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Abstract

Using the standard Coxeter presentation for the symmetric group Sn, two re-
duced expressions for the same group element w are said to be commutationally
equivalent if one expression can be obtained from the other one by applying a finite
sequence of commutations. The commutation classes can be seen as the vertices
of a graph Ĝ(w), where two classes are connected by an edge if elements of those
classes differ by a long braid relation. We compute the radius and diameter of the
graph Ĝ(w0), for the longest element w0 in the symmetric group Sn, and show that
it is not a planar graph for n > 6. We also describe a family of commutation classes
which contains all atoms, that is classes with one single element, and a subfamily of
commutation classes whose elements are in bijection with standard Young tableaux
of certain moon-polyomino shapes.

Mathematics Subject Classifications: 05A05, 05A19, 05C12

1 Introduction

Given a positive integer n > 2, let Sn+1 denote the symmetric group on the alphabet
[n+1] := {1, 2, . . . , n+1}, with composition of permutations performed from left to right.
We represent a permutation w ∈ Sn+1 as the word w = w(1)w(2) · · ·w(n+ 1) in one-line
notation.
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Diogo Soares for the implementation of the software that allowed the visualization of the graph Ĝ(w0).
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The symmetric group Sn+1 is generated by the simple reflections {s1, s2, . . . , sn}, where
si is the transposition (i i+1). These reflections satisfy the Coxeter relations:

s2i = 1, for all i,

sisj = sjsi, for |i− j| > 1, and (1)

sisi+1si = si+1sisi+1, for all i 6 n− 1. (2)

The relations (1) are known as commutations or short braid relations, and the relations
(2) are called long braid relations. Since {s1, s2, . . . , sn} generates Sn+1, any permutation
w ∈ Sn+1 can be written as a product of adjacent transpositions w = si1si2 · · · si` .

Consider w ∈ Sn+1 written as a product w = si1si2 · · · si` where ij ∈ [n] and ` is mini-
mal. The length of w is `(w) := ` and the product si1si2 · · · si`(w) is a reduced decomposition
for w. The string of subscripts w = i1i2 · · · i` is a reduced word for w. The content of w
is the sequence cont(w) = (c1, . . . , cn), where each ci is the number of occurrences of the
letter i in w. A consecutive substring of w is called a factor, and a word obtained by
deleting some of the letters of w is a subword of w. If I ⊆ [n], then w|I is the subword of
w formed by the letters in I.

We will use sans-serif typeface for permutations, in order to distinguish them from
reduced words. Reduced decompositions and reduced words are in bijection with each
other, and the terms “commutation” and “long braid relation” have natural interpreta-
tions in the context of reduced words. The set of all reduced words of w is denoted by
R(w).

The length `(w) of a permutation w can be computed by counting inversions (see [4]):

`(w) = |{(i, j) : i < j and w(i) > w(j)}|. (3)

As an immediate consequence of (3), we have `(w) = `(w−1) for any permutation w ∈
Sn+1.

The symmetric group Sn+1 has a unique longest element w0 ∈ Sn+1 with length
`(w0) =

(
n+1
2

)
. In one-line notation, w0 is the permutation (n + 1)n · · · 321. The word

w0 := 1(21)(321) · · · (n · · · 21) is a reduced word for w0. When the order of the symmetric
group is not clear from the context, we will often use the notation wn

0 for w0 ∈ Sn+1 to
emphasize the underlying set {1, . . . , n} of w0.

We define a relation ∼ on the set R(w0) of all reduced words for w0 by setting s ∼ t
if and only if s and t differ by a sequence of commutations. This is an equivalence
relation and the classes it defines are the commutation classes of w0, denoted by C(w0).
The commutation class of a word w ∈ R(w0) is denoted by [w]. Although two words
in the same commutative class have the same content, this property is not sufficient
to characterize the class. The next lemma gives a characterization of the words in a
commutative class (see [2]).

Lemma 1. Let v and w be words over the alphabet [n]. Then, w ∼ v if and only if for
each integer i ∈ [n− 1], we have w|{i,i+1} = v|{i,i+1}.
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Proof. If w ∼ v, then w can be obtained from v by a sequence of commutative relations
that do not change the relative positions of the letters i and i + 1, and so we must have
w|{i,i+1} = v|{i,i+1} for all i ∈ [n− 1]. Reciprocally, if w|{i,i+1} = v|{i,i+1} for all i ∈ [n− 1],
then the relative positions of the letters i and i + 1 is the same for both words v and w,
for all i ∈ [n − 1], and thus v and w can differ only by the positions of non consecutive
integers i and j with |i− j| > 1, that can be transposed using commutation relations. It
follows that w ∼ v.

We write v ∼
S
w (resp. v ∼

L
w) when v and w differ by a single short (resp., long) braid

relation, and [v] ∼
L

[w] when those classes differ by a long braid relation, i.e. if there are

v′ ∈ [v] and w′ ∈ [w] such that v′ ∼
L
w′.

