Three distinctive pharmacophore arrangements were constructed for these two IL-1R1 

potential binding regions by using specific combinations of the essential and important 

features (present >80% and >50%, respectively), discerned from the frequency analysis. 

Figures IV.6 and IV.7 display the occurrence frequency and interaction patterns for the most 

dominant pharmacophore features and the three final models developed for sub-pocket 1 and 

2, respectively.  
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Figure IV. 6 - Receptor-based three-dimensional (3D) pharmacophore queries generated with LigandScout for 

the sub-pocket 1 of interleukin-1 receptor type 1 (IL-1R1). (A) Merged pharmacophore model consisting of all 

features that are present either in the experimental structure or in the molecular dynamics (MD) snapshots. The 

detailed pharmacophore analysis located below the merged model represents the frequency in percent with which 

individual features are present in the pharmacophore models from which the merged model was constructed. Bold 

features indicate features appearing in the crystal structure and MD-derived structures, whereas italic features 

appear only in the MD snapshots. (B) 3D models of pharmacophore hypothesis devised using different 

combinations of features based on the frequency information. Feature types are colour- and shaped-coded as 

follows: aromatic interactions (Ar, blue spheres), hydrogen bond donors (HBD, green spheres), hydrogen bond 

acceptors (HBA, red spheres), hydrophobic interactions (H, yellow spheres), positively ionizable groups (P, blue 

stars) and negatively ionizable groups (N, red stars). The radius of the sphere corresponds to the applied spatial 

tolerance. For the sake of clarity, exclusion volume spheres are not displayed. 
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For sub-pocket 1, the generated pharmacophore model 1 (SB1_Ph1) consists of: two 

hydrophobic centers located between Ser17 and Ala109 (H2), and Ser18 and Thr193 (H4); an 

aromatic feature directed towards the side-chains of Phe111 and Tyr127 (Ar1); a positive 

ionisable area near the carboxylate group of Glu21 (P3); a hydrogen bond donor feature 

pointing towards the carbonyl oxygen of Val16 (HBD1); and two hydrogen bond acceptor 

features, which pair with the side-chains of Ser17 (HBA1) and Arg194 (HBA3). Pharmacophore 

query 2 (SB1_Ph2) is characterized by: two hydrophobic regions involving contacts with 

Phe111 and Tyr127 (H1), and Ser18 and Thr193 (H4) side-chains; a negative ionisable feature 

(N1) interacting with guanidinium groups of Arg25 and Arg194; an aromatic ring pointing 

towards Phe111; a hydrogen bond acceptor feature directed to the hydroxyl group of Ser18; 

and a hydrogen bond donor feature pointing towards the carbonyl oxygen of Ala109. 

Pharmacophore hypothesis number 3 (SB1_Ph3) contains: a hydrophobic group located near 

Thr193 (H6); a positive (P3) and a negative ionic (N1) area spaced by 8 Å, establishing 

interactions with the nearby Glu21 and Arg194, respectively; one aromatic ring feature 

observed between the aromatic moieties of Phe111 and Tyr127 (Ar1); a hydrogen bond 

acceptor directed to the hydroxyl group of Ser17 (HBA1); and one hydrogen bond donor near 

Ser18 (HBD2). 
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Figure IV. 7 - Receptor-based three-dimensional (3D) pharmacophore queries generated with LigandScout for 

the sub-pocket 2 of interkeukin-1 receptor type 1 (IL-1R1). (A) Merged pharmacophore model consisting of all 

features that are present either in the experimental structure or in the molecular dynamics (MD) snapshots. The 

detailed pharmacophore analysis located below the merged model represents the frequency in percent with which 

individual features are present in the pharmacophore models from which the merged model was constructed. Bold 

features indicate features appearing in the crystal structure and MD-derived structures, whereas italic features 

appear only in the MD snapshots. (B) 3D models of pharmacophore hypothesis devised using different 

combinations of features based on the frequency information. Feature types are colour- and shape-coded as follows: 

aromatic interactions (Ar, blue spheres), hydrogen bond donors (HBD, green spheres), hydrogen bond acceptors 

(HBA, red spheres), hydrophobic interactions (H, yellow spheres), positively ionizable groups (P, blue stars) and 

negatively ionizable groups (N, red stars). The radius of the sphere corresponds to the applied spatial tolerance. 

For the sake of clarity, exclusion volume spheres are not displayed. 
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As to sub-pocket 2, pharmacophore query 1 (SB2_Ph1) contains six features encompassing: 

one aromatic centroid located at the geometric center between the Pro26 ring and Tyr127 

aromatic side-chain (Ar1); two hydrophobic features interacting with Leu15, Ile92 (H2) and 

Phe130 (H3) amino acids; a positive ionisable region near the carboxylic side-chain of Asp23 

(P1); a hydrogen bond acceptor involving the guanidinium group of Arg25 (HBA2); and a 

hydrogen bond donor pointing towards the backbone carbonyl group of Pro26 (HBD1). In 

pharmacophore model 2 (SB2_Ph2), features Ar1 and HBD1, observed frequently in the 

generated pharmacophore models, were maintained. Differently, this model also includes an 

aromatic feature engaged with the benzene ring of Phe131 (Ar2), one negative ionisable region 

located near Arg194, a hydrogen bond acceptor feature pointing towards the side-chain –OH 

group of Ser17, and a hydrogen bond donor feature directed to the backbone carbonyl of 

Val24. Finally, pharmacophore query 3 (SB2_Ph3) holds six features, including: Ar2, which is 

also observed in second pharmacophore model; two hydrophobic centers contacting the side-

chains of Pro26, Tyr127 (H7), Ile13, Pro28 and Ile92 (H4); positive ionisable feature placed near 

the COO− group of Glu11; a hydrogen bond acceptor involving the backbone nitrogen of 

Phe130 (HBA3); and a hydrogen bond donor with the hydroxyl group of Ser93 amino acid 

(HBD5). 

4.3.2. IL-1R1 pharmacophore-based virtual screening results 

The pharmacophore models SB1_Ph1, SB1_Ph2, SB1_Ph3, SB2_Ph1, SB2_Ph2 and SB2_Ph3 

were then used to search pre-existing chemical databases to identify molecules that best match 

with the pattern of that pharmacophore 3D maps, using Pharmit. This software was employed 

because it allows the incorporation and access to pre-built libraries from both public and 

commercial sources such as NCI Chemical Repository, ChEMBL, MolPort, ZINC, ChemSpace, 

and PubChem, providing an interactive screening of millions of chemical compounds. 

Importantly, prior to pharmacophore-based virtual screening experiments, chemical libraries 

were filtered based on empirical physicochemical properties for BBB permeability (see 

Methods section). In this way, all pharmacophore models were subjected to screening using 

CNS-tailored libraries, i.e., containing molecules putatively endowed with physicochemical 

properties suitable for CNS penetration.  

The amounts of retrieved compounds captured by each pharmacophore model are shown in 

Table IV.2. Noticeably, some pharmacophore models were found rather restrictive and 

retrieved a lower number of molecules, while others return a large number. For instance, the 

pharmacophore models SB1_Ph3 and SB2_Ph2 retrieved 1604 and 2341 molecules, 

respectively, probably owed to the two aromatic features or the two ionisable regions present 

in each pharmacophore. In contrast, SB1_Ph2, SB2_Ph1 and SB2_Ph3 identified more than 5000 
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molecules, demonstrating that different pharmacophore models may have quite different 

performance in screening a chemical database. 

Table IV. 2 - Description of 6 pharmacophore hypothesis devised for the two IL-1R1 sub-pockets and the number 

of compounds captured by each pharmacophore model.  

1 exclusive shape constraint, which filters compounds with steric clashes with the receptor (tolerance of 1 steric clash). 

Table abbreviations: negative ionizable (N): positive ionizable (P); hydrogen bond acceptors (HBA); hydrogen bond donors 

(HBD); hydrophobic interactions (H); aromatic rings (Ar). 

4.3.3. Inspection and ranking of virtual screening hits 

The high amount of VS retrieved molecules (27206) makes it unfeasible (in terms of human 

resources, time and trial cost) to perform an experimental validation of all the predicted 

molecules. Therefore, to narrow down the number of molecules to be tested experimentally, a 

combination of MCS clustering and molecular docking was used for filtering and ranking the 

screened compounds based on the docking poses achieved, protein-ligand interactions and 

pharmacophore fitness levels of subsets with maximal chemical diversity. Throughout the 

following sub-sections, we present the main results derived from the implementation of such 

strategy. 

Sub-pocket 1 

Query # features 
Hypothesis 

Description1 
Constraints 

# retrieved 

compounds 

SB1_Ph1 7 
HBA1-HBD1-Ar1-

H2-HBA3-P3-H4 Ar, H, N, P, HBD- radius 

1.5 Å 

HBA -  radius 2.25 Å 

Steric constraints - 

binding site surface 

atoms (tolerance of 1) 1 

3333 

SB1_Ph2 6 
H1-N1-HBD4-Ar2-

HBA2-H4 
7721 

SB1_Ph3 6 
HBA1-Ar1-N1-P3-

HBD2-H6 
1604 

Sub-pocket 2 

Query # features 
Hypothesis 

Description 
Constraints 

# retrieved 

compounds 

SB2_Ph1 6 
H2-HBA2-HBD1-

Ar1-P1-H3 Ar, H, N, P, HBD- radius 

1.5 Å 

HBA -  radius 2.25 Å 

Steric constraints - 

binding site surface 

atoms (tolerance of 1) 1 

7178 

SB2_Ph2 6 
HBD1-Ar1-HDB2-

HBA1-N1-Ar2 
2341 

SB2_Ph3 6 
P2-H4-HBD5-H7-

HBA3-Ar2 
5029 
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4.3.3.1. Docking  

KNIME chemistry node MoSS was used to cluster the molecules retrieved by each 

pharmacophore model, based on MCS. All compounds in each MCS cluster were docked into 

the two sub-pockets of IL-1R1 using the program AutoDock4 and its built-in free energy 

scoring function. Given that the docking program assigns a binding energy to each predicted 

pose (Figure IV.8), it would be expected and relatively easy to rank the molecules by their 

binding energies. Still, the limited accuracy of scoring functions in discerning between actives 

and inactives, together with the absence of known reference small molecules bound to IL-1R1 

to be used as starting points to validate docking poses, made us consider as other criteria for 

ranking (docked) compounds: quantification of protein-ligand interactions established and 

pharmacophore compliance. To our understanding, a higher number of poses concentrating 

on the same residues of a given binding site should correlate with a stronger preference for 

these residues, thereby indicating that compounds establishing interactions with these 

residues have a higher propensity to bind to the protein. Moreover, it provides an alternative 

to energy ranking for the identification of probable poses and can serve to reduce the number 

of unlikely poses. 

 

Figure IV. 8 - Comparison of top-scoring poses generated by Autodock for sub-pockets 1 and 2 of IL-1R1 

extracellular domain. Left side: IL-1R1 sub-pocket 1 complexed with molecule establishing interactions with 

residues on one side of the sub-pocket: Ile14, Val16, Ala109, Ile110, Phe111, Lys112. Right side: IL-1R1 sub-pocket 

1 complexed with molecule establishing interactions with residues on both sides of the sub-pocket: Glu11, Ile13, 

Leu15, Val24, Arg25, Ile92, Tyr127, Phe130. The binding region of sub-pocket 1 presents a shallow surface 

indentation, whereas sub-pocket 2 presents a deep binding region. The interaction type is color-coded: hydrogens 

bonds are coloured green, hydrophobic interactions are coloured yellow, aromatic interactions are coloured blue 

and close contacts are coloured gray. 
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4.3.3.2. Quantitative analysis of protein-ligand interactions 

Protein-ligand interaction analyses for the docked ligands on IL-1R1 were computed with the 

program BINANA to trace the binding propensities of small molecules on the two sub-

pockets. Figure IV.9 provides a detailed mapping of the intermolecular pairwise interactions 

established between the compounds captured by each pharmacophore model and the 

respective sub-pocket amino acids, after the molecular docking stage. For sub-pocket 1, 

encompassing the docked compounds devised from pharmacophores SB1_Ph1, SB1_Ph2 and 

SB1_Ph3 (Figure IV.9A, IV.9B and IV.9C), 2.5 Å-contacts were significantly higher for Val16, 

Ser17, Ala109, Phe111, Tyr127 and Arg194. Also, these residues are by far the most implicated 

in intermolecular contacts at a 4.0 Å distance cutoff, with more than 80% of the docked poses 

presenting established contacts with them. Such observations are considerably correlated with 

the prevalence of hydrogen bonds and hydrophobic interactions, crucial weak intermolecular 

interactions for determining the specificity and stability of receptor-ligand binding. Indeed, 

hydrogen bonding were preferentially formed with Val16 (11%), Ser17 (9%), Ser18 (10%), 

Ala109 (10%), Phe111 (19%), Tyr127 (13%) and Arg194 (14%). Likewise, the established 

hydrophobic interaction network is higher amongst these residues. In terms of other important 

non-covalent interaction patterns, the presence of cation-π interactions seemed to be more 

relevant for Tyr127 and Arg194, whereas π-π and T-stacking interactions are particularly 

formed with Phe111 and Tyr127. A salt bridge with the side-chain of Glu21 is found on average 

in 14% of the ligands docked at sub-pocket 1. Several other interactions were prevalent, though 

less common: hydrogen-bond interaction with Glu21 (3%), hydrophobic contacts with Ser18 

(56%) and Thr193 (47%). This suggests that most of the IL-1R1-ligand interactions are formed 

primarily by residues on one side of the sub-pocket 1 binding interface, whereas the 

complementary side is scarce on pairwise interactions. 
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Figure IV. 9 - Heatmap of protein-ligand interaction patterns for the docked poses of each pharmacophore 

compound dataset at (A-C) sub-pocket 1 or (D-F) sub-pocket 2. Type of interactions analysed: close contacts within 

2.5 and 4.0 Å radius, hydrophobic interactions, hydrogen bonds, salt bridges and π-interactions (π–π stacking, T-

stacking and cation–π interactions). The percentage of contacts for each interaction type are color-coded: few 

interactions are coloured blue, while red colour indicates a larger contribution of the amino acid residue binding to 

the corresponding ligands. 

Looking at the protein-ligand interaction profiles in sub-pocket 2 (Figure IV.9D, IV.9E and 

IV.9F), the compound datasets retrieved from the respective pharmacophores SB2_Ph1, 

SB2_Ph2 and SB2_Ph3 models exhibited similar pairwise interactions with the IL-1R1. They 
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differ with regard to: (i) the hydrogen bonds involving Leu29, which are more prevalent in 

SB2_Ph3 (14%), when compared to SB2_Ph1 (2%) and SB2_Ph2 (4%); (ii) a hydrogen bond 

interaction with Phe130, reaching values of 38% and 23% in SB2_Ph1 and SB2_Ph2, 

respectively, contrasting with the 10% verified for the compounds of pharmacophore SB2_Ph3; 

and (iii) the establishment of a salt bridge with Glu11, which is found in 30% and 18% of the 

ligands from SB2_Ph2 and SB2_Ph3, respectively, while only 3% of the docked structures of  

SB2_Ph1 present a salt bridge with Glu11. Interestingly, most of the ligands interact with 

residues from both sides of the sub-pocket 2 interface. Indeed, the 2.5 Å- and 4.0 Å-contacts 

span from Glu11 to Arg194, which are on opposite sides of the sub-pocket 2, presenting 

hydrophobic interactions with Leu15 (83%), Pro26 (91%), Tyr127 (91%) and Phe130 (83%). 

