
Received February 21, 2019, accepted March 12, 2019, date of publication March 22, 2019, date of current version April 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2906926

A Comprehensive Security Analysis of a SCADA
Protocol: From OSINT to Mitigation
LUIS ROSA 1, MIGUEL FREITAS 1, SERGEY MAZO2,
EDMUNDO MONTEIRO 1, (Senior Member, IEEE),
TIAGO CRUZ 1, (Senior Member, IEEE), AND
PAULO SIMÕES 1, (Member, IEEE)
1Centre for Informatics and Systems, University of Coimbra, 3030-290 Coimbra, Portugal
2Israel Electric Corporation, Haifa 31000, Israel

Corresponding author: Luis Rosa (lmrosa@dei.uc.pt)

This work was supported by the ATENA H2020 EU Project (H2020-DS-2015-1 Project) under Grant 700581.

ABSTRACT It is an established fact that the security of Industrial Automation and Control Systems (IACS)
strongly depends on the robustness of the underlying supervisory control and data acquisition (SCADA)
network protocols (among other factors). This becomes especially evident when considering the extent to
which certain protocols, designed with poor or nonexistent security mechanisms, have led to a considerable
number of past incident reports affecting critical infrastructures and essential services. Considering the
current situation, it is rather obvious why the proper auditing and analysis of SCADA protocols are
considered as key when it comes to design and/or protect IACS infrastructures. However, while the security
of some protocols, such as Modbus or DNP3, has already been extensively analyzed, the same cannot be said
for other protocols and technologies being used in the same domain that have not received the same amount
of attention. In this paper, we provide a comprehensive security analysis of the PCOM SCADA protocol,
including a dissection of PCOM, a demonstration of several attacks scenarios on PCOM-based systems,
and also an analysis of possible mitigation strategies against these potential attacks. Moreover, this paper
also describes a number of open-source tools that we developed for further analysis and research of PCOM
security aspects, including a PCOM Wireshark dissector, a Nmap NSE PCOM scan, multiple Metasploit
PCOMmodules, a set of Snort PCOM rules, and several network traffic datasets containing multiple samples
of different types of PCOM operations.

INDEX TERMS SCADA, security, PCOM, ICS, IACS.

I. INTRODUCTION
Supervisory control and data acquisition (SCADA) systems
are a subset of the Industrial Automation and Control Sys-
tems (IACS) that monitor and control Essential Services
such as power grids, water distribution facilities and auto-
mated factories. They include sensors and actuators, Pro-
grammable Logic Controllers (PLCs) / Remote Terminal
Units (RTUs), Human-Machine Interfaces (HMI)s and all
the related servers, arranged in several network segments
and levels. Different types of communications, using specific
SCADA network protocols, occur between those levels, both
vertically and horizontally [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Noor Zaman.

While SCADA systems were originally confined to an
isolated domain, several factors – such as the introduc-
tion of Manufacturing Execution Systems (MES) – have
pushed for further integration of the process control and IT
domains within organizational infrastructures. Consequently,
the IACS vulnerability and threat profiles have increasingly
become similar to their IT counterparts, a situation further
aggravated by the fact that most SCADA communication
protocols still lack adequate security mechanisms. An often
mentioned example is the Modbus protocol [2], which was
only recently updated to include security mechanisms [3].

The IACS/SCADA market fragmentation makes it further
difficult to address all the security needs for each vendor and
communication protocol. Many protocols are found in the
field, often vendor-specific. Some are closed or not properly

42156
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-8230-4045
https://orcid.org/0000-0002-4939-1773
https://orcid.org/0000-0003-1615-2925
https://orcid.org/0000-0001-9278-6503
https://orcid.org/0000-0002-5079-8327


L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

documented, therefore their security enforcing mechanisms
are unknown, not extensively discussed nor validated. Even
Modbus, now an open and widely accepted protocol (despite
not being a formal standard), still accommodates user-defined
and reserved function codes that may differ from vendor to
vendor. While such features may increase flexibility, they
pose additional security problems if not properly imple-
mented and documented.

There is now extensive literature addressing the security
of SCADA protocols, but it clusters around a very small
subset of the most used and well-known protocols. Many
real-world SCADA systems include devices and protocols
left outside the focus of existing literature. However, the lack
of discussion, public exploits or tools for those less known
protocols does not mean the protocol is safer.

Such a security analysis is important to continuously raise
awareness for the security issues affecting SCADA systems
and to prevent their appearance in the next generation of
SCADA communication protocols. For instance, and to a
certain extent, the recent security-oriented revision of the
Modbus protocol [3] can be considered to be the ultimate
result of a broad discussion involving security researchers,
equipment providers and end-users - this would not be possi-
ble without creating interest and awareness about the existing
security issues and their implications.

In this paper we provide a comprehensive security assess-
ment of the PCOM SCADA communication protocol [4].
PCOM is used by a wide range of PLC devices and has not
yet been covered by the literature, therefore constituting a
good example of the aforementioned range of unaddressed
but relevant SCADA protocols. More specifically, this paper
provides the following contributions:
• A security analysis of the PCOM protocol and a discus-
sion on how such a SCADA protocol can be subverted
and used by a malicious attacker to ultimately gain
full control over the physical processes and underlying
infrastructures.

• A description of multiple open-source contributions to
security-related tools, directly deriving from this PCOM
analysis, including contributions to widely used tools [5]
such as Wireshark [6], Metasploit [7] and Snort [8] and
Nmap [9].

• Datasets containing several samples of PCOM network
traffic for various operation and attack scenarios, which
can be used for future research.

Besides the inclusion of a comprehensive security analysis
of the PCOM protocol, which was started from scratch and
combining the attacker and the defendant viewpoints, this
paper also provides a step-by-step overview of the methodol-
ogy that was adopted in the process, constituting, to the best
of our knowledge, one of the first tutorial-like descriptions of
such procedures and a valuable guide to anyone planning to
perform a similar study of other SCADA protocols.

The remainder of this document is structured as follows.
Section II provides an overview of the existing literature and
SCADA related security tools. Section III starts with a PCOM

primer, followed by a description of the Wireshark PCOM
dissector that was implemented to support the protocol anal-
ysis process. Section IV goes through a set of cyberattack
scenarios that explore the security gaps found in PCOM,
while Section V explains how automated fuzzing strategies
might be used to further assess the PCOM protocol flaws.
Section VI discusses different types of strategies to mitigate
the disclosed security issues. Section VII presents the PCOM
capture dataset that was generated for evaluation purposes,
being also contributed to the public domain. Finally, section
VIII draws a series of conclusions, resulting from the effort
hereby documented.

II. RELATED WORK
SCADA security has been widely discussed [10] [11] [12]
and several security design flaws have already been identi-
fied. The lack of authorization, authentication and encryp-
tion in popular SCADA protocols such as Modbus, DNP3,
EthernetIP/CIP or IEC 60870-5-104 have been one of the
main discussion points. Several types of attacks have been
referred in the literature [13], focused mainly on intelligence
gathering, network reconnaissance, accessing and chang-
ing restricted process parameters and, finally, disrupting the
physical processes under control (with its inherent conse-
quences). Moreover, since most of the protocols are based
on plain-text communications, such tasks become a matter of
using the right function codes and either establishing direct
connections or hijacking TCP/IP sessions on-the-fly. Other
types of incidents against different levels of the SCADA
reference architecture [14] have also been reported.

Win32/Industroyer, a major publicly-disclosed real-world
malware [15], provides a good example of how recent
malware combines the use of multiple SCADA protocols.
Win32/Industroyer was specifically built for affecting elec-
tric power systems, focusing on specific SCADA protocols.
It made use of a modular design, in order to accommo-
date four different protocols: IEC 60870-5-101 (for serial
connections); IEC 60870-5-104 (for TCP/IP connections);
IEC 61850; andOPC. Three SCADA-specific features should
also be highlighted in the scope of that malware: the
network device enumeration capability by parsing device
responses of different protocols, the capability of accessing
field values leveraging SCADA protocols that do not enforce
proper security mechanisms and, finally, a DoS tool to
send specifically crafted packets against Siemens SIPROTEC
devices.