Definition 2. The graph Ĝ(w0) of commutation classes of w0 ∈ Sn+1 has vertex set
C(w0), and an edge between classes [u] and [w] when [u] ∼

L
[w].

The graph Ĝ(w0) can be seen as a quotient graph of G(w0), the graph whose vertex set
is the set R(w0) of all reduced words of w0, and where two reduced words are connected
by an edge if they are related by a single short or long braid relation [9, 10].

The distance d([u], [w]) between commutation classes [u] and [w] in Ĝ(w0) is the length
of a shortest path joining [u] and [w]. The eccentricity of [w] is the distance to a farthest

commutative class from [w]. The radius and diameter of Ĝ(w0) are the minimum and

maximum eccentricities, respectively. Figure 1 depicts the graph Ĝ(w0) for S4, which
has radius and diameter equal to 4. We will prove that for n > 2, both the radius and
diameter of Ĝ(wn

0) are given by the binomial
(
n+1
3

)
.

Some of the only work on this topic was obtained by S. Elnitsky [7], who proved that

Ĝ(w0) is a connected and bipartite graph, by establishing a bijection between reduced
words and rhombic tilings of a certain polygon [6, 13]. In this paper we study various

properties of Ĝ(w0), namely we compute its radius and diameter, and show that it is not
planar for n > 5. We note that the diameter of the graph G(w0) was obtained by V. Reiner
and Y. Roichman in [9]. We also describe a family of commutation classes which contains
all atoms, that is classes with one single word, and a subfamily of commutation classes
whose elements are in bijection with standard Young tableaux of certain moon-polyomino
shapes.

The remainder of this paper is organized as follows. In Section 2, we compute the
radius and diameter of Ĝ(wn

0) using two statistics on reduced words, and prove that this
graph is not planar for n > 4. After some preliminary discussions, in Section 3 we describe
the set of two side ordered words, a certain family of reduced words which contains as
particular cases all atoms and alternating words, which are those reduced words w for
which each subword w|{a,b} is of the form (a b)k or (a b)ka for some integer k, whenever

|a− b| = 1. The characterization of the atoms in Ĝ(wn
0) is achieved in Subsection 3.1, and

in Subsection 3.2 the notion of an alternating words is introduced and its commutation
classes are characterized. Finally, in Subsection 3.3 we give an interpretation of the
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commutation classes of alternating words as standard fillings of certain moon-polyomino
Young tableaux. We prove that the cardinality of each commutation class of an alternating
word is larger than the cardinality of any class connected to it by a single edge, and present
a conjecture with the identification of the commutation classes with maximum cardinality
amongst all classes in R(wn

0).

[121321] = {121321, 123121}

{212321} = [212321] [123212] = {123212}

= [213213]
213213, 231213,

231231, 213231
[132132] =

132132, 312132,

312312, 132312

{232123} = [232123] [321232] = {321232}

[321323] = {321323, 323123}

Figure 1: The graph Ĝ(w3
0).

2 Radius, diameter and planarity

Given a reduced word w = i1i2 · · · i` for w0 ∈ Sn+1, define the complement w• and reverse
wR words of w as

w• := (n− i1 + 1)(n− i2 + 1) · · · (n− i` + 1) and wR := i` · · · i2i1.

The complement and reverse operations define involutive maps R(w0) → R(w0) that
commute with each other, (w•)R =

(
wR
)•
, and cont(w) = cont(wR).

Example 3. In S4, w0 = 121321, w•0 = 323123, wR
0 = 123121 and w•R0 = wR• = 321323.

Definition 4. Given a reduced word w = i1i2 · · · i` ∈ R(w0), let S(w) be the sum of all
` letters of w, that is

S(w) =
∑̀
j=1

ij =
n∑

j=1

j · cj,

where cont(w) = (c1, . . . , cn).
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The number S(w) is invariant for any word in the equivalence class of [w], and thus
defines a map C(w0)→ N. For instance, we have

S(w0) = S
(
wR

0

)
=

n∑
j=1

j(n− j + 1) =
n(n+ 1)(n+ 2)

6

and

S(w•0) = S
(
w•R0
)

=
n∑

j=1

j2 =
n(n+ 1)(2n+ 1)

6
.

The next lemma follows directly from the definition of a long braid relation.

Lemma 5. If v ∼
L
w, then |S(v)− S(w)| = 1.

Proposition 6. Let v ∈ R(w0). If [v] 6= [w0] then there is u ∈ R(w0) such that [u] ∼
L

[v]

and S(u) < S(v).

Proof. We prove the contrapositive assertion. Let v ∈ R(w0), and assume that for any
class [u] ∼

L
[v] we have S(u) > S(v). Then, by Lemma 5, S(u) = S(v) + 1. This implies

that a factor i(i − 1)i cannot appear in any word of the class [v], for any i = 2, . . . , n.
Since between two letters n in a reduced word for w0 there must be a letter n − 1, then
a word in the class [v] can only have one letter n.