Overall, hydrogens bonds were primarily established with Glu11, Val24, Arg25, Leu29, 

Tyr127, Glu129 and Phe130, while salt bridges were preferentially formed with Glu11, Asp23 

and Glu129. Another interesting feature characterizing a fraction of the docked ligands is their 

tendency to form perpendicular aromatic stacking arrangements with Tyr127 (average of 13%) 

and Phe130 (average of 13%), two aromatic residues lining sub-pocket 2. Cationic-π and π-π-

interactions were evident for Arg25 and Tyr127, although with lower prevalence (5 and 7%, 

respectively). 

4.3.3.3. Fitness of the virtual hits to the IL-1R1 pharmacophore models 

The docked poses of the VS compounds were used as a post-screening tool to assess their 

compliance with the postulated pharmacophoric features for IL-1R1 binding. Detailed results 

are provided in Table IV.3. As expected, docking protocols employed in sub-pocket 2 were 

able to identify ligands that fit, in a higher extent, the pharmacophoric requirements of this 

region. The quantitative analysis of protein-ligand interactions also seems to support this 

interpretation. In contrast, ligands mapping to the pharmacophore models and fitting to the 

sub-pocket 1 of IL-1R1 yielded poor pharmacophore overlapping profiles.  
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Table IV. 3 - Compliance of the docked poses to the pharmacophore models devised for the two IL-1R1 sub-

pockets. 

1 NA, not applicable.  

 

From the filtering pipeline performed over the 27206 molecules retrieved via pharmacophore-

based VS, compounds were ranked and prioritized based on 1) protein-ligand interactions ≥5 

with amino acid residues that are involved in a pharmacophore and are known to be essential 

for cytokine binding; 2) compliance with at least 4 pharmacophore features; and 3) a maximum 

number of 4 compounds per MCS cluster. This yielded 919 top-ranking compounds from 

different MCS clusters and devised from the two sub-pockets. Most of these compounds 

derived from sub-pocket 2, since docked compounds at sub-pocket 1 mainly established 

interactions with residues on one side of the pocket, failing to identify molecular structures 

that matching the pattern of the pharmacophores generated for this region.  

4.3.4. 3D-shape similarity analysis  

To additionally increase the chance of finding a IL-1R1 small molecule modulator, 3D-shape 

similarity searches using ROCS and Tanimoto scoring (ShapeTanimoto and ColorTanimoto, 

for shape and chemical similarity, respectively) were performed. This methodology was 

employed as a screening model for the identification of molecular scaffolds within the 919 top-

Sub-pocket 1 

 Pharmacophore compliance (number of features) 

Query 
Total 

molecules 
7 >6 >5 >4 >3 >2 >1 

SB1_Ph1 3333 0 
32 

(1,0%) 

95 

(2,9%) 

201 

(6,0%) 

927 

(27,8%) 

2201 

(66,0%) 

3305 

(99,2%) 

SB1_Ph2 7721 NA 1 
65 

(0,8%) 

210 

(2,7%) 

813 

(10,5%) 

2521 

(32,6%) 

5002 

(64,8%) 

7467 

(96,7%) 

SB1_Ph3 1604 NA 1 
5  

(0,3%) 

12 

(0,7%) 

41 

(2,6%) 

621 

(38,7%) 

1273 

(79,4%) 

1600 

(99,8%) 

Sub-pocket 2 

   Pharmacophore compliance (number of features)  

Query 
Total 

molecules 
6 >5 >4 >3 >2 >1 

SB2_Ph1 7178 
3183 

(44,3%) 

4002 

(55,7%) 

4781 

(66,6%) 

5991 

(83,5%) 

6903 

(96,2%) 

7171 

(99,9%) 

SB2_Ph2 2341 
305 

(13,0%) 

927 

(39,6%) 

1462 

(62,5%) 

1881 

(80,4%) 

2012 

(85,9%) 

2290 

(97,8%) 

SB2_Ph3 5029 
1702 

(33,8%) 

2698 

(53,6%) 

3525 

(70,0%) 

4001 

(79,6%) 

4761 

(94,7%) 

4978 

(99,0%) 
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ranking compounds possessing similar 3D structures with a bioactivity dataset of 17,187 

compounds, originating from PubChem, which were shown to able to downregulate IL-1β 

production via a cell-based phenotypic screening. 

Initial pre-processing calculations were performed on the VS and PubChem datasets, such as 

generation of tautomeric forms, pKa ionization, low-energy conformer calculation and partial 

charges assignment. The last step comprised multiconformer generation for each dataset (as 

described in the Methods section). To calculate the 3D molecular shape overlays, each 

compound in the VS dataset (multiconformer datasets) was aligned to a query, corresponding 

to the lowest-energy 3D-conformer of each active molecule from the PubChem dataset. Then, 

the 3D shape-based similarity of a given compound to the PubChem active compounds was 

ranked by a TanimotoCombo score, including both shape fit and colour (by combination of 

the shapeTanimoto plus ColorTanimoto), ranging between 0 and 2, with 2 representing 

maximal similarity (identity). Using this scoring scheme, 46 compounds among the 919 hits 

from the ROCS screening were found to have TanimotoCombo coefficients higher than 1.2 and 

were considered for selection.  

4.3.5. Selection of virtual hits for experimental evaluation 

Visual inspections of the 919 top-ranking compounds along with their docking and 3D-

similarity scores were used to select an initial set of compounds for biological testing. The 

criteria used in the visual inspection for the assessment of the compounds included: 

 Complementarity between ligands and IL-1R1 surface in terms of spatial occupancy of 

the sub-pocket; 

 Direct inspection of their molecular properties, including MW, logP and PSA; 

 Established interactions with important residues such as Leu15, Arg25, Pro26, Phe111, 

Tyr127 and Phe130 and compliance with pharmacophore features; 

 Structural diversity, by selecting compounds showing sufficient physicochemical 

diversity among each other (different MCS clusters); 

 Purchasability and commercial availability.  

Out of all the top-ranking compounds, 21 compounds were selected for biological testing. Ten 

of the compounds were primarily selected according to their docking poses and established 

interactions, while eleven compounds were selected based on 3D-shape similarity 

measurements. All 21 compounds were available in shelve from different chemical suppliers 

and were purchased to be experimentally tested. 
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4.4. Concluding remarks 

The main purpose of Part IV was to identify molecular scaffolds that explore the structural 

features of IL-1R1 for the development of small molecule modulators. The VS strategy 

presented here combined both receptor-based pharmacophore modelling and a filtering 

cascade grounded on molecular docking and 3D-shape similarity. Essentially, prioritization of 

compounds for experimental testing was performed according to the ranking generated vai 

docking poses, established protein-ligand interactions and pharmacophore compliance levels. 

In parallel, a side branch of prioritization employing ligand 3D-shape similarity was 

performed to enable the identification of molecules with similar shape and potentially 

interacting atoms to a dataset holding bioactive molecules that modulate the activity of the 

pro-inflammatory cytokine IL-1β. 

First, the predicted sub-pockets for small molecule binding derived from the results of Part II 

and III were translated into six pharmacophore models by assigning receptor-based 

pharmacophore features based on the frequency of their appearance in the X-ray and MD 

structures. In other words, pharmacophore features present in the IL-1R1 structures with a 

high probability were likely to be more important than features exhibiting a low probability. 

Even though the frequency information alone may not be enough to rank pharmacophoric 

features, since receptor-based pharmacophore modelling is based only on the 3D-topology of 

the binding site, it generates many features and thus, statistical feature frequency can help 

make an informed decision about which features should be prioritized. Still, a significant 

drawback of such approach is that it leaves it up to the user to manually select which features 

to prioritize, which precludes their applicability in an unsupervised and automated manner. 

The 3D pharmacophore models were translated into a flexible search query appropriate for 

the pharmacophore-based VS with Pharmit. The six pharmacophores were then used to screen 

pre-filtered CNS-tailored subsets of chemical databases available on Pharmit. From these, 

27206 molecules fulfilling the pharmacophoric requirements were retrieved, clustered by MCS 

with the goal of identifying as many diverse compounds as possible, and docked to IL-1R1 

sub-pockets. Interestingly, most of the poses of the docked compound in sub-pocket 2 showed 

hydrophobic interactions with Leu15, Pro26, Tyr127 and Phe130, while hydrogen bonding was 

formed mainly with Glu11, Val24, Arg25, Leu29, Tyr127, Glu129 and Phe130. Importantly, 

amino acids from both sides of sub-pocket 2 interface were involved in protein-ligand 

interactions. On the contrary, ligands accommodated primarily to one side of sub-pocket 1, 

showing interactions with crucial residues such as Val16, Ala109, Phe111, Tyr127 and Arg194. 

Due to the scope and limitations of docking scoring functions as well as the more or less 

subjective nature of binding site annotation, 919 top-ranking compounds were prioritized 

based by quantitative analysis of protein-ligand interactions and pharmacophore model 
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compliance. The inclusion of 3D-shape similarity analysis enabled the prioritization of more 

(and more diverse) molecules holding shape and chemical complementarity with bioactive 

molecules within the IL-1 signalling pathway. In the end, 21 compounds were selected for 

biological testing based on commercial availability and structural diversity. Of these, 10 

originated from the docking poses and 11 from the 3D-shape similarity searches. 

One of the limitations of the VS workflow implemented against IL-1R1 is that of the utilisation 

of a single docking and scoring function to evaluate docked poses.  Different docking 

programs (consensus scoring) and different scoring functions may improve the identification 

of molecules consistently giving good scores, providing better assessments of protein-ligand 

interactions and more reliable pose rankings. I would like to emphasize on the fact that this 

limitation is known and an automated and systematic of incorporating several docking and 

scoring protocols in the VS framework is currently underway. Despite these limitations, we 

demonstrated efficient usage of pharmacophore modelling, molecular docking and 

application of structure-based filters in retrieving, retaining, and ranking small molecules to 

specifically target IL-1R1, allowing reliable assessments to be made.  
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PART V 

Safety Evaluation and Physicochemical 

Characterization: the solubility and toxicity handshake 

 

 

 

“Not all chemicals are bad. Without chemicals such as hydrogen and oxygen, for example, 

there would be no way to make water, a vital ingredient in beer.” 

 

Dave Barry
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5.1. Introduction 

The tortuous path to the successful development of disease-relevant chemical modulators is 

often plagued by undesirable features (low bioavailability, high toxicity, poor 

pharmacokinetics) and artefactual, false positive readouts - frequent hitters, pan‐assay 

interference compounds (PAINS) and aggregators. Importantly, the assessment of in vitro 

ADME, toxicity properties and computational scrutiny of “nuisance promiscuous 

compounds”, apart from in vitro potency and selectivity on target, is a critical step in the earlier 

phases of a medchem project. As such, at this stage, we are particularly interested in identifying 

potential modulators with adequate solubility profiles, low propensity to aggregate in 

solution, limited cytotoxicity and not holding red-alert structures. In this chapter, we made 

use of experimental approaches to assess the solubility and toxicity of the virtual screening 

(VS) hits. We further reveal the results of the application of a computational algorithm 

designed to identify compounds that are likely to show frequent hitter behaviour. 

Fundamentally, every drug screening campaign focuses on the expectation/exploration of 

chemical compounds that bind to a given target and modulate its activity. Nevertheless, the 

result of a single experiment does not always assure that the compound displays biological 

activity on the target itself, as some of these screening hits produce positive experimental 

results without performing a specific, drug-like interaction with the protein. Indeed, these 

“bad actors” have subversive reactivity that mimics the drug-like interaction and yields false 

signals throughout a variety of assays. Many of these false hits are PAINS or colloidal 

aggregators, that should be approached with great caution in any sort of screen for activity 

(Baell and Walters, 2014; Reker et al., 2019). Herein, a set of structurally related compounds, 

sharing maximum common substructure (MCS) with the 21 promising compounds retrieved 

by the VS protocol, were evaluated in terms of potential assay-interference behaviour. 

The solubility of a compound isn’t the single most important factor in developing drug 

candidates, however, is a critical parameter on a compound’s bioavailability profile and can 

represent a major obstacle during drug development. Indeed, poor solubility can impact the 

in vitro data obtained, through the precipitation or aggregation of compounds, causing 

underestimated activity, unreliable data, and inaccurate structure-activity relationships (SAR) 

(Lipinski et al., 2001). Hence, it is essential to evaluate solubility at an early stage before 

experimental testing. The estimation of solubility in aqueous (buffered) solution of the selected 

VS compounds was conducted by a turbidimetric (kinetic) solubility assay. This method 

enables a rapid determination of the kinetic solubility of compounds using small amounts of 

their stock dimethyl sulfoxide (DMSO) solutions. 
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Late-stage safety and toxicity issues are also a major bottleneck that hamper the traditional 

drug design and discovery process. First hints and evaluations about potential compound 

cytotoxicity are generally experimentally assessed by in vitro cell viability and cytotoxicity 

assays with cultured cells. Essentially, the results from preliminary cytotoxicity screenings are 

fundamental to remove toxic compounds and guide the selection of testing concentrations for 

other assays (Gerets et al., 2009). With these considerations in mind, in this project we probe 

the toxicity potential of the 21 VS compounds in HepG2 human hepatocellular carcinoma cell 

lines and, since these compounds are intended to target neuroinflammation, in human 

microglial CHME3 cell lines. The next sections will briefly overview these cell lines as in vitro 

models for drug screening and toxicity studies. 

5.1.1. Cell lines as in vitro models for drug screening and toxicity 

studies 

Cell-based screens are located way up near the top of the screening cascade. These systems are 

typically used during the preclinical drug screening process to identify/validate druggable 

targets and to analyse the efficiency of putative therapeutic agents to modulate disease 

networks. Moreover, they afford the opportunity to evaluate the toxicity profiles in these cell 

culture systems, helping to decide which compounds should be moved forward. Cell lines can 

grow both as adherent cells and or in a suspension, depending on the origin of the cell type. 

Ideally, compounds should be characterized against a panel of cell lines which represent a 

disease state model holding pertinent molecular abnormalities, as well as alterations in cellular 

signalling pathways (Allen et al., 2005; O’Brien, 2014). 

For in vitro studies, two different cell lines were used during the experimental work: (i) HepG2 

cells, an immortalized cell line consisting of human liver carcinoma cells, to evaluate the effects 

of the compounds on cell proliferation and viability; (ii) human CHME3 microglial cell line, 

derived from human foetal microglia immortalized with simian virus 40 (SV-40) large T-

antigen, implemented to study the cytotoxic and immunomodulatory effects of potential IL-

1R1 modulators.  

5.1.1.1. The human HepG2 (hepatocellular carcinoma) cell line 

The HepG2 cell line is widely used in the pharmaceutical industry for the initial toxicity 

screening of new chemical entities. Interestingly, this cell line was established from a liver 

tumour biopsy obtained from a 15-year-old Caucasian male in the 1970s (Donato et al., 2015). 

With the proper culture conditions, these cells display robust morphological and functional 

differentiation, holding many of the genotypic features of normal liver cells (Sassa et al., 1987). 

In addition, HepG2 cells are characterized by their high availability, culture conditions 
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(simpler than primary hepatocytes) and easy standardization among laboratories. These 

features make the HepG2 cell line suitable for drug screening purposes (Miret et al., 2006). 

5.1.1.2. The human CHME3 microglial cell line 

The CHME3 (or HMC3) microglia, established in 1995, was the first microglial cell line of 

human origin (Janabi et al., 1995). Importantly, these cells recapitulate key features seen in 

freshly isolated primary microglia, including microglial surface markers, phagocytic ability, 

morphological properties and inflammatory responses to pro-inflammatory stimuli. There are 

numerous examples in the literature reporting changes in CHME3 microglia upon different 

conditions by assessing cell viability, morphological changes, phagocytic ability, and cytokine 

production (Lindberg et al., 2005; Hjorth et al., 2010; Fernandes et al., 2018). Under basal 

conditions, these cells have been shown to express high levels of the inflammatory cytokine 

IL-6, alongside with low levels of TNF-α, IL-1α, IL-1β, and caspase-1. Furthermore, the anti-

inflammatory cytokines IL-10 and TGF-β and the neurotrophic growth factor BDNF were also 

detected at basal levels in the steady-state CHME3 microglia (Dello Russo et al., 2018). 

