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ABSTRACT There has been a recent push towards using opportunistic sensing data collected from sources
like automatic vehicle location (AVL) systems, mobile phone networks, and global positioning system (GPS)
tracking to construct origin-destination (O-D) matrices, which are an effective alternative to expensive and
time-consuming traditional travel surveys. These data have numerous drawbacks: they may have inadequate
detail about the journey, may lack spatial and temporal granularity, or may be limited due to privacy
regulations. Taxi trajectory data is an opportunistic sensing data type that can be effectively used for O-
D matrix construction because it addresses the issues that plague other data sources. This paper presents a
new approach for using taxi trajectory data to construct a taxi O-D matrix that is dynamic in both space and
time. The model’s origin and destination zone sizes and locations are not fixed, allowing the dimensions to
vary from one matrix to another. Comparisons between these spatiotemporal-varying O-D matrices cannot
be made using a traditional method like matrix subtraction. Therefore, this paper introduces a new measure
of similarity. Our proposed approaches are applied to the taxi trajectory data collected from Lisbon, Portugal
as a case study. The results reveal the periods in which taxi travel demand is the highest and lowest, as well as
the periods in which the highest and lowest regular taxi travel demand patterns take shape. This information
about taxi travel demand patterns is essential for informed taxi service operations management.

INDEX TERMS Dynamic origin-destination matrix, adaptive zoning scheme, origin-destination matrix
similarity measure, taxi trajectory data, taxi travel demand.

I. INTRODUCTION
A. BACKGROUND
The demand for transport is derived by the locations people
travel for different activities such as work, leisure, health, etc.
To understand the demand for transport, we must understand
the spatial and temporal distributions of trips and the loca-
tions of the activities they serve. This information is sum-
marized in Origin-Destination (O-D) matrices, which contain
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information about the spatial and temporal distributions of
activities between different traffic zones (TAZs) in an urban
area. Each cell in the matrix represents the number of trips
departing at a given time interval and transiting between an
origin and a destination within the study area.

O-D estimation has previously been used to provide the
necessary input for long-term strategic planning, as well as
for short-term transportation planning purposes. Hellinga [1]
suggested four different ways of categorizing existing O-D
estimation approaches to provide a structure within which
an assessment of different O-D estimation approaches can
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be made. Distinctions are made between heuristic and mathe-
matical approaches, O-D estimations for specific area versus
for general networks, static versus dynamic O-D estimations,
and the approaches’ assumptions regarding the types of routes
utilized by drivers.

This paper presents a new approach for using taxi trajectory
data to construct a taxi O-D matrix that is dynamic in both
space and time. The distinction between static and dynamic
O-D estimation approaches depends on the consideration
of temporal variations [2]. A static O-D matrix represents
the number of trips between origins and destinations over a
relatively large period within which steady-state traffic con-
ditions are assumed [3]. This is not a good approximation of
reality, where there exists a definite temporal variation of O-D
flows over the course of a large analysis period. Thus, for any
short-term planning study, a knowledge of time-dependent
O-D flows could be very practical [2]–[4].

Mobility need manifests through a trip between origin
and destination locations. A disaggregate analysis of trips
to model the transportation system would result in huge
difficulties [5]. Practically all transport models make use of
TAZs for aggregate computations on groups of locations and
individuals. The scientific literature specifies that transport
demand modeling requires consistent zonal data aggregation
along the entire stage of travel demand forecasting model-
ing [6]. This fixed-zone based system is especially impor-
tant for developing and maintaining regional travel demand
forecasting models, which analyze and forecast the volume
of all modes of travel in a region for both people and freight.
In many cases, estimation of O-D demand is necessary for the
entire study region. In other cases, O-D demand is estimated
only for a portion of the regional ormetropolitan area network
rather than for the entire network [4].

The fixed-zonal level travel demand modeling approach is
not without its limitations. For example, a trip distribution
model that assumes that trip origins and destinations are
concentrated around the zone’s centroid ignores intrazonal
flows, whose trip distances are always positive, because the
separation for these flows would be zero [7], [8]. Using
the zone’s centroid as an approximation creates bias during
traffic assignment because it overestimates local traffic near
the zone centroid and underestimates it elsewhere [9]. The
computational requirements of spatial interactionmodels typ-
ically rise with the square of the number of zones [10]. The
issue of how to deal with a very large number of spatial
choice alternatives for destination choice models is another
longstanding problem [11].

The adaptive zoning method has recently been explored
to address these problems. In contrast to traditional zoning,
where study regions are partitioned into predefined and fixed
zones for the development stages of the entiremodel, adaptive
zoning establishes a collection of different zone plans. This
approach has improved the scalability of spatial interaction
models [10], road traffic assignments [9], and mode choice
modeling [12]. Ben-Akiva and Lerman [13] suggested using
a restricted set of zonal alternatives rather than a full set when

developing a destination choice model. Hammadou et al. [11]
also suggested using a reduced number of zones that are
defined based on criteria, suggesting areas of homogeneous
land use.

Estimation and prediction of time-dependent O-D flows
have gained further relevance in the context of Intelli-
gent Transportation Systems (ITS). Some of the essen-
tial features of an ITS are facilitating real-time routing
policies, traffic management and control, and traffic infor-
mation provisions capable of achieving system-wide objec-
tives [1], [3], [4], [14]. One of themost important components
of an ITS is the time-dependent O-D estimation and predic-
tion module [14]–[19].

Data for time-dependent O-D estimation and prediction
come from various sources. The most commonly-used pro-
cedures for obtaining time-dependent O-D flows are surveys
(e.g., household, roadside). These procedures are expensive,
time consuming, and can be difficult to carry out. In the
absence of direct observation, O-D flows are estimated based
on zonal land use data such as population and employment
opportunity [20]. Another approach is to infer unknown
O-D demand from observed link traffic flow data, where
measurement can be made using loop detectors, video cam-
eras, etc. [2], [21], [22]. In a dynamic or time-dependent
O-D context, the estimation procedure would also include
prior O-D information, which typically comes from results of
previous estimation or historical database of time-dependent
O-D flows [1], [3], [4], [14]–[16].

