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Abstract

The adoption of light field technology is often hindered by the large amount of data
necessary to represent such information. In particular, applications with strict quality
requirements call for compressed representations that can preserve the integrity of the
original data captured from the visual scene. Such is the case of medical images which,
due to technical and legal reasons, need to be archived with no quality loss. In this
context, this thesis investigates efficient algorithms for lossless compression of light fields,
in particular those acquired in a medical setting, using the MRP encoder as the basis
framework for new solutions. The research work carried out within the scope of this
thesis has produced three main contributions.

The first one comprises pre-processing methods to ease the compression of light fields
using standard-compliant and other state-of-the-art image/video lossless codecs available
in the literature. A simulation study is presented, using generic image and video codecs,
including MRP, HEVC, JPEG-LS, JPEG 2000, and CALIC, to assess the coding of light
fields with various data arrangements. The results of this study show that encoding light
field in a pseudo-video sequence arrangement is an efficient approach. The pre-processing
algorithms developed in this research are shown to greatly improve the compression ef-
ficiency of four-dimensional transform based encoders, such as MuLE, specially in the
cases where they are less efficient in comparison with the other standard light field en-
coder WaSP, i.e., in light fields with higher disparity.

The second contribution consists in new algorithms, based on the MRP encoder, to ef-
ficiently exploit the redundancies present in the four-dimensional light field structure.
These algorithms, named as 4D-MRP, DT-4D-MRP, and M-MRP, employ four-dimen-
sional prediction and data partitioning to fully exploit the inherent spatial and angular
redundancies of the four-dimensional light field representation. The proposed algorithms
largely surpass previous state-of-the-art lossless encoders, including those specifically tai-
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lored for light field coding.

The third contribution proposes a hierarchical codec optimised for light fields that can
trade-off compression efficiency for other functionalities like angular scalability and ran-
dom access. The enhanced capabilities of the this encoder, named as H-MRP, are expected
to help the faster adoption of this technology, by allowing compatibility with legacy dis-
plays and easier navigation through light field viewpoints. The H-MRP encoder is highly
configurable, and is able to surpass state-of-the-art methods both in terms of compression
efficiency and its random access capabilities.

Overall, the advances in lossless light field coding presented in this thesis demonstrate
that the proposed methods achieve the best compression efficiency in comparison to other
solutions available in the literature. Therefore these contributions establish a new state-
of-art in lossless light field coding.

Keywords: Light Field Coding, Lossless Coding, Medical Images Compression, Efficient
Light Field Representation formats, Minimum Rate Predictors
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Resumo

A adopção da tecnologia light field é dificultada pela grande quantidade de dados neces-
sários para a sua representação. Em particular, aplicações com requisitos de qualidade
rigorosos exigem formatos de representação comprimidos que possam preservar a integri-
dade dos dados originais capturados de uma cena. Este é o caso das imagens médicas
que, por razões técnicas e legais, necessitam de ser arquivadas sem perda de qualidade.
Neste contexto, esta tese investiga algoritmos eficientes para compressão sem perdas de
light fields, em particular aqueles adquiridos em ambientes médicos, utilizando o codi-
ficador MRP como base para as novas soluções propostas. O trabalho de investigação
desenvolvido no contexto desta tese resultou em três contribuições principais.

A primeira envolve métodos de pré-processamento que facilitam a codificação de light
fields utilizando codificadores de imagem/vídeo genéricos do estado da arte disponíveis
na literatura. Um estudo experimental é apresentado, onde se usam codecs genéricos de
imagem e vídeo, incluindo MRP, HEVC, JPEG-LS, JPEG 2000 e CALIC, para avaliar
a codificação de light fields com vários arranjos de dados. Os resultados deste estudo
mostram que codificar light fields reorganizados numa pseudo-sequência de vídeo é uma
abordagem eficiente. Os algoritmos de pré-processamento desenvolvidos nesta pesquisa
demonstraram melhorar bastante a eficiência de compressão de codificadores baseados em
transformadas tetradimensionais, como o MuLE, especialmente nos casos onde são menos
eficientes quando comparados com o outro codificador padrão de light field, WaSP, i.e.,
em light fields com maior disparidade.

A segunda contribuição consiste em novos algoritmos, baseados na abordagem do MRP,
para explorar de forma eficiente as redundâncias presentes na estrutura tetradimensional
dos light fields. Estes algoritmos, denominados de 4D-MRP, DT-4D-MRP e M-MRP, uti-
lizam predição e partição tetradimensional dos dados para explorar de forma abrangente
as redundâncias espaciais e angulares inerentes à representação tetradimensional de light
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fields. Os resultados obtidos com os algoritmos propostos ultrapassam largamente aqueles
dos anteriores codificadores sem perdas do estado da arte, incluindo os especificamente
adaptados para a codificação de light fields.

A terceira contribuição propõe um codec optimizado para a codificação hierárquica de
light fields que pode sacrificar a eficiência de compressão por outras funcionalidades como
a escalabilidade angular e o acesso aleatório. É esperado que as capacidades avançadas
deste codificador, denominado H-MRP, ajudem a adopção mais rápida desta tecnologia,
permitindo a compatibilidade com ecrãs antigos e navegação mais fácil dos diversos pontos
de vista presentes no light field. O codificador H-MRP é altamente configurável, e é capaz
de superar métodos do estado da arte quer em termos de eficiência de compressão, quer
nas suas capacidades de acesso aleatório.

Em geral, os avanços na codificação sem perdas de light fields apresentados nesta tese
demonstram que os métodos propostos atingem a melhor eficiência de compressão em
comparação com outras soluções disponíveis na literatura. Por conseguinte, estas contri-
buições estabelecem um novo estado da arte em matéria de codificação sem perdas de
light fields.

Palavras-chave: Compressão de Light Fields, Compressão sem Perdas, Compressão de
Imagens Médicas, Formatos Eficientes para Representação de Light Fields, Minimum Rate
Predictors
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This thesis presents an investigation on efficient lossless coding of light field (LF) images. The
research work is focused on encoding solutions to be used in applications where the original
image data is required to be perfectly reconstructed from the compressed data, e.g. medical
applications. Multiple coding approaches were investigated and the main findings are presented
throughout this thesis, ranging from compliant coding techniques to new algorithms that can
efficiently exploit the inherent data redundancies of LFs, contributing to advance the current
state-of-the-art.

1.1 Context and Motivation

The light field imaging concept and fundamentals, initially proposed by Lippmann in 1908 [1],
promise to provide superior immersive multimedia experiences for users and content producers.
Applications of this technology range from the entertainment industry, such as virtual and aug-
mented reality [2], 3D movies and television [3] to more critical tasks using computer vision in
medical imaging [4–6], for instance. These advanced applications are only possible due to the
characteristics of LFs, which provide richer visual information when compared to traditional 2D
images, by capturing not only the light intensity, but also the directionality of light rays reaching
the camera sensors. Such extra information enables a panoply of post-processing operations, like
the extraction of depth maps [7–9], 2D image rendering with different viewing perspectives [10],
or post-capture image refocusing [11].
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2 1. Introduction

Developments in LF acquisition systems technology are expected to make LF imaging available
to a broader range of users, both industrial and domestic. Since consumer-grade devices, such
as the Lytro cameras (discontinued) and Raytrix (https://www.raytrix.de/), appeared in the
market, this technology has started to receive more attention from the research community.
LF acquisition devices capture significantly more visual information of the scene than regular
cameras, since besides light intensity from each point in the scene, they also record information
related to the direction of the light rays travelling towards the sensor, as mentioned before.
Accordingly, each sample acquired by the image sensor corresponds to the intensity of one (or
more) light-ray coming from a point in the visual scene with a certain direction. This results in a
sampled LF that has the form of an array of micro images (MIs), each one corresponding to the
light captured through a single micro-lens, where the spatial position of each sample implicitly
encodes directional information. After adequate calibration and rectification, different views, i.e.
sub-aperture images (SAIs), of the visual scene can be obtained. Other LF acquisition set-ups
based on arrays of cameras, and therefore with different sized apparatus, geometries, and imaging
characteristics, have also been developed mainly for research purposes, like the camera array used
to capture part of the LF data available at “The (New) Stanford Light Field Archive” [12].

Due to its ability to capture the intensity and direction of light rays [13], LF sensor data can be
processed a posteriori, enabling several post-processing operations that can extract diverse image-
related information and render images with different characteristics. Amongst the operations
that can be performed on the raw data, one can mention extraction of depth maps [9, 14] and
rendering of images with different focal planes, depth-of-field, or viewing perspectives [15–17].

LF images can be used for specialised purposes, such as medical diagnosis as described in the
literature: in [18], LF images are used for diagnosis and control of Kaposi’s sarcoma; in [19],
this technology is proposed to enhance imaging in urological oncology; another application is in
eye cataract diagnosis [20], where the possibility of image refocusing can help the detection and
evaluation of cataract volume and opacity; in [21], a study is undertaken on the performance
and possible applications of plenoptic cameras in clinical settings. Other important LF imaging
applications are in industry, with uses ranging from classification of fruit [22] and quality control
in manufacturing [23] to optical measurement of surface properties to volumetric recording of
prised sculptures and other cultural heritage artefacts [24]. Recognising the relevance and po-
tential widespread use of LF imaging in multiple application fields (e.g., entertainment, medical,
robotics, computer vision and education [25]), the Joint Photographic Experts Group (JPEG)-
Pleno initiative has put significant research and standardisation efforts on the development of
LF compression methods, raging from lossy, to near-lossless, and lossless [26].

The coding methods proposed in this thesis are intended to be applied in compression of LF
dermoscopy images captured in a professional health environment [27]. For instance, in [28] it
is shown that dermoscopy provides more accurate classification of skin lesions than naked eye
examination. However, such classification can be further improved using computer vision and
machine learning techniques [29]. As shown in [21], LF imaging enable the reconstruction of 3D
surfaces, thus providing extra depth features, i.e., height and three-dimensional shape, that can
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improve current classification algorithms [5,6]. For instance, in [30] the authors found that skin
surface depth information has relevant features for melanoma discrimination.

Nevertheless, the flexibility and new functionalities provided by LFs come at the cost of huge
amounts of storage capacity and bandwidth required to handle all the data, which can be a
potential deterrent to the development of LF imaging technologies. Much like what is done with
common 2D images, data compression can be used to alleviate this problem. In a recent work [31],
it was found that, to a certain extent, lossy compression may not produce significant impact on
the visual quality of images obtained through LF computational methods, such as refocusing
and extended focus. However, in application fields with stringent accuracy requirements, such
as computer vision in industry – where high-precision depth measurements may be necessary
– and medical applications (e.g., LF dermoscopy) – where all relevant features captured in LF
data must be preserved with high-fidelity – LF lossless compression is necessary to fulfil such
requirements.

For instance, in professional health environments, due to medical and legal reasons [32] the
results of medical imaging scans need to be kept and archived for several years. Additionally, the
archiving process needs to guarantee that the scans are archived with the same quality as that
used during the diagnostic process. For instance, the level of representation fidelity is a relevant
requirement not only for maintaining the patients’ records, but also for judicial proceedings
whenever malpractice or other legal issues are raised in regard to medical procedures. As a
consequence, databases for medical images archiving are facing a quasi-exponential growth in
their contents [32], leading to increasingly higher storage costs.

Transmission and compression of imaging in clinical context are regulated by Digital Imaging
and Communications in Medicine (DICOM) [33–35] international standard. DICOM is one of
the most widespread healthcare standards, supported by most medical imaging devices. The
use of standards is particularly important in medical imaging [36], as it assures that images can
be interchangeably used and shared between the various institutions like hospitals and imaging
centres. DICOM integrates common International Organization for Standardization (ISO) and
International Telecommunication Union (ITU) image compression standards, both reversible
(lossless) and irreversible (lossy). The standard defines an encapsulated format archive, where
the compression information is included in the bitstream syntax. Despite allowing a number
of coding algorithms to be used, the standard makes no assumptions or recommendations on
which encoders should be applied and in which applications [34]. This is especially valid for
the irreversible encoding, as there is still an open debate whether lossy compression should be
used in the context of medical imaging, specially when images are used for diagnostic purposes.
Regulatory bodies in the UK, EU, USA, Canada, and Australia allow the use of lossy compression
for medical images. However, the ultimate decision of using irreversible compression is left to
the institutions and imaging technical staff [37]. Nevertheless, reversible compression, whenever
possible, is recommended by several regulatory bodies, such as the Royal Australian and New
Zealand College of Radiologists [38].
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1.2 Thesis Objectives and Contributions

This doctoral work aimed to advance the state-of-the-art in LF lossless coding for applications
which do not tolerate distortions, such as medical imaging and high-precision vision measurement.
In order to fulfil its purpose, three major objectives were defined:

1. Research pre-processing algorithms for light field compression and representa-
tion arrangements beyond the raw uncompressed RGB format, enabling effi-
cient compression:

This objective was two fold. The first goal deals with finding suitable arrangements to en-
code the LF data using generic state-of-the-art encoders. Although these encoders are not
well suited to deal with the inherent redundancies present in LFs, accomplishing this goal
allows to promote early adoption of this technology. The second goal is the development
of pre-processing algorithms that can facilitate data compression operations for this type
of images. The research developed under this objective resulted in two journal papers (J4
and J5, see the list of publications below) and two conference papers (C1 and C5).

2. Research efficient prediction-based lossless coding methods adapted to light
fields:

This objective aims at developing new techniques that are capable of exploiting the struc-
tural redundancy generated by the light field acquisition process. The goal is to develop
efficient coding algorithms, based on the Minimum Rate Predictors (MRP) encoder, that
are able to surpass other state-of-the-art techniques. The conclusions of this objective
resulted in a journal paper (J2) and three published conference papers (C3 and C4).

3. Research methods for light field lossless coding with enhanced capabilities:

This research investigated the possibility of adding partial data access functionalities to LF
lossless encoding, using angular scalability and random access. The focus was on achieving
good compromises between compression efficiency and capabilities of decoding partial LF
information. This part of the work resulted in a journal paper (J1).

The research work presented in this thesis was carried out by the author between September 2016
and October 2021 at University of Coimbra and at the Instituto de Telecomunicações - Leiria
branch. The developed work has been presented in international conferences, published in peer
reviewed journals, and has resulted in some contributions to the JPEG-Pleno standardisation
action. The work resulted in the following list of publications:
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Journal Publications

J1. João M. Santos, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís M. Távora, Rui Fonseca-
Pinto, Sérgio M. M. de Faria, Hierarchical Lossless Coding of Light Fields with Improved
Random Access, Signal Processing: Image Communication, vol. 105, pp. 116687-116687,
2022, doi: 10.1016/j.image.2022.116687.

J2. João M. Santos, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís M. Távora, Rui Fonseca-
Pinto, Sérgio M. M. de Faria, Lossless Coding of Light Fields based on 4D Minimum Rate
Predictors, IEEE Transactions on Image Processing, vol. 31, pp. 1708-1722, 2022, doi:
10.1109/TIP.2022.3146009.

J3. João M. Santos, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís M. Távora, Rui
Fonseca-Pinto, Sérgio M. M. de Faria, Lossless Coding of Light Field Images based on
Minimum-Rate Predictors, Journal of Visual Communication and Image Representation,
Vol. 54C, pp. 21 - 30, April, 2018, ISSN 1047-3203, doi: 10.1016/j.jvcir.2018.03.003.

J4. João M. Santos, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís M. Távora, Rui Fonseca-
Pinto, Sérgio M. M. de Faria, Performance evaluation of light field pre-processing methods
for lossless standard coding, IEEE COMSOC MMTC Communications - Frontiers, Vol.
12, No. 4, pp. 44 - 49, July, 2017.

Peer Reviewed Conference Publications

C1. João M. Santos, Lucas A. Thomaz, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís
M. Távora, Sérgio M. M. de Faria, Disparity compensation of light fields for improved
efficiency in 4D transform-based encoders, IEEE International Conference on Visual Com-
munications and Image Processing (VCIP), Macau, China, December, 2020, pp. 112-115,
doi: 10.1109/VCIP49819.2020.9301829.

C2. Lucas A. Thomaz, João M. Santos, Pekka Astola, Sérgio M. M. de Faria, Pedro A. A.
Assunção, Murilo B. de Carvalho, Eduardo A. B. da Silva, Ioan Tabus, Márcio P. Pereira,
Gustavo Alves, Fernando Pereira, Vanessa Testoni, Pedro Freitas, Ismael Seidel, Visually
Lossless Compression of Light Fields, EURASIP European Light Field Imaging Workshop
(ELFI), Borovets, Bulgaria, June, 2019.

C3. João M. Santos, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís M. Távora, Rui Fonseca-
Pinto, Sérgio M. M. de Faria, Rate-Complexity Trade-Off in Minimum Rate Predictors
Light Field Lossless Encoding, EURASIP European Light Field ImagingWorkshop (ELFI),
Borovets, Bulgaria, June, 2019.

C4. João M. Santos, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís M. Távora, Rui Fonseca-
Pinto, Sérgio M. M. de Faria, Lossless compression of Light Fields using multi-reference
Minimum Rate Predictors, Data Compression Conference (DCC), Snowbird, Utah, United
States, March, 2019, pp. 408-417, doi: 10.1109/DCC.2019.00049.
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C5. João M. Santos, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís M. Távora, Rui
Fonseca-Pinto, Sérgio M. M. de Faria, Lossless Light-Field Compression Using Re-
versible Colour Transformations, International Conference on Image Processing The-
ory, Tools and Applications IPTA, Montreal, Canada, pp. 1-6, November, 2017, doi:
10.1109/IPTA.2017.8310154.

JPEG Documents

D1. Lucas A. Thomaz, João M. Santos, Pedro A. A. Assunção, Sérgio M. M. Faria,
“WG1M84001-CTQ-JPEG Pleno Light Field ES4.1 IT-LEIRIA partial replacement re-
port”, 84th JPEG Meeting, Brussels, Belgium.

D2. Lucas A. Thomaz, João M. Santos, Pedro A. A. Assunção, Sérgio M. M. Faria,
“WG1M83038 - C&Q-JPEG Pleno Light Field ES4.1 IT-LEIRIA report”, 83rd JPEGMeet-
ing, Geneve, Switzerland.

D3. João M. Santos, Pedro A. A. Assunção, Luís A. da Silva Cruz, Luís M. N. Távora, Rui
Fonseca-Pinto, Sérgio M. M. Faria, “WG1M82036 - Lossless compression of Light Fields
using multi-reference Minimum Rate Predictors”, 82nd JPEG Meeting, Lisbon, Portugal.

1.3 Thesis Outline

The remainder of this document is organised in six chapters as follows: Chapter 2 introduces the
fundamentals pertaining to LFs that provide the essential background for the remaining chapters.
Chapter 3 starts by exposing introductory concepts of lossless coding, followed by a literature
review on relevant state-of-the-art lossless encoding of LF data. A description of the MRP
algorithm is also presented. Chapter 4 describes the research focused on LF compression methods
that are conforming with generic codecs, and pre-processing algorithms designed to improve the
compression efficiency of existing encoders. Chapter 5 presents new techniques developed to
efficiently exploit the redundancies arising from the LF structures. Chapter 6 proposess a LF
encoder with angular scalability and random access capabilities. Finally, Chapter 7 presents the
conclusions and future research directions of this thesis.



CHAPTER 2
Light Field Fundamentals
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This chapter outlines the fundamental concepts pertaining to light fields (LFs), which provide the
necessary background for the contributions of this thesis. Section 2.1 introduces the plenoptic
function, which characterises the light rays passing at each point in space, as well as the consid-
erations leading to its 4D simplification. Section 2.2 briefly discusses the two most common LF
acquisition apparatus, namely the plenoptic camera and the array of cameras, and their varia-
tions. The same section describes the processing chain needed to convert the raw lenslet images
into the common 4D representation. The characteristics of the most common arrangements of
the 4D LF data, which have a huge impact in the coding efficiency, are presented in Section 2.3.
Finally, Section 2.4 describes the methodology used to evaluate the proposed methods, taking
into account the guidelines set by Common Test Conditions of the JPEG-Pleno (JPEG-Pleno
CTC), and defines the modifications used in this work to account for the lossless compression
case.

7
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2.1 The 4D Representation of the Plenoptic Function

Light fields are sampled representations of the plenoptic function, from the Latin plenus, i.e.,
complete/full, and the Greek optikos, i.e., pertaining to vision. This function represents the
intensity L of light rays at every point x, y, z in space, travelling in the θ, φ direction, with the
wavelength λ, at time instant τ [39]. This translates into a seven-dimensional function:

L = P (x, y, z, θ, φ, λ, τ) . (2.1)

However, in practical systems, full representation of the plenoptic function is not necessary, thus
a reduced dimension version is normally used. This simplified representation requires less com-
putational effort for its acquisition, due to its inherent smaller data size. The sampled plenoptic
function can be captured by several methods [13]: Omnidirectional imaging, Depth-enhanced
imaging, Point cloud imaging, Holographic imaging, and Light Field imaging. Several different
LF data representations have been proposed in the literature, each with distinct characteris-
tics [40]. This thesis deals with the common 4D representation of LFs, which reduces the seven
dimensions of the plenoptic function to four, based on the following three assumptions:

1. The spectral distribution of each ray (a function of the wavelength λ) can be simplified to
the three RGB channels normally captured by cameras;

2. The transmission medium does not introduce attenuation, so the radiance along a light
ray path remains constant. Therefore the scene information can be captured by projection
onto any selected surface and the explicit z dimension can be eliminated;

3. The scene is static during the acquisition interval thus, the time dimension τ can be
disregarded.

Under these assumptions, the 7D plenoptic function can be simplified to a 4D function

L4D = L(t, s, v, u) : R4 7−→ R3, (2.2)

where L(t, s, v, u) maps each position (t, s, v, u) to a three-dimensional value, representing the
RGB colour components. A 4D parametrisation of a light field, where a light ray is defined by
two pairs of coordinates defined by its intersection with the (v, u) and (t, s) planes, is shown in
Figure 2.1. Light rays originated in the same scene, with different directions, converge to the
same focal point in the (v, u) plane, but are are uniquely identified by the coordinates in the (t, s)

plane. In other words, for each point in (v, u) plane the camera captures the intensity of light
rays with different directions (t, s). In this context, (t, s) represent the angular coordinates, and
(v, u) represent the spatial coordinates in the 4D LF. The two planes represented in Figure 2.1
are discretised allowing for only a finite number of viewpoints and light rays to be recorded.
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Figure 2.1: Simplified example of the 4D LF parametrisation used in this work.

2.2 Light Field Acquisition

Conventional cameras cannot capture the 4D LF structure described in the previous section, as
their sensors can only capture a two-dimensional1 approximation of a scene. Several processes
for capturing a LF exist resorting to object side coding or sensor side coding, for instance, some
of which are described by Zhou in [13]. The combination of the usual 2D information captured
by conventional camera sensors, in combination with the angular information resulting from the
various perspectives, allows for the construction of the previously described 4D LF structure.

Two main approaches for the acquisition of LFs are used in this thesis. The first approach
uses plenoptic cameras, which are modified conventional cameras that use a micro-lenses array
(MLA) in front of the main camera sensor to capture the extra information. The second one uses
conventional cameras, arranged either in a fixed array or using a robotic arm to displace a single
camera. Due to its characteristics this approach is called high density camera array (HDCA).

2.2.1 Plenoptic Cameras

Plenoptic cameras are single sensor devices developed for the acquisition of LFs, using a MLA
placed between the main lens and the sensor to capture both spatial and angular information.
In this type of cameras, a trade-off between angular and spatial resolution is present, related to
the main sensor resolution and the MLA grid resolution. Each micro-lens of the array allows the
camera to capture the angular information of a scene, instead of the conventional 2D image. Two
main types of plenoptic cameras can be found: the unfocused camera [41], also known as plenoptic
1.0, and the focused camera [42], also known as plenoptic 2.0. Figure 2.2 shows a schematic
representation of each of these types of cameras. Despite the differences in the acquisition
processes, the LF can always be represented in terms of the 4D data structure described in
Section 2.1.

The main difference between the two types of plenoptic cameras is the way images are formed
in the sensor. In the unfocused camera, shown in Figure 2.2a, the main lens is focused at the

1In this analysis the colour of a captured image is not considered. If the colour information is considered
the output is a three-dimensional image, i.e., width, height, and colour.



10 2. Light Field Fundamentals
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Figure 2.2: Example of plenoptic acquisition systems: (a): unfocused camera, (b): focused
camera (MLA focused on the real image), (c): detail of an image captured with an unfocused
camera [43], and (d): detail from an image captured with focused camera.

MLA, which are placed at a focal length distance of the main sensor. Consequently, in this
arrangement the micro-lenses are focused at optical infinity. Due to the previous considerations,
each micro-lens captures only angular information. Thus, each pixel in the micro image (MI)
corresponds to a different viewpoint, which limits the spatial resolution of the LF. In the focused
plenoptic camera, shown in Figure 2.2b, the micro-lenses are focused on the image produced by
the main lens [42], which allows for the creation of focused MIs. There are two types of focused
plenoptic cameras, differing in the relative position of the main lens focus plane, which can be in
front or behind the MLA. Thus, the micro-lenses are either focused on the real image, as shown
in Figure 2.2b, or on the virtual image, respectively. This approach allows for higher spatial
resolution rendering, albeit with some sacrifice on the angular resolution. An example of an
image acquired with each of these cameras is shown in Figures 2.2c and 2.2d, for unfocused and
focused cameras, respectively.

2.2.2 High Density Camera Array

The high density camera array LF acquisition approach follows the process used to capture
stereo or multiview video scenes, using multiple side-by-side cameras. However, instead of using
an acquisition apparatus with linear horizontal camera placement, in the case of to 4D LF
acquisiton, two-dimensional arrays of cameras are generally used. Figure 2.3 shows two examples
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of HDCA acquisition apparatus, Figure 2.3a shows a camera array, and Figure 2.3b shows a
camera mounted on a gantry. The gantry apparatus allows to emulate a wide array of cameras
distributions using a single camera.

(a) (b)

Figure 2.3: Example of a HDCA acquisition systems from the Stanford University: (a): camera
array [44], (b): camera gantry [45].

Camera arrays can be configured to capture LFs with various characteristics. The distribution of
the cameras allows to adapt for a parallel or convergent camera arrangements, and the baseline
between cameras can be adjusted to a particular application, for instance. The angular and
spatial resolution of HDCA LF, are limited by the number of cameras and the camera sensor
resolution, respectively. The gantry acquisition apparatus generally have the same characteristics
of the camera arrays. Nevertheless, the camera placement is more flexible in this case, as the
cameras are not constrained to a pre-defined grid. In turn, this allows a more fine definition of the
distance between acquisition points. However, as it relies in only one camera, each perspective
is, necessarily, acquired at a different time interval, which means that time-varying conditions
(like lighting intensity variations) may induce distortions in subsequent LF processing.

2.2.3 Light Field Processing Chain

Following the description of the LF acquisition methods it is important to introduce the LF
processing chain for plenoptic cameras. For these cameras, a set of pre-processing operations
are needed to convert the raw lenslet format acquired by the camera to the conventional 4D LF
described in Section 2.1. The most common approach to convert the raw lenslet data, resulting
from unfocused cameras, is the one proposed by Dansereau in [46], as implemented by the LF
toolbox [47]. In its call for proposals, the JPEG-Pleno standardisation action adopted the LF
toolbox as the decoding step for the raw plenoptic images. Consequently, it was also adopted in
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this thesis, with some adaptions resulting from the lossless nature of the proposed algorithms.
The diagram of the reference workflow, as described in [26], is shown in Figure 2.4.

DemosaicingRaw
Lenslet

Devignetting 4D LF
Conversion

Colour
Correction 4D LF

Figure 2.4: Raw lenslet processing chain.

The processing steps of this reference workflow can be described as follows:

• Demosaicing: converts the colour samples, resulting from the camera colour filter array,
to a full colour image, e.g., an RGB image, as depicted in Figure 2.5.

(a) (b)

Figure 2.5: Detail of a LF: (a) before the demosaicing (b) after the demosaicing.

• Devignetting: compensates the reduction of image brightness towards its corners due
to the lens optics, as shown in Figure 2.6. The vignetting is more apparent in plenoptic
cameras LF due to the characteristics of the MLA.

(a) (b)

Figure 2.6: Detail of a LF: (a) before the devignetting (b) after the devignetting.

• 4D LF Conversion: converts the raw lenslet data into the 4D LF described in Section 2.1,
as can be seen in Figure 2.7. This conversion is described in [46], and requires some
metadata from the acquiring camera. The number of pixels in the resulting 4D structure
is expanded.
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(a) (b)

Figure 2.7: Detail of a LF: (a) before the 4D conversion (b) after the 4D conversion.

• Colour correction: corrects issues related to colour and illumination, making the cap-
tured LF more life like, as shown in Figure 2.8.

(a) (b)

Figure 2.8: Central viewpoint of a 4D LF: (a) without colour correction (b) with colour correction.

2.3 Light Field Data Arrangements

As can be inferred from the previous sections, due to their characteristics and capturing pro-
cesses, light fields present two types of correlations or redundancies. The first are the spatial
redundancies, i.e., between neighbouring pixels in the v × u dimensions, also seen in conven-
tional images. The second are related to the capturing of different viewpoints by the LF, which
are called angular redundancies, and can be found between neighbouring pixels in the t × s di-
mensions. These types or redundancies are particularly relevant when considering the possible
arrangements of the 4D LF data, namely due to their impact on possible applications and coding
efficiency. In this thesis three arrangements are considered: micro image, sub-aperture image,
and epipolar plane image. For the purpose of this section, the LF dimensions are T ×S×V ×U .

The MI, or lenslet, are the images acquired by each individual micro-lens. An example of a full
LF in a lenslet representation and a zoomed-in detail is shown in Figure 2.9. In this case, each
MI has 15×15 pixels, and the lenticular structure of the MLA is clearly discernible. Additionally,
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due to the 4D reconstruction operation described in Section 2.2.3, each MI has black pixels in
its corners. These are pixels that were computed with low reliability, as they are not present in
the original raw lenslet image2. Mathematically, a given MI can be defined by fixing (v, u) in
Equation 2.2, resulting in V × U MIs each with T × S pixels, and is denoted as:

Lv,u(t, s) : R2 7−→ R3, (2.3)

where the mapping to R3, in this and the following equations, means that the equation returns
the RGB colour component values for the set coordinates.

Figure 2.9: Example of the lenslet LF representation of the Bikes image from [43].

The most common representation format of a 4D LF is the SAI, also referred to as viewpoint.
Each SAI represents the acquired scene observed from a particular perspective. An example
of an SAI, and the full representation of the 4D LF in an SAI array format, can be seen in
Figure 2.10. Figure 2.10b has darker SAIs in the corners, which are called low reliability black
frames (LRBFs), due to the existence of low reliability pixels in the MI. Mathematically, a given
SAI can be defined by maintaining (t, s) fixed in Equation 2.2, resulting in T ×S SAIs each with
V × U pixels, and is denoted as:

Lt,s(v, u) : R2 7−→ R3. (2.4)

Finally, the EPI representation is formed through the intersection of a specific pair (t, v) or (s, u)

in a specific row or column of SAIs in the LF array. This can be interpreted as the concatenation
of rows or columns taken from each SAI in the selected row or column of the LF array. Figure 2.11
shows an example of an EPI and a representation of how these images are formed. As shown
in Figure 2.11c, these images contain a set of slanted lines. This information is very useful, as
the slope of these lines is inversely proportional to the depth of the corresponding objects [48].
For instance, a vertical line indicates that an object is located at an ‘infinite’ distance from the
camera, and therefore such object has no disparity between the SAIs. Mathematically, a given

2Low reliability pixels only exist on LFs acquired with a plenoptic camera.
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(a) (b)

Figure 2.10: Example of: (a) the SAI representation, and (b) the full array of SAIs using the
Friends image from [43].