Treatment of this cell line with the inflammatory stimuli LPS or IL-1β increase the cytokine 

secretion and ramp up the expression of neuroinflammatory genes, such as IL-1β, IL-6, and 

TNF-α. Furthermore, these cells have been found to respond to IFN-γ with consistent 

overexpression of the classical inflammatory-associated markers MHCII, CD68 and CD11b, 

and marked increases of pro-inflammatory cytokines when in combination with IL-1β and 

TNF-α (Dello Russo et al., 2018; Cappoli et al., 2019). Therefore, these cells faithfully reproduce 

microglial properties under immune stimulation with the acquisition of activated phenotypes, 

representing a useful tool to study neuroinflammation in vitro and to screen potential 

immunomodulatory molecules.  

5.2. Materials and methods 

In this section it is presented and described the computational method swiftly deployed to flag 

PAINS and potential aggregates in a compound dataset, and the experimental methods used 

for solubility and cytotoxicity measurements.   

5.2.1. Prediction of frequent hitters  

Hit Dexter v. 2.0 was employed to predict compounds likely to behave promiscuously, based 

on chemical structure (Stork et al., 2019). This computational algorithm consists of a machine 

learning approach designed to evaluate how likely a small organic molecule may trigger a 

positive response or false-positive readouts in biochemical assays. Hit Dexter includes models 

trained on data measured with primary screening assays (PSA) and confirmatory dose-
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response assays (CDRA). Four machine learning models (classifiers) are used to predict 

promiscuity: 

1. Compounds which are likely to show moderate or high hit rates in PSA and are 

regarded as potentially promiscuous compounds; 

2. Compounds which are likely to show high hit rates in PSA and are regarded as 

potentially highly promiscuous compounds; 

3. Compounds which are likely to show moderate or high hit rates in CDRA and are 

regarded as potentially promiscuous compounds; 

4. Compounds which are likely to show high hit rates in CDRA and are regarded as 

potentially highly promiscuous compounds. 

In addition, this software also provides a metric for the prediction of aggregators based on 

similarity-based approaches to a dataset of known aggregators and dark chemical matter. Due 

to intellectual property concerns, 21 molecules sharing similar MCS with the 21 VS hits, i.e., 

located in the same MCS clusters determined during the VS stage (see Part IV), were the ones 

interrogated for probability of non-specificity and aggregation behaviour.  

5.2.2. Compounds and preparation of stock solutions 

The 21 compounds identified from the VS workflow, were provided in powder form from 

their respective chemical vendors and dissolved in pure DMSO, at a concentration of 100 mM 

and stored at −20°C. We confirmed that the compounds were soluble in DMSO and did not 

show detectable aggregation. 

5.2.3. Turbidimetric solubility assay 

Turbidimetric solubility experiments were performed in vitro to determine the kinetic 

solubility of the selected compounds - small volumes of the stock solution were added 

incrementally to the aqueous (buffered) solution of interest until the solubility limit was 

reached. Solutions of each compound were prepared at multiple micromolar concentrations 

(5, 10, 20, 50, 100, 150, 200, 400 and 600 µM), in 96-well plates, by diluting the respective 

concentrated DMSO stock solution into HEPES buffer (10 mM, pH=7.4). The final DMSO 

concentration in each well was 2.0% (v/v). Turbidity measurements were taken at 630 nm using 

a Microplate Reader (Synergy HT™ from BioTek®), at 24 h time point (3 replicates per 

concentration). Immediately before the turbidity measurements, the solutions were gently 

shaken for 1 minute for homogenization. Estimated solubility range was determined with the 

onset of precipitation based on an increase in absorbance levels. 
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5.2.4. HepG2 cell viability assay 

 

5.2.4.1. Cell culture and treatment 

Adherent human HepG2 cells were routinely cultured in 75 cm2 (T75) flasks at 37°C, 5% CO2, 

in Dulbecco's modified eagle medium (DMEM) supplemented with 10% heat-inactivated 

foetal bovine serum (FBS), 1 mM sodium pyruvate, 2.0 g/L sodium bicarbonate and 1% 

penicillin-streptomycin (pen-strep).  Medium was changed every two or three days. 

5.2.4.2. AlamarBlue Cell Viability Assay 

HepG2 cells were seeded at a density of 27x103 cells/well into 96-well plates at the volume of 

100 µL per well, for 24 h to ensure adhesion to the wells. Then, the medium was removed and 

fresh medium, along with increasing compound concentrations (based on the turbidimetric 

solubility measurements for each compound) were added to the cells at a final DMSO 

concentration of 1% (v/v). Control cells were exposed to 1% (v/v) DMSO. Cell viability was 

determined by the AlamarBlue assay in three independent experiments performed 48 h-post 

compound treatment. This assay is based on the ability of viable active cells to metabolize 

resazurin (blue) by reducing it to the fluorescent molecule resorufin (bright red). After 

medium removal, resazurin dissolved in medium culture at 10% of the final solution was 

added to each well and the microplates were further incubated for 45 min. Fluorescence was 

measured quantitatively with a microplate spectrophotometer (Synergy HT™ from BioTek®) 

exciting at 530 nm and detecting the emission at 590 nm. The cell viability was obtained using 

the following expression: 

 
C𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =

𝐹𝑙 590𝑛𝑚 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝐹𝑙 590𝑛𝑚 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠
 x 100 

5.2.5. CHME3 cell viability assay 

 

5.2.5.1. Cell culture and treatment 

CHME3 microglia were cultured in T75 culture flasks in high-glucose DMEM, supplemented 

with 10% FBS, 2% AB/AM and 1% L-glutamine, at 37°C with 5% CO2, with medium change 

every 2 to 3 days. For each new experiment, microglial cells were plated (5 × 104 cell/well) on 

24-well cell culture plates, as previously described by Brite’s lab (Fernandes et al., 2018). 
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5.2.5.2. MTS Cell Viability Assay 

For CHME3 microglia, increasing compound concentrations (based on the turbidimetric 

solubility measurements for each compound) were added to the cells at a final DMSO 

concentration of 0.1% (v/v). The control cells were incubated in medium containing 0.1% 

DMSO (v/v). Compound cytotoxicity was assessed quantitatively by the MTS [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. 

Viable cells in the presence of phenazine methosulfate (PMS) reduce the MTS solution to the 

water-soluble formazan that is released to the culture medium, with an absorbance maximum 

at 490 nm. Hence, the amount of formazan produced is proportional to the number of viable 

cells present in culture. After preparation of a combined PMS/MTS solution (1:20), the plates 

were incubated, at 37°C in a humidified atmosphere containing 5% CO2, diluted in fresh 

culture medium, without serum, at concentrations of 1/10 per well. After 1 h incubation, the 

absorbance was measured using a microplate reader (Bio-Rad Laboratories; Hercules, CA) at 

the wavelength of 490 nm. The cell viability was obtained using the following expression: 

 

𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝐴𝑏𝑠 490𝑛𝑚 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝐴𝑏𝑠 490𝑛𝑚 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠
 𝑥 100 

5.2.6. Statistical analysis 

The results of three different experiments are expressed as mean ± standard error of the mean 

(SEM). Analyses and graphical presentations were performed with the GraphPad Prism 

software version 8 (GraphPad Software Inc., San Diego, CA). 

5.3. Results and Discussion 

In this section we report the results of the application of a machine learning model for the 

prediction of potential promiscuous compounds and aggregators among structurally 

analogous compounds (similar MCS) to the VS hits. Furthermore, we describe the results 

obtained from turbidimetric solubility measurements and in vitro cytotoxicity and viability 

assays performed with the VS hits. The 21 compounds were renamed under the code “NCM-

V#”. 

5.3.1. Analysis of assay interference compounds 

Twenty-one (21) analogue compounds to the VS hits were subjected to a PAINS analysis via 

Hit Dexter 2.0 to flag potential liabilities and predict promiscuity profiles for these molecules. 

PAINS refer to a class of chemical compounds showing unspecific activity against many 

unrelated targets, leading to false-positive results in experimental assays. Figure V.1 provides 
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the detailed promiscuity analysis for the set of 21 analogue compounds to the VS hits, using 

Hit Dexter 2.0. Overall, among the predictions performed by this algorithm, it was found a 

large proportion of compounds predicted to be non-promiscuous, by the PSA (primary 

screening assays) and the CDRA (confirmatory dose–response assays) classifiers, with a 

probability of >0.90 at moderate confidence. However, the promiscuous probabilities 

increased substantially for compounds 17 and 19, at high confidence. Both were predicted to 

be promiscuous with a probability >0.50 in the PSA, and compound 19 maintained this 

tendency in the CDRA classifier. As such, these two scaffolds were flagged as potential hitters 

during the realization of experimental assays. Still, most compounds showed low 

promiscuous probabilities even at high confidence and therefore, a higher likelihood of these 

core scaffolds to be specific rather than promiscuous.  

 

Figure V. 1 - Prediction of promiscuity on 21 analogue compounds to the virtual screening (VS) dataset, using 

Hit Dexter 2.0. (A) Probability of promiscuity based on primary screening assays (PSA) classifier at moderate 

(coloured green) and high (coloured yellow) confidence. (B) Probability of promiscuity based on confirmatory dose-

response assays (CDRA) at moderate (coloured blue) and high (coloured orange) confidence. 

5.3.2. Turbidimetric solubility measurements 

More than two decades ago, Lipinski et al. measured and compared turbidimetric solubilities 

on 353 commercial drugs, indicating that 87% had solubility >65 μg/mL, while only 7% had a 

solubility <20 μg/mL (Lipinski et al., 2001). From then on, the amount of available information 

on in vitro solubility assays has increased significantly, enabling the implementation of three 

general categories for compound classification based on their solubility range: (i) compounds 
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below 10 μg/mL are classified as poorly soluble; (ii) between 10 and 60 μg/mL are moderately 

soluble and (iii) above 60 μg/mL are considered soluble (Kerns et al., 2008). 

Table V.1 reports the turbidimetric solubility measurements determined for the VS hit 

compounds, by diluting a test compound solution prepared in DMSO into aqueous buffer. Of 

the 21 compounds experimentally tested, compounds NCM-V02, NCM-V06, NCM-V08, 

NCM-V10, NCM-V11, NCM-V12, NCM-V13, NCM-V14 and NCM-V16 showed no turbidity 

up to the highest compound concentration tested (600 µM). For compounds NCM-V04 and 

NCM-V17, an increase in turbidity was observed throughout the course of the experiment, 

still, these molecules displayed aqueous solubility greater than 60 μg/mL. Seven compounds 

revealed moderate aqueous solubility, in the range of 10–60 µg/mL (NCM-V01, NCM-V07, 

NCM-V15, NCM-V18, NCM-V19, NCM-V20 and NCM-V21), whereas compounds NCM-

V03, NCM-V05 and NCM-V09 were poorly soluble (<10 μg/mL).  

Table V. 1 - Turbidimetric solubility data for VS selected compounds  

Compound 

(NCM) 

Determined 

turbidimetric 

solubility (μM) 

Determined 

turbidimetric 

solubility (μg/mL) 

V01 60-100 20-33 

V02 >600 >216 

V03 20-30 6-10 

V04 350-400 137-156 

V05 25-37 8-12 

V06 >600 >251 

V07 80-120 25-38 

V08 >600 >183 

V09 10-20 4-7 

V10 >600 >210 

V11 >600 >205 

V12 >600 >220 

V13 >600 >171 

V14 >600 >205 

V15 60-80 19-25 

V16 >600 >172 

V17 160-190 62-74 

V18 40-55 13-18 

V19 80-120 25-38 

V20 80-120 23-34 

V21 80-120 24-36 

 

5.3.3. Toxicity profiling in human HepG2 cell line 

Cell viability of HepG2 cells was determined in the presence of increasing concentrations of 

the test compounds to obtain a preliminary assessment of the in vitro toxicity. Figure V.2 

shows the cell viability in the HepG2 cell line after 48 h of exposure to different concentrations 

of the 21 compounds, divided in three groups based on turbidimetric solubility measurements: 
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(1) NCM-V02, NCM-V04, NCM-V06, NCM-V08, NCM-V10, NCM-V11, NCM-V12, NCM-

V13, NCM-V14, NCM-V16 and NCM-V17 – tested in the concentrations of 5, 10, 20, 50, 100, 

150, 200, 250 and 300 µM; (2) NCM-V01, NCM-V07, NCM-V15, NCM-V18, NCM-V19, NCM-

V20 and NCM-V21 – tested at 2.5, 5, 10, 15, 20, 40, 60, 80 and 100 µM and (3) NCM-V03, NCM-

V05 and NCM-V09 – tested at 2.5, 5, 10, 15, 20, 50 µM, except compound NCM-V09 (tested up 

to 20 µM).  

As shown in Figure V.2A, for most of the high-soluble compounds (group 1) there was a 

reduction in cell viability in a concentration-dependent manner. Nevertheless, compounds 

NCM-V12 and NCM-V14, throughout the spectrum of concentrations tested, did not produce 

significant changes on cell viability when compared to the 1% DMSO control cells. The plot 

highlights the relatively low toxicity of compounds NCM-V02 and NCM-V11 in HepG2 cells, 

even at high concentrations, whereas compounds NCM-V08 and NCM-V16 presented a fairly 

significant decrease at 100 µM, reaching at 300 µM values of 59.5% and 41.4% of cell viability 

loss. Compared to the control cells, a substantial reduction in cell viability was observed for 

the remaining five compounds identified from the VS framework, with NCM-V04 and NCM-

V13 exhibiting high cytotoxic effects at 100 µM and presenting cell viability of 0.6% and 24,3%, 

respectively. Strikingly, compound NCM-V17 exhibited high cytotoxicity in all tested 

concentrations (for clarity of presentation, this compound was inserted in Figure V.2C). The 

cell viability profiles following in vitro exposure to the second group of compounds (Figure 

V.2B) revealed a similar shape for compounds NCM-V15, NCM-V18 at different 

concentrations ranging from 2.5 to 100 µM (cell viability remained above 80%). Compounds 

NCM-V19 and NCM-V20 decreased cell viability roughly by 23-28% at 100 µM when 

compared to the control cells. In contrast, HepG2 cells were more sensitive to compounds 

NCM-V01, NCM-V07 and NCM-V21 treatment at concentrations higher than 50 µM. 

Concerning the third group of compounds NCM-V03, NCM-V05, the cell viability curves 

(Figure V.2C) showed substantial cellular toxicity at all tested concentrations. Compound 

NCM-V09 precipitated in all tested concentrations and was withdrawn from further 

experiments.  
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Figure V. 2 - Cell viability assay of HepG2 cells treated with increasing testing compound concentrations. Effect 

of the group 1 (A), group 2 (B) and group 3 (C) on the cell viability of HepG2 cells, 48 h post-treatment using the 

Alamarblue assay. (D) Representative image of HepG2 cells. The cell viability of treated cells was calculated relative 

to control, 1% DMSO untreated cells (viability set as 100%). Data are representative of three independent 

experiments and are presented as mean ± SEM of n = 3 wells per group. 