Between two consecutive letters n− 1 in a reduced word for w0, there must be a letter
n or a letter n− 2. Since we have established that a word in the class [v] cannot have a
factor i(i− 1)i, for any i, it follows that there must exist a word in [v] having the factor
(n− 1)n(n− 1) or (n− 1)n(n− 2)(n− 1). In any case, in between two consecutive letters
n − 1 it has to appear the letter n. This implies that any word in [v] has at most two
letters n− 1.

Repeating this argument, we conclude that any word in [v] has at most i letters n−i+1,
for i = 1, . . . , n, and that between two consecutive letters i, there is exactly one letter i+1,
for all i. On the other hand, being reduced, the length of the words in [v] is

(
n+1
2

)
. Thus,

any word in [v] has exactly i letters n−i+1, and v|{i−1,i} = (i−1 i)n−i+1(i−1) = (w0)|{i−1,i}
for i = 1, . . . , n. By Lemma 1, it follows that v ∼ w0.

The previous result shows that S(w0) is the minimum value for the map S, and that
S(w) = S(w0) if and only if w ∈ [w0]. Moreover, an analogous argument shows that S(w•0)
is the maximum value for the map S and S(w) = S(w•0) if and only if w ∈ [w•0]. That is,
S(w0) 6 S(w) 6 S(w•0) for any w ∈ R(w0). Since S(w0) = S(wR

0) and S(w•0) = S(w•R0 ),
we can also conclude that w0 ∼ wR

0 and w•0 ∼ w•R0 .
It also follows from Proposition 6 that for any commutation class [w], distinct from

[w0], there is a path from [w] to a class with a smaller S-value, which means that there
is a path joining [w] and [w0]. Thus, we recover the following result from S. Elnitsky [7],
which is also a consequence of Matsumoto’s Theorem [8]. This result also follows from
the fact that G(w) is connected for any w ∈ Sn+1 [9].
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Corollary 7. The graph Ĝ(w0) is connected.

Additionally, by Lemma 5 it follows that Ĝ(w0) is a bipartite graph, with the partition
of C(w0) given by the parity of the S-values of its vertices. This result also holds for the
graph G(w), for any w ∈ Sn+1 (see [3]).

Corollary 8. The graph Ĝ(w0) is bipartite.

The map S may also be used to compute the diameter of Ĝ(w0).

Theorem 9. The diameter of Ĝ(w0) is S(w•0)− S(w0) =
(
n+1
3

)
.

Proof. By Proposition 6, there is w ∈ R(w0) such that [w] ∼
L

[w•0], and moreover S(w) =

S(w•0) − 1 by Lemma 5. Repeating this process S(w•0) − S(w0) times, we arrive at the
class [w0], proving that

d([w0], [w
•
0]) = S(w•0)− S(w0) =

(n− 1)n(n+ 1)

6
=

(
n+ 1

3

)
.

Similarly, we can see that for any class [w] we have d([w0], [w]) = S(w) − S(w0) and
d([w], [w•0]) = S(w•0)− S(w).

To prove that the diameter is
(
n+1
3

)
, it remains to show that this number is the maximal

distance between any two classes in the graph. Consider two commutation classes [w] and
[w′]. Since

d([w0], [w]) + d([w], [w•0]) + d([w0], [w
′]) + d([w′], [w•0]) = 2 (S(w•0)− S(w0)) ,

using the triangle inequality, we conclude that

d([w], [w′]) 6 min{d([w0], [w]) + d([w0], [w
′]), d([w], [w•0]) + d([w′], [w•0])}

6
1

2

(
d([w0], [w]) + d([w0], [w

′]) + d([w], [w•0]) + d([w′], [w•0])
)

= S(w•0)− S(w0),

proving that the distance between any two commutation classes [w] and [w′] is at most
S(w•0) − S(w0). It follows that the maximum eccentricity of a commutation class in the

graph Ĝ(w0) is S(w•0)− S(w0).

We will now prove that the eccentricity of any commutation class is, in fact,
(
n+1
3

)
and

therefore prove that the radius of R(w0) is equal to the diameter. To this end, we will
define an auxiliary function T . A generator si acts on a permutation x1x2 · · ·xn+1 of [n+1]
by transposing the integers xi and xi+1. In particular, a reduced word w = i1i2 · · · i` for
w0 transforms the identity 12 · · · (n+ 1), which has no inversions, into w0 = (n+ 1) · · · 21,
where each pair of integers (i, j) with 1 6 i < j 6 n+ 1 is an inversion, by the successive
action of the generators si1 , si2 , . . . , si` .
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Let Tn be the set of all triples (a, b, c) ∈ [n + 1]3 such that a < b < c. For any
w ∈ R(w0) and any (a, b, c) ∈ Tn define T (w, abc) = 1 if, by the action of the generators
of w on the identity, the inversion of the pair (a, b) occurs before the inversion of (b, c); and
define T (w, abc) = −1 otherwise. The number T (w, abc) can be easily read off of the line
diagram of a permutation. The line diagram of w = si1si2 · · · si` is the array [n+ 1]× [`] in
the Cartesian coordinates, which describes the trajectories of the numbers 1, 2, . . . , n+ 1
as they are arranged into the permutation w by the successive simple transpositions sij .
Note that since w is a reduced word for w0, any two integers a < b in [n + 1] will invert
positions in the line diagram of w, thus showing that T is well defined.

