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A Report on ARCADE 2019
The second ARCADE workshop took place on August 26, 2019 in Natal, Brazil, co-
located with the 27th International Conference on Automated Deduction (CADE-27).

ARCADE stands for Automated Reasoning: Challenges, Applications, Directions,
Exemplary achievements, and this slogan captures the aim of the workshop series: to
bring together key people from various sub-communities of automated reasoning—such
as SAT/SMT, resolution, tableaux, theory-specific calculi, interactive theorem proving—
to discuss the present, past, and future of the field. In this abstract we report on key data



related to submissions and participation, and summarize the presentation sessions and
the subsequent discussions.

Introduction

The second ARCADE workshop was held as a satellite event of CADE-27 as a forum for
discussions and for sharing ideas about current challenges, new application areas, and future
directions of automated reasoning. In the spirit of the first ARCADE held in 2017 in Gothenburg, the
workshop encouraged short non-technical position statements revolving around challenges,
applications, directions, and exemplary achievements in automated reasoning. The corresponding
extended abstracts were summarized in short presentations at the workshop, with plenty of time for
discussion after each talk.

Out of twelve submitted abstracts, the program committee selected eleven for presentation at the
event. With 33 registrations and even more attendees, ARCADE was one of the largest workshops at
CADE. The event was divided into three sessions comprising five topic blocks. Each session
consisted of two or (in a single case) one short talks, followed by a discussion of the presented
topics, driven by questions posed by the authors. The accepted abstracts and proposed questions
were published on the workshop’s web page in advance of the workshop to allow attendees to
consider these points beforehand.

In this report we first recapitulate the scope and aims of ARCADE and briefly recall the history of
the event. Then we present a high-level summary of the talks and associated discussions, and, finally,
we end this report with a conclusion.

Scope of ARCADE

ARCADE aims to bring together experts from various sub-communities of automated reasoning to
debate the present, past, and future of the field. Consequently, the workshop focuses on lively
discussion: rather than presenting concluded work, authors are invited to inspire discussion. The title
of the workshop is indicative of the encouraged topics:

Challenges: What are the next grand challenges for research on automated reasoning? By this we
refer to problems, solving which would imply a significant impact (e.g., shift of focus) on the CADE
community and beyond.

Applications: Where is automated reasoning already successfully applied in real-world (industrial)
scenarios and where could automated reasoning be relevant in the future?

Directions: Based on the grand challenges and requirements from real-world applications, what are
the research directions the community should promote? What bridges between the different sub-
communities of CADE need to be strengthened? What new communities should be included (if
any)?

Exemplary Achievements: What are the landmark achievements of automated reasoning whose
influence reached far beyond the CADE community itself? What can we learn from those successes
when shaping our future research?

Despite the focus of ARCADE on debate, it is also encouraged to submit an extended version of the
abstracts in post-proceedings. As citations of ARCADE 2017 contributions have shown, ARCADE
papers do get referenced to motivate later work. This illustrates that ARCADE indeed has the
potential to shape ideas and trigger future research, and its submissions are valuable reference points
for the community.

History of the Event

ARCADE 2019 was the second installation of the workshop, following the first ARCADE in 2017 in
Gothenburg. At the previous workshop, out of 19 submissions the program committee selected 14



for presentation and discussion. The proceedings of ARCADE 2017 were published as Volume 51 of
the EPiC series on EasyChair.

Workshop in 2019

As mentioned above, each of the five sessions consisted of one or two short talks of roughly 15
minutes, followed by a discussion of the presented topics driven by questions posed by the authors.
This format stimulated lively debates.

The talks in the first session broached the issue of semantic and syntactic inference restrictions for
different domains. More precisely, Christoph Weidenbach asked the question to which extent these
two paradigms may be unifiable. It was remarked that in contrast to SAT, syntactic restrictions are
often essential for more expressive logics; on the other hand, semantic guidance may offer
significant advantages, too. Hence a unified approach bears a great potential, but a combination is
clearly a non-trivial endeavour.

John Hester proposed in his talk an approach for using axiom schemata to reason in first-order set
theories which are not finitely axiomatizable, such as ZFC. He posed the questions whether
reasoning in NBG is more effective than ZFC, and whether axiom schemata are actually required for
proofs in practice.

The second session was devoted to theorem proving approaches which exploit machine learning
techniques in some sense. Claudia Schon presented a novel approach to common sense reasoning in
the CoRg system. In a preprocessing phase, knowledge graphs are used as background knowledge;
the background knowledge together with target formulae is then fed into a theorem prover, and
afterwards a machine learning component is used to predict the relevance of different models
obtained. She asked the question whether knowledge graphs can compete with knowledge bases for
common sense reasoning tasks, but also raised the more general issue of deduction vs. abduction in
this setting.

Sarah Winkler posed questions about the right granularity of features in machine learning for term
rewriting and theorem proving, relating to work in the software verification community where hand-
crafted features describing program characteristics turned out to be highly useful. In particular, she
asked the question of how structural features of theorem proving problems could look like.

Automation of higher-order reasoning was the topic of the third session, where Sophie Tourret
reported on the achievements and challenges in the ambitious Matryoshka project. She raised the
question to which extent and on which level should theorem proving components be formally
verified. A lively discussion afterwards also emphasized the importance of the question what level of
higher-order reasoning is actually required in practice.