The effects of the VS hits on the cell viability of HepG2 cells are summarized in Table D-1 in 

the Appendix (data are reported as mean ± SEM). Based on the results achieved, compounds 

from group 1 (except for NCM-V17 – withdrawn due to high cytotoxic effects) and group 2 

were used in subsequent assays, whereas the compounds from group 3 were discarded due to 

high cytotoxicity on HepG2 cells. In other words, compounds NCM-V01, NCM-V02, NCM-

V04, NCM-V06, NCM-V07, NCM-V08, NCM-V10, NCM-V11, NCM-V12, NCM-V13, NCM-

V14, NCM-V15, NCM-V16, NCM-V18, NCM-V19, NCM-V20 and NCM-V21, were selected 

for further experimental testing, whereas compounds NCM-V03, NCM-V05, NCM-V09 and 

NCM-V17 were discarded. 
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5.3.4. Toxicity profiling in human CHME3 microglial cell line 

Following initial toxicity characterization in HepG2 cells, the cytotoxic effects of the VS hit 

compounds were also assessed using the MTS cell viability assay on the CHME3 microglia cell 

line. Microglia were treated with the compounds prioritized from the above sub-section, each 

at 20, 50 and 100 µM, during 24 h. The maximum final DMSO concentration in each well was 

of 0.1% (v/v). Reducing the DMSO concentration resulted in the precipitation of compounds 

NCM-V02, NCM-V12, NCM-V18 and NCM-V20. Hence, these compounds were excluded 

from further evaluations. Figure V.3 discloses the effects of the compounds, divided in two 

groups (group 1 and 2) based on turbidimetric solubility measurements, on CHME3 cell 

viability after 24 h of exposure. As shown in Figure V.3A, no changes in cell viability were 

observed for compound NCM-V14 at 20, 50 and 100 µM concentrations, suggesting that this 

compound did not significantly reduce cell viability. The cytotoxic profile of compounds 

NCM-V08 and NCM-V16 was less pronounced, with cell viability always above 75% when 

compared to the 0.1% DMSO control cells. Cell viability was greater than 90% for compounds 

NCM-V10 and NCM-V11 for concentrations up to 50 µM, decreasing to 69.4% and 58.2% 

respectively, at 100μM concentrations. Compounds NCM-V04, NCM-V06 and NCM-V13 

posed higher cytotoxicity, which was particularly evident at 50 µM, inducing a significant 

decrease in microglia cells viability at the highest concentration (cell viability: NCM-V04 – 

18.9%, NCM-V06 – 33.1%, NCM-V13 – 0%). 

 

Figure V. 3 - Cell viability assay of CHME3 microglia cells treated with increasing testing compound 

concentrations. Effect of the most-soluble (A), moderately soluble (B) groups on the cell viability of CHME3 cells, 

24 h post-treatment using the MTS assay. The cell viability of treated cells was calculated relative to control, 0,1% 

DMSO untreated cells (viability set as 100%). Data are representative of two independent experiments and are 

presented as mean ± SEM of n = 3 wells per group. 
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Figure V.3B shows the concentration-dependent cytotoxicity for group 2: NCM-V01, NCM-

V07, NCM-V15, NCM-V19 and NCM-V21. Cell viability decreased approximately 35% for 

compound NCM-V19 at 100 µM, while compounds NCM-V01, NCM-V07 and NCM-V15 

presented an enhanced cytotoxicity at this concentration (cell viability: NCM-V01 – 35.6%, 

NCM-V07 – 12.3%, NCM-V15 – 31,3%), when compared to the respective control cells. After 

24 h exposure, compound NCM-V21 showed a strong cytotoxic effect throughout the 

concentrations tested. The effects of the VS hits on the cell viability of CHME3 cells are 

summarized in Table D-2 in the Appendix (data are reported as mean ± SEM). 

5.3.5. Compound prioritization for phenotypic screening: in-depth 

analysis 

The prioritization of compounds for phenotypic experiments was based on their cytotoxic 

profiles in HepG2 and CHME3 cell lines, and on the solubility measurements. These three 

distinct assay stages were closely accompanied by direct analysis of in silico predictive 

assessments of compound promiscuity. In this way, compound prioritization was set to: i) 

high aqueous solubility; ii) suitable toxicity profiles in HepG2 and CHME3 cell lines; and iii) 

prediction probabilities of no assay-interference behaviour.  

The likelihood of the core scaffolds, composing the 21 compounds selected from the VS 

campaign, to be promiscuous was low, with probability values falling between 0-30%. Still, 

compounds 17 and 19 presented promiscuous probability values higher than 50% and were 

kept “under the radar” on in vitro assays. Turbidimetric solubility assay results indicated that 

52% of the compounds fall into the high aqueous solubility range, whereas 33% showed 

moderate aqueous kinetic solubility. At the other extreme, in the poor aqueous solubility 

range, 15% of the VS hits were in this category. The primary cytotoxicity screen implicated all 

21 compounds. The effects of these molecules on cell viability were assessed using HepG2 

cells, a well characterized and frequently used cell line in toxicological and pharmacological 

studies. The primary screen resulted in three molecules withdrawn due to high toxicity in 

HepG2 cells and one discarded due to precipitation, with most compounds exhibiting an LD50 

>100 µM in this cell line. Curiously, compound NCM-V17 whose scaffold was predicted to be 

highly promiscuous with likelihood higher than 50%, showed a high degree of cytotoxicity in 

all tested concentrations. Compounds were counter-screened in CHME3 microglial cells using 

again cell viability as read-out. Overall, the CHME3 cell line was more sensitive to each 

compound treatment than the HepG2 cell line. Interestingly, of the 13 compounds 

experimentally tested (four molecules withdrawn due to precipitation), 5 compounds (NCM-

V08, NCM-V10, NCM-V11, NCM-V14 and NCM-V16) revealed to be relatively well tolerated 

and safe based on the toxicity profiles in HepG2 and CHME3 cell lines. In general, the 
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cytotoxicity profile of compound NCM-V14 in CHME3 microglia roughly matches that of 

verified for the HepG2 cell line, highlighting the relatively low toxicity of this compound, even 

at high concentrations. The other top four compounds revealed suitable toxicity profiles in 

both cell lines, causing less than 40% reduction in cell viability at a concentration of 100 μM. 

From these, compounds NCM-V08, NCM-V14 and NCM-V16, presenting high aqueous 

solubility and predicted to be non-promiscuous, were prioritized for microglial phenotypic 

assays to assess their potential immunomodulatory properties over microglial phenotypic 

polarization.  

5.4. Concluding Remarks 

Phenotypic experimental evaluation of many molecules is highly expensive and a time-

consuming process. Herein, we developed a screening progression cascade for triaging 

compounds to significantly reduce the number of compounds to be profiled and confirmed 

for activity through the more complex cell-based assays. In this chapter, we have 

systematically studied important criteria for good small molecule modulators: assay-

interference behaviour, solubility and toxicity. Using an in silico method for the prediction of 

problematic compounds together with in vitro turbidimetric solubility measurements and 

toxicity profiling in HepG2 and CHME3 cell lines, we categorized compounds based on those 

three physicochemical criteria, and prospectively prioritized compounds for further cell-based 

phenotypic assays.  

According to our results, the 21 compounds purchased from the respective chemical suppliers 

appear to not possess molecular scaffolds that have been associated with various types of assay 

interference. Nevertheless, it is worth emphasizing that despite PAINS-related promiscuity 

are usually considered a poor starting point for medicinal chemistry endeavours, some of 

these compounds may interact with a protein of interest in a specific drug-like way, and thus 

could be further optimized through medicinal chemistry. Amongst the 21 compounds, 18 

compounds showed moderate to high aqueous solubility, whereas three compounds 

displayed poor solubility. To assess the cytotoxicity of the VS hits, primary screens were first 

performed using HepG2 cells, followed by counter screens with a reduced set of screen 

compounds in a more relevant, neuroinflammation-like, cell-based system – CHME3 

microglial cells – to further down select and prioritize compounds for studies in disease-

relevant phenotypic models. The results demonstrated that NCM-V08, NCM-V14 and NCM-

V16 displayed suitable cytotoxicity profiles against HepG2 and CHME3 cells, and thus, these 

compounds were selected for further experiments. 

 

 



 
 

162 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

PART VI 

Microglia-based phenotypic screening for the discovery 

of new neuroinflammatory modulators 

 

 

 

“I listen to what you say, but I hear what you mean” 

 

Hercule Poirot, in Hercule Poirot Novels by Agatha Christie 
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6.1. Introduction 

One of the problems of conventional drug discovery methods is the focus on a single target 

without considering the entire genomics and proteomics networks that are linked to it. Putting 

into perspective some of the ideas presented in the introductory chapter on the importance of 

phenotypic screening in drug discovery, we have been compelled to explore a platform that 

could foster the search for modulators that alter the microglia phenotypes associated with 

harmful neuroinflammation and validate target hypotheses. As mentioned throughout the 

previous chapters of this thesis, chronic and sustained microglia pro-inflammatory/damaging 

phenotypes are linked to the overproduction of neurotoxic factors, like iNOS and ROS, and 

pro-inflammatory cytokines, e.g. TNF-α and IL-1β. In this context, small molecules 

modulating harmful pro-inflammatory responses of microglial cells may protect from 

microglia-mediated neurotoxicity and be beneficial to mitigate the progression of chronic 

neuroinflammatory-mediated diseases.  

In this chapter, we employed microglia-based phenotypic screenings to search for small 

molecules, designed to target IL-1R1, to modulate the harmful effects of microglial pro-

inflammatory activation. As proof-of-concept, we used an in vitro human microglial model 

based on the use of CHME3 microglial cell line stimulated with IFN-γ to recapitulate 

microglial phenotypes predominant in an inflammatory milieu, and consistent with the 

phenotypes occurring in neurodegenerative diseases characterized by uncontrolled 

inflammatory processes. IFN-γ is a pro-inflammatory T-lymphocyte cytokine that serves 

critical functions in both innate and adaptive immunity. Lately, it was demonstrated that IFN-

γ plays a pivotal role in AD-associated neuroinflammation, as it is deeply involved in the 

pathophysiological mechanisms of this disease (Roy et al., 2020). 

The stimulation with IFN-γ is known to increase the production of proinflammatory-

associated genes, inducing proliferation and moderate activation of microglia, including up-

regulation of iNOS, ROS and IL-6 (Rock et al., 2005; Spencer et al., 2016; Ta et al., 2019). 

Accordingly, it represents a robust and reliable in vitro model system, mimicking pro-

inflammatory microglial phenotypes, to identify pharmacological tool compounds (activators 

or inhibitors) and to explore specific signalling pathways on neuroinflammatory responses.  

The focus of the project behind this thesis is the use of IL-1R1 as a model target for the 

modulation of detrimental neuroinflammatory processes. IL-1 is a potent microglia stressor, 

activating downstream kinases and transcription factors resulting in NF-κB-mediated gene 

transcription and increased cytokine and chemokine secretion such as IL-6 and TNF-α, as well 

as itself by positive feedback loop (Mantovani et al., 2019). In this final chapter, we investigated 

the ability of compounds NCM-V08, NCM-V14 and NCM-V16 to modulate the production of 
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key pro-inflammatory factors in IFN-γ-induced CHME3 microglia-inflammatory responses. 

In the screenings, six main pro-inflammatory players produced by activated microglia, i.e., IL-

1R1, IL-1β, IL-6, NF-κB, NLRP3 and iNOS, were set as phenotypic markers. Altered levels of 

these markers were used as indicators of the immunomodulatory ability of VS hits. Although 

these genes/proteins appear first as unrelated and distinct players, they all are actually linked 

together in intracellular signalling via at least the NF-κB transcriptional machinery (Figure 

VI.1).  

 

 

Figure VI. 1 - Inflammatory stimulated responses of microglial cells by interferon-γ (IFN-γ). Canonical IFN-γ 

signalling pathway requires binding to its receptor, IFN-γ receptor (IFNGR) leading to the activation of the Janus 

kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Activated JAK proteins 

phosphorylate the STAT1 binding site, triggering the formation of phosphorylated STAT1 dimers and subsequent 

translocation to the nucleus where it binds to γ-activated site (GAS) elements and promotes gene transcription. In 

addition, IFN-γ signalling can activate a pro-inflammatory cascade involving the nuclear factor-kappa B (NF-κB) 

network, with increased production of IFN-γ, NLR family pyrin domain containing 3 (NLRP3), interleukin-6 (IL-

6), monocyte chemoattractant protein-1 (MCP-1), pro-interleukin-1β (pro-IL-1β) and pro-interlukin-18 (pro-IL-18). 

Both of these pathways are able to individually induce inducible nitric oxide synthase (iNOS) expression but the 

synergy between these pathways greatly amplifies the response. Consequently, iNOS expression leads to nitric 

oxide (NO) production. Upregulation of NLRP3 via NF-κB activation primes the assembly of the inflammasome 

complex, which then activates caspase-1 (Casp-1). This enzyme then proteolytically cleaves the pro-forms of IL-1β 

and IL-18, enabling the release of these mature cytokines, enhancing the inflammatory response. Subsequently, IL-

1β binding to membrane interleukin-1 receptor type 1 (IL-1R1) promotes the engagement of the co-receptor IL-1 
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receptor accessory protein (IL-1RAcP), resulting in the recruitment of myeloid differentiation primary response 88 

(MyD88) and IRAKs (interleukin-1 receptor-associated kinases), which activate the NF-κB pathway. 

Autocrine/paracrine IL-1 activation of canonical NF-κB signalling exacerbate microglial pro-inflammatory 

phenotype, forming a vicious inflammatory cycle. Ultimately, microglial release of these pro-inflammatory 

mediators, when at elevated levels or chronically, may lead to neuronal dysfunction.  

6.1.1. Expression of IL-1R1 in microglia: what we know 

Produced mainly by cells of the immune system, IL-1R1 operates in various parts of the body 

as a key cytokine receptor in inflammation and immune responses. Within the CNS, functional 

IL-1R1 is highly expressed among vascular endothelial cells, with lower but detectable 

expression in microglia, astrocytes, and neurons. However, the presence of IL-1R1 in microglia 

is not entirely consensual. Indeed, the expression of this receptor was reported in some in vitro 

studies (Pinteaux et al., 2002; Sato et al., 2012) but was not confirmed in others (Krasnow et al., 

2017; Liu et al., 2019). Nevertheless, microglial IL-1R1 expression has been reported to be 

increased in different in vivo models of neuroinflammation, providing evidence of IL-1R1 

important role in the molecular pathogenesis of neuroinflammatory responses (Friedman, 

2001; Wang et al., 2006; Bruttger et al., 2015; Zhang et al., 2018a; Guo et al., 2020). Importantly, 

Basu et al. demonstrated in IL-1R1 null mice that this receptor is fundamental for the activation 

of microglia and the induction of pro-inflammatory mediators such as IL-6, in response to 

brain injury (Basu et al., 2002). These observations indicate that microglial IL-1R1 production 

is more strongly associated with an activated status of human glial cells. Of particular 

relevance to this work, immunocytochemical analysis revealed immunoreactivity for IL-1R1 

in the human CHME3 cell line (Hjorth et al., 2010). Here, immune stimulation with IFN-γ was 

performed to increase the inflammatory status of CHME3 microglia.  

6.2. Materials and methods 

This section contains information on the two molecular biological techniques, Real Time 

quantitative Polymerase Chain Reaction (RT-qPCR) and Immunocytochemistry (ICC), used to 

evaluate the response of microglia to IFN-γ exposure and the effects of the compounds of 

interest on microglial pro-inflammatory markers.  

6.2.1. Cell culture and treatment 

CHME3 microglia were cultured in T75 culture flasks in high-glucose DMEM (4.5 g/L), 

supplemented with 10% FBS, 2% AB/AM and 1% L-glutamine, at 37°C with 5% CO2, with 

medium change every 2 to 3 days, and grown to confluence. For each new experiment, 

microglial cells were seeded (5 × 104 cell/well) on 24- or 6-well cell culture plates, as previously 

described by Brites’s lab (Fernandes et al., 2018) (Figure VI.2). Then, to polarize microglia cells 
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into a pro-inflammatory activated state, cells were incubated with IFN-γ (50 ng/mL) during 12 

or 24 h. These two different time-points were chosen based on previous studies demonstrating 

IFN-γ induced microglial activation into pro-inflammatory phenotypes in such conditions 

(Nguyen and Benveniste, 2002; Spencer et al., 2016; Moritz et al., 2017). In addition, these two 

time periods allow the evaluation and comparison of compound testing outcomes on the 

induction of pro-inflammatory mRNA and protein expression levels. After 12/24 h incubation 

with IFN-γ, cells were then treated for additional 12h/24 h with the three selected VS hits (20 

μM), in the presence of DMSO, at a final concentration of 0.1% (v/v). Non-treated cells (without 

either IFN-γ or compounds) were considered as controls. 