On the other hand, most of the SCADA-related security
management solutions focus on monitoring such protocols
to detect unwanted communications, either by (i) narrowing
the allowed functions and remote communications or by
(ii) detecting suspicious traffic patterns via statistic and
machine learning algorithms.

In the following sections we provide an overview of the
existing PCOM-related tools, followed by a broader analysis
of tools and strategies that have been used in other SCADA
protocols – which might also apply to PCOM.

VOLUME 7, 2019 42157



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

A. PCOM-RELATED TOOLS
To the best of our knowledge, the security of PCOM is
not discussed in the available literature, even though PCOM
suffers from security issues similar to other SCADA proto-
cols. To the best of our knowledge, the tools that support the
PCOM protocol, such as Visilogic [16] and Crimson [17],
are not designed with security assessment in mind. They are
both full graphical products forMicrosoftWindows. Crimson
only allows reading/writing registers from/to PCOM-enabled
devices. Visilogic allows additional administrative remote
operations such as starting/stopping PLCs, but is not suitable
for discovering devices on the network and cannot be used for
detecting or blocking PCOM traffic in the network. A .Net
driver that implements some additional internal functions,
which are not part of the original PCOM specifications [4],
is also available [18]. However, it lacks functions such as
downloading/uploading ladder logic to/from PLCs or device
enumeration. More recently, a basic Python implementation
of PCOM for supporting the development of PCOM-enabled
applications has been released [19].

B. TYPICAL ANATOMY OF SCADA ATTACKS
One of the first steps performed during a typical cyber-
attack is intelligence gathering – collecting as much detail
as possible for each asset in the target system. For networks
in general, and more specifically for SCADA systems, this
means discovering and enumerating devices such as PLCs
and collecting their specific characteristics (manufacturer,
model, firmware version, etc.) to look for known vulnera-
bilities. A classic network scan is useful to find responding
IPs and open ports, but collecting details about PLC mod-
els and versions requires additional investigation. Moreover,
in SCADA systems, a PLC might be configured to bridge
serial segments which may hide additional PLCs that will not
be disclosed, for instance, by TCP SYN Scans.

In [20], a Nmap NSE script is used to identify and enu-
merate Modbus devices, including Modbus slaves (please
note that multiple Modbus slaves may be behind a single IP
address). For the EtherNet/IP protocol, another Nmap NSE
script, from [21], explores the lack of authentication and,
by sending a Request Identification packet, is capable of
retrieving multiple information from a device, such as the
model, firmware, OS and hardware versions, serial numbers,
etc. Other examples, such as those found in [22] and [23],
may be used to find and identify specific details for several
Siemens PLC models.

After the enumeration phase, since several SCADA pro-
tocols still use unencrypted TCP connections, it is typically
possible to hijack TCP sessions or to simply establish new
connections to PLCs, in order to access or modify sensitive
data. For instance, a metasploit module available in [24]
allows reading and writing different types of registers using
standard Modbus functions. In addition to reading and writ-
ing registers, a PLC may sometimes be remotely shutdown,
either by sending a valid command (from a malicious actor)
or by exploring vulnerabilities in the PLC input validation.

A metasploit module for Modbus [25], for instance, allows
remotely starting and stopping a PLC usingModbus requests.
For Ethernet/IP CIP, there are also several modules [26] [27]
that explore application layer issues in the packet handling,
that eventually lead to Denial-of-Service (DoS) conditions.

Reprogramming the entire logic of a PLC might also be
possible, as demonstrated by [28], a metasploit module that
allows downloading and uploading ladder logic code from/to
Schneider Modicon PLCs.

C. MITIGATION STRATEGIES
Since the aforementioned attack steps require access to the
SCADA process control network, it makes sense to consider
the protection of the communications infrastructure as part
of a mitigation strategy. One of the possible solutions for
detecting, alerting or blocking such attacks is to use Network
Intrusion Detection Systems (NIDS) or firewalls. Neverthe-
less, in order to have a perspective of what is going on
the network, such solutions must be able to perform Deep
Packet Inspection (DPI). For instance, read operations might
be allowed but write and administrative operations might
be blocked and reported. Repositories such as [29] contain
collections of Snort rules for several SCADAprotocols (Mod-
bus, DNP3 and S7, among others) that might be used for
detecting several types of operations, including network scans
and Modicon PLC reprogramming attempts. Those rules
specify portions of the TCP payload (based on the offset
and the depth Snort keywords) and match them against
hard-coded values (the signatures of each protocol).

For more complex protocols or interactions, it is recom-
mended to have specific preprocessors able to decode specific
protocol values that may happen to be not always at the
same offset. Jordan [30] details how specific preprocessors
for Modbus and DNP3 protocols allow creating syntax-richer
rules by providing an extended list of keywords. Furthermore,
a set of Ethernet/IP rules to be used with Suricata is described
in [31].

D. WRAP-UP
To the best of our knowledge, there is a gap regarding the
existence of specific studies or any sort of analysis about the
PCOM protocol, from a security-oriented standpoint. This
is a relevant issue if we take into account that both theo-
retical scenarios and real-world incidents, such as Win32/
Industroyer, have demonstrated the extent to which the lack of
security in SCADA protocols constitutes a relevant problem.

To address this lack of information regarding PCOM,
the next sections provide a security analysis focused on
understanding how the vulnerabilities and/or techniques iden-
tified in this section may apply to PCOM, allowing an
attacker to disclose classified process data, to disrupt phys-
ical processes or even to introduce subtle process changes,
by reprogramming PLCs.

Throughout the following sections, the aforementioned
security tools (that were built for other SCADA proto-
cols) were used as an inspiration for us to develop several

42158 VOLUME 7, 2019



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

open-source contributions, which can be used to replicate our
experiments and for further studying the security of PCOM.

III. ANALYSIS OF THE PCOM PROTOCOL
This section introduces the main concepts of the PCOM
network protocol and explains howwe started from a protocol
specification and ended up developing a protocol dissector,
that was later used by in the context of this research to debug
and understand additional details of the protocol.

A. A BRIEF PRIMER ON PCOM
PCOM [4] is a protocol that enables applications to commu-
nicate with PLC devices. Similar to Modbus, the protocol
is based on requests and responses using command codes.
Such codes identify the type of operation (e.g. reading a
Memory Integer (MI) operand). This way, it can be used to
continuously poll (or change) the values of a given set of
PLC registers (e.g. process monitoring values), as well as for
implementing other remote administrative interfaces.

FIGURE 1. PCOM/TCP, PCOM/ASCII and PCOM/binary protocol structure
(based on Unitronics specifications).

The communication may take place on top of different
physical layers and field buses, including CAN (Controller
Area Network) bus, RS-485 or Ethernet. It is also possible
to have inter-PLC communication in master-slave schemes,
where the master PLC acts as a bridge, forwarding all the
requests and replies to/from the slave PLCs. AUnit ID field is
used to uniquely identify a device on a network. For Ethernet
networks, a special zero Unit ID value indicates a direct
connection. Moreover, in such Ethernet networks, PCOM
works on top of TCP sessions by adding an extra 6 bytes
header in between the TCP header and original PCOM mes-
sages (PCOM/TCP). The protocol also supports two different
modes:ASCII andBinary, hereafter referred as PCOM/ASCII
or PCOM/Binary. Fig. 1 illustrates the structure of both
modes. In PCOM/TCP, the communication socket in the PLC
side defaults to TCP port 20256.