B. MOTIVATION FOR THE NEW APPROACH
Due to the variation of activity density in urban areas,
the demand for different transport services shows periodicity
(e.g., weekly, daily, hourly) [23], [24]. Like with other trans-
portation systems, demand for taxi services exhibits period-
icity in time and space that reflects the underlying patterns of
human activity [25]. The previous gap in our understanding
of the temporal and spatial variations of taxi demand was
primarily a result of data limitations [6]. The taxi industry
has recently collected a large volume of taxi trajectory data
that can be used to infer the origins and destinations of taxi
trips.

One method of understanding the origins and destinations
of taxi trips is pick-up and drop-off hotspot detection at
major taxi trip generation and attraction areas [6], [26]–[30].
To improve taxi services, it is important to understand taxi
demand, how that demand varies through space and time, and
which attributes influence that demand. Taxi trip generation
models provide an idea of the level of taxi trip attraction
and generation rates in a certain area. Lacombe et al. [31]
and Yang et al. [32] developed two taxi trip generation mod-
els, one for trip production and the other for trip attrac-
tion, to achieve a better understanding of taxi demand. They
applied various explanatory variables such as demograph-
ics, land use, accessibility to transit, and weather conditions
to those models to determine whether any of those factors
were likely to influence taxi demand. Zhang et al. [33] and
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Liu et al. [34] extended these models by extracting the O-D
trips between trip generation and trip attraction areas. Further
improvements on the aforementioned models were achieved
through the development of models that distribute taxi trips
obtained from a trip generation model among destinations
[35], [36]. These studies consider static (time-independent)
taxi O-D flows and thus do not capture the dynamics of time-
varying taxi O-D flows or of changes in the spatial distribu-
tion of taxi O-D flows over time. There is a clear need for
increased knowledge about taxi O-D estimation, especially in
characterizing taxi O-D flows for different times of the day.

Defining taxi pick-up and drop-off zones, or origin and
destination zones, respectively, is a challenging task when
developing a taxi O-D estimation model. In the case of
Lisbon city, estimating taxi O-D at a census block level is
difficult because of the high number of alternatives (there are
3,712 census blocks in Lisbon). The choice of administrative
districts in Lisbon such as freguesias (parishes) results in
large sized zones, and thus, the number of intra-zonal trips
is substantial. This is especially important when a high share
of taxi trips is short and could result in a significant number
of intra-zonal trips [37].

Academic consensus is that spatial structures of significant
trip generators in a fixed zonal level system are long last-
ing, masking the variability and evolution of the activities
people perform at these locations [38], [39]. Urban areas
continually change, so the same urban structure may generate
different levels of trips over time. One example of this type
of change is a transit station that sees an increase in traffic
due to an event, a trendy new cafeteria or bar, a recently-
renovated building that attracts new companies, etc. [40].
Sevtsuk and Ratti [41] argue that there are sequences of urban
activities that take place at varying times of day that affect
the dynamics and forms of urban areas. In the context of
taxi services in Lisbon, for example, office areas are known
to have a high number of taxi passenger drop-off and pick-
up events in the daytime and areas of the city with bars and
nightclubs exhibit a reverse pattern. Another example is the
Lisbon international airport, where taxi travel demand tends
to follow the peaking characteristics of passenger enplane-
ments and passenger deplanements and tends to be more
evenly distributed during off-peak hours [37].

Typically, a zoning plan for a city’s fixed zonal level
scheme is defined such that the downtown area (or the area of
a city with a high flow density) is represented in more detail.
Zones become progressively larger moving away from the
downtown [10], [42], [43]. In this case, the zoning scheme
does not account for time-sensitive changes to the trip gen-
eration and attraction roles of each zone. The zoning scheme
must be improved to adapt the sizes of the origin and desti-
nation zones to the volume of taxi trips moving in and out of
each zone based on the time of day.

We attempt to address these challenges through a new
framework comprised of time-dependent taxi O-D matrices
with adaptive zoning schemes that reflect the continuously-
changing demand for taxi travel. The zoning scheme is

defined such that urban areas with the strongest taxi move-
ments are represented in more detail and the degree of
aggregation becomes higher when the demand for taxis
is low. We also develop a similarity measure framework
to compare matrices of different dimensions. In our case,
the framework addresses the different number of zones
between O-D matrices due to the implementation of adap-
tive zoning because conventional similarity measurements
like matrix subtraction, correlation coefficient (R-squared),
Geoffrey E. Havers (GEH) statistic [44], Root Mean Square
Error (RMSE), and Eigenvalue-based measure (EBM) [45]
cannot be directly applied due to their common requirement
of dimension equality for all matrices.

Another possible approach is utilizing the matrix
norms [46]. Matrix norm is a vector norm in a vector space
whose elements are matrices. Vector norm is a function that
assigns a positive length or size to each vector in a vector
space. A single positive value or matrix norm would be
calculated and representing a given matrix based on which
a similarity across different matrices could be measured.
However, a lot of information (e.g., flow, direction, so on)
would be lost through the compression of matrix elements
into a single value, i.e., a matrix norm. To the best of our
knowledge, no study has attempted to measure similarities
between O-D matrices of different dimensions.

This paper makes three important contributions. First,
we develop an adaptive zoning scheme that could potentially
support transportation operations decisions for situations that
may not require analysis through a traditional fixed zon-
ing system or a complete network representation. Second,
we create time-dependent O-Dmatrices with adaptive zoning
that cannot be compared using a traditional approach like
matrix subtraction. We therefore develop a method to mea-
sure similarities across these doubly-dynamic O-D matrices.
Third, we analyze the self-similarities and cross-similarities
of the doubly-dynamicO-Dmatrices. Our objective is to draw
actionable insights from taxi travel demand across different
time periods. Taxi operators and transport planners can use
these insights to establish better operational strategies to
improve taxi services.