 

Figure VI. 2 - Schematic representation of the experimental cell treatment design of this study. Human microglial 

CHME3 cells were seeded into cell culture plates (5x104 cell/well) and maintained for 24 h. CHEM3 cells were 

treated with interferon-γ (IFN-γ) for 12 h or 24 h. After incubation with IFN-γ, microglial cells were treated with 

the VS compounds at the concentration of 20 μM at a final dimethyl sulfoxide (DMSO) concentration of 0.1% (v/v), 

over a period of time similar to that of the stimulation with IFN-γ (12 h or 24 h). CHME3 microglial responses were 

evaluated in terms of (i) pro-inflammatory markers expression by Real-Time quantitative PCR; (ii) nuclear factor-

kappa B (NF-κB) by immunocytochemical staining; and (iii) pro-inflammatory protein markers levels by 

immunocytochemical staining. The control non-treated CHME3 cells were maintained for the same periods of time, 

with cell culture medium containing 0.1% DMSO (v/v). 

6.2.2. Immunocytochemistry 

After incubation with the compounds, CHME3 microglia were washed with PBS, fixed with 

4% (w/v) paraformaldehyde, permeabilized using 0.2% Triton X-100 for 20 min, and then 

blocked for 30 min at room temperature with PBS containing 3% bovine serum albumin (BSA). 

Cells were incubated overnight at 4°C with the mouse primary antibody anti-IL-1R1, mouse 

anti-NLRP3, mouse anti-iNOS, and rabbit anti-NF-κB. Microglial cells were then washed with 

PBS and incubated for 2 h at room temperature with secondary antibodies, i.e., goat anti-

mouse Alexa Fluor 488 and goat anti-rabbit Alexa Fluor 488. Cells were stained for F-actin 

cytoskeleton using Alexa Fluor 594 Phalloidin antibody. After washing with PBS, cell nuclei 

were stained with Hoechst 33258 dye (1:1000, Sigma-Aldrich) and coverslips were mounted in 

microscopy slides using PBS:glycerol mounting media. Manufacturers and dilution factors 
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used for the antibodies are provided in Table VI.1. Fluorescence was visualized using an 

AxioCam HR camera (Zeiss) adapted to an AxioSkope® microscope. Merged images of UV 

and fluorescence of eight random microscopic fields were acquired per sample. Quantification 

of fluorescence intensity was performed with Image J software (Schneider et al., 2012) and 

normalized to the total number of cells (Pinto et al., 2017; Vaz et al., 2021). 

Table VI. 1 - List of antibodies, sources, species and dilutions used in the immunocytochemistry protocol.  

Primary antibody 

against 
Source Species Dilution used 

IL-1R1 Santa Cruz Biotechnology, sc-393998 Mouse 1:50 

NLRP3 Adipogen, AG-20B-0014 Mouse 1:200 

NF-κB Santa Cruz Biotechnology, sc-372 Rabbit 1:500 

iNOS BD Transduction Laboratories, #610329 Mouse 1:100 

Secondary antibody Source Dilution used 

Anti-mouse AlexaFluor 594 Invitrogen Corporation, A-11005 1:1000 

Anti-mouse AlexaFluor 488 Invitrogen Corporation, A-11001 1:1000 

Anti-rabbit AlexaFluor 594 Invitrogen Corporation, A-11012 1:1000 

Anti-rabbit AlexaFluor 488 Invitrogen Corporation, A-11008 1:1000 

AlexaFluor 594 Phalloidin Invitrogen Corporation, A12381 1:50 

Table abbreviations: IL-1R1, interleukin-1 receptor type 1; NLRP3, NLR family pyrin domain containing 3; NF-κB, 

Nuclear factor-kappa B; iNOS, inducible Nitric Oxide Synthase. 

 

6.2.3. Total RNA extraction, reverse transcription and RealTime-PCR 

Total RNA was extracted from CHME3 microglia using TRIzol® reagent according to the 

manufacturer instructions. Extracted RNA was quantified using Nanodrop® ND-100 

Spectrophotometer (NanoDrop Technologies) and reverse transcription was achieved with the 

Xpert cDNA Synthesis Mastermix Kit (GRiSP) (Cunha et al., 2016; Vaz et al., 2019). RT-qPCR 

was performed on a QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems) using 

an Xpert Fast Sybr Blue (GRiSP). The samples were amplified using the following conditions: 

50°C for 2 min followed by 95°C for 2 min and finally 50 cycles at 95°C for 5 s and 62°C for 30 

s. The specificity of the amplification was ensured by melt-curve analysis, immediately after 

the amplification protocol. β-actin was used as internal control for the RT-qPCR assay. Relative 

mRNA concentrations were calculated using the 2-CT method. All samples were assessed in 

duplicate. Results were normalized to β-actin and expressed as fold change vs. non-treated 

CHME3 microglia (control). Primer sequences are listed in Table VI.2. 
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Table VI. 2 - Sequences used as primers for detection of mRNA expression levels in CHME3 microglia 

Gene Forward primer (5’-3’) Reverse primer (5’-3’) 

IL-1R1 GTGCTTTGGTACAGGGATTCCTG CACAGTCAGAGGTAGACCCTTC 

NLRP3 TGCTCTTCACTGCTATCAAGCCCT ACAAGCCTTTGCTCCAGACCCTAT 

IL-1β CAGGCTCCGAGATGAACAAC GGTGGAGAGCTTTCAGCTCATA 

IL-6 CCGGAGAGAGGAGACTTCACAG GGAAATTGGGGTAGGAAGGA 

iNOS ACCCACATCTGGCAGAATGAG AGCCATGACCTTTCGCATTAG 

β-actin GCTCCGGCATGTGCAA AGGATCTTCATGAGGTAGT 

Table abbreviations: IL-1R1, interleukin-1 receptor type 1; NLRP3, NLR family pyrin domain containing 3; IL-1β, 

interleukin-1β; IL-6, interleukin-6; iNOS, inducible Nitric Oxide Synthase. 

 

6.2.4. Statistical analysis 

All data are presented as mean ± SEM from at least five independent experiments. Comparison 

between different groups was made by one-way analysis of variance (ANOVA) followed by 

post hoc Bonferroni’s test. Analyses and graphical presentation were performed with the 

GraphPad Prism software version 8 (GraphPad Software, Inc., San Diego, CA). The statistical 

significances were achieved when p < 0.05. 

6.3. Results and Discussion 

We evaluated the ability of VS hit compounds to rescue CHME3-microglia activation after 

treatment with IFN-γ, a pro-inflammatory molecule that has been shown to stimulate 

microglia into a pro-inflammatory phenotype (Rock et al., 2005; Ta et al., 2019). First, to 

validate the prevalent phenotype induced by 12 h of microglia incubation with IFN-γ, a panel 

of genes known to be overexpressed during neuroinflammation (IL-1R1, IL-1β, IL-6, NLRP3 

and iNOS) was assessed by RT-qPCR. To evaluate NCM-V08, NCM-V14 and NCM-V16 

potential immunomodulatory activities, their influence on the mRNA and protein pro-

inflammatory profiles after IFN-γ stimulation in microglia was assessed considering the 

following conditions: (i) RT-qPCR in CHME3 cells pre-exposed to IFN-γ for 12 h and treated 

with the compounds for additional 12 h; (ii) ICC at two defined time-points, i.e., CHME3 

microglia exposed to 50 ng/mL IFN-γ for 12 h and 24 h, and then incubated with the 

compounds for additional periods of 12 h and 24 h. To assess the modulatory properties of the 

VS hits on IFN-γ stimulated microglia, we used a compound concentration of 20 µM. 
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6.3.1. IFN-γ-mediated stimulation of CHME3 microglial cells leads to 

the up-regulation of pro-inflammatory-associated genes 

In this work, we investigated the transcriptional profile of pro-inflammatory markers in 

CHME3 microglial cells stimulated with IFN-γ. To characterize the effects of IFN-γ on 

microglial gene expression, CHME3 cells were either untreated (control) or treated with 50 

ng/mL of IFN-γ during 12 h. As shown in Figure VI.3, CHME3 microglia stimulated with IFN-

γ exhibited a significant up-regulation of pro-inflammatory genes IL-1R1 (2.1-fold, p < 0.01), 

IL-1β (1.8-fold, p < 0.05), IL-6 (1.8-fold, p < 0.05), NLRP3 (1.8-fold, p < 0.05) and iNOS (2.0-fold, 

p < 0.01) at 12 h when compared to untreated microglia. These data point to a predominant 

switch of CHME3 microglia to a pro-inflammatory activated phenotype, upon treatment with 

IFN-γ. Importantly, IFN-γ revealed to induce a robust and reproducible expression of the pro-

inflammatory IL-1R1 signalling axis in human CHME3 microglia in vitro, turning the model 

suitable for screening potential small molecule modulators of IL-1R1 and related signalling 

pathways. 

 

Figure VI.3 - CHME3 microglia treated with IFN-γ present transcriptional upregulation of inflammatory 

mediators. Microglial cells were treated for 12 h with 50 ng/mL IFN-γ. After incubation, CHME3 expression of IL-

1R1, IL-1β, IL-6, NLRP3 and iNOS was determined by RT-qPCR. Results are mean ± SEM fold change vs. respective 

controls (untreated cells) from at least 5 independent experiments performed in duplicate. *p < 0.05 and **p < 0.01 

vs. respective controls. Figure abbreviations: IFN-γ, interferon-γ; IL-1R1, interleukin-1 receptor type 1; IL-1β, interleukin-

1β; IL-6, interleukin-6; NLRP3, NLR family pyrin domain containing 3; iNOS, inducible Nitric Oxide Synthase. 
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6.3.2. VS compounds downregulate mRNA expression of pro-

inflammatory-associated markers in IFN-γ-stimulated 

microglia 

The IL-1/IL-1R1 signalling axis is known to activate several transduction pathways, including 

the NF-κB transcription factor associated to the induction of several inflammatory genes, such 

as IL-1β, IL-6, NLRP3 and iNOS (Figure VI.3). Importantly, these pro-inflammatory markers 

play a central role in microglia-mediated neuroinflammation. The ability of the three selected 

VS hits, prioritized based on the results of Part V - NCM-V08, NCM-V14 and NCM-V16 - to 

modulate IFN-γ-driven microglia-inflammatory responses was assessed through the 

measurement of both gene/protein expression levels of the above-mentioned inflammatory 

mediators. The results of the RT-qPCR assay revealed that the increased levels of 

inflammatory-associated genes, IL-1R1, IL-1β, IL-6, NLRP3 and iNOS, after IFN-γ stimulation 

for 12 h were markedly suppressed by 12 h treatment with NCM-V14 (Figure VI.4). Similarly, 

incubation with NCM-V16 reduced IL-1R1 and IL-1β (p < 0.05), but no significant differences 

were observed in IFN-γ upregulation of IL-6, NLRP3 and iNOS gene expression levels. 

Likewise, there were no significant changes following treatment with NCM-V08 for 12 h. 

These results reveal NCM-V14 as the most promising immunomodulator in terms of gene 

expression, though benefits were also achieved with NCM-V16, in relation to the pro-

inflammatory IL-1R1-driven pathway in the IFN-γ-activated CHME3 microglial cells.  

 

Figure VI. 4 - Heatmap of Log2 fold change (relative to non-treated-control) for gene expression in CHME3 

microglial cells following 12 h IFN-γ-stimulation and 12 h compound treatment. Log2 fold change was calculated 
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based on the ΔCT values relative to control samples, with the colour red implying increased expression while green 

implies decreased expression. The IFN-γ-enhanced mRNA upregulation relative to untreated control (first column, 

red) is presented for comparative analysis. Each row shows the relative expression level for a single gene, and each 

column shows the expression level for a single compound. Data are representative of 5 independent experiments. 

Significant differences between IFN-γ-stimulated and compound-treated IFN-γ-stimulated microglia are indicated 

by * p < 0.05, ** p < 0.01. Figure abbreviations: IFN-γ, interferon-γ; IL-1R1, interleukin-1 receptor type 1; IL-1β, interleukin-

1β; IL-6, interleukin-6; NLRP3, NLR family pyrin domain containing 3; iNOS, inducible Nitric Oxide Synthase. 

6.3.3. VS compounds restore the levels of IL-1R1 protein in IFN-γ-

stimulated microglia to values similar to the non-treated cells 

Given the innovative in silico framework implemented and explored with the objective of 

discovering IL-1R1 small molecule modulators, we also assessed the impact of the compounds 

of interest on CHME3 microglial IL-1R1 protein levels after IFN-γ (50 ng/mL) stimulation. In 

line with the gene expression data, CHME3 microglia exposed during 24 h to IFN-γ showed a 

slight but significant increase in IL-1R1 protein levels (1.5-fold increase from control, p < 0.05; 

Figure VI.5). Interestingly, as depicted in Figure VI.5B, IFN-γ-enhanced protein levels of IL-

1R1 were significantly downregulated after microglial treatment for 24 h with NCM-V08 (60% 

decrease relatively to IFN-γ-induced microglia, p < 0.05), NCM-V14 (70% decrease relatively 

to IFN-γ-induced microglia, p < 0.01) and NCM-V16 (70% decrease relatively to IFN-γ-

induced microglia, p < 0.01). In contrast, no significant differences were observed in IL-1R1 

steady-state levels upon exposure of CHME3 cells to IFN-γ for 12 h and compound treatment 

for additional 12 h, when compared to control cells (Figure E-1, provided in the Appendix). 

Overall, the increased immunoreactivity for IL-1R1 evident at 24 h after IFN-γ incubation, but 

not at 12 h, suggest a possible temporal delayed induction of this protein. It is known that the 

transcriptome analysis can be used as a powerful tool to predict the corresponding proteins, 

since sometimes genes and proteins do not correlate due to regulation of translation and 

protein turnover (Edfors et al., 2016; Moritz et al., 2019).  

As depicted in Figure VI.5, no significant cell morphological changes were observed after F-

actin staining of CHME3 microglial cells incubated with NCM-V08, NCM-V14 and NCM-V16 

at the concentration of 20 µM.  
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Figure VI. 5 - IFN-γ-induced microglial upregulation of IL-1R1 microglial protein levels is reduced by NCM-

V08, NCM-V14 and NCM-V16. CHME3 cells were treated with 50 ng/mL IFN-γ for 24 h, and then with the 

compounds of interest (20 μM) for 24 h. After incubation, detection of IL-1R1 levels was performed by 

immunocytochemistry using anti-IL-1R1 antibody, as indicated in Materials and methods. (A) Representative 

images of immunofluorescence staining showing IL-1R1 (green) and F-actin (Phalloidin, red) in CHME3 cells. Cell 

nuclei were detected by Hoechst (blue). Scale bar=40 µm. (B) Quantification of IL-1R1 mean fluorescence intensity. 

Results are mean ± SEM fold change vs. respective controls (untreated cells) from 5 independent experiments. 

Significant differences from the control group are indicated by # p < 0.05; differences between IFN-γ-stimulated and 

compound-treated IFN-γ-stimulated microglia are indicated by * p < 0.05, ** p < 0.01. Figure abbreviations: CT, control 

cells; IFN-γ, interferon-γ; IL-1R1, interleukin-1 receptor type 1. 