PCOM/ASCII allows reading and writing not just mem-
ory addresses (which are usually mapped from inputs

and outputs), but also other types of operands and reserved
values, such as System Bits (SB), System Integers (SI)
and System Longs (SL). PCOM/Binary allows composed
requests such as querying more than one type of operand in
the same packet, usingmultiple data request blocks – opposed
to only one type of operand per request in PCOM/ASCII.
It also allows reading and writing PLC Data Tables – an
operation not supported in the PCOM/ASCII mode.

PCOM capabilities go beyond reading and writing val-
ues. Remote administrative operations via specific command
codes and parameters (e.g. reset a PLC, set the RTC value) are
also possible and can even be used to reprogram the entire
ladder logic of a PLC. Nevertheless, not all PLC models
support PCOM/Binary or even PCOM/TCP.

Specialized applications such as Visilogic use PCOM to
access and manage field devices such as PLCs.

B. BUILDING A DISSECTOR FOR PCOM MESSAGES
In order to develop an application, troubleshoot an erroneous
behavior or even reverse-engineer the PCOM protocol to
better understand the underlying communication, it is neces-
sary to have a way of quickly parsing and analyzing PCOM
messages.

Distinguishing the protocol mode (i.e. ASCII or Binary)
is based on the value of the third byte of the PCOM mes-
sage, and the remainder of the packet may be parsed accord-
ingly, since quickly spoting and grouping different types
of operations depends on the protocol mode. For instance,
in PCOM/ASCII the command code of PCOM responses is
truncated to the first two chars, whereas in PCOM/Binary the
same operation uses a different code, depending on whether
it is a request or a response – the \x80 value is added to the
command code value in replies.

Distinguishing between PCOM/ASCII and PCOM/Binary
is also necessary to automatically handle and decode different
field formats and endianness (e.g. the same Unit ID value
is specified differently in PCOM/ASCII and PCOM/Binary)
or even to compute and validate checksums (since requests
containing a bad checksum are automatically discarded by
the PLC).

A PCOM dissector may help to detect hidden features. For
instance, based on the analysis of captured PCOMmessages,
we observed that the 9th to 11th bytes of PCOM/Binary
messages, which according to the specification [4] should
always be zero, are in fact not always zero. In PCOM/Binary
messages with command code 41 (a request to a PLC, part
of a multi-message operation, cf. section IV) those bytes
start from zero but are incremented by one at each message.
Our observations also showed that other reserved fields from
the PCOM/Binary structure are sometimes used to specify
data and do not always contain the values described in the
specification.

Since we found no publicly available tool able to per-
form the dissection of PCOM messages, we developed our
own Wireshark built-in PCOM/TCP dissector, which was
later used to support the development and validation steps

VOLUME 7, 2019 42159



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

by helping to flag malformed packets and reveal undocu-
mented features. This tool can dissect the PCOM/TCP header,
as well as the header structure for both PCOM/ASCII and
PCOM/Binary modes. It can also translate over 25 PCOM
command codes into meaningful descriptions and dissect the
details of PCOM/ASCII read and write content of inputs,
outputs, SBs, MBs, MIs, SIs, MLs, SLs, MDW, SDW
operands. Some fields were also defined as expert fields [32],
in order to easily spot protocol violations, based on the same
concept Wireshark already uses for flagging TCP anomalies
based on sequence and acknowledgement numbers. The code
of our tool has been integrated into the upstream Wireshark
repository [33] [34] [35].

Developing this built-in dissector for Wireshark provided
us a graphical and a command line interface to visualize the
flows of PCOM messages, their structure and their content.
Fig. 2 provides a snapshot of a PCOMpacket dissection based
on this tool.

FIGURE 2. Snapshot of a PCOM command packet using the wireshark.

From a security perspective, a protocol dissector also
helps understanding policy violations such as abnormal and
unauthorized messages (e.g. reflecting malicious network
scouting or even PLC reprogramming attempts). It also
becomes possible to use specific PCOM filters, such as
pcomascii.command == “RC”, to search and under-
stand the flow of communications and the used PCOM
messages.

In the field of forensics, such protocol dissection frame-
work helps to gather, filter and reconstruct evidences from
network attacks. For instance, when programming a PLC,
a set of specific PCOM commands (as described with
detail in Section IV) are used to transfer files between
an application and the PLC. The PCOM dissector enables
quick detection by searching for file signatures, using
Wireshark filters (e.g. pcombinary.data contains
“\x50\x4b\x03\x04” for a PKZIP file format) and then
reconstructing the file by looking at the content between
the signature and the end of file (e.g. pcombinary.data
contains “\x50\x4b\x05\x06” for a PKZIP file
format). Generic tools to recover files from network traces,
using TCP or HTTP payloads, would fail, since the final file
results from a concatenation of the bytes of a specific PCOM
field of a specific PCOM operation across multiple packets
rather the entire TCP or HTTP payload.

IV. REFERENCE VALIDATION SCENARIO
Real world attacks often depend on specific details of the
target system. For the sake of simplicity, in this paper we
adopted a reference validation scenario which is simple
enough to be quickly understood while still being fairly rep-
resentative of larger and more complex scenarios.

Starting from a literature review including not only
research works but also post-mortem analysis reports of
past incidents, the validation scenario hereby presented was
designed for threat modeling, vulnerability analysis and
exploitation purposes. Regarding the latter point, we intend
to demonstrate specific attack use cases which take advantage
of PCOM’s characteristics, including device scanning tech-
niques, the possibility of accessing all the PLC data using
unauthorized requests, how to disrupt the physical process
under control via remote commands, or even how to repro-
gram the PLC to introduce subtle changes that might only be
perceived in long term.

FIGURE 3. Reference scenario for the validation tests.

Fig. 3 illustrates the reference scenario that was imple-
mented on a testbed, being used to perform attacks, to develop
the auxiliary tools, and to collect the respective datasets. Two
different physical layers are used: an Ethernet segment and a
CAN [36] bus. The scenario is composed of two Unitronics
V130 PLCs, one of them connected only in the CAN bus
and the other deployed in both segments, acting as a bridge.
An HMI with Visilogic 9.8.65 plays the role of an authorized
device/operator. Finally, it is assumed that the attacker has
access to a compromised device in the same network as
the HMI and the PLC Master – for instance, an operator
workstation, a historian database or a network printer able to
reach the field network segment.

This paper is focused only on PCOM network communi-
cations between HMIs and PLCs (i.e. corresponding to levels
0, 1 and 2, according to IEC 62443 standard), and no other
protocol or service vulnerabilities are addressed. Therefore,
we make no assumptions on how the attacker compromised
that device. Nevertheless, incident records show that getting
control of such devices is fairly common as an intermediate
step of successful attacks.

The PLC runs a minimal working ladder logic example
where two sockets were initialized, one for PCOM/TCP and
the other for Modbus. A single ladder OR element (cf. Fig. 4),
representing the process logic, was used to compute the input
of two MIs (MI1 and MI2), into a third one MI3, represent-
ing the field data.

42160 VOLUME 7, 2019



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

FIGURE 4. Ladder logic encoding/representation of the logical process.

FIGURE 5. PTES assessment main steps (according to [37]).

In a real SCADA system, such registers may have different
interpretations, from circuit switch states on a electrical dis-
tribution grid to reservoir levels in water treatment systems.
Even though in real SCADA environments the number of
used registers is larger and a significantly more complex
functional logic is expected to be found, our reference sce-
nario allow us to verify whether we can access and/or change
register values or change process logic.

Given the lack of authentication, authorization and encryp-
tion, PCOM-based systems are vulnerable at least to the fol-
lowing main classes of attacks: direct connection and session
hijacking attacks. The following sections discuss how each of
the security issues of PCOMmight be explored by amalicious
attacker in the context of a SCADA system.

A. NETWORK SCOUTING
Formal security assessment methodologies such as the Pen-
etration Testing Execution Standard (PTES) [37], illustrated
in Fig. 5, typically specify information gathering as one of the
first steps for understanding the environment and collecting
as much information as possible. Structured cyber-attacks
usually start by collecting as much information as possible
about target systems. Typical network scans such an SYN
Scans are good at identifying hosts on a network, but they
fail to identify specific host details. Therefore, they must
be complemented with fingerprinting checks and additional
scripts to collect specific host characteristics.

