
Received October 21, 2019, accepted November 15, 2019, date of publication December 9, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2958480

Improving Failure Prediction by Ensembling the
Decisions of Machine Learning Models:
A Case Study
JOÃO R. CAMPOS , ERNESTO COSTA , AND MARCO VIEIRA
DEI/CISUC, University of Coimbra, 3030-290 Coimbra, Portugal

Corresponding author: João R. Campos (jrcampos@dei.uc.pt)

This work was supported in part by the Portuguese Foundation for Science and Technology (FCT) under Grant SFRH/BD/140221/2018,
in part by the MobiWise project: From mobile sensing to mobility advising under Grant P2020 SAICTPAC/0011/2015, in part by the
COMPETE 2020, in part by the Portugal 2020-Operational Program for Competitiveness and Internationalization (POCI), in part by the
European Union’s ERDF (European Regional Development Fund), and in part by the Portuguese Foundation for Science and
Technology (FCT).

ABSTRACT The complexity of software has grown considerably in recent years, making it nearly impossible
to detect all faults before pushing to production. Such faults can ultimately lead to failures at runtime. Recent
works have shown that using Machine Learning (ML) algorithms it is possible to create models that can
accurately predict such failures. At the same time, methods that combine several independent learners (i.e.,
ensembles) have proved to outperform individual models in various problems. While some well-known
ensemble algorithms (e.g Bagging) use the same base learners (i.e., homogeneous), using different algo-
rithms (i.e., heterogeneous) may exploit the different biases of each algorithm. However, this is not a trivial
task, as it requires finding and choosing the most adequate base learners and methods to combine their
outputs. This paper presents a case study on using several ML techniques to create heterogeneous ensembles
for Online Failure Prediction (OFP). More precisely, it attempts to assess the viability of combining different
learners to improve performance and to understand how different combination techniques influence the
results. The paper also explores whether the interactions between learners can be studied and leveraged.
The results suggest that the combination of certain learners and techniques, not necessarily individually
the best, can improve the overall ability to predict failures. Additionally, studying the synergies in the best
ensembles provides interesting insights into why some are able to perform better.

INDEX TERMS Ensembles, failure prediction, machine learning, reliability.

I. INTRODUCTION
Given the growing complexity of software in recent years, it is
nearly impossible to detect every fault before deployment.
Such (residual) faults can eventually escalate to failures,
compromising the system’s availability, reliability, and sup-
ported business processes. In fact, software faults have been
recurrently identified as a major cause of system outages [1].

Depending on the purpose of the system, failuresmay incur
considerable risk or cost, either due to the recovery mecha-
nisms or to the resulting system interruption/corruption. For
example, a 63-minute Amazon outage in 2018 reportedly
cost the company around $100 million [2]. In a more crit-

The associate editor coordinating the review of this manuscript and
approving it for publication was Ah Hwee Tan.

ical scenario, in 2016, a GPS satellite failure compromised
worldwide GPS systems for several hours [3].

Given the potential consequences associated with failures,
over the years several techniques have been developed to
avoid or tolerate faults (e.g., coding practices, testing) [4].
Online Failure Prediction (OFP) is a complementary tech-
nique that intends to mitigate the potential effects of residual
faults. It correlates past failure data with the current system
state to predict the occurrence of failures in the near future [5].
Such predictions can then be used to take preemptive mea-
sures, such as saving data or restarting parts of a system
to mitigate their consequences. Notwithstanding, despite its
great potential, OFP is still not widely implemented.

Due to the technological developments in recent years,
Machine Learning (ML) algorithms have been successfully
used in a variety of complex problems. Such algorithms can

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 177661

https://orcid.org/0000-0002-4623-764X
https://orcid.org/0000-0002-8460-4033
https://orcid.org/0000-0001-5103-8541

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

find (complex) patterns in the data and learn from them
without relying on a predetermined model. Afterward, they
can be used to make predictions on new unseen data based on
what was previously learned. Although there are several pop-
ular classification algorithms (e.g., Support Vector Machine
(SVM)), Ensemble Methods have also recently gained rele-
vance. They consist of a compilation of independent algo-
rithmswhose predictions are gathered to work as a whole. It is
believed that a good ensemble is made of base learners that
are as accurate and diverse as possible [6]. Although some
of the most well-known ensemble methods use only a single
base learner (also known as homogeneous, e.g., Random
Forest (RF)) it is also possible to combine different learning
algorithms (also known as heterogeneous) [7], often leading
to better results [8]. Various approaches relying on ML for
OFP have already been proposed [5], and the use of homo-
geneous ensembles has already shown promising results in
our previous work [9]. However, for OFP, the combination of
different learners has not yet been explored.

This paper presents an exploratory case study on using
different ML algorithms and techniques to create heteroge-
neous ensembles for supporting OFP. To this end, failure
data are used to assist in the development of a data-driven
study on how combining different learners can improve the
performance of individual models. These data were generated
using fault injection and considering different software faults.
They contain the data of 233 system variables monitored
during execution at the Operating System (OS) level and con-
sider two failure modes: System Hang and Crash. Multiple
algorithms and preprocessing techniques were considered for
both the base learners and ensemble combination methods.
Finally, the best ensembles are explored in detail and a pre-
liminary analysis is conducted to understand why and how
their constituent models complement each other. For these
experiments, we used the Propheticus framework [10], which
allows us to easily explore the problem/data and effortlessly
run and combine several ML and techniques.1

More precisely, this paper attempts to answer the following
research questions concerning OFP:
• RQ1: does combining different learners improve the
overall performance?

• RQ2: do different combination techniques influence the
results and the (best) ensemble composition?

• RQ3: can the interactions between the learners in an
ensemble help to understand the performance obtained?

Results suggest that for OFP it is indeed possible to
improve the performance of individual learners (even if
homogeneous ensembles themselves) by combining models
created with different algorithms and techniques (thus, affir-
matively answering RQ1). Additionally, it was also observed
that the structure of the ensembles, their performance, and
their interpretability are influenced by the combination tech-
niques used (thus, affirmatively answering RQ2 and RQ3).

1Due to space restrictions it will not possible to show every result, which
can be found at http://www.joaorcampos.com/Access-2019.

This study intends to assist researchers and systems admin-
istrators whowant to find the best model that fits their system.
It provides insights into how to ensemble individual models
to achieve better prediction performance, by exploring several
ML algorithms, techniques, and ensembling methods.

This paper is organized as follows. Section II provides
background concepts and discusses related work. Section III
overviews the methodology used. Section IV describes the
process of selecting the base learners, while Section V focuses
on combining their predictions, and Section VI analyzes the
best ensembles. Section VII discusses the results obtained
and Section VIII addresses the threats to validity. Finally,
Section IX concludes and puts forward ideas for future work.

II. BACKGROUND AND RELATED WORK
This section provides some concepts and related work on
Online Failure Prediction (OFP) and Machine Learning
(ML).

A. THE FAILURE PREDICTION CONCEPT
OFP allows foreseeing incoming failures at runtime, enabling
the mitigation of their effects [11]. It is particularly useful in
the context of residual faults (i.e., faults that escaped the test-
ing process) that cannot be tolerated by other fault-tolerance
mechanisms [4]. Several different types of OFP techniques
were proposed so far, and an exhaustive survey can be found
in [5]. Among them, a method based on clustering the sys-
tem state and the use of Hidden Semi-Markov Models to
predict failure-prone system states was proposed [12], and
SVMs were used to predict failures of hard drives [13]. More
recently, we conducted an exploratory study on using differ-
ent ML algorithms and techniques for OFP [9]. However,
while relevant, this work focused on studying the perfor-
mance of various ML algorithms and techniques, without
configuring and tuning the models thoroughly.