The fourth session focused on automation of ethical reasoning. Christoph Benzmüller proposed the
area of machine ethics as a new application area for automated reasoning. He presented the Explicit
Normative Reasoning and Machine Ethics project, which aims to develop ethical and legal
governance components for intelligent autonomous systems.

In the second talk of this session, Matthew Peveler proposed modelling of ethical principles as an
application area for quantified modal logic. He emphasized that logics to model ethical theories
exhibit different requirements than modal logics for other purposes, and made the point that also new
approaches for proof automation are required.

The fifth session circled around the challenge of making automated reasoning tools more useful in
practice. Martin Riener pointed out that automated first-order theorem provers are hardly used in tool
chains in the way SAT and SMT solvers are. He posed the question why this is not the case, and how
ATPs would need to be improved to make them more suitable for tool chains.

Next, Martin Suda filled in for Giles Reger in making the point that tailoring AR tools to
competitions like CASC does not necessarily maximize their applicability in real-world scenarios



and that other measures than just the total number of solved problems from some benchmark should
be taken into account. A discussion about the suitability of TPTP as reference point to judge theorem
provers followed.

Further new application areas were the topic of the last session. Pedro Quaresma presented
challenges for automated reasoning tools within geometry software. In particular, he proposed
computer-supported reasoning in geometry as a vehicle to expose students to automated reasoning in
general.

Alessandro Gianola pointed out that the verification of data-aware processes offers interesting new
problems to the AR community that have hardly been tackled yet. He explained how data-aware
processes already constitute an application area for experimenting with automated reasoning
techniques, but also stressed that they offer genuinely new research challenges for automated
reasoning.

Conclusion

In summary, ARCADE 2019 enriched CADE-27 by providing a venue for lively debate on
challenges and new directions in current automated reasoning research. Despite the location being
hard to reach for many researchers, attendance was considerable. Moreover, the presented topics
turned out to be mostly different from those of ARCADE 2017, which suggests that there is also
significant potential for future editions of this workshop.

3rd of December, 2019 Martin Suda 
Sarah Winkler

Stronger Higher-Order Automation: A Report
on the Ongoing Matryoshka Project
Jasmin Blanchette (Vrije Universiteit Amsterdam, Amsterdam, The Netherlands)

 Pascal Fontaine (Institut Montefiore, Université de Liège, Liège, Belgium)
 Stephan Schulz (DHBW Stuttgart, Stuttgart, Germany)

 Sophie Tourret (Max-Planck-Institut für Informatik, Saarbrücken, Germany)
 Uwe Waldmann

(Max-Planck-Institut für Informatik, Saarbrücken, Germany)

This extended abstract presents the contributions to automated reasoning made in the
context of the project Matryoshka, funded for five years by the European Research
Council.

Interactive theorem proving (ITP) is concerned with using proof assistants to write computer-
checked proofs of theorems, generally expressed in a variant of higher-order logic (HOL). Proof
assistants are expressive and versatile tools, and their success stories range from software and
hardware verification in [23] to pure mathematics [22]. Despite the higher trustworthiness of a
machine-checked proof compared with a hand-written one, only a very small fraction of today's
software and mathematical proofs is verified in a proof assistant. One recurrent complaint about
these tools is their lack of automation, which has let to the creation of "hammers" [16,26] that
attempt to delegate the proof obligations to fully automatic theorem proving (ATP) tools.

Although some automatic theorem provers for HOL exist [14,33], they tend to underperform on
problems generated from proof assistants [34]. Thus, hammers rely mostly on automatic provers for
first-order logic (FOL), such as SMT (satisfiability modulo theories) solvers [11,17] and
superposition-based theorem provers [27,32]. One unpleasant property of hammers is that they
obfuscate the structure of terms and formulas through the application of a sequence of encodings.



This complicates the task of first-order automatic provers since it is this very structure that they
exploit to find proofs efficiently.

To some extent, the ITP and ATP research communities have been working in parallel, largely
ignoring each other. Hammers have contributed to bringing the two communities closer. Two years
ago, a new division was created in the CASC competition, featuring benchmarks generated by
Isabelle's Sledgehammer [35], reflecting the growing interest of the ATP community in ITP. Next
year, IJCAR will also encompass the ITP conference.

The Matryoshka project, whose general aim is to bridge the gap between ATP and ITP by
strengthening higher-order proof automation, is part of this trend. So is our colleagues' work on Leo-
III [33] and Vampire [10]. Since Matryoshka's start almost two and a half years ago, progress has
been achieved both in terms of improving ATP with an eye on ITP applications and of using ITP as a
vehicle for ATP research, taking the form of several workshops and many publications. This year's
edition of the ARCADE workshop is a good opportunity to provide to the community a
comprehensive view of our contributions and to sketch general avenues for future work.

Automatic Proof at the Service of Interactive Proof
To face the challenges offered by HOL starting from FOL, we have chosen as milestones the
intermediate logics λ-free HOL and Boolean-free HOL. In λ-free HOL, the only higher-order
features allowed are functional variables and partial application of functions. In Boolean-free HOL,
λ-expressions are additionally allowed. This fragment is encoded in λ-free HOL by relying on
combinators, and λ-free HOL itself is encoded in FOL using the applicative encoding [15]. In these
two intermediate logics, variables cannot be of Boolean type. This is the only difference between
Boolean-free and full HOL. Both λ-free and Boolean-free HOL are interpreted using Henkin-style
semantics [9].