II. RELATED WORK
Recently, focus has shifted towards using opportunistic sens-
ing datasets produced from various sources that can provide
insights into the spatial distribution and temporal evolution of
the movements of people and vehicles in cities. Opportunistic
sensing data is collected for one purpose, but also creates an
opportunity for another purpose. For example, the Automatic
Vehicle Location (AVL) system has been widely deployed in
public transportation systems so that the locations of public
transit vehicles are known. This data is collected via GPS
and a transmission mechanism to facilitate dispatching and
fleet management. Combined with Automated Fare Collec-
tion (AFC), AVL data gives movement information about
people, and is therefore opportunistically a source of data
that can also be used to describe citywide mobility [47]–[50].
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Although AVL and AFC data from public transportation such
as buses and trains can yield useful data and information on
general passenger movement, it does not provide the exact
origin and destination for each passenger since these trans-
portation modes operate on pre-designated stops and routes
on fixed schedules.

Another type of opportunistic sensing data is mobile phone
call detail records (CDRs), which are users’ communications
and corresponding location records. When a mobile phone
user connects to the cellular network by making or receiv-
ing a phone call or using the internet, the communication
(e.g., call duration, timestamp, caller’s and recipient’s iden-
tifications) and location of the connected cellular tower are
recorded for billing purposes. The CDR location records of
individual users have been used in human mobility stud-
ies. The use of cellular network data has been explored
for the development of large-scale mobility sensing since
the early 2000s [51]. The data has been used to investigate
various aspects of transportation issues, including large-scale
urban sensing [41], [52], [53], traffic parameter estima-
tion [54]–[56], commuting trip estimation [57], [58], trans-
port mode choice [59], and land use inference [60], [61].
In spite of the CDR data’s versatility in support of a wide
range of studies, the data come with two main limita-
tions [62]: CDR is sparse, as it is only acquired when a
device connects to the cellular network; and CDR data is
spatially coarse because the location record is only available
at the granularity of cell tower service coverage. The CDR
data can be used to infer about commuting trips convinc-
ingly [57], [58] but not for non-commuting trips e.g., leisure
and touristic trips.

Tracking an individual with a GPS-enabled device can
provide more detailed information about that person’s move-
ment than CDR data. Collectively, this approach can com-
prehensively address almost all data requirements of each
of the step in the four-step travel demand model, except for
information about the transportation mode. Due to privacy
issues and regulations like the EU general data protection
regulation, however, collecting such data on a large scale
is difficult and challenging. Recent attempts have produced
datasets that are limited to the specific type of tracked indi-
viduals, such as university students [63] or customers of a
particular service provider where the data was obtained in
exchange for incentives [64]. Privacy concerns largely pre-
vent this type of detailed mobility data from being publicly
available or from being extensively utilized, meaning that it
is not easily exploitable for O-D matrix estimation.

Aggregate trip datasets, including O-D flow data, have
recently been made available from companies such as
Google, INRIX,HERE, etc. These datasets offermany advan-
tages, including road link O-D flow, travel time, congestion
index, etc. They allow transportation and planning agencies to
track trends and calibrate models for more informed decision
making. However, the aggregate nature of the data does not
support a fine-grained analysis of trips by different modes.

For such an analysis, researchers must turn to datasets that
collect information at the individual level.

Dynamic O-D flows are an essential component for the
success of intelligent transportation systems and advanced
traveler information systems [14]–[16]. Vehicle-based detec-
tion techniques are recent data sources for estimating
dynamic O-D flows. These can include beacon-based probe
vehicles [17]–[19], active probe vehicles such as floating
car data [65]–[67], and passive probe-vehicles [68], [69].
Data from probe vehicles does not provide a complete record
of traffic volume because of only a fraction of the traffic
has been equipped [65] and because fleet probe vehicles
(e.g., transit and taxi vehicles) may not be representative of
the global mobility pattern since these vehicles operate for
other primary purposes and could therefore inherit highly-
biased traffic characteristics [70], [71].

A taxi is a passive probe vehicle that represents a type of
public transportation that is different from fixed schedule and
route services since taxi pick-up and drop-off locations are
determined by passengers. AVL data from a taxi can provide
detailed information regarding the origins and destinations
of the cab’s trips. The process of data collection is trans-
parent and non-intrusive to passengers since no personally-
identifying information is recorded. Only the taxi’s GPS
location and occupancy status are recorded for dispatching
and management purposes; hence, there is no concern for
privacy issues. In addition to the extraction of trip pick-up
(origin) and drop-off (destination) information, taxi trajec-
tory data has also been used as a probe to monitor road
traffic conditions [72]–[75] and to understand urban dynam-
ics [64], [76], [77]. It enables us to take a collective snapshot
of urban movement, giving us an overview of how the city
functions economically and socially [78], [79].

This paper attempts to create a better understanding of taxi
travel demand through the development of a framework to
construct a dynamic O-D matrix that is a spatiotemporal-
variant description of ever-changing taxi travel demand. This
O-D matrix is unlike existing dynamic O-D matrices that
are time-variant on fixed zonal areas [80]–[82]. Since our
dynamic O-D matrix is time- and space-dependent, creat-
ing output matrices of different dimensions, comparisons
between different matrices cannot bemade directly with a tra-
ditional approach like matrix subtraction. We have addressed
this by developing a method to measure similarities across
dynamic O-D matrices that are time-dependent with adaptive
zoning schemes.