The prediction of failures is based on different kinds of
information, including the past data from the system (used
to train the predictor), the current information about the
state of the system (obtained by monitoring some system
variables), the time horizon of the prediction, among others.
More precisely, a prediction performed at time t targets a
window starting at time t +1tl , and lasting for 1tp (1tl and
1tp are normally referred to as Lead Time and Prediction
Window, respectively) [5]. In practice, at time t , a model
should predict if a failure is going to occur in the interval
[t +1tl, t +1tl +1tp].

B. MACHINE LEARNING FOR OFP
ML algorithms have shown their ability to adapt and extract
knowledge in a variety of complex problems, including for
failure prediction. Such algorithms are able to find (complex)
patterns in the data and learn from them without relying on a
predetermined model and make predictions on new unseen
data based on what was learned. Concerning terminology,
themonitored system variables are referred to as features. The
set of values of those variables at a given time t is known as a

177662 VOLUME 7, 2019

http://www.joaorcampos.com/Access-2019

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

sample, and whether a failure will or not occur for that sample
is known as the class. As each instance in the dataset contains
the information on whether a failure is going to be observed
within a given time, it is considered a Supervised Learning
problem. Thus, every supervised algorithm can theoretically
be used.

One of the uses of OFP is to predict how failure-prone
the system is, which is a Regression problem. Regression
problems try to predict continuous values, and the perfor-
mance of those models is often measured with metrics such
as Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE). However, more commonly, OFP can also
be used to predict whether a failure will or not occur [5]
(the focus of this work). This is a Classification problem
that is concerned with separating data into distinct classes
that are discrete and categorical. The performance of these
classification models is often measured through metrics such
as recall and precision. As the complexity of any model
depends on the number of inputs, reducing dimensionality
(e.g., Feature Selection/Extraction) may be important. Addi-
tionally, to help algorithms to cope with the infeasibility of
very large datasets, Instance Selection techniques (e.g., sam-
pling, boosting [14]) can also be used. Moreover, imbalanced
datasets may compromise the performance of the algorithms
on the minority classes. For this, there are specific solutions
such as Undersampling and Oversampling [15].

To have a realistic estimate of the performance of a model,
two main sets of data are normally used: train and test.
The training set is used for training the model, while the
testing set estimates the generalization error of the final
model [16]. Additionally, a third set (validation) can be cre-
ated from the training set and be used to avoid overfitting.
This division is not trivial, as it may inadvertently influ-
ence the performance/representativeness of the model. Thus,
several techniques have been proposed over the years (e.g.,
Partition/Leave-one-out, Bootstrap Methods [17]). Finally,
despite all the factors that can be considered, one should not
forget that whatever conclusions are drawn, these are always
conditioned by the dataset with which the model was created.

C. ENSEMBLE METHODS
Ensemble methods are a compilation of several indepen-
dent algorithms whose predictions are gathered to work as a
whole, as depicted in Figure 1 (x represents the input feature
vector, and y the ensemble decision/output). They contain a
number of learners called base learners (or weak learners),
which are usually generated using a single algorithm such

FIGURE 1. Ensemble methods..

as Decision Tree (DT) or Neural Network (NN) [7]. Some
of the most well-known ensemble methods are based on DT
classifiers, such as Boosting, Bagging, and RFs.

Creating an ensemble can be divided into two steps: gen-
erating the base learners and combining them. It is believed
that a good ensemble is made of base learners as accurate
and diverse as possible. Additionally, their outputs should be
combined in such a way that correct decisions are amplified
and incorrect ones are canceled out [6]. Although demanding
accurate classifiers is easily understood (i.e., the combination
of wrong predictions cannot easily generate a correct deci-
sion) measuring diversity is complex, as there is no consen-
sus or formal definition [18]. Nonetheless, several metrics
have already been proposed (e.g., Q Statistic, disagreement
measure), although the correlation between diversity and
performance is not fully understood [19].

The construction of an ensemble can be separated into two
approaches:Classifier Selection and Fusion [20]. In classifier
selection, the classifiers are trained to become experts in some
area of the feature space. Then the output of the classifiers
identified as the best for a specific classification problem
is selected. Usually, the input sample space is partitioned
into smaller areas and each classifier learns the example in
each area. Classifier fusion, on the other hand, combines the
outputs of the different classifiers. Each one has knowledge
of the entire feature space and tries to solve the same classi-
fication problem using different methods based on different
training datasets, classifiers or parameters [20]. Considering
the goal of this work, the experiments will focus solely on
classifier fusion. Some of the most well-known ensembles
use a single base learner and are called homogeneous ensem-
bles. However, it is also possible to combine different learners
into a heterogeneous ensemble [7], often leading to better
results than using a single base learner [8].

After creating the set of base learners, ensemble methods
rely on combination (instead of choosing the best individual
model) to achieve a good generalization ability, where the
combination method plays a crucial role. Thus, there are
several approaches to combine the various results depending
on the nature of the predictions (e.g., continuous or cat-
egorical) [7]. As the approach used in this paper focuses
on classification (i.e., categories), the most applicable tech-
niques are based on voting [7]. Plurality Voting is one of the
most popular and simple approaches, where each classifier
votes for one class label and the final prediction is the class
with more votes. Majority Voting is very similar, with the
difference being that the final prediction is the class which
obtains more than half of the votes (if there is no majority a
rejection option will be given). Alternatively, Soft Voting is
a strong option for algorithms that provide class probability
outputs. Its simplest approach averages the predictions for
each class and selects the one with the highest probability.
This allows taking into consideration both the prediction and
the confidence of the model in the decision. Finally, Stacked
Generalization (also known as Stacking) uses the concept of
a meta-learner. Briefly, the base learners are trained using

VOLUME 7, 2019 177663

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

a training dataset and then a different dataset is used for
training the meta-learner through cross-validation (where the
outputs of the base learners are the input features for themeta-
learner). This meta-learner attempts to model the outputs
of the base classifiers (either the class probabilities or the
predictions) to generate the final output.

In recent years, ensemble methods have been recurrently
used in various software related domains [21]–[27]. For
example, in [21] an ensemble-based method was used to pre-
dict the effort of agile software development projects, outper-
forming existing approaches. Also, in [22] several ensemble
methods were combined with Synthetic Minority Oversam-
pling Technique (SMOTE) oversampling to predict defects
in software, effectively enhancing the defect prediction accu-
racy. In [23] the authors combined SVMs and ensemble tech-
niques to detect vulnerable software components, achieving
promising results compared to the state-of-the-art. Finally,
in some research areas (e.g., Intrusion Detection Systems)
the use of ensemble methods has been so profuse that
even lengthy surveys are made on the subject [24]. How-
ever, no research has been found on using ensemble tech-
niques for OFP. Nonetheless, a conclusion that can be drawn
from the related works above, is that their proposed ensem-
ble approaches outperform the alternative state-of-the-art
individual methods.

III. EXPERIMENTAL APPROACH
This section describes the experimental process and the most
relevant choices/components concerning the experiments.

A. PROCESS
OFP is a key technique for proactive fault management.
As briefly introduced in Section II, it is concerned with
identifying at runtime whether a failure will occur in the near
future, by using past data and the current system state [3].
In practice, it can be defined as a decision process that at
a time t tries to predict whether a failure is going to occur
within a precise time, called lead-time 1tl . These predictions
are valid for a given time window, called prediction-window
1tp. In short, at time t, the predictionmodel should predict if a
failure is going to happen in the interval [t+1tl, t+1tl+1tp]
[5], as depicted in Fig. 2.

FIGURE 2. Time relations in Online Failure Prediction (OFP), adapted
from [5].

A high-level overview of the experimental process is
depicted in Fig. 3. Briefly, after training and assessing the
performance of the various classifiers, the best set is chosen
to a pool of candidate learners. Then, a selection process
chooses the base learners, which are then trained and tested
and their outputs combined using a combination method.

FIGURE 3. Experimental process.

Finally, the performance of the ensemble is assessed and its
structure is analyzed.