To improve automation in proof assistants, our strategy is to develop calculi for these fragments that
extend first-order calculi in a graceful way, meaning that the new calculi should be almost as
efficient at first-order reasoning as their first-order counterparts while being additionally able to cope
with higher-order reasoning steps in a reasonable manner. Our starting points are the superposition
calculus and SMT's CDCL(T) calculus, the most successful first-order approaches for solving
hammer benchmarks.

Toward Higher-Order Superposition

The calculus that Bentkamp, Blanchette, Cruanes, and Waldmann [8] designed for λ-free HOL
resembles the first-order superposition calculus. A key ingredient is a term order for λ-free terms. We
have developed two such orders that generalize the familiar lexicographic path order (Blanchette,
Waldmann, and Wand [13]) and the Knuth--Bendix order with argument coefficients (Becker,
Blanchette, Waldmann, and Wand [6]). Both orders are compatible with function contexts, just as
their first-order counterparts. In the higher-order case, however, one would also like to have
compatibility with arguments (that is,  implies ), but this is hard to obtain. We
compensate for this deficiency by restricting the superposition rule to apply at argument subterms
(e.g.,  or  in , but not  or ). Other superpositions are made unnecessary by an additional
inference rule that adds arguments to partially applied functions.

Adding support for λ-terms imposes major modifications on the calculus (Bentkamp, Blanchette,
Tourret, Vukmirović, and Waldmann [7]). Unification is no longer unitary, but infinitary, which
means that inference rules generate streams of conclusions for a fixed set of premises. Handling
these in practice requires dovetailing. Even worse, the structure of some kinds of variable-headed
terms and λ-expressions (called fluid terms) can be fundamentally altered under substitution, which
breaks the connection between superpositions on clauses and on their ground instances and makes
the calculus incomplete. We restore completeness with a new inference rule in which fluid contexts
are encoded by a fresh higher-order variable. To reach full HOL, this calculus must be further
extended to handle Boolean variables, which can be replaced by arbitrary predicates under



substitution, thus breaking the clausal structure of the main formula. Boolean encodings [15] and
lazy clausification [21] are promising options to face this final challenge.

A prototype implementation of the λ-free calculus, based on the superposition prover Zipperposition,
was implemented by Bentkamp [8]. This prover was then extended to Boolean-free HOL by
Bentkamp, Vukmirović, and Tourret with promising results. Following on the same path,
Vukmirović, with some guidance from Blanchette, Cruanes, and Schulz, also extended the high-
performance E prover to λ-free HOL [33]. Partly by chance, the data structures in E were quite easy
to adapt. Major changes include the replacement of the simple sort system by a proper type system.
λ-free HOL terms are represented using E's existing term data structures. Types are represented as
recursive structures and are maximally shared in a type bank inspired by E's shared term
architecture. Updated unification and matching algorithms are able to return partial matches and
unifiers. All of E's indexing data structures (perfect discrimination trees [24], fingerprint indices [30],
and feature vector indices [31]) have successfully been adapted to λ-free HOL. As a result, the
extended E runs at essentially the same speed as the first-order E. The next planned step is the
extension of E to Boolean-free HOL.

Toward Higher-Order SMT

Together with Barbosa, Barrett, Reynolds, and Tinelli from the CVC4 team, the Matryoshka team,
and more specifically El Ouraoui, Fontaine, and Tourret are experimenting with different approaches
for extending SMT to HOL. The first, pragmatic approach, targets existing state-of-the-art SMT
solvers with large code bases and complex data structures optimized for the first-order case. In this
approach, the SMT solver is extended with only minimal modifications to its core data structures and
algorithms. The second approach, requiring substantial modifications, entails the redesign of the
essential data structures and algorithms of the solver to work directly in λ-free HOL. The approaches
have been respectively implemented in the CVC4 and veriT solvers [5].

The pragmatic approach is based on the applicative encoding of HOL [15]. A preprocessing phase
eliminates λ-expressions using λ-lifting: Each λ-expression is replaced by a fresh function symbol,
and a quantified formula is introduced to define the symbol in terms of the original expression. Then,
the applicative encoding is used lazily to cope with partial applications on the ground level. Trigger-
based quantifier instantiation is adapted to handle encoded HOL terms properly. A trick that proves
useful in practice is to add axioms that help the instantiation technique to go slightly beyond pure λ-
free HOL. More precisely, the ``store'' axiom (stating, for any unary function , the existence of a
function that coincides with  except for one domain value) allows CVC4 to prove quite a few more
formulas from the TPTP library when chosen instances are added [5]. In future work, the other
instantiation methods, model-based, enumeration-based, and conflict-based, will be similarly
adapted.

In the redesign approach, a suboptimal but simple classical congruence closure algorithm is extended
to handle ground HOL terms. This algorithm handles partial applications natively, without relying on
the applicative encoding. It is, however, necessary to add axioms to support extensionality. The
trigger-based quantifier instantiation method is also adapted to cope with λ-free HOL terms. This
involves the extension of the indexing techniques and of the matching algorithms. Store axioms are
currently not used in the redesign approach, and we believe this partly explains (together with
weaker instantiation techniques in general) the gap of efficiency between veriT (implementing the
redesign approach) and CVC4 (implementing the pragmatic approach). Our ambition for the near
future is to adapt the theory of the Congruence Closure with Free Variables algorithm [4] to λ-free
HOL. An implementation of this algorithm would directly allow us to lift conflict-based instantiation
to this logic. Redesigning enumerative instantiation techniques is also on our agenda.