Figure 2 shows the line diagram of the word w = 212321 ∈ Ĝ(w4
0), and it follows that

T (w, 123) = −1 and T (w, abc) = 1 for all remaining triples (a, b, c), with a < b < c.

1© 2© 3© 4©

1© 3© 2© 4©

3© 1© 2© 4©

3© 2© 1© 4©

3© 2© 4© 1©

3© 4© 2© 1©

4© 3© 2© 1©

Figure 2: Line diagram of the word 212321.

Lemma 10. Two reduced words w,w′ ∈ R(w0) are in the same commutation class if and
only if T (w, abc) = T (w′, abc) for all triples (a, b, c) ∈ Tn.

Proof. The operator T is invariant for words in the same commutation class, since any
possible change of order of the generators is done between generators acting on disjoint
pairs of numbers.

Reciprocally, suppose T (w, abc) = T (w′, abc) and let i be the leftmost letter of w such
that w = w1iw2 and w′ = w1jw

′
2 with i 6= j. Then, w′ = w1u i v, where w1u has no

letter i. If w1u has a letter i − 1, then the first occurrence of i − 1 inverts the order of
the integers in a pair (a, b) with a < b = i. On the other hand, the generator i in the
word w, inverts the order of the integers in a pair (b, c) where b = i < c = i + 1. Thus,
T (w, abc) = −1 and T (w′, abc) = 1. It follows that w1u cannot have the letter i− 1, and
similar reasoning shows that it cannot have i+ 1. By commutation relations we can write
w′ ∼ w′′, where w′′ = w1iw

′′
2 . Repeating this argument for the successive words obtained

from w′ until the resulting word is w, we conclude that w ∼ w′.

In view of the result above, we will write T ([w], abc) to represent the common number
T (v, abc) for all v ∈ [w].
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Lemma 11. If [w] ∼
L

[w′], then T (w, abc) = T (w′, abc) for all triples in Tn, except for
one.

Proof. Without loss of generality, let w = u i(i+1)i v ∈ R(w0) and w′ = u (i+1)i(i+1) v,
where u and v are, respectively, the initial and final factors of w and w′. If a, b, c are such
that u(a) = i, u(b) = i+ 1 and u(c) = i+ 2, where u is the permutation corresponding to
u, then a < b < c since otherwise w would not be reduced. Moreover, the permutation
corresponding to the left factor u i(i + 1)i is equal to the one corresponding to u (i +
1)i(i+1). The transposition corresponding to the generator i, applied to the permutation
u, inverts the integers a and b, while the transposition corresponding to the i+ 1 applied
to u inverts the integers b and c. Therefore, T (w, abc) = −T (w′, abc). Finally, since the
permutation corresponding to i(i+ 1)i = (i+ 1)i(i+ 1) only acts over a, b and c, for any
other triple x < y < z, we have T (w, xyz) = T (w′, xyz).

Proposition 12. For any w ∈ R(w0) and any triple (a, b, c) ∈ Tn, we have

(a) T ([w], abc) = −T ([w•], (n+ 2− c)(n+ 2− b)(n+ 2− a)) ;

(b) T ([w], abc) = T
(
[wR], (n+ 2− c)(n+ 2− b)(n+ 2− a)

)
;

(c) T ([w], abc) = −T
(
[w•R], abc

)
.

Proof. (a) The line diagram of w• corresponds to the horizontal reflection of the line
diagram of w. Since the word w• consists in replacing each generator i, in the word w, by
the generator n+ 1− i, the inversion of the integers a and b is achieved by the action of w
in the same order that the inversion of the integers n+ 2− a and n+ 2− b is achieved by
w•. And so, if the action of w inverts the integers a and b before it inverts b and c, then
the action of w•, inverts the integers n + 2 − a and n + 2 − b before it inverts n + 2 − b
and n+ 2− c. Thus the result follows.

(b) Note that the line diagram of wR corresponds to the 180 degrees rotation of the
line diagram of w, and the image of a by w0 is n+ 2− a. Reading the word w backwards,
any inversion of the integers a and b corresponds to a inversion of the integers n + 2− a
and n+2−b in the reverse order. Thus, if a and b are inverted before b and c by the action
of w, then n+ 2− b and n+ 2− c are inverted before n+ 2− b and n+ 2− a are inverted
by the action of wR. It follows that T ([w], abc) = T

(
[wR], n+ 2− c, n+ 2− b, n+ 2− a

)
.