The PCOM protocol allows unauthenticated queries to
PLCs that can be used to retrieve, among others, the PLC
model, the hardware version, the OS build and OS version,
the PLC name and the UnitID value. During our research,
we developed a NMAP NSE script to collect such detailed

information using PCOM/ASCII and PCOM/Binary com-
mands [38].

Fig. 6 shows the output of a scan (using the aforemen-
tioned PCOM NMAP NSE script) on our scenario. The
script sends PCOM requests with command code ID and the
UnitID field set to 00, exploring two weaknesses, namely:
(1) no authentication is required to communicate with a PLC
and (2), the use of UnitID 00, will make any connected
PLC to respond, no matter with which UnitID was config-
ured. The PCOM/ASCII command code UG is then used to
retrieve the actual PLCUnit ID, and PCOM/Binary command
value 0x0C is used to retrieve the PLC name. Algorithm 1
shows the simplified pseudo-code behind the aforementioned
described scan script.

FIGURE 6. Snapshot of the NMAP output using the PCOM Nmap NSE
script.

Algorithm 1 PCOM/TCP Network Scan
1: unitId ← 0
2: mastert ← getUnitID(unitId) F PCOM/ASCII
3: mastert ← getID(unitId) F PCOM/ASCII
4: mastert ← getPlcName(unitId) F PCOM/Binary
5: if aggressiveMode then
6: for unitId ← 1, 127 do
7: if unitID 6= masterid then
8: slavest ← getID(unitId)
9: slavest ← getPlcName(unitId)
10: end if
11: end for
12: end if

As a technical remark, it should be noted that, at each step
of the loop, the script needs to adjust to the fact that even
though the PLC replies with a TCP acknowledgement to all
received requests (including those for non-existent UnitID’s),
it does not send any PCOM reply if it doesn’t hold the
matching UnitID. It is therefore necessary to iterate across the

VOLUME 7, 2019 42161



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

whole range of possible UnitID values, which is fairly short
anyway (1 to 127). Moreover, if several requests are sent in a
burst they might be rejected, therefore it is possible to adjust
the rate of this interaction.

The information that was gathered allows an attacker to
look-up for potential vulnerabilities and exploits applicable
only to certain models or firmware versions. It may be used,
for instance, to identify which commands a specific PLCmay
accept – accordingly to the PCOM specification [4] not all
models support both PCOM modes or operands.

Both the Visilogic software and the PCOM .Net driver
support the ID command used during the scan. Nevertheless,
Visilogic is not suitable for performing enumeration tasks,
and using a NMAP script eliminates the need for developing
and packaging an entire application from scratch based on
the .Net driver. Moreover, by using NMAP, we get convenient
added features such as portability, a powerful command-line
interface and the possibility of integration with other tool-
chains, on a single, well maintained open-source tool that
can be used to assess multiple SCADA devices from different
vendors, regardless the communication protocol.

B. ACCESSING SENSITIVE DATA
PCOM is vulnerable to all sorts of layer 2 and layer 3 attacks,
and such vulnerabilities can be used to access all the sensitive
data hold by a PLC. Fig. 7 illustrates two possible classes of
attacks against PCOM, discussed next.

FIGURE 7. Direct TCP connection and Man-in-Middle attacks.

Direct TCP connections can be used to query not only
process-related values but also all types of operands, with-
out restriction, including inputs, outputs, System Bits (SIs),
Memory Integers (MIs), etc. This allows not only to access
values that are related to the process under control, but also
to change configuration parameters (such as the network
settings, in SI[101-148] or the info mode password,
in SI[253]) or even to disrupt the PLC operation, by setting
system registers (e.g. SB[314]) which can be used to block
the communications between legitimate nodes and the PLC).

Complex main-in-the-middle (MITM) scenarios where a
PCOM/TCP session is intercepted and redirected via an
attacker-compromised device are also possible, for instance,
by means of an ARP poisoning attack against the commu-
nication endpoints. Such attacks are not specifically related
to PCOM, but can be used against PCOM communications
due to their lack of confidentially and integrity protection.
In [39] we provide a detailed discussion (although based on
the Modbus protocol) of how such MITM attacks can be
deployed on SCADA systems.

Moreover, and similarly to what was done in the scanning
step, an attacker positioned in an Ethernet segment can also
reach the PLC in the CAN bus via the master PLC, simply by
specifying its Unit ID in the PCOM/TCP requests.

In the course of our work, we developed aMetasploit auxil-
iary module that can be used to read and write PLC registers
by selecting the Unit ID, the operand type, the address and
the number of values to read (or by providing the values
to write) [40]. This module supports the operands inputs,
outputs, SBs, MBs, MIs, SIs, MDW, SDW, MLs and SLs.
Moreover, other commands are also supported by providing
the raw hexadecimal of the PCOM/ASCII data payload, with
the other fields being automatically computed – including the
PCOM/ASCII checksum the and PCOM/TCP header. Fig. 8
showcases themain options of theMetasploit PCOMmodule.

FIGURE 8. Snapshot of Metasploit auxiliary PCOM client options.

FIGURE 9. Writing registers of the reference scenario PLC using
Metasploit PCOM client.

Fig. 9 and Fig. 10 illustrate the usage of the Metasploit
PCOM module to write (and, later, to read) the values of the
reference scenario via PCOM/ASCII requests. In the write
operation it is necessary to specify the operand type, the start-
ing address and the values for the first two registers (the third

42162 VOLUME 7, 2019



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

FIGURE 10. Reading registers of the reference scenario PLC using
Metasploit PCOM client.

FIGURE 11. Example of PCOM/ASCII request and reply in the reference
scenario.

one is always rewritten according to the OR operation). In the
read mode it is necessary to specify the number of registers
to read from the starting address.

Fig. 11 depicts the PCOM/ASCII request and reply mes-
sages used to read the threeMI PLC operands of our reference
scenario.

C. DENIAL OF SERVICE (DOS) ATTACKS
Responsible pentesting procedures for ICS [41] often recom-
mend special caution when handling PLCs. This is due to
the fact that it is not uncommon to find devices which are
vulnerable against diverse situations, which may or not be
intentionally triggered, such as single packets triggering input
handling bugs (eventually generated by device fingerprint-
ing procedures) or even brute force attacks causing resource
exhaustion (such as SYN floods). This may lead to DoS
scenarios, with manifold consequences.

DoS attacks are especially relevant in the Critical
Infrastructure domain, due to their potential impact.
An ICS-targeted DoS may have disastrous consequences,
ranging from service or production interruptions (availability
is considered a topmost priority for most automation infras-
tructures) to physical damage or even loss of human life [42].

By analyzing the network traffic generated by OEM appli-
cations such as [16] [17], we were able to identify a series of

reserved commands used for PLC administrative purposes,
which are not part of the command set documented in [4].
When used for their legitimate purpose, these commands
provide a convenient way to remotely control a PLC, allowing
for an operator to recover it from a failure or to reset the device
after a reprogramming operation.

However, due to the lack of authentication and autho-
rization mechanisms, an attacker can abuse administrative
commands for malicious purposes. In particular, the STOP
or the RESET commands can be used to prevent a PLC from
communicating with the HMI or other PLCs. Other scenarios
are also possible: for instance, an attacker may hijack a TCP
connection to block RESET or START operations triggered
by the legitimate operator. In this case, on top of traditional
Address Resolution Protocol (ARP) poisoning, the attacker
should acknowledge such PCOM/TCP requests so the sender
believes they were successful, while preventing them from
reaching the PLC.