Better SMT Proofs for Smooth Reconstruction

An important aspect of automated reasoning at the service of interactive proof is that, beyond
checking the validity (or unsatisfiability) of a formula, the solver should provide some evidence for
the result. We advocate proofs for SMT solvers. In particular, the veriT SMT solver generates fairly



comprehensive proofs, and we are working on the proof production capabilities of the solver to ease
the burden on tools that would want to replay proofs. Barbosa, Blanchette, and Fontaine [3] recently
developed a method to output explicit proofs for many of the preprocessing steps that usually happen
inside SMT solvers. These results have been further polished, along with the proof format, mostly by
Fleury and Schurr [2,20]. In Isabelle, they achieve a reconstruction success rate of about 99%. Our
goal is to have a reconstruction success rate of 100%, with a solver that behaves gracefully, i.e., that
behaves as much as possible in the same way with proof production enabled as when it is disabled.

Interactive Proof at the Service of Automatic Proof
The formal verification of ATP leads to a better understanding of its core mechanisms and strengthen
its theoretical results. It also facilitates incremental research by allowing researchers to experiment
with existing formalisms and easily identify the consequences of their modifications. Sometimes the
outcome of verification is a formal framework that can be instantiated by future applications.

A Verified SAT Solver

Fleury, with some help from Lammich and supervision from Blanchette and Weidenbach, formalized
the conflict-driven clause learning (CDCL) calculus implemented in most modern SAT solvers [12].
Compared with other SAT solver verification works, this work emphasizes the stepwise refinement
methodology and the connection between calculi variants described in the literature. It also considers
clause forgetting, solver restarts, and incremental solving, which had not been the focus of
formalization before.

Based on the CDCL formalization, Fleury implemented an optimized verified SAT solver called
IsaSAT [18,19]. IsaSAT implements the two-watched-literal scheme and other imperative data
structures. From a benchmark suite consisting of the preprocessed SAT Competitions problems from
2009 to 2017, IsaSAT solves 801 problems, compared with 368 for versat (the second fastest
verified SAT solver) and 1388 for MiniSAT (the baseline reference for SAT solving) [18].

A Verified Ordered Resolution Prover

Schlichtkrull, Blanchette, Traytel, and Waldmann [29] formalized in the Isabelle/HOL proof
assistant [25] a first-order prover based on ordered resolution with literal selection. They followed
Bachmair and Ganzinger's account [1] from Chapter 2 of the Handbook of Automated Reasoning.
The formal development covers the refutational completeness of two resolution calculi for ground
clauses and general infrastructure for theorem proving processes and redundancy, culminating with a
completeness proof for a first-order prover, called RP, expressed as transition rules operating on
triples of clause sets. This material corresponds to the first four sections of Chapter 2. Interestingly,
Bachmair and Ganzinger's main completeness result does not hold as stated, due to the improper
treatment of inferences involving several copies of the same premise. The formalization uncovered
numerous smaller mistakes.

In subsequent work [28], Schlichtkrull, Blanchette, and Traytel specified an executable prover that
implements a fixed clause selection strategy and functional data structures, embodying the abstract
prover described by Bachmair and Ganzinger. The executable prover is connected to the abstract
prover through a chain of refinement steps.

A Framework for Saturation Provers (Ongoing Work)

One of the indispensable operations of realistic saturation theorem provers is deletion of subsumed
formulas. Unfortunately, the well-known equivalence of dynamic and static refutational
completeness holds only for derivations where all deleted formulas are redundant, and the usual
definition of redundancy does not cover subsumed formulas. The fact that the equivalence of
dynamic and static refutational completeness cannot be exploited directly is one of the main reasons



why Bachmair and Ganzinger's refutational completeness proof for the RP prover is rather
complicated and nonmodular.

Waldmann, Tourret, Robillard, and Blanchette are currently working on a generic framework for
formal refutational completeness proofs of abstract provers that implement saturation proof calculi.
The framework relies on a modular extension of arbitrary redundancy criteria, which in the end
permits not only to cover subsumption deletion, but to model prover architectures in such a way that
the static refutational completeness of the calculus immediately implies the dynamic refutational
completeness of, say, an Otter loop or Discount loop prover implementing the calculus.
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How Can We Improve Theorem Provers for
Tool Chains?
Martin Riener (The University of Manchester)

Automated first-order theorem provers have matured as standalone tools to the point that
they can be used within a larger infrastructure like Isabelle's Sledgehammer.
Nevertheless, there is a significant difference to the spread of SAT solvers, that occur in
simple applications like configuration management but are reliably used in tight loops of
larger tool chains, not the least in SMT Solvers or instantiation/AVATAR based ATPs.
We cannot expect a similar level of integration due to the higher expressiveness of
general purpose theorem proving. Nonetheless, here we will identify some aspects that
could improve the acceptance in industry.