EPI can be defined by maintaining (t, v) or (s, u) fixed in Equation 2.2, resulting in either T ×V
or S × U EPIs each with S × U or T × V pixels, respectively, and is denoted as:

Lt,v(s, u) : R2 7−→ R3 or Ls,u(t, v) : R2 7−→ R3. (2.5)

v

u

(a)

(b)

(c)

Figure 2.11: Example of the extraction of EPI using the Friends LF from [43]: (a) intersection
of the SAIs stack, (b) resulting stack of EPIs, and (c) EPI resulting from the angular position
t = 8.

2.4 Experimental Test Conditions

The Common Test Conditions of the JPEG-Pleno [49] set the basis for light field coding ex-
periments. These conditions are essentially targeted at lossy compression algorithms evaluation.
This section describes the test conditions that are followed in the experiments described in this
thesis, unless stated otherwise. These are based on those defined in Common Test Conditions of
the JPEG-Pleno version 3.3 with a few modifications to make them compatible with lossless cod-
ing. The experimental conditions specify: the datasets to be used and the performance metrics
to be computed.

The JPEG-Pleno CTC require encoders be compared to a set of anchors obtained by encoding
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the LF sub-aperture images in a serpentine scan order with the High Efficiency Video Coding
(HEVC) standard [50]. Quality metrics, like PSNR and Bjøntegaard delta (BD), are computed
in the 4D LF format, after conversion to the Y CbCr colour space. As this thesis deals with
lossless compression, the proposed algorithms performance will be measured only in terms of
bitrate.

2.4.1 Test Materials

Various LF datasets are available for researchers. The JPEG-Pleno CTC specifies five datasets
with different characteristics, both from plenoptic cameras and HDCA, to be used on its core
experiments. Two of these datasets are used in this thesis, selected due to their diverse con-
tent, one from the École Polytechnique Fédérale de Lausanne (EPFL) [43] and another from
the Heidelberg Collaboratory for Image Processing (HCI) [51]. Further information about the
datasets and their selection criteria can be found in [49].

The EPFL dataset [43] is composed of natural and outdoor scenes and it was acquired with a
Lytro Illum B01 unfocused plenoptic camera. As explained in Section 2.2.3, the raw lenslet LF
is converted through the use of the LF toolbox. For the JPEG-Pleno CTC test set, four images
were selected, of which the central SAI are shown if Figure 2.12. Due to the LRBF, out of 15×15

viewpoints only the inner 13× 13 SAIs are used. This dataset characteristics are:

• Content: natural, outdoors.

• Angular resolution: 13× 13 SAIs.

• Spatial resolution: 625× 434 pixels.

• Bit depth: 10 bits.

As described before, the JPEG-Pleno processing chain uses the LF Toolbox [46] to the convert
the raw lenslet files from the EPFL dataset and convert them to 4D LFs. The Colour Correction
step of the pre-processing chain expands the colour range, as it can be seen in Figure 2.8. Con-
sequently, this expansion is detrimental to the coding efficiency. Therefore, as the compression
process is lossless, this step is omitted before encoding and, if necessary, can be performed at
the decoder side.

The HCI dataset [51] is a computer generated HDCA dataset representing common objects. For
the JPEG-Pleno CTC test set, two images were selected. The central SAI of each of those LFs
are shown in Figure 2.13. This dataset characteristics are:

• Content: synthetic generated common objects.

• Angular resolution: 9× 9 SAIs.
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(a) (b)

(c) (d)

Figure 2.12: Central SAI from the JPEG-Pleno CTC selected LFs of the EPFL dataset [43]: (a)
Bikes, (b) Danger de Mort, (c) Fountain & Vincent 2, and (d) Stone Pillars Outside.

• Spatial resolution: 512× 512 pixels.

• Bit depth: 8 bits (provided as 10 bit by JPEG-Pleno).

(a) (b)

Figure 2.13: Central SAI from the JPEG-Pleno CTC selected LFs of the HCI dataset [51]: (a)
Greek, and (b) Sideboard.

To complement the previously described datasets, a selection of medical LF plenoptic images,
the light field image dataset of skin lesions (SKINL2)3, was also included in this work [27]. It is
composed of skin lesion images acquired in a medical context, and allows testing the proposed
techniques with medical images, one of the main target applications of this thesis. Figure 2.14
shows the central SAI for each of the three selected LFs used in this work. This dataset charac-
teristics are:

• Content: skin lesions images.
3Available at http://on.ipleiria.pt/plenoisla.

http://on.ipleiria.pt/plenoisla
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• Angular resolution: 9× 9 SAIs.

• Spatial resolution: 1920× 1080 pixels.

• Bit depth: 10 bits.

(a) (b) (c)

Figure 2.14: Central SAI from the selected LFs of the SKINL2 dataset [27]: (a) Img 1, (b) Img
2, and (c) Img 3.

Table 2.1 shows a summary of the test materials characteristics, including the acquisition method,
resolution, bit depth, and number of LFs.

Table 2.1: Characteristics of the datasets used in this work.

Dataset Type Resolution Bit depth LFs

EPFL Lenslet: acquired with a Lytro Illum B01
Camera 13× 13× 625× 434 10 4

HCI HDCA: computer generated 9× 9× 512× 512 10 2

SKINL2 Lenslet: acquired with a Raytrix R42 cam-
era 9× 9× 1920× 1080 10 3

2.4.2 Coding Performance Metrics

The quality metrics specified in the JPEG-Pleno CTC are essentially focused on lossy compres-
sion, i.e., the peak signal to noise ratio (PSNR) and the BD [52] metrics. However, since this
thesis is focused on lossless compression theses metrics are not needed to evaluate the perfor-
mance of the proposed methods for which the only relevant criterion is the compression rate, or
bitrate.

In order to measure the bitrate, the Common Test Conditions of the JPEG-Pleno use the ratio
between the number of bits necessary to represent the (encoded) image and the number of pixels
in the whole LF, i.e., bits-per-pixel (bpp), defined as:

bpp =
BC1 +BC2 +BC3

T × S × V × U
, [bits/pixel] (2.6)

where BCi is the number of bits of the compressed colour component Ci (e.g., YUV) of the
image, T ×S represents the number of SAIs, and V ×U the number of pixels of a SAI. In parallel
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with the bpp the compression ratio will be used to evaluate the performance of the proposed
methods, this metric is defined as the ratio between the uncompressed and the compressed file
sizes:

CR =
Uncompressed file size

Compressed file size
. (2.7)

From the previous equation it can be easily inferred that lower bpp values results in a higher
compression ratios. In the following chapters this metric is not calculated explicitly, but is often
mentioned when comparing different methods.

Another relevant metric is the random access penalty (RAP), that measures the cost of the
random access capabilities of a codec. The random access penalty is defined by the JPEG-Pleno
CTC as the ratio between the number of encoded bits required to access a region of interest –
sub-aperture images in this work – and the total amount of encoded bits. This figure of merit is
defined by:

RAP =
# bits required to decode one SAI

# bits required to decode the full LF
. (2.8)

The RAP is reported for the region of interest that presents the largest value. In encoders
without random access capabilities this metric results in RAP = 1. Otherwise, when only a part
of the LF needs to be decoded it results in 0 < RAP < 1. In general, the compression efficiency
is penalised by coding options designed to obtain a low value for RAP. Therefore, RAP must
be evaluated along with compression efficiency because there is usually a tradeoff between these
two performance metrics.

2.4.3 Encoders Configuration

As previously stated, the JPEG-Pleno CTC use the HEVC [50, 53, 54] encoder as an anchor
for the evaluation of proposed encoders. However, HEVC was not developed specifically for
lossless compression, thus a set of lossless encoders are included for broader evaluation of the
proposed methods. The encoders used in this thesis can be divided in two categories, intra and
inter encoders. JPEG 2000 [55], Lossless and Near-lossless Compression of Continuous-tone Still
Images (JPEG-LS) [56, 57], and Context based Adaptive Lossless Image Codec (CALIC) [58]
are intra encoders, meaning that their compression algorithms encode each image individually.
HEVC (including its range extension [59]), Versatile Video Coding (VVC) [60,61], and Minimum
Rate Predictors (MRP) [62] are intra / inter encoders, meaning that their compression algorithms
can also exploit the similarities between frames within a sequence. The performances of the
proposed encoding methods are compared with these state-of-the-art encoders4. The state-of-
the-art encoders implementations and choice of parameters are shown in Table 2.2. Only the
main parameters are presented, everything else was left with the default values and settings.

4Not all of these encoders will be used for all the experiments.
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Table 2.2: Configurations of the state-of-the-art encoders used in this work.

Encoder Software Configuration Parameters

JPEG 2000 JPEG 2000 reference
software [63]

• 6 resolutions

• 64× 64 code-blocks

• Reversible DWT 5-3

• Multi-component transform disabled (-mct 0)

JPEG-LS JPEG-LS reference
software [64]

• Standard configuration (-ls 1)

• YCbCr colour transformation bypass active (-c)

CALIC Martin Briano’s im-
plementation [65]

• Lossless mode (-d=0)

• 2D CALIC (-m 1)

HEVC

HM reference soft-
ware v16.12, in-
cluding the Format
Range Extension [66]

• Main RExt profile (Profile=main-RExt)

• Lossless cost mode

• QP 0 (zero)

• Transform quantization bypass (TransquantBy-
passEnable=1)

• 32 intra period (IntraPeriod=32)

• 16 GOP size (GOPSize=16)

• CRA intra random access point (open GOP) (De-
codingRefreshType=1)

• TZ Search motion estimation (FastSearch=1)

VVC VTM reference soft-
ware v10.0 [67]

• Using configuration file: Random Access GOP32

• Using lossless configuration files

• QP 0 (zero)

MRP Author’s software
from [62]

• Maximum number of classes dependent on image
size

• Bidirectional prediction with GOPsize = 8 (-B -G
7)

• Histogram packing and variable block size predic-
tion enabled

• Reference pixels: defined for each experiment
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This chapter presents relevant background and a review on coding techniques related with the
research work carried out in this thesis. After a brief introduction on the basic principles of
lossless coding in Section 3.1, the JPEG-Pleno framework for light field (LF) coding is presented
in Section 3.2. In particular, the two algorithms selected for the JPEG-Pleno standard are
discussed. Section 3.3 presents a thorough review of lossless LF coding algorithms described
in the literature. The chapter is concluded with a detailed description of the Minimum Rate

21



22 3. Light Field Lossless Coding: a Review

Predictors (MRP) [62, 68] lossless compression algorithm, which is the basis of most of the
contributions of this thesis.

3.1 Lossless Coding Basics

The compression of a digital signal aims to obtain a compact representation of said signal using
a smaller amount of bits than its original representation. The foundations of signal compression,
i.e., source coding, were laid by Claude Shannon in “A Mathematical Theory of Communica-
tion” [69,70], where the author devised the fundamental definitions of information theory.

Lossless compression, as implied by its designation, is defined as a coding/decoding process where
no information is lost. This type of coding is commonly used in applications that cannot tolerate
differences between the original data and its reconstruction. Lossless coding is commonly used for
data that are expensive to collect, that require considerable processing to analyse, or that might
involve legal disputes due to inaccurate representations and should, therefore, be stored with
maximum accuracy. As previously introduced, medical imaging is an example of an application
with such accuracy requirements due to diagnostic certainty constraints. The information theory,
set by Shannon, defines any stochastic process as an information source, producing a sequence
of symbols from a finite alphabet. The amount of information carried by each symbol was
mathematically defined, based on the probability of its occurrence. The information theory uses
the statistical properties of the symbols produced by an information source, which might be
correlated between themselves, to establish the channel capacity required to transmit the source
information to a receiver [69]. In other words, how many bits are required to represent the source
information. This is achieved through proper encoding of such information, which in this context
is called source coding. The aim of source coding is to find out a compact binary representation
of the source information that is close to the entropy of the source, i.e., the average amount of
information conveyed per symbol.

Although several types of source coding approaches might be used, in lossless compression gener-
ally three steps are used, as illustrated in Figure 3.1. Most encoding methods start by performing
some sort of prediction, to remove the redundancy between symbols. Then, the resulting pre-
diction error is modelled to determine the source statistics, that are used in the entropy coding
step. These three steps are further detailed in the following sections.

Input Prediction
Error

Modelling
Entropy
Coding

Encoded
Bitstream

Figure 3.1: Lossless coding generic diagram.
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3.1.1 Entropy Coding

In information theory a discrete data source is one whose symbols are extracted from a known
discrete alphabet with a finite set of symbols [71]: A = {a1, a2, . . . , aK}, e.g., alphanumeric
characters. In a generic source like this, there might be some sort of dependency between
consecutive extracted symbols. In such case, the entropy of the source S, which measures its
average information level, is defined as [72]:

H(S) = lim
n→∞

1

n
Gn, (3.1)

where

Gn = −
K∑
i1=1

· · ·
K∑

in=1

P (X1 = i1, . . . , Xn = in) · log2 (P (X1 = i1, . . . , Xn = in)) , (3.2)

and {X1, . . . , Xn} is a sequence of length n from the source S. If the symbols generated from
the source S are independent and identically distributed, then S is generally called a memoryless
source. The symbols generated by a memoryless source can be modelled as a random variable
X that takes values in A with probabilities P (a1) through P (aK). Thus the entropy, in bits per
symbols, of such a memoryless source is defined as:

H(X) = −
K∑
k=1

P (ak) · log2(P (ak)). [bits/symbol] (3.3)

The entropy is dependent only on the probability distribution of the source alphabet, not on the
actual symbols. The entropy is bounded such that 0 ≤ H(X) ≤ log2(K), thus it is non-negative
and upper-bounded by the base-2 logarithm of the alphabet size. The upper bound is reached
only when the all symbols of the alphabet are equally probable. The entropy is a theoretical
limit for the minimum amount of bits necessary to represent the source information without loss.

The amount of information conveyed by a symbol from such a memoryless source is inversely
proportional to the probability of its occurrence. The information of a given symbol ak, in bits,
generated from a memoryless data source is given by:

I(ak) = − log2(P (ak)). [bits] (3.4)

Several techniques have been developed to approach the compression entropy limit, generally
referred to as entropy coding. Common entropy coding techniques include: Huffman codes [73],
arithmetic encoding [74], Golomb codes [75], and dictionary coding [76]. These types of coding,
essentially assign lower length codes to the more frequently occurring source symbols, unlike
fixed length codes, which use the same number of bits to encode each symbol.
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3.1.2 Predictive Coding

In the case of sources with memory, such as the case of natural language text where the letters
forming the words or sentences are not completely random, prediction can be used to remove the
symbols dependency, thus approximating a memoryless source. Signal processing operations de-
signed to remove the memory from the source are, generically, reversible. Usually, the prediction
of an arbitrary symbol xn is obtained by a linear combination of previously generated symbols,
i.e.,

x̂n =
∑
j

aj · xn−j , (3.5)

where x̂n is the prediction of the n-th symbol, xn−j are causal symbols, and aj are the coefficients
of the linear prediction. Prediction aims to exploit redundancies present in the message to be
encoded by estimating a given symbol, generated by the source, from previously observed symbols
from the same source. In general, such estimate is not perfect, thus the prediction error is defined
by:

en = xn − x̂n, (3.6)

where xn represents the n-th symbol to encode, x̂n its prediction and en the corresponding
prediction error. Ideally, after the prediction, the resulting error should be perfectly decorrelated
to allow optimal entropy coding. The coefficients of the linear predictor are commonly chosen to
minimise a mean square error (MSE) criteria [71]:

E
[
(xn − x̂n)2

]
= E

[
e2
n

]
. (3.7)

3.1.3 Error Modelling

When prediction is used, except for a few special cases, the resulting prediction error distribution
is unknown. The performance of an entropy encoder is optimal when the distribution of the
prediction errors if fully known, because in this case an optimal entropy code can be designed for
that specific distribution. Therefore, modelling the residuals statistics is of utmost importance
to allow the design of efficient encoders. Therefore, in practical implementations, most codecs
use a combination of prediction, modelling, and entropy coding.

When the source is the result of a well known physical process, a physical model might be used.
However, in many cases physical modelling of the process is too complex, or even impossible to
obtain. In such cases, the model might be obtained either through certain assumptions or based
on empirical estimation of the prediction error statistics. If the model is obtained with recourse
to an assumption approach the prediction errors are modelled by a given probability distribution.
When the model is based on an empirical observation approach the statistics can be inferred as
each symbol is encoded, leading to adaptive entropy coding procedures.
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3.2 JPEG-Pleno Light Field Coding

The JPEG-Pleno standardization initiative has led to the development of two encoders, namely
the Multidimensional Light Field Encoder (MuLE) [77], which is based on a 4D-discrete cosine
transform (DCT), and the Hierarchical Warping, Merging, and Sparse Prediction (WaSP) [78]
that exploits the inter sub-aperture image (SAI) redundancy. The former is better suited to en-
code LFs acquired with lenslet cameras, while the latter achieves higher efficiency for high density
camera array (HDCA) light fields. The following sections provide a more detailed overview of
the algorithms behind these encoders.

3.2.1 Multidimensional Light Field Encoder

The Multidimensional Light Field Encoder (MuLE) [77] was designed to exploit the 4D redun-
dancy of LFs by applying a 4D-DCT to 4D blocks of pixels. The bitplanes of the resulting 4D
coefficients are partitioned using hexadeca-trees, and the ensuing information is encoded through
the use of an adaptive arithmetic encoder. The three main operations of MuLE, as shown in the
block diagram of Figure 3.2, can be described as follows:

1. 4D Transform: the 4D-DCT used in MuLE is a separable transform that is applied to
each dimension of the LF individually. This allows to exploit the redundancy in each
dimension, generating coefficients which energy is concentrated around the DC component
in the 4D frequency space. This process is analogous to that used for 2D DCT. In order
to efficiently represent the zero and non-zero coefficients, a bitplane clustering is used.

2. Hexadeca-tree Bitplane Clustering: the bitplanes of 4D-DCT coefficients, resulting
from the first block in Figure 3.2, are clustered through a hexadeca-tree bitplane coder. As
each block has four dimensions, the segmentation results in 16 leaf blocks, i.e., sub-blocks,
resulting in a hexadeca-tree, similar to what occurs in a bi-dimensional quadtree. The
tree partition allows to encode blocks where all coefficient magnitudes are below a certain
threshold, with a single bit, ‘0’. Otherwise, the partition is signalled with a ‘1’ and the 16
resulting blocks have half the size of the original block in all dimensions. The partition
continues until all the relevant coefficients are processed.

3. Entropy Coding: after the conclusion of the hexadeca-tree clustering, MuLE uses a
context-based binary adaptive arithmetic encoder. Different contexts are used for the
resulting information: a binary context for the hexadeca-tree segmentation flags; a non-
binary context for the DC coefficients of the 4D-DCT; and a non-binary context for the
AC coefficients for bitplane of the 4D-DCT.
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Figure 3.2: MuLE block diagram.

3.2.2 Hierarchical Warping, Merging, and Sparse Prediction

The Hierarchical Warping, Merging, and Sparse Prediction (WaSP) LF encoder [78] exploits
the redundancy between the SAIs in the LF, by using depth information from the scene to warp
reference SAIs to the position of the SAI to encode. WaSP sorts the SAIs into hierarchical layers,
which grants the encoder some random access capabilities. WaSP was designed with the intent
of being compatible with the JPEG family encoders, by using JPEG 2000 as the underlying
intra-codec. The WaSP coding process can be divided in three steps:

1. Encode SAIs at the lowest hierarchy layer: the encoder starts by compressing the
LF SAIs belonging to the lowest hierarchy layer with JPEG 2000. The WaSP encoder
structure allows to replace the JPEG 2000 by any other encoder, as in [79], however
within the JPEG-Pleno framework, only JPEG 2000 is used.

2. Encode depth maps: in the second step, the depth maps of N SAIs are encoded with
JPEG 2000. This information is used to synthesise the depth maps and associated SAIs
that will be used as references to encode the remaining SAIs.

3. Encode remaining information using WaSP: in the third step, all the remaining
SAIs, that were not previously encoded in the first step, are encoded in a hierarchical
fashion with the WaSP algorithms. In order to encode an SAI in a hierarchical layer HL,
the algorithm requires the depth maps of SAIs in previous hierarchical levels, 1, ...,HL− 1

as inputs. This module has four main operations:

i. Warping: this step starts by warping the reference SAIs depth and colour informa-
tion to the position of the SAI to be encoded. This operation generates N synthesised
depth maps and SAIs for the (t, s) position of the SAI to be encoded.

ii. Merging: the warped references depth maps and SAIs are merged using the camera
centres. For the merging of the SAIs, a set of least-squares coefficients are used, which
can be fixed for low bitrates or adaptive for the optimal case, where the coefficients are
calculated taking into account the ground truth and need to be explicitly transmitted.
In the case of the fixed coefficients, these are derived from the distance of the current
SAI to the SAIs that were warped. As several viewpoints are used in the merger,
the occlusions will likely be uncovered in the resulting merged SAI. The remaining
occluded pixels are estimated through the use of a post-processing median filter. In
the case of the depths merger, no ground truth is available. Therefore, the encoder
resorts to a merging algorithm which requires no additional parameters. If the warped
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depth provides multiple merging candidates for a pixel, then the final value is selected
by taking the median of these candidates.

iii. Sparse prediction: the sparse predictor Optimised Orthogonal Matching Pursuit
(OOMP), described in [80], uses orthogonal least squares modelling to select the
regressor pixels and calculate the associated coefficients that better predict the SAI
using the merged information as reference. The information related to the sparse
predictor, such as the position of the regressors and the values of the coefficients
corresponding to these regressors, is transmitted in the bitstream.

iv. Encoding of the SAI residuals: finally, the residuals resulting from the difference
between the last operation sparse prediction and the SAI to encode are compressed
using JPEG 2000.

3.3 Light Field Lossless Coding

Several articles have been published reporting on methods for LF image coding, most of them
focused on lossy coding techniques. Some methods exploit the inherent correlations between the
neighbouring micro images which share a significant amount of information, due to the partially
overlapping field of views. For instance, in [81], a 3D-DCT is applied to a stack of MIs, to exploit
their correlation. In [82], lenslet images are compressed by extending the H.264 [83] spatial
prediction to take advantage of the similarity between the MIs by estimating and compensating
the micro images disparities. In the case of holoscopic video, disparity compensation is combined
with motion-compensated temporal prediction, as followed in [84], by using the tools of High
Efficiency Video Coding (HEVC) as the core compression algorithms. Other methods exploit
the correlation between sub-aperture images, using a pseudo-video approach, where such images
are encoded as frames of a video sequence using standard video coding methods [85,86]. In [87],
the lenslet image is decomposed into various sub-aperture images, which are assembled into a
cube, in order to apply a three-dimensional wavelet transform or DCT, followed by quantisation
and entropy encoding. In [88], a scheme based on Multiview Video Coding is proposed, where
the sub-images are re-arranged in a multiview video and encoded with the Multiview Video
Coding standard. Some of these solutions do not exploit depth information, leaving room for
more efficient prediction schemes that take advantage of multidimensional coding, as done by
the authors in [89, 90]. A comprehensive review of lossy compression methods on the literature
is available in [91].

The field of lossless compression of light fields, however, has been less explored, leaving room
for further research and new developments, as addressed in this thesis. Nevertheless, potential
contributions on LF lossless coding methods, shall depart from existing methods described in
the literature. Therefore, in this section, a review of the literature centred in LF lossless coding
is presented, providing a critical analysis of these techniques and identifying limitations that
motivate further research. In this literature review, the light field lossless compression techniques
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are grouped into the following sections, according to the LF representation format: MI, SAI, or
epipolar plane image (EPI).

3.3.1 Micro Image Compression

This first category can be divided in two, as some works choose to encode the raw sensor data
and others the MIs after the conversion to the 4D LF, as described in Section 2.2.3. In the
former case, encoders compress the raw ‘RGGB’ Bayer image obtained from the camera sensor.
However, such methods require a significant amount of camera metadata to be included in the
coded data, because this information is necessary to build the 4D LF and to extract 2D images
of the scene. Thus the compression efficiency might be greatly affected by this camera metadata.

Lenslet Raw Data Compression

For lenslet raw data compression, the work presented in [92], proposes to split the LF into four
colour planes and then computing the horizontal and vertical displacement between the micro
images, after analysing the entropy of each of these planes. Afterwards, a sequential prediction
process is performed and the residue is encoded using a Lempel-Ziv-Markov chain algorithm
(LZMA) [93]. The whole process is depicted in the coding architecture shown in Figure 3.3.

Raw
Plenoptic
Data

Splitter Entropy
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Block
DPCM
Encoder

LZMA
Encoder

Encoded
File

LZMA
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Figure 3.3: Architecture of the method proposed in [92].

Initially, the raw sensor data is separated into colour components by the Splitter. This module
decomposes the raw data into the raw colour components, resulting in four matrices correspond-
ing to the four colour components, as for every red and blue pixel two green pixels are captured
(and considered as independent channels), due to the colour filter array. The corresponding
decoder module, Merger, performs the inverse operation.

The resulting colour planes are independently processed by an Entropy Analysis module. Due
to the characteristics of the plenoptic images, each colour component is made of circular micro
images with very similar content, i.e., pixel values, amongst themselves. This module calculates
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an optimal displacement, (vd, hd) vertical and horizontal respectively, that achieves the best
matching between the pixels from a block and its replicas, i.e., in the different MIs, for each
colour plane.

This displacement is used to optimise a prediction process in the block differential pulse code
modulation (DPCM) encoder. This DPCM encoder partitions each colour component into blocks,
of (vd, hd) size, which are predicted using the previous horizontal block as reference. Finally, the
resulting information is encoded with a LZMA encoder. Compared to JPEG 2000 and JPEG XR,
this method reduces the bitrate by 56%, on average.

A different approach is proposed in [94], where the authors present a method named Sparse
Modelling Compression (SMC) to predict the current MI using the nine closest causal micro
images. The SMC starts by estimating the micro-lenses hexagonal grid parameters Ψ, and
encodes them into the bitstream. These parameters include the rotation angle αm, the horizontal
ho, and vertical offset vo of the hexagonal grid with respect to the sensors coordinate system,
which are necessary to obtain the rectified LF from the raw data. Then, an image identifying
the central pixels of each micro image is encoded using JPEG 2000.

In a second stage, the encoder determines which pixels do not belong to any MI after applying an
octagonal mask to each lens centre. These pixels are differentially encoded by using arithmetic
coding. The third stage runs through each MI in a row-wise order, and solves a regression
problem for each SMC, which is formulated as the prediction of vector v

(i,j)
1:192, i.e., predicting

the 192 pixels from each hexagonal MI, belonging to MI (i, j), as a linear combination of the
following vectors:

1. the column vector 1 of length K = 192, whose elements are all ones, to compensate for a
possible bias term;

2. the vector containing the elements labelled 0, ..., 191 of v(i,j), which ensures the prediction
of the k-th element of v(i,j) by the its (k − 1)-th element, i.e., each element of the spiral
is predicted by its preceding element;

3. the vectors performing the cross-prediction through the use of the nine causal neighbouring
MIs.

The prediction of the microlens (i, j) elements, d = v
(i,j)
1:192, is given by:

d = AΘ + ε, (3.8)

where Θ is the parameter vector, A is the regression matrix, and ε represents the prediction
residuals. The regression problem is solved by finding the parameters Θ, with the only optimi-
sation objective being the minimisation of the number of bits needed to encode the prediction
residuals ε and the parameters vector. Equation 3.8 is solved as a sparse regression problem
where only a fraction of the coefficients are non-zero. The problem is solved by using an ap-
proach that is similar to the minimum description length sparse prediction described in [95], by
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the same authors. The resulting parameters that need to be encoded are: the sparsity mask
γ, its size, and the non-zero coefficient values θ = Θγ . The residuals are calculated using the
estimated sparse prediction. Finally, the residual image is resampled into a 4D LF structure and
encoded using conditional contexts, which are defined as the average of its log-absolute values.
Reported results show that the proposed algorithm surpasses JPEG 2000 by up to 15.7% in
terms of bitrate savings.

More recently, the same authors proposed two encoding schemes for plenoptic camera sensor
images dubbed Sparse Relevant Regressors and Contexts (SRRC) [96]. The first one called
SRRC-PHASE exploits the redundancies present in the micro-lens structure and in the Bayer
mask pattern of the raw LF. The second scheme, SRRC-DEPTH, uses the same patch-by-patch
based prediction (the left neighbour patch is used as reference), with sets of sparse predictors
designed for sets of pixels situated in different depth levels of the scene, associated with classes.

The codec splits the lenslet image in rectangular patches, later classified into the prediction
classes, each roughly corresponding to a micro-lens, centred at the estimated MI centre. The
same parameters Ψ, described in [94], are transmitted in the bitstream, which can be used for
instance to estimate the MIs centres. Due to the natural misalignment of the hexagonal lattice,
some of the patches (each with 13 × 15 pixels) can overlap slightly. Both the patches and the
samples within them are traversed in a raster scan order.

The encoder exploits the intra- and inter-patch correlation, induced by the Bayer pattern and
the micro-lenses array (MLA), by considering that each sample in a patch can be modelled as a
linear combination of causal samples within the same patch and samples in the left neighbouring
patch that were already encoded. The encoder models a distinct linear sparse predictor (with a
maximum of NS = 20 non-zero coefficients) for each patch class and sample location, resulting
in 13 × 15 ×M linear predictors that need to be calculated and transmitted. The weights of
the linear prediction models are computed by solving a least squares problem. The resulting
information include the sparsity mask indicating the non-zero coefficients.

In the SRRC-PHASE scheme, the samples composing each ‘RGGB’ group are labelled according
to their Bayer phase. The relation between the phase of a sample in the current patch Pc and
the sample in its neighbour patch Pcn, defines the selection of the linear prediction models for
each sample, through the consideration of 16 pairs of phases (φc, φcn). For the SRRC-DEPTH
scheme, the algorithm uses the depth of the central sample of each patch to attribute a class to
each sample. The depth information is quantised toM intervals: Dq(v, u) = 1+dD(v, u)(M−1)c,
and for each sample a class is selected. Classes which are lowly populated after the quantization
are reassigned, to keep each class with a minimum number of elements. The classification is
explicitly transmitted to the decoder. Comparison of these two schemes shows that the former
produces better results in most cases.

Finally, the SRRC encoder uses the magnitudes of the sparse prediction vector elements as
the indicator for the context modelling used in the arithmetic coding of the prediction residuals.
SRRC manages to surpass the SMC method described earlier by approximately 0.6 bits-per-pixel
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(bpp), on average.

Miyazawa et al. use a modified version of the lossless encoder MRP to compress the ‘RGGB’ raw
image obtained from the camera sensor [97]. The authors consider the output of the lenslet cam-
era sensor as a two-dimensional image, and proceed to encode the samples in a raster scan order.
The redundancy between the samples is removed with linear prediction, using references from
the previously coded ones. Two types of linear predictors are proposed with the arrangements
shown in Figure 3.4. The first linear predictor, called Type-I, exploits both spatial and spectral
correlations of the Bayer pattern arrangement and might encompass references from other MIs.
The second linear predictor, called Type-II, exploits inter micro images redundancies, thus the
reference samples are placed in previously encoded MIs centred around the same pixel location
in all reference MIs.

(a) Type-I predictor.

(b) Type-II predictor.

Figure 3.4: Arrangement of reference samples used in [97].

In order to achieve an adaptive prediction, the authors designed multiple sets of linear predictors
for each LF to encode. Instead of partitioning the image in the traditional 2D rectangular
blocks, this encoder uses modified Voronoi cells for the partitioning of the image in hexagonal
blocks aligned to the MI structure. An extra partition is performed to minimise the impact of
vignetting at the edges of the micro-lenses, by dividing the hexagonal block into seven blocks
and separating the edges from a central, smaller, hexagonal block. As the blocks in the MI edges
tend to have similar gradients due to vignetting, a merging process is performed within a wider
hexagonal region that encompasses an area nine times larger than a single MI, so that a single
linear prediction can be applied.