III. DATASET
We used a set of taxi trajectory data collected by Geotaxi,
one of the main taxi service providers in Lisbon, Portugal.
The dataset includes data from 172 taxicabs over a two-
month period (September and October 2009), amounting to
nearly three million taxi location traces. The data sampling
rate varies according to the trip – i.e., distance driven, time
elapsed, and service status changed (occupied, vacant).
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Lisbon is the capital of Portugal. Lisbon’s urban area,
which expands around the downtown core, has a high pop-
ulation density and boasts touristic, historic and commercial
areas, and public transportation hubs. Residential areas and
airport and industrial facilities are located in the city’s periph-
ery. In 2009, Lisbon had a population of 484,723. According
to a report by Darbéra [83], taxis were used for a majority
of trips made by tourist visitors. The top purposes for taxi
usage in Lisbon were leisure, work, business, medical care,
and airport.

The data from each of the 172 taxis carries information
about the taxi’s location and service status, and a corre-
sponding date and time. If S = {s1, s2, . . .}S = {s1s2, . . .}
represents a trace of a taxi, then each instance sample k
contains a location, service status, and timestamp: sk =
(latitudek , longitudek , servicek , timestampk ).

FIGURE 1. A sample taxi trace over a five-hour period in service. Red dots
represent recorded locations while the taxi is occupied and green dots
indicate that the taxi is vacant.

Figure 1 shows a sample trace of a single taxi over its five
hours in service. Each dot represents the recorded location
in either red or green to denote a service status of occu-
pied or vacant, respectively.

FIGURE 2. Methodology flowchart.

IV. METHODOLOGY
Our methodology included the construction of a time-
dependent O-D matrix based on an adaptive zoning scheme.
The adaptive zoning scheme yielded matrices of different
sizes, so we needed to devise a method of measuring sim-
ilarity between the output O-D matrices. Figure 2 shows
the overall process flow, which includes gathering taxi data,
detecting pick-up and drop-off locations based on the service
status information, clustering the origins and destinations
using the X-means algorithm, filtering out potential outliers
using DBSCAN, identifying areas of origin and destina-
tion concentrations using convex hull, time-dependent O-D
matrix construction, and measuring similarities across the
time-dependent O-D matrices with adaptive zoning schemes.

A. O-D MATRIX CONTRUCTION
The key data elements in the development of travel demand
modeling are trips between origins and destinations. The
construction of a basic O-D matrix is the starting point of the
O-D matrix estimation. We use taxi GPS data to construct
an initial O-D matrix that reflects taxi trip patterns and that
provides information related to the origins, destinations, and
volumes of taxi trips. A priori O-D matrices are tradition-
ally obtained from historical O-D tables (previous surveys),
which tends to be costly, labour intensive, and time disrup-
tive to the trip makers. In our analysis, trip makers’ pick-
ups and drop-offs are used to locate the trip’s origins and
destinations.

A taxi meter’s status transitioning from one state to the
other is used to determine passenger pick-up and drop-off
events as well as origin and destination locations. A pick-
up location can be identified when the service status changes
from available to occupied as the taxi picks up a new pas-
senger. A drop-off location can similarly be identified when
the service status switches from occupied to available as the
passenger is dropped off. A set of pick-up locations is a
subset of S and can be denoted as P = {sk ∈ S|servicek =
‘‘occupied’’ and servicek−1 = ‘‘available’’). Likewise, a set
of drop-off locations (D) is a subset of S and can be denoted
as D = {sk ∈ S|servicek = ‘‘available’’ and servicek−1 =
‘‘occupied’’). This intuitive approach allowed us to identify a
total of 101,463 trips, each comprised of a pick-up and drop-
off location. The pick-up and drop-off locations observed
between 6AM and 9AM on September 1, 2009 are displayed
in Figure 3.

Overall, the average number of hourly trips throughout
each day of the week is shown in Figure 4. The trips reveal
two distinct patterns: weekdays and weekends.Weekday trips
are seemingly driven by regular office and business hours as
the trip count starts to rise around 8AM, drops down around
6PM, and jumps up slightly around 8PM (presumably post-
dinner time when people travel back home or to another desti-
nation). It then gradually drops down and hits the lowest count
around 4AM before rising again. The number of weekend
trips does not fluctuate as much as the weekday trips. The
busiest hour for the weekend trips is around 1PM, while the
least active hour is late morning, around 8AM. The amount
of weekend trips is higher than weekday trips from 1AM to
7AM but lower from 7AM to 9PM.

Once the pick-up and drop-off locations are determined,
it is possible to connect all the pairs to draw up individual
origin-destination trips. Collectively, these trips can be aggre-
gated to generate citywide, area-based origin-destination
movements. Unlike existing dynamic O-D matrices that are
time-variant on fixed zonal areas [80]–[82], we tried to cap-
ture more realistic travel demand spatially as it emerged. This
required an O-D matrix that is dynamic in both the temporal
and spatial dimensions. To achieve this, we grouped individ-
ual origins (pick-ups) and destinations (drop-offs) accord-
ing to their locations so that origins (or destinations) that
were geographically close together could be clustered into
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FIGURE 3. Pick-up locations (a) and drop-off locations (b) as determined
from the taxi data based on service status information.

FIGURE 4. Average number of hourly trips on different days of the week.

an origin (or destination) area. Since the number of clustered
origins or destinations is not known beforehand (there are no
fixed taxi service stations such as taxi stands or taxi stops,
for example), the clusters must gradually emerge based on
the actual aggregate of trips. A clustering algorithm like
k-means [84] cannot be used in this scenario because the
number of clusters, or k , must be predefined for the clustering
to proceed.

To rectify this shortcoming of k-means, we applied an
approach called X -means clustering [85]. This approach can
cluster data points without a predefined number of clusters
since it estimates k by making local decisions about which

subset of the current centroids should be split to better fit the
data. Bayesian Information Criteria (BIC) [86] is used for the
splitting decision, so the focus is on optimizing BIC value.