(c) Follows from the previous two cases, noticing that the line diagram of w•R corre-
sponds to the vertical reflection of the line diagram of w.

Corollary 13. For any w ∈ R(w0),

d
(
[w], [w•R]

)
=

(
n+ 1

3

)
.

Proof. By Theorem 9, the distance between any two words is at most
(
n+1
3

)
. By Propo-

sition 12, for any triple (a, b, c), T ([w], abc) = −T
(
[w•R], abc

)
and, by Lemma 11, this

means that there are necessary at least |Tn| long relations in a path linking [w] and
[
w•R
]
.

Thus d
(
[w], [w•R]

)
> |Tn| =

(
n+1
3

)
, which concludes the proof.
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The following result is a consequence of the previous corollary and Theorem 9.

Theorem 14. The eccentricity of any class [w] is
(
n+1
3

)
, and therefore the radius of Ĝ(w0)

is
(
n+1
3

)
.

As can be seen in Figures 1 and 3, the graphs Ĝ(wn
0) for n 6 4 are planar graphs.

In Figure 3, the vertices O and J correspond to the commutation classes of w0 and w•R0 ,
and the vertices in each dashed circle have the same S-value, with one unit of increment
(resp., decrement) for each circle starting from S(w0) = 20 (resp., S(w•R0 ) = 30) in the
center. Moreover, the vertices on the two external circles have the same S-value. For
instance, the S-value of vertices A1 and A2 is 21, and the S-values of B1 and B2 is 22.
The vertices E1 and E2, in the two external circles, have the same S-value equal to 25,
and the S-value of vertex F is 26.

We prove next that for n > 4 the graph Ĝ(w0) is not planar, using Wagner’s Theorem
[5]. An edge contraction of an edge e = {u, v} in a graph is the graph obtained by
combining the vertices u and v into a single vertex, which is adjacent to every vertex that
was adjacent to u and v in the original graph. A graph minor of a graph is a new graph
obtained by deleting vertices, deleting edges, and/or contracting edges of the original
graph. Wagner’s Theorem states that a graph is planar if and only if it does not contain
K5 or K3,3 as a graph minor.

Lemma 15. Given a fixed integer n > 2, the graph Ĝ(wn−1
0 ) is a subgraph of Ĝ(wn

0).

Proof. Notice that for any word w in Ĝ(wn−1
0 ), the word w′ = w ·w−n is a word in Ĝ(wn

0),

where we set w−n = n(n − 1) · · · 21. The subgraph of Ĝ(wn
0) formed by the classes of the

words w · w−n , with w ∈ R(wn−1
0 ), is isomorphic to Ĝ(wn−1

0 ).

For example, the graph Ĝ(w3
0) can be seen as the subgraph of Ĝ(w4

0) formed by the
classes denoted by O,A1, A2, B1, B2, C1, C2, D in Figure 3, where O = [1213214321],
A1 = [2123214321], A2 = [1232124321], B1 = [2132134321], B2 = [1321324321], C1 =
[2321234321], C2 = [3212324321] and D = [3213234321].

Theorem 16. For n > 4 the graph Ĝ(wn
0) is not planar.

Proof. Using Lemma 15, it is enough to prove that Ĝ(w5
0) is not planar. We will do so by

proving that it has K3,3 as minor.

The minor of Ĝ(w5
0) having as vertices the sets:

A = {[132132432154321]},
B = {[123214321354321]},
C = {[123212432543212]},
D = {[123212432154321]},
E = {[132134321354321], [132134323543212], [123214323543212]},
F = {[123214321543214], [132134321543214], [321234321543214], [321234325432124],

[321234323543212], [321232432543212], [132132432543212]},
where E and F are the edge contractions of their vertices, is isomorphic to K3,3, since
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O

A1

A2

B1

B2

C1

C2

D

E1

J

E2

F

Figure 3: The graph Ĝ(w4
0).

each of the vertices A, B, C is connected to all the vertices D, E, F (see Figure 4). In
particular, the class [132134321354321] of E is connected by a long braid relation to both
classes A and B, and the class [123214323543212] of E is connected to the class D. The
class [123214321543214] of F is connected to class B, and the class [132132432543212] of
F is connected to both classes A and C.

D E F

A B C

Figure 4: A K3,3 minor of Ĝ(w5
0).

3 Commutation Classes

In this section, we define a family of reduced words for w0 generated by a concatenation
of monotone words of lengths n, . . . , 2, 1, and indexed by binary vectors of length n − 1.
This family contains, as a particular case, the reduced word w0 = 1(21)(321) · · · (n · · · 21).
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To simplify notation, whenever 1 6 a < b 6 n define the words

t+a,b := a(a+ 1) · · · (b− 1)b, and

t−a,b := b(b− 1) · · · (a+ 1)a.