The linear predictors are designed individually for each of the seven types of sub-blocks, in order
to provide a finer classification of the LF samples and limiting the side information needed for
the adaptive prediction. The prediction of a given sample p = (x, y) is given by:

ŝ(p) =

K∑
k=1

am,c(k) · s(p + rk), (3.9)
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where am,c represents the set of coefficients of the optimal predictor m ∈ 1, 2, ...,M selected for
a sample p, K is the number of samples that support the linear prediction, s(p) represents the
LF samples, and rk is the relative offset of the k-th reference sample. The encoder uses context-
adaptive arithmetic coding to compress the resulting prediction residuals and the associated side
information.

Codecs that encode the raw lenslet LF, like the ones described in this section, have the drawback
of requiring the rectification of the LF to be performed at the decoder side. This operation is
essential, for instance, for extracting the viewpoints from the LF and, this way, the computational
complexity of calculating the rectified LF is passed to the decoder side. Additionally, some works
do not take into account the cost of compressing and transmitting the side information needed
to perform the operations described in Section 2.2.3.

Rectified Micro Image Compression

In [98], Schiopu proposed to address the compression of MIs, called macro-pixels in his paper,
using deep learning based prediction, namely a Macro-pixel Predictive Convolutional Neural
Network (MP-CNN). The proposed MP-CNN uses six causal MIs to compute a MI prediction.

The Context based Adaptive Lossless Image Codec (CALIC) encoder [58] was used as a base
to implement the MP-CNN prediction. The common CALIC pixel-wise raster scan order was
changed to a MI-wise raster scan. The MIs are encoded through the following procedure:

1. the first MI is predicted using the CALIC predictor;

2. the encoder creates a MI volume Vp using up to 6 MIs on the causal neighbourhood of the
current MI (Mp);

3. Vp is used in MP-CNN to compute the MI prediction M̂p;

4. the prediction residuals M̂p −Mp are encoded in a raster scan order.

The encoding procedure proposed in this work allows to replace the MP-CNN predictor with
different state-of-the-art predictors. The authors use the predictors of CALIC and Lossless and
Near-lossless Compression of Continuous-tone Still Images (JPEG-LS), called LOw COmplexity
LOssless COmpression for Images (LOCO-I), as a comparison to the proposed MP-CNN method.
The context modelling for the residuals is also adapted to the MI structure from the CALIC
context modelling. The arithmetic coder provided by CALIC is used without changes. The
experiments show that the proposed method is able to surpass CALIC by approximately 20%,
in terms of bitrate. However, no comparison is made with other encoders that might exploit the
inherent redundancies present in the LF structure.

The same author further explores the use of deep-learning techniques to compress LF images
in [99]. This work employs deep learning to both encode and synthesise the LF images. A deep-
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learning approach is developed to synthesise in a single step the entire array of N ×N SAIs of
the LF. This method employs only a small selection of reference SAIs to synthesise the entire
LF. A different deep-learning based method is developed to losslessly encode the LF, expanding
on the findings of the authors previous paper [98]. The architecture of this method is shown in
Figure 3.5.
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Reference Macro-Pixels

Macro-Pixel
wise Lossless Coding

Reference Macro-Pixels
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Figure 3.5: Architecture of the method proposed in [99].

The method starts by selecting the reference SAIs. The encoder uses four configurations for the
reference selection, ranging from 2×2 to 5×5 SAIs, which are arranged in a symmetrical square
shape. The configurations were selected to represent cases where the MI synthesis is performed
based on a small number of references or by a large number of references. Then, the selected
reference SAIs are losslessly encoded, resulting in the base layer, shown in Figure 3.5. This
encoding procedure uses the pixel-wise Residual-Error Predictive Convolutional Neural Network
(REP-CNN) [100].

The proposed deep-learning method is used to synthesise the entire LF in a single step with the
selected reference SAIs. The algorithm generates the patch for synthesis based on surrounding
reference MIs, and then the MPS-CNN model is applied. The employed neural-network design
follows a multi-resolution feature extraction paradigm. The synthesised LF is used as a founda-
tion for a deep-learning based method that encodes the details of the LF image. The synthesised
LF provides extra information that leads to an improved MI prediction, that can use non-causal
synthesised MIs. For each MI, a patch for coding is collected using six already encoded MIs
and two synthesised MIs. Then the Prediction using Synthesized MPs based on Convolutional
Neural Network (PSMP-CNN) model is applied to compute the MI prediction.

In a similar fashion to the method proposed in [98], in this work the authors use the CALIC
codec as the basis in which the proposed predictions are used. Thus, the arithmetic coding of
the prediction residuals follow a similar method to that used in CALIC, including some of the
modifications used in [98]. Reported results, show that the method surpasses the one from [98]
by approximately 11%, in terms of compression ratio.
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3.3.2 Sub-Aperture Image Compression

This section, addresses the literature review on lossless compression of light fields represented in
the SAI format. The major focus of LF coding, both lossy and lossless, has been on compressing
light field data in SAIs format.

In [95], Helin et al. propose to use the redundancy between one SAI and its neighbours through
the use of a predictive scheme, where a optimal sparse predictor is designed for each segmented
region of the SAI to encode. The segmentation is based on the quantised depth map.

The SAIs are encoded sequentially starting with the central one, which is encoded with lossless
JPEG 2000. The quantised depth map of the central SAI is also encoded, using the algorithm
from [101], and transmitted in the bitstream. Each of the remaining SAIs is conditionally encoded
based on causal SAIs. The central SAI is partitioned into K regions of constant depth based on
the quantised depth map. Then the disparities are used to warp the constant depth regions of
the central SAI to the next SAI. Pixels that do not belong to any region after the warping, due
to occlusions, are allocated to the nearby regions.

The SAIs are processed in a spiral scanning order, as in [85]. The prediction uses the five closest
causal SAIs as references. A sparse predictor is designed for each region, depending on the causal
neighbourhood of the pixel to predict and also on the pixels on the same neighbourhood in causal
SAIs, provided that they belong to the same region of the pixel to predict. The sparse prediction
problem is formulated as:

minimiseθ ‖y −Dθ‖2 s.t. ‖θ‖0 ≤ κ, (3.10)

where y is the vector of pixels to predict, D is the matrix containing the regressors for the
prediction, such as the reference pixels in the reference SAIs, θ are the coefficients that define
the prediction relations, and κ is the prediction order, i.e., the number of coefficients. This
problem is solved by using Orthogonal Matching Pursuit (OMP), where the optimal prediction
order κ̂ is chosen using length optimisation. Non-relevant coefficients are set to zero and the
optimal prediction order, κ̂, represents the number of remaining non-zero coefficients,

The prediction coefficients are encoded with Golomb-Rice coding, and the sparsity mask is
transmitted as a side information header. For the prediction residuals, context modelling and
arithmetic coding are used in a similar fashion as in [102]. The authors use quantised gradients
classified into 16 contexts. The information that needs to be transmitted is: the central SAI
encoded with JPEG 2000, the quantised depth map of the central SAI, the disparities for each
SAI, the prediction mask, the coefficients, and the residuals.

In [80], the authors propose a more refined method built upon the one in [95]. The main
differences are: the segmentation is based not only on the depth information, but also on the
colour information; a new sparse design method is used (OOMP)1; the sparsity mask and the

1Other algorithms are studied but this is found to produce the best results.
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prediction coefficients are encoded with variable length coding, and their cost is accounted for in
the minimum description length (MDL) criterion; and cross-colour prediction is added. The new
sparse design method OOMP solves the problem of forward selection in least squares modelling.
The main difference to OMP is the trade-off between the computation time and the efficiency of
the coefficients calculation of the problem formulated in Equation 3.10.

Another variant of [95] was proposed by Tabus in [103]. This method models the scene and
the lenslet array geometry, providing the necessary information to warp the SAIs into different
positions. This method provides lossy-to-lossless scalable compression with random access (RA)
capabilities. It starts by converting the raw lenslet image to a stack of sub-aperture images. This
process is performed in the RGB image, but a colour-transform is applied before the encoding
process. The pixels within a MI are marked using a template function, in a spiral order. The
non-rectified SAIs are formed from pixels at the same position within each MI. This method
results in different SAIs than those described in Section 2.3, as the images are formed without
applying the processing chain described in Section 2.2.3. A set of selected reference SAIs are
jointly encoded, i.e., as a single image, with JPEG 2000, which ensures the possibility of random
access to the SAIs. For low bitrates, the method can encode with JPEG 2000 only the references,
while the remaining SAIs can be reconstructed predictively.

The authors use the depth estimation method from [104] to obtain a high resolution depth map
estimation, which is then re-quantised to 16 levels. The quantised depth map is used to segment
the SAIs into regions, following the same approach as described in [95]. This depth map is
encoded with the algorithm from [101]. The algorithm proceeds to estimate the displacements
of the regions from the central SAI to a side SAI in the same manner as in [95]. A difference
between this and the original method is that the possible displacements are defined by the
hexagonal lattice of the LF. For each region, the best displacement vector is found as the one
providing the lowest MSE between the central SAI and the displaced side SAI. Pixels that are not
in any region after the displacement due to occlusions, for instance, are treated in the same way
as in [95]. The displacements of each SAI and region are encoded by rearranging the symbols
to an image that is similar to a disparity map, which is encoded with the same algorithm as
in [101].

For each region in an SAI segmentation, a sparse predictor Θl is computed. The regressors for
the sparse prediction are taken from the pixels that were already encoded on the same SAI and
from eight causal SAIs of the neighbourhood. The sparse predictor is the same as the one in [95],
and the side information of the predictors is encoded in the same way. For lossless compression
the authors chose to transform the RGB image to a single plane ‘RGGB’ mosaic image. After
the lossless compression of the ‘RGGB’ mosaic, a demosaicing process is applied, resulting in
a near-lossless RGB image. The difference between the reconstruction and the original RGB
LF is encoded with lossless JPEG 2000. The method, for the lossless case, is compared with
JPEG 2000, showing bitrate savings of around 44%.

Schiopu et al. propose to exploit the similarities between SAIs using an adaptive predictive
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coding algorithm, called Context Modeling of Subaperture images (CMS) [105]. The algorithm
predicts the current SAI, I, at the position (t, s), defined as in Equation 2.4, using as reference
a neighbouring SAI, Iref , placed at the same column or line, (t, s± 1) or (t± 1, s), respectively.
The CMS method is represented by the diagram in Figure 3.6.

I
Adaptive

Predictive Coding
Residual
Analysis

Iref

Image
Segmentation

Entropy
Coding

Residual
Image

Segmentation Bitstream

signsmall
errors

big
errors

Figure 3.6: Architecture of the method proposed in [105].

The prediction is computed by applying a median filter to the prediction lists P, such that:
P1 = {Iref (v, u)}, P2 = {Iref (v, u), Iref (v, u+ 1)}, P3 = {Iref (v, u), Iref (v, u− 1)}, and, finally,
P4 = {Iref (v, u), Iref (v, u + 1), Iref (v, u − 1)}. The optimal predictor is selected by computing
the cost of encoding the residuals using Golomb-Rice codes resulting from using each list as the
predictor. The encoder uses prediction contexts, computed by using a binary mask resulting from
an edge detector, for which the optimal prediction from the previously described list is found.
The prediction residuals are encoded with entropy coding. The most common residual values,
which have the lowest absolute values, are encoded using a context modelling algorithm. On
the other hand, the largest residuals are encoded using a Golomb-Rice algorithm. This division
is performed in the Residual Analysis block. For each residual symbol the signal is separately
encoded as a ‘0’ for positive values and as a ‘1’ for negative values. The Image Segmentation
block is used to generate a segmentation of the image which divides the images into regions
containing pixels with similar values. The segmentation is obtained with the Simple Linear
Iterative Clustering algorithm [106], where the resulting regions are used as contexts. The CMS
encoder outperforms HEVC by approximately 9%, on average.

In [107], Schiopu et al. propose an improved method based on the previously described CMS [105].
Modifications are essentially performed to the Adaptive Predictive Coding and to the Image Seg-
mentation blocks. The new method is denoted CMS with gradient-based detection. The authors
introduce a gradient-based edge detector that is added to determine the segmentation, both in
Adaptive Predictive Coding and in Image Segmentation.

The new computation of the binary edge matrix in Adaptive Predictive Coding uses a threshold
based approach as in [105] to determine the contexts. The new gradient-based edge detector
results in better prediction contexts, when compared with CMS. As in CMS, this new encoder
uses segmentation to determine the contexts for the arithmetic coding. However, two types of
regions are considered: Object-based regions, used for selecting the most important objects of



3.3. Light Field Lossless Coding 37

the scene, and Edge-base regions, used for refining the contexts around the image edges. Two
algorithms were tested for the segmentation, the Quantum Cut based Segmentation for Coding
algorithm and the Scaled Difference Segmentation algorithm, with the latter achieving the highest
coding ratio. The new algorithm achieves a compression efficiency that is 2% higher than that
of CMS, on average.

Some of the works addressed in this literature review, concerning the lossless compression of LF
data in the SAI format, require the use of depth and/or disparity maps for the coding process.
While having the depth map on the decoder side could be an added value for the extraction
of extra viewpoints of the scene, for instance, it also raises additional concerns. Two problems
might arise from using the depth in the encoder. The first pertains to the methods of obtaining
the depth map, given that most acquisition setups do not address this issue. Depth maps are
usually computed from the actual LF, however these methods are not always reliable and could
negatively affect the codec performance. The second issue is related to the need to compress the
depth map along with the colour information of the LF, which can decrease the overall coding
efficiency of the methods when compared to others (especially if noisy depth maps are generated
by the depth estimation algorithms), as the depth map can also be estimated on the decoder
side.

3.3.3 Epipolar Plane Image Compression

Finally, to the best of the author’s knowledge, only two works are dedicated to exploit the
information of epipolar plane images for losslessly encoding the LFs. The first one, by Mukati
and Forchhammer, proposes to adapt the CALIC codec [58] to compress EPI images [108] in a
new method called Context Adaptive Compression of Epipolar Plane Images (EPIC). Bearing
in mind the structure of the EPIs in light fields, the authors propose to improve the prediction,
error energy estimation, and context modelling of CALIC.

The usual CALIC prediction module, Gradient-Adjusted Predictor (GAP), is replaced by an-
other that takes into consideration the EPI structure. The authors propose an EPI Slope based
Predictor (ESP), in order to appropriately predict the pixel intensities along each epipolar line.
The ESP estimates the slope of the edges in EPI regions, followed by a prediction of the pixels
intensity through a quadratic interpolation. The slopes of each region are estimated by employ-
ing 2 × 2 horizontal and vertical edge filters. In order to improve the method robustness, the
variance of each region is used to weight the average of the slopes. ESP takes advantage of the
intensity of pixels remaining the same in an epipolar line to estimate the perpendicular distance
of neighbouring indices. The estimated distances and the intensity of nearby pixels are used in a
1D quadratic interpolation to estimate the intensity of the current pixel along the epipolar line.
A least squares problem is solved to estimate the coefficients of the quadratic interpolation that
minimise:

arg min
α,β,γ

∑
j∈J

(
IHj −

[
αd2

j + βdj + γ
])2 (3.11)
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where α, β, and γ are the interpolation coefficients, IHj is the intensity of the pixel to be predicted
at the distance d = 0, and γ represents the in interception of the y-axis of the quadratic curve.

EPIC builds upon the estimation of the error energy function of CALIC by adding the prediction
residuals as an additional component in the error energy function. The estimator of this function
is quantised into eight bins, for which the edges were optimised to minimise the entropy of the
errors in a set of EPIs extracted from various LFs. Context modelling of the prediction residuals
is defined by the intensities of the local neighbourhood. Further refinement of the contexts is
performed so that the sensitivity to noise can be reduced. Reported results showed that EPIC
is able to outperform encoders like HEVC by approximately 8%, for the École Polytechnique
Fédérale de Lausanne (EPFL) dataset (resampled to a bit-depth of 8).

The previous work is further expanded in [109], increasing the compression performance by
5.3% and reducing the computational complexity of the EPIC encoder. Also, the possibility
of near-lossless compression was introduced. The CALIC predictor is replaced by a new one
called EPI-based Predictor (EPIP). This new predictor provides improved intensity prediction
and takes into consideration the structure of the EPIs through the estimation of the epipolar
lines slope.

EPIP assumes local smoothness of the disparity maps to estimate the slope of the epipolar lines.
With this assumption, the gradient vector is estimated by blending the gradient vectors of four
neighbouring regions. The gradient vector for each region r is calculated by:

∇ri =
∑
n

Fi(n)Br(n), (3.12)

where i ∈ {x, y}, Fi(n) are 2 × 2 filters, Br(n) represents the pixel values in the neighbouring
regions, n indexes all elements in the blocks and filters, and ∇ri presents the component i of the
gradient vector r. Robust estimation of the gradient vectors is achieved by removing the outliers
and through a weighted sum of the inlying gradient vectors.

As in [108], this method assumes that the pixel intensity along an epipolar line remains constant.
This property allows to use the previously calculated slope to predict the pixels intensity. The
estimated gradient vector ∇r is used to calculate the projected relative distance of the neighbour-
ing pixels position. With the intensity of the neighbouring pixels and the projected distances, the
prediction of the current pixel is interpolated using a quadratic curve fitting. The relationship
between the projected distance and the intensity of neighbouring pixels is given by:

Ij = αd2
j + βdj + γ, (3.13)

where Ij represents the intensity of neighbouring pixels, α, β, and γ are the coefficients for the
prediction that are calculated by solving a least squares problem, and dj is the distance from the
projection origin to the neighbouring pixels positions. For robust prediction, a weighted average
is taken between the prediction and an average of the intensities. Additionally, to reduce the
influence of noise and of potential occlusions, the encoder uses a weighted average prediction
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taking into account the prediction from the vertical (taken in (t, v)) and the horizontal (taken
in (s, u)) EPIs:

Î =
νV ÎH + νH ÎV
νH + νV

, (3.14)

where νH and νV represent the local variations in the neighbourhood for the horizontal and the
vertical EPI, respectively. The prediction residuals are encoded by using a context modelling
arithmetic coding as in [108].

3.4 Minimum Rate Predictors

Most of the coding solutions developed and proposed in the scope of this thesis are based on the
Minimum Rate Predictors (MRP) lossless encoder. MRP is a highly efficient lossless image codec
surpassing other state-of-the-art codecs for most types of images. Therefore, this section provides
an overview of the inner works of the MRP algorithm, which will be helpful to understand the
techniques proposed in the following chapters.

Minimum Rate Predictors coders, like other lossless coding algorithms, try to minimise the coding
rate of the prediction error [68], rather than minimising the mean square prediction error for a
given rate constraint, as occurs in lossy encoders. The approach used by the MRP algorithm
to achieve high coding ratios is to estimate the amount of information conveyed by prediction
errors, and then design the predictors with the goal of minimising the rate. To cope with the
content diversity of generic images, MRP uses an adaptive prediction scheme for each image. As
for the prediction residue, the algorithm uses entropy coding based on context modelling. Such
prediction residues are sorted into one of several predetermined groups, i.e., contexts, depending
on their characteristics. The set of residues pertaining to a given group are then represented by
a generalised Gaussian probability density function [68] which parameters are estimated group
by group.

Mathematically, MRP is formulated as the search for linear predictors, associated with classes,
that minimise the number of bits used to encode the prediction errors and associated information.
Classes are characterised by linear prediction models, each with a set of coefficients. As described
in [68], the information associated with the prediction errors e in an image region R, is given by

I(R) =

N−1∑
n=0

{
−
∑
p0∈gn

log2 αn +
log2 ε

2
·
∑
p0∈gn

e2

σ2
n

}
, (3.15)

where I(R) indicates the estimate of the total amount of information measured in bits, N is
the number of groups associated with the context modelling, gn is the set of pixels in the n-
th group, σn is the variance of the prediction error e of the n-th group, ε is Euler’s number,
and αn = ∆e√

2πσ2
n

, with ∆e representing a sufficiently small quantisation step-size of e. The

objective of the encoding procedure is to minimise I(R), by properly determining the sets of
linear prediction coefficients for the M classes. The classes associated with linear prediction
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models in MRP are adapted to the characteristics of each image, through the use of a variable
block size partitioning scheme in the iterative minimisation of the cost function. In general, the
MRP algorithm processing flow can be represented by the block diagram shown in Figure 3.7,
which is further described by Algorithm 3.1, where each colour represents the same operation
in both the figure and the algorithm. The modules include three main stages: Fixed Block-Size,
Variable Block-Size, and Arithmetic Coding. MRP uses a range coder [110] for the arithmetic
compression of all generated information.
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Figure 3.7: Functional diagram of the MRP algorithms.

3.4.1 Fixed Block-Size

In the Fixed Block-Size stage, blocks of 8× 8 pixels are used to calculate the coefficients of the
M linear prediction models that define the corresponding classes. First, the blocks are sorted
according to their pixel variance (σ2) and distributed by the classes in an increasing variance order
to initialise the algorithm, in the Initial Block Classification module. Each class is associated
with a linear model used for the prediction of pixel p0 shown in Equation 3.16.

ŝ(0) =
K∑
k=1

am(k) · s(k), (3.16)

where am(k), represents the prediction model weights associated to reference pixels for the m-th
class associated with the pixel p0. In Equation 3.16, s(k) are the reference pixel values at position
k of the prediction support region (see Figure 3.8, where p0 represents the pixel to predict s(0),
and the remaining pk represent the prediction reference pixels s(k)), and K is the size of the
prediction support region. For each class m, the coefficients (am) of the corresponding linear
prediction model are determined in Predictors Design module, by solving a set of Yule-Walker
equations, using the inherent pixel correlations present in all the blocks associated with the class
m.
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Algorithm 3.1 MRP high level algorithm.
1: Input: image

#Initial block classification
2: Sort and classify 8× 8 blocks by pixel variance

#1st optimisation loop using fixed block size
3: for 1 to MAX_ITERATIONS do

#Predictors design
4: for each class do
5: Compute the prediction coefficients (am)
6: Calculate residuals
7: Calculate prediction residue encoding cost (Br)

#Groups optimisation
8: for each class do
9: Compute C quantisation thresholds to minimise Br
10: Calculate Br

#Classification optimisation
11: for each 8× 8 block do
12: Move neighbour blocks classes to front of list
13: Calculate residuals for all classes
14: Select class that minimises Br
15: Calculate Br
16: if 10 iterations without improvement then
17: end for loop

#2nd optimisation loop using variable block size
18: for 1 to MAX_ITERATIONS do
19: Calculate prediction coefficients encoding cost (Ba)

#Groups optimisation
20: for each class do
21: Compute C quantisation thresholds to minimise Br
22: Update shape parameter in probability models
23: Calculate quantisation thresholds cost (Bt)

#Classification optimisation using VBS
24: for Each 32× 32 block do
25: ClassOptimisation
26: Calculate cost J
27: if 10 iterations without improvement then
28: end for loop
29: Remove non-utilised classes
30: Run arithmetic coding
31: Output: Encoded bitstream

p0p1p3p7

p12p6p2p4p8

p11p5p9

p10

Figure 3.8: Support template used for prediction in MRP.
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Algorithm 3.2 Classification optimisation procedure.
1: procedure ClassOptimisation
2: Move neighbouring blocks classes to front of the list
3: Calculate residuals
4: Select class that minimises Br
5: if level > 0 then
6: Calculate cost of not partitioning block (J1)
7: Partition block in quadtree fashion
8: for each resulting block do
9: ClassOptimisation
10: Calculate sum of cost of partitioned blocks (J2)
11: if J2 < J1 then
12: Partition block
13: Return: Cost, partition structure and class selection

Then, in Optimise Groups, the algorithm calculates a set of thresholds that are used in the
quantisation of the prediction residuals context (C). The thresholds divide the context into
groups that use the same probability model – defined by the parameters of a Gaussian probability
density function, for the arithmetic coding. In the optimisation of the groups context modelling,
the prediction error is used to find a probability model, represented by a generalised Gaussian
probability density function. The context for a pixel is determined by finding an estimate of the
variance of the prediction residuals at that pixel, given by:

C =

K∑
k=1

1

δk
|s(k)− ŝ(k)| . (3.17)

The weighting factors δk are proportional to the Euclidean distance between the current pixel,
p0, and the reference ones, pk, as given by Equation 3.18, ŝ(k), is the predicted value of the k-th
reference pixel, and s(k) are the reference pixel values. The parameter C is then quantised using
threshold values and each pixel is classified into one of the groups corresponding to a constant
variance.

δk =

√
dx(k)2 + dy(k)2

64
, (3.18)

where dy and dx are the spatial distances, measured in pixels, between a reference pixel k and
the pixel to encode.

The first optimisation loop is concluded by the Classification Optimisation module, which refines
the initial block classification into the newly calculated linear models of the classes. In this
operation, the algorithm starts by sorting a lookup table of the classes in order to move the classes
of neighbouring blocks to the start of the table. By sorting the classes table and transmitting
the associated index, the algorithm favours classes of neighbouring blocks and allows for a more
efficient coding of the selected class index, as the resulting indices will generally have small
values. Then, the prediction residuals of each block are calculated for all the classes prediction
coefficients, am, to find the class that minimises the prediction residuals encoding cost Br,
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calculated by:
Br =

∑
p0

L (e|ŝ(0), n) , (3.19)

where L(e|ŝ(0), n) represents the encoding cost of the prediction error, which is calculated by
using the probability density estimate of the prediction errors belonging to the n-th group,
assumed to follow a Gaussian distribution. The first optimisation loop ends when the algorithm
reaches the maximum number of iterations, or 10 consecutive iterations without improvement.

3.4.2 Variable Block-Size

The second optimisation loop refines the operations of the previous loop by using variable block
size (VBS), and fitting the probability models. The Variable Block-Size takes into account the
cost in bits of encoding both the side information and the prediction errors:

J = Ba +Bm +Bt +Br, (3.20)

where Ba, Bm, and Bt are the encoding costs of the prediction coefficients, class selection, and
context modelling threshold values, respectively. For every iteration where J is calculated, all
its sub costs B are recalculated.

In the previous loop, at the Groups Optimisation step, only the threshold for the quantisation of
C was optimised. Contrarily, in this phase, the algorithm also updates the shape parameter of
the generalised Gaussian probability density functions, which are used to model the prediction
residuals of each group. Then, in the Classification Optimisation step, the MRP divides the
image in blocks that are partitioned in a quadtree fashion, selecting for each block the class
which linear predictions model was designed in the first loop that minimises the encoding cost.
The quadtree partition stage is indicated by the level value associated with a given block. The
initial block size in the VBS optimization is 32 × 32 pixels (indicated by level equal to four),
which can be partitioned down to blocks with 2× 2 pixels (indicated by level equal to 0). This
optimization aims at minimising both side information, represented by Bm in Equation 3.20, and
the prediction error cost. Bm can be further represented by:

Bm = Bmflags
+Bmclass

, (3.21)

where Bmflags
, given by Equation 3.22, represents the cost of selecting the partition flags and

Bmclass
the cost of selecting a class for each resulting block.

Bmflags
=

− log2(Pctx), not partitioned

− log2(1− Pctx), partitioned
. (3.22)

In Equation 3.22, Pctx represents an approximation of the probability of the blocks in a given
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context not being partitioned, given by:

Pctx =argmin
p
{− log2(p) ·#ctx 0 − log2(1− p) ·#ctx 1} ,

s.t. p ∈ {0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95},
(3.23)

where #ctx 0 and #ctx 1 represent the number of occurrences of the 0 and 1 partition flags,
respectively, in each context, i.e., the number of times each block is either not-partitioned or
partitioned in each given context. Variable p represents the probability that minimises the cost
of selecting a flag in each context. This probability is selected from a discrete set to minimise the
cost of transmitting the real probability value, therefore only a single index needs to be sent to
the decoder. The quantified probability calculation of Equation 3.23 follows that used in MRP,
which was first introduced with the variable block size in [68].

Finally, the context calculation is determined at each level by the number of neighbouring blocks
which were partitioned at said level:

Cqtflags(level , b) =
∑

nb∈N(level ,b)

qtflags(nb), (3.24)

where b represents a block, qtflags the partition flag for block nb with the size given by level (0
and 1 for non-partitioned and partitioned blocks, respectively), and nb are the neighbour blocks
belonging to the set N(level , b) of neighbouring blocks partitioned at the same level as b. As
MRP uses 4 levels for the block sizes and in the quadtree three neighbours are being considered,
there are a total of 16 different contexts.

The block sizes define the quadtree levels ranging from 4 to 0. For each quadtree level, the
decision to partition a block depends on whether or not the sum of the sub-blocks costs (J2) is
smaller than the cost of the parent non-partitioned block (J1). The encoding of the index of the
selected class is achieved by the same process described in the previous optimisation loop.

3.5 Minimum Rate Predictors Video

Over the years some solutions based on MRP appeared in the literature. More recently, the
author proposed a MRP video codec [62], which employs a bidirectional prediction scheme where
the reference frames are selected in a similar fashion to that of HEVC. The proposed bi-directional
prediction uses two frames, chronologically before and after the frame to encode, as the support
for the prediction, as shown in Figure 3.9. The new bi-directional prediction is given by:

ŝ(0) =

Kc∑
k=1

am(c, k) · s(c, k) +

Kb∑
k=1

am(b, k) · s(b, k) +

Kf∑
k=1

am(f, k) · s(f, k), (3.25)

where am(i, k), with i ∈ {c, b, f}, represent the prediction model weights associated to pixels in
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the current and reference frames (forward and backward), respectively, for the m-th class. In
Equation 3.25, s(i, k), with i ∈ {c, b, f}, are the pixel values in the current and reference frames
at position k of the prediction support region (see Figure 3.9), and Kc, Kb, and Kf are the sizes
of the prediction support regions. In MRP video, the prediction support templates were defined
to be centred at the position of the pixel to be predicted, indicated by the circles in Figure 3.9.
In the same way, the context for a pixel was updated to reflect the changes in the prediction, as
seen in Equation 3.26.
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Figure 3.9: Support templates used for intra and bidirectional prediction.

C =

Kc∑
k=1

1

δk
|s(c, k)− ŝ(c, k)|+

Kb∑
k=1

1

δk
|s(b, k)− ŝ(b, k)|+

Kf∑
k=1

1

δk
|s(f, k)− ŝ(f, k)| . (3.26)

The weighting factors δk are proportional to the Euclidean distance between the current pixel, p0,
and the reference ones, pk, as given by Equation 3.27 The parameter C is then quantised using
threshold values and each pixel is classified into one of the groups corresponding to a constant
variance.

δj,k =

√
dx(k)2 + dy(k)2 + λ2

64
, (3.27)

where dy and dx are the spatial distances, measured in pixels, between a reference pixel k and
the pixel to encode, λ represents the distance between frames and is set to 1 for the reference
frames, and set to 0 for the current frame.

3.5.1 Histogram Packing

Prior to the actual encoding, a pre-processing step is used to compact the input image/video
histogram. This technique, which was introduced to MRP video in [62], improves the performance
of lossless prediction based encoders, provided that it produces an image with lower total variation
(TV) than the original. The literature shows that prediction and transform based encoders have
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a poor performance when compressing images with sparse histograms [111]. Essentially, it is
proven that when an image histogram is sparse, meaning that not all the possible amplitude
values are used, and the used values are not contiguous, encoders perform poorly. This problem
was alleviated in MRP video by using histogram packing prior to encoding.