Once our taxi trajectory data was processed to identify
pick-up and drop-off locations over a sliced period of interest,
X -means clustering was performed for a separate set of pick-
up and drop-off locations where each data point is a pair
of geolocation coordinates to create clustering on a two-
dimensional space. The X -means algorithm initializes k to 2
(to initially create two clusters). Each data point is iteratively
assigned to the nearest centroid and the cluster centers are
updated based on the renewed cluster mean. The data points
are then reassigned and the cluster centers are updated again.
This process continues to repeat. For each value of k , each
centroid is split into two children, which are moved in oppo-
site directions along a randomly-chosen vector for a distance
proportional to the size of the region. A k-means algorithm is
then run locally in each parent region with k = 2 for each pair
of children. Data points are clustered to the children within
the parent region. The split decision is then made locally
based on the BIC value. The process continues iteratively
until the global BIC value is optimized.

FIGURE 5. Clusters of pick-up and drop-off locations based on the
X-means algorithm, with each cluster represented by a different color.
(a) Clusters of pick-up locations. (b) Clusters of drop-off locations.

Figure 5 shows the nine clusters of pick-up locations and
the nine clusters of drop-off locations that resulted from
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applying the X -means algorithm to the observations during
our period of interest. Clustering was done separately for
the pick-up location data points and the drop-off location
data points. It is a coincidence that this example yielded nine
clusters for both pick-up and drop-off locations.

The X -means algorithm yielded origin and destination
clusters. These clusters may contain noise or outliers such
as data points that are widely spread out or that are notably
distant from the cluster centroid. We filtered out these poten-
tial outliers by using the density-based spatial clustering of
applications with noise (DBSCAN) algorithm [87], which
groups data points together with many nearby neighbors and
filters out outliers that are alone in low-density regions.

FIGURE 6. Outlier-filtered clusters of pick-up and drop-off locations
based on the DBSCAN, with each cluster represented by a different color.
(a) Filtered clusters of pick-up locations. (b) Filtered clusters of drop-off
locations.

The DBSCAN algorithm requires two parameters: the
maximum radius of the neighborhood (ε) and the minimum
number of points required to form a dense region (minPts).
We used ε = 1, 000 m and minPts = 5, respectively. These
parameter values were chosen and justified based on our
observations of the results. Figure 6 shows the clusters of
origins (a) and destinations (b) that resulted from applying the
DBSCAN algorithm to filter out outliers. Different options
for the DBSCAN parameters may be worth exploring in
future studies.

Choosing optimal values for the two parameters is still an
open research question, as shown by Wong and Huang [88]
in their sensitivity analysis of spatiotemporal trajectory data
clustering. The two parameters appear to be working against
each other such that increasing the value of minPts not
only reduces the number of clusters, but also the area that
falls within each cluster. Increasing the value of ε produces
extensive clusters. Although some studies have suggested
appropriate values for these two parameters [89], [90], these
recommendations were data-dependent and are not generally
applicable.

FIGURE 7. An origin area is represented with a convex polygon of the
clustered pick-up locations.

To obtain area-based origin-destination flows for the con-
struction of our O-D matrix, we needed to identify a geo-
graphical area for each cluster to represent each origin and
destination area, which corresponds with each row and col-
umn of an O-D matrix. Each cluster is represented as an
enclosed convex hull polygon [91] whose vertices are points
from the cluster and which encompasses all of the cluster’s
points. Figure 7 shows an example polygon that represents an
origin area where dots are the origins (or pick-up locations)
and the convex polygon is the shaded area.

This approach enables the construction of an O-D matrix
with ODt =

[
Ti,j
]
N×M for observation period t , where

Ti,j is the trip volume from the origin i to destination j for
i = 1, 2, 3, . . . ,N and j = 1, 2, 3, . . . ,M . The matrix does
not need to be square, with an equal number of origin and
destination areas, as the origin and destination areas emerge
dynamically with the actual travel demand. Figure 8 shows
a time-dependent O-D matrix in the period between 6AM
and 9AM on September 1, 2009 that was obtained using
our approach. Travel demand, represented as the trip flow
percentage from each of the seven origin areas to each desti-
nation area, is illustrated. Figure 9 shows a three-dimensional
representation of trip flows from one origin area to all desti-
nation areas on the same map.

B. O-D MATRIX SIMILARITY MEASURE
Similar to other transportation systems, the demand for
taxi services exhibits daily periodicity in time and space
that reflects the patterns of underlying human activity [25].
AnO-Dmatrix can capture demand variation on taxi services.
A good taxi service provisioner should be able to cope with
ever-changing demand. It is therefore important to understand
the change, or difference, in the travel demands described by
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FIGURE 8. An example of trip flows based on a time-dependent O-D
matrix constructed using the proposed approach for the period
of 6AM - 9AM.

FIGURE 9. A 3D sample of trip flows from one origin area to all
destination areas based on a time-dependent O-D matrix constructed for
the period of 6AM - 9AM using the proposed approach, where the origin
and destination areas are shown on the same map.

the O-Dmatrices over different periods to enable the effective
management of taxi services operations.

Since our taxi O-D matrix varies spatially, its dimensions
can change based on differing numbers of origin/destination
area clusters to represent traffic analysis zones. Thus, existing
approaches cannot be used to make comparisons between
matrices. This eliminates methods such as matrix sub-
traction, R-squared, etc. We addressed this by developing
a new approach to measure similarity between dynamic,
spatiotemporal-variant O-D matrices.

The challenge in measuring similarity between matrices of
different dimensions is transforming them into a comparable
format such as vectors of the same size, whose similarity can
simply be measured with cosine similarity as follows.

S(X ,Y )=cos(θ )=
X · Y
‖X‖‖Y‖

=

∑n
i=1 XiYi√∑n

i=1 X
2
i

√∑n
i=1 Y

2
i

, (1)

where Xi and Yi are components of vectors X and Y, respec-
tively. The cosine similarity measures the similarity between
two non-zero vectors of an inner product space by measuring
the cosine of the angle between them. It is a comparison
based on orientation but not magnitude. Two vectors with
the same orientation (0 degrees apart) have a cosine simi-
larity of 1. Two vectors that lie perpendicular to each other

(oriented at 90 degrees) have a similarity of 0. Two vectors
that are diametrically opposed (180 degrees apart) have a
similarity of −1. This vector approach lets us transform
the travel demand described by an O-D matrix into vectors
and measure the similarity between two O-D matrices using
cosine similarity and the approach described below.