The words t+a,b and t−a,b are reduced because they have no repeated letters.

Definition 17. Given a binary vector b = (b1, b2, . . . , bn−1), with bi ∈ {+,−} for all
i = 1, 2, . . . , n− 1, we construct the word

wb = wb1
n w

b2
n−1 · · ·w

bn−1

2 w1,

where each wb`
n−`+1 is a monotone subword of length n−`+1 defined recursively as follows

(we set w1 = wbn
1 , with bn = +):

• wb1
n =

{
t+1,n = 12 · · ·n, if b1 = +

t−1,n = n · · · 21, if b1 = −
.

• For ` = 1, . . . , n− 1,

– if b` = + and wb`
n−`+1 = i(i+ 1) · · · (j − 1)j with i < j, then set

w
b`+1

n−` =

{
t+i,j−1 = i(i+ 1) · · · (j − 1), if b`+1 = +

t−i,j−1 = (j − 1) · · · (i+ 1)i, if b`+1 = −
,

– if b` = − and wb`
n−`+1 = j(j − 1) · · · (i+ 1)i with i < j, then set

w
b`+1

n−` =

{
t+i+1,j = (i+ 1) · · · (j − 1)j, if b`+1 = +

t−i+1,j = j(j − 1) · · · (i+ 1), if b`+1 = −
.

Note that each word w
b`+1

n−` is obtained by removing the rightmost letter from wb`
n−`−1,

and sorting the remaining letters by increasing or decreasing order according to the sign
b`+1. Also, note that in Definition 17, the sign bn is irrelevant for the construction
w1 = wbn

1 , that is, the letter wbn
1 is completely determined by the previous subword w

bn−1

2 .

Example 18. Consider the binary vector b = (+,+,−,+,−) of length 5. We then
construct the subwords

wb1
6 = w+

n = 123456,

wb2
5 = w+

5 = 12345,

wb3
4 = w−4 = 4321,

wb4
3 = w+

3 = 234,

wb5
2 = w−2 = 32,

w1 = 3.

Thus, the word indexed by b is wb = 123456 · 12345 · 4321 · 234 · 32 · 3.
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Let O(n) = {wb : b ∈ {+,−}n−1} denote the set of all words indexed by binary vectors
of length n − 1, constructed in Definition 17. The words of this set will be designated
ordered words, and are formed by subwords w

b`+1

n−` in decreasing order of their lengths.
They will serve as a basis for the construction of a larger class of commutation classes in
Ĝ(w0).

Proposition 19. Any ordered word w ∈ O(n) is a reduced word for w0.

Proof. Let wb ∈ O(n), with b a binary vector of length n− 1. Then, the length of wb is
the sum of the lengths of the monotone subwords wb`

n−`+1, for ` = 1, 2 . . . , n. That is

`(wb) =
n∑

`=1

(n− `+ 1) =
(n+ 1)n

2
= `(w0).

Let us now prove that the permutation associated with wb is the longest permutation
w0 ∈ Sn+1. Assume that b1 = −. The permutation associated with w−n = n · · · 21 has
one-line notation 23 · · · (n + 1)1. On the other hand, the permutation associated with

wb2
n−1 · · ·w

bn−1

2 w1 leaves the letter 1 fixed, and only acts on the set {2, . . . , n + 1}. By

induction, the permutation associated with wb2
n−1 · · ·w

bn−1

2 w+
1 is the longest permutation

on the set {2, . . . , n + 1}, and it follows that the permutation associated with wb is the
longest permutation of Sn+1.

The proof is similar if b1 = +. Therefore wb is a reduced word for w0.

Proposition 20. The set O(n) contains 2n−1 distinct words, each belonging to a different
commutation class.

Proof. By construction, there are a total of 2n−1 words wb, with b a binary vector of
length n− 1, and they are all distinct. We prove by induction on n > 2 that any two of
these words are in distinct commutation classes.

When n = 2 there are only two words w(+) = 12 · 1 and w(−) = 21 · 2, which clearly
are not in the same commutation class. Suppose now n > 2, and consider words wb

and wb′ with b1 = + and b′1 = −. Then, T (wb, xyz) = 1 for any integers y < z
with x = 1, while T (wb′ , xyz) = −1 for any integers x < y and z = n + 1. Thus,
T (wb, 1y(n+ 1)) 6= T (wb′ , 1y(n+ 1)), for any 2 6 y 6 n, showing, by Lemma 10, that the
commutation classes of wb and wb′ are distinct. Consider next the case b1 = b′1. Then, we
can write wb = wb1

n ·ud and wb′ = wb1
n ·ud

′
, where d = (b2, . . . , bn−1) and d′ = (b′2, . . . , b

′
n−1).