The histogram packing method used in MRP video operates as follows: first, the number of
different amplitude values in the images is determined to compute the dynamic range of the
histogram packed sequence; then, the original values are mapped onto the new amplitude range,
through the use of a lookup table, preserving the ordering of the amplitudes. The image maximum
value parameter is changed for the new active maximum value present after the histogram packing
is performed. This parameter affects several structures in MRP such as the arithmetic coder,
and has an impact in the compression efficiency.

The information needed to revert the histogram packing is transmitted by encoding the con-
version table through the run length encoding (RLE) method described in [112]. As the MRP
encoder compresses video sequences the histogram is calculated for the input sequence at once,
for simplicity. This ensures that the reference images have pixels in the same range as the im-
age to encode. The encoder uses the TV to decide whether the histogram packing should be
used. If this operation produces an image with lower TV than the original, this means that the
approximation error is reduced, thus increasing the compression efficiency.

3.5.2 Coded Stream Syntax

The syntax of MRP video bitstreams includes a sequence header, followed by the information at
frame level, which consists in the number of classes, quadtree division and classification, predic-
tors coefficients, and prediction error. This is organised as shown in Figure 3.10, representing the
sequence of the syntax elements: sequence header (SH), number of classes (NC), class partition
(CP), class coefficients (CC) and threshold values (ThV), followed by the prediction residuals
(PR). The shaded blocks, in light grey and grey, represent the side information at sequence and
frame level, respectively.

Frame 1 Frame N

SH C1 CP1 CC1 TV1 PR1
. . . CN CPN CCN TVN PRN

Figure 3.10: MRP stream frame-based structure.

3.6 Summary

This chapter discussed basic aspects of image coding, presenting the underlying principles of
current lossless LF compression approaches based upon the information theory, followed by a
review of the most relevant works on LFs lossless compression. The literature review, presented
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in Section 3.3, provided a comprehensive overview on LF lossless coding, allowing to better assess
the motivation and research advances of this thesis beyond the current state of the art.

The aforementioned review discussed diverse works addressing LF coding methods capable of
providing an overall high compression efficiency. However, none of these present a comprehensive
encoding solution that is able to achieve both a high compression efficiency, and also provide
other capabilities in the bitstream, such as RA and scalability. This thesis addresses this gap by
proposing, amongst other contributions, a new encoder that provides support for these enhanced
capabilities to the bitstream, allowing to access specific SAIs or areas of the LF. Another gap
that was found in this review is related to the colour space in which the images are encoded.
In fact, most, if not all, the previously quoted works use the common RGB colour space, which
is not the most efficient for compression [113] due to the redundancies between colour channels.
Another example that is worthwhile to mention is the lack of enhanced capabilities for flexible
navigation in the encoded LF.

The chapter is concluded with a thorough description of the MRP algorithm used for lossless
image coding. In previous works [62] it has been shown to achieve state-of-the-art performance
on the lossless compression of biomedical images. Therefore, the MRP was selected as the base
for most of the contributions described in the following chapters.
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In order to face the new image compression challenges unveiled by the light field (LF) technology,
this research started by investigating methods compatible with existing codecs. In this context,
compatible compression means to use a generic state-of-the-art codec to encode the 4D LF data,
re-arranged in a format that is compatible with the encoder. It allows the use of existing encoders
to compress new types of data, therefore minimising the effort needed for early adoption of LF
imaging. Often, pre-processing methods are used to increase the compression efficiency of LFs,
a topic also addressed in this chapter. Such approaches may be based on algorithms that either
reduce the redundancy of the LFs or conform the LF data format to the requirements of each
specific encoder.

The present chapter is organised as follows, Section 4.1 presents various data arrangement formats
for LFs that are compatible with state-of-the-art encoders [J3], Section 4.2 presents a study on
the impact of reversible colour transforms on the coding efficiency [J4, C5], and Section 4.3
proposes a pre-processing disparity compensation algorithm for LFs [C1]. Section 4.4 presents
an experimental evaluation of the proposed methods, and Section 4.5 concludes the chapter by
summarising its main contributions.

49
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4.1 Light Field Data Arrangements

In general, there are several factors that impact the performance of a video or image encoder,
like input content, data quality and representation, coding architecture and algorithm, as well
as system parameters.

The performance of coding algorithms is greatly dependent on the data format that is used
for the representation of LF visual content, therefore the structure arrangement of the input
images can be a key factor to boost the compression performance. In this section, three LF
data arrangements are used that are compatible with generic image and video codecs, providing
different formats for LF conforming compression. The data arrangements are: lenslet array,
pseudo-video sequence (PVS) (stack of sub-aperture images), and epipolar plane image (EPI)
stack arrangements.

A lenslet array is an image composed of a two-dimensional array of micro images (MIs). In
this arrangement, a pattern corresponding to the micro-lens array of the optical system is clearly
discernible, as shown in Figure 4.1. In the case of Lytro Illum camera, each of these micro
images has 15 × 15 pixels, where the black pixels at the corners of each MI correspond to
values computed with low reliability, as explained in Chapter 2. Since they may be used in LF
reconstruction, they must also be losslessly encoded. In general, compression of lenslet array
images use intra-frame coding algorithms, exploiting the spatial redundancy within the 2D set
of data as a whole.

Figure 4.1: Example of the lenslet LF representation of the Bikes image from [43].

A common format that is used to represent LF data is the so-called pseudo-video sequence,
which consists on a stack of SAIs, where the individual SAIs are re-interpreted as video frames.
As mentioned in Chapter 2, the spatial position of each pixel in an MI represents the direction
of a light ray. Thus, an alternative data format reinterprets the multiple sub-aperture images,
derived from the LF micro images, as a short pseudo-video sequence (PVS), where the SAIs
assume the role of video frames. In spite of the existing redundancy between adjacent LF micro
images, higher compression performance is expected when pseudo-video is used instead of lenslet
images. This consideration is due to the video encoders being able to make use of some of the
angular redundancies described in Section 2.3. The black pixels in the corner of each micro-image
generate black sub-aperture images, which are referred to as low reliability black frames (LRBFs)
and have different properties than the remaining SAIs.
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The compression performance of LF PVS using standard lossy video encoders was addressed in
[85], using the state-of-the-art High Efficiency Video Coding (HEVC) encoder with two different
arrangement schemes for the stack of SAIs, namely Raster and Spiral scan. However, to the
author’s best knowledge, the impact of such different data formats for lossless encoding has
never been investigated prior to this thesis. Additionally, due to its inherent characteristics, the
LRBF images may be properly exploited to improve the compression efficiency. Thus, this work
investigates the performance of lossless coding using various schemes to generate PVS extracted
from the stack of SAIs, namely a new scheme named Spiral-blackend (SBE).

The representations of the three scan orders used in this work are depicted in Figure 4.2. As
can be inferred from Figure 4.2a and 4.2b, in the frame sequence resulting from Raster and
Spiral scans, the LRBF images are inserted between other sub-aperture images with significant
information, which may be detrimental for inter-frame prediction. In the proposed SBE scan,
the PVS is built upon the spiral order, but packing together all LRBF images at the end of the
sequence, rather than including them in the middle of the sequence as before. In Figure 4.2c,
the scan starts at the central SAI, in an SAI array sense, proceeding along the green spiral, in
order to minimise the disparity between consecutive scanned views, thus displacing the corner
frames to the end of pseudo-video sequence. The green path is followed by the yellow path (outer
path) and then by the red path (external path), in a clock-wise fashion. The order of the paths
is indicated by the number in blue inside the white squares.

The EPI stack representation uses epipolar plane images that are formed through the intersec-
tion of a specific pair (t, v) or (s, u) in the LF array, as explained in Chapter 2. The depths of
the objects in the scene are closely related to the slope of the lines present in these images [48].
For instance, a vertical line indicates that an object is located at an infinite distance from the
camera, and therefore such object has no disparity between the SAIs. An example of the rep-
resentation of an EPI slice from the pseudo-video sequence Friends 1 is shown in Figure 4.3.
This type of image presents very specific characteristics, as it comprises smooth areas and sharp
edges. Therefore, it is expected that methods based on linear predictors, like Minimum Rate
Predictors (MRP), perform more efficiently on predicting the sharp edges, thus achieving higher
compression efficiency than other encoders.

v

u

(a)

(b)

(c)

Figure 4.3: Extraction of an EPI using the Friends 1 LF from [43]: (a) intersection of the SAIs
stack, (b) resulting stack of EPIs, and (c) EPI resulting from the angular position t = 8.
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Figure 4.2: Representation of the used scans: (a): Raster, (b): Spiral and (c) Spiral-blackend.
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4.2 Reversible Colour Transforms

Due to its inherent inter-component correlation, the RGB colour space is not the best choice
when compressing natural images [113]. This fact has prompted the development of other colour
spaces, to which the RGB images are converted prior to the encoding process. Since this work
is focused on LF lossless compression, only reversible colour transforms should be considered to
ensure perfect reconstruction of the original image after decoding. To the best of the author’s
knowledge, the use of these alternative colour spaces had not been considered in the context of
light field data compression prior to this thesis.

In the scope of this work 6 different colour spaces, and associate reversible transforms, were ex-
plored, namely, A2 [114], LDgDb [115], LDgEb [115], RCT [55], RDgDb [115], and YCoCg [116].
This choice is grounded on previously published research that indicate these spaces have the
best performance in the context of image compression. For example, RCT and YCoCg spaces
are used in the JPEG 2000 and JPEG XR standards, respectively, because of their superior
performance [115]. However, since higher component decorrelation does not always translate
into higher compression efficiency, it is important to extend the study to other colour spaces and
associated transformations. With the exception of A2 and RDgDb, which use the original G and
R components as the Y component, all the other transforms have one component that represents
the luminance.

For the purpose of lossless compression these transforms are constrained to be reversible, with a
potential range expansion. Other colour spaces, like YCbCr, are the result of irreversible trans-
forms, unless a range expansion of 2 bits-per-sample is accepted [115]. Any linear transformation
can be made reversible (integer-reversible) given that the determinant of the transformation ma-
trix is equal to ±1, as this allows the use of a lifting scheme for factorisation of the transformation
matrix [115]. As mentioned in [115], these lossless transforms are designed to enable higher com-
pression ratios at the expense of small range expansions. The mathematical expressions of these
reversible transforms, which only involve sums, subtractions and bit-shifts, lead to a bit-depth
of the transformed image that is, at most, one bit higher than that of the original image. De-
spite the range expansion, due to the decorrelation performed by these transforms, the overall
compression performance is improved.

Table 4.1 presents the mathematical definitions of each transform, where Cj , j = 1, 2, 3 and b.c
represent the resulting components and the floor operation, respectively. Table 4.2 presents the
mathematical expressions that define the corresponding inverse transforms.
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Table 4.1: Reversible colour transforms from RGB to target colour space (forward transform).

Target Colour Space C1 C2 C3

A2 G B −G R−G

LDgDb R−
⌊
C2
2

⌋
R−G G−B

LDgEb R−
⌊
C2
2

⌋
R−G B − C1

RCT
⌊
R+2G+B

4

⌋
B −G R−G

RDgDb R R−G G−B

YCoCg B +
⌊
C2
2

⌋
+
⌊
C3
2

⌋
R−B G−B −

⌊
C2
2

⌋
Table 4.2: Reversible colour transforms from the colour space to RGB (inverse transform).

Origin Colour space R G B

A2 C3 −G C1 C2 + C1

LDgDb C1 −
⌊
C2
2

⌋
R− C2 G− C3

LDgEb C1 +
⌊
C2
2

⌋
R− C2 C3 + C1

RCT C3 +G C1 −
⌊
C2+C3

4

⌋
C2 −G

RDgDb C1 C1 − C2 G− C3

YCoCg B + C2 C3 + C1 −
⌊
C3
2

⌋
C1 −

⌊
C3
2

⌋
−
⌊
C2
2

⌋

4.3 Disparity Compensation for Multidimensional LF

Encoding

This section describes a novel disparity compensation method to enhance the matching between
the various SAIs of a 4D LF. The proposed method was initially designed to be used with
LF lossless encoders. However, due to the algorithm characteristics, the resulting disparity
compensated LF has a larger resolution than the original one, resulting in worse compression
efficiency in lossless codecs. Nevertheless, as shall be demonstrated, this method improves the
performance of 4D transform-based LF lossy encoders, namely to the Multidimensional Light
Field Encoder (MuLE) [77]. Figure 4.4 presents the workflow of the proposed approach, where
disparity compensation operates as a pre-processing of the 4D LF in the SAI domain (Lt,s(v, u)

as represented by Equation 2.4). The resulting image L̃t,s(v, u) is then encoded without any
further changes nor modifications of the encoding algorithm. The objective of the pre-processing
is to obtain a disparity-compensated LF, L̃t,s(v, u) given by Equation 4.1, where, ideally, there
is no disparity between the resulting SAIs and consequently the prediction error is minimised.
This algorithm was designed to be perfectly reversible, which means that the inverse operation
restores the original LF without loss. To accommodate such requirement the number of pixels of
the resulting disparity compensated LF is larger than initially, because when pixels are shifted to
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compensate for the disparity new regions are created at their previous positions that need to be
in-painted. The new disparity compensated LF is then encoded using the 4D LF encoder MuLE.
The experimental results show that, despite the increase on the input data size, the proposed
approach is able to improve the compression efficiency of MuLE, in terms of Bjøntegaard delta
(BD) rate reduction, for high density camera array (HDCA) LFs.

LF
Disparity

compensation
algorithm

4D LF
Encoder

Lt,s(v, u) L̃t,s(v, u) Bitstream

Figure 4.4: Workflow of the proposed method.

As previously stated, the disparity compensation algorithm increases the amount of data, i.e., the
number of pixels, that need to be compressed, which has a negative impact on the compression
efficiency of lossless encoders. However, in the case of lossy encoders, namely MuLE (described in
Section 3.2.1), this algorithm is able to improve their compression efficiency. Therefore, despite
not being the main focus of this thesis, the disparity compensation algorithm was evaluated
for lossy compression, using the MuLE encoder, which at the time of writing this thesis does
not have lossless compression capabilities. Future developments of MuLE may benefit from the
pre-processing stage proposed in the remaining of this section.

Due to the LFs acquisition setup, each SAI is slightly different from its neighbours, owing to the
baseline distance between the cameras or micro lenses. Therefore, each SAI in a row or column
after the disparity compensation can be represented by:

L̃t,s(v, u) = Lt,s(v −DV(v, u), u−DH(v, u)), (4.1)

where DH and DV represent the horizontal and vertical disparity between matching pixels in two
neighbouring sub-aperture images, respectively. For most of the JPEG-Pleno datasets [117], it
is reasonable to assume that the cameras (or micro lenses) are equally spaced, both horizontally
and vertically. Under these conditions, the disparity of any two consecutive SAIs should be the
same for object regions at equal distances from the camera plane, such that DH = DV = D.

Prior compensation of this disparity before encoding is expected to increase the compression
efficiency for 4D encoders, such as MuLE, due to the higher data correlation resulting from better
pixel alignment. Considering that a scene is composed of several objects at various depths, each
SAI pixel can have a disparity value different from those of its neighbours, which should be
independently computed in order to obtain a better compression ratio. Since the determination
of a disparity value for each pixel would entail a large increase in the amount of coded data,
as well as a huge computational complexity, in this work the image is divided into 4D non-
overlapping blocks and a block-level disparity Db is estimated. This is achieved by finding the
disparity Db that minimises the entropy of the coefficients of the 4D-discrete cosine transform
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(DCT) of the compensated block L̃t,sb (v, u), given by,

Db = arg min
Db

H

Qp ∗
DCT

(
L̃t,sb (v, u)

)
Qp


 , (4.2)

where H(Ω) = −
∑

i Pi logPi represents the entropy, with Pi = P (Ωi) the probability of the ith

symbol in the set Ω, b·e is the rounding to the nearest integer operation, DCT(·) denotes the
4D DCT of size equal to the block L̃t,sb (v, u), and Qp is the uniform quantisation step, which
was chosen to be 16, as to provide 4 bit precision for the coefficients which is sufficient for the
algorithm purposes.

The 4D disparity compensated blocks (L̃t,sb (v, u)) are computed by shifting each 2D SAI block
(defined in (v, u)) by an amount proportional to the disparity. The shifting must also be pro-
portionate to the angular position t or s because the computed disparity is measured between
blocks on neighbouring SAIs. Therefore with increasing angular positions the shifting amount
must compensate for the shifts of the blocks in lower angular positions. After the optimal dis-
parity compensation is found, the relative positions of all SAI blocks, originally co-located in
each SAI (i.e., with the same (v, u) coordinates and different (t, s)), are shifted accordingly, thus
minimising Equation 4.2.

To perform the minimisation, two parameters are needed: the size of the 4D blocks BS and the
maximum allowed disparity (DM ), both expressed in pixels. Given the BS and DM values as
input, all disparity values belonging to |D| = [0, ...,DM ] are tested for each block, in steps of
0.1 pixels. Assuming the horizontal (t) and vertical (s) disparities are the same (Db), due to
the camera geometry, this search can be performed only along the s dimension. For each s, the
respective SAI block is shifted by an amount that depends on Db and the position s itself, as
given by

Dsb = bDb · (s− 1)e, (4.3)

where, again, b·e represents the rounding to the nearest integer operation. Equation 4.3 shows
that the further away a view is from the reference, i.e., from the SAIs with s = 1, the further
it needs to be moved. As sub pixel interpolations are not performed to keep the method fully
reversible, the previously described displacement treats cases of D < 1, by only moving a block
Lt,Scb (v, u) when the accumulated disparity DSc

b reaches the next integer value. Sc represents the
current SAI position. This process is shown in Figure 4.5a for the cases where Db equals one.

The proposed disparity compensation adds new undetermined areas (hashed regions in Fig-
ure 4.5a) when each SAI block Lt,sb (v, u) is shifted. Figure 4.5b shows the filling of the unde-
termined areas, using the neighbouring SAI information, i.e., the respective number of lines or
columns is copied from the co-located position in the previous SAI, so that these areas are the
same in all SAIs, producing a disparity compensated image with increased 4D redundancy. For
each new 4D block, Equation 4.2 provides the optimal disparity value Db.

The optimal disparity obtained for each 9 × 9 × 32 × 32 pixels 4D block in the Greek LF,
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Figure 4.5: Disparity compensation algorithm diagram: (a) new undetermined areas, (b) filling
of the undetermined areas.

from [117], is shown superimposing the central SAI in Figure 4.6. It can easily be seen that
regions at different depths are represented by different ranges of disparities.

Figure 4.6: Optimal disparity for each 32× 32 pixels block of image Greek.

As pointed out before, the requirement of a fully reversible algorithm, leads to a disparity com-
pensated LF with higher number of pixels than the original one, as illustrated in Figure 4.5.
In fact, the original 4D block in blue, with dimensions tb × sb × vb × ub, has each of its spa-
tial blocks, originally at the same (v, u) position, shifted amongst themselves. This operation
means that the previous dimensions vb and ub will be multiplied by a factor of Db · (T − 1) (or
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Db ·(S−1), but generally T equals S), as illustrated in Figure 4.5a, where T = 4. The previously
exposed means that the same block, after disparity compensation, has the following dimensions:
tb× sb× vb · Db · (T − 1)×ub · Db · (S− 1). This procedure is responsible for the increase of pixels
to encode after the disparity compensation, which are filled as shown in Figure 4.5b.

From the algorithm description, it can be inferred that, the higher the value of DM , the higher
the potential increase in the number of pixels in the final disparity compensated image. In order
to minimise the number of extra pixels in the final image, blocks of equal disparity are grouped
in super blocks, either in v or u direction, which is chosen to minimise the final number of pixels.
The algorithm is applied with the calculated disparity to each super block as a whole. The super
block partition is represented in red in Figure 4.6 (for the v direction). Such operation reduces
the amount of extra information needed to fill the undetermined areas presented in Figure 4.5.
It is important to balance the trade-off between the increased inter-SAI redundancy and the
number of extra information to encode. In the processed image, although the number of pixels
to encode is larger, the 4D redundancy is increased. The result of this is that the encoder is able
to achieve higher compression ratios.

Finally, after applying the disparity compensation to each super block, they are concatenated in
order to assemble the final image. As each of these blocks has a different number of pixels, a
padding operation, performed by repeating the last pixels of the block, is performed to fill the
gaps in the final disparity compensated image, as can be seen in Figure 4.7. For instance, in this
example the algorithm increased the size of the SAI from 512× 512 to 704× 607 pixels.

Figure 4.7: Example of a compensated SAI computed with proposed algorithm.
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4.4 Experimental Evaluation

This section starts by performing an evaluation of the compression efficiency of the LF data
arrangements described in Section 4.1 for various state-of-the-art encoders. These experiments
use the RGB format as input for encoding all LF images. Then, the same combinations of
encoders and data arrangements are used to assess the impact of the use of the different colour
spaces described in Section 4.2. The results of these experiments will be used as a benchmark for
the methods proposed in the following chapters. The work presented in Sections 4.1 and 4.2 was
developed before the release of the Common Test Conditions of the JPEG-Pleno (JPEG-Pleno
CTC) [49]. At the time, the only available information was provided by the Call for Proposals of
the JPEG-Pleno (JPEG-Pleno CfP) [26], which initially set a different processing methodology
for the École Polytechnique Fédérale de Lausanne (EPFL) dataset [43], that were followed in
the experiments pertaining to these sections. In the JPEG-Pleno CfP, the processing chain for
raw lenset images followed the pipeline explained in Section 2.2.3. However, the images were
scaled to fit in 8 bit representation and the rectified LF uses the whole 15× 15 SAIs, including
all the LRBFs. Finally, only the dataset made available by EPFL was used with a total of 12
LFs (instead of 4), as defined in the 2016 IEEE International Conference on Multimedia and
Expo Grand Challenge: Light-Field Image Compression [43]. This section is concluded with the
experimental evaluation of the disparity compensation algorithm described in Section 4.3.

4.4.1 Light Field Data Arrangement Evaluation

To simplify the compression efficiency analysis for the different lossless encoders, the results
are presented according to the used LF image representations, namely lenslet array, PVS and,
EPI stack. While the lenslet array representation can only be encoded as a 2D image, SAI
and EPIs are stacked to form a pseudo-video signal, enabling video encoders to exploit the
correlation along the third dimension inherent to a sequence of sub-images. As demonstrated by
the experimental results, some encoders have better compression performance when using specific
LF image formats. For example, encoders like HEVC and a modified version of MRP [62], which
are able to exploit correlation in a third dimension akin to the temporal dimension in video are
more adequate to compress the pseudo-video image stacks. In these experiments, the number of
reference pixels in MRP were configured as follows:

• Lenslet array: 72 pixels.

• PVS: 56 on the intra frame, 20 pixels on the current frame and 5 pixels on the reference
frame for unidirectional prediction frames, and 12 pixels on the current frame and 13 pixels
on the reference frames for bidirectional prediction frames.

• EPI stack: 30 pixels in the intra frame, 20 pixels on the current frame and 5 pixels on the
reference frame for unidirectional prediction frames, and 12 pixels on the current frame
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and 13 pixels on the reference frames for bidirectional prediction frames.

As mentioned in Section 3.4, MRP is a single-component encoder, without support for multi-
component images. Therefore, two schemes were used to encode the three components of the
RGB LF images: (i) encoding each RGB component individually and taking the sum of the three
to calculate the bitrate (ii) concatenating the RGB components, side-by-side horizontally, prior
to encoding into a single bitstream.

Coding of Lenslet Arrays

Table 4.3 lists the compression ratios achieved on each LF in the lenslet array arrangement, as
well as the average rate per encoder, all expressed in bits-per-pixel (bpp). In the following tables
the best result for each row is highlighted in bold.

Table 4.3: Coding performance for lenslet array format (bpp).

Sequences JPEG 2000 JPEG-LS CALIC HEVC MRP

Ankylosaurus 14.24 10.76 12.45 11.18 11.26
Bikes 13.12 10.46 11.71 9.91 10.71
Color 13.51 10.75 12.24 10.89 11.09
Danger 11.99 9.52 10.69 9.30 9.75
Desktop 13.32 8.35 10.68 8.28 9.13
Flowers 12.34 9.80 11.03 9.41 10.08
Fountain 13.91 11.26 12.59 10.79 11.58
Friends 12.62 9.10 11.09 9.44 9.57
ISO 14.02 10.88 12.34 10.32 11.22
Magnets 14.20 10.65 12.22 11.09 11.05
Stone 12.67 10.07 11.35 9.91 10.22
Vespa 11.74 9.39 10.55 9.15 9.60

Average 13.14 10.08 11.58 9.96 10.44

Results presented in Table 4.3 show that for lenslet arrays HEVC and Lossless and Near-lossless
Compression of Continuous-tone Still Images (JPEG-LS) achieve the highest average coding
performance among the tested algorithms, far better than the remaining ones. HEVC performs
slightly better, 0.12 bpp lower, than JPEG-LS. The lowest compression efficiency is obtained
with JPEG 2000.

Pseudo-Video Sequence Coding

In the second set of experiments, the LF data was compressed using a PVS arrangement and
the same encoders, as shown in Table 4.4. Prior work [85] showed that the scan order that
was followed to select the sub-aperture image for stacking or serializing the data into pseudo-
video is an important factor that affects the resulting compression. To characterise this impact,
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the three scanning orders described in Section 4.1 were used to encode with HEVC, and MRP,
and the results segmented accordingly. Given that JPEG 2000, JPEG-LS and Context based
Adaptive Lossless Image Codec (CALIC) are intra encoders, the scanning order does not affect
the compression efficiency, as each SAI is encoded on its own. These results are compared with
[95], where Helin et al. encode SAIs in a multiview format, by taking each sub-aperture image
as a different view, and exploiting the inter-view redundancy (i.e., the angular redundancy).

Table 4.4: Coding performance for PVS arrangement (bpp).

Sequences JPEG 2000 JPEG-LS CALIC HEVC MRP
[95]Raster Spiral SBE Raster Spiral SBE

Ankylosaurus 9.79 9.60 9.33 7.94 7.86 7.85 7.51 7.51 7.52 8.10
Bikes 11.59 11.02 9.45 7.83 7.75 7.72 7.45 7.41 7.42 9.57
Color 9.62 9.29 10.44 8.06 7.94 7.94 7.30 7.28 7.30 9.79
Danger 11.49 10.94 9.64 7.36 7.25 7.23 7.07 7.01 7.02 10.59
Desktop 8.65 7.86 10.83 6.01 5.97 5.96 5.68 5.69 5.69 6.98
Flowers 12.12 11.49 10.92 7.46 7.43 7.41 7.17 7.20 7.21 10.74
Fountain 11.38 10.95 8.18 8.39 8.32 8.30 7.81 7.81 7.83 9.64
Friends 10.41 10.00 11.47 6.88 6.80 6.78 6.45 6.42 6.41 8.27
ISO 11.05 10.45 9.59 8.23 8.11 8.09 7.73 7.71 7.71 9.81
Magnets 9.76 9.52 10.06 7.93 7.84 7.84 7.53 7.53 7.55 8.18
Stone 12.01 11.56 11.36 7.61 7.58 7.54 7.40 7.44 7.41 9.24
Vespa 9.80 9.25 10.88 7.21 7.13 7.12 6.71 6.68 6.71 9.88

Average 10.64 10.16 10.18 7.58 7.50 7.48 7.15 7.14 7.15 9.23

As expected, encoders using inter-frame prediction tools, which can explore redundancy between
consecutive SAIs, exhibit the best average performance: MRP achieves the best efficiency, fol-
lowed by HEVC (0.34 bpp higher than MRP), both outperforming the intra encoders. From the
results, it is also clear that MRP and HEVC achieve better performance when encoding the LF
images as pseudo-video than in lenslet format, by 3.30 and 2.48 bpp, respectively. This gain is
notably smaller for the intra-frame encoders. In this latter case, using PVS rather than lenslet
reduces the coding rate by approximately the same amount magnitude, with the exception of
JPEG-LS, where the reduction is only a few hundredths of bpp.

The gains obtained by HEVC and MRP, when compared with the lenslet array encoding, can
possibly be associated to the efficiency of the encoding tools implemented by these two encoders,
which help to exploit inter-SAI angular correlation. The first of these tools uses bi-directional
prediction which, in the case at hand, most likely succeeds in overcoming the problem of pre-
dicting pixels of one SAI that are occluded in neighbouring SAIs taken from slightly different
perspectives. The second feature of both encoders, which also helps improving the compression
ratio, is sub-pixel accurate prediction. It is possible that, for a given baseline distance, the dis-
parity observed in adjacent sub-aperture images has fractional values, depending on the depth
of the scene objects. Therefore, being able to perform inter-SAI predictions with fractional-pixel
accuracy is likely to improve the prediction quality, driving the coding rate down. Thus, it is
expectable that the sub-pixel accurate motion estimation/compensation of HEVC contributes to
improve the encoding performance of LF pseudo-video sequences.
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The MRP algorithm, on the other hand, does not use motion compensation, or explicitly sub-
pixel accurate prediction, as predictors involve pixels located at integer-grid positions. It can
however achieve sub-pixel accurate prediction, without motion compensation, because the linear
predictors can use fractional coefficients, thus defining prediction values which are interpolations
between pixels of the prediction support region. As an example, consider a case where only
two reference neighbouring pixels of prediction support region are used; if the linear prediction
coefficients associated with these pixels are 0.5, for instance, then the predictor is essentially
computing an interpolation of these two pixels, i.e., an half-pixel position reference value. Linear
prediction in MRP can thus produce a result similar to sub-pixel accuracy, with the ensuing
advantages for the coding of the sequence of SAIs.

Another variable with impact on the compression ratio, and which analysis is important, is
the type of scan order used to create the pseudo-video sequence from the stack of sub-aperture
images. As can be seen in Table 4.4, the scanning order used has only a small effect on the
coding performance. In the HEVC case, the ‘SBE’ method provides the most efficient results,
with a difference of up to 0.1 bpp with respect to the other scan orders. For MRP, the best
results are obtained with the ‘Spiral’ scan, but the encoding performance differences observed
when using different scans are minimal 0.01 bpp at most. The ‘Raster’ scan order produces the
worst results for both encoders, with a more pronounced negative effect in HEVC. Most likely,
this poor performance is due to the fact that, unlike the other scan orders, this arrangement
does not keep neighbouring SAIs close to each other in the serialised sequence, breaking the high
inter-SAI correlation structure that exists in the original 2D tiling. Additionally, unlike what
happens in the ‘SBE’ arrangement, where the similar LRBF images are packed together at the
end of the PVS, slightly improving the performance of HEVC, in the case of the ‘Raster’ scan
order the LRBF images are distributed along the pseudo-video sequence, further deteriorating
the inter-frame prediction performance. It is also noticeable that for MRP the ‘Spiral’ and ‘SBE’
orders do not improve the coding results obtained with the ‘Raster’ order very much. Perhaps
this is due to the very good adaptation mechanisms used in the MRP prediction step, which
make the method very robust.

One alternative way of handling the LRBF images is to simply not encode them. This is possible
because usually the structure of the micro-lenses images is known, and so the low reliability
pixels can be identified and removed. This solution was also tested, where the pseudo-video
sequences obtained using the Spiral scan order and truncated to ignore the LRBF images were
encoded using HEVC and MRP, achieving on average coding ratios of 7.30 bpp and 6.99 bpp,
respectively, which is an improvement of 0.18 bpp for HEVC and 0.16 bpp for MRP. However, not
coding these images results in a compression method which is no longer lossless, inducing slight
deteriorations to the performance of post-processing operations like refocusing that use these
low reliability corner pixels, resulting however in imperceptible degradations on the refocused
images.

The rightmost column of Table 4.4 presents results of a recent LF encoding method [95]. De-
spite the fact that such algorithm was specifically designed for LFs, the results show that the
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compression efficiency of both HEVC and MRP is consistently higher for all data arrangements
(i.e., lower bpp). On average the method presented in [95] requires about 29% more bpp than
MRP and 23% more than HEVC to encode the same sequences.