In order to study these vulnerabilities, we developed
another Metasploit auxiliary module that is able to send sev-
eral PCOM/ASCII administrative commands – namely start,
stop and reset operations [43]. While we managed to discover
and explore these non-disclosed commands in PCOM/ASCII
mode, our research showed no evidence of similar commands
in the PCOM/Binary mode. Fig. 11 illustrates the options
available in the Metasploit module.

FIGURE 12. Snapshot of available options in the admin pcom metasploit
module.

D. REPROGRAMMING THE PLC
Another interesting attack strategy is to reprogram the PLC,
in order to modify its behavior, for instance, to induce per-
manent damage to the physical equipment or process under
control. Moreover, a skilled attacker may use this technique
as part of a long-term strategy, by introducing subtle changes
to the process control tasks that can go unnoticed for a long
time, eventually only being detectedwhen permanent damage
is already unavoidable (as demonstrated by the well-known
Stuxnet incident [44]). This is a sharp contrast when com-
pared to the almost immediately noticeable effects of other
attacks, such as DoS.

PCOM supports several options for pushing the ladder
logic project to the PLC RAM or flash memory. Although
actively used by applications [16] [17], such options and their
specifications in terms of the PCOM packet structure are not
publicly documented.

VOLUME 7, 2019 42163



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

Nevertheless, there is an option that allows pushing (and,
later, recover) the PLC project, which is used by [16]. If the
PLC was programmed with that option, the lack of authen-
tication and authorization makes it possible to use a rogue
setup to retrieve the original project, change it as desired, and
download it again to the PLC. Moreover, since no encryp-
tion is used, it is also possible to reconstruct the entire
packet sequence or even to change such packets on-the-fly
to recreate a MITM attack.

From the network traffic, we observed a multi-part
PCOM/Binary operation (with command code 0x41) was
used to transfer a relatively large data block to the PLC.
Moreover, it was possible to group all the message parts,
contained in the PCOM/Binary data field, since each one
is identified by little-endian sequential value (starting from
0 and incremented by 1) at bytes 16th to 18th. Addi-
tionally, it was also possible to identify the data for-
mat, a plain PKZIP file by looking for its signature
(e.g. using PCOMwireshark dissector pcombinary.data
contains “\x50\x4b\x03\x04”). Similarly, when
uploading the PLC project to Visilogic, a PKZIP file is also
transferred from the PLC. Since PCOM communications are
not encrypted, as long as the malicious attacker is able to
access the communication, he can reconstruct this file.

Moreover, the PKZIP file, not encrypted, contains a single
file inside, a Microsoft Jet4 Database. The database is pro-
tected by a master password. Nevertheless, Jet4 databases are
known to obfuscate the password in the file header, so the
database password can be easily guessed. In the aforemen-
tioned scenario, as an example, we were able to change the
XOR ladder element to an AND element simply by updating its
element type within the database, after guessing the database
password. This required experimentation with several undoc-
umented functions and values – somethingwhichmight break
things, if not done correctly. A simpler and more viable path
in some attack scenarios, would be to use a rogue application
deployment to retrieve and reprogram the PLC ladder logic.

V. FUZZING THE PCOM PROTOCOL
In the previous section several attack cases were described,
using our reference PCOM scenario to illustrate their funda-
mental operation and deployment procedures. These are clas-
sic ‘‘textbook’’ attacks which we were able to perform after
conducting an investigation about the inner workings of the
PCOM protocol, based on publicly available documentation
and analysis of network traffic.

In order to go beyond, a network fuzzer can be used.
Network fuzzers are tools that automate and test different
types of input conditions by generating random or semi-
randomized values. For the PCOMprotocol, known functions
could be validated, for instance, against malformed pack-
ets such as protocol violations, bad check-sums, unexpected
fields values, etc.

Fuzzing the PCOM protocol might also be useful to
explore undocumented functions, protocol vulnerabilities or
simply to discover specific inputs that might crash a PLC

(e.g. a buffer overflow), using an automated procedure. This
automation is also valuable if we intend to assess how differ-
ent PLC models handle exceptional conditions or to discover
supported PCOM functions in each model. Although not part
of our research, those vulnerabilities might apply not only
to PCOM PLCs but also to software applications used in the
HMI side.

In the context of our research, we developed a PCOM
fuzzer, in the form of a Metasploit auxiliary module.
This module allows specific testing options such as send-
ing randomized values of some specific protocol fields
(e.g. PCOM/ASCII command codes) or completely random
messages.

TABLE 1. Summary of results of fuzzing.

Table 1 provides a brief summary of the tests and results
performed during the fuzz experiments we conducted. Based
on test 1, we observed the tested PLCs accept and reply
to malformed-packets containing invalid PCOM/TCP length
value. Nevertheless, based on tests 3 and 4, it appears that
the tested PCOM PLCs acknowledge all the TCP requests
but do not respond to bad PCOM requests (e.g. they do
not respond to packets with bad checksums or non-existent
Unit IDs). Opposed to other protocols, PCOM does not seem
to return any exception or code to invalid requests. Thismakes
it harder to identify all the hidden functions and features
of a given PLC – which is positive from a security point-
of-view. Moreover, the tested PCOM PLCs seem to reject
consecutive connections if they are sent too fast (test 2),
forcing scouting processes to slow down. Moreover, we also
tested invalid combinations of both command codes and com-
mand data fields. We observed non-conclusive results, as the
tested PLCs sometimes do not reply or reply with a invalid
or empty results. Nevertheless, none of the combinations we
tried resulted in a PLC DoS condition – which is also positive
from a security point-of-view.

VI. MITIGATION STRATEGIES
Several strategies might be pursued to address the security
shortcomings of the protocols such as PCOM. One of the first
approaches, if not the most obvious, would imply a complete
redesign of the protocol to add the missing security features.

As several SCADA vendors are already moving away from
legacy protocols, this could be an opportunity to pursue a bal-
anced approach, by keepingmost of the PCOM semantics and
adding the missing authentication, access control, confiden-
tiality and integrity functionalities. For instance, the Modbus

42164 VOLUME 7, 2019



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

Organization released in October 2018, a new Modbus/TCP
Security protocol specification [3]. New conforming devices
should use TLS 1.2 or better to achieve confidentiality and
data integrity on the top of TCP sessions avoiding all sort
of replay and MITM attacks. Whereas the authentication and
authorization rely on x.509v3 certificates and a combination
of an AuthZ function and a Roles-to-Rights Rules Database
to determine if the requestedModbus functions code is autho-
rized or not. Both, authorization algorithm and database, are
vendor specific.

Unfortunately, the authors have no evidence pointing
towards a possible improvement, redesign or replacement of
the PCOMprotocol. Considering this situation, several strate-
gies may be considered tomitigate the aforementioned issues,
which will be described next. Rather than definitive solutions
(something that would imply revising the protocol), these
proposals intend to provide the means to detect and block
potential unwanted communications in existing scenarios.

A. IMPROVING DETECTION CAPABILITIES
Network IDS (NIDS) are among the most effective tools
when it comes to deal the security issues of legacy or insecure
protocols (as it is the case for PCOM). The role of a NIDS is
to distinguish legitimate traffic patterns from malicious ones,
offering a complementary approach to the fundamental role
performed by traditional firewalls. Firewalls are helpful to
shield the trusted perimeter and block the traffic based on
TCP/IP header fields, such as an IP address or a TCP port,
mostly playing a preventive role. Nevertheless, a fine control
based on protocol features (e.g. determine which PCOM
functions should be blocked and which ones are allowed)
would require Deep Packet Inspection (DPI) and custom
PCOM parsing.

But even when supporting DPI, classic firewalls often fall
short when it comes to offer comprehensive protection against
more sophisticated attacks. For instance, because PCOM is
vulnerable to spoofing attacks, the single reliance on classic
firewalls for protection is insufficient, requiring complemen-
tary solutions (e.g. ARP monitoring solutions such as Snort’s
ARP preprocessor, to detect ARP poisoning attacks). More-
over, because of the specific nature of the SCADA ecosystem,
where availability has been traditionally favored over confi-
dentially and integrity, the decision to specify traffic blocking
or throttling reactions for specific rules is something often
questioned, due to the potentially negative impact in terms of
operational and safety levels, opting instead for simple event
logging.