By the inductive step, we find that the words ud and ud
′

are in distinct commutation
classes, showing that wb and wb′ are in distinct commutation classes.

We can use short and long braid relations in an ordered word wb to “move” a factor
wb`

n−`+1 within the other factors of wb, according to the rules of the following lemma.
These rules will be used to construct two classes of words: atoms, that is reduced words
with no short braid relations, and alternating words, which can be interpreted as fillings
of certain moon-polyomino shapes.
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Lemma 21. Given positive integers a < k 6 b, consider the increasing word w+ =
a(a+ 1) · · · (b− 1)b and the decreasing word w− = b(b− 1) · · · (a+ 1)a. Then,

1. [k · w+] ∼
L

[w+ · (k − 1)].

2. [(k − 1) · w−] ∼
L

[w− · k].

For instance, the following list of reduced words for w0 shows how we can use short
and long braid relations to “move” the factor w+

3 = 234 of wb in Example 18, to the
leftmost position:

123456 · 12345 · 4321 · 234 · 32 · 3 = wb

123456 · 12345 · 123 · 4321 · 32 · 3
123456 · 234 · 12345 · 4321 · 32 · 3
345 · 123456 · 12345 · 4321 · 32 · 3 (4)

Given an ordered word wb, and a partition I ∪ J of [n− 1], we construct the two side
ordered word wb

I as the concatenation∏
i∈I

w
bn−i+1

i · wb1
n ·
∏
j∈J

w
bn−j+1

j , (5)

where each letter of w
bn−i+1

i is obtained from the corresponding letter of w
bn−i+1

i by adding
the value

∑n
k=i+1 bk, considering the signals + and − as 1 and −1, respectively. The factor

w
bn−i+1

i can also be seen as obtained from the factor w
bn−i+1

i of wb by the application
of short and long braid relations, according to the rules of Lemma 21. Moreover, in∏

i∈I w
bn−i+1

i the factors are written from left to right in increasing order of their lengths,

and in
∏

j∈J w
bn−j+1

j the factors are written from left to right in decreasing order of their
lengths.

For example, the word (4) can be written as wb
I , where b = (+,+,−,+,−) and I = {3},

where w+
3 = 345.

Definition 22. Let T SO(n) = {wb
I : wb ∈ O(n) and I ⊆ [n − 1]} denote the set of all

two side ordered words.

Note that each word in T SO(n) is a reduced word for w0, since it is obtained from
some ordered word in O(n), which by Proposition 19 is reduced, by applying short and
long braid relations.

Lemma 23. The set T SO(n) contains 3× 4n−2 distinct words.

Proof. To construct a two side ordered word, there are two possibilities for the sign b1 of
wb1

n , and two possibilities for whether w1 belongs to the set I or not. For all other factors
there are four possible choices, two for the signal and two for whether it belongs to I or
not. This amounts to 4n−1 possibilities. Note however, that if b1 and b2 have distinct
signs, then wb1

n w
b2
n−1 = wb1

n−1w
b2
n . Thus, there are a total of 4n−1−4n−2 = 3×4n−2 distinct

two side ordered words in T SO(n).
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3.1 Atoms

Definition 24. A reduced word w ∈ R(w0) whose commutation class contains only itself

is called an atom of Ĝ(w0).

Clearly, a reduced word w ∈ R(w0) is an atom if and only if each factor ij of length
2 of w is formed by consecutive letters, i.e. |i − j| = 1. We will show that there are

exactly four atoms in Ĝ(w0), for n > 3, namely the words wb, w−b,
(
wb
)R

and
(
w−b

)R
,

with b = (+,−,+,−, . . .).

Lemma 25. Let a, b be integers such that a < b− 1. Then, the words

1. (a+ 1) · t+a,b · t
−
a,b−1 · (a+ 1), and

2. t+a,b · t
−
a,b−1 · t

+
a+1,b.

are not reduced.

Proof. The word (a+ 1) · t+a,b · t
−
a,b−1 · (a+ 1) has 2(b−a) + 3 letters, and the corresponding

permutation

w = 12 · · · (a− 1) · (b+ 1)(a+ 1)(a+ 2) · · · (b− 1)a · (b+ 2)(b+ 3) · · ·n(n+ 1),

has, by (3), length `(w) = 2(b− a) + 1. It follows that (a+ 1) · t+a,b · t
−
a,b−1 · (a+ 1) is not

reduced. Similarly, the word t+a,b ·t
−
a,b−1 ·t

+
a+1,b has 3(b−a)+1 letters, and the corresponding

permutation

v = 12 · · · (a− 1) · b(b+ 1)(a+ 1)(a+ 2) · · · (b− 1)a · (b+ 2)(b+ 3) · · ·n(n+ 1),

has length `(v) = 3(b− a)− 1. Thus, t+a,b · t
−
a,b−1 · t

+
a+1,b is not reduced.