6.3.4. VS compounds inhibit IFN-γ-induced nuclear translocation 

and activation of NF-κB 

NF-κB is a key transcription factor that regulates the inflammatory process, stimulated by pro-

inflammatory cytokines, such as TNF-α and IL-1β. There is evidence that IFN-γ may play a 

role in the NF-κB pathway activation and subsequent pro-inflammatory gene transcription 

(Gough et al., 2008). Hence, we investigated whether NF-κB signalling was activated in the 

IFN-γ-stimulated CHME3 microglia, and if so, whether exposure to NCM-V08, NCM-V14 and 

NCM-V16 treatment was able to abrogate its activation. As such, we quantified nuclear 

translocation of NF-κB p65 subunit as an indicator of NF-κB activation, by 
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immunofluorescence after 12 h and 24 h incubation. As shown in Figure VI.6, CHME3 cells 

treated with IFN-γ for 12 h showed an increased transference of NF-κB p65 subunit into the 

nuclei (1.6-fold, p < 0.01), when compared with the non-treated cells. Importantly, NF-κB 

translocation levels were significantly decreased by NCM-V14 (60% decrease relatively to 

IFN-γ-induced microglia, p < 0.01) and NCM-V16 (50% decrease relatively to IFN-γ-induced 

microglia, p < 0.01). However, no significant differences were observed in NF-κB basal levels 

upon 24 h exposure of CHME3 microglia to IFN-γ (Figure E-2, provided in the Appendix), 

probably resultant from adaptive mechanisms of the cell (Lauro and Limatola, 2020). Still, IFN-

γ induced a slight increase albeit not significant of NF-κB nuclear translocation that was 

reversed by NCM-V14 and NCM-V16. Importantly, we hypothesize that these distinct NF-κB 

activation results (at 12 h and 24 h incubation) may derive from microglial activated feedback 

mechanisms to counteract the NF-κB signalling system. Indeed, the metabolic pathways 

involved in microglial activity adapt and may contribute to the phenotypic transition toward 

a more homeostatic state (Eggen et al., 2013; Lauro and Limatola, 2020).  

Since NF-κB could highly induce pro-inflammatory factors by enhancing their transcription 

and based on the above-mentioned gene expression data pointing out that NCM-V14 and 

NCM-V16 modulate the mRNA levels of NF-κB-regulated pro-inflammatory genes, including 

iNOS, IL-1β, and IL-6, these observations strengthen and provide good indications on NCM-

V14 and NCM-V16 potential at reducing inflammation-associated events in conditions of 

exacerbated microglial pro-inflammatory activation. 
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Figure VI. 6 - IFN-γ-induced microglial upregulation of NF-κB p65 nuclear translocation is reduced by NCM-

V14 and NCM-V16. The nuclear translocation (white arrows) of the NF-κB p65 subunit was determined by an 

immunofluorescence assay. CHME3 cells were treated with 50 ng/mL IFN-γ for 12 h, and then with the compounds 

of interest (20 μM) for 12 h. (A) Representative images of immunofluorescence staining showing NF-κB p65 (green) 

translocation into the nucleus in CHME3 cells. Cell nuclei were detected by Hoechst (blue). Scale bar=40 µm. (B) 

Quantification of nuclear NF-κB p65 subunit translocation. Results are mean ± SEM fold change vs. respective 

controls (untreated cells) from 5 independent experiments. Significant differences from the control group are 

indicated by ## p < 0.01; differences between IFN-γ-stimulated microglia and compound-treated IFN-γ-stimulated 

microglia are indicated by ** p < 0.01. Figure abbreviations: CT, control cells; IFN-γ, interferon-γ; NF-κB, Nuclear factor-

kappa B. 

6.3.5. VS compounds restore the levels of NLRP3 protein in IFN-γ-

stimulated microglia to values similar to the non-treated cells 

Processing of the full-length precursor to the biologically active mature IL-1β is tightly 

regulated by the NLRP3 inflammasome. This multi-protein complex is highly expressed in 

microglia during neuroinflammation and may exacerbate injury at elevated levels (Scheiblich 

et al., 2017). A major upstream process involved in NLRP3 inflammasome formation is the NF-

κB signalling network. Previous studies suggest a link between increased levels of NF-κB and 

the NLRP3 inflammasome (Bauernfeind et al., 2009). Recently, Zhao et al. suggested that the 

NLRP3-IL-1β-IL-1R1 axis is fundamental in the transition of acute to chronic 

neuroinflammation (Zhao et al., 2020). Therefore, we evaluated the impact of IFN-γ and the 

three VS hits on NLRP3 protein levels, at 12 h and 24 h. Interestingly, we observed that 12 h 

IFN-γ stimulation slightly increased NLRP3 protein levels (1.3-fold, p < 0.05). However, at 24 

h only a net but not significant increase was observed in microglia (Figure E-3, provided in the 

Appendix). Importantly, as depicted in Figure VI.7, the IFN-γ-enhanced NLRP3 protein levels 

were significantly downregulated after 12 h incubation with NCM-V14 (50% decrease 



 
 

177 
 

relatively to IFN-γ-induced microglia, p < 0.001) and NCM-V16 (30% decrease relatively to 

IFN-γ-induced microglia, p < 0.05). No significant changes were observed with NCM-V08 

treatment after 12 h and 24 h incubation.  

Overall, these results demonstrated that the timing of changes in NLRP3 mRNA and protein 

levels were similar in IFN-γ-stimulated microglia. Indeed, IFN-γ increased NLRP3 gene 

expression and protein at 12 h, but the NLRP3 transcript levels appeared to recover by 24 h 

after IFN-γ treatment. Nevertheless, despite a mild stimulation of NLRP3 protein levels by 

IFN-γ in CHME3 microglia, which was verified by others (Kopitar-Jerala, 2017), incubation 

with NCM-V08 or NCM-V16 for 12 h was able to restore NLRP3 protein levels to basal 

unstimulated conditions in the presence of IFN-γ. 

 

Figure VI. 7 - IFN-γ-induced microglial upregulation of NLRP3 protein levels are reduced by NCM-V14 and 

NCM-V16. CHME3 cells were treated with 50 ng/mL IFN-γ for 12 h, and then with the compounds of interest (20 

μM) for 12 h. After incubation, detection of NLRP3 levels was performed by immunocytochemistry using anti-

NLRP3 antibody, as indicated in Materials and methods. (A) Representative images of immunofluorescence 

staining showing NLRP3 (green) and F-actin (Phalloidin, red) in CHME3 cells. Cell nuclei were detected by Hoechst 

(blue). Scale bar=40 µm. (B) Quantification of NLRP3 mean fluorescence intensity. Results are mean ± SEM fold 

change vs. respective controls (untreated cells) from 5 independent experiments. Significant differences from the 

control group are indicated by # p < 0.05; differences between IFN-γ-stimulated microglia and compound-treated 

IFN-γ-stimulated microglia are indicated by * p < 0.05, *** p < 0.001. Figure abbreviations: CT, control cells; IFN-γ, 

interferon-γ; NLRP3, NLR family pyrin domain containing 3. 
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6.3.6. VS compounds restore the levels of iNOS protein in IFN-γ-

stimulated microglia to values similar to the non-treated cells 

The aberrant induction of iNOS and concomitant NO release in the CNS microenvironment 

are key important factors involved in neuronal dysfunction. Several signalling pathways 

determine the expression of iNOS in microglial cells, emphasizing this enzyme as a relatively 

straightforward marker of pro-inflammatory activated microglial phenotypes (Zhao et al., 

2004; Saha and Pahan, 2006; Sonar and Lal, 2019). Exposure of microglial cells to IFN-γ was 

shown to induce the expression of iNOS and subsequent NO production (Ta et al., 2019). As 

such, we aimed to evaluate the effect of NCM-V08, NCM-V14 and NCM-V16 on iNOS 

production in IFN-γ-stimulated CHME3 microglia, at 12 h and 24 h. As shown in Figure 8, 

after 24 h microglia cells stimulated by IFN-γ showed enhanced iNOS protein levels (1.5-fold, 

p < 0.05). This increased iNOS activity in activated microglia was dampened in the presence of 

the three VS compounds, NCM-V08 (60% decrease relatively to IFN-γ-stimulated microglia, p 

< 0.05), NCM-V14 (70% decrease relatively to IFN-γ- stimulated microglia, p < 0.01) and NCM-

V16 (80% decrease relatively to IFN-γ- stimulated microglia, p < 0.01). In contrast, after 12 h 

incubation, the iNOS protein expression profiles were not significantly affected either by IFN-

γ stimulation or compound treatment, when compared to control cells (Figure E-4, provided 

in the Appendix) 

In general, consistent with the downregulation of IFN-γ-induced iNOS mRNA expression, 

NCM-V14 treatment attenuated IFN-γ-induced iNOS protein level increase. In comparison, 

NCM-V08 and NCM-V16 reduced the levels of iNOS protein expression, though both 

compounds did not affect iNOS mRNA levels at 12 h incubation.  
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Figure VI. 8 - IFN-γ-induced microglial upregulation of iNOS protein levels are reduced by NCM-V08, NCM-

V14 and NCM-V16. CHME3 cells were treated with 50 ng/mL IFN-γ for 24 h, and then with the compounds of 

interest (20 μM) for 24 h. After incubation, detection of iNOS levels was performed by immunocytochemistry using 

anti-iNOS antibody, as indicated in Materials and methods. (A) Representative images of immunofluorescence 

staining showing iNOS (green) and F-actin (Phalloidin, red) in CHME3 cells. Cell nuclei were detected by Hoechst 

(blue). Scale bar=40 µm. (B) Quantification of iNOS mean fluorescence intensity. Results are mean ± SEM fold 

change vs. respective controls (untreated cells) from 5 independent experiments. Significant differences from the 

control group are indicated by # p < 0.05; differences between IFN-γ-stimulated microglia and compound-treated 

IFN-γ-stimulated microglia are indicated by * p < 0.05, ** p < 0.01. Figure abbreviations: CT, control cells; IFN-γ, 

interferon-γ; iNOS, inducible Nitric Oxide Synthase. 

6.4. Concluding Remarks 

Despite the deteriorating role of dysregulated neuroinflammation in many CNS diseases, the 

number of existing immunomodulatory approved drugs targeting exacerbated and harmful 

neuroinflammation is quite limited because of insufficient efficacy or undesired side effects. 

Therefore, there is a growing need for small molecule therapeutics that modulate 

neuroinflammation. This need is amplified when one realizes that most of the current 

approved CNS immunomodulatory drugs are macromolecules. Indeed, using them as 

therapeutic approaches have several disadvantages for clinical use in chronic CNS disorders, 

such as high costs and inconvenient dosing regimens. Clearly, there is a demand for orally 
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active, brain-penetrant compounds to test as potential modulators for neuroinflammation-

associated immune imbalance, mainly in uncontrolled pro-inflammatory conditions. 

In this chapter, the human immortalized CHME3 microglial cell line, with a phenotype closely 

related to primary microglia, and stimulated with IFN-γ, was used as an in vitro model to 

screen for neuroinflammatory modulators. In selecting pro-inflammatory stimuli to activate 

microglia we chose to examine microglial responses to IFN-γ instead of LPS, which despite 

the larger utilization, is less effective to produce pro-inflammatory phenotypes in this 

microglial cell line. When compared to untreated cells, IFN-γ moderately increased microglial 

activation markers IL-1R1, IL-1β, IL-6, NLRP3 and iNOS after 12 h. At the protein level, there 

was distinct temporal induction patterns of the pro-inflammatory components in the two time 

points analysed, respectively 12 h and 24 h. Indeed, IFN-γ stimulation elicited a higher nuclear 

NF-κB translocation and NLRP3 protein levels at 12 h, which was lost after 24 h incubation, 

whereas the induction of IL-1R1 and iNOS was more delayed, evidencing enhanced levels 

after 24 h IFN-γ incubation. The outward progression of the inflammatory signalling cascade 

over time suggests sequential cellular propagation of these markers in response to IFN-γ 

stimulation. In other words, as with IL-1R1 and iNOS activation, their delayed induction may 

reflect the dependence on prior signalling cascades, such as the IL-1β production, or the 

acquisition of adaptive mechanisms. Besides, NLRP3 is not limited to the NF-κB-dependent 

transcriptional upregulation, suggesting IFN-γ-mediated activation via alternative pathways, 

resulting in autocrine IL-1β-mediated increases in CHME3 microglia. We must consider that 

the mechanisms leading to the metabolic regulation of IFN-γ are complex and usually 

culminate in adaptive mechanisms when the cell is not chronically dysregulated. 

Of the 3 VS hit compounds studied, two elicited significant mRNA expression changes in the 

inflammatory-associated genes that were examined. Noteworthy, NCM-V14 altered mRNA 

expression to a greater extent than the NCM-V16. In addition, these two molecules supressed 

the IFN-γ-evoked upregulation of NF-κB activation and IL-1R1, NLRP3 and iNOS protein 

levels. Of note, NCM-V08 was efficient at decreasing IL-1R1 and iNOS production. Amongst 

the three compounds, NCM-V14 was the strongest immunomodulator. Interestingly, some 

studies have demonstrated that the IL-1R1/Myd88/NF-κB signalling pathway is involved in 

regulating NLRP3 inflammasome expression (Xing et al., 2017; Swanson et al., 2019). Since the 

expression and protein levels of key pro-inflammatory mediators, directly or indirectly related 

to the IL-1 system, were all increased in IFN-γ induced microglia, we hypothesize that NCM-

V14 and NCM-V16 supressed the upregulation of the NLRP3 inflammasome via inhibition of 

the IL-1R1/Myd88/NF-κB signalling pathway in IFN-γ induced CHME3 microglia (Figure 

VI.8). However, further studies are required to confirm if the above effects of NCM-V14 and 

NCM-V16 also involve other intracellular and extracellular-mediated mechanisms, before 
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testing their effects in vivo models of CNS disorders associated to increased and dysregulated 

neuroinflammatory processes. 

Our search for potential neuroinflammatory modulators in a suitable human microglial in vitro 

model yielded two promising molecular entities. Still, future studies should validate and 

challenge our screening cellular model. Indeed, it would be interesting to confirm the 

modulatory effects of NCM-V14 and NCM-V16 in primary cultures of microglia and in co-

cultures of primary microglia with neurons or astrocytes. The use of different models will 

strengthen the effects of the two compounds to be tested in the modulation of microglia 

neuroinflammatory responses linked to neurodegeneration. Furthermore, the exact 

knowledge of the mechanism of the two compounds, NCM-V14 and NCM-V16, may be 

crucial for the success of efficient therapeutics. Thus, it would be important to evaluate more 

pro-inflammatory components associated with microglial activation to further unravel and 

dissect which inflammatory pathways the compounds specifically target. Time and money are 

important constraints in every project and, unfortunately, we had to focus our efforts on the 

selection of the three compounds holding the best physiochemical features to be tested in 

microglia, discarding some compounds without getting a fair experimental hearing. However, 

despite these limitations, I personally believe that the results achieved in this chapter provide 

a meaningful and promising baseline toward the identification of novel of novel modulators 

of pro-inflammatory conditions.   

