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Abstract 

The application of damage tolerance to the design of components is based on the ability to predict fatigue crack growth (FCG) rate 
precisely. A literature review about analytical models showed a great number of models developed for specific materials and 
loading conditions. A numerical analysis of a CT specimen made of 304L stainless steel showed the complex influence of material 
parameters on FCG, which also depends on loading parameters, geometry and environmental conditions. Therefore an alternative 
to analytical models is proposed here, based on plastic CTOD, assuming that this is the crack driving force. A material law must 
be first obtained relating da/dN with plastic CTOD range, p, obtained numerically using the finite element method or 
experimentally using DIC. This law changes with material and includes all material parameters and also environmental conditions 
(temperature and atmosphere). The design of a specific cracked component is made using numerical tools in order to obtain p for 
different crack lengths. This second analysis includes the effect of geometrical and loading parameters.  
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1. Introduction 

Designers are pressed to reduce the level of conservatism in engineering systems in order to meet targets on cost, 
weight and emissions. Prediction of remaining life of the structural elements influences the decisions of maintenance 
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engineers (checking intervals, corrections, replacements). Most of the industries now-a-days prefer to follow the 
damage tolerance approach. Such an approach involves designing of structural components with certain allowance to 
small cracks (i.e. the non-propagating cracks) or the defects, which could be repaired from time to time by periodic 
inspection. Non-destructive techniques are generally used to analyze and evaluate the residual fatigue life of the 
components. This approach is particularly recommended for manufacturing industries where defects are unavoidable 
such as the case of welding, casting or additive manufacturing. The ability to model and predict fatigue crack growth 
rate precisely is one of the key aspects of the damage tolerance approach. There is a great number of models and 
approaches for fatigue crack growth analysis, and the selection of the model is usually based on the experience and 
persona1 preference of the analyst. 

The objectives of the present study are (1) to present literature models; (2) to present numerical results about the 
effect of material parameters on fatigue crack growth (FCG) and (3) to promote a discussion about the FCG models. 
The parameters studied in the numerical approach were Young’s modulus, yield stress, Y0, and isotropic and kinematic 
hardening parameters. The challenge is a model which includes all parameters and is dimensionally consistent.  

2. Literature review 

2.1. Models with load parameters  

     Table 1. FCG models with loading parameters. 

Reference Model Comments  
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01 quantifies the sensitivity to Kmax 

K+ - positive range of K 

 
A very large number of models have been proposed to describe FCG dealing with loading parameters. Table 1 

presents some of these models. The first model was Paris law, which assumed that K is the crack driving force. 
Fatigue threshold, Kth, and fracture toughness, KC, were added to the models in order to define the lower and upper 
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limits of da/dN-K curves, respectively. In order to include the effect of stress ratio, R, which increases FCG rate for 
the same K, Elber proposed the crack closure phenomenon and an effective K=Kmax-Kopen, being Kmax and Kopen 
the maximum and opening stress intensity factors (NASGRO, 2016). There are authors who disagree about the 
relevance of crack closure phenomenon and proposed alternative models to quantify the effect of stress ratio, like 
Walker (1970) or Kujawski (2001). All these models have fitting parameters and assume a deterministic behavior. 
Since they do not include material properties, they are specific for each material. 

     Table 2. FCG models including material parameters. 

Reference Model Comments 

Pelloux (1970) 
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f – failure strain 
n – hardening exponent 
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K’- cyclic strain hardening coefficient 

n’ - cyclic strain hardening exponent 

 
However, material properties have a significant influence on FCG rate, therefore material constants were included 

in the models, as indicated in Table 2. Concerning Young’s modulus, E, there is an almost general agreement that 
da/dN is proportional to 1/E. The models of Schwalbe (1974) and Shi (2014) proposed other relations. Poisson ration, 
, is usually neglected, except in the models of Jablonski (1977) and Skelton (1988). Material’s yield stress, Y0, is 
widely included, and da/dN is assumed to be proportional to 1/Y0, in most of the models. However, other relations 
were proposed by Schwalbe (1974) and Shi (2014). The isotropic hardening is included in some of the models usually 
using the hardening exponent, n (or n’, the cyclic hardening exponent). The kinematic hardening parameters were not 
included in literature models. There is also an influence of environment, namely temperature and atmosphere, which 
usually is not included in the models. Testing in vacuum shows the great influence of environment on FCG rate, which 
is usually associated with oxidation or hydrogen embrittlement.  Therefore, all these models are incomplete in the 
sense that do not include all parameters affecting FCG. 
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3. Numerical model 

A compact tension specimen, C(T), with a width, W, equal to 50 mm, and an initial crack length, a0, of 24 mm, 
was numerically modeled in the DD3IMP, an in-house code. The symmetry conditions of specimen’s geometry 
allowed the modeling of only ¼ of the specimen, reducing the numerical overhead. The contact of crack flanks enabled 
the simulation of plasticity induced crack closure. Relatively to the specimen’s thickness, t, only 0.1 mm were 
simulated to reduce numerical effort and to obtain plane stress state. A remote cyclic load was applied in the hole of 
the specimen giving Kmax and K of 18.3 and 16.5 MPa.m0.5, respectively, and a stress ratio R=0.1. 