B. DATASETS
The data used were generated and made available by a previ-
ous work to investigate the use of fault injection on Windows
XP (SP3) to generate failure-related data [28]. We are aware
that Windows XP is an old OS, but the dataset is neverthe-
less valid and is the most complete publicly available, thus
providing an adequate context for this study.

The data has been generated considering two different
workloads and the software faults were injected into the OS
by a tool implementing the Generic Software Fault Injec-
tion Technique (G-SWFIT) technique [29]. According to the
authors, different faults were injected in specific locations
previously selected. To generate the data several executions
(runs) of the workloads were performed (with and without
fault injection). A run in which faults are injected is a Fault
Injection Run. If a failure occurs during such a run, it is
considered a failing run; if not, it is a non-failing run. Addi-
tionally, Golden Runs represent the behavior of the system
in the absence of fault injection [29]. The failure modes
considered are System Crash (OS becomes corrupted and
crashes or reboots) and System Hang (OS becomes unre-
sponsive and must be terminated by force). The dataset con-
tains 233 numeric variables, chosen by the authors as the best
representative set of the system behavior.

Although it would be possible to study ensembling tech-
niques for each failuremode separately, due to the exploratory
nature of this work it is focused solely on predicting both
failure modes (i.e., a multiclass problem). From a practical
perspective, having various models for each failure mode
raises several issues (e.g., combining conflicting predictions),
and thus the possibility of having a single model that is able
to predict multiple failure modes is more compelling.

Concerning the pair 1tl, 1tp this work focuses only on
the configuration [40, 20], as it was the one that systemati-
cally achieved the best results in our previous work (among
those studied, [20, 20], [40, 20], and [60, 20], for a ‘‘short’’,
‘‘medium’’, and ‘‘long’’ term prediction) [9]. This configu-
ration was used to label the data according to the approach
proposed in [5]. Samples for which no failures were observed
within the interval [tsample+1tl, tsample+1tl +1tp] will be
from now on referred to as Control samples.

Although the data includes several environments
(e.g., different hypervisors), as the focus of this work is not

177664 VOLUME 7, 2019

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

on virtualization techniques, we consider only the bare-metal
instantiation (removing any interference from the virtualiza-
tion environment, although it should not alter the behavior
of the system variables [29]). Additionally, despite faults are
injected in the system, not all of them lead to the observation
of failures. Hence, due to the fact that the dataset contains a
very large number of runs without failures (e.g., 5112 com-
pared to 89 failing runs for the bare-metal setup), the data
used were limited to a maximum of 50000 samples. This is
large enough to comprise all the failure runs, several golden
runs, and numerous runs where faults were injected but no
failures were observed. Thus, the class distributionwas 48937
Control, 832 Hang, and 145 Crash samples.

C. ML ALGORITHMS AND TECHNIQUES
As the purpose of this work is to explore the combination
of different learners (heterogeneous ensembles), various ML
algorithms and techniques were considered, which can be
seen in Table 1.

TABLE 1. Techniques used in the experiments.

Also, because the focus is the ensembles some of the tech-
niques used were selected based on the preliminary results
found in our previous work [9]. Additionally, GB, an algo-
rithm that has recently shown promising results, was included
in the experiments. Although most of the algorithms are
already ensembles, in this study their output is used as if they
were a single classifier. Their hyperparameters were tuned
according to the values described in Table 2.

TABLE 2. Algorithms’ hyperparameters.

The imbalanced nature of the dataset requires consid-
ering different sampling techniques. To this end, both
under/oversampling techniques were used (see Table 1).
Concerning the sampling ratios (which were tuned through
an ad-hoc approach), undersampling was done to achieve
a ratio of 1:1 between the majority and minority classes
(i.e., the number of samples for each class will be the same)
and the oversampling was done for a ratio of 1:3 (within
the minority classes, that is, their representation increased
200%, a ratio that showed promising results for this dataset).
Concerning feature selection, only two simple methods were
considered: variance, removing features with 0 variance
(i.e., constants, which do not add any information but still
increase the complexity of the model), and correlation,
removing highly correlated features (>90%) (due to their
correlation such features can normally be removed without
a significant loss of information).

Although the dataset is large, the amount of failures is
considerably small, so the recommended approach to evaluate
the performance of an algorithm is cross-validation [14].
Stratification was also used to keep the representation of
the classes from the original dataset in the resulting folds.
The number of folds used is 5, based on previous studies
where it has proved to produce good results across mul-
tiple experiments [30]. Each algorithm was run 30 times
with different seeds for the random generators, to allow the
reproducibility of the experiments and minimize any possible
bias.

D. BASE LEARNERS SELECTION AND COMBINATION
METHODS
Deciding which base learners to consider is not a trivial
task. They should be both accurate and diverse. However,
measuring diversity is not straightforward, as there is no
formal definition and several measures can be found in the
literature [19]. Moreover, although it is common to have a
correlation between diversity and performance, this is not
always the case [19]. Thus, due to the exploratory nature of
this work, the best models were manually selected and then
an exhaustive search of all the possible combinations was
conducted (as further explained in sections IV and V).

Concerning the combination methods, three approaches
were considered: Plurality Voting (i.e., the most voted class
is chosen); Soft Voting (i.e., the class prediction probabil-
ities are averaged and the class with the highest probabil-
ity is chosen); and Stacking (i.e., a meta-learner is used to
model the outputs of the individual learners) for both crisp
predictions (i.e., labels) and class probabilities outputs. For
the Stacking meta-learner, different algorithms were also
considered (seen in Table 1). Concerning their configura-
tions, due to time constraints, it was not possible to thor-
oughly explore and tune all the meta-learner hyperparam-
eters, thus, an ad-hoc approach based on the defaults used
by Scikit-learn (which in turn are based on literature) was
used [31].

VOLUME 7, 2019 177665

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

IV. BASE MODELS SELECTION
This section describes the process used to choose the best
learners and combine them into an ensemble.

A. INDIVIDUAL LEARNERS
Based on the results and conclusions from our previous work
[9], we focused only on using ML algorithms based on DT
(as shown in Table 1), which systematically achieved better
results. As the hyperparameters of the algorithms can con-
siderably influence their performance, several values were
analyzed to find the best configuration (which can be seen
in Table 2). Additionally, various sampling techniques were
considered to (partially) handle the imbalance in the data.
Thus, the first stage of the experimental process was to create
individual models, assess their performance, and identify the
best solutions.

By analyzing the results it was possible to see that some
algorithms were able to achieve very good performances.
As can be deduced from the number of algorithms, hyper-
parameters, and techniques, this led to a significant number
of experiments. Due to space restrictions, it is not possible
to present all the results, thus, only the most relevant will be
discussed (see footnote1).

To compare and rank the different models we need to
choose a performance metric that allows characterizing their
effectiveness. However, although there are several metrics
available, they should be carefully used as they are not inde-
pendent from the data [32]. In fact, while it is common to see
a widespread use of metrics such as accuracy and precision,
they should be carefully analyzed. Concerning accuracy, it is
not an adequate metric for imbalanced data because it does
not take into account the (representation) differences between
classes. In fact, in a highly imbalanced dataset a model that
correctly predicts all negative samples and no positive sam-
ples (i.e., just predict everything as negative, no failure will
ever occur) would just have a slightly lower accuracy than
a model that could also predict all failures (i.e., a ‘‘perfect’’
model). Concerning precision, while relevant, alone it is also
not adequate, as, for example, a model that predicts every-
thing as negative with the exception of a single correctly
predicted failure (i.e., 1 True Positive (TP)) would have a pre-
cision of 100%,with a (near) 0% recall. Additionally, themet-
ric should also take into consideration the requirements of the
system where the predictor should operate. In fact, the def-
inition of the ‘‘best’’ model is not straightforward. As an
example, for a more critical context (e.g., home banking), one
wants to select a predictor with a higher detection rate, even
if it raises more false alarms than others (within some accept-
able bounds), since unpredicted failures may have serious
consequences. On the other hand, for a more medium-quality
context (e.g., corporate site), one may want a predictor with
a high detection rate, but that does not raise too many false
alarms, since the cost of pro-actively dealing with those
false alarms may be high compared with the mitigation of
failures.