Suppose that we want to measure the similarity between
two O-D matrices, A and B. Matrix A has a total of N origins
and M destinations while matrix B has a total of U origins
and V destinations. Let OA denote a set of the origins of A,
i.e.,OA = {OA1 ,O

A
2 , . . . ,O

A
N }where each origin i contains the

corresponding latitude and longitude of its centroid, OAi =
{oAi (lat) , o

A
i (lon)}, and D

A denotes a set of destinations of
A, i.e., DA = {DA1 ,D

A
2 , . . . ,D

A
M } where each destination

i contains the corresponding latitude and longitude of its
centroid, DAi = {d

A
i (lat) , d

A
i (lon)}. Matrix B uses similar

mathematical notation.

FIGURE 10. An example of resultant flows from three origins to three
destinations in Matrix A and from four origins to two destinations in
Matrix B: (a) Origins and flow directions to corresponding destinations in
O-D Matrix A; (b) Flow directions (dashed lines) and resultant flow (solid
line) of each origin in Matrix A; (c) Origins and flow directions to
corresponding destinations in O-D Matrix B; (d) Flow directions (dashed
lines) and resultant flow (solid line) of each origin in Matrix B.

Each origin i of A has travel demands that flow to each
of the M destinations. These can be thought of as M vectors
pointing from the origin i to each destination. A resultant
vector [92] can be calculated as a sum of these M vec-
tors to represent the overall flow with direction and magni-
tude, or the resultant flow from the origin i. Consequently,
Matrix A will have N resultant flows originating from each
of its N origins. Figure 10 shows the resultant flow of each
origin of sample Matrices A and B, where A has three origins
and three destinations and where B has four origins and two
destinations.

For comparison, each resultant flow i can be written in
the form of a vector where its vector components include
characteristics of the result flow: direction, magnitude, origin
location, and head location. Each resultant flow i of matrix A
can be represented and written in a vector form as follows.

RAi = [θAi ,T
A
i ,O

A
i ,H

A
i ], (2)

where θAi is the direction (angle) of the resultant flow, T Ai
is the magnitude (the sum of travel demands), OAi is the
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origin location, and HA
i is the head location (the geolo-

cation of the resultant vector’s head, defined as HA
i =

{hAi (lat) , h
A
i (lon)}). Each of the derived U resultant flows

of Matrix B can be written in the form of a vector, as shown
in Eq. (2).

Although it is very unlikely, there is still a possibility
that the sum of all outflows is zero, meaning that the flow’s
direction is zero due to the outflows’ exact orientations. This
could be the case, for example, with two outflows where
one points to the east (0 degrees) and the other points to
the west (180 degrees). The resulting flow’s direction would
be zero, indicating that the net displacement is zero because
the outflow directions are precisely in opposite directions
and canceled each other out. In a rare but possible scenario,
a resultant flow X has a flow direction of zero (θXi = 0) due
to east-west outflow orientations and another resultant flow Y
also has a flow direction of zero (θYi = 0) due to north-south
outflow orientations, so both have a flow direction of zero.
Differentiating between the two flows may not seem possible
because of the loss of flow direction information. Although
the flow direction is zero, however, the resultant flow still
has three other dimensions (Eq. 2): its magnitude, its origin’s
geolocation, and its head’s geolocation. This information can
still convey other important characteristics about the flows
and, to a certain extent, can be used to differentiate between
two resultant flows.We nevertheless admit that the possibility
of having a flow direction of zero due to exact orientations of
the origin’s outflows is one of the limitations of our approach,
and is an area worth future study.

There are a total of N and U resultant flows for Matrices
A and B, respectively. To measure the similarity between
the matrices, the cosine similarity between RAi and RBj is
calculated for i = 1, 2, 3, . . . ,N and j = 1, 2, 3, . . . ,U
and the maximum value for each i and j, denoted by CA

i and
CB
i respectively, is identified and kept for further calculation.

The final similarity value (Sim) can then be calculated as the
average of these pairwise-comparison maximum values as
follows.

Sim =

∑N
i=1 C

A
i +

∑U
i=1 C

B
i

N + U
(3)

To summarize the approach in measuring the similarity
between two time-dependent O-D matrices A and B of dif-
ferent dimensions, the algorithm below lists the steps.

Similarity between two O-D matrices (Eq. 3) is measured
based on cosine similarities while accounting for the differ-
ent characteristics of the flows: direction, magnitude, origin
geolocation, and head geolocation. These characteristics are
captured in a four-dimensional vector (Eq. 2). If the two O-D
matrices are geographically nearby, the origin’s geolocation
elements are relatively alike but the other three elements
(direction, magnitude, and head direction) may be different.
Together, these all contribute to the similarity calculation. In a
case where the two O-D matrices are geographically distant
(e.g., different cities), all four elements contribute equally
to the similarity calculation with a relatively larger gap in

Algorithm 1 Time-Dependent O-D Matrix Similarity
Measure
Input: Resultant flows of Matrices A and B ({RAi } and

{RBj )}
Output: Similarity value (Sim)
1. For i← 1 to N (the number of origins of A) do
2. For j← 1 to U (the number of origins of B) do
3. Compute cosine similarity S(RAi ,R

B
j )

4. End
5. End
6. Determine the maximum value

CA
i = argmax

j∈{1,2,...,U}

(
S(RAi ,R

B
j )
)
For i ∈ {1, 2, . . . ,N }

7. Determine the maximum value
CB
j = argmax

i∈{1,2,...,N }

(
S(RAi ,R

B
j )
)
For j ∈ {1, 2, . . . ,U

8. Compute Sim =
∑N

i=1 C
A
i +

∑U
i=1 C

B
i

N+U

the origins’ geolocation elements compared to the previous
case. The physical meaning of the similarity measurement
is thus the likeness of the flows’ properties as characterized
by four elements of the O-D matrices, which encapsulate the
main characteristics in terms of direction, magnitude, and
geography (origin and destination locations).