Automated theorem provers have seen use as back-ends in larger software packages (various
hammers, TLAPS) but are rarely used within a tool chain. For decidable theories, SMT solvers
certainly have better properties but in this context, we focus mostly on their use as general purpose
theorem provers (in other words, any SMT-LIB logic that includes uninterpreted functions and
quantifier support). The abil-ity to produce models still distinguishes SMT solvers but the support of
full first order logic confronts them with similar problems as other ATPs. Many of these problems
are of a technical nature: the integration of a theorem prover into an industrial project brings several
external requirements into play that are easily dealt with in interactive modes. The software might
need to run in a certain operating system or avoid optional components under the GPL license. The
availability of certain prover features also often depends on such optional components. For example,
an arbitrary precision library might only provide integers where its differently licensedalternative
also provides unbounded real numbers. In interactive use, we can often restate the problem to avoid
real numbers altogether. A human can also investigate the reasons for time outs easier. We
summarize these problems under the titles common availability, standardized interfaces,
andreliability. The analysis is centred around CVC4 [1], E Prover [7], iProver [3], SPASS [8],
Vampire [4], veriT [2], and Z3 [5].

Availability

Most commonly, provers target Linux as the main operating system and are available in source form
to be compiled manually. Static Linux binaries are also often available for download at the project
homepage, with the exception of Vampire. SPASS and E are packaged in single Linux distributions
(Debian/Ubuntu and Fedora respectively) whereas CVC4 and Z3 are widely available. An exception
areAlt-Ergo, Zipperposition and Beagle which are usually installed via Opam and sbt, the respective
sourcebased package systems for OCaml and Scala.

Apart from Z3, CVC4 and veriT, which offer native binaries, the support for Windows is usually
provided via the Cygwin compatibility layer. MacOS is usually supported via the source based
package manager Homebrew. Due to Apple's strong discouragement of static linking, this is
normally the only way of distribution.

From an industrial perspective, external factors often determine the operating system or way of
distribution required. When multiple provers are required, the most common denominator is often
only the compilation from source. The introduction of automated builds and testing environments for
multiple operating systems is a significant task that is hard to publish on. Although rare, there are
research engineer grants that could be used to hire an expert that does this maintenance. Since most
provers are underan open source license, one time engineering tasks like the adaptation to a yet
unsupported operating system could be announced as a Google Code project.

Interfacing

The most common way of communication with a theorem prover is via plain text. This has the
advantages that the input language remains stable and the prover can be easily exchanged for an
alternative. The two main input formats, SMT-LIB and TPTP, have been converging with regard to
the supported logics and theories: for example, they both define integer and real arithmetic and
higher-order logic. There are differences though: only SMT-LIB defines special theories like bit-
vectors, data-types or arrays, even though some provers accept them with a custom syntax whereas
only TPTP supports polymorphictypes and modal operators. The choice of the language therefore
restricts which features are efficiently supported.

A further restriction is the fact that no prover supports all features of either SMT-LIB or TPTP. This
ties the tool chain even tighter to a particular prover, making it hard to use different encodings of the
same problem. On the other hand, the close integration can not be used to share data-structures or
avoid repeated parsing of input.

Another distinction regards the output formats. SMT-LIB does not specify a proof format but it has a
definition of models in terms of a Herbrand universe extended with abstract values. These abstract
values are solely defined by the solver and again tie the tool chain tightly to a particular prover.



TPTP's proof format TSTP on the other hand specifies the proof DAG with the single semantic
restriction that a conclusion logically follows from its premises. More detailed proofs can be
constructed but require additional reasoning. If the proof replay is not tailored to a prover there is
also a reasonable chance that it fails. TSTP only specifies a concrete format for finite models. In both
cases, an industrial user needs to rely on prover specific behaviour that is often poorly documented.

Some of these issues can be mitigated with an intermediate layer such as pySMT. As an alternative,
one can use an API, should it exist and when it has the correct language bindings. The API might
change more frequently because it is tied more closely to the implementation.

In each case, only the ATP community can improve the situation. The efforts of harmonizing the
SMT-LIB format with TIP seem to have been successful, making the benchmarks collections of both
formats available to the other community. Due to the larger syntactic differences, this is not easy to
achieve between TPTP and SMT-LIB but it is certainly possible continue integrating the features of
the other side. The veriT SMT solver provides an excellent proof format that could be integrated into
SMT-LIB. A stand-alone tool that converts between the formats would also be of great help. This
could be a stepping stone of making the whole benchmark libraries of both formats available to the
other. Currently, there is an overlap due to manual conversion efforts (for instance, the
AUFNIRA/nasa is an adaption of the original statements using the array sort instead of an
axiomatization). An full problem library that can state the problem in the logic and language
required would make such a manual conversion effort unnecessary.

Reliability

The most dreaded behaviour of a theorem prover which has not been mentioned so far is when it
reports "unknown", either due to a timeout or when it rejects the problem as outside of its
capabilities.1

This can be due to an unfavourable encoding like expressing equality as a reflexive, symmetric and
transitive relation. Other cases are not that obvious: arrays with Boolean values can replace a bit-
vector but it depends on the decision procedures that are actually implemented which determine if
the encoding is suitable to a problem. Decisions of the latter kind could be integrated into a
framework like pySMT (also to compensate for missing theories) but in general this can only be
solved by the creator of the tool chain.