For OFP, a common/general goal is to predict as many
failures as possible but also taking into account the number of
False Positives (FPs) (i.e., a system that is constantly giving
false alarms is not very useful for many scenarios). Thus,
considering this context, for this case study the F2-score
metric was chosen, which gives double the importance of
recall when compared to precision (i.e., it is more important
to predict failures (recall), yet a compromise must be made
with the number of FPs (precision)). To establish a baseline
performance an initial study was conducted using the default
hyperparameters, which achieved performances similar to
those obtained for the same algorithms and techniques in our
previous work [9].

Before combining the algorithms with different sampling
techniques, we wanted to study and assess their performance
using different hyperparameters. By analyzing the results
it was possible to observe that tuning the hyperparameters
allowed most algorithms to improve their baseline perfor-
mance. As an example, tuning Bagging with feature selection
by correlation (whose baseline performance, also removing
highly correlated features, was 99.8%, 75.6%, and 92% of
Control, Hang, and Crash samples, respectively), we were
able to achieve better results, correctly classifying 99.9%,
89%, and 95.4% of Control, Hang, and Crash samples. After
tuning the hyperparameters the remaining algorithms had
similar performance (except the DT, which was considerably
lower, correctly predicting 99.6%, 80.9%, and 92.8% of Con-
trol, Hang, and Crash samples), with GB correctly predicting
99.8%, 88.6%, 95.9% of Control, Hang, and Crash samples.

A similar study was conducted exploring the different
sampling techniques. By analyzing the results, it was pos-
sible to observe that the use of different techniques created
classifiers that were better at modeling different parts of the
problem. For example, using oversampling techniques lead to
an overall small improvement of the models’ ability to predict
failures, while maintaining a similar performance on predict-
ing Control samples. More precisely, using SMOTE over-
sampling, GB was able to correctly predict 99.8%, 92.2%,
and 96.2% of Control, Hang, and Crash samples, respec-
tively, as depicted in Fig. 4. On the other hand, the use of
undersampling techniques consistently created models that
were considerably better at predicting failures, as can be seen

FIGURE 4. GB w/ SMOTE.

177666 VOLUME 7, 2019

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

FIGURE 5. GB Rand. Under./Over.

in Fig. 5. However, this came at the expense of significantly
more FPs. Note that, the numbers presented in the confusion
matrices correspond to the total number of samples per class
(∼50k total) multiplied by the number of executions/seeds
(30). This is due to the fact that each random seed will gen-
erate different cross-validation folds (because of the inherent
randomness in splitting the data) and thus the trained models
(and their predictions) will vary between seeds. Still, this does
not affect our analyses and conclusions as we will focus on
the percentages of correct/incorrect predictions (and not on
the absolute numbers).

Although the DT algorithm was able to achieve an overall
good performance, it was considerably lower than the remain-
ing algorithms. Thus, due to space constraints, it will not be
considered for the remainder of the article.

B. SELECTING LEARNERS
The main purpose of ensembling models is to improve their
individual performances, which often are not very good.
A good ensemble should be composed of diverse models
and their combination should reduce incorrect decisions and
amplify the correct ones [6]. To select a diverse set of base
learners there are several metrics available (e.g., Q Statistics).
However, an issue that arises in our experiment is that the
set of algorithms and techniques considered already yield
models with very good (and similar) performances (Fig. 4),
thus, there is not much room for improvement. This is more
blatant when considering the imbalance in the data and the
actual number of samples that are correctly predicted.

An obvious approach for choosing the base learners is
to combine the best solutions found for each algorithm
(i.e., those with the highest performance, i.e the highest
F2-score in our case study). The three models selected
this way were: i) Gradient Boosting (GB) with oversam-
pling through SMOTE; ii) Bagging also with SMOTE
oversampling; and iii) Random Forest (RF) with Random
oversampling.

The problem is that when we analyzed the results (further
detailed in Section V) we concluded that, although they were
individually the best, they did not complement each other,
resulting in a lower combined performance. Hence, a dif-
ferent approach was necessary, which is depicted in Fig. 6.

FIGURE 6. Base learners selection.

As we observed before (when finding the best individual
learners, Section IV-A) that using different techniques created
models that were better at predicting different parts of the
problem, we found of interest to combine them. However,
using only the F2-score to rank the models could make all
those selected to be very similar, thus predicting identical
parts of the problem. Hence, they were also chosen tak-
ing into consideration Informedness (which measures how
consistently a predictor predicts the outcome of both a TP
and True Negative (TN)) [33]. More precisely, the top three
models of each algorithm for each metric were selected to
a pool of potentially interesting (candidate) base learners.
However, it is worth mentioning that every model selected
through this process also had very good performance (e.g., for
F2-score the best was GB with SMOTE, seen in Fig. 4, and
for Informedness the best was GB with both Random under-
and oversampling, as shown in Fig. 5).

This approach lead to a pool of 18 learners. Although
there are several metrics that could be used to select the
base learners (e.g., Q-statistics, entropy), we opted for an
exhaustive search to consider every possible combination.
Additionally, as all the selected models were already very
accurate, there was no guarantee that the diversity measures
would lead to a better ensemble. Exploring all the possible
combinations of the 18 models for every possible length is
infeasible, thus the ensembles were limited to a maximum
of 4 learners. This still leads to a significant number of
combinations (i.e., 4029 ensembles for each type of output,
crisp labels, and class probabilities).1

V. ENSEMBLE COMBINATION
A crucial decision when building an ensemble is how to
combine the predictions of the individual models to work
as a whole. As stated in Section III, three approaches were
considered: i) Plurality Voting (i.e., the class with most
votes is selected); ii) Soft Voting (i.e., the class probabili-
ties for each prediction are averaged and the one with the
highest probability is returned); and iii) Stacking, where a
meta-learner is used to combine the results of the various
learners. A summary of the best results can be seen in Table 3,
where the results obtained by the overall best ensemble are
highlighted. A brief note, due to the considerably higher time
complexity of Stacking the set of ensembles considered for
this approach (which will be described further in Section V-
C) we did not include the combination of best individual
models. Thus, for Stacking, only the best meta-learner is
shown.

VOLUME 7, 2019 177667

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

TABLE 3. Ensemble combination results summary.

A. PLURALITY VOTING
As stated in Section IV, the initial approach to selecting the
learners was to choose the best model for each algorithm
(i.e., Bagging, RF, and GB). Concerning the combination
strategy, Plurality Voting was studied first. However, com-
bining the best models did not lead to any improvement.
Compared to the individual models, the ensemble had a
slightly lower performance than the one obtained by GB, cor-
rectly predicting 99.8%, 91.4%, and 96% of Control, Hang,
and Crash samples (depicted in Fig. 7). This was somewhat
expected, as the performance of the individual models was
already very good and they were created using similar ML
techniques.

FIGURE 7. Plurality: ensemble of best individual models.

To explore if using more diverse learners would lead to
better performance, the combinations of the 18 candidate base
learners (explained in Section IV) were studied. This led to
some promising results, as it was possible to observe that
there were, in fact, ensembles that outperformed the best indi-
vidual models. The best correctly predicted 99.8%, 97.1%,
and 98.3% of Control, Hang, and Crash samples (as shown
in Fig. 8). Although the improvements are not overwhelming
(when compared with Fig. 4, but there was not much room for
improvement to begin with) this ensemble was able to predict
almost 5% more Hang and 2.1% more Crash samples. Still,
this also came at the expense of slightly more FPs.