V. RESULTS
Using the methodology described in the previous section,
we measured the cross-similarity and self-similarity of taxi
O-D flows to better understand the regularity and variation
of taxi travel demand in Lisbon. Taxi trajectory data was
used to construct an O-Dmatrix for each three-hour period of
each day of the week. Three-hour periods begin at midnight
(e.g., 0AM - 3AM, 3AM - 6AM, etc.), to create eight daily
periods or a total 56 O-D matrices to represent the entire
week’s dynamic taxi travel demands.

Cross-similarity values between these 56 O-D matrices
were measured. The result is shown in Figure 11, whose time-
slots go from Monday 0AM – 3AM to Sunday 9PM – 0AM.
Similarity was measured between each pair, starting from a
comparison between the first time slot and the second time
slot, then comparing the first and third time slots, and so on
until the 56th time-slot. In total, we created 56× 56 = 3, 136
similarity values. Since the similarity measure is symmetrical
(similarity between A and B is equal to similarity between B
and A), the resulting matrix shown in Figure 11 is symmetric.
Self-similarity yields the maximum value of 1, which is
shown across the diagonal of Figure 11.

The resulting similarity values are relatively high (ranging
from 0.8 to 1.0). This does not mean that the measurement
cannot distinguish differences between the O-D matrices, but
rather reflects on a reality that suggests most O-D matrices
or travel demand patterns are quite similar. The implication
is that travel demand is generally regular and shows recurrent
patterns. This regularity in travel demand is favorably in line
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FIGURE 11. Cross-similarity result shown in a pseudocolor plot where
each time slot goes from Monday 0AM – 3AM to Sunday 9AM – 0AM.

with previous studies of human mobility based on a massive
mobile phone network data [23] and public bus transportation
data [49].

FIGURE 12. Cross-similarity result ranked from highest to lowest values
according to the average over each time slot.

An average similarity value of each time slot in
Figure 11 was calculated and ranked from the highest to
lowest values. The results are shown in Figure 12, along with
a respective standard deviation bar. The average similarity
value gradually decreases and drops at a higher rate from
the 40th-ranked time slot. It drops even more sharply at the
54th-ranked time slot.

The cross-similarity values measure how similar the taxi
travel demand pattern in each time-slot is compared to other
time slots. Effective taxi service operation management prin-
ciples that are suitable for some time slots can be applied to
others that exhibit similar patterns, and vice versa. Table 1 of
Figure 12 shows the five time slots with the highest aver-
age similarity values, meaning they have the most com-
mon pattern with other time slots. Top time slots include
Tuesday 6AM – 9AM, Sunday 9AM – 12AM, Wednesday
9PM – 0AM, Thursday 9AM – 12AM, and Sunday
3PM – 6PM. Table 2 of Figure 12 lists the bottom five time

TABLE 1. Top five time slots with highest average cross-similarity values.

TABLE 2. Bottom five time slots with lowest average cross-similarity
values.

slots with the least common pattern: Monday 9PM – 0PM,
Monday 9AM – 12AM, Sunday 6PM – 9PM, Tuesday
9AM – 12AM, and Tuesday 12AM – 3PM.

The results suggest that taxi travel demand that occurs
within the top time slots can be interpreted as the most
common pattern, while the demand that transpires during the
bottom time slots can be thought of as the least common
pattern. With the proposed similarity measurement, we were
able to identify the most and least common time slots for
taxi travel demand. This information is useful for taxi service
operation management.

FIGURE 13. Self-similarity result shown in a pseudocolor plot.

We measured self-similarity by examining the similarity
between taxi O-D matrices, or taxi travel demand occurring
in the same time-slot over the course of two months. This
allowed us to quantify the regularity of travel demand across
different periods within a day. A higher self-similarity can
imply a more regular pattern of taxi travel demand or more
predictable taxi demand, while a lower self-similarity implies
less predictability in demand. The self-similarity result is
shown as an average value over two months for each time
slot in Figure 13. Figure 14 shows the ranked values, along
with the corresponding standard deviations.
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FIGURE 14. Self-similarity result ranked from the highest to lowest
values.

TABLE 3. Top five time slots with highest average self-similarity values.

TABLE 4. Bottom five time slots with highest average self-similarity
values.

The ranked self-similarity values drop sharply from the
first to the second time slot. They then slowly decrease before
dropping steeply between the 55th and the last time slot. The
top time slots are listed in Table 3 of Figure 12: Wednesday
6AM – 9AM, Sunday 6AM – 9AM, Friday 9AM – 12AM,
Thursday 9AM – 12AM, and Tuesday 6PM – 9PM. The
bottom time slots are listed in Table 4 of Figure 12: Monday
9PM – 0AM, Wednesday 9PM – 0AM, Friday 9PM – 0AM,
Tuesday 3AM – 6AM, and Thursday 3AM – 6AM. These
results suggest that travel demand in the top time slots is the
most regular, while travel demand in the bottom time slots is
the least regular compared to other periods.

This study has shown that taxi trajectory data can be used
to develop spatiotemporal-varying O-D matrices. The self-
similarities and cross-similarities of these matrices can be
calculated. Our goal is to quantify the regularity of taxi travel
demand across different time periods. The results show more
taxi demand variation over a typical day than within the same
time period on different days. This is true for both weekdays
and weekends.