The finite element mesh was refined in the crack tip region, having there elements with 88 m2. Each crack 
increment corresponded to the dimension of the elements in the ultra-refined region (8 μm). Two load cycles were 
applied between crack increments. The total crack growth was 1.272 mm, which corresponded to 159 crack increments 
of 8 m each, in order to stabilize tip plastic deformation and closure phenomenon. All simulations were evaluated at 
the first node behind the crack tip, at a distance of 8 μm. 

The material behavior was simulated considering generalized Hooke’s law for the elastic behavior, von Mises yield 
criterion and mixed (isotropic+kinematic) hardening, coupled with Voce isotropic hardening law: 

� � �� � ����� � ����� � �����𝐶𝐶�𝜀𝜀�̅��    (1)

and Frederick-Armstrong kinematic hardening law: 

𝑿𝑿� � 𝐶𝐶� �𝑋𝑋��� ∑�� � 𝑿𝑿�� 𝜀𝜀̄��,    (2)

YSat is the isotropic saturation stress, CY is the isotropic saturation rate, 𝜀𝜀̄� is the equivalent plastic strain, 𝑿𝑿�  is the back 
stress rate, 𝜎𝜎�  is the equivalent stress, 𝜀𝜀̄��  is the equivalent plastic strain rate and 𝐶𝐶�  and 𝑋𝑋���  are the kinematic 
hardening parameters, respectively representing the saturation rate and the saturation value of the exponential 
kinematic hardening. Two materials were considered in this study, the 304L stainless steel and the 7050-T6 aluminium 
alloy. The material properties are presented in Table 3. 

     Table 3. FCG models including material parameters. 

Reference E 

GPa 

 

- 

Y0 

GPa 

YSat 

MPa 

CY 

- 

XSat 

MPa 

CY 

- 

SS304L 196 0.3 117 204 9 176 300 

AA7050-T6 71.7 0.33 420.50 420.50 0 198.35 228.91 

4. Numerical results 

Figure 1 presents a typical plot of CTOD (Crack Tip Opening Displacement) versus applied load, measured at the 
first node behind crack tip. Between the minimum load (point A) and point B, the crack is closed. This crack closure 
phenomenon is produced by the residual plastic wake, formed as the crack propagates, which acts as a plastic wedge 
forcing the contact of crack flanks. After opening, at point B, the material deforms elastically, up to point C. Then, 
plastic deformation starts and increases up to point D, corresponding to the maximum load. The plastic CTOD range, 
p, indicated in Figure 1, is assumed to be the crack driving force for FCG. 

Figure 2 shows the effect of the different material constants on FCG rate. Parametric variations of 25 and 50% 
were made in each material parameter, relatively to the reference values presented in Table 2. A linear variation of 
da/dN with 1/E is evident, which is according with the literature models presented in Table 2. This is a good indication 
for the robustness of the numerical procedure followed in here. A linear relation can also be accepted for the effect of 
yield stress, i.e., da/dN1/Y0. However, for the hardening parameters the influence is non-linear. This makes the 
development of numerical models more difficult. The effect of Cx and Cy, the saturation rates for kinematic and 
isotropic hardening, respectively, is less relevant then the effect of XSat and YSat, which are the saturation stresses. In 
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isotropic hardening, respectively, is less relevant then the effect of XSat and YSat, which are the saturation stresses. In 
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order to have materials with reduced FCG rate, it is important to increase E, Y0 and all hardening parameters. There 
is a great influence of material on the trends observed, particularly for the kinematic hardening parameters.  
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Fig. 3. Non-dimensional sensitivity for the 304L stainless steel. (a) Crack flanks with contact; (b) Crack flanks without contact (a0=24 mm; 304L 
stainless steel). 
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numerical analysis was subsequently developed in CT specimens made of 304L stainless steel. The results showed a 
complex influence of material parameters on FCG. The relatively importance of material parameters is quite variable 
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Therefore, instead of analytical models, we propose a strategy based on plastic CTOD for the design of components. 
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Correlation. This law is specific for each material, therefore includes all material properties. The design of a cracked 
component is proposed to be made numerically, in order to determine p for different crack lengths. The geometrical 
and loading parameters are included in a natural way. The fatigue life is obtained integrating the da/dN versus a 
relation. 
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