Concerning the execution overhead, nowadays most algo-
rithms allow making predictions on a trained model almost
instantly. Hence, besides the time needed to initially train
the individual learners (which is entirely dependent on the
algorithms and techniques selected for the base learners) the

FIGURE 8. Best plurality voting ensemble.

only overhead of plurality voting is to identify the most voted
class at prediction time. As a result, it is mostly negligible.

B. SOFT VOTING
Although using crisp predictions allowed improving the over-
all performance (when compared with individual models),
it ignores the confidence that the algorithms have on their own
predictions. Using the probability outputs allows combining
the prediction and the confidence of the base learners [34].

Once again the performance of the best individual models
(i.e., GB and Bagging with SMOTE oversampling, and RF
with Random oversampling) combined was analyzed. Using
the probability outputs it was possible to achieve slightly
better performance, correctly classifying 99.9%, 93.6%, and
97.5% of Control, Hang, and Crash samples, respectively.
However, although these results are better than any of the
individual models, they are worse than what was achieved
using Plurality Voting. This way, we decided to study the
4029 ensembles of 18 base learners. Results showed that,
although some ensembles were able to perform better than the
individual models, their performances were not significantly
different from the ones observed with Plurality Voting (the
best ensemble correctly classified 99.8%, 97.5%, and 98.6%
of Control, Hang, and Crash samples, respectively).

Similarly to plural voting, the execution overhead of soft
voting is negligible, as it only needs to identify the class with
the highest averaged probability at prediction time.

C. STACKED GENERALIZATION
To model the predictions of the individual learners, Stacking
was also considered. The probability outputs are likely the
best option to use as the features for the meta-learner, as they
allow using both the prediction and its confidence [34]. Still,
the use of crisp labels was also studied for completeness.

Besides the choices already made in the previous sections
(e.g., base learners), Stacking requires the definition and con-
figuration of a meta-learner (e.g., algorithm and hyperparam-
eters). Additionally, this approach also involves training the
meta-learner before making predictions. To this end, an inner
2-fold cross-validation (using the training data from the outer
cross-validation fold) was done to train the individual learners
and make predictions, which were then used to train the

177668 VOLUME 7, 2019

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

meta-learner. All this adds considerable complexity to the
approach, thus for Stacking only the learners that constitute
the top three ensembles (for both Plurality and Soft Voting)
were considered and combined (instead of the original 18).

As described in Section III, various algorithms were con-
sidered to use as ameta-learner, and, although somewere able
to adequately model the outputs, none was able to achieve
performances similar to those using Plurality or Soft Voting.
More precisely, the best ensemble obtained through Stacking
was using the NN algorithm, which was able to correctly
predict 99.8%, 97.6%, and 96.8% of Control, Hang, and
Crash samples, respectively. Although the remaining algo-
rithms used (i.e., DT, Bagging, RF, and Logistic Regression)
have been successfully used for several problems, a two-layer
NN has been proved to be very effective and is considered
a universal function approximator [16]. Still, no thorough
analysis or tuning of these algorithms was done.

Regarding the execution overhead of Stacking, at predic-
tion time it is also minimal. Although there is a meta-learner
that has to make a prediction based on the outputs of the
base learners, nowadays most algorithms do that almost
instantaneously, and therefore it does significantly increase
the execution time. However, this approach has a consider-
able higher complexity at training, as it requires a second
level of cross-validation/optimization for the meta-learner.
Nonetheless, in a real scenario training phases happen only
periodically and thus such complexity may not be an issue.

VI. ENSEMBLES ANALYSIS
The previous analyses allowed us to conclude that by combin-
ing certain learners it was possible to increase their overall
performance. Thus, the next step was focused on analyzing
how the ensembles were composed to get some insights
into why some models work better as a whole. This section
focuses on Plurality Voting (which is the simplest approach)
and Soft Voting (which achieved the best results).

A. GAINS DIRECTED GRAPH
To analyze how the different learners in an ensemble interact,
a directed graph between every learner was plotted (similar
to Fig. 9), showing how many different samples were cor-
rectly predicted between any two learners. When analyzing
the graph for the ensemble composed of the best individual
models it was possible to observe that they all had similar
interactions among them, that is, they all had similar predic-
tion gains to each other. However, although it appears that
each one explores different parts of the problem, if none of
the othermodels in the ensemble shares those predictions they
will (incorrectly) win the vote at prediction time.

Concerning the best ensemble for Plurality Voting, it was
composed of four models. By analyzing its models it was
possible to observe that each one was created using different
techniques: a model without any data sampling, two models
with different oversampling techniques, and a fourth model
combining both under- and oversampling. In fact, this obser-
vation was also present in the other two best ensembles for

FIGURE 9. Best soft voting ensemble graph.

Plurality Voting. The fact that this combination has better
results suggests that they are able to predict different parts
of the problem, and when combined, complement each other.

When analyzing the best ensemble obtained by Soft
Voting, we observed that it was composed of just three mod-
els, which are depicted in Fig. 9. Additionally, and similar to
what was seen for the previous ensemble, the three models
were built using different techniques: one without sampling,
another using oversampling, and the third using undersam-
pling. The fact that the ensemble is composed of only three
learners also makes it easier to interpret. Fig. 9 shows how
they complement each other. More precisely, when com-
paring the model without sampling with the one that uses
oversampling, the latter can predict more failures while cor-
rectly predicting almost the same number ofControl samples.
On the other hand, when analyzing the relationships with the
model that used undersampling it was possible to observe that
it could predict considerably more failures when compared
to both the other models. Moreover, it was also possible to
conclude that this model not only predicts more failures,
it also correctly predicted almost all of the failures that the
other two predicted (i.e., only 45 and 17 Hang different
correct predictions were made by the GB and Bagging model
respectively). Besides the indication that each of the sampling
techniques allows the models to model different parts of the
problem, it also suggests that most predictions in the ensem-
ble are supported by at least two algorithms. More precisely,
GB with SMOTE and Bagging support and complement the
non-failure predictions, while GB with Random undersam-
pling supports and complements the failure predictions of the
remaining two learners.

B. VENN DIAGRAMS
Directed graphs do not allow us to visualize how the
different predictions actually overlap between learners.

VOLUME 7, 2019 177669

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

FIGURE 10. Ensemble of best individual models.

FIGURE 11. Best soft voting ensemble.

Thus, as some of the best ensembles were composed of only
three models, Venn diagrams were plotted for each of the
classes to illustrate how the different predictions relate. The
diagrams for the ensemble composed of the best individual
models and for the best Soft Voting ensemble can be seen
in Fig. 10 and Fig. 11, respectively. Note that a logarithmic
basewas used to calculate the areas of the diagrams, due to the
fact that the differences between the number of individual and
shared predictions were too steep (thus, the diagram would
be mostly composed of just the overlapping areas). Hence,
the size of the areas is not linearly proportional to the number
of samples, but still provides a relative notion of proportion.

Concerning the ensemble composed of the best individ-
ual models (and confirming what was previously assumed),
although there is a good cover of the problem space by the dif-
ferent learners, there is a considerable number of samples that
are correctly predicted only by a single model. On the other
hand, when analyzing the diagram for the best Soft Voting
ensemble, it is possible to observe that the learners also com-
plement each other in reaching different samples, but most
samples are common to at least two models. In hindsight,
this is one of the essential components for a good ensemble,

to combine the outputs in a way that correct decisions are
amplified [6]. Hence, although not all models will agree, for
most cases at least two will, thus ‘‘winning’’ the vote.

The diagrams for both failure modes show that there is
indeed a single model that is able to predict more failures.
For the hang failure mode, there are still some samples that
are only predicted by the other learners, whilst for the crash
failures, such model can predict all the samples the others can
andmore. However, when analyzing its ability to predictCon-
trol samples it is possible to observe that the other learners can
predict considerably more samples.