Another way to obtain "unknown" is by enabling incomplete proof search strategies, be it particular
instantiation techniques or axiom selection. In general, the number of options for theorem provers is
immense and their interaction is hard to predict. Unfortunately, this situation is hard to improve. ATP
developers can evaluate the effectiveness of a large number of combinations to find those that work
well or eliminate some those that don't have any effect. How well this works depends strongly on
how representative the benchmarks are for the application. Specialized tool chain developers might
be able tune the options themselves but this can not expected from the average user.

A third possibility for a timeout is lack of knowledge about the (possible) model. A superposition
based prover will not saturate the clause set generated by  and continue until it
times out. Still, some learned similarity measures could select sufficiently distinct generated clauses
that could be of interest for choosing a better suited set of options. A similar phenomenon occurs
when SMT solvers run in a refinement loop. The clause above almost immediately produces a model

. A refined model would exclude these model values, obtaining a new model 
 and so on. A human quickly recognizes that the problem has both infinitely many

models and counter-models. Part of this information is also generated when the decision procedure --
here probably the Simplex algorithm -- is run and we should know more about the model theory of
that decision procedure. How this knowledge can be preserved in the face of theory combination is
not obvious. When we consider the clause , whatever model we pick for  overshadows
any monotonicity intuitions we had for the simpler case. Nevertheless, it could be beneficial to
extract more information from a stopped proof search and feed this back into the refinement loop.



Summary

We have focused on topics that could be considered as obstacles for industrial integration: possible
runtime environment restrictions, the need to ship with predetermined parameter schedules or the
general hardships of undecidable problems. Nevertheless, it is worth highlighting the impressive
advancements that have already been made in that regard. Modern theorem provers come with an
extensive manual that includes their inference rules. The level of detail in proofs has become
significantly more detailed. Finally, there have already been successful integrations of general first-
order provers in widely used software, ranging from backends for interactive proof assistants to
software synthesis and test case generation. However we hope that future development can close the
gap between the research and its application in industry.

1 For example, both CVC4 and Z3 report unknown when trying to find a model of
 but they can both construct a model for the inequality

of constants , which is how existential quantification is defined.
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We propose building a community of "intelligent geometry" researchers, manifested by
the creation of a living Intelligent Geometry Book, to introduce many more people to
computer-supported reasoning.

On the one hand, participants at "Big Proof 2019" workshop commented that students (mostly
mathematics, but also computing) were not being introduced to formal methods and computer-
supported reasoning at an early enough stage. On the other hand, for hundreds if not thousands of
years, geometry has been the tool of choice for introducing formal reasoning. Hence we propose that
computer-supported reasoning in geometry is an ideal vehicle for exposing many more people to
computer-supported reasoning than is currently the case.

The need for formal reasoning is not just a niche area in mathematics. The whole area of verified
software relies on formal reasoning. Everyone who flies in or out of the UK has placed their lives in
the hands of the air traffic controllers, supported by a computer system which has been formally
verified, and the same is true of Line 14 (driverless) of the Paris Métro, or many railway systems.
But the firms that develop such systems have an uphill struggle finding staff. They report that
practically no recruit at the graduate level has been exposed to computer-supported reasoning.

Reuse of previous results is vital across science, but nowhere more than in mathematics. However, in
practice re-use of implementations of ideas has proved much harder than re-use of abstract ideas.
The same algorithm can be implemented many times. Some times this re-implementation is due to
real improvements (as we may provide a shorter or clearer proof of a theorem), but often it is due to
"engineering" mismatches: different programming languages, data formats etc.

Therefore this project aims to build a community of researchers, the Intelligent Geometry
Community, experts in the representation and management of geometric knowledge, and knowledge-
based intelligent software for exploratory and educational purposes. By pooling the experiences of
the participants over the fundamental issues to be addressed by any project in this area and making
results open source/open access, the network will lay the ground for advanced research projects
contributing to the European research agenda. The creation of this community will be demonstrated
by the creation of a living Intelligent Geometry Book, the iGEOMETRYBOOK.

Hence the main challenge is to organise and harmonise the work of the participants and to integrate
different techniques and tools developed by them, to facilitate collaborations within the network.

The iGEOMETRYBOOK will be an intelligent environment, collaborative, adaptive and adaptable,
containing formally represented machine-checked geometric knowledge, historically analysed, with
embedded tools for computation, deduction, and knowledge processing. It is envisaged that the
knowledge contained in the iGEOMETRYBOOK will be created by the authors, with contributions from
readers, using the embedded tools according to certain pre-designed mechanisms and remotely
accessible and searchable with natural and visual languages interfaces.

Such a "superset of a book", freely available in all computational platforms, adaptable, collaborative
and adaptive to each and every user's profiles, would bring together a whole new generation of
mathematical tools with impact at all levels: exploratory research, applications on mathematics and
education.

The need of information and communications technology (ICT) in a learning setting is well
recognised, as said in Mathematics Education in Europe: Common Challenges and National Policies
the use of ICT for teaching mathematics is prescribed or recommended in all European countries.
The recommendations range from very specific instructions to more general guidelines [1,2,3,4,5]. In
particular, three of the aims in [2] are

1. construct mathematical proofs;



2. make deductions and inferences and draw conclusions by using mathematical reasoning;
3. use technology such as calculators and computers effectively, and recognise when such use

may be inappropriate.

It is our thesis that an appropriate interactive geometry tool can support, not only each aim above
separately, but also the interplay of these aims.