To sum up, these data confirm the modulatory activity of NCM-V14 and NCM-V16 on the IL-

1R1 signalling pathway. Although further studies are required to better understand such 

effects, the modulation of specific IL-1R1 related pro-inflammatory markers in IFN-γ-activated 

microglia indicate that NCM-V14 and NCM-V16 can counteract the polarized pro-

inflammatory activated microglia. From the Medicinal Chemistry viewpoint, these findings 

indicate that NCM-V14 and NCM-V16 can be valuable strategies for modulating the IL-1R1 

signalling pathway specifically related with microglial pro-inflammatory phenotypes and 

unbalanced neuroinflammatory processes. 
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Figure VI. 8 - Schematic representation proposing that NCM-V14 modulates the IL-1R1/Myd88/NF-κB 

signalling pathway. Compounds NCM-V14 and NCMV-16 attenuate the IL-1R1/Myd88/NF-κB inflammatory 

response, resulting in the downregulation of pro-inflammatory NLRP3, IL-6, IL-1β and iNOS in response to IL-1β 

induced IL-1R1 activation, in immunostimulatory conditions as those produced by pathogen-associated molecular 

patterns (PAMPs), such as lipopolysaccharide and interferon-gamma, or damage-associated molecular patterns 

(DAMPs), like alarmins. Figure abbreviations: interleukin-1 receptor type 1, IL-1R1; interleukin-1 receptor accessory 

protein, IL-1RAcP; interleukin-1β, IL-1β; interleukin-6, IL-6; myeloid differentiation primary response 88, MYD88; the toll-

interleukin-1 receptor homology domain, TIR domain; interleukin-1 receptor-associated kinases, IRAKs; activator protein, AP-

1; NLR family pyrin domain containing 3, NLRP3; nitric oxide, NO; reactive oxygen species, ROS. 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

Epilogue 

 
 

“Encumbered forever by desire and ambition 

There's a hunger still unsatisfied 

Our weary eyes still stray to the horizon 

Though down this road we've been so many times 

 

The grass was greener 

The light was brighter 

The taste was sweeter 

The nights of wonder 

With friends surrounded 

The dawn mist glowing 

The water flowing 

The endless river 

 

Forever and ever” 

 

Pink Floyd,  High Hopes
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1. In search of modulators of neuroinflammation: a 3-year 

project in a nutshell 

Is neuroinflammation a malicious driver of neurodegenerative diseases? Could the modulation of 

neuroinflammatory responses be an effective neuroprotective therapeutic strategy? Is there any existing 

evidence for disease-modifying effects of immunotherapies in neurodegeneration? Could an 

immunomodulatory small molecule set the brakes on neurodegeneration processes? What's on the 

horizon to ameliorate neurodegenerative diseases? These are the sort of questions that burned in 

my brain before, during and even after the conclusion of the work carried out in this project. 

The immune system has a tremendous power, that spreads in all sorts of directions, revealing 

layers upon layers of insane complexity, with an astonishing number of potential targets to 

think about. This project, strongly rooted in molecular modelling approaches closely followed 

by confirmatory biological experiments, exploits the identification and prioritization of 

promising new modulators using a well-established target in immune and inflammation 

pathways. 

The focus of this project was the modulation of pro-inflammatory signalling pathways linked 

to disease states of the central nervous system (CNS) and associated with exuberant 

neuroinflammatory responses. Within the complex neuroinflammatory landscape, we 

prioritized interleukin-1 receptor type 1 (IL-1R1) as a target for modulating 

neuroinflammatory responses, since the regulatory role of this receptor in the innate immune 

system activation renders it an ideal candidate to block downstream effects of the IL-1 

pathway. Although the crystal structure of IL-1R1 has been solved more than two decades 

ago, no small molecules targeting this receptor have been reported to date. Thus, to identify 

competitive and selective IL-1R1 modulators, we decided to undertake a virtual screening (VS) 

approach combined with in vitro phenotypic experiments. First, the druggability of IL-1R1 was 

studied by applying three different computational algorithms to map the IL-1R1 surface for 

putative small-molecule binding sites holding suitable drug-like physicochemical properties. 

A putative binding site located at the D1-D2 interface, which is of central importance for 

cytokine binding, was prioritized for the assembly of structure-based VS experiments. 

Different binding site detection methods offered consistent predictions on this IL-1R1 region. 

To probe the dynamic behaviour and the interdomain conformational flexibility of IL-1R1, 

molecular dynamics (MD) simulations of the soluble and membrane-bound IL-1R1 were 

performed. The soluble form of this cytokine receptor is a rather dynamic and flexible protein 

whose activity has been structurally linked to the interdomain flexibility of the D2-D3 linker. 

In the presence of a biological membrane, the rotational motions of the globular domains are 

more restrained, likely contributing to different functional properties. These MD simulations 
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were further exploited to gain insights into the stability and conformational flexibility of the 

predicted binding sites on both IL-1R1 forms, revealing similar physicochemical features for 

the binding pockets of the soluble and membrane-bound forms of the IL-1R1 ectodomain. 

Additionally, cluster analysis of the large collection of structures sampled by the MD 

simulations allowed the identification of distinct binding pocket conformations that were used 

in virtual screening (VS) campaigns. 

With the aim of discovering novel neuroinflammatory modulators with selectivity for IL-1R1, 

an innovative VS workflow was devised, consisting of MD simulations for sampling, receptor-

based pharmacophore modelling for building three-dimensional (3D) predictive models 

characterising the structural determinants for ligand binding to IL-1R1, maximum common 

substructure (MCS) clustering, molecular docking and 3D-shape similarity for filtering. 

Accordingly, receptor-based pharmacophore hypotheses devised for IL-1R1 allowed the 

retrieval of 27.206 virtual hit compounds from a CNS-tailored library of 19.3 million 

compounds. This subset of molecules was clustered by MCS to ensure chemical diversity and 

structural insight in the selection procedure and docked in the predicted binding region of IL-

1R1. Given that the values output by docking scoring functions are, at best, approximations 

and often not reliable to discriminate between active and inactive ligands, VS hits were ranked 

by quantitative analysis of protein-ligand interactions and pharmacophore model compliance. 

The use of 3D similarity allowed the prioritization of compounds against a small molecule 

dataset holding relevant bioactivity signatures.  

Thus far, amongst the top VS hits retrieved by the structure-based VS protocol, 21 structurally 

distinct compounds were purchased from various chemical suppliers to be experimentally 

tested. At an initial stage, the compounds were evaluated for their aqueous (kinetic) solubility 

and screened for in vitro cytotoxic activity using a human cancer cell line (HepG2) and a human 

microglial cell line (CHME3). Of these, three promising compounds were selected for in vitro 

phenotypic assays, of which two revealed to be active at decreasing IFN-γ-driven CHME3 

microglial pro-inflammatory levels of IL-1R1, IL-1β, IL-6, NRLP3 and iNOS, as well as 

reducing IFN-γ-induced activation of NF-κB.  Though it can be easy to slip into a mind-set of 

compartmentalization - where inflammatory mediators do not act as an interacting network 

of molecular partners but rather as individual factors - we need to keep in mind that these 

factors may very well have very different outcomes on a microenvironment composed of 

different cell populations acting synergistically. Hence, our promising data call for further 

investigation into the details of the molecular mechanism of action of the selected hit 

compounds, and their action on the combined activities of different inflammatory cells, 

cytokines and chemokines occurring in the CNS cellular milieu in a state of 

neuroinflammation. 
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On one hand, the results presented here are a promising starting point in the ongoing 

development of a candidate molecule to target disease states that trigger or are a consequence 

of neuroinflammatory processes. On the other hand, we have expanded the understanding of 

the structural features of IL-1R1, which can be exploited in other drug discovery settings 

targeting this receptor. This work has been carried out taking advantage of a multidisciplinary 

approach combining computational methodologies, such as molecular dynamics simulations 

and virtual screening, with experimental toxicity and drug screening cell assays. On a personal 

level, this project was an exciting challenge, with much brainstorming and troubleshooting 

throughout the three years. More important than the results obtained is the collective sum of 

life experiences, knowledge, creativity, innovation, self-expression and scientific thinking that 

was learnt throughout this work.  

2. Perspectives  

The complex nature of neurodegenerative diseases is well reflected in the clinical failures of 

therapeutic approaches for these diseases. The search for disease-modifying treatments will 

likely depend on the willingness to explore uncharted territories and/or apply an "outside-the-

box" line of thinking – towards the development of innovative and more effective therapeutic 

strategies to solve the neurodegeneration puzzle. Undoubtedly, one of the most critical aspects 

facing neurodegenerative diseases is the development of community-wide efforts to prepare 

and share large databases, harbouring statistical analyses, data files and clinical study reports, 

and to implement multidisciplinary collaborations that brings together diverse ideas and 

people into the field. From this perspective, Medicinal Chemistry stands as a rapidly evolving 

field intersecting important scientific areas - from organic chemistry and chemical biology, 

through pharmacology, to computational chemistry - providing ample networking 

opportunities to novel developments and hopefully bring us closer to developing effective 

treatments for these diseases. With this in mind, the application of computational 

methodologies in medicinal chemistry is well illustrated in this thesis, despite all of its 

limitations. In an era of data and informatics, the field of computational medicinal chemistry 

is expanding and will continue to do so if it stays closely intertwined with other disciplines in 

the medicinal chemistry toolkit. 

Dysregulated and exuberant neuroinflammatory responses associated with several 

neurological disorders and ageing are currently an exciting proving ground for new 

therapeutic ideas and new modes of action to act on neurodegenerative diseases. Even after 

the discovery of potential small molecule modulators of neuroinflammatory responses 

directed to an upstream target like IL-1R1, covered in this thesis, it is still a distant hope to 

have a small molecule effective in slowing progression of a neurodegenerative disease. First, 

whether the observed effects are a direct result of action on signal transduction events initiated 
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by IL-1R1 or a downstream dependent on other cytokine (or other gene) expression resulting 

from IL-1R1 initiated signalling remains to be determined. Second, the implementation and 

application of VS endeavours is still underway for other protein targets involved not only in 

neuroinflammation but also being at the core of neurodegeneration. With this, I firmly believe 

that in the future one may need to abandon the “one target – one solution” philosophy. 

Instead, one type of a lead molecule acting specifically against a particular target, may be 

effective only in a particular cellular environment, whereas another molecule against the same 

target could be efficient in another environment. In other words, we need to leave behind the 

illusion that a single bullet can fix the problem and adopt a systems biology approach. Within 

that complex mainframe, combination therapies consisting of chemical entities targeting both 

protein aggregation and neuroinflammation may be a way to substantially delay progression 

of the disease. 

As a young medicinal chemistry scientist with a project research on drug discovery for 

neuroinflammation-associated neurodegenerative diseases, I am aware of the many obstacles 

and unknowns associated with this field, and that only a small number of projects truly go "all 

the way". Still, the novelty of this project employing an innovative VS framework that could 

be extended and tested in many other inflammatory proteins, as well as the experimental 

validation approach incorporating solely human cell lines into the phenotypic screening 

process – allowing target validation with disease-relevant in vitro assays that confirm cellular 

activity – represents an in progress thrilling playground to be explored in the near future. The 

current limitations, like lack of reference ligand(s), the use of a single docking program with 

respect to pose prediction, or the uncertainties in predicting biological activities, only to name 

a few, present valid starting points for further improvements to enhance the full potential of 

these project. In the end, the results provided initial identification of key compounds that 

modulate pro-inflammatory markers and provided the rationale for future medicinal 

chemistry studies based on their chemical structures. 
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Section A (chapter 2) 

 

Figure A.1. Ramachandran plots for the crystallographic structures of the extracellular domain of interleukin-1 

receptor type 1 (IL-1R1-ECD) available in the PDB. The red regions in the plots indicate the most allowed regions, 

whereas the yellow regions represent allowed regions. Glycine is represented by triangles and other residues are 

represented by squares. 
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Figure A.2. Z-plots for the for the crystallographic structures of the extracellular domain of interleukin-1 receptor 

type 1 (IL-1R1-ECD) available in the PDB. Z-scores for all structures (represented as black dots) were found to be 

within the range observed for proteins determined by X-ray crystallography (light blue) and NMR spectroscopy 

(dark blue). 
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Figure A-3: Binding pocket prediction on the extracellular domain of interleukin-1 receptor type 1 (PDB entry 

1G0Y), using the DoGSiteScorer tool. (A) Ten binding pockets are shown: PC_0 (blue); PC_1 (red); PC_2 (brown); 

PC_3 (mauve); PC_4 (yellow); PC_5 (dark yellow); PC_6 (lime); PC_7 (grey); PC_8 (orange); PC_9 (purple). (B) The sub-

pockets composing PC_1 are illustrated in detail, with respective volume and druggability scores. Five sub-pockets 

are shown: PC_1_0 (red); PC_1_1 (orange); PC_1_2 (blue); PC_1_3 (cyan); PC_1_4 (pink). 

 

Table A-1. Predicted pockets by DoGSiteScorer on the IL-1R1-ECD surface (PDB entry 1G0Y). 

Pocket 
Volume 

(Å3) 

Surface 

(Å2) 

Depth 

(Å) 

Nº 

residues 

Hydrophobicity 

ratio 

HBA 

/HBD 

Drug 

Score 

PC_0 1288.51 2094.76 28.36 42 0.42 86/44 0.81 

PC_1 1013.76 1151.38 18.88 39 0.35 74/27 0.81 

PC_2 386.56 517.85 11.74 18 0.39 25/8   0.61 

PC_3 187.71 381.02 12.35 11 0.53 10/8 0.44 

PC_4 173.89 371.96 9.72 12 0.39 14/9 0.35 

PC_5 153.09 304.38 8.39 10 0.41 14/5 0.3 

PC_6 126.66 250.77 7.78 11 0.50 8/3 0.23 

PC_7 124.42 230.08 7.48 12 0.27 12/4 0.23 

PC_8 123.71 206.71 8.85 11 0.42 12/3 0.24 

PC_9 123.39 209.34 7.35 10 0.41 16/3 0.22 
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Figure A-4 - Binding pocket prediction and druggability assessment on the extracellular domain of interleukin-

1 receptor type 1 (PDB entry 1G0Y), using the FTMap tool. The D1-D2 surface representation enclosed by the 

black line is illustrated in detail. Eight binding hot-spots are shown: CS1C (red); CS2C (mauve); hs3C (orange); hs4C 

(yellow); hs5C (beige); hs6C (grey); hs7C (green) and hs8C (light grey). Consensus sites (CS) denote regions binding 16 

or more probes. Hot-spots (hs) denote regions binding less than 15 probes.  

 

Table A-2. Summary of FTMap druggability mapping on the IL-1R1-ECD surface (PDB entry 1G0Y). 

Hot-spot 
Probe 

clusters 

Probe 

composition 
Key IL-1R1-ECD residues 

CS1C 24 
ACD, ACN, ACT, ADY, AMN, 

BDY, BEN, BUT, CHX, DFO, DME, 

ETH, EOL, PHN, THS, URE 

Glu11, Ile13, Leu15, Arg25, 

Pro26, Pro28, Ile92, Tyr127 

CS2C 17 
ACD, ACN, ACT, ADY, AMN, 

BDY, BEN, BUT, CHX, DFO, DME, 

ETH, EOL, PHN, THS, URE 

Phe111, Gln113, Val124, Pro126, 

Tyr127, Ile196 

hs3C 14 
ACD, ACT, ADY, AMN, BDY, 

BEN, BUT, CHX, DFO, DME, ETH, 

URE 

Arg9, Glu217, Met219, Leu229, 

Ile230, Ile308, Leu310 

hs4C 14 
ACD, ACT, ADY, BDY, BEN, BUT, 

DFO, DME, EOL, PHN, THS, URE 
Arg9, Glu11, Ser213, Pro214, 

Glu217, Ile230 

hs5C 11 
ACN, ACT, ADY, BDY, BEN, BUT, 

CHX, DFO, DME, ETH 
Leu15, Val16, Ser18, Gln108, 

Ala109, Phe111, Tyr127 

hs6C 5 BUT, EOL, PHN, THS, URE Pro28, Leu29, Asn30, Ala215 

hs7C 4 EOL, PHN, THS, URE Glu11, Lys12, Ile13, Ala215 

hs8C 2 AMN, ETH Asp23, Val24, Phe131, Arg194  

Tabble abreviations: acetamide (ACD), acetonitrile (ACN), acetone (ACT), acetaldehyde (ADY), methylamine (AMN), 

benzaldehyde (BDY), benzene (BEN), isobutanol (BUT), cyclohexane (CHX), N,N-dimethylformamide (DFO), dimethyl 

ether (DME), ethane (ETH), ethanol (EOL), phenol (PHN), isopropanol (THS), urea  (URE).  
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Figure A-5 - Structural pockets identified by Fpocket, on the extracellular domain of interleukin-1 receptor type 

1 (IL-1R1-ECD) surface (PDB entry 1G0Y). Fourteen binding pockets are shown: P1C (red); P2C (light grey); P3C 

(yellow); P4C (dark yellow); P5C (lime); P6C (grey); P7C (green); P8C (blue); P9C (mauve); P10C (cyan); P11C (purple); 

P12C (green); and P13C (violet). Expanded views are provided for P1C.   