Finally, although these diagrams allow us to observe how
the models in the ensemble interact, it is also relevant to
study how the individual predictions relate to the ensemble
predictions. Thus, another set of Venn diagrams was plotted,
this time relating the individual (correct) predictions to those
of the ensemble, as shown in Fig. 12. This validated the
hypothesis that decisions made by a single algorithm will less
likely be correctly predicted by the ensemble. In fact, most
of the predictions that were made only by a single algorithm
were not correctly predicted by the ensemble (e.g., concern-
ing the non-failure samples, out of the 952 correct predictions

177670 VOLUME 7, 2019

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

FIGURE 12. Best soft voting ensemble prediction contributions.

made by Bagging only 19 were also correctly predicted by the
ensemble). On the other hand, some of the samples that were
correctly predicted would not be possible using crisp outputs
(otherwise the two wrong votes would prevail). This suggests
that either the correct model was highly confident (enough to
trump wrong classifications) or that these are fringe samples,
where the learners are not confident of the decision, but their
average probabilities lead to a correct prediction.

C. DIVERSITY METRICS
As stated in several related works, one of the key components
for successful ensembles is that the base learners should be
as accurate and diverse as possible. Although the approach
used in this article followed a more driven and exhaustive
direction, the next logical step was to validate if the best
ensembles were, in fact, more diverse (according to the met-
rics identified in the literature) than those with a lower per-
formance. However, although diversity is needed, the way to
properly measure the necessary diversity in ensembles is still
yet to be found [19]. Notwithstanding, the following diversity
metrics were computed [19]: Q Statistics, Correlation Coef-
ficient, Disagreement, Double-fault, Entropy, and Interrater
Agreement (using Fleiss Kappa [35]). Briefly, the higher the
Q Statistics, Correlation Coefficient, Double Fault, and Inter-
rater Agreement, the less diversity there is; and the bigger
the Disagreement and Entropy the more diversity exists. All
metrics were calculated according to [19] except Entropy,
which used a joint entropy formula [36].

Three ensembles were analyzed, all obtained through Soft
Voting: i) an ensemble with lower performance (referred to
as ‘‘worst’’ from now on) than that of combining all the best
individual models (predicted 99.9%, 90.9%, and 96.5% of
Control, Hang, and Crash samples); ii) the ensemble com-
posed of the best individual models (referred to as ‘‘average’’
from now on, which predicted 99.9%, 93.5%, and 97% of
Control, Hang, and Crash samples); and iii) the best ensem-
ble (99.8%, 97.5%, and 98.6% of Control, Hang, and Crash

samples). The computed metrics can be seen in Table 4. It is
worth noting that although some ensembles are better than
the others, they all are overall very good models with similar
performances (i.e., all have similar performance pertaining
to Control samples, which represent the vast majority of the
samples; the main difference is mostly on the predicted fail-
ures, which represent only a small fraction of the predictions).

TABLE 4. Diversity metrics per ensemble (soft).

As expected, the values of the metrics for both the worst
and average ensembles are quite similar, yet, there are some
differences from the best. By comparing the worst and aver-
age ensemble, for all metrics besides entropy, the worst
ensemble has values that suggest that it is more diverse than
the average. Notwithstanding, these metrics may be correct,
and the worst ensemble may have more diversity; however,
as highlighted in [19], there is often no relationship between
diversity and performance. That is, while almost all good
ensembles are diverse, diversity per se does not mean that
the ensemble will be good. Yet, when comparing both worst
and average with the best, all metrics suggest that the latter is
more diverse, which in this case is also translates into higher
performance. These results suggest that while it appears to
be possible to measure diversity, it is not always associated

VOLUME 7, 2019 177671

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

with performance. Still, as the best ensemble has the highest
diversity it suggests that diversity matters and that the metrics
can, in fact, assist in the search for the best base learners.

D. APPROACH EFFECTIVENESS
All the analyses conducted in the previous sections suggest
that the ensembles perform better. Notwithstanding, statisti-
cal comparisons are required to assess if they are, in fact, bet-
ter than the individual models. To this end, we used F2-score
as the performancemetric to compare threemodels: i) the best
individual model (seen in Fig. 5); ii) the ensemble obtained
by soft voting of the top 3 individual models (seen in Fig. 7);
and iii) the best overall ensemble (obtained through soft
voting, which correctly classified 99.8%, 97.5%, and 98.6%
of Control, Hang, and Crash samples, respectively).

Because the dataset was the same for all experiments,
a paired statistical test must be used. To decide between
parametric and non-parametric tests, the normality of the data
(using the Lilliefors and Shapiro-Wilk test) and the homo-
geneity of variance (using the Levene test) was analyzed.
As the results do not satisfy both conditions, it must be a
non-parametric test. Thus,Friedman’s ANOVAwas used [37],
which gave a p_value = 2.46e−13. Hence, it is safe to
state that there are significant differences between at least
two models for a significance level of 5% (p_value < 0.05).
To identify the differences, a post-hoc analysis was done
using the Bonferroni correction for multiple comparisons.
The results suggest that there are differences between all
three models. That is, the best ensemble obtained through soft
voting is better than the ensemble made of the best individual
models, and that the latter is also better than the best individ-
ual model, for a significance level of 5% (all p_value < 0.05).

VII. DISCUSSION
By exploring different algorithms and techniques, we were
able to create very accurate solutions. Still, combining the
best individual models was not able to achieve significantly
higher performance. Our analyses suggest that this may be
due to the fact that, although each model explores slightly
different parts of the problem, those predictions are only
made by one of the models in the ensemble, which is not
enough to prevail over the (wrong) predictions of the remain-
ing learners. However, the combination of models created
using different techniques appears to produce ensembles
where they complement each other in a constructive way,
thus considerably improving the overall performance (with
statistical significance), therefore answering RQ1.

Concerning the different combination techniques, both
Plurality and Soft Voting achieved very good/similar results.
By analyzing themodels in the best Plurality Voting ensemble
in more detail it was possible to observe that it was composed
of four models that were all built using different techniques
(with emphasis on the sampling methods). This suggests that
each of these techniques allows the learner to model differ-
ent aspects of the problem which, when combined, create
an overall better classifier. The analysis of the best Soft

Voting ensemble showed that it required only three learners to
achieve similar performance. Due to the basic voting strategy
of Plurality Voting, it is possible that it requires more learners
(exploring with larger ensembles could possibly prove this)
to handle conflicts and generate majorities, while Soft Voting
can take advantage of the classifiers’ confidence in the pre-
dictions. In fact, each of the models in the best Soft Voting
ensemble was built using one (and different) sampling tech-
nique (i.e., no sampling, oversampling, and undersampling)
further validating the previous assumption that these methods
allow the models to specialize in certain parts of the problem.
Stacking was not able to improve the individual results with
any of the configurations. This can be due to the fact that the
classifiers are already very good and it is not possible/easy to
model their combined individual predictions to improve the
results. Additionally, Stacking also adds a layer of complexity
as it requires the choice and optimization of the meta-learner.
Moreover, as this model must be trained using the predictions
of the individual models on a ‘‘test’’ dataset (that is, not
on the data used to train them) it requires a further level of
cross-validation (requires training each base learner as many
times as the number of folds). These conclusions answer
RQ2, as besides achieving different performances, the com-
bination techniques influence the structure and complexity of
the ensembles.

The Venn diagrams for the best ensembles ‘‘proved’’ that
those composed of models that explore different regions but
that also overlap with other learners in the ensemble were
able to achieve better results. On the other hand, learners that
complemented each other but did not overlap were not able to
achieve such good performance (possibly because predictions
would be canceled out by the remaining learners). In fact,
by analyzing the contribution of each learner to the final pre-
diction of the ensemble it was possible to observe that most of
the samples predicted by a single learner were misclassified
by the ensemble. Finally, although diversity metrics can iden-
tify some sort of diversity in the ensembles, it is not always
correlated with performance (thus, the one with the highest
diversity may not be the best). Additionally, the ‘‘best’’ model
depends on the requirements of the predictor, and thus it is
not trivial to match diversity, a ‘‘non-subjective’’ value, with
performance metrics that depend on a variable context. Still,
when automating the process of selecting the base learners
such metrics will likely be good indicators. These analyses
allowed us to interpret and assess how the different models
in an ensemble interact, thus answering the final research
question, RQ3.