A NIDS such as Snort might be used to detect and report
unwanted communications, but to be able to effectively block
them it must be deployed on the middle of the communica-
tions path, providing intrusion prevention capabilities – this
is referred as inline mode in the official Snort documentation.
Inline mode has its own fair share of issues which makes it
unpopular among SCADA operators: besides introducing a
single point of failure in the communications path (by placing
the Snort host in a traffic mediation point), there is also the

possibility that a knowledgeable attackermay try to abuse it to
deliberately drop legitimate traffic. On the other hand, if the
NIDS deployment is only passive (offering pure detection
capabilities, by just reporting alarms), specific PCOM attacks
that only require a single PCOM packet to go through (like
remotely shutdown a PLC)might be successful, despite being
detected and reported. In the end, it all comes down to a
tradeoff between prioritizing availability (passive mode) or
having an effective reaction (inline mode) capabilities.

Independently of the deployment options, a Snort instance
(or any other NIDS, for that purpose) can only be effective
for a specific environment on condition that it is loaded with
an adequate ruleset covering the protocol mix being used.
But, to the extend of the authors’ knowledge, PCOM was
not supported by any mainstream NIDS. To address this gap,
the authors released a set of Snort Rules to detect PCOM/TCP
packets [45]. Each rule was designed to match a single
command code, so that it is possible not only to distinguish
administrative remote commands but also reads and writes of
different types of operands. For instance, we might want to
block system related operands (i.e. SB, SI, SL) and allow the
access to other operands. We might also want to distinguish
between read and writes in some of the operations. Each
rule searches for specific byte values corresponding to the
command codes using hard-coded positions. To improve the
readability, those command values were specified using their
ASCII representation for PCOM/ASCII and hexadecimal val-
ues for PCOM/Binary rules. Fig. 13 shows an excerpt of those
rules.

FIGURE 13. Excerpt of PCOM rules for Snort NIDS.

In ASCII mode, the command code of a request may
have 2 or 3 bytes, whereas the replies will always have
only 2 bytes. In the reply, the command code appears at
a different offset because of the STX marker. Such varia-
tions in PCOM/ASCII can be accommodated by using Snort
offset and depth keywords. In both modes, the keyword
byte_test was used to verify whether the payload is
encoded in PCOM/ASCII or PCOM/Binary mode, based on
the value of the third byte.

Nevertheless, in PCOM/Binary mode such hard-coded
rules might only be able to detect the operation type (e.g. byte
12th at 77 for reading operands), being unable to distinguish
the operand types and addresses (which are structured in data
blocks with a variable size), because in this mode a single
packet might request more than one operand type. This calls

VOLUME 7, 2019 42165



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

for a dedicated PCOM Snort preprocessor, not only to unlock
more complex DPI logic but also to improve the range of
available keyword options to further improve the readability
of such rules.

B. OTHER APPROACHES
Besides the traditional strategies recommending the introduc-
tion of segregated network domains with disallow-by-default
traffic control policies, or the use of bump-in-the-wire Vir-
tual Private Networks to provide encryption with role-based
authentication, there are other alternatives for which this
research may also be relevant, namely the implementation of
PCOM-aware data diodes and honeypots.

Data diodes provide amechanism to enforce strict one-way
communications between two networks or devices, being also
known as unidirectional gateways, since they allow for data to
be securely transferred from a restricted access domain (such
as a process control network) to a less secure network tier, but
not in the opposite direction [46]. Such gateways require the
use of additional software components in each side of the uni-
directional link in order to support the conversion of TCP/IP
SCADA protocol requests into unidirectional data streams -
this due to the fact these protocols (such as Modbus/TCP or
DNP3) were conceived for bidirectional operation, relying
on a three-way handshake and continuous acknowledgments
between peers. To the best of our knowledge, there is no
PCOM support for existing commercial data diode offers –
however, we consider that the information provided in this
paper will contribute to ease the task of creating the required
protocol conversion components.

Another interesting mechanism for defensive purposes are
honeypots. SCADA honeypots have existed for some time,
such as conpot [47] or the one proposed by [48], but none
has PCOM support. While such a honeypot would hardly
constitute an attack deterrent, it could play a relevant role in
helping disclose attackers at early phases, providing a means
not only to detect them but also to profile their strategy,
by gathering as much evidence as possible. The research
hereby documented could also be used to create a PCOM
device emulator that would share a significant deal of its code
basis with the software components required for data diode
support.

Finally, the PCOM dissection provided in this paper is
also instrumental to develop SCADA-specific security detec-
tion solutions based on statistics and/or machine learning
approaches, which are useful to monitor and detect process
value deviations from a normal behavior.

VII. PCOM DATASETS - A MANIFOLD CONTRIBUTION
Datasets are vital to study and comprehend how protocols
work, as well as for the development and validation of secu-
rity tools, being used for model training and validation (for
instance, in the case of Machine Learning classifiers) or
for the establishment of nominal parameters for statistical
analysis. As far as the authors know, when it comes to the
PCOM protocol, there are no publicly available datasets.

In the particular case of the research effort hereby doc-
umented, a PCOM dataset was considered instrumental to
validate the correct behavior of the previously discussed
tools (e.g. assess the Snort PCOM rules), but also to support
further research and development of new tools. Moreover,
the authors believe there might be several undocumented
and undiscovered PCOM/Binary functions used during the
reprogramming step – having a dataset would be instrumental
towards disclosing their existence, semantics and structure.

To fill this gap, the authors released a set of labeled indi-
vidual PCOM/TCP captures in libpcap format [49], each one
associated to a single PCOM operation, whether reading or
programming. The description of each one is enumerated in
table 2.

TABLE 2. PCOM datasets released within this research.

VIII. CONCLUSION
The main objective of this article was to create awareness
for the security issues found in PCOM, a rather unexplored
SCADA protocol, while at the same time showcasing the use
of a structured methodology to disclose these same issues.
By striking a contrast with the conventional approach to
this kind of work, often based on ad-hoc procedures mostly
focused on filling a CVE report, the effort hereby documented
goes full-circle by providing several public contributions that
are instrumental for infrastructure operators, security pen-
testers, auditors and researchers alike.

Starting from a purpose-built research testbed and follow-
ing the PTES methodology, the authors were able to scout
for, pinpoint, identify and explore several vulnerabilities of
the PCOM protocol, implementing and testing several attack
use cases. Together with an effective OSINT (Open Source
Intelligence) effort, which provided information about the
core PCOM functions, the authors were able to pursue a
security analysis procedure, in this case to showcase how

42166 VOLUME 7, 2019



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

valid PCOM messages can be leveraged by a malicious actor
to ultimately gain full control over a controlled process.
Finally, several mitigation strategies were proposed, albeit a
more definitive solution would imply an entire redesign of the
protocol, similarly to what is happening with other SCADA
protocols.

Overall, and similarly to other SCADA protocols, it was
found that PCOM lacks security features such as confidential-
ity or integrity and is vulnerable to several types of network
attacks that might be used to disclose information about the
process under control, affect the integrity of inflight data,
manipulate runtime device registers or even disrupt the pro-
cess. Despite the importance of such issues, it must be clearly
stated that PCOM is no worse than its contemporary SCADA
protocol counterparts.

However, not all is done yet. Some of the proposed solu-
tions, such as the use of inline NIDS providing automatic
reaction mechanisms, are not compatible with the fundamen-
tal SCADA ecosystem premise that considers availability a
topmost priority. Support for PCOM-aware DPI capabilities
on firewalls or the development of a dedicated Snort prepro-
cessor capable of properly handlemultiple requests in a single
PCOM/Binary packet are examples of how the information
that was gathered about PCOM may be used to improve the
security of existing production environments.