Our analysis opens new possibilities for gaining insight
into how taxi trajectory data can be used to identify time
periods that exhibit similarity and thus require similar

operational strategies. This, in turn, will allow the develop-
ment of improved demand-based taxi services. One problem
with traditional taxi services is difficulty in matching taxi
demand to supply when there is no phone booking or other
reservation system. After a passenger drop-off in a given
location and time, a taxi driver could be faced with a choice
set comprising several zones for passenger pick-up. A loca-
tion choice model for passenger pick-up can be developed to
address this issue. The trip generation and attraction roles of
each zone change based on the time of day, however, making
it necessary to create location choice models for different
times. Time-varying zone plans are structured to represent
daily fluctuations of activity intensity in different parts of the
city. Therefore, the time-varying zone plans developed for
this study could inform the design of a reduced number of
zones for modeling time-of-day location choices for passen-
ger pick-up for taxi drivers.

Taxi trajectory data can also address the problematically
low spatial and temporal resolutions of traditional surveys.
GPS devices create the most accurate recordings of the times
and positions of taxi movements. Using this data can improve
trip-misrepresentation issues associated with self-reports of
travels made by all modes. Trips inferred by taxi trajectory
data are also geocoded and are not attached to any zoning sys-
tem, allowing the data to be used at any level of aggregation
so we can move away from standard zoning systems.

VI. DEMO
For demonstration purposes, a video clip showing how our
analysis was carried out is available on YouTube at https://
www.youtube.com/watch?v=IbcQWPf-W6I.

VII. CONCLUSION
An O-D matrix is an important input for transport models
to assess new transport policies. It provides estimates of
traffic volume between pairs of origin and destination zones
based on relevant mobility data. With recent advances in
information technology, opportunistic sensing datasets such
as AVL, AFC, CDR, GPS data, and so on, have been used
for O-D estimation in lieu of traditional travel surveys, which
are expensive and time-consuming. AFC and AVL data from
public transit system such as buses and trains does not provide
actual passenger origin and destination information since
these transportation modes operate on fixed schedules and
stops. CDR data is sparse in time as it is only recorded when
the device connects to the cellular network. It is also coarse
in space because it is bounded by the level of cell tower
density. Due to privacy concerns and regulations, large-scale
GPS tracking data is limited.

The taxi industry has entered the era of technology by
implementing onboard devices to assist taxi operations. Taxi
trajectory data is one of the main datasets generated by
these devices. Unlike the aforementioned data sources, taxi
trajectory data can provide detailed origin and destination
information. This study explored the use of taxi trajectory
data collected from Lisbon, Portugal to construct a taxi
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O-D matrix that is dynamic in both space and time. It also
introduced a new measure of similarity between these
dynamic O-D matrices.

The proposed approach for constructing a dynamic, time-
dependent O-D matrix involves detecting pick-up and drop-
off locations based on service status information, clustering
the origins and destinations using the X -means algorithm, fil-
tering out potential outliers using DBSCAN, and identifying
groups of origins and destinations using convex hull. Unlike
existing dynamic O-D matrices, which are time-variant on
fixed zonal areas, our O-D matrix is spatially dynamic so that
origin and destination zone sizes and locations are not fixed.
Comparisons between matrices therefore cannot be made
directly using traditional approaches like matrix subtraction,
R-squared, GEH statistic, RMSE, and EBM since these mea-
sures all require the matrices to have identical dimensions.
A new measure of similarity that uses the concept of a resul-
tant vector to derive an O-D matrix consisting of resultant
flows characterized by volumes (magnitudes) and directions
(degree angles) is proposed. Cosine similarity is then used to
measure the similarity from the resultant flows that have been
converted to a vector form.

Our approaches allowed us to measure the cross-similarity
and self-similarity of the taxi travel demand in Lisbon. The
results revealed the periods in which the greatest and least
common taxi travel demand occurred, as well as the periods
in which the most- and least-regular travel demand patterns
emerged This information is essential for informed taxi ser-
vice operation management.

Our proposed approaches can be useful for constructing
spatiotemporal-varying taxi O-D matrix and for measuring
their similarity. We believe these similarities extend beyond
the state-of-the-art O-Dmatrix estimation and similaritymea-
sures. The results regarding time-varying O-D flows and
time-varying zone plans will inform the development of time-
of-day location choice models and other dynamic models.

There were several limitations to our study. The first was
the lack of ground truth validation of our approach. We didn’t
have actual travel demand information available to validate
the construction method of our O-D matrix, but we believe
that our approach is intuitive enough that it is valid and
comparable to state-of-the-art methodologies. One issue with
GPS trajectory data is lack of descriptors for key events
that may occur during a trip. Fortunately, our data contains
descriptors for key events such as service status (occupied,
vacant). A transition of taxi meter status can be used to
determine passenger pick-up and drop-off events and origin
and destination locations. If there is lack of descriptors for
key events during a trip, those events must then be inferred
using data mining techniques. Previous research has shown
that this can be achieved with reasonable accuracy [93]–[95].

The scope of this study was limited to constructing time-
dependent O-D matrices with adaptive zoning schemes.
Further research must be carried out to validate the results.
Another potential limitation is the use of only 15% of the taxi
fleet to characterize the taxi travel demand of the whole city.

Future studies should attempt sample expansion to represent
the mobility behaviour of the total taxi population in the
study region. A third limitation is selecting optimal choices
for the DBSCAN parameters, which is still an open research
question that is worth future investigation. A final limita-
tion relates to the possibility of the taxi data not reflecting
on the actual location of the final destination because the
drop-off location is different than the traveler’s ultimate des-
tination. In cases where the final destination is not the drop-
off location, we believe that the final destination may not
be too distant from the drop-off location. Passengers may
continue their journey on foot or by bike for the final mile of
travel. This so-called last mile travel is important and cannot
be overlooked. We also did not calculate positional latency
that causes deviation between the position outputted by the
GPS and the vehicle’s realtime position, which could poten-
tially affect the precision of a trip’s origin/destination. Fur-
ther research must be conducted to investigate the validation
method, to incorporate multi-source data, to consider the last
mile travel, and to evaluate the impact of positional latency.
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