VIII. THREATS TO VALIDITY
This work intends to be an exploratory study on heteroge-
neous ensembles for supporting OFP. Although in our opin-
ion it fulfills its purpose, some threats should be highlighted.

The OS from where the data used in the experiments was
collected, Windows XP (SP3), has long been deprecated.
As such, the conclusions on failure prediction of such systems
are no longer relevant, as they will most likely differ from

177672 VOLUME 7, 2019

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

recent ones. Nonetheless, the work presented in this article
does not intend to provide advances in the study of failures in
a specific OS. Instead, its purpose is to demonstrate that com-
bining various ML algorithms and techniques can achieve
higher performance when compared to individual classifiers.
Moreover, due to the non-existence of related work on using
ensembles for OFP it is not possible to compare the conclu-
sions of our study. We can, however, briefly compare with
other works using ensembles for software related domains to
the extent that we have also found improvements in using
ensemble methods. Seemingly, due to the lack of available
failure prediction datasets, it was not possible to further
validate the use of heterogeneous ensembles for OFP. Still,
the combination of several different learners achieved similar
promising results in various other areas, and the observations
in our case study also validate this premise. Notwithstanding,
we are currently trying to generate new datasets through fault
injection using other and more recent OSs to further validate
our results.

Due to the exploratory nature of this work, the models
considered to form the ensemble were selected from those
already known to perform well, and in an exhaustive way.
While this approach may not be easy to generalize, the focus
of this work was on trying to validate if it was possible
to improve the performance of the individual classifiers.
Additionally, while a relevant problem, this paper does not
focus on exploring why some algorithms and techniques are
individually better than others. Instead, we focus on how and
why a set of learners complements/works better as a whole for
failure prediction. A similar argument can be made for the
parameters specific to OFP problem (e.g., 1tl, 1tp) which
were chosen based on existing literature. Additionally, due
to space and time constraints, it was also not possible to
thoroughly explore all the ensemble combination methods,
nor to exhaustively search for the best Stacking meta-learner.
Still, the techniques considered represent the most commonly
used approaches, and the algorithms used for themeta-learner
also provide a decent insight into the performance that can be
expected. Additionally, due to time constraints, the maximum
number of learners in an ensemble was limited to a maximum
of 4. While it is possible that some combination using more
learners could lead to slightly higher performance, the more
learners an ensemble has the more difficult/impossible it
becomes to interpret and assess how they cooperate. In any
case, while some good ensembles were composed of 4 mod-
els (e.g., the best plurality voting) most of the overall best
ensembles were composed of only 3 base learners.

Finally, these experiments used the F2-score metric to rank
the solutions. Although this is valid for the context defined
for this case study, the target metric should be chosen taking
into consideration the intended usage scenario, as this may
influence the combination of learners that maximizes it.

IX. CONCLUSION
OFP makes use of ML to create models that are able to
accurately predict incoming failures to mitigate the effects of

residual faults. Still, as different algorithms and techniques
are able to explore different parts of the problem, combining
multiple learners can often improve the overall performance.

This article intended to conduct an exploratory study on
combining different individual learners (i.e., heterogeneous
ensembles) to achieve higher performance. Although this
study focused on certain performance metrics and parameters
(e.g F2-score) it can easily be adapted to take into considera-
tion the requirements of the predictor.

By exploring several techniques and approaches to build
ensembles it was possible to conclude that combining various
learners can, in fact, lead to better models. This also revealed
that the use of different combination techniques influences
the structure and performance of the resulting ensembles.
Moreover, analyzing the structure of the best ensembles sug-
gested that the combination of learners built using different
techniques (which can, therefore, ‘‘specialize’’ in different
parts of the problem) creates the best ensembles. Finally,
by exploring the interactions between the learners in the
best ensembles it was possible to observe that, ideally, they
should complement each other in such a way that correct
decisions are amplified. These analyses also demonstrate that
the ensembles can be interpreted, to a degree where both the
contributions and relevance of each model for the ensemble
can be assessed. Furthermore, these results were compared to
the standard process of selecting base-learners (i.e., diversity
metrics) and it was possible to observe that such methods do
not always provide the expected results.

Future work includes exploring different techniques and
approaches to find themost promising learners using a dataset
from a recent OS. Additionally, different combination tech-
niques should be explored, as well as further interpret why
and how learners from a given ensemble can model different
parts of the problem, and how it relates to the various failure
modes.

REFERENCES
[1] B. Dhanalaxmi, G. A. Naidu, andK.Anuradha, ‘‘A review on software fault

detection and prevention mechanism in software development activities,’’
IOSR J. Comput. Eng., vol. 17, no. 6, pp. 661–2278, 2015.

[2] C. B. R. Ed Targett. Amazon Outage: Estimated $99 Million Lost.
Accessed: Oct. 10, 2019. [Online]. Available: https://www.cbronline.com/
news/amazon-outage-lost-sales

[3] B. C. Baraniuk. Gps Error Caused ‘12 Hours of Problems’ for Compa-
nies. Accessed: Oct. 10, 2019. [Online]. Available: https://www.bbc.com/
news/technology-35491962

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic concepts
and taxonomy of dependable and secure computing,’’ IEEE Trans. Depend.
Sec. Comput., vol. 1, no. 1, pp. 11–33, Jan./Mar. 2004.

[5] F. Salfner, M. Lenk, and M. Malek, ‘‘A survey of online failure prediction
methods,’’ ACM Comput. Surv., vol. 42, no. 3, pp. 1–42, 2010.

[6] R. Polikar, ‘‘Ensemble based systems in decision making,’’ IEEE Circuits
Syst. Mag., vol. 6, no. 3, pp. 21–45, Sep. 2006.

[7] Z.-H. Zhou,EnsembleMethods: Foundations and Algorithms. Boca Raton,
FL, USA: CRC Press, 2012.

[8] V. S. Costa, A. D. S. Farias, B. Bedregal, R. H. Santiago, and
A. M. D. P. Canuto, ‘‘Combining multiple algorithms in classi-
fier ensembles using generalized mixture functions,’’ Neurocomputing,
vol. 313, pp. 402–414, Nov. 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0925231218307574, doi: 10.1016/
j.neucom.2018.06.021.

VOLUME 7, 2019 177673

http://dx.doi.org/10.1016/j.neucom.2018.06.021
http://dx.doi.org/10.1016/j.neucom.2018.06.021

J. R. Campos et al.: Improving Failure Prediction by Ensembling the Decisions of ML Models: Case Study

[9] J. R. Campos, M. Vieira, and E. Costa, ‘‘Exploratory study of machine
learning techniques for supporting failure prediction,’’ in Proc. 14th Eur.
Dependable Comput. Conf. (EDCC), Sep. 2018, pp. 9–16.

[10] J. R. Campos, M. Vieira, and E. Costa, ‘‘Propheticus: Machine learning
framework for the development of predictive models for reliable and
secure software,’’ in Proc. IEEE 30th Int. Symp. Softw. Rel. Eng. (ISSRE),
Oct. 2019, pp. 173–182.

[11] F. Salfner and M. Malek, ‘‘Proactive fault handling for system availability
enhancement,’’ in Proc. 19th IEEE Int. Parallel Distrib. Process. Symp.,
Apr. 2005, pp. 1–7.

[12] F. Salfner andM.Malek, ‘‘Using hidden semi-Markov models for effective
online failure prediction,’’ in Proc. 26th IEEE Int. Symp. Reliable Distrib.
Syst., Beijing, China, Oct. 2007, pp. 161–174.