Coding of Epipolar Plane Image Stack

The coding of LF images represented in the third format, EPI stack, and using the same encoders
as before was also evaluated. These experimental results are presented in Table 4.5, showing again
that MRP is the most efficient encoder for this type of arrangement, followed by the HEVC
(0.54 bpp higher). However, the MRP and HEVC results obtained with the EPI representation
are worse than those achieved by encoding with the same encoders in the PVS format, although
better than the results achieved for the lenslet array representation format.

Table 4.5: Coding performance for the EPI format (bpp).

Sequences JPEG 2000 JPEG-LS CALIC HEVC MRP

Raster Spiral SBE Raster Spiral SBE

Ankylosaurus 9.56 8.83 9.35 9.07 8.79 8.43 8.17 8.01 7.73
Bikes 10.05 9.50 10.24 8.91 8.68 8.33 8.19 8.11 7.82
Color 9.97 8.83 9.62 8.99 8.76 8.41 7.98 7.82 7.57
Danger 11.04 9.30 9.96 8.43 8.19 7.84 7.84 7.76 7.54
Desktop 9.64 6.91 7.47 6.69 6.55 6.28 6.15 6.08 5.85
Flowers 10.69 8.86 9.74 8.60 8.44 8.05 7.93 7.97 7.74
Fountain 11.33 9.82 10.42 9.44 9.32 8.97 8.52 8.55 8.31
Friends 10.34 8.03 8.92 7.86 7.57 7.21 7.19 7.02 6.70
ISO 10.94 9.40 10.05 9.21 8.96 8.60 8.40 8.29 8.02
Magnets 10.59 8.75 9.23 9.10 8.82 8.47 8.13 7.99 7.70
Stone 8.29 9.26 10.03 8.70 8.49 8.06 8.23 8.19 7.90
Vespa 10.65 8.32 9.03 8.23 8.00 7.67 7.28 7.21 7.00

Average 10.26 8.82 9.51 8.60 8.38 8.03 7.83 7.75 7.49

In comparison with the case where the PVS format is used, MRP presents a lower performance
decrease (0.35 bpp) than HEVC (0.55 bpp). The best results are obtained for both encoders
using the ‘SBE’ scan. This result may occur because the LRBF images are grouped together at
the end of the pseudo-video sequence, which means that due to the EPI extracting process they
are grouped in the EPIs as well, thus improving the prediction.

Impact of Visual Content on Coding Efficiency

A visual inspection evaluation was performed to understand whether characteristics of the LFs
content have any consistent relationship with the coding performance. Direct observations indi-
cate that the sequence with worst compression results for HEVC and MRP, Fountain, presents
many details in the bottom region of the image, making it harder to compress. This dependence
on spatial frequency content seems to be confirmed by a similar analysis of the easier-to-compress
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Desktop image. This image has large smooth areas, which lead to higher compression ratios.
Other than visual content with high spatial coding complexity, a more detailed visual analysis
also reveals that the presence of structured texture can influence the coding efficiency when the
lenslet array and EPI stack arrangements are used. That is the case of the Fountain image, where
the visible horizontally oriented textures apparently degrades the quality of the prediction and,
consequently, decreases the compression efficiency. Further aspects are similar to those already
known from traditional image coding methods.

Colour Image Coding with Minimum Rate Predictors

As indicated before, the previous results were obtained using RGB LF images for all encoders.
While in standard encoders, such as HEVC, the correlations between the colour components are
already exploited, in MRP there is more flexibility to exploit such similarities with pre-processing
methods because it is a single-component encoder.

To exploit these correlations, the three colour components from each frame of the pseudo-video
sequence were concatenated in order to form a composite frame to be encoded as a single plane
with three times the number rows. Using a single plane, it is expected that the class block-
based linear predictor design and the optimisation procedure of MRP are able to exploit the
redundancies between different colour channels. This is mainly achieved by reducing the overhead
necessary to repeat encoding of some classes in different colour channels and also by assigning
the same class to blocks from different channels but with similar characteristics. To test the
effectiveness of this approach, the same set of LFs represented as PVS, using the ‘Spiral’ image
scan order, were encoded using MRP. The colour components of each frame were concatenated
in two directions, side-by-side (horizontally) and top-bottom (vertically). As expected, due to
MRP characteristics, the direction of this concatenation operation had little or no effect on the
compression results, thus we present the results only for the vertical concatenation in Table 4.6.

Table 4.6: Coding performance for component concatenation in MRP (average bpp).

PVS EPI

Raster Spiral SBE Raster Spiral SBE

7.11 7.10 7.11 7.75 7.68 7.43

As can be seen in Table 4.6, the results revealed just a slight increase of the MRP performance by
0.04 bpp, for sub-aperture images, and about 0.07 bpp (on average), for EPIs, when compared to
the independent encoding of the colour components, shown in Table 4.4, thus (weakly) confirming
the previous intuition behind the idea of concatenating the colour planes. For lenslet array, the
results are of the same order of magnitude as those in Table 4.6.
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Encoding and Decoding Time Complexity Analysis

The computational complexity of the coding methods described earlier was measured as the
running time of the encoding and decoding operations, for both the MRP and HEVC encoders.
A dedicated server running Ubuntu Server 16.04 with an Intel Xeon E3-1240 V2 @ 3.40GHz
CPU and 23.5 GB of RAM was used for these experiments. The relative complexity of MRP to
HEVC is shown in Table 4.7 and discussed below. In these results, the running time of HEVC
is used as reference, which means that HEVC complexity equals 1.0.

Table 4.7: MRP encoding / decoding running time relative to HEVC.

Process Lenslet PVS EPI

Raster Spiral SBE Raster Spiral SBE

Encoding 99.1 3.7 3.8 4.1 2.9 3.0 3.4

Decoding 1.5 1.4 1.4 1.4 1.1 1.2 1.3

Due to the encoding algorithm optimisation mode, which runs for all image pixels at once, MRP
is much more adversely affected by the increasing size of images. This effect is observed in the
lenslet array arrangement, which is 99 times slower than HEVC. For the other LF formats, the
running time complexity is much lower, ranging from 2.9 times for EPI stack spiral to 4.1 times
for PVS ‘SBE’. For decoding, the MRP algorithm exhibits very close complexity relative to that
of HEVC. The worst case is again for the lenslet format, where MRP is 1.5 times slower than
HEVC.

It should be noted that the MRP encoder is not optimised for speed, which largely justifies
the relatively high complexity of MRP encoding in comparison with HEVC. As shown by these
experiments, the disparity of processing speed between MRP and HEVC decoding is significantly
smaller than for encoding. Nevertheless, an optimisation of the MRP decoder implementation
could easily reduce the complexity difference to HEVC.

Analysis of the Bitstream Overhead

The side information for the different data arrangements, as described in Section 4.1, is shown in
Table 4.8. The last three columns show the number of bits spent in each of the syntax elements
explained in Section 3.5.2, namely sequence header (SH), number of classes (NC), class partition
(CP), class coefficients (CC), threshold values (ThV), and the prediction residuals (PR) for the
Vespa LF (see Figure 3.10).

As it can be observed in Table 4.8, the side information represents a small percentage of the total
file size, ranging from 3.05% for PVS to 9.61% for the lenslet array. The lenslet array format
incurs in the highest overhead, which mostly results from its data structure with a more detailed
quadtree and smaller blocks. The amount of side information required for the PVS and EPI
stack formats is higher for NC, CC and ThV, due to the larger number of frames.
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Table 4.8: Side information in bits for different data arrangements using Vespa image from [43].

Type Description Size Freq. Lenslet
Array PVS EPI

Si
de

In
fo
rm

at
io
n

SH

Magic number, software
version, width, height and
number of frames, pixel
bit depth, number of B
type frames, bi-directional
prediction type flag, num-
ber of components, number
of groups, prediction order
values and histogram pack-
ing information.

200 Once 600 600 600

NC Number of classes used for
a given frame. 8 Per frame 24 5,400 10,416

CP
Quadtree partition and
block classification infor-
mation.

Variable Per frame 56,259,936 7,617,400 13,953,448

CC Coefficients values for each
class. Variable Per frame 68,784 3,612,248 5,998,792

ThV
Encoding of the probability
distribution thresholds val-
ues.

Variable Per frame 14,328 1,253,616 1,977,072

Total Total amount of bits spent
on the side information.

56,343,672
(9.61%)

12,489,264
(3.05%)

21,940,328
(4.94%)

PR Encoding of the prediction
residuals. Variable Per frame 529,828,920

(90.39%)
397,219,056
(96.95%)

422,222,840
(95.06%)

4.4.2 Colour Space Effect on Coding

This section presents the results and discussion of the study addressing the impact of using other
colour spaces instead of the RGB, resulting from reversible transforms, and LF data arrangements
on the compression efficiency of lossless encoders. Up to seven LF arrangements (described in
Section 4.1) were combined with four lossless encoders, namely JPEG 2000, JPEG-LS, HEVC,
and MRP. MRP uses the same number of reference pixels as set in Section 4.4.1. The experiments
in this section include a dermatological LF acquired with the same camera model as the EPFL
dataset. This LF is named SkinSpots, Figure 4.8 shows the central SAI of the LF.

The simulation results are shown in Table 4.9, presented in bpp, where the average results for
all combinations of encoders, data arrangement (plus scanning pattern for HEVC and MRP),
and reversible transform are shown. The best results in terms of compression efficiency, for each
pair encoder - data arrangement are underlined, and the best result for each data arrangement
is highlighted in bold. Table 4.10 shows the pixel-average total variation (TV) for each colour
space. The TV has been found to be a good indicator of image compression performance in
lossy coding [118], which relates to the amount of residue that is left to encode in predictive
lossless coding, e.g., a higher value of TV means more residue to encode, thus lower compression
efficiency.
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Figure 4.8: Sub-aperture image of the SkinSpots LF.

Table 4.9: Average bitrates (bpp) for all colour transforms and data arrangements.

Encoder Arrangement RGB A2 LDgDb LDgEb RCT RDgDb YCoCg

JPEG 2000
Lenslet 13.21 10.31 9.95 10.08 9.92 9.99 9.97
PVS 10.67 9.73 9.46 9.49 9.41 9.60 9.41
EPI 10.28 9.12 8.87 8.91 8.84 8.98 8.86

JPEG-LS
Lenslet 10.14 8.83 8.54 8.65 8.52 8.60 8.55
PVS 10.21 9.85 9.59 9.62 9.55 9.74 9.57
EPI 8.87 8.39 8.16 8.20 8.13 8.27 8.17

HEVC

Lenslet 10.04 9.64 9.39 9.45 9.37 9.45 9.41
PVS Raster 7.63 7.62 7.43 7.43 7.41 7.47 7.44
PVS Spiral 7.55 7.54 7.36 7.35 7.34 7.39 7.37
PVS SBE 7.53 7.52 7.34 7.33 7.32 7.37 7.34
EPI Raster 8.67 8.59 8.39 8.38 8.36 8.46 8.39
EPI Spiral 8.44 8.37 8.17 8.16 8.14 8.23 8.17
EPI SBE 8.08 8.02 7.81 7.81 7.79 7.88 7.83

MRP

Lenslet 10.50 8.53 8.33 8.46 8.18 8.28 8.35
PVS Raster 7.21 6.66 6.50 6.53 6.46 6.62 6.49
PVS Spiral 7.19 6.61 6.46 6.48 6.41 6.57 6.45
PVS SBE 7.20 6.62 6.46 6.47 6.42 6.58 6.44
EPI Raster 7.90 7.26 7.08 7.11 7.02 7.19 7.07
EPI Spiral 7.81 7.14 6.95 6.98 6.90 7.06 6.94
EPI SBE 7.54 6.88 6.69 6.72 6.66 6.81 6.68

Analysing the results by encoder it can be seen from Table 4.9 that the Intra only encoders
(JPEG 2000 and JPEG-LS) exhibit the highest compression efficiency when using the stack of
EPIs, regardless of the colour transform. As for the video/inter encoders, the best results are
obtained with the PVS format, using the ‘SBE’ scan for HEVC, and the ‘Spiral’ scan for MRP.

Considering the use of reversible colour transforms, it can be clearly observed that the alternative
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colour spaces lead to higher compression efficiency in comparison to RGB. Moreover, although
the differences can be quite small (i.e., in the order of tenths of bpp), the highest compression
ratios are always obtained with RCT, for all encoders and data arrangements.

Table 4.10: Average total variation for all colour transforms and data arrangements.

RGB A2 LDgDb LDgEb RCT RDgDb YCoCg

Lenslet 38.93 19.36 18.22 18.58 18.06 18.38 18.45
PVS 23.88 15.99 14.83 15.03 14.62 15.23 14.86
EPI 32.58 17.71 16.58 16.87 16.41 16.82 16.73

As shown in Table 4.10, the average TV of an image consistently decreases after the conversion
from RGB to any other colour space and the lowest TV is obtained for the RCT. These results,
in particular the relative performance of encoding methods / colour transforms, confirm that the
total variation provides a relevant indication about compression efficiency. In fact, as discussed
in [118], reducing the TV of an image is expected to cut down approximation errors, leading to
higher compression efficiencies. The results of Tables 4.9 and 4.10, extend previous findings to
the lossless case.

In absolute terms, the MRP encoder using the PVS arrangement, with the ‘Spiral’ Scan, produces
the best results with 6.41 bpp, compared to the 7.32 bpp of HEVC, 8.13 bpp of JPEG-LS and
8.84 bpp of JPEG 2000. The best performance obtained with HEVC and MRP when encoding
the PVS and EPI stack is coherent with the findings of last section.

The trends observed in the average values listed in Table 4.9 are also consistently observed for
all images used in the experiments. Table 4.11 presents some evidence of this consistency for the
case of HEVC and MRP combined with the RCT transform, applied to the PVS obtained with
the Spiral scan pattern.

In particular it should be pointed out that the encoding results listed for the SkinSpots image do
not deviate from the general behaviour observed with the other test images. This also provides
some hints about the expected performance to be observed when encoding LF dermatological
images, where lossless compression is particularly relevant.

4.4.3 Disparity Compensation

For these experiments, the adopted procedure followed the lossy JPEG-Pleno CTC version 3.3.
In regard to the disparity compensation, for each of the LFs, multiple block sizes and maximum
disparities were used, and the resulting images from the preprocessing step were encoded with
MuLE without changes in the encoder. In order to determine the configuration that results in
the best coding efficiency, the Bjøntegaard metric was employed, taking as reference the HEVC
anchor provided in [49].

The compression efficiency obtained by the proposed algorithm (MuLE with Disparity Compen-
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Table 4.11: Bitrate (bpp) for the set of LFs, using the RCT transform and the PVS spiral scan.

Light Fields HEVC MRP

Ankylosaurus 7.70 6.77
Bikes 7.49 6.50
Color 7.78 6.74
Danger 7.00 6.07
Desktop 5.89 5.22
Flowers 7.19 6.26
Fountain 8.05 6.90
Friends 6.63 5.81
ISO 7.87 6.87
Magnets 7.68 6.80
Stone 7.33 6.43
Vespa 6.91 6.01
SkinSpots 7.95 7.00

Average 7.34 6.41

sation) in comparison with Hierarchical Warping, Merging, and Sparse Prediction (WaSP) and
MuLE, is presented in Table 4.12.

Table 4.12: Disparity compensation results (% BD rate) using HEVC as reference.

Type LF WaSP MuLE Proposed

Le
ns
le
t Bikes 3.35 -40.42 -40.42 (128, 2.5)

Danger -10.85 -38.79 -38.79 (128, 2.5)
Fountain 13.09 -15.79 -15.79 (64, 2.0)
Stone -2.34 -32.93 -32.93 (64, 2.0)

H
D
C
A Greek -34.67 67.51 -9.88 (128, 2.5)

Sideboard -28.01 34.76 -13.15 (32, 1.0)
Tarot 24.54 155.62 30.70 (128, 2.5)

The last column of the table also shows, within parentheses, the best configuration for each
image, in terms of block size and maximum disparity. For a better perception of the relative
coding performance, the rate-distortion curves of Greek LF are shown in Figure 4.9, for the
various encoders.

All the results include the cost of transmitting the block size and the disparity for each block.
This cost was calculated as: dlog2 (B)e + #D ×

⌈
log2

(
2×max(|D|)

0.1

)⌉
, where B is the block size,

D is the array of disparities to transmit, #D is the number of elements in the array, and 0.1 is
the step used for the range of disparities.

As discussed in [119], MuLE achieves the highest efficiency for the lenslet type LFs, outperforming
HEVC and WaSP. However, due to the higher disparity of the HDCA LF images, the 4D-DCT
employed by MuLE is not very efficient, presenting a coding BD rate up to 155.6% higher than
HEVC. For lenslet LF images, the proposed disparity compensation algorithm achieves the same



70 4. Compatible Light Field Image Coding

 30

 35

 40

 45

 50

 0.001  0.01  0.1  1

PS
N

R
 Y

U
V 

(d
B)

Bits-per-pixel (bpp)

HEVC
WaSP
MuLE

Proposed

Figure 4.9: Rate distortion curves for Greek.

results as those obtained by the MuLE algorithm. This was expected due to the small disparities
of lenslet LF images and the high compression efficiency of MuLE in this case (the maximum
disparity of lenslet LF images is in general less than one pixel).

In regard to the HDCA LFs, the results show that MuLE benefits from the use of the disparity
compensation algorithm, for instance for Greek and Sideboard images the method outperforms
HEVC. Although, Tarot BD rate is still higher than HEVC, the surplus was reduced from 155.5%
to 30.7%.

While for lenslet LFs the proposed method produces no BD rate changes, for HDCA images the
proposed method consistently improves the compression efficiency of MuLE, achieving BD rate
gains of 44.44%, on average, as can be seen in Table 4.13.

Table 4.13: Disparity compensation results (% BD rate) using MuLE as reference.

Type LF Proposed

H
D
C
A

Greek -43.12
Sideboard -35.85
Tarot -54.36

Average -44.44

4.5 Summary

This chapter introduced a research study about LFs lossless coding using MRP and other state-
of-the-art image and video encoders. Several data arrangements for encoding LF data were
investigated, namely lenslet array, PVS and EPI stacks, in order to assess and compare the
coding performance of different encoding algorithms for each of these data formats.
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Results show that the lenslet array arrangement lead to the worst performance for nearly all
encoders, which allows the conclusion that, if there is no strong reason for using such format, then
it is better to use PVS or EPI stacks, but preferably the former. This chapter also demonstrates
that the MRP algorithm with bi-directional predictors consistently achieves higher compression
ratios in comparison with the most prominent state-of-the-art lossless image and video encoders,
like HEVC.

A similar study was performed while using reversible colour transforms as a pre-processing step,
before the encoding process of the studied encoders. The results strengthened the previous
conclusions in terms of the best data arrangement and encoder. Furthermore, as expected, it
was shown that the compression efficiency of all encoders greatly benefits from the use of a
reversible colour transform prior to the encoding process. Of all the studied transforms, RCT
allows the encoders to achieve the highest compression efficiency.

This chapter also proposes a pre-processing method that minimises the disparity between the
LF SAIs. This algorithm improves the compression efficiency of 4D-DCT based LF encoders, by
aligning the SAIs, thus resulting in a more efficient representation of the DCT components. This
algorithm enabled the performance of MuLE to reach similar values to that of WaSP. However,
due to the characteristics of the algorithm, which increases the volume of information to encode,
this method does not provide the same improvements for lossless encoders.

Due to the superior performance demonstrated in this chapter by MRP, this encoder will be the
basis of the methods proposed in the next chapters.
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CHAPTER 5
4D Light Fields Compression
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Common representations of light fields (LFs) use four-dimensional data structures, where a given
pixel is closely related not only to its spatial neighbours within the same view, i.e., sub-aperture
image (SAI), but also to its angular neighbours, co-located in adjacent views. In this context,
two pixels are spatially co-located if their coordinates (v, u) are the same in different SAIs, i.e.,
different angular positions. As explained in Section 2.3 (and shown by the results of the previous
chapter), the four-dimensional structure of LFs presents extra layers of redundancy between
pixels, when compared with regular 2D images. LFs present both spatial redundancy (as in 2D
images) and angular redundancy between neighbouring pixels in the t × s dimensions. In this
chapter, these redundancies are exploited to obtain compressed representations of the LF, using
prediction algorithms specifically tailored to estimate pixel values based on references in the both
the spatial and angular vicinity. Then, new encoding schemes are proposed, taking advantage of
both types of redundancies of four-dimensional light fields to improve the coding performance of
Minimum Rate Predictors (MRP) for this type of data.

73
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The three proposed prediction and partition modes exploit the specific characteristics of the
four-dimensional structure of the LFs in order to benefit from the data correlations across the
different domains as a whole. Section 5.1 presents the underlying processing pipeline that is
commonly used by the three proposed methods. In Section 5.2, a method based on a hexade-
catree with 4D blocks is proposed [J2]; the method presented in Section 5.3 separates the block
partition for the angular dimensions (t × s) from that of the spatial dimensions (v × u) [J2];
and the method introduced in Section 5.4 uses a conventional 2D quadtree partition [C3, C4,
J2]. Section 5.5 presents the experimental evaluation of the three proposed methods. Finally,
Section 5.6 summarises the chapter.

5.1 Minimum Rate Predictors Based 4D LF Encoders

The algorithms presented in this chapter were investigated and developed upon the structure of
MRP. Figure 5.1 shows a simplified diagram for the family for 4D LF MRP encoders, where the
Fixed Block-Size Module and Variable Block-Size Module comprise the same set of operations as
previously shown in Figure 3.7. Further details can be found in Algorithm 5.1, of which one can
highlight the inclusion of a pre-processing step that includes the RCT described in Chapter 4
and the histogram packing method of MRP video [62], and the 4D predictors.

Input LF Pre
Processing

Fixed Block
Size Module

Variable Block
Size Module

Encoded
Bitstream

Figure 5.1: Diagram of the family of 4D LF MRP encoders.

As mentioned above, the algorithms follow the same general steps of MRP, already described in
Algorithm 3.1, with the main difference being the novel four-dimensional prediction scheme that
is common to the three proposed methods. In this new prediction mode the angular redundancies
are exploited by using causal neighbouring SAIs, i.e., already encoded SAIs, as references to
extend the MRP prediction range. Due to MRP pixel-wise raster scan, not all SAI pixels might
be available for prediction of the current pixel, thus the need to use a causal vicinity. The novel
4D prediction (and the mentioned causal vicinity) is represented in Figure 5.2, where the 4 causal
SAI neighbours namely: left (l), left diagonal (tl), top (t), and right diagonal (tr) are used. The
grey line defines the boundary between causal and non-causal pixels. Equation 5.1 shows how
the prediction is computed for pixel p0, as a linear combination of the reference pixels:

ŝ(0) =

Kc∑
k=1

am(c, k) · s(c, k) +

Kl∑
k=1

am(l, k) · s(l, k)

+

Ktl∑
k=1

am(tl, k) · s(tl, k) +

Kt∑
k=1

am(t, k) · s(t, k) +

Ktr∑
k=1

am(tr, k) · s(tr, k),

(5.1)

where am(i, k), i ∈ {c, l, tl, t, tr} represent the prediction model weights associated with pixels in
the current SAI (c) and the four causal neighbouring references, respectively, for the m-th class.
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Algorithm 5.1 4D MRP family high level algorithm.
1: Input: image

#Pre-processing
2: Apply RCT
3: Apply histogram packing

#Fixed Block Size Module
#Initial block classification

4: Sort and classify Fb blocks by pixel variance
#1st optimisation loop using fixed block size

5: for 1 to MAX_ITERATIONS do
#4D Predictors design

6: for each class do
7: Compute the prediction coefficients (am)
8: Calculate residuals
9: Calculate prediction residue encoding cost (Br)

#Groups optimisation
10: for each class do
11: Compute the context defining variable (C) quantisation thresholds to minimise Br
12: Calculate Br

#Classification optimisation
13: for each Fb block do
14: Move neighbour blocks classes to front of list
15: Calculate residuals for all classes
16: Select class that minimises Br
17: Calculate Br
18: if 10 iterations without improvement then
19: end for loop

#Variable Block Size Module
#2nd optimisation loop using variable block size

20: for 1 to MAX_ITERATIONS do
21: Calculate prediction coefficients encoding cost (Ba)

#Groups optimisation
22: for each class do
23: Compute C quantisation thresholds to minimise Br
24: Update shape parameter in probability models
25: Calculate quantisation thresholds cost (Bt)

#Classification optimisation using VBS
26: for Each Vb block do
27: ClassOptimisation
28: Calculate cost J
29: if 10 iterations without improvement then
30: end for loop
31: Remove non-utilised classes
32: Run arithmetic coding
33: Output: Encoded bitstream

s(i, k), i ∈ {c, l, tl, t, tr} are the pixel values in the current and reference SAIs at position k of
the prediction support region, and Ki, i ∈ {c, l, tl, t, tr} are the sizes of each prediction support
region, which may have different sizes and shapes.
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Figure 5.2: Representation of 4D prediction in MRP.

The context of the prediction errors is associated with the inverse of the distances between
the current pixel and its reference pixels, and also with the prediction errors of said pixels. A
weighted sum of these terms, computed as defined by Equation 5.2, is used as a context-defining
variable, represented symbolically by C.

C =

Kc∑
k=1

1

δck
ec +

Kl∑
k=1

1

δlk
el +

Ktl∑
k=1

1

δtlk
etl +

Kt∑
k=1

1

δtk
et +

Ktr∑
k=1

1

δtrk
etr, (5.2)

where ei = |s(i, k)− ŝ(i, k)| and δik are weighting factors proportional to the Euclidean dis-
tance between the current pixel (p0) and its references (pk). The δk weight is defined as

δk =

√
dv(k)2+du(k)2+λ2

64 , where λ represents the distance between SAIs and it is set to 0 for
δck and 1 for all other δik. The resulting C undergoes a quantisation step, using the thresholds
described in Section 3.4, and is then used to select the adaptive conditional probability models.

The three prediction modes proposed in this chapter all use the previously described 4D predic-
tion, with the differences between them being related to the partitioning of the LF into blocks,
and the type of partition used to obtain the sub-blocks. This is represented in Algorithm 5.1 by
the variables Fb and Vb that represent the size of the top level blocks in the the fixed and variable
block size modules, respectively. These values are different in the three proposed algorithms as
they are closely related to the type of partitioning used by each of them. The following sections
describe in detail each of the proposed prediction modes.

5.2 4D-Minimum Rate Predictors

The Four-Dimensional Minimum Rate Predictors (4D-MRP) is based on two principles: four
dimensional prediction and partition of the LF into 4D blocks for class selection. The motivation
for using 4D blocks is supported by the fact that, in general, the same class is selected for co-
located blocks in neighbouring SAIs, as shown in Figure 5.3, where each class is represented by
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a different colour. It can be seen that in each SAI, separated by white dashed lines, the same
structures (e.g., the wheel of the bicycle) presents the same colours in roughly the same regions.
This means that the same class was selected for these regions in the four SAIs. Such information
indicates that bitrate savings may be achieved by reducing the quadtree signalling cost. Since
using a 4D block instead of 2D, allows the encoder to avoid signalling each 2D block partitioning
in each SAI.

Figure 5.3: Example of MRP class selection in neighbouring SAIs, using Bikes image from [43],
where each class is represented by a different colour.

The classification represented in Figure 5.3 is easily explained when considering that the SAIs in
the LF present a high angular correlation amongst themselves. This means that the structures in
each SAI are quite similar and, therefore, can be efficiently predicted using the same prediction
model. Figure 5.4 shows the average correlation of all the SAIs in the LF and their four wide
neighbourhood. In this figure the central SAI, in blue, represents the reference for the correlation
calculation (and therefore the correlation with itself is one), in red are highlighted the positions
of the SAIs that support the prediction, and lighter colours represent higher correlation values.
As can be seen from Figure 5.4 neighbour SAIs to the reference in blue are highly correlated,
with values ranging from 0.98 to 0.99.
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Figure 5.4: Average correlation between a central SAI, in blue, and a four wide neighbourhood,
using Bikes image from [43], in red are highlighted the SAIs that support the 4D prediction.
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As stated in Section 3.4, in MRP, a set of prediction coefficients, am(i, k), are determined for
each class independently. Then each pixel of the current SAI is assigned a class corresponding to
the predictor that minimises the cost J in Equation 3.20. By using 4D blocks, the MRP quadtree
partition is expanded into a hexadecatree, where each block is divided in all the four dimensions
simultaneously, resulting in 16 sub-blocks in the 4D space. Let a block be represented by:
LB(t, s, v, u), with t ∈ {γ ∈ N | 0 ≤ γ < T}, s ∈ {γ ∈ N | 0 ≤ γ < S}, v ∈ {γ ∈ N | 0 ≤ γ < V },
and u ∈ {γ ∈ N | 0 ≤ γ < U}, in the block coordinates. Then the hexadecatree partition can be
defined by Equation 5.3.

PHex(LB(t, s, v, u)) =

{LBi(ti, si, vi, ui),∀i ∈ {0, . . . , 15}} , with



ti = a+ T × (1 + (−1)bi/8c+1)/4

si = b+ S × (1 + (−1)bi/4c+1)/4

vi = c+ V × (1 + (−1)bi/2c+1)/4

ui = d+ U × (1 + (−1)i+1)/4

∀a ∈ {γ ∈ N | 0 ≤ γ < T/2}
∀b ∈ {γ ∈ N | 0 ≤ γ < S/2}
∀c ∈ {γ ∈ N | 0 ≤ γ < V/2}
∀d ∈ {γ ∈ N | 0 ≤ γ < U/2}

, (5.3)

where T , S, V , and U represent the dimensions of the 4D block, b.c represents the floor operation,
and a, b, c, and d are auxiliary variables.

Figure 5.5a represents the tree structure partition and Figure 5.5b shows a LF 4D block with
four by four SAIs and the visual representation of its 4D partition. In Figure 5.5b the angular
dimensions (t, s) are partitioned by the blue lines and the spatial dimensions (v, u) by the green
lines, the index of each 4D block is highlighted in white circles in each SAI. The result of this
operation are 16 sub-blocks as the original block is split along all of its dimensions at the same
time. As pointed out before, the hexadecatree partitioning is expected to result in a larger number
of pixels being classified with lower signalling cost, thus increasing compression efficiency.

In the Optimise Classification stage, shown in Figure 3.7, the hexadecatree partition and block
classification optimisation are performed. This optimisation aims at minimising the bitrate for
both side information, represented by Bm in Equation 3.20, and the prediction error cost. Thus,
Bm can be represented by:

Bm = Bmflags
+Bmclass

, (5.4)

where Bmflags
, given by Equation 5.5, represents the cost of encoding the partition flags and

Bmclass
the cost of signalling a class for each resulting block.

Bmflags
=

− log2(Pctx), not partitioned

− log2(1− Pctx), partitioned
(5.5)

The calculation of the cost of encoding the partition flags, shown in Equation 5.5, is given by the
inverse base two logarithm of the quantised probability of blocks in a given context not being
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Figure 5.5: Hexadecatree partition in the 4D-MRP: (a) tree structure partition example, and (b)
visual representation of the same 4D block partition for the first level only, where the partition
index of each block is shown in white circles.

selected for partition, Pctx, given by:

Pctx =argmin
p
{− log2(p) ·#ctx 0 − log2(1− p) ·#ctx 1} ,

with p ∈ [0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95],

(5.6)

where #ctx 0 and #ctx 1 represent the number of blocks, in a given context, that were not
partitioned and partitioned, respectively, i.e., the occurrences of 0 and 1 partition flags. p

represents the probability that minimises the cost of encoding these flags. This probability is
selected in a discrete range to minimise the cost of transmitting the real probability value, this
way only a single index needs to be sent to the decoder. The quantified probability calculation
of Equation 5.6 follows that used in MRP, which was first introduced with the variable block
size in [68].