Finally, several open-source contributions were released,
in an intent to engage more discussion around the PCOM
protocol from a security perspective, namely:
• A Wireshark PCOM dissector, which constitutes an
extra step to better understand the protocol, while pro-
viding a starting point for further research.

• A set of Metasploit modules, used to implement several
proof-of-concept attacks and to test our Snort rules. They
can also be used for security auditing procedures in
future security assessments.

• A set of Snort rules, published in order to provide more
solid detection capabilities and eventually help deciding
which PCOM options are to be allowed for a given
scenario.

• A complete PCOM dataset, generated to support the
internal protocol analysis effort and tool development
processes, which was also donated to the public domain.

Nevertheless, there is a lot of space for improvement,
including new detection and preventing mechanisms or
exploring other undocumented functions and features.

REFERENCES
[1] ENISA. (2017). Communication Network Dependencies for

ICS/SCADA Systems. [Online]. Available: https://www.enisa.europa.
eu/publications/ics-scada-dependencies/at_download/fullReport

[2] Modbus Organization. (2006). Modbus Application Protocol
Specification V1.1b. [Online]. Available: http://www.modbus.org/docs/
Modbus_Application_Protocol_V1_1b.pdf

[3] Modbus Organization. (2018). Modbus/TCP Security Protocol Speci-
fication. [Online]. Available: http://modbus.org/docs/MB-TCP-Security-
v21_2018-07-24.pdf

[4] Unitronics. Communication With the Vision PLC. Accessed:
Jan. 4, 2019. [Online]. Available: https://unitronicsplc.com/Download/
SoftwareUtilities/Unitronics%20PCOM%20Protocol.pdf

[5] Nmap Project. Sectools.Org Top Network Security Tools. Accessed:
Jan. 5, 2019. [Online]. Available: https://sectools.org/

[6] Wireshark Foundation. WiresharkÂů Go Deep. Accessed: Jan. 6, 2019.
[Online]. Available: https://www.wireshark.org

[7] Rapid7. Metasploit | Penetration Testing Software, Pen Testing Security.
Accessed: Jan. 7, 2019. [Online]. Available: https://www.metasploit.com/

[8] Cisco. Snort–Network Intrusion Detection & Prevention System.
Accessed: Jan. 11, 2019. [Online]. Available: https://www.snort.org/

[9] G. Lyon. NMAP: The Network Mapper–Free Security Scanner. Accessed:
Jan. 13, 2019. [Online]. Available: https://nmap.org/

[10] S. Nazir, S. Patel, and D. Patel, ‘‘Assessing and augmenting SCADA cyber
security: A survey of techniques,’’ Comput. Secur., vol. 70, pp. 436–454,
Sep. 2017.

[11] A. Humayed, J. Lin, F. Li, and B. Luo, ‘‘Cyber-physical systems security—
A survey,’’ IEEE Internet Things J., vol. 4, no. 6, pp. 1802–1831,
Dec. 2017.

[12] E. D. Knapp and J. T. Langill, Industrial Network Security: Securing crit-
ical infrastructure networks for smart grid, SCADA, and other Industrial
Control Systems. Boston, MA, USA: Syngress, 2014.

[13] B. Zhu, A. Joseph, and S. Sastry, ‘‘A taxonomy of cyber attacks on SCADA
systems,’’ in Proc. IEEE Int. Conf. Internet Things, Cyber, Phys. Social
Comput., Oct. 2011, pp. 380–388.

[14] S. D. Antón, D. Fraunholz, C. Lipps, F. Pohl, M. Zimmermann, and
H. D. Schotten, ‘‘Two decades of SCADA exploitation: A brief history,’’
inProc. IEEEConf. Appl., Inf. Netw. Secur. (AINS), Nov. 2017, pp. 98–104.

[15] A. Cherepanov, ‘‘WIN32/INDUSTROYER, a new threat for industrial
control systems,’’ ESET, White Paper, Jun. 2017. [Online]. Available:
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_
Industroyer.pdf

[16] Unitronics. Visilogic for Vision and Samba. [Online]. Available:
https://unitronicsplc.com/software-visilogic-for-programmable-
controllers

[17] R. Lion. Crimson 3.0. Accessed: Jan. 4, 2019. [Online]. Available:
http://www.redlion.net/crimson-30

[18] Unitronics. .Net Driver. Accessed: Jan. 4, 2019. [Online]. Available:
https://unitronicsplc.com/Download/SoftwareUtilities

[19] J. Thériault.PCOM—ABasic PCOM Implementation in Python. Accessed:
Feb. 4, 2019. [Online]. Available: https://pypi.org/project/pcom/

[20] A. Rudakov. Enumerates SCADA Modbus Slave IDS (SIDS) and Collects
Their Device Information. Accessed: Feb. 12, 2019. [Online]. Available:
https://svn.nmap.org/nmap/scripts/modbus-discover.nse

[21] S. Hilt. ENIP NMAP Scan. Accessed: Feb. 15, 2019. [Online]. Available:
https://svn.nmap.org/nmap/scripts/enip-info.nse

[22] T. Deneut. S7 NMAP Scan. Accessed: Feb. 17, 2019. [Online].
Available: https://github.com/rapid7/metasploit-framework/blob/master/
modules/auxiliary/scanner/scada/profinet_siemens.rb

[23] S. Hilt. S7 NMAP Scan. Accessed: Feb. 17, 2019. [Online]. Available:
https://svn.nmap.org/nmap/scripts/s7-info.nse

[24] EsMnemon, A. Soullie, A. Torrents, and M. Chevalier, Modbus Client
Utility.

[25] R. Wightman. Schneider Modicon Remote START/STOP
Command. Accessed: Feb. 18, 2019. [Online]. Available: https://
github.com/rapid7/metasploit-framework/blob/master/modules/auxiliary/
admin/scada/modicon_command.rb

[26] R. Santamarta and R. Wightman. Allen-Bradley/Rockwell
Automation EtherNet/IP CIP Commands. Accessed: Feb. 18, 2019.
[Online]. Available: https://www.rapid7.com/db/modules/auxiliary/
admin/scada/multi_cip_command

[27] J. D. Monteiro, L. Rosa, and M. B. de Freitas. DoS Exploitation Of Allen-
Bradley’s Legacy Protocol (PCCC). Accessed: Feb. 5, 2019. [Online].
Available: https://github.com/rapid7/metasploit-framework/pull/11106

[28] R. Wightman. Schneider Modicon Ladder Logic
Upload/Download. Accessed: Feb. 5, 2019. [Online]. Available:
https://github.com/rapid7/metasploit-framework/blob/master/modules/
auxiliary/admin/scada/modicon_stux_transfer.rb

[29] S. Hilt. Digital Bond’s IDS/IPS Rules for ICS and ICS
Protocols. Accessed: Feb. 17, 2019. [Online]. Available: https://
github.com/digitalbond/Quickdraw-Snort/blob/master/all-quickdraw.
rules

[30] R. Jordan. Snort 2.9.2: SCADA Preprocessors. Accessed: Feb. 17, 2019.
[Online]. Available: https://blog.snort.org/2012/01/snort-292-scada-
preprocessors.html

VOLUME 7, 2019 42167



L. Rosa et al.: Comprehensive Security Analysis of a SCADA Protocol: From OSINT to Mitigation

[31] Digital Bond, Inc. and N-Dimension Solutions, Solana
Networks. A Set of ICS IDS Rules for Use With Suricata.
Accessed: Feb. 7, 2019. [Online]. Available: https://github.
com/digitalbond/Quickdraw-Suricata/blob/master/enip-rules

[32] Wireshark Foundation. Wireshark–7.4. Expert Information. Accessed:
Feb. 16, 2019. [Online]. Available: https://www.wireshark.org/docs/
wsug_html_chunked/ChAdvExpert.html

[33] L. Rosa. PCOMTCP: New Built-in Dissector for PCOM
Protocol. Accessed: Feb. 20, 2019. [Online]. Available:
https://code.wireshark.org/review/#/c/30823/

[34] L. Rosa. PCOMTCP: Dissection of Additional PCOM/ASCII
Fields. Accessed: Feb. 20, 2019. [Online]. Available:
https://code.wireshark.org/review/#/c/31467/

[35] L. Rosa. PCOMTCP: PCOM/Binary Command to Descrip-
tions. Accessed: Feb. 20, 2019. [Online]. Available:
https://code.wireshark.org/review/#/c/31858/

[36] R. Bosch et al., ‘‘Can specification version 2.0,’’ Rober Bousch GmbH,
Postfach, Gerlingen, Germany, Tech. Rep. 300240, 1991, p. 72.