[13] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan, ‘‘Improved
disk-drive failure warnings,’’ IEEE Trans. Rel., vol. 51, no. 3, pp. 350–357,
Sep. 2002.

[14] E. Alpaydin, Introduction to Machine Learning (Adaptive Computation
and Machine Learning), 3rd ed. Cambridge, MA, USA: MIT Press, 2014.

[15] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[16] H. Trevor, T. Robert, and F. Jerome, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (Springer Series in Statistics),
2nd ed. New York, NY, USA: Springer, 2009.

[17] J. P.Marques de Sá,Pattern Recognition. Berlin, Germany: Springer, 2001.
[18] M. P. Sesmero, A. I. Ledezma, and A. Sanchis, ‘‘Generating ensembles of

heterogeneous classifiers using Stacked Generalization,’’ Wiley Interdis-
cipl. Rev., Data Mining Knowl. Discovery, vol. 5, no. 1, pp. 21–34, 2015.

[19] L. I. Kuncheva and C. J. Whitaker, ‘‘Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,’’ Mach.
Learn., vol. 51, no. 2, pp. 181–207, 2003.

[20] S. Nagi and D. K. Bhattacharyya, ‘‘Classification of microarray can-
cer data using ensemble approach,’’ Netw. Model. Anal. Health Inform.
Bioinform., vol. 2, no. 3, pp. 159–173, 2013. [Online]. Available:
http://link.springer.com/10.1007/s13721-013-0034-x

[21] O. Malgonde and K. Chari, ‘‘An ensemble-based model for predicting
agile software development effort,’’ Empirical Softw. Eng. vol. 24, no. 2,
pp. 1017–1055, 2019.

[22] H. Alsawalqah, H. Faris, I. Aljarah, L. Alnemer, and N. Alhindawi,
‘‘Hybrid SMOTE-ensemble approach for software defect prediction,’’ in
Proc. Comput. Sci. On-line Conf. Cham, Switzerland: Springer, 2017,
pp. 355–366.

[23] Y. Pang, X. Xue, and A. S. Namin, ‘‘Early identification of vulnerable
software components via ensemble learning,’’ inProc. 15th IEEE Int. Conf.
Mach. Learn. Appl. (ICMLA), Dec. 2016, pp. 476–481.

[24] A. A. Aburomman andM. B. I. Reaz, ‘‘A survey of intrusion detection sys-
tems based on ensemble and hybrid classifiers,’’ Comput. Secur., vol. 65,
pp. 135–152, Mar. 2017, doi: 10.1016/j.cose.2016.11.004.

[25] T. T. Khuat andM. H. Le, ‘‘Ensemble learning for software fault prediction
problem with imbalanced data,’’ Int. J. Electr. Comput. Eng., vol. 9, no. 4,
pp. 3241–3246, 2019.

[26] S. Tofighy, A. A. Rahmanian, and M. Ghobaei-Arani, ‘‘An ensemble
CPU load prediction algorithm using a Bayesian information criterion and
smooth filters in a cloud computing environment,’’ Softw.-Pract. Exper.,
vol. 48, no. 12, pp. 2257–2277, 2018.

[27] A. A. Rahmanian, M. Ghobaei-Arani, and S. Tofighya, ‘‘A learning
automata-based ensemble resource usage prediction algorithm for cloud
computing environment,’’ Future Gener. Comput. Syst., vol. 79, pp. 54–71,
Feb. 2018.

[28] I. Irrera, J. Durães, M. Vieira, and H. Madeira, ‘‘Towards identifying the
best variables for failure prediction using injection of realistic software
faults,’’ in Proc. IEEE 16th Pacific Rim Int. Symp. Dependable Comput.,
Dec. 2010, pp. 3–10.

[29] I. Irrera, J. Durães, H. Madeira, and M. Vieira, ‘‘Assessing the impact of
virtualization on the generation of failure prediction data,’’ in Proc. 6th
Latin-Amer. Symp. Dependable Comput., Apr. 2013, pp. 92–97.

[30] L. Breiman and P. Spector, ‘‘Submodel selection and evaluation in regres-
sion. The X-random case,’’ in Proc. Int. Stat. Rev./Revue Int. de Statistique,
1992, pp. 291–319.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel,M. Blondel, P. Prettenhofer, R.Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[32] M. Sokolova and G. Lapalme, ‘‘A systematic analysis of performance
measures for classification tasks,’’ Inf. Process. Manag., vol. 45, no. 4,
pp. 427–437, 2009.

[33] D. Powers, ‘‘Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness and correlation,’’ J. Mach. Learn. Technol.,
vol. 2, no. 1, pp. 1–24, 2011.

[34] K. M. Ting and I. H. Witten, ‘‘Issues in stacked generalization,’’ J. Artif.
Intell. Res., vol. 10, no. 1, pp. 271–289, 1999.

[35] J. L. Fleiss, Statistical Methods for Rates and Proportions. Hoboken, NJ,
USA: Wiley, 1981.

[36] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2012.

[37] A. Field, Discovering Statistics Using IBM SPSS Statistics, ed.
Newbury Park, CA, USA: SAGE, 2017.

JOÃO R. CAMPOS is currently pursuing the
Ph.D. degree with the University of Coimbra,
Coimbra, Portugal, under the supervision of pro-
fessors Marco Vieira and Ernesto Costa. His Ph.D.
focuses on using Online Failure Prediction (OFP)
to improve and characterize the trustworthiness
of software systems. His main research interests
include dependability and artificial intelligence,
mainly on the use of machine learning and evolu-
tionary computation to improve failure prediction

and trustworthiness characterization.

ERNESTO COSTA is currently a Full Professor
with the Department of Informatics Engineering,
University of Coimbra. Over the years, he pub-
lished over 200 articles in books, journals, and
proceedings of conferences. His research interests
include bio-inspired artificial intelligence, devel-
oping novel algorithms and applying them to
design, optimization and learning problems, and
promoting the cross-fertilization of evolutionary
computation and machine learning. He partici-

pated in several projects and received several best paper awards. He was a
recipient of the 2009 EvoStar Award for Outstanding Contributions to the
Field of Evolutionary Computation.

MARCO VIEIRA received the Ph.D. degree from
UC, Coimbra, Portugal, in 2005. He is currently
a Full Professor with the University of Coim-
bra. His research interests include dependability
and security assessment and benchmarking, fault
injection, software processes, and software qual-
ity assurance, subjects in which he has authored
or coauthored more than 200 articles in refereed
conferences and journals. He has participated and
coordinated several research projects, both at the

national and European level. He has served on program committees of major
conferences of the dependability area and acted as a referee for many inter-
national conferences and journals in the dependability and security areas.

177674 VOLUME 7, 2019

http://dx.doi.org/10.1016/j.cose.2016.11.004

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	THE FAILURE PREDICTION CONCEPT
	MACHINE LEARNING FOR OFP
	ENSEMBLE METHODS

	EXPERIMENTAL APPROACH
	PROCESS
	DATASETS
	ML ALGORITHMS AND TECHNIQUES
	BASE LEARNERS SELECTION AND COMBINATION METHODS

	BASE MODELS SELECTION
	INDIVIDUAL LEARNERS
	SELECTING LEARNERS

	ENSEMBLE COMBINATION
	PLURALITY VOTING
	SOFT VOTING
	STACKED GENERALIZATION

	ENSEMBLES ANALYSIS
	GAINS DIRECTED GRAPH
	VENN DIAGRAMS
	DIVERSITY METRICS
	APPROACH EFFECTIVENESS

	DISCUSSION
	THREATS TO VALIDITY
	CONCLUSION
	REFERENCES
	Biographies
	JOÃO R. CAMPOS
	ERNESTO COSTA
	MARCO VIEIRA