In terms of the challenges of ARCADE, this should also respond to "How can we attract young
people to our field?".
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We briefly introduce the line of research on the verification of data-aware processes,
with the intention of raising more awareness of it within the automated reasoning
community. On the one hand, data-aware processes constitute a concrete setting for
validating and experimenting with automated reasoning techniques. On the other hand,
they trigger new genuine research challenges for researchers in automated reasoning.

Introduction

Contemporary organizations rely more and more on business processes to describe, analyze, and
regulate their internal work. Business process management (BPM) is now a well-assessed discipline
at the intersection between operations management, computer science, and IT engineering. Its grand
goal is to support managers, analysts, and domain experts in the design, deployment, enactment, and
continuous improvement of processes [21].

One of the essential concepts in BPM is that of a process model. A process model explicitly
describes which tasks have to be performed within the organization (such as check order) in



response to external events (such as receive order request), and what are the allowed courses of
execution (such as deliver order can only be executed if check order has been successfully
completed). Several process modeling languages have been proposed for this purpose, such as
BPMN [35], UML Activity Diagrams [26], and EPCs [1]. Verification and automated reasoning
techniques are in this respect instrumental to formally analyze process models and ascertain their
correctness before their actual deployment into corresponding BPM systems.

Traditionally, formal analysis of process models is limited to the process control flow, represented
using variants of bounded Petri nets or finite-state transition systems (depending on how
concurrency is interpreted). This, however, does not reflect the intrinsic, multi-perspective nature of
processes and their corresponding models. In particular, process tasks are executed by resources
based on decisions that depend on background and process-related data, in turn manipulated upon
task execution.

In this multi-perspective spectrum, the last two decades have seen a huge body of research dedicated
to the integration of data and process management to achieve a more comprehensive understanding
on how data influence behavior, and how behavior impact data [38, 20, 37].

The corresponding development of formal frameworks for the verification of data-aware processes
has consequently flourished, leading to a wide plethora of formal models depending on how the data
and process components, as well as their interplay, is actually represented.

One stream of research followed the artifact-centric paradigm, where the main focus is that of
persistent business objects (such as orders or loans) and their lifecycle [41, 8]. Here, variants of the
same model are obtained depending on how such business objects are represented. Notable examples
are: (i) relational data with different kinds of constraints [18, 6,32], (ii) relational data with
numerical values and arithmetics [15, 19], (iii) tree-structured data [7]. Also more minimalistic
models have been brought forward, capturing data-aware processes as a persistent data storage
evolved through the application of (conditional) actions that may inject external, possibly fresh
values through service calls reminiscent of uninterpreted functions. Two variants of this model have
been studied, the first considering persistent relational data with constraints [5, 2], the second
operating over description logic knowledge bases whose extensional data are interpreted under
incomplete information, and updated in the style of Levesque functional approach [28, 14].

Another stream of research followed instead the more traditional activity-centric approach, relying
on Petri nets as the underlying control-flow backbone of the process. Specifically, Petri net-based
models have been enriched with: (i) data items locally carried by tokens [39, 31], (ii) data registers
with numerical and non-numerical values [16], (iii) tokens carrying tree-structured data [4],
and/or(iv) persistent relational data manipulated with the full power of FOL/SQL [17, 34].

Last but not least, the interplay between data and processes has been studied to build solid
foundations for "many-to-many" processes, that is, processes whose tasks co-evolve multiple
different objects related to each other (such as e-commerce companies where each order may
correspond to multiple shipped packages, and each package may contain items from different
orders). Implicit (data-driven) [3] and explicit (token-driven) [22] coreference and synchronization
mechanisms have been proposed for this purpose.

On top of these formal models, several verification tasks have been studied. On the one hand, they
consider different types of properties, ranging from fundamental properties such as reachability,
safety, soundness and liveness, to sophisticated formulae expressed in linear- and branching-time
first-order temporal logics [8]. On the other hand, they place different assumptions regarding how
data can be manipulated, and whether there are read-only data whose configuration is not known.
The resulting verification problems are all undecidable in general, and require to properly tame the
infinity arising from the presence of data.

All in all, we believe this wide spectrum of verification problems constitutes an extremely interesting
application area for automated reasoning techniques. On the one hand, data-aware processes
constitute a concrete setting for experimenting symbolic techniques developed within automated
reasoning, so as to enable reasoning on the evolution of data without explicitly representing them. In



addition, given the applied flavor of BPM, the feasibility of assumptions and conditions imposed
towards guaranteeing good computational properties (such as decidability or tractability) can be
assessed in the light of enduser-oriented modeling languages and their corresponding modeling
methodologies. On the other hand, data-aware processes trigger new, genuine research challenges for
researchers in automated reasoning, arising from the subtle, yet necessary interplay between control-
flow aspects and volatile and persistent data with constraints.

To substantiate this claim, we briefly describe next one particular verification problem where
automated reasoning techniques are very promising.

The Concrete Case of Relational Artifact Systems

Artifact systems formalize data-aware processes using three main components: (i) a read-only
database that stores fixed, background information; (ii) a working memory that stores the evolving
state of artifacts throughout their lifecycle; (iii) actions that inspect the read-only memory and the
working memory, and consequently update the working memory. Different variants of this model,
obtained via a careful tuning of the relative expressive power of its three components, have been
studied towards decidability of verification problems parameterized over the read-only database (see,
e.g., [18, 15, 7, 19, 11, 12, 9]). These are verification problems where a property is checked for every
possible configuration of the read-only database, thus guaranteeing that the overall process operates
correctly no matter how the read-only data are instantiated.