[37] Penetration Testing Execution Standard Group. Penetration Testing
Execution Standard. [Online]. Available: http://www.pentest-
standard.org/index.php/Main_Page

[38] L. Rosa. SCADA Scan to Collect Information From Unitronics PLCS
Via PCOM Protocol. Accessed: Feb. 20, 2019. [Online]. Available:
https://github.com/nmap/nmap/pull/1445

[39] L. Rosa, T. Cruz, P. Simões, E. Monteiro, and L. Lev, ‘‘Attacking
SCADA systems: A practical perspective,’’ in Proc. IFIP/IEEE
Symp. Integr. Netw. Service Manage. (IM), Lisbon, Portugal,
May 2017, pp. 741–746. Accessed: Feb. 6, 2019. [Online]. Available:
http://ieeexplore.ieee.org/document/7987369/

[40] L. Rosa. New Module Pcomclient. Accessed: Feb. 20, 2019. [Online].
Available: https://github.com/rapid7/metasploit-framework/pull/11219/

[41] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn, ‘‘NIST
special publication 800-82, revision 2: Guide to industrial control sys-
tems (ICS) security,’’ in Proc. NIST, 2014.

[42] T. Cruz et al., ‘‘A cybersecurity detection framework for supervisory
control and data acquisition systems,’’ IEEE Trans. Ind. Informat., vol. 12,
no. 6, pp. 2236–2246, Dec. 2016.

[43] L. Rosa. New PCOM Module to Send Admin Commands. Accessed:
Feb. 20, 2019. [Online]. Available: https://github.com/rapid7/metasploit-
framework/pull/11220/

[44] R. Langner, ‘‘To kill a centrifuge: A technical analysis of what Stuxnet’s
creators tried to achieve,’’ The Langner Group, Hamburg, Germany, 2013.

[45] L. Rosa. New Snort Rules for PCOM Protocol. Accessed:
Feb. 20, 2019. [Online]. Available: https://marc.info/?l=snort-
sigs&m=154746968717558

[46] M. B. de Freitas, L. Rosa, T. Cruz, and P. Simões, ‘‘SDN-enabled virtual
data diode,’’ in Computer Security. Cham, Switzerland: Springer, 2018,
pp. 102–118.

[47] L. Rist, J. Vestergaard, D. Haslinger, A. Pasquale, and J. Smith. (2013).
CONPOT ICS/SCADA Honeypot. Honeynet Project.

[48] P. Simões, T. Cruz, J. Proença, and E. Monteiro, ‘‘Specialized honey-
pots for SCADA systems,’’ in Cyber Security: Analytics, Technology and
Automation. Cham, Switzerland: Springer, 2015, pp. 251–269.

[49] L. Rosa. Pcom PCAP Captures. Accessed: Feb. 20, 2019.
[Online]. Available: https://github.com/lmrosa/pcom-misc/tree/master/
pcaps

LUIS ROSA received the M.Sc. degree in infor-
matics engineering from the Higher School of
Technology and Management, Polytechnic Insti-
tute of Coimbra, Coimbra, Portugal, in 2013. He is
currently pursuing the Ph.D. degree in informatics
engineeringwith theUniversity of Coimbra, where
he is also a Junior Researcher with the Centre
for Informatics and Systems and participates in
several research projects in the those fields. His
research interests include security, event manage-

ment, and critical infrastructure protection.

MIGUEL FREITAS received the M.Sc. degree in
chemical engineering from the Technical Univer-
sity of Lisbon, in 2016, and the M.Sc. degree
in informatics engineering from the University
of Coimbra, in 2018, where he is currently a
Junior Researcher with the Center for Informat-
ics and Systems. He is also a collaborator for
some open-source projects. His research interests
include software-defined networking, cybersecu-
rity, and critical infrastructure protection.

SERGEY MAZO received the M.Sc. degree in
electricity from Ivanovo State Power University,
Russia, in 2003. He is currently an Engineer
with Israel Electric Corporation. He is also a
specialist in several supervisory control and data
acquisition (SCADA)-related software and net-
work communication protocols. His research inter-
ests include security, SCADA systems, critical
infrastructure protection, penetration testing, and
computer forensics.

EDMUNDO MONTEIRO is currently a Full Pro-
fessor with the University of Coimbra, Portugal.
He has more than 30 years of research experi-
ence in the field of computer communications,
wireless networks, quality of service and expe-
rience, network and service management, and
computer and network security. He participated
in many Portuguese, European, and international
research projects and initiatives. His publication
list includes over 200 publications in journals,

books, and international refereed conferences. He has co-authored nine
international patents. He is a member of the Editorial Board of Wireless
Networks (Springer) journal and is involved in the organization of many
national and international conferences and workshops. He is also a Senior
Member of the IEEE Communications Society and the ACM Special Interest
Group on Communications. He is also a Portuguese Representative in IFIP
TC6 (Communication Systems).

TIAGO CRUZ (SM’18) received the Ph.D. degree
in informatics engineering from the University of
Coimbra, Coimbra, Portugal, in 2012, where he
has been an Assistant Professor with the Depart-
ment of Informatics Engineering, since 2013.
He is the author of more than 40 publications,
including chapters in books, journal articles, and
conference papers. His research interests include
the areas of management systems for communi-
cations infrastructures and services, critical infras-

tructure security, broadband access network device and service management,
the Internet of Things, software-defined networking, and network function
virtualization. He is a member of the IEEE Communications Society.

PAULO SIMÕES (M’10) received the Ph.D.
degree in informatics engineering from the Uni-
versity of Coimbra, Coimbra, Portugal, in 2002,
where he is currently a Tenured Assistant Profes-
sor with the Department of Informatics Engineer-
ing. He regularly collaborates with the Instituto
Pedro Nunes as a Senior Consultant, leading tech-
nology transfer projects for industry partners, such
as telecommunications operators and energy utili-
ties. He has more than 150 publications in refereed

journals and conferences. His research interests include the future Internet,
networks, and infrastructure management, security, critical infrastructure
protection, and virtualization of networking and computing resources. He is
also a member of the IEEE Communications Society.

42168 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	PCOM-RELATED TOOLS
	TYPICAL ANATOMY OF SCADA ATTACKS
	MITIGATION STRATEGIES
	WRAP-UP

	ANALYSIS OF THE PCOM PROTOCOL
	A BRIEF PRIMER ON PCOM
	BUILDING A DISSECTOR FOR PCOM MESSAGES

	REFERENCE VALIDATION SCENARIO
	NETWORK SCOUTING
	ACCESSING SENSITIVE DATA
	DENIAL OF SERVICE (DOS) ATTACKS
	REPROGRAMMING THE PLC

	FUZZING THE PCOM PROTOCOL
	MITIGATION STRATEGIES
	IMPROVING DETECTION CAPABILITIES
	OTHER APPROACHES

	PCOM DATASETS - A MANIFOLD CONTRIBUTION
	CONCLUSION
	REFERENCES
	Biographies
	LUIS ROSA
	MIGUEL FREITAS
	SERGEY MAZO
	EDMUNDO MONTEIRO
	TIAGO CRUZ
	PAULO SIMÕES