Finally, the context calculation for the quadtree flags is determined at each level by the number
of neighbouring blocks partitioned at said level:

Cqtflags(level , b) =
∑

nb∈N(level ,b)

qtflags(nb), (5.7)

where b represents the block for which the context is being calculated, qtflags the partition flag
for block nb with the size given by level (0 and 1 for non-partitioned and partitioned blocks,
respectively), and nb represents a neighbouring block of b belonging to the set N(level , b) of
blocks both neighbour and at the same level of b. As 4D-MRP uses 4 levels for the block
size and 5 neighbours are being considered in the hexadecatree there are a total of 24 different
contexts.
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In the Design Predictors stage of the encoding process, fixed size blocks are used to determine
the predictor coefficients of each class m. These operations are affected by the block size, as
is the coding performance, through the calculation of the coefficients am(i, k), which decreases
when a larger number of pixels exists. Experiments showed that the 8 × 8 × 8 × 8 pixels fixed
block-size, analogous to what is used in MRP, was too large for the 4D space, which resulted in
blocks of 84 = 4096 pixels total. The same experiments showed that blocks of 44 = 256 pixels
were a good compromise in terms of compression ratio. Thus in this work, when 4D blocks are
used in the Fixed Block-Size module, the size is set to Fb = 4 × 4 × 4 × 4. For the Variable
Block-Size module initial the block size was set to Vb = 32× 32× 32× 32.

5.3 Dual-Tree 4D-Minimum Rate Predictors

The Dual-Tree 4D Minimum Rate Predictors (DT-4D-MRP) algorithm follows the same predic-
tion and classifications principles of 4D-MRP. However, a new dual-tree partition is introduced,
that separates the partition of the angular dimensions from that of the spatial dimensions. This
way, each block is either not partitioned, or partitioned on the angular or spatial dimensions.
Unlike the common quadtree of MRP, the new dual-tree algorithm requires a ternary signalling
for its definition. The following sections describe the new dual-tree partition and the redesigned
signalling of the dual-tree, respectively. The block sizes Fb (4×4×4×4) and Vb (32×32×32×32)
are the same as in the 4D-MRP case.

5.3.1 Dual-Tree Partitioning

This partitioning mode, named DT-4D-MRP, is intended to improve the problem created by
hexadecatrees, which tend to use very fine partitioning with a high number of 2 × 2 × 2 × 2

blocks (the smallest possible size), albeit still achieving better performance than MRP, as shall
be seen in Section 5.5. As expected, using smaller block sizes requires more signalling bits to
encode the partition tree. In order to improve the compression performance a new mode which
independently partitions the spatial and angular dimensions is introduced in DT-4D-MRP. This
proposal is supported by different sampling present on the spatial and angular dimensions at
the acquisition, which means that partitioning both dimensions at the same time may lead to
over-partitioning in one of the dimensions pairs.

In this mode, the block partitioning algorithm was changed to decouple the angular from the
spatial partitioning. Therefore, rather than partitioning in 16 blocks as in 4D-MRP, each 4D
block was partitioned either into four blocks in the angular dimensions (t, s), into four blocks in
the spatial dimensions (v, u), or not partitioned at all. Let a block be represented by LB(t, s, v, u),
with t ∈ {γ ∈ N | 0 ≤ γ < T}, s ∈ {γ ∈ N | 0 ≤ γ < S}, v ∈ {γ ∈ N | 0 ≤ γ < V }, and
u ∈ {γ ∈ N | 0 ≤ γ < U}, in the block coordinates. Then the dual-tree partition can be defined
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by Equations 5.8 and 5.9, for the spatial and angular partitions respectively.

PDTS
(LB(t, s, v, u)) =

{LBi(t, s, vi, ui),∀i ∈ {0, . . . , 3}} , with



∀t ∈ {γ ∈ N | 0 ≤ γ < T}
∀s ∈ {γ ∈ N | 0 ≤ γ < S}
vi = a+ V × (1 + (−1)bi/2c+1)/4

ui = b+ U × (1 + (−1)i+1)/4

∀a ∈ {γ ∈ N | 0 ≤ γ < V/2}
∀b ∈ {γ ∈ N | 0 ≤ γ < U/2}

(5.8)

PDTA
(LB(t, s, v, u)) =

{LBi(ti, si, v, u), ∀i ∈ {0, . . . , 3}} , with



ti = a+ T × (1 + (−1)bi/2c+1)/4

si = b+ S × (1 + (−1)i+1)/4

∀v ∈ {γ ∈ N | 0 ≤ γ < V }
∀u ∈ {γ ∈ N | 0 ≤ γ < U}

∀a ∈ {γ ∈ N | 0 ≤ γ < T/2}
∀b ∈ {γ ∈ N | 0 ≤ γ < S/2}

(5.9)

The partition tree structure of DT-4D-MRP is represented in Figure 5.6, where ‘S’ represents
the spatial partition, ‘A’ the angular partition and ‘N’ non-partitioned blocks. Figures 5.7a and
5.7b show visual representations of the separate quadtrees for spatial and angular dimensions,
respectively.

S

1 N0 S 2 3N A

1 A0 S 2 N 3 N

Figure 5.6: Dual quadtree partition in 4D-MRP: tree structure partition example.
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Figure 5.7: First level of the dual quadtree partition in 4D-MRP, using Sideboard LF from [51].
The partition index of each block is shown in white circles.



82 5. 4D Light Fields Compression

5.3.2 Arithmetic Coding of the Partition Tree Signalling

In this new tree structure the decisions are no longer binary but ternary, since there are three
options for partitioning each block (i.e., spatial, angular, none). In DT-4D-MRP, the cost of
selecting a given partition mode was redefined to reflect the new signalling structure:

Bmflags
=


− log2(PN ), if flag = ‘N’

− log2(PS|N̄ · PN̄ ), if flag = ‘S’

− log2((1− PS|N̄ ) · PN̄ ), if flag = ‘A’

, (5.10)

where PN represents the probability of the ‘N’ flag, PN̄ = 1−PN the complementary probability
of PN , and PS|N̄ the probability of the ‘S’ flag given N̄ , resulting from:

PN = argmin
p
{− log2(p) · ctxN − log2(1− p) · (ctxS + ctxA)} ,

PS|N̄ = argmin
p
{− log2(p) · ctxS − log2(1− p) · ctxA} ,

(5.11)

where p ∈ [0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95], and ctx i represents contextDT (i), given by Equa-
tion 5.12.

For the DT-4D-MRP, the number of possible contexts was reduced, and the computation of the
context was replaced by the number of times each flag (‘S’, ‘A’, or ‘N’) is chosen in the tree:

CqtflagsDT (F ) =
∑
b∈tree

δflag(b),F , (5.12)

where F represents the flag for which the context is being determined, b represents each block
in the tree, flag(b) is the partition flag of each block b and δ is the Kronecker delta.

These operations are represented by Algorithm 5.2. Following the same approach as in the 4D-
MRP case, a table of probabilities (treeprob) is used to facilitate the encoding of the partition
flags context, as the index is more efficiently encoded than the actual probability value. The
optimal index o_index corresponds to the probability p that minimises the expression in Line 6
and Line 18 of the algorithm. The cost of each flag, represented as cost = −log(P ), is calculated
in two steps. First the probability of the ‘N’ flag is determined, by considering the probabilities
of the remaining flags, ‘S’ and ‘A’, to represent 1 − PN . Then, the relative probabilities of ‘S’
and ‘A’ are computed. Which are then normalised by multiplying them by a factor of 1 − PN ,
such that

∑
j=N,S,A Pj = 1. These probabilities are used to set the probability models for the

arithmetic coding of the tree partition. The flag costs are used in the optimisation of the partition
tree.

The remaining steps in the arithmetic coding of the partition flags and class selection are kept
unchanged. Essentially, starting with the first block, the partition flags are encoded until a block
is no longer partitioned, then the selected class is encoded in the bitstream.
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Algorithm 5.2 Calculation of the partition flags cost.
1: cost = inf
2: treeprob = [0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95]
3: #Determine cost of symbol ‘N’
4: for i = 0 to 6 do
5: P = treeprob[i]
6: c = − log(P )· context[‘N’] − log(1− P ) · (context[‘S’] + context[‘A’])
7: if c < cost then
8: cost = c
9: o_index = i

10: PN = treeprob[o_index]
11: flagcost[‘N’] = − log2(PN )
12: cost = inf
13: #Determine cost of symbols ‘S’ and ‘A’
14: for i = 0 to 6 do
15: P = treeprob[i]
16: c = − log(P )· context[‘S’] − log(1− P )· context[‘A’]
17: if c < cost then
18: cost = c
19: o_index = i

20: P = treeprob[o_index]
21: flagcost[‘S’] = − log2(P · (1− PN ))
22: flagcost[‘A’] = − log2((1− P ) · (1− PN ))

5.4 Multi-Reference Minimum Rate Predictors

In Section 5.3, the DT-4D-MRP was proposed as an alternative to 4D-MRP to reduce the large
overhead of hexadecatree partitioning signalling, due to the large amount of smallest size blocks
used in the encoder. This section proposes a different approach to deal with this overhead. In
Multi-reference Minimum Rate Predictors (M-MRP), the 4D partitioning is abandoned and only
2D partitions are used. This is done by treating the LF as a single 2D image for partition, which
results in a more sensible spatial partitioning with fewer smallest blocks, despite the fact that
this approach forsakes the potential benefits of using 4D blocks, as presented in 4D-MRP and
DT-4D-MRP. This way the block sizes were set to be the same as in MRP, Fb = 8 × 8 and
Vb = 32× 32, for the fixed and variable block size cases, respectively. The M-MRP combines the
4D prediction described in the Section 5.2 (represented in Figure 5.2) with the conventional 2D
quadtree partition, represented in Figure 5.8a and Figure 5.8b. Let a 2D block be represented by
LB(v, u), with v ∈ {γ ∈ N | 0 ≤ γ < V }, and u ∈ {γ ∈ N | 0 ≤ γ < U}, in the block coordinates,
then the M-MRP partition can be represented by (a and b are auxiliary variables):

PDTS
(LB(v, u)) =

{LBi(vi, ui),∀i ∈ {0, . . . , 3}} , with



vi = a+ V × (1 + (−1)bi/2c+1)/4

ui = b+ U × (1 + (−1)i+1)/4

∀a ∈ {γ ∈ N | 0 ≤ γ < V/2}
∀b ∈ {γ ∈ N | 0 ≤ γ < U/2}

. (5.13)
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The partition structure of M-MRP is similar to that of 4D-MRP, in particular, and to MRP, in
general. Thus, no further modifications to the signalling structure are needed. Additionally, due
to the similarity of the partition method between 4D-MRP and M-MRP, the overall computa-
tional complexity remains roughly the same, as will be evidenced in the experimental results in
Section 5.5.

10 2 3

10 2 3
(a)

t

s

(b)

Figure 5.8: Two dimension quadtree partition in M-MRP: (a) tree structure partition example;
and (b) visual representation of the quadtree using different levels, for the Sideboard image
from [51].

5.5 Experimental Evaluation

Extensive experiments were carried out to assess the performance of the proposed algorithms.
In the first set of experiments the three algorithms are compared with other state-of-the-art
encoders, like High Efficiency Video Coding (HEVC) or Versatile Video Coding (VVC). Then
an analysis of the computational complexity is undertaken. The last set of experiments deals
with the trade-off between coding efficiency and computational complexity. The experiments
described in the next sections follow the conditions set in Section 2.4.

5.5.1 Comparison with State-of-the-Art Encoders

The three modes described in Section 5.2, 4D-MRP, DT-4D-MRP, and M-MRP, have been
designed to exploit the unique characteristics of light field images. Their coding efficiencies were
evaluated by encoding all the LFs listed in Section 2.4. The results are analysed and discussed
in the following.
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Experiments Using the EPFL and HCI Datasets

The results in Table 5.1 show that MRP surpasses standard codecs like Lossless and Near-lossless
Compression of Continuous-tone Still Images (JPEG-LS), HEVC, or VVC. However, neither of
these standard encoders, including MRP, is adapted to exploit the particular characteristics of
the 4D LF data representation. The proposed 4D-MRP, M-MRP and DT-4D-MRP schemes
achieve higher compression ratio than MRP, 9.68, 9.66, and 9.59 bits-per-pixel (bpp) on average,
respectively. This is translated to a difference of 1.00 to 1.09 bpp on average, when compared with
MRP, which encodes these LFs with an average bitrate of 10.69 bpp Such differences represent
roughly 10% of bitrate savings. When compared with the most recent state-of-the-art image
and video coding standard, VVC, which achieves an average bitrate of 11.34 bpp, the proposed
methods, with bitrates ranging from 9.68 to 9.59 bpp, on average, present savings of 15%, on
average, surpassing VVC by 1.66 to 1.75 bpp.

Table 5.1: Compression results (bpp) for EPFL and HCI datasets.

Type Light Fields JPEG-LS HM VVC MRP 4D-MRP M-MRP DT-4D-MRP

LL

Bikes 16.42 13.69 13.72 12.73 11.43 11.47 11.34
Danger 16.18 13.03 12.97 11.89 10.80 10.80 10.71
Fountain 16.66 14.43 14.52 13.28 12.09 12.06 11.99
Stone 16.77 13.44 13.38 12.36 11.29 11.20 11.17

HDCA Greek 7.25 5.55 5.36 5.40 4.82 4.78 4.78
Sideboard 12.19 8.17 8.09 8.43 7.66 7.62 7.58

Average 14.24 11.39 11.34 10.68 9.68 9.66 9.59

In regard to the individual evaluation of the three proposed methods, it can be seen that the
DT-4D-MRP achieves the lowest bitrate (9.59 bpp), both on average and for each image. When
compared with 4D-MRP (9.68 bpp) and M-MRP (9.66 bpp), the DT-4D-MRP is able to outper-
form these by 0.7 to 0.9%, respectively. The dual quadtree prediction seems to provide better
adaptation of partitions to the image data, as can be inferred by the higher compression ratio.
The 4D-MRP encoder presents the highest bitrate of the three, which is explained by the highly
granular partition used by the encoder. This is due to the simultaneous partitioning in all dimen-
sions, which results in smaller blocks and, consequently, more side information. M-MRP, which
uses 2D instead of 4D partitions, achieves an intermediate coding efficiency when compared with
4D-MRP and DT-4D-MRP. This is owed to the fact that 2D partitions can use blocks that in-
clude pixels from multiples SAIs and blocks with larger sizes, as splitting in the four-dimensions
at once is not mandatory (or possible), as was the case of 4D-MRP.

Experiments Using the SKINL2 Dataset

Further coding experiments using the light field image dataset of skin lesions (SKINL2) revealed
that performance results are consistent with those observed for non-dermoscopic images. The
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results shown in Table 5.2 further assert the better performance of the proposed methods when
compared with the state-of-the-art encoders. In fact, while the MRP encodes these LFs with
an average of 7.96 bpp, the proposed methods present an average bitrate of 7.11, 6.94, and
6.97 bpp, for 4D-MRP, M-MRP, and DT-4D-MRP, respectively. These results represent bitrate
differences ranging from 0.85 to 1.02 bpp, and bitrate savings larger than 11%. In comparison
with the VVC, which has an average bitrate of 8.57 bpp, the proposed methods present gains
of 1.46 to 1.63 bpp, on average, which represent up to 19% of bitrate savings. These results
show that the proposed algorithms are able to achieve the highest compression efficiency for the
skin lesions dataset, which is a noteworthy conclusion as in many application scenarios medical
images are required to be losslessly compressed.

Table 5.2: Compression results (bpp) for the SKINL2.

Light Fields JPEG-LS HEVC VVC MRP 4D-MRP M-MRP DT-4D-MRP

Img1 13.39 8.65 8.17 8.06 7.01 6.79 6.84
Img2 13.59 9.10 8.74 7.81 7.10 6.98 6.97
Img3 13.61 9.18 8.79 8.00 7.23 7.07 7.09

Average 13.53 8.98 8.57 7.96 7.11 6.94 6.97

In regard to the comparison between the three proposed methods, it can be observed that DT-4D-
MRP and M-MRP achieve similar compression efficiency, with a slight advantage for M-MRP.
For this dataset (SKINL2) the bitrate savings of M-MRP are 2% and 0.43% when compared with
4D-MRP and DT-4D-MRP, respectively. This shows that there is a relative loss of efficiency of
4D-MRP and DT-4D-MRP for the current dataset, when compared with the results of Table 5.1.
This might be explained by the larger resolution of the images in the SKINL2 dataset, that seems
to favour the algorithms of M-MRP.

Overall the experimental evaluation demonstrates, in a consistent manner, that using both 4D
prediction and 4D partition to encode LFs with MRP, leads to the higher coding efficiency of
DT-4D-MRP.

5.5.2 Analysis of the Computational Complexity

Besides coding efficiency, the computational complexity is an important, although not always
primary, benchmarking variable. The complexity results pertaining to the different encoders,
evaluated by measuring the LF encoding times evaluated on the École Polytechnique Fédérale
de Lausanne (EPFL) and Heidelberg Collaboratory for Image Processing (HCI) datasets, are
presented in Table 5.3. The encoding time ratio shown in this table is obtained by dividing
the encoding time of an encoder by that of MRP. These results were obtained on a computer
equipped with an Intel Xeon(R) Silver 4114@2.20GHz CPU, and 192GB of DDR4@2666MHz
RAM, running Ubuntu Server 20.04.1 LTS. The results show that the DT-4D-MRP has the worst
performance in terms of computational complexity, when compared with the other encoders,
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taking on average 78 times longer than MRP to encode the same LFs. As stated in Section 5.3,
this high computational complexity is due to the large number of partitioning options that need
to be tested in the dual quadtree. The 4D-MRP and M-MRP proposals have computational
complexities of the same magnitude, about 4 and 7 times that of MRP, respectively. However,
they have a smaller compression performance than that of DT-4D-MRP. Although VVC presents
about the same complexity as the 4D-MRP and M-MRP encoders, its compression performance is
much lower than that of these encoders. The performance of VVC is on pair with that of HEVC,
despite being an older standard. This might be explained by the fact that VVC performance
optimisation has been so far mostly focused on lossy coding tools rather than improving the
lossless modes.

Table 5.3: Encoding time ratio compared with MRP, for EPFL and HCI datasets.

Type Light Fields JPEG-LS HM VVC MRP 4D-MRP M-MRP DT-4D-MRP

LL

Bikes 1.5E-3 0.2 3.6 1.0 3.5 6.4 91.9
Dange 2.0E-3 0.3 4.4 1.0 4.7 9.3 90.2
Fountain 1.9E-3 0.3 4.6 1.0 3.7 8.8 122.5
Stone 1.7E-3 0.3 4.5 1.0 3.7 8.0 89.0

HDCA Greek 8.9E-4 0.1 3.0 1.0 4.9 6.6 35.1
Sideboard 1.0E-3 0.2 2.6 1.0 4.3 4.1 44.4

Average 1.5E-3 0.2 3.8 1.0 4.1 7.1 78.9

5.5.3 Rate-Complexity Trade-Off in Multi-Reference Minimum

Rate Predictors

This section investigates the relationship between the input parameters of M-MRP and their
impact on the rate-complexity performance. An experimental study was carried out by varying
the three main encoder parameters, namely, the number of optimisation iterations, the number of
prediction modes, i.e., classes, and the number of reference pixels. The HEVC reference software
(HM) encoding time is used as a reference for the comparative study of the trade-off between
M-MRP coding efficiency and computational complexity. The x265 coder, which is an optimised
implementation of the HEVC standard, is also used for comparison. The analysis is based on
both compression efficiency, measured in bpp, and complexity, measured by the processing time,
in minutes.

The three input parameters were tested with multiple values resulting in a set of operation
points defined by coding efficiency (bpp) versus computational complexity (in minutes), shown
in Figure 5.9 for the Stone Pillars Outside LF, and in Figure 5.10 for the Greek LF. In these
figures, the red dashed line represents the limits of HM pseudo-video sequence (PVS), whose
intersection is represented by a black cross, and the x265 reference is represented by a black
dot. For the x265 experiments the configurations described for the anchor in the Common Test
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Conditions of the JPEG-Pleno (JPEG-Pleno CTC) were used, with appropriate changes for the
lossless case, and the parallel processing tools disabled to provide a fair comparison.
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Figure 5.9: Operational points for Stone Pillars Outside image of EPFL dataset (a), (b) the
operational points with the number of iterations sorted by colour, (c) the operational points
with the number of classes sorted by colour, and (d) the operational points with the number of
reference pixels pair (intra and inter) sorted by colour.

Figures 5.9a and 5.10a show all the resulting operational points when varying the previously
described parameters. For an easier analysis in Figures 5.9b and 5.10b the number of iterations
are represented by different colours, the same is done for the number of classes in Figures 5.9c
and 5.10c, and for the number of reference pixels in Figures 5.9d and 5.10d. These figures show
that with a proper selection of the coding parameters, M-MRP can achieve competitive coding
efficiency, while maintaining a similar complexity to HM. The computational complexity was
measured as the running time of the encoding operations for the codecs, using a dedicated server
running Ubuntu Server 18.04 with an Intel Xeon Silver 4114 @ 2.20GHz CPU and 62.6 GB of
RAM.

Considering the number of classes for both datasets, it is observed in Figures 5.9c and 5.10c that
using just one class generally leads to higher bpp (i.e., lower compression ratios). This was ex-
pected, as using just one class greatly reduces the adaptability of the encoder. For the remaining
number of classes the analysis is not straightforward. However, considering the encoding time of
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Figure 5.10: Operational points for Greek image of HCI dataset (a), (b) the operational points
with the number of iterations sorted by colour, (c) the operational points with the number of
classes sorted by colour, and (d) the operational points with the number of reference pixels pair
(intra and inter) sorted by colour.

HEVC as reference, it can be seen that for both cases the lowest bpp (i.e., highest compression
efficiency) is obtained for 10 to 15 classes.

In regard to the number of iterations, the results show that using a lower number of iterations
or classes (1 or 2), generally leads to lower compression efficiency, as can be seen for the Greek
image. Once again, considering the encoding time of HEVC as a benchmark, using five iterations
provide the highest compression efficiency for both images.

The colour representation of the parameters and visual analysis of the number of reference pixels
does not result in sharp conclusions, unlike the case of the number of classes and the number of
iterations. Nevertheless, the analysis of the results led to the selection of the encoding parameters
shown in Table 5.4.

These M-MRP parameters are selected such that, for a similar complexity, M-MRP achieves
higher coding efficiency than HM, originating the results shown in Tables 5.5 to 5.7, with bitrate
and complexity results. In these tables, M-MRP stands for the encoding results with the selected
parameters and M-MRP Optimal the highest compression ratio for M-MRP (non-constrained).
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M-MRP Optimal represents the M-MRP results presented in Section 5.5.1.

Table 5.4: Parameter selection for the rate-complexity optimisation.

Dataset Iterations Classes References1

EPFL 5 10 6, 5
HCI 5 15 6, 13

Table 5.5: Compression results (bpp) for the JPEG-Pleno CTC.

Type Light Fields HM x265 JPEG-LS M-MRP M-MRP Optimal

LL

Bikes 13.69 14.59 16.42 11.55 11.47
Danger 13.03 13.75 16.18 10.93 10.80
Fountain 14.43 15.54 16.66 12.24 12.06
Stone 13.44 14.10 16.77 11.30 11.20

HDCA Greek 5.53 5.69 7.25 5.09 4.78
Sideboard 8.16 8.75 12.19 7.99 7.62

Average 11.38 12.07 14.24 9.85 9.66

Table 5.6: Bitrate savings for the JPEG-Pleno CTC when compared to HM.

Type Light Fields x265 JPEG-LS M-MRP M-MRP Optimal

LL

Bikes 6.6% 19.9% -15.6% -16.2%
Danger 5.5% 24.2% -16.1% -17.1%
Fountain 7.7% 15.5% -15.2% -16.4%
Stone 4.9% 24.8% -16.0% -16.6%

HDCA Greek 2.9% 31.0% -7.9% -13.8%
Sideboard 7.3% 49.4% -2.1% -6.5%

Average 6.1% 25.2% -13.5% -15.2%

The experimental results show that both M-MRP and M-MRP Optimal present better compres-
sion ratios than the other encoders. Although there is a slight loss of compression efficiency in
M-MRP when compared to M-MRP Optimal, as expected, because the parameter values have
been decreased to speed up the encoding time. Thus, M-MRP and M-MRP Optimal achieve a
compression efficiency that is, on average, 13.5% and 15.2% higher than that of HM (HEVC),
respectively.

In regard to the encoding and decoding time, Table 5.7 shows that the encoding time of M-MRP
(i.e., 105.5%) is quite similar to HEVC, with M-MRP being just 5.5% slower, on average (note
that 100% corresponds to the encoding time of HEVC). This means that the encoding time of
M-MRP Optimal can be reduced by 27 to 48 times, while still achieving an average compression
efficiency gain of 13.5% in comparison with the HEVC Reference implementation (see M-MRP

1The references parameter represents the number of reference pixels in the current and in each of the
neighbour SAIs.
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Table 5.7: Encoding and decoding processing time relative to HM (in %) for the JPEG-Pleno
CTC using the selected images.

Type Light Fields x265 JPEG-LS M-MRP M-MRP Optimal
Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec.

LL

Bikes 2.1% 94.8% 0.6% 150.2% 106.5% 85.6% 3202.4% 146.1%
Danger 2.0% 95.2% 0.6% 155.5% 106.1% 87.5% 3205.7% 148.9%
Fountain 2.0% 96.8% 0.6% 149.8% 101.2% 83.7% 3185.9% 143.5%
Stone 2.1% 95.1% 0.6% 161.5% 102.4% 89.3% 4251.1% 152.8%

HCDA Greek 1.9% 104.2% 0.7% 193.3% 114.6% 143.2% 4795.1% 307.8%
Sideboard 1.5% 101.8% 0.7% 186.7% 109.8% 117.3% 2706.3% 271.2%

Average 2.0% 96.5% 0.6% 159.0% 105.5% 92.2% 3494.4% 166.7%

column in Table 5.6). Additionally, Table 5.7 shows that the decoding time of M-MRP is just 0.92
times that of HM, on average. In comparison with HM, the M-MRP Optimal average decoding
time is 1.67 times higher, which shows that the change of the input parameters have a much
lower influence on the decoding process (as expected).

Overall, the results presented in this section establish a trade-off relationship between LF loss-
less coding efficiency and computational complexity between a non-standard, yet more efficient
encoder, and the standard HEVC Reference Encoder. It stands to reason, that these results can
be extrapolated to other MRP based encoders, and in particular those presented in this chapter.
Therefore, albeit Table 5.3 showing that DT-4D-MRP presents high computational complexity,
this can be managed by a proper selection of input parameters.

5.6 Summary

In this chapter, three 4D prediction and partition modes were proposed for LF lossless encoding.
These modes allow the encoder to use up to four neighbouring SAIs as prediction references,
which leads to a better prediction performance and increases the coding efficiency of the MRP
encoding, by exploiting the four-dimensional characteristics of LFs. The three proposals use
the same type of 4D prediction, with differences relating to the type of tree partition: (i) in
4D-MRP an hexadeca tree is used, (ii) DT-4D-MRP uses a 4D partition with a quadtree for the
spatial dimensions and other for the angular dimensions, and (iii) M-MRP uses a 2D quadtree
partition. The 4D-MRP and M-MRP prediction modes present a good compromise in terms of
rate-complexity trade-off.

Overall, in comparison with other state-of-the-art encoders, all the proposed methods present
higher compression ratios, reducing the average bitrates from 10% to 32%. The highest per-
formance is achieved by DT-4D-MRP which, to the best of the author’s knowledge, is the best
lossless coding performance for LFs represented in the 4D spatial-angular domain achieved so
far. While its computational complexity might be a concern, some adjustments can be made to
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alleviate this issue. It was shown that the complexity of M-MRP can be reduced, while still main-
taining better compression efficiency than other state-of-that-art encoders. Additionally, none of
the implementations of the proposed methods were optimised for computational efficiency, which
means there is room for improvement. Considering 4D-MRP and M-MRP, while they present
lower performance than DT-4D-MRP, competitive compression ratios are nevertheless achieved
and can be regarded as a good compromise in terms of rate-complexity trade-off.
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Current state-of-the-art methods, such as those proposed in the previous chapters, are able to
efficiently encode light field (LF) images. However, most of the existing solutions lack useful
functionalities, such as angular scalability and random access (RA). For LF applications that
require lossless compression, such as medical imaging and critical computer vision tasks, the
introduction of such capabilities in the encoder opens new possibilities. For instance, angular
scalability, i.e., the ability to progressively decode more sub-aperture images, allows the extrac-
tion of sub-sampled LFs. This can be useful for LF displays, that would be able to decode SAIs
as needed, especially when constraints of storage space, network bandwidth, or even computa-
tional limitations are taken into account, and even improve the quality of SAI refocusing when
additional information is decoded [120].

Another relevant functionality is random access, which consists in the ability of decoders to
access specific regions of the LF without decoding the complete bitstream. This simplifies the
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navigation through the LF sub-aperture images, reduces the decoding delay and the required
computational resources at the decoder. RA may also play a role in the analysis of particular
views by physicians in a clinical context, in order to quickly render specific regions, e.g., SAI,
for preliminary medical assessment.

This chapter proposes a hierarchical approach based on the Minimum Rate Predictors (MRP)
encoding method, that is capable of providing angular scalability and random access functionali-
ties for the lossless compression of LFs. This new encoder, named as Hierarchical Minimum Rate
Predictors (H-MRP), allows flexible definition of various hierarchical layers that, together with
constraints to the encoding dependencies, can provide RA capabilities. This prediction struc-
ture is a contribution to endow conventional MRP lossless encoding schemes [62] with angular
scalability and random access functionalities.

The remainder of this chapter is organised as follows: Section 6.1 overviews current solutions
for angular scalability and random access in LF coding; Section 6.2 describes the proposed
encoder [J1]; in Section 6.3 the experimental results are presented and analysed; and finally,
Section 6.4 summarises the chapter.

6.1 Related Work

In this section, a review on state-of-the-art LF encoding methods with angular scalability and RA
is presented. Regarding lossless encoding, the only work found in the literature that supports
scalability and RA is described in [103]. This work describes a LF codec supporting quality
scalability from lossy to lossless. Details about this algorithm were already exposed in Section 3.3.
It is worth mentioning that this work only uses non-rectified SAIs, i.e., not obtained through
the JPEG-Pleno processing chain and, therefore, requires both extra information and processing
steps at the decoder side.

As the literature on lossless LF encoders with RA and angular scalability is rather limited,
the remainder of this review refers only to research on lossy encoders. The methods presented
below are divided into two categories: those supporting angular scalability and those supporting
random access. Some works provide both capabilities and so belong in both categories.

In regard to angular scalability, in [121], Conti et al. propose to address the compatibility of
LFs with legacy displays. The authors use a three-layer approach, where the base layer encodes
one or more SAIs using standard 2D encoders. The first enhancement layer encodes the SAIs
in a stereo or multiview fashion using prediction references from the same layer and also from
the previous one. Finally, the second enhancement layer encodes the remaining information
by exploiting the spatial and geometric multiview information, and the micro images (MIs) LF
information, taking advantage of the overall redundancy. This work was extended in [122], where
the number of enhancement layers is flexible, and extra inter-layer coding tools are proposed.
In [123], Yun Li et al., propose to encode focused LFs by using a sparse set of micro images
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and their calculated disparities. This information is used to interpolate the remaining LF, using
inpainting where necessary. This interpolated LF is used as the prediction for the original one.
The selected MIs are encoded with a modified High Efficiency Video Coding (HEVC) encoder,
as well as four disparity maps, using lossless coding. The sparse set of micro images act as the
first layer, with the interpolated LF being the second and the third the residues resulting from
the previous interpolation. This work is expanded in [124] resorting to lossy encoding of the
disparity maps.