In the most recent variants of this model, the read-only database is equipped with key and foreign
key constraints relating the content of different relations. At the same time, the working memory is
relational, with each relation representing an artifact, in principle capable of storing unboundedly
many tuples denoting instances of that artifact [19, 32].

In [11], we took inspiration from this approach, studying the model of so-called relational artifact
systems (RASs). Notably, we connected RASs to the well-established model of array-based systems
within the SMT tradition [24]. This is done in two steps. First, the schema of a read-only database is
represented in a functional, algebraic fashion, where relations and constraints are captured using
multiple sorts and unary functions. Second, each artifact relation within the working memory is
treated as a set of arrays, where each array accounts for one component of the corresponding artifact
relation. A tuple (i.e., artifact instance) in an artifact relation is then reconstructed by accessing all
such arrays with the same index.

With these notions at hand, from a logical point of view the behavior of a RAS is specified via: (i)
second order variables for artifacts components; (ii) first order variables for "data", ranging both on
the sorts of the read-only database and on numerical (real, integer) domains. Thus, suitable
combinations of (linear) arithmetics and EUF can be employed for reasoning about RAS systems.
Non-determinism in system evolution is captured via first-order parameters, that is, further
existentially quantified variables occurring in transition formulae, whereas second-order variables
updates are functionally determined by such non-determinism at the first-order level.

On the top of this formal model, various problems arise that can be effectively attacked using
techniques and solutions within the automated reasoning community in general, and the SMT
community in particular. We briefly discuss next some of them.

1. By focusing on model checking of safety properties via symbolic backward reachability [24,
25], the main problem is that of avoiding the existential prefix to grow in an uncontrolled way.
This, in turn, calls for some form of symbol elimination. This is rather easily achieved for
second-order variables − at least when backward search is employed − because, as mentioned
above, updates are often functional modulo first-order parameters; however, it is not clear
what happens if alternative search strategies are employed, or other relevant properties are
checked. At the first-order level, specific challenges instead arise already in this setting. In
fact, while numerical existentially quantified variables can be eliminated via well-known
methods (such as predicate abstraction [23], interpolation [33, 30], model elimination [29, 36],
or even quantifier elimination), the manipulation of variables ranging over theread-only



database appears to require completely different techniques, like cover computation [27].
Thanks to cover computation, one can in particular overcome the fact that quantifier
elimination is not directly applicable to variables pointing to elements of the read-only
database. More technically, the computation of covers is nothing but quantifier elimination in
the model completions of the theory used to capture the schema and the constraints of the
read-only database schema, as shown in [12]. The idea of using model completions when
quantifier elimination is not directly available is presentalso in [40]. Notably, differently from
quantifier elimination in linear arithmetics, cover computationin the restricted "unary" case
required for RASs turns out to be tractable [27, 12].

2. Different types of properties are usually required to be verified in the context of data-aware
processes, where safety is one of the most typical. Nevertheless, a comprehensive research
dedicated to SMT-based techniques for the effective verification of data-aware processes
should also consider richer forms of verification going beyond safety (e.g., liveness and
fairness), and richer classes of artifact systems incorporating concrete data types and
arithmetic operations that should explicitly appear in the specification language.

3. Database instances are typically built on top of finite structures (although they may contain
elementsfrom "value" sorts ranging over infinite domains). Depending on the specific setting
under investigation, this feature may require to introduce specific techniques from finite model
theory. In particular, advanced applications will presumably require: from the foundational
perspective, to investigate suitable versions of the finite model property; from the applied
perspective, to integrate common solvers with model finders.

4. Interesting variants of RASs arise when the data stored therein are interpreted under
incomplete information, and in the presence of complex ontological constraints expressing
background, structural knowledge of the organisational domain. Transferring model checking
techniques such as those re-called in point 1 above to this richer setting is not at all trivial, as
reasoning must now be carried outtackling two dimensions at once: the temporal dimension
along which the artifact systems evolves, and the structural dimension constraining the
manipulated data objects and their mutual relationships.

5. Towards enabling the concrete exploitation of verification techniques, logic-based formalisms
used to formalize RASs or other types of data-aware processes need to be connected to end
user-oriented process modeling languages. This interconnection paves the way towards
practical reasoning tasks that are relevant for end users, but have not yet addressed by the
automated reasoning community. In addition, by considering specific modeling guidelines and
methodologies, interesting subclasses of general formal models such as that of RASs may
naturally emerge. It would be then important to assess whether such subclasses come with
interesting computational guarantees for the corresponding automated reasoning tasks.

We tried to address only some of the most simple problems from the above list. In particular, we
have used RASs as a basis for formalizing a data-aware extension of the de-facto process modeling
standard BPMN [10], and used the resulting approach to conduct an initial benchmark using some
process models from [32], with very encouraging results [13, 11, 10].

To sum up, we believe that by employing both well-established and relatively new techniques, the
automated reasoning community is ready to face the challenges raised by the emerging area of
verification of data-aware processes, providing foundational, algorithmic, and applied advancements.
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