 

Table A-3. Summary of Fpocket druggability mapping on the IL-1R1-ECD surface (PDB entry 1G0Y). 

Pocket 
Volume 

(Å3) 

Total 

SASA 

(nm2) 

Mean local 

hydrophobic 

density 

Druggability 

score 

Key residues 

IL-1R1-ECD 

P1C 865.72 280.859 31.908 0.997 

Glu11, Ile13, Leu15, Val16, 

Ser17, Ser18, Asp23, Val24, 

Arg25, Pro26, Pro28, Ile92, 

Asn99, Cys104, Tyr105, 

Asn106, Ala109, Phe111, 

Tyr127, Glu129, Phe130, 

Phe131, Arg194  

P2C 268.728 97.638 0.000 0.001 
Leu115, Lys205, Thr207, 

Arg208, Gln236, Ser238, 

Asn299, His301 

P3C 281.001 72.736 9.000 0.003 
Lys244, Trp245, Asn246, 

His291, Pro292, Phe296 

P4C 162.784 42.662 18.000 0.008 
Cys104, Tyr144, Thr178, 

His180, Thr193 
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P5C 201.919 75.774 1.000 0.000 
Glu137, Leu138, Pro139, 

Lys140, Leu141, Gly159, 

Lys161 

P6C 295.761 90.403 3.000 0.000 
Lys42, Val49, Ser50, Ile57, 

Glu72, Asp73 

P7C 208.133 48.898 6.000 0.001 
Ser74, Gly75, His76, Ser93, 

Ala94, Lys95 

P8C 300.794 84.257 8.000 0.001 
Tr+245, Asn246, Ser248, 

Val249,  Ile250, Asp251, 

Asp254, Leu257, Arg287  

P9C 481.155 149.716 12.909 0.014 

Arg9, Asn30, Pro31, Ser213, 

Met219, Val221, Ile227, 

Gln228, Leu229, Ile230, 

Ile308 

P10C 404.495 108.172 11.846 0.013 

Leu237, Asp239, Ile240, 

Ala241, Tyr242, Tyr261, 

Tyr262, Ser263, Leu275, 

Thr277 

 P11C 157.070 52.279 2.000 0.000 
Val264, Asn266, Arg272, 

Ser273, Thr274 

P12C 331.278 109.455 15.000 0.014 
Phe111, Lys112, Gln113, 

Leu115, Val124, Pro126, 

Tyr127, Ile196 

P13C 262.396 104.894 9.000 0.002 
Glu11, Ile13, Ile211, Pro214, 

Ala215, Asn216, Asp304, 

Ala306 

P14C 237.413 101.694 0.000 0.000 
Ile250, Asp251, Glu252, 

Asp254, Leu257, Glu259, 

Tyr261   
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Section B (chapter 3) 

 

Figure B-1 - (A) Ramachandran plot for the pre-MD model and the final snapshots of the S1, S2, S3, S4 and S5 

trajectories of the soluble IL-1R1. (B) Z-plot for the pre-MD model and the final snapshots of the S1, S2, S3, S4 and 

S5 trajectories of the soluble IL-1R1. Z-scores for all models (represented as black dots) were found to be within the 

range observed for proteins determined by X-ray crystallography (light blue) and NMR spectroscopy (dark blue). 
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Figure B-2 - (A) Ramachandran plot for the pre-MD model and the final snapshots of the M1, M2, M3, M4 and M5 

trajectories of the membrane-bound full-length IL-1R1. (B) Z-plot for the pre-MD model and the final snapshots of 

the M1, M2, M3, M4 and M5 trajectories of the membrane-bound full-length IL-1R1. Z-scores for all models 

(represented as black dots) were found to be within the range observed for proteins determined by X-ray 

crystallography (light blue) and NMR spectroscopy (dark blue). 
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Figure B-3 - Secondary structure assignment according to DSSP, throughout the whole simulation length for the 

soluble extracellular domain of interleukin-1 receptor type 1 (IL-1R1-ECD) – trajectories S1, S2, S3, S4, and S5. 

Significant variations are circled in black: solid lines represent relevant changes in the secondary structure; dashed 

lines indicate smaller variations that tend to reset to the original secondary structure.  
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Figure B-4 - Secondary structure assignment according to DSSP, throughout the whole simulation length for the 

extracellular domain (ECD), transmembrane (TM) and TIR domains of full-length IL-1R1 - trajectories M1, M2, 

M3, M4, and M5. Significant variations are circled in black: solid lines represent relevant changes in the secondary 

structure; dashed lines indicate smaller variations that tend to reset to the original secondary structure.  
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Figure B-5 - Scree plot representing the proportion of variance explained for the first 10 principal components, 

determined by principal component analysis (PCA) on the trajectories of (A) soluble (red line) and (B) membrane-

bound (purple line) extracellular domains of interleukin-1 receptor type 1 (IL-1R1-ECD).    

 

Figure B-6 - Porcupine plots showing the significant motion across the principal components (PCs) (A) PC1; (B) 

PC2; (C) PC3; and (D) PC4, in the IL-1R1-ECD. The arrows indicate the direction of correlated motion. 
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Figure B-7 - Principal component analysis (PCA) of the molecular descriptor space explored by the pocket on 

(A) the soluble and (B) membrane-bound extracellular domains of interleukin-1 receptor type 1 (IL-1R1-ECD). 

Twenty MDPocket descriptors characterizing the binding pocket were projected onto the first two PCA axes. 

pock_volume: Volume of the pocket; pock_asa: solvent accessible surface area of the pocket; pock_pol_asa: polar solvent 

accessible surface area of the pocket; pock_apol_asa: apolar solvent accessible surface area of the pocket; pock_asa22: 

accessible surface area using a probe of 2.2Å; pock_pol_asa22: polar accessible surface area using a probe of 2.2Å; 

pock_apol_asa22: apolar accessible surface area using a probe of 2.2Å; nb_AS: number of alpha spheres; mean_as_ray: 

mean alpha sphere radius; mean_as_solv_acc: mean alpha sphere solvent accessibility; apol_as_prop: proportion of 

apolar alpha spheres in the pocket; mean_loc_hyd_dens: mean local hydrophobic density; hydrophobicity_score: 

residue based hydrophobicity; volume_score: mean volume score of all amino acids in contact with at least one alpha 

sphere; polarity_score: ; charge_score: mean charge for all amino acids in contact with at least one alpha sphere; 

prop_polar_atm: proportion of polar atoms; as_density: alpha sphere density; as_max_dst: maximum distance between 

the center of mass and all alpha spheres;  

Table B-1 - Contribution of MDPocket’s molecular descriptors to the first two principal components (PC1 and 

PC2) describing the putative pocket evolution during the MD simulations. 

 Soluble Membrane-bound 

Descriptor PC1 PC2 PC1 PC2 

pock_volume  -0.34111643      0.06420109      0.33835757      -0.02848370 

pock_asa -0.33962947      0.03258052      0.32717103      -0.11027587 

pock_apol_asa -0.31204565      0.14801511      0.32064194 0.09151747 

convex_hull_volume -0.31042248     -0.02578107     0.30444671   -0.05997160 

nb_AS   -0.27402834      -0.04978003      0.28950969 0.07593383 

pock_asa22 -0.26647090      0.24890560      0.28493483 0.00583966 

pock_apol_asa22 -0.24333145      0.28416856      0.28110819 0.14343235 

as_max_dst -0.25591587     -0.16508785     0.26795163 -0.03783970 

nb_abpa     -0.24246494     -0.22493053     0.21995738 -0.19326309 

pock_pol_asa -0.28448823      -0.14620821      0.21096821 -0.34234371 

mean_loc_hyd_dens -0.10702266     0.25267690     0.21053245 0.27984039 

polarity_score -0.26965289     -0.25204615 0.20359585 -0.32743996 

pock_pol_asa22 -0.19288472      0.06415194      0.13375016    -0.23777941 
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apol_as_prop    0.05278602     0.36862932     0.12888394 0.42330385 

prop_polar_atm -0.07366071     -0.38856500     -0.12622681    -0.42712468 

volume_score 0.08856685     0.29815099     -0.12165946 0.13101572 

mean_as_ray -0.09596384      0.33209349      0.11115458 0.05821154 

hydrophobicity_score 0.07608753     0.12197551     0.09278400 0.35262229 

mean_as_solv_acc -0.05329298     0.28778344     0.04648431 0.11508175 

charge_score 0.09363060     -0.11224556     -0.01127742 0.17570732 

 

 

Figure B-8 - Bi-plots of principal components derived from the PAM clustering analysis on the putative binding 

pocket of (A) soluble and (B) membrane-bound extracellular domains of interleukin-1 receptor type 1 (IL-1R1-ECD). 

 

 

 

 

 

 

 

 

 

 

 



 
 

203 
 

Section D (chapter 5)  

Table D-1 - In vitro toxicity of the virtual screening (VS) hits in HepG2 cells. 

NCM 
Viability (%) HepG2 cells – group 1 

5 µM 10 µM 20 µM 50 µM 100 µM 150 µM 200 µM 300 µM 

V02 99.7±4.51 106.5±1.88 103.6±2.07 100.5±4.67 102.1±5.02 97.1±9.72 90.0±0.86 85.5±2.91 

V04 93.7±7.57 88.4±1.46 77.2±6.00 51.5±9.30 0.66±0.66 0.1±0.09 0 0 

V06 96.6±1.16 99.7±0.55 97.3±2.63 92.9±4.01 80.2±3.83 38.3±12.50 12.3±10.91 0 

V08 104.9±2.61 104.7±0.77 105.7±6.51 102.0±6.25 91.9±3.72 77.7±4.32 72.1±1.69 59.5±1.09 

V10 96.0±11.78 105.6±6.98 104.9±5.69 88.9±11.35 69.7±7.15 53.9±4.55 40.5±9.05 23.9±6.86 

V11 93.5±0.25 96.5±1.57 95.2±4.54 97.1±3.39 103.6±2.24 91.5±8.78 91.0±6.00 91.6±15.21 

V12 102.6±5.57 104.1±3.72 104.3±6.70 102.2±0.17 106.7±6.96 111.8±1.62 108.4±0.11 110.3±6.19 

V13 100.5±0.47 100.1±5.85 102.5±2.82 80.1±3.58 24.3±10.74 0 0 0 

V14 110.7±0.22 110.3±5.32 108.0±5.44 105.4±0.26 109.0±1.45 110.7±3.38 111.9±2.48 111.6±4.32 

V16 117.1±2.13 115.1±2.12 104.2±4.23 104.1±2.88 99.4±0.65 93.0±2.65 83.2±2.2 41.4±0.95 

V17 0 0 0 0 0 0 0 0 

NCM 
Viability (%) HepG2 cells – group 2 

2.5 µM 5 µM 10 µM 20 µM 40 µM 60 µM 80 µM 100 µM 

V01 98.9±3.44 100.3±1.05 104.8±1.61 104.4±2.03 97.3±0.78 81.0±4.48 67.4±6.27 48.7±4.14 

V07 105.3±3.14 108.5±10.51 109.4±7.59 74.2±1.51 58.4±5.23 76.0±6.64 34.5±5.50 18.1±6.93 

V15 100.8±1.60 99.9±0.69 99.9±0.34 100.2±6.29 98.0±2.74 93.3±0.05 91.4±6.14 84.4±4.36 

V18 96.1±4.17 96.8±5.84 98.9±4.36 104.8±1.83 99.6±2.38 95.2±10.18 96.3±10.58 94.6±6.98 

V19 N.D. 98.1±7.44 98.1±10.64 81.9±6.09 78.4±1.64 75.1±5.00 77.0±3.92 72.2±7.20 

V20 N.D. 102.5±2.48 95.0±5.04 93.4±4.84 88.2±7.29 81.5±0.02 77.5±0.84 77.4±4.14 

V21 95.3±6.58 92.4±1.37 83.0±0.44 80.0±9.34 70.4±10.02 47.5±21.64 28.3±26.8 13.2±5.7 

NCM 
Viability (%) HepG2 cells – group 3 

2.5 µM 5 µM 10 µM 15 µM 20 µM 50 µM 

V03 74.8±5.17 54.2±9.02 33.3±20.8 8.9±7.74 3.8±3.83 0 

V05 17.4±1.48 16.0±3.53 12.5±4.53 6.4±4.95 0 0 

V09 N.D. N.D. N.D. N.D. N.D. N.D. 

 Cell viability was measured as rezasurin reduction. Data are expressed as the mean±SEM of triplicate of three independent 

experiments. N.D. – not determined. 
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Table D-2 - In vitro toxicity of the virtual screening (VS) hits in CHME3 microglial cells. 

NCM 
Viability (%) CHME3 microglia – group 1 

20 µM 50 µM 100 µM 

V04 53.1±7.11 29.0±0.80 18.9±3.36 

V06 86.0±0.62 61.2±2.57 33.1±2.56 

V08 98.9±6.24 91.1±2.58 76.5±2.70 

V10 105.4±6.55 110.4±3.92 69.4±4.29 

V11 105.0±1.73 90.8±2.97 60.2±3.64 

V13 79.0±3.99 40.4±10.0 0 

V14 106.2±2.08 105.5±7.41 95.4±9.28 

V16 93.5±3.78 89.2±9.19 86.5±8.65 

NCM 
Viability (%) CHME3 cells – group 2 

20 µM 50 µM 100 µM 

V01 79.3±11.46 60.7±15.22 35.6±8.35 

V07 75.9±3.45 67.1±1.01 12.3±3.41 

V15 85.8±2.86 71.4±2.53 31.3±13.02 

V19 108.3±9.53 96.2±2.78 66.8±4.58 

V21 40.5±1.62 27.1±3.29 12.8±2.40 

Cell viability was measured as MTS reduction. Data are expressed as the mean±SEM of triplicate of three independent 

experiments. 
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Section E (chapter 6) 

 

 

Figure E-1 - Quantification of IL-1R1 mean fluorescence intensity, at 12h incubation. Results are mean ± SEM 

fold change vs. respective controls (untreated cells) from 5 independent experiments. No significant differences 

were found between the control cells and IFN-γ-stimulated microglial cells either untreated or treated with 

compounds NCM-V08, NCM-V14 and NCM-V16. 

 

Figure E-2 - Quantification of nuclear NF-κB p65 subunit translocation, at 24h incubation. Results are mean ± 

SEM fold change vs. respective controls (untreated cells) from 5 independent experiments. No significant 

differences were found between the control cells and IFN-γ-stimulated microglial cells either untreated or treated 

with compounds NCM-V08, NCM-V14 and NCM-V16. 
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Figure E-3 - Quantification of NLRP3 mean fluorescence intensity, at 24h incubation. Results are mean ± SEM 

fold change vs. respective controls (untreated cells) from 5 independent experiments. No significant differences 

were found between the control cells and IFN-γ-stimulated microglial cells either untreated or treated with 

compounds NCM-V08, NCM-V14 and NCM-V16. 

 

 

Figure E-4 - Quantification of iNOS mean fluorescence intensity, at 12h incubation. Results are mean ± SEM fold 

change vs. respective controls (untreated cells) from 5 independent experiments. No significant differences were 

found between the control cells and IFN-γ-stimulated microglial cells either untreated or treated with compounds 

NCM-V08, NCM-V14 and NCM-V16. 
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