Although the previous works provide some form of angular scalability, most of them only use
two or three layers, which still poses limitations. Thus, a more flexible approach capable of
dealing with a variable the number of layers will be useful for enlarging the scope of possible
applications, and in particular, to support a larger range of displays resolutions. The H-MRP
algorithm proposed in this chapter, presents a contribution to alleviate this problem by allowing
the user to flexibly configure the number of scalability layers and the inter-layer prediction
structure.

Concerning random access, i.e., the ability to decode selected parts of the LF without decoding
the whole information, several methods can be found in the literature and some of these also
present scalability capabilities. In [125], the SAIs are divided into 25 groups and a fixed depen-
dency scheme is defined between the groups. A new pseudo-sequence-based prediction structure
is proposed and applied to the Multiview High Efficiency Video Coding (MV-HEVC) in [126].
In [127], it is proposed to interpret the LF as multiview sequences, by using a quadratic spiral
scan to form multiple pseudo-video sequences (PVSs). The result is encoded with MV-HEVC,
where several dependency layers are tested to achieve better RA capabilities. In [128], Pratapa
proposes a hierarchical scheme to encode LFs, where the top level layers encompass the merged
information of lower level layers, which is achieved by computing new SAIs through lower levels
SAIs clustering. These new SAIs are called representative key views (RKVs). This operation
is performed at each level until only one RKV exists in the last level. The top level RKVs are
encoded with JPEG2000 and the lower level SAIs are encoded using RKVs in higher levels as
reference. The bitstream is organised to enable RA and progressive decoding of the pixels.

In [129], a study on the performance of different dependency structures for LFs in MV-HEVC
is carried out. Finally, in [130] a LF coding framework with flexible viewpoint scalability and
random access is proposed. It encodes the light field using a PVS representation, with enhanced
reference picture selection algorithms. The angular scalability is achieved by defining six layers,
each one with an increasing number of SAIs, that define the coding order. Random access is
achieved by setting the size of the reference picture list, the number of viewpoint regions, and
the maximum dependency layer – i.e., the scalability layers that can be used as reference. In
order to further improve the RA capabilities, the authors group the LF SAIs to create regions
that are self contained in terms of prediction references called viewpoint regions, i.e., that can
be decoded independently.

A common limitation of most works presented above is the low RA flexibility to cope with
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different requirements imposed by the rigid prediction dependencies, and the fact that they are
not designed to cope with lossless compression. The present work addresses these limitations by
proposing a hierarchical lossless LF encoder with flexible random access capabilities.

6.2 Hierarchical Lossless Encoding with MRP

The proposed H-MRP algorithm is a versatile encoder that allows to finely tune the encoding
parameters with the goal of achieving high compression efficiency, while also adding enhanced
functionalities to the bitstream, such as random access and scalability. H-MRP relies on a
hierarchical decomposition of the LF representation data, which organises the LF sub-aperture
images into multiple layers defined by the configuration parameters. The most preeminent aspect
of the encoder is the hierarchical coding structure defined for inter SAI prediction, where the
SAIs in each layer are encoded in succession, resorting to reference SAIs that lie either in the
same layer or in lower ones within the hierarchical structure. Two other key aspects for increasing
the H-MRP versatility are (i) the selection of the reference SAIs, which allows the encoder to use
the most appropriate SAIs as references; and (ii) the disparity compensation, which is especially
relevant to minimise the disparity of SAI references in lower layers – that are farther from the
current SAI in the LF 4D space. The encoder uses a set of linear predictors adapted to the SAIs
characteristics to provide high compression rates.

6.2.1 The H-MRP Encoding Scheme

An overview of the processing flow of the proposed Hierarchical Minimum Rate Predictors is
provided in Figure 6.1. The H-MRP algorithm starts by pre-processing the LF by applying
an RCT and histogram packing, as was done in the case of Four-Dimensional Minimum Rate
Predictors (4D-MRP) in Chapter 5, for instance. This step ensures that the LF colour compo-
nents are decorrelated, thus increasing the compression efficiency. After the pre-processing step,
the SAI to be encoded is selected according to the sequence order defined by the hierarchical
structure. The encoder compresses each hierarchical layer separately. Further details about the
hierarchical coding structure are given in Section 6.2.2. Then, the reference SAIs for the predic-
tion are selected based on their distance to the current SAI in the LF 4D space. This process,
which allows for the encoder to use the most appropriate prediction references, is described in
Section 6.2.3. The selection of reference SAIs might also depend on the random access region
(RAR) partitions, with the 4D LF divided into these RARs, such that each SAI can only be
predicted with references from the same region. Section 6.2.4 provides details of the RARs and
its potential influence on H-MRP performance. Finally, before starting the MRP encoding steps,
disparity compensation is applied to the reference SAIs. For each of the selected references, the
disparity vectors are calculated and used in the disparity compensated prediction, as detailed in
Section 6.2.5.
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Figure 6.1: Functional diagram of the H-MRP algorithm.

After the Disparity Compensation module, the encoding algorithm follows the MRP steps, as
presented in Algorithm 6.1. Overall, this algorithm is based on the optimised computation of
linear predictors, each associated to a corresponding class. These classes are characterised by a
set of coefficients computed to minimise the bitrate needed to encode the prediction residuals
and side information. Thus, as defined in Algorithm 6.1, the processing flow is organised as a
sequence of optimisation loops: one using blocks of fixed size to perform the initial operations
and then another one using variable block sizes that refines the computations and optimisation
of the previous operations, in the same way as described in Section 3.4.

First Optimisation Loop: The first optimisation loop, which divides the SAIs into blocks
of 8 × 8 pixels, starts by sorting the blocks into M classes, according to its pixels variances,
providing an initialisation for the algorithm. The pixels in these blocks are predicted using a
class-specific linear predictor. The prediction in H-MRP is similar to that of the MRP based
encoders, where the prediction of a pixel p0 is computed as a weighted sum of pixels from the
reference SAIs, as defined by Equation 6.1,

ŝ(0) =

NR∑
i=0

Ki∑
k=1

am(i, k) · s(i, k), (6.1)

where s(i, k) is the k-th pixel value for the current (for i = 0) or the reference SAIs (for i =

1, . . . , NR), NR is the number of reference SAIs, and am(i, k) is the coefficient of the m-th class
linear prediction models for the current and reference SAIs. The reference pixels from the current
and reference SAI are illustrated in Figure 6.2. The coefficients am are calculated in the Predictors
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Algorithm 6.1 Hierarchical MRP high level algorithm.
1: Input: light field
2: Apply pre-processing
3: for layer : 1 to MAX_LAYER do
4: for each SAI in layer do
5: Reference SAIs selection (NR)
6: Calculate disparity vectors for each reference (

−→
Dχ)

#Initial block classification
7: Sort and classify of 8× 8 blocks by pixel variance

#1st optimisation loop using fixed block size
8: for 1 to MAX_ITERATIONS do
9: #Predictors design
10: for each class do
11: Compute the prediction coefficients (am)
12: Calculate residuals
13: Calculate prediction residue encoding cost (Br)

#Groups optimisation
14: for each class do
15: Compute C quantisation thresholds to minimise Br
16: Calculate Br

#Classification optimisation
17: for each 8× 8 block do
18: Move neighbour blocks classes to front of list
19: Calculate residuals for all classes
20: Select class that minimises Br
21: Calculate Br
22: if 10 iterations without improvement then
23: end for loop

#2nd optimisation loop using variable block size
24: for 1 to MAX_ITERATIONS do
25: Calculate prediction coefficients encoding cost (Ba)

#Groups optimisation
26: for each class do
27: Compute C quantisation thresholds to minimise Br
28: Update shape parameter in probability models
29: Calculate quantisation thresholds cost (Bt)

#Classification optimisation using VBS
30: for Each 32× 32 block do
31: ClassOptimisation
32: Calculate cost J
33: if 10 iterations without improvement then
34: end for loop
35: Remove non-utilised classes
36: Run arithmetic coding
37: Output: Encoded bitstream

Design step, by solving a set of Yule-Walker equations, using the pixel correlations considering all
the pixels in the blocks associated with class m. Ki represents the number of pixels that support
the prediction in the current (for i = 0) and reference SAIs (for i = 1, . . . , NR), respectively.
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Algorithm 6.2 Classification optimisation procedure.
1: procedure ClassOptimisation
2: Move neighbouring blocks classes to front of list
3: Calculate residuals
4: Select class that minimises Br
5: if level > 0 then
6: Calculate cost of not partitioning block (J1)
7: Partition block in quadtree fashion
8: for each resulting block do
9: ClassOptimisation
10: Calculate sum of cost of partitioned blocks (J2)
11: if J2 < J1 then
12: Partition block
13: Return: Cost, partition structure and class selection
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Figure 6.2: H-MRP prediction using disparity vectors.

Then, in the Groups Optimisation step, the algorithm calculates a set of thresholds, usually 15,
to be used for quantisation of the prediction residuals context. The quantised contexts, resulting
from the thresholds, define 16 groups, each with a different probability model, defined by the
parameters of a Gaussian probability density function, for the arithmetic coding of the prediction
residuals. The context C is calculated as:

C =

NR∑
i=0

Ki∑
k=1

1

δ(i, k)
e(i, k), (6.2)

where e(i, k) represents the prediction error of the reference pixel pk in the reference SAI i, given
by e(i, k) = |s(i, k)− ŝ(i, k)| and δ(i, k) are weighting factors proportional to the Euclidean
distance between the current pixel (p0) and each reference pixel (k). The δ(i, k) weights are
defined as:

δ(i, k) =

√
dv(k)2 + du(k)2 + λ(i)2

64
, with λ(i) =

0, i = 0

1, i 6= 0
, (6.3)

where dv and du are the spatial distances, measured in pixels, between a reference pixel pk and
the pixel to encode. λ(i) represents the distance between SAIs and is set to 1 for the reference
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SAIs, and set to 0 for the current SAI.

The first optimisation loop is concluded by the Classification Optimisation step, which refines
the initial block classification into the newly calculated linear models of the classes. Instead
of directly transmitting the actual class index for each block, the encoder uses a lookup table
that is updated as each block is processed by using a move-to-front method. The class index
associated with the upper, left, and upper right neighbour blocks are placed at the top of the
lookup table, in this order. In this manner, as neighbour blocks are correlated, the indices to
transmit should generally have small values, which leads to a more efficient compression of these
indices (i.e., different classes can be represented by the same lookup table index). Then, the
prediction residuals of each block are computed using all the predictors to find the associated
class that minimises the encoding cost Br of prediction residuals, calculated as

Br =
∑
p0

L (e|ŝ (0) , n) , (6.4)

where L(e|ŝ(0), n) represents the encoding cost of the prediction error, which is computed by
using the probability density estimate of the prediction errors belonging to the n-th group,
assumed to follow a Gaussian distribution. The first optimisation loop ends when the algorithm
reaches the maximum number of iterations, or 10 consecutive iterations without improvement.

Second Optimisation Loop: The second optimisation loop refines the operations of the
previous loop using blocks with variable sizes (VBS), and fits the probability models to the
prediction errors. This optimisation takes into account the cost of encoding both the signalling
and the prediction errors:

J = Ba +Bm +Bt +Br, (6.5)

where Ba, Bm, and Bt are the encoding costs of the prediction coefficients, class selection, and
context modelling threshold values, respectively. For every iteration where J is calculated, all
its sub costs B are recalculated. In the previous loop, at the Groups Optimisation step, only
the threshold for the quantisation of C was optimised. In this phase, the algorithm also updates
the shape parameter of the generalised Gaussian probability density functions, which are used
to model the prediction residuals of each group. Then, in the Classification Optimisation step,
the H-MRP divides the SAI into blocks that are partitioned in a quadtree fashion, selecting for
each block the class whose linear predictions models were designed in the first loop, and that
minimises the encoding cost. The initial block size in the variable block size (VBS) optimisation
is 32 × 32 pixels, which can be partitioned down to blocks with 2 × 2 pixels. The block sizes
define quadtree levels ranging from 4 to 0. For each quadtree level, the decision whether a block
is to be partitioned depends on whether or not the sum of the sub-blocks costs (J2) is smaller
than the cost of the parent non partitioned block (J1). The class choice is signalled by the same
process described in the previous optimisation loop.

The encoding process is finalised by coding all the generated information using a range coder [68].
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More details about the encoding process of the MRP family algorithms can be found in [62,68].

6.2.2 Hierarchical Coding Structure

For hierarchical encoding, the input data is divided into layers where the predictions only depend
on information that is available in lower hierarchical levels. Generally, this concept is used to
progressively add information, for example, by increasing resolution or adding more frames (or
SAIs) when encoding/decoding layers that are higher in the hierarchy. For instance, an encoder
might compress a sub-sampled version of an image in the lower layer, and the difference to the
full resolution, in the higher level layer. In some applications, this allows the decoder to decode
a sub-sampled version without decoding the remaining full image.

The hierarchical architecture of H-MRP (which enables the angular scalability) is attained by
allocating different SAIs of the LF to each hierarchical layer. Figure 6.3 presents a possible
selection of SAI references in H-MRP. This figure presents hierarchical layers of a LF with 5× 5

SAIs, where SAIs in red belong to the respective hierarchical layer, those in pink represent
previously encoded SAIs, and the blue ones are the SAIs in higher hierarchical layers. The
arrows in the figure point to the reference SAIs. As can be seen in this figure, layers at lower
hierarchical levels (e.g., Hierarchical layer 1) contain less information (SAIs in this case) than
those at higher levels (e.g., Hierarchical layer 3).

s

t

(a) Hierarchical layer 1.
s

t

(b) Hierarchical layer 2.

s

t

SAI in current layer.

Already encoded SAI.

Points to reference SAI.

(c) Hierarchical layer 3.

Figure 6.3: Example of a possible hierarchical coding scheme of H-MRP: (a) Hierarchical layer
1 containing a single SAI; (b) Hierarchical layer 2 containing four SAIs, all using the same
reference; and (c) Hierarchical layer 3 containing twelve SAIs, showing a potential selection of
three references.
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The hierarchical structure used in this thesis for H-MRP and the SAIs allocation to each of the
six layers, for a 15× 15 LF, are shown in Figure 6.4. The lower level hierarchical layer has only
one SAI, the second layer has eight SAIs placed around the SAI in the first layer, etc. If the layers
are progressively decoded, the partial output resulting from the decoding of the first layer can
be interpreted as a 1× 1 (t× s) LF. Then, the partial output of the second layer decomposition
will be interpreted as a 3 × 3 LF. Depending on the SAIs allocation to each hierarchical layer,
the decoder can construct a progressively larger 4D LF, that can be considered a sub-sampled
version of the full 4D LF.
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(e) Hierarchical layer 5.
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(f) Hierarchical layer 6.

Figure 6.4: Representation of the used hierarchical layers (inspired by [78], for the case of 13×13
LFs).

In order to achieve random access in a hierarchical scheme, it must be possible to decode each
layer independently. Alternatively, as in the case of H-MRP, information from lower hierarchical
levels might also be used as references for the current one, establishing some level of dependency.
A trade-off between compression efficiency and random access capabilities is achieved, depending
on whether SAIs from the same layer are used as reference. H-MRP uses up to NR reference
sub-aperture images as defined by Equation 6.1. The random access capabilities of H-MRP
allow easier navigation through the light field, enabling any SAI to be decoded without the
need to decode the whole compressed stream. However, the compression efficiency might be
penalised, because it is not guaranteed that the optimal references are always chosen when there
are restrictions to the reference SAIs selection. Additionally, SAIs in higher hierarchical layers
have larger decoding costs in a random access sense, since more SAIs need to be decoded to be
used as references.

The coding structure proposed in this work allows for a versatile allocation of the SAIs to the
various hierarchical layers and also the possibility of defining the scanning order of the SAIs in
each layer.
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6.2.3 Selection of Reference SAIs

The proper selection of the reference SAIs for the prediction is an important aspect due to
its impact in the prediction efficiency. Therefore, in H-MRP, a flexible structure to select the
reference SAIs is adopted. Such flexible structure is attained by adding previously encoded SAIs
of lower layers to a list of candidate references1. Then, the euclidean distance d between the
candidate references and the current SAI is calculated:

d =
√

(tr − tc)2 + (sr − sc)2, (6.6)

where (tr, sr) and (tc, sc) represent the angular coordinates of the reference and current SAIs.
The list is sorted by increasing distance and all candidate SAIs whose distances are greater than
Md (set to 8 in this work) are removed, to discard references that are too distant from the SAI
to be encoded. From the remaining SAIs, up to NR references are selected.

6.2.4 Random Access Regions

To improve the random access capabilities of H-MRP, random access region are introduced. This
concept is inspired by the viewpoint regions of [130]. The random access regions define limits for
the reference SAIs selection, such that an SAI in any given RAR can only use references of the
same region. Therefore each random access region can be encoded and decoded independently,
without requiring information from other regions. This restriction of references is useful not
only for improving the RA capabilities, since references will necessarily be closer to the SAI to
encode, but also to facilitate navigation through the neighbouring SAIs. Figure 6.5 shows the
RAR divisions used in H-MRP, where the black lines indicates the regions borders and the SAIs
in yellow are shared between the regions connected to it, i.e., belong to all neighbouring regions.

These RAR divisions, when combined with the hierarchical coding structure, described in Sec-
tion 6.2.2, force the encoder to have, at least, one referenceless SAI in each region, i.e., an intra
SAI. Thus increasing the number of intra SAIs, slightly reducing the compression efficiency while
improving the random access capabilities.

6.2.5 Disparity Compensation

Due to the characteristics of LFs, the visual information in the SAIs, which represent slightly
different viewpoints of the scene, is not completely aligned, owing to the inter-SAI disparity.
The disparity between an SAI and its references should be taken into account in the encoder, to
improve the quality of the prediction. Thus, disparity compensation is beneficial for the encoding
process. Considering the 4D representation of LFs, denoted in Equation 2.2 and Equation 2.4,

1SAIs of the same level can also be added to the list if this option is enabled, as stated in the previous
section.
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Figure 6.5: Random access region divisions used in this work, as seen in [130].

and taking into account the disparity, a disparity compensated prediction SAI can be formed
from a reference SAI as:

L̃t,s(v, u) = Lt,s(v −DV(v, u), u−DH(v, u)), (6.7)

where DV(v, u) and DH(v, u) represent the vertical and horizontal disparity, respectively. Con-
sequently, the disparity vector of a given sub-aperture image, χ, is given by:

−→
Dχ = (DV(v, u),DH(v, u)) . (6.8)

The disparity is estimated on a block-wise basis, for each of the reference SAIs. The search
range for the disparity is limited toMD, for blocks of size BD, such that |DV(v, u)|, |DH(v, u)| ∈
[0, ...,MD]. Based on empirical experiments, in this work these values were set to BD = 8 and
MD = 8. The appropriate vector,

−→
Dχ, is selected to minimise the sum of squared differences:

SSD =

BD∑
i=1

BD∑
j=1

[R(i+DV(v, u), j +DH(v, u))− C(i, j)]2 , (6.9)

where R(i, j) and C(i, j) represent the pixel value at position (i, j) for the reference and current
SAIs, respectively. These disparity vectors define the displacement of the prediction template on
the reference sub-aperture images relative to the co-located position, as shown in Figure 6.2.
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The disparity vectors are encoded using prediction and arithmetic coding with an adaptive
probability model. Prior the encoding, the vectors are transformed by subtracting the median of
the disparity vectors of neighbouring blocks, as indicated in Figure 6.6. The difference vectors
resulting from the prediction are given by:

−→
R−→
Dχ

=
−→
Dχ −med

(−→
DA,
−→
DB,

−→
DC

)
. (6.10)

χA

B C

Figure 6.6: Vector prediction.

6.3 Experimental Evaluation

A number of experiments were conducted to characterise the performance of H-MRP and its
dependence on all the parameters and prediction structures. The analysis of the experimen-
tal results, obtained with the proposed method, is divided in three parts. In the first part
(Section 6.3.1) the influence of the H-MRP input parameters on its compression efficiency is
assessed. This study defines two configurations for H-MRP which are used in a comparison with
state-of-the-art encoders in the second part (Section 6.3.2): (i) maximum compression efficiency
and (ii) minimum random access penalty (RAP). The third, and final, part (Section 6.3.3) of
this analysis studies the influence of the RAR, mainly concerning in improving the encoder RA
capabilities.

6.3.1 Empirical Studies on the Parameters Influence

A set of experiments were performed to assess the influence of the available options on both the
compression efficiency and random access capabilities. This section reports on these experimental
results, with the objective of finding the configurations that maximise the coding efficiency and
also provide the highest RA capabilities, i.e., low RAP. The number of reference pixels used in
the linear prediction models (i.e., H-MRP classes) was empirically determined. The following
values were found to provide the best performance for each dataset:

• École Polytechnique Fédérale de Lausanne (EPFL): Ki = 12 pixels for the current SAI
and Ki = 13 pixels per reference SAI.

• Heidelberg Collaboratory for Image Processing (HCI): Ki = 6 pixels for the current SAI
and Ki = 25 pixels per reference SAI.
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• Light field image dataset of skin lesions (SKINL2): Ki = 12 pixels for the current SAI and
Ki = 25 pixels per reference SAI.

The experiments described in this subsection were designed to evaluate the influence of five dif-
ferent encoding configuration parameters on the performance of H-MRP (in terms of compression
efficiency and RAP):

• the number of reference sub-aperture images (NR: one, two, or four);

• the number of hierarchical layers (HL: ranging from two to six, for which the configurations
are shown in Figure 6.4);

• the use of disparity compensation, identified as: With (W/) or Without (W/o) DC;

• the use of references in the same hierarchical layer, identified as: With or Without Same
Layer;

• the scan order, when using references in the same layer (Raster or Spiral).

The influence of the SAI scanning order was only evaluated considering references in the same
hierarchical layer, as the scanning order does not influence the compression process otherwise.
This is due to the fact that each SAI is independently encoded, using only SAIs selected from
lower hierarchical layers, independently of the scanning order. These configuration parameters
are listed in Table 6.1.

Table 6.1: Summary of the configurations used for the H-MRP experiments.

Configuration Parameters Options

Maximum number of references (NR) 1, 2, or 4
Number of hierarchical layers (HL) 2, 3, 4, 5, or 6
Disparity compensation (DC) With or Without
Same layer references With or Without
Scan order Raster or Spiral

The results of the parameter optimisation studies are shown in Table 6.2 for the EPFL dataset, in
Table 6.3 for the HCI dataset, and in Table 6.4 for the SKINL2 dataset. In these tables, A. BPP
represents the average bits-per-pixel (bpp) needed to encode the LFs, and M. RAP represents
the average maximum RAP value. The maximum RAP is calculated for the SAI that needs
more bits to be decoded, including the cost of decoding the reference SAIs. NR represents the
number of SAI references, DC indicates the use of disparity compensation, and HL the number
of hierarchical layers. For example, HL 3, means three layers are used: layer 1 and 2 as seen in
Figure 6.4 (a) and (b), and a third layer containing all the remaining SAIs. For both bpp and
RAP, lower values indicate better performance. The best results in each column are highlighted
in bold.
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Table 6.2: Parameter optimisation for the EPFL dataset.

W/o Same Layer W/ Same Layer Raster Scan W/ Same Layer Spiral Scan

W/o DC W/ DC W/o DC W/ DC W/o DC W/ DC
NR HL A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP

1

2 14.64 0.01 14.85 0.01 12.85 0.15 12.81 0.14 12.53 0.08 12.73 0.08
3 13.72 0.02 14.03 0.02 12.95 0.16 12.92 0.16 12.64 0.06 12.84 0.06
4 13.35 0.03 13.59 0.03 13.09 0.10 13.07 0.10 12.78 0.04 12.99 0.04
5 13.24 0.03 13.48 0.03 13.12 0.04 13.27 0.04 13.00 0.04 13.23 0.04
6 13.23 0.04 13.48 0.04 13.22 0.04 13.48 0.04 13.21 0.04 13.46 0.04

2

2 - - - - 11.85 1.00 12.02 1.00 11.70 1.00 12.00 1.00
3 13.47 0.03 14.11 0.03 11.93 1.00 12.13 1.00 11.80 1.00 12.12 1.00
4 12.83 0.04 13.40 0.04 12.01 0.73 12.24 0.73 11.93 0.29 12.27 0.28
5 12.02 0.07 12.48 0.06 11.95 0.26 12.37 0.26 11.98 0.15 12.41 0.15
6 12.48 0.07 12.90 0.07 12.46 0.11 12.90 0.11 12.44 0.11 12.88 0.11

4

2 - - - - 11.37 1.00 11.98 1.00 11.19 1.00 11.93 1.00
3 13.44 0.03 14.68 0.03 11.41 1.00 12.04 1.00 11.25 1.00 11.99 1.00
4 12.62 0.07 13.84 0.07 11.46 0.94 12.11 0.94 11.30 0.80 12.07 0.80
5 11.65 0.12 12.67 0.12 11.32 0.94 12.15 0.94 11.30 0.87 12.12 0.86
6 11.26 0.14 12.11 0.13 11.22 0.24 12.06 0.24 11.21 0.19 12.05 0.19

Table 6.3: Parameter optimisation for the HCI dataset.

W/o Same Layer W/ Same Layer Raster Scan W/ Same Layer Spiral Scan

W/o DC W/ DC W/o DC W/ DC W/o DC W/ DC
NR HL A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP

1

2 8.12 0.03 7.50 0.03 6.65 0.23 6.82 0.23 6.63 0.11 6.80 0.11
3 7.31 0.04 7.16 0.04 6.80 0.15 6.88 0.15 6.80 0.10 6.86 0.10
4 7.10 0.04 7.04 0.04 6.88 0.14 6.91 0.14 6.88 0.08 6.89 0.08
5 7.10 0.06 7.05 0.05 6.97 0.07 6.95 0.07 6.96 0.07 6.93 0.06
6 7.10 0.07 7.04 0.07 7.09 0.07 7.02 0.07 7.08 0.05 7.01 0.05

2

2 - - - - 6.32 1.00 6.62 1.00 6.29 1.00 6.60 1.00
3 7.11 0.06 7.06 0.05 6.45 0.82 6.65 0.82 6.47 0.51 6.66 0.50
4 6.87 0.07 6.93 0.07 6.54 0.78 6.69 0.77 6.55 0.41 6.69 0.40
5 6.72 0.10 6.82 0.09 6.57 0.34 6.69 0.33 6.61 0.24 6.71 0.23
6 6.76 0.13 6.84 0.12 6.73 0.19 6.81 0.17 6.73 0.19 6.81 0.17

4

2 - - - - 6.35 1.00 6.96 1.00 6.31 1.00 6.93 1.00
3 7.20 0.07 7.43 0.06 6.45 0.92 6.96 0.92 6.46 0.75 6.95 0.75
4 6.85 0.13 7.20 0.12 6.52 0.92 6.97 0.92 6.51 0.75 6.95 0.75
5 6.67 0.24 7.08 0.22 6.50 0.92 6.92 0.92 6.50 0.83 6.91 0.82
6 6.55 0.27 6.93 0.25 6.52 0.29 6.91 0.28 6.52 0.28 6.91 0.26

Experiments Without Same-Layer References

The analysis of these results can be divided into two cases, in terms of the use of reference SAIs
in the same layer. The case where SAIs on the same layer are not used as reference is addressed
first. The analysis of the results is divided by the H-MRP configuration parameters. Figure 6.7
presents these results in a graphical format for better visualisation of the ensuing analysis.

Number of hierarchical layers: The results show that the compression efficiency increases
when more hierarchical layers are used. This observation generically holds for all datasets,
irrespective of the number of reference SAIs and the use of disparity compensation. Taking
into account the hierarchical layers shown in Figure 6.4, it is obvious that when more layers are
used, the list of potential reference SAIs increases. A consequence of this is that closer SAIs, as
defined by Equation 6.6, are available to be used. In the same way, the average of the maximum
RAP increases when more hierarchical layers are used, as more SAIs may need to be decoded
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Table 6.4: Parameter optimisation for the SKINL2 dataset.

W/o Same Layer W/ Same Layer Raster Scan W/ Same Layer Spiral Scan

W/o DC W/ DC W/o DC W/ DC W/o DC W/ DC
NR HL A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP A. BPP M. RAP

1

2 9.49 0.03 7.95 0.03 7.21 0.23 7.20 0.23 7.14 0.12 7.15 0.12
3 8.41 0.04 7.59 0.04 7.44 0.16 7.27 0.15 7.40 0.10 7.24 0.10
4 7.96 0.04 7.46 0.04 7.56 0.14 7.31 0.14 7.53 0.07 7.28 0.08
5 7.99 0.06 7.45 0.06 7.76 0.07 7.36 0.07 7.73 0.07 7.34 0.07
6 7.99 0.07 7.44 0.07 7.98 0.07 7.43 0.07 7.96 0.06 7.43 0.06

2

2 - - - - 6.82 1.00 6.87 1.00 6.78 1.00 6.85 1.00
3 8.19 0.06 7.38 0.06 7.04 0.82 6.93 0.82 7.06 0.52 6.95 0.51
4 7.79 0.08 7.27 0.07 7.17 0.78 6.97 0.77 7.18 0.42 6.98 0.40
5 7.55 0.11 7.11 0.10 7.32 0.35 6.98 0.33 7.33 0.25 7.01 0.24
6 7.59 0.13 7.14 0.12 7.57 0.20 7.12 0.18 7.56 0.19 7.12 0.18

4

2 - - - - 6.82 1.00 6.95 1.00 6.77 1.00 6.92 1.00
3 8.23 0.07 7.49 0.07 7.00 0.92 6.97 0.92 7.01 0.76 6.99 0.75
4 7.73 0.14 7.26 0.12 7.10 0.92 6.98 0.92 7.10 0.76 6.98 0.75
5 7.41 0.26 7.10 0.23 7.14 0.92 6.93 0.92 7.14 0.83 6.93 0.82
6 7.24 0.29 6.94 0.26 7.22 0.31 6.91 0.29 7.21 0.30 6.91 0.27

to be used as reference. This can be observed, for instance, in the columns labelled W/o DC of
Table 6.2.

Number of reference sub-aperture images: In the same way, the compression effi-
ciency increases with the increasing maximum number of reference SAIs, NR, when the disparity
compensation is not used. However, a few exceptions exist that are worth mentioning. One of
these exceptions occurs when using NR = 2, with HL = 6, regardless of use of disparity com-
pensation, lower compression performance is achieved when compared to the same configuration
using HL = 5. This observation might be partially explained due to the fact that when more
hierarchical layers are used the references are usually more distant. This is observed for the three
datasets, in Table 6.2, Table 6.3 and Table 6.4.

Disparity compensation: When considering the disparity compensation, further analysis
of the results shows that its benefits are not consistent across the datasets. For instance, in the
case of the EPFL dataset, the compression efficiency decreases when using the disparity com-
pensation, which is explained by its low inherent disparity. This can be observed in Figure 6.7,
for the EPFL plots, by comparing the red lines (NR = 1 and NR = 1 DC), for instance. In this
dataset, the disparity is less than one pixel between neighbour SAIs. The low disparity prevents
the algorithm from finding a better match than the co-located position. Thus, the additional
overhead of encoding the disparity vectors results in a reduction in the compression efficiency.
In contrast, both the HCI and SKINL2 datasets generally benefit from the use of the disparity
compensation, except for the HCI dataset when using NR = 4. This can be noted in Table 6.4 by
comparing the W/o and W/ disparity compensation columns of the configuration without using
references on the same layer, for instance, for any NR and HL configuration. The benefits of us-
ing the disparity compensation are highly correlated with the inherent disparity of the datasets.
For this reason, the coding efficiency of the EPFL dataset, that presents the lowest average dis-
parity, is penalised. On the other hand, the SKINL2 dataset, which presents the highest average
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disparity, benefits more from using the disparity compensation in all configurations.
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Figure 6.7: Plots of the bpp and RAP values shown in Table 6.2, Table 6.3 and Table 6.4 for the
configurations with no references on the same layer.
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Experiments With Same-Layer References

For the case where references of the same hierarchical layer are used, an additional option is
considered: the scan order for the SAIs compression. Figure 6.8 shows the results for the config-
urations where H-MRP uses references in the same layer with a spiral scan.

Sub-aperture images scan order: As explained before, the scanning order is relevant in
this case as the set of SAIs available to be used as references in the same layer change with the
different scanning orders. Two scanning orders are considered: raster and spiral, as detailed in
Section 4.1. The spiral scan generally results in the highest compression efficiency. This fact is
particularly clear for the EPFL dataset, with differences of up to 0.3 bpp. This can be seen in
Table 6.2 by comparing the W/o or the W/ DC columns for both scans, when using references in
the same layer. These results are coherent with what is reported in Section 4.4.1. The differences
between the results of both scans diminish as the number of hierarchical layers increase. One
can mention, for instance, the NR = 4, HL = 6, without disparity compensation configuration
in Table 6.2, where the difference between the raster and the spiral scans results is 0.01 bpp.

Number of references and hierarchical layers: When analysing the influence of the
number of SAI references and the number of hierarchical layers, the conclusions are quite different
from the case where references on the same layer are not used. In fact, the compression efficiency
decreases with the increase of the number of hierarchical layers, which also happens to the
average maximum RAP. This observation is supported by the slope of the plots on the left side
of Figure 6.8. In this case, all the previously encoded SAIs can be used as references. Therefore,
the increase in the number of hierarchical layers limits the list of available references, which
reduces the amount of data to be decoded prior reaching any of the SAIs, but also penalises
the compression efficiency. In fact, when looking at the maximum RAP in the right-side plots
of Figure 6.8, it can be observed that values as high as 1.00 are reached when two hierarchical
layers are used. According to the definition of RAP, given by Equation 2.8), this means that the
whole LF needs to be decoded to access the mostly costly SAI.

Disparity compensation: In regard to the disparity compensation, once again, there is not
a clear consistent tendency across the three datasets and various H-MRP configurations. In fact,
while in most configurations using disparity compensation decreases the compression efficiency
of H-MRP, there are some exceptions. Evidence that using disparity compensation results in
decreased performance is shown on the left side of Figure 6.8, where plots with circles (i.e., DC
is used) usually present higher bpp than plots of the corresponding colour with crosses (i.e., DC
is not used). The exceptions occur when the number of hierarchical layers increase, in which case
the conclusions are consistent with those taken without the use of references on the same layer.
As the number of hierarchical layers increase, references are further from the encoding SAI, and,
consequently, the disparity is higher. This happens when using references in the same layer,
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because when increasing the number of layers, the neighbouring SAIs tend to be in different, not
yet encoded, hierarchical levels. Therefore, disparity compensation allows H-MRP to minimise
the differences between a SAI and its references.
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Figure 6.8: Plots of the bpp and RAP values shown in Table 6.2, Table 6.3 and Table 6.4 for the
configurations with references on the same layer and using a spiral scan.
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Definition of Encoding Configurations

The previous presented studies on the influence of the H-MRP encoding parameters led to the
definition of two configurations with different goals: maximum compression efficiency and min-
imum RAP. The goal of the maximum compression efficiency is to provide the minimum bpp,
i.e., the highest compression ratio, when encoding LFs. To this effect, for each dataset, the
parameters were selected as those in the previous tables that reached the lowest bpp. For all the
used datasets the optimal compression efficiency is achieved when using references in the same
layer, encoding the SAIs in a spiral scan, and using two hierarchical layers (which minimises the
distance between the current SAI and its references). Considering the number of reference SAIs
the optimal efficiency is reached when using NR = 4 for the EPFL and the SKINL2 datasets,
and NR = 2 for the HCI dataset.

The main goal of the minimum RAP configuration is to provide a good trade-off between the
encoding performance and the RA capabilities of the encoder (i.e., the lowest RAP). The selection
of the parameters for this configuration is not as straightforward as in the previous case. One
common factor for the three datasets is that using references on the same hierarchical layer greatly
increases the RAP, thus SAI references on the same layer are not used in this configuration.
Another common factor is that increasing the number of references increases the RAP, thus a
good compromise between high coding efficiency and low RAP is reached when setting NR = 2.
Due to the higher disparity of the HCI and SKINL2 datasets, when references on the same layer
are not used, the disparity compensation results in higher compression ratios, thus this setting
was used for the minimum RAP configuration. The selection of the number of hierarchical layers
to use is not as simple, and is highly influenced by the need to select better compression efficiency
or lower RAP. This parameter was set for each dataset in comparison with other state-of-the-art
encoders to achieve a better performance, as will be shown later. Therefore, the EPFL and HCI
datasets use HL = 4 and the SKINL2 dataset uses HL = 3.

6.3.2 Comparison with State-of-the-Art Encoders

While the performance evaluation discussed in the previous section referred to compression ef-
ficiency and random access capabilities, in this section, the performance of H-MRP against
state-of-the-art encoders is presented and discussed. Two configurations are selected: maximum
compression efficiency and minimum RAP. The dataset specific configurations are the following:

• Maximum compression efficiency:

– EPFL: HL = 2, NR = 4, w/ same layer, spiral scan.

– HCI: HL = 2, NR = 2, w/ same layer, spiral scan.

– SKINL2: HL = 2, NR = 4, w/ same layer, spiral scan.
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• Minimum RAP:

– EPFL: HL = 4, NR = 2, w/o same layer.

– HCI: HL = 4, NR = 2, w/o same layer, w/ DC.

– SKINL2: HL = 3, NR = 2, w/o same layer, w/ DC.

The following state-of-the-art lossless encoders are used in this comparative assessment: MRP [62],
HEVC [50], and Versatile Video Coding (VVC) [60], which encode the LF in a PVS format. Ad-
ditionally, comparisons are made with Dual-Tree 4D Minimum Rate Predictors (DT-4D-MRP)
and HEVC-SLF-RA [130] adapted for lossless compression. HEVC-SLF-RA is a LF encoder
specifically designed with a focus on random access capabilities, its implementation and used
configurations are listed in Table 6.5. The DT-4D-MRP encoder is the only codec in this list
without RA capabilities.

Table 6.5: Configurations of the HEVC-SLF-RA encoder used in this work.

Encoder Software Configuration

HEVC-SLF-RA Software from [130]

• Main RExt profile (Profile=main-RExt)
• Lossless cost mode
• QP 0 (zero)
• Transform quantization bypass (TransquantBypassEn-

able=1)
• Configurations by dataset:

– EPFL: RPL 4, MDL 6 and NVPR 1, for maximum
efficiency configuration, and RPL 2, MDL 9, and
NVPR 4, for the maximum random access.

– HCI and SKINL2: RPL 4, MDL 6 and NVPR 1, for
maximum efficiency configuration, and RPL 2, MDL
2, and NVPR 5, for the maximum random access.

Table 6.6 and Table 6.7 present the results for the comparison with state-of-the-art encoders for
compression efficiency and maximum RAP, respectively. In these tables, the best result for each
row is in bold. In regard to the state-of-the-art encoders, the highest compression efficiency is
achieved by the DT-4D-MRP codec, with 8.72 bpp, averaged over the three datasets. However,
this encoder has the worst random access capabilities, with a maximum RAP of 1.0, which means
that the whole LF must be decoded to access the most costly SAI. The HEVC-SLF-RA, described
in [130], allows some versatility in configuration of the encoding process, permitting the trade-off
between a higher compression ratio and better random access capabilities. In these experiments,
two configurations of the HEVC-SLF-RA are used, labelled maximum efficiency and minimum
RAP2. This encoder surpasses the HEVC and VVC encoders for the EPFL and HCI datasets in
terms of compression ratio for its maximum efficiency configuration. However, its compression
performance is the worst for the SKINL2 dataset. Considering the minimum RAP configuration,

2In this context minimum RAP refers to the encoder configuration that minimises the maximum RAP.
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the HEVC-SLF-RA is able to produce lower RAP values than the aforementioned encoders,
namely HEVC and VVC, for the three datasets. The MRP encoder, which compresses the LF in
a pseudo-video sequence using a spiral scan, outperforms the HEVC, VVC, and the maximum
efficiency configuration of HEVC-SLF-RA in terms of compression efficiency and RAP. However,
this encoder was not built to achieve high random access performance, and does not allow for
flexible random access configurations. Consequently it is unable to outperform the minimum
RAP configuration of HEVC-SLF-RA in terms of random access capabilities.

Table 6.6: Coding efficiency: state-of-the-art encoders vs. H-MRP (bpp).

Type Light Fields HEVC VVC MRP H-SLF-RA
Max. Eff.

H-SLF-RA
Min. RAP DT-4D-MRP H-MRP

Max. Eff.
H-MRP

Min. RAP

LL

Bikes 13.69 13.72 12.73 13.08 13.31 11.34 11.25 12.89
Danger 13.03 12.97 11.89 12.36 12.63 10.70 10.59 12.25
Fountain 14.43 14.52 13.28 13.89 14.10 12.00 11.84 13.41
Stone 13.44 13.38 12.36 12.79 13.02 11.16 11.05 12.75
Img 1 8.65 8.17 8.06 9.49 10.47 6.84 6.68 7.24
Img 2 9.10 8.74 7.81 9.92 10.90 6.97 6.79 7.48
Img 3 9.18 8.79 8.00 9.69 10.66 7.09 6.85 7.40

HDCA Greek 5.55 5.36 5.40 5.72 5.85 4.78 4.93 5.40
Sideboard 8.17 8.09 8.43 8.52 8.93 7.59 7.66 8.47

Average 10.58 10.42 9.77 10.61 11.10 8.72 8.63 9.70

Table 6.7: Maximum RAP: state-of-the-art encoders vs. H-MRP.

Type Light Fields HEVC VVC MRP H-SLF-RA
Max. Eff.

H-SLF-RA
Min. RAP DT-4D-MRP H-MRP

Max. Eff.
H-MRP

Min. RAP

LL

Bikes 0.05 0.05 0.17 0.18 0.03 1.00 1.00 0.04
Danger 0.05 0.05 0.17 0.18 0.03 1.00 1.00 0.04
Fountain 0.05 0.04 0.16 0.18 0.03 1.00 1.00 0.04
Stone 0.05 0.05 0.17 0.18 0.03 1.00 1.00 0.04
Img 1 0.12 0.10 0.21 0.27 0.06 1.00 1.00 0.06
Img 2 0.11 0.10 0.21 0.27 0.06 1.00 1.00 0.06
Img 3 0.11 0.10 0.21 0.27 0.06 1.00 1.00 0.06

HDCA Greek 0.11 0.09 0.19 0.38 0.03 1.00 1.00 0.07
Sideboard 0.11 0.10 0.22 0.38 0.03 1.00 1.00 0.07

Average 0.09 0.08 0.19 0.25 0.04 1.00 1.00 0.05

In regard to the maximum efficiency configuration, the proposed H-MRP encoder outperforms all
the state-of-the-art encoders, with 8.63 bpp and differences ranging from 0.09 for DT-4D-MRP
to 1.98 bpp for the HEVC-SLF-RA, on average. These differences are achieved by subtracting
the columns DT-4D-MRP and HEVC-SLF-RA Max. Eff. from column H-MRP Max. Eff. in
Table 6.6. This means that the proposed method outperforms the DT-4D-MRP by approximately
1%, on average. This might be explained by the flexibility in the references selection, as the fixed
reference positions DT-4D-MRP might not always be available. When compared with DT-4D-
MRP, the results show that higher differences are obtained for the EPFL and SKINL2 datasets, as
for the HCI dataset the proposed encoder is less efficient. The results obtained for the maximum
efficiency configuration show that the H-MRP encoder achieves the highest compression efficiency
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in comparison with all lossless LF encoders reported so far in the literature, surpassing DT-4D-
MRP and establishing the new state-of-the-art.

In terms of the minimum RAP configuration, the proposed method achieves slightly higher RAP
when compared with HEVC-SLF-RA, however it reaches higher compression efficiency, with a
difference of 1.4 bpp (12.6%), on average. This difference is achieved by subtracting the column
HEVC-SLF-RA Min. RAP from column H-MRP Min. RAP in Table 6.7. It is also worthy
of note, that the H-MRP with the minimum RAP configuration achieves higher compression
efficiency than all other encoders, with the exception of DT-4D-MRP, providing a good trade-off
between compression and random access capabilities. In terms of RAP, when compared with
HEVC-SLF-RA, H-MRP is only able to achieve equal performance for the SKINL2 dataset,
while for the HCI dataset, the RAP achieved by H-MRP more than doubles that of HEVC-SLF-
RA. However, due to the higher compression performance, it stands to reason that with slight
adjustments in the configuration H-MRP could reach a more competitive performance when
compared with HEVC-SLF-RA. One way to do this would be through the use of random access
regions, as it will be shown in the next section.

6.3.3 Random Access Regions in H-MRP

In order to improve the random access capabilities, the concept of random access regions was
introduced to H-MRP in Section 6.2.4. The HEVC-SLF-RA resorts to a similar technique to
improve its own random access capabilities. The experimental results on the impact of using
this technique are shown in Table 6.8 and Table 6.9, for the compression efficiency and RAP,
respectively, for the four types of RARs shown in Figure 6.5.

Table 6.8: Effect of the use of RARs on H-MRP: compression efficiency.

Type Light Fields Maximum Efficiency Configuration Minimum RAP Configuration

No RAR RAR 2 RAR 4 RAR 5 RAR 9 No RAR RAR 2 RAR 4 RAR 5 RAR 9

LL

Bikes 11.25 11.26 11.37 11.68 11.81 12.89 12.89 13.05 13.41 13.44
Danger 10.59 10.60 10.72 11.06 11.20 12.25 12.25 12.43 12.86 12.90
Fountain 11.84 11.86 11.96 12.26 12.38 13.41 13.41 13.56 13.87 13.89
Stone 11.05 11.06 11.20 11.54 11.68 12.75 12.75 12.94 13.39 13.42
Img 1 6.68 6.68 6.73 7.02 7.14 7.24 7.24 7.39 7.72 7.71
Img 2 6.79 6.79 6.84 7.13 7.28 7.48 7.48 7.62 7.93 7.93
Img 3 6.85 6.85 6.91 7.18 7.33 7.40 7.40 7.52 7.90 7.90

HDCA Greek 4.93 4.96 4.98 5.09 5.14 5.40 5.40 5.41 5.58 5.55
Sideboard 7.66 7.65 7.71 8.00 8.18 8.47 8.47 8.57 9.23 9.14

Average 8.63 8.63 8.71 9.00 9.13 9.70 9.70 9.83 10.21 10.21

The results show that, for both configurations the compression efficiency decreases as the number
of RARs increases and the RAP decreases, i.e., the random access capabilities are improved
as the number of relative bits required to access a given SAI decreases, as expected. These
conclusions are explained by the constraints that the RARs impose to the selection of reference
SAIs. Interestingly, the results show that using only two random access regions does not affect the
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Table 6.9: Effect of the use of RARs on H-MRP: random access penalty.

Type Light Fields Maximum Efficiency Configuration Minimum RAP Configuration

No RAR RAR 2 RAR 4 RAR 5 RAR 9 No RAR RAR 2 RAR 4 RAR 5 RAR 9

LL

Bikes 1.00 1.00 0.53 0.23 0.14 0.04 0.04 0.04 0.03 0.02
Danger 1.00 1.00 0.53 0.23 0.14 0.04 0.04 0.04 0.03 0.02
Fountain 1.00 1.00 0.52 0.23 0.14 0.04 0.04 0.04 0.03 0.02
Stone 1.00 1.00 0.53 0.23 0.15 0.04 0.04 0.04 0.03 0.02
Img 1 1.00 1.00 0.55 0.30 0.29 0.06 0.06 0.06 0.04 0.03
Img 2 1.00 1.00 0.55 0.30 0.29 0.06 0.06 0.06 0.04 0.03
Img 3 1.00 1.00 0.55 0.30 0.29 0.06 0.06 0.06 0.04 0.03

HDCA Greek 1.00 1.00 0.55 0.30 0.30 0.07 0.07 0.07 0.04 0.04
Sideboard 1.00 1.00 0.55 0.30 0.30 0.07 0.07 0.07 0.04 0.04

Average 1.00 1.00 0.54 0.27 0.23 0.05 0.05 0.05 0.04 0.03

encoding performance of H-MRP. This might be explained by the large number of SAIs in each of
the two regions, which are able to provide appropriate references for the prediction. Despite the
general diminishing tendency of the compression efficiency with the increasing number of RARs,
there is an exception. For the minimum RAP configurations, using nine random access regions
achieves equal or higher compression performance than when using five regions of random access,
i.e., RAR 5. This happens for both the SKINL2 and the HCI datasets. These are the datasets
with the highest average disparities between neighbour SAIs. These results may be explained by
the fact that when fewer SAIs are available in each region, the references are necessarily closer,
providing better predictions.

For the maximum efficiency configuration case, it can be seen that, for any number of RARs, the
proposed encoder still achieves higher compression efficiency than all other encoders, with the
exception of DT-4D-MRP and H-MRP without random access regions. Considering both the
compression ratio and the random access capabilities, it is shown that for the RAR 5 and RAR
9 configurations, the proposed encoder is able to outperform HEVC-SLF-RA in the maximum
efficiency configuration. Achieving differences of approximately 1.50 bpp for the same RAP value,
around 0.25.

For the minimum RAP configuration, H-MRP achieves a good compromise in terms of com-
pression ratio, outperforming HEVC, VVC, and both configurations of HEVC-SLF-RA for any
number random access regions. The best random access performance in Table 6.7 is achieved by
HEVC-SLF-RA with an average RAP equal to 0.04. Table 6.9 shows that the RAR 5 configu-
ration presents the same average RAP as HEVC-SLF-RA in Table 6.6 and configuration RAR
9 presents an RAP of 0.03, representing an improvement of 25% in comparison with HEVC-
SLF-RA. Taking into account both the random access capabilities and the compression ratio,
it is clear that H-MRP is able to achieve similar or lower RAP for a bitrate that is lower by
approximately 1.00 bpp, on average (10.21 bpp), when compared with HEVC-SLF-RA (11.10
bpp).

Overall, the above results show that the use of random access regions increases the flexibility
of H-MRP, improving its random access capabilities, with minimal compression efficiency loss.
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Therefore, despite the loss in compression performance, H-MRP with random access regions is
still competitive in this regard.

6.4 Summary

In this chapter, a new hierarchical encoder, H-MRP, was proposed to combine efficient compres-
sion with angular scalability and random access capabilities in light field coding. The proposed
approach is based on three major tools: (i) hierarchical coding using multiple layers; (ii) flex-
ible selection of the reference SAIs; and (iii) disparity compensation. An extensive evaluation
procedure was carried out to fully assess the capabilities of the proposed encoder under two dis-
tinct configurations: (i) maximum compression efficiency and (ii) minimum RAP. The proposed
H-MRP encoder, in its maximum compression efficiency configuration, outperformed all the
state-of-art lossless encoders by 0.10 to 2.00 bpp, for DT-4D-MRP and HEVC-SLF-RA, respec-
tively, on average. For the minimum RAP configuration, H-MRP achieved the best compromise
in terms of compression efficiency and random access capabilities amongst the tested encoders,
obtaining a compression efficiency gain of at least 1.00 bpp and an average improvement of 25%
in the random access capabilities when compared to its best competitor. Overall, the H-MRP
encoder is a flexible solution to encode light fields efficiently, allowing trading-off coding efficiency
for random access capabilities or vice-versa, as required by different applications.
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This thesis addresses the problem of efficient lossless coding for light fields (LFs). LFs have plenty
of applications, ranging from the simple image acquisition for refocusing or extraction of various
viewpoints, to more sophisticated applications like the acquisition of skin lesions LFs for medical
diagnosis. However, as LFs comprise a much richer information than traditional image formats,
they require huge amounts of storage capacity and bandwidth to be handled, especially when
compared to conventional 2D images or even video sequences. Consequently, the development of
efficient LF coding methods might contribute to a more widespread adoption of this technology.
Lossless compression in particular is a requirement for applications that cannot afford the loss
of information, such as medical imaging or precision measurements in industry, which need high
fidelity in the reconstruction of images. LF imaging technology works by creating a 3D colour
representation of the images scene through the capture of light rays emanating from the scene
object in different directions. The previous chapters presented new lossless LF coding algorithms
developed to address the open challenges in LF lossless compression.

This chapter summarises the main achievements and contributions of this thesis, highlighting the
most relevant results obtained with the proposed algorithms (Section 7.1). It is finalised with
a discussion about some research problems identified during this work and not yet solved, and
with an outline of new research directions in the scope of this work (Section 7.2).
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7.1 Conclusions

This thesis proposes new methods for efficient lossless compression of light fields. To provide
useful solutions, the methods are based on a common 4D LF representation. Reproducibility
of the results presented is ensured through the adoption, adapted for the lossless case, of the
Common Test Conditions of the JPEG-Pleno (JPEG-Pleno CTC) for the empirical performance
evaluations. Throughout the previous chapters, this thesis discussed the status of LF lossless
coding as reported in the literature and presented new algorithms to address some of the short-
comings of previous works. In order to fulfil the purpose of this thesis, three major objectives
were planned and carried out:

1. Research pre-processing algorithms for light field compression and representa-
tion arrangements beyond the raw uncompressed RGB format, enabling effi-
cient compression.

2. Research efficient prediction-based lossless coding methods adapted to light
fields.

3. Research methods for light field lossless coding with enhanced capabilities,
such as scalability and random access (RA).

The initial steps of this research investigated pre-processing methods to improve the compression
of LFs and the optimal data arrangements for generic codecs compliant coding. This research
direction emphasises the use of generic state-of-the-art lossless codecs to efficiently compress
this type of data. As these types of codecs are not prepared to take advantage of and handle
efficiently the 4D LF data, three types of compatible data arrangements were studied, namely:
lenslet arrays, encompassing a rectified array of micro images (MIs); stacks of sub-aperture images
(SAIs) that form a pseudo-video sequence (PVS), where the order of the SAIs can be defined;
and stacks of epipolar plane images (EPIs). This methodology allowed to find the best data
representation format for use with state-of-the-art encoders, which can promote early adoption
of LFs as these encoders are more readily available.

The empirical studies, described in Chapter 4, showed that the pair Minimum Rate Predictors
(MRP) with the PVS arrangement (using a spiral scan) achieves the highest compression ra-
tio, surpassing the High Efficiency Video Coding (HEVC) by 4.8%, on average, for the tested
LFs. Additionally, this thesis also found that the common RGB colour-space is not optimal for
compression, due to the inherent redundancies present in its components. Therefore, several
reversible colour transforms were studied to assess their influence in the encoding performance.
Results showed that the RCT provides the highest compression efficiency of all the studied re-
versible colour transforms for the lossless compression of LFs. Furthermore, it was noted that by
using the RCT the performance of MRP (for the PVS arrangement) is increased by 10.9%, on
average, when compared with the RGB case.
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Another contribution of this work was the development of a fully reversible disparity compensa-
tion method, which is able to minimise the disparity between the LF SAIs prior to the encoding
process. However, due to the increment in the number of pixels, that needed to be encoded,
lossless encoders do not benefit from this type of disparity compensation. Nevertheless, it was
shown that 4D transform-based LF lossy encoders like Multidimensional Light Field Encoder
(MuLE) benefits significantly from using this method, with an average Bjøntegaard delta (BD)-
rate improvement of 44% for high density camera array (HDCA) acquired LFs.

During this thesis second major activity, three new algorithms which exploit the 4D redundan-
cies of LFs were proposed, namely: Four-Dimensional Minimum Rate Predictors (4D-MRP),
Dual-Tree 4D Minimum Rate Predictors (DT-4D-MRP), and Multi-reference Minimum Rate
Predictors (M-MRP). In these methods, a SAI based 4D prediction algorithm was introduced,
enabling to exploit not only the spatial redundancies in SAIs but also the similarities between
neighbouring SAIs, i.e., the angular redundancies. These algorithms differ mostly in the block
partition approach used. 4D-MRP and DT-4D-MRP both use 4D blocks, with the partitioning
into sub-blocks of 4D-MRP resulting from splitting the four dimensions at the same time and in
DT-4D-MRP separating the partition of the spatial dimensions from that of the angular dimen-
sions, while M-MRP uses 2D blocks, following the methodology already used in MRP, for the
selection of prediction classes.

The three proposed algorithms were extensively tested against other state-of-the-art methods and
compared with each other. The results clearly demonstrate the superiority in terms of coding
efficiency of the proposed algorithms when compared to other state-of-the-art encoders, like
HEVC and MRP, for the experimental conditions set in Section 2.4, which follow the JPEG-Pleno
CTC. Overall, DT-4D-MRP presents the highest compression efficiency of the three, surpassing
MRP by 10.2% and HEVC by 15.8%, on average, in terms of bitrate, and thus surpassing the
previous state-of-the-art of lossless LF compression. The performance of 4D-MRP and M-MRP
is slightly lower that than of DT-4D-MRP, by up to 0.1 bits-per-pixel (bpp), or roughly 0.9%.
One aspect that differentiates these algorithms is their computational complexity. Due to its
dual-quadtree, the DT-4D-MRP is, on average, 11 times slower than M-MRP a fact that has to
be taken into account when selecting one of these methods for specific applications. A study on
the computational performance of M-MRP was conducted, which revealed that its encoding time
can be reduced by about 33 times, while keeping the increase of bitrate lower than 2%. Assuming
that these conclusions can be extrapolated for the DT-4D-MRP case, it stands to reason that
the higher computational complexity of DT-4D-MRP can be managed with the proper selection
of input parameters, whilst keeping a high compression ratio.

The last contribution of this doctoral work was the Hierarchical Minimum Rate Predictors (H-
MRP), a new efficient lossless LF coding algorithm with useful features, such as enhanced scal-
ability and random access functionalities. These capabilities simplify the navigation through
LF sub-aperture images, reducing the decoding delay and the computational resources required
at the decoder, allowing easier access to specific regions of the LF without full decoding of the
bitstream. A comprehensive experimental study was carried out to thoroughly assess the perfor-
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mance of H-MRP, both in terms of compression efficiency and random access capabilities. Two
configurations for H-MRP were used in this study, maximum coding efficiency and minimum
random access penalty (RAP). The first configuration prioritises the compression ratio while the
second gives preference to low RAP. In its first configuration, H-MRP is able to surpass the
compression efficiency of the encoder that previously had the best performance on the literature,
DT-4D-MRP, by 1%, on average. Regarding the minimum RAP configuration, results show
that H-MRP can surpass other state-of-the-art encoders, like HEVC-SLF-RA, both in terms of
compression efficiency and RA capabilities, with a result that is, at least, 1 bpp lower and an
improvement of 25%, in terms of RAP, when compared to its best competitor, HEVC-SLF-RA.

One limitation of the experimental studies presented in this thesis arise from the lack of com-
parison with other LF lossless encoders. This shortcoming is due to the fact that competing
solutions do not use a common experimental setup, such as the JPEG-Pleno CTC set by the
JPEG-Pleno standardisation initiative, which makes fair comparison between methods difficult.
This problem is aggravated by the lack of publicly available implementations (by the authors or
others) of the competing methods.

Nevertheless, the objectives set for these doctoral studies were successfully achieved, as can be
seen by the reports in previous paragraphs. The contributions of this thesis helped to expand
on the state-of-the-art of lossless compression of light fields, often setting the lowest bitrates for
the compressed images (using the JPEG-Pleno CTC) in the literature. Overall, the results of
this doctoral work can be subsumed by the following three major contributions:

Contribution 1. Compatible methods for the lossless compression of LFs:

Three types of LF data arrangements were proposed and evaluated in this thesis (Chap-
ter 4), which can be used as the input of common encoders (published in J3). These
methods also benefit from the introduction of the RCT colour transform for compression,
which greatly increases the compression efficiency due to the decorrelation of the colour
components (published in J4 and C5).

Contribution 2. MRP based 4D LF lossless codecs:

This contribution is described in Chapter 5, where three codecs that are able to exploit the
inherent redundancies of the 4D LFs are proposed. The DT-4D-MRP codec is a noteworthy
contribution as it sets a new state-of-the-art for the lossless compression of LFs (published
in J2, C2, C3, and C4)

Contribution 3. Scalable and random access lossless LF codec:

The H-MRP codec, introduced in Chapter 6, is, to the best of the author’s knowledge,
the only lossless LF codec with scalability and random access capabilities. These capabil-
ities are achieved through the use of an hierarchical coding architecture on the encoder,
that was shown to be able to surpass other RA encoders primarily designed for LF lossy
compression, but also the previous state-of-the-art DT-4D-MRP in terms of compression
efficiency (published in J1).



7.2. Future Work 123

7.2 Future Work

The work developed on these doctoral studies established new benchmarks for future research
on LF lossless coding, as can be inferred from an analysis of the results reported consistently
outperforming those of several state-of-the-art methods. However, there are still some open issues
that are worth investigating. This section proposes some research directions that may strengthen
and improve upon the proposed methods.

7.2.1 Improve the Computational Efficiency of DT-4D-MRP

The computational complexity of DT-4D-MRP is a problem that needs to be solved. As de-
scribed in Section 5.5.3, the encoding parameters of M-MRP can be adjusted to reduce the
computational complexity of the encoder, while maintaining a high compression ratio. Thus, in
the future, a similar study shall be done for DT-4D-MRP to understand if a reduction in compu-
tational complexity can be achieved in the same way. It is arguable that some optimisations can
be introduced in the DT-4D-MRP code to increase its computational efficiency, without compro-
mising the compression efficiency. One possibility, is the inclusion of parallel computation of the
MRP linear prediction coefficients, for instance. An extensive profiling of its code is necessary
for a proper understanding of the algorithm time allocations, leading to a further suggestions for
computational efficiency improvements.

7.2.2 Improve the Selection of Reference SAIs in H-MRP

Another research topic that may be explored is the selection of reference SAIs in H-MRP. Cur-
rently, the encoder selects the references to the SAI to be encoded according to their distance,
in the (t, s) dimensions of the 4D space. This selection can be refined by introducing similarity
metrics, like the sum of squared differences, to compare the potential references to the current
SAI, taking also into account the influence of the disparity compensation algorithm for the sim-
ilarity metrics computation. These improvements would probably allow the H-MRP algorithm
to increase its compression efficiency, especially for datasets with higher disparity, like that of
Heidelberg Collaboratory for Image Processing (HCI).

7.2.3 Improvements to the MRP Algorithm

A different exploration worth pursuing in the future is related to the improvement of the inner
workings of the family of MRP encoders. Two important operations that are part of these
algorithms are the prediction and the residuals entropy coding. Considering the prediction,
the use of neural networks and deep learning can be useful to enhance its efficiency leading to
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a better reduction of redundancies from the encoding images and consequently to prediction
residues with lower entropy. Furthermore, these machine learning techniques can also help to
tackle the classification of blocks in MRP which is one of the most time intensive tasks in the
algorithm.

The largest part of the MRP bitstream is taken by the representation of the prediction residuals,
as shown in Chapter 4. Therefore, there might be room for improvement on the efficiency of
the entropy coding. Two ways might be mentioned to address this issue: one by improving
the entropy probability models that are used, either by using adaptive context modelling or
through the development of probabilistic models that more closely reflect the statistic of residues
generated by MRP. Another way is to replace the current entropy coder with a more recent
technique, like the context-adaptive binary arithmetic coder used in recent standards like HEVC
and Versatile Video Coding (VVC).
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