Lemma 26. The increasing word 12 · · ·n is the only reduced word amongst the set of all
words of length > n over the alphabet [n], having leftmost letter 1 and rightmost letter n,
and where each factor of length 2 is formed by consecutive letters.

Proof. Let k be the length of a word u in the conditions of the lemma. We start by
noticing that if k = n, then the increasing word u = 12 · · ·n is reduced, since by (3) the
corresponding permutation (n + 1)12 · · ·n has length n. Assuming now that k > n, the
word u is a concatenation of increasing factors with decreasing factors. Since u1 = 1 and
uk = n, u must have a factor of the form

t+a,b · t
−
a,b−1 · t

+
a+1,b,

for some integers a < b, which by Lemma 25 is not reduced. It follows that u is not
reduced.

Theorem 27. For n > 3, there are exactly 4 atoms in the graph Ĝ(w0).
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Proof. We start by exhibiting the four atoms of Ĝ(w0). Let b = (+,−,+,−, . . .) and
−b = (−,+,−,+, . . .) be the binary vectors of length n− 1 having alternating signs, and
consider the corresponding ordered words wb and w−b in O(n):

wb = w+
nw
−
n−1w

+
n−2 · · ·w1 and w−b = w−nw

+
n−1w

−
n−2 · · ·w1 =

(
wb
)•
.

By Proposition 19, wb and w−b are reduced words for w0, and each factor of length 2 is
formed by consecutive letters. It follows that wb and w−b are atoms of Ĝ(w0). Similarly,
each factor of length 2 of the reduced words (wb)R and (w−b)R, is formed by consecutive

letters, showing that they are also atoms of Ĝ(w0). For n > 3, these four atoms are all
distinct.

We will prove next that these four words are the only atoms in Ĝ(w0). Let w ∈ R(w0)
be an atom. Since the sets of letters appearing in any two reduced words for w ∈ Sn+1

are the same (see [4]), a reduced word for w0 must have the letters 1 and n. By Lemma
26, w must have as a factor t+1,n = 12 · · ·n or t−1,n = n · · · 21, since any factor of length 2 of
w consists of consecutive letters. Suppose the first case happens (the other is analogous).

If w has two 1s and two ns, then one n must be on the left side of the factor t+1,n, since
otherwise we would have a factor of length greater than n starting with 1 and ending
with n, which by Lemma 26 is not reduced. Again by Lemma 26, this means that w must
have the factor t−2,n · t+1,n. But then, if 1 is either on the left side or on the right side of
t−2,n · t+1,n, then w has a factor of length greater than n starting with 1 and ending with n,
or vice-versa, which by Lemma 26 is not reduced. Thus, w has at least two 1s and one n,
or one 1 and at least two ns. Notice that one of these cases must occur, since otherwise
we would have

w = w′ · (12 · · ·n) · w′′,

with w′ and w′′ words over the alphabet {2, . . . , n − 1}. In this case, the permutation
associated with w′ fixes 1 and n+1, and then the permutation associated with w′·(12 · · ·n)
sends 1 to n + 1 and n + 1 to n. Therefore, w cannot be a word for w0 since it does not
send n+ 1 to 1, contradicting the definition of w. Then, w must have a factor

t+1,n · t−1,n−1 · t+2,k or t−1,k · t
+
2,n · t−1,n−1,

for some k < n. Assume the former case (the other is analogous). Then, this must be the
leftmost factor of w, since otherwise w would have the factor 2 · t+1,n · t−1,n−1 · 2, which by
Lemma 25 is not reduced.

Since k < n, the next factor in w must be a decreasing sequence t−i,k−1 for some integer
i. For the same reason as before i is must be bigger than 1, otherwise w would have
the factor t−1,k · t

+
2,k · t

−
1,k−1, which is not reduced. Consequently, the new factor should be

shorter (in length) than the previous one. Repeating the same reasoning, w is formed by
a sequence of factors in decreasing order of lengths, alternating between increasing and
decreasing factors. So it has, at most, n factors and, to be reduced, these lengths add up
to (n+1)n

2
. Therefore, these lengths must be, respectively, n, (n− 1), . . . , 1.

Therefore, w is the atom wb that we have constructed above. The different choices we
can made in the proof gives the other three atoms.
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Using Lemma 21, it is easy to see that (wb)R = w−b[n−1] and (w−b)R = wb
[n−1], showing

that the four atoms wb, w−b, (wb)R and (w−b)R are words in T SO(n).

3.2 Alternating classes

Definition 28. A word w over the alphabet {a, b} is alternating if it is of the form
(ab)k or (ab)ka for some integer k > 0. A word w over the alphabet [n] is alternating
if each subword w|{i,i+1} of w, formed only by the letters i and i + 1, is alternating, for
i = 1, 2, . . . , n− 1.

It follows that the difference between the number of letters i and i+1 in an alternating
word w is at most one. Moreover, between two consecutive letters i in w there is exactly
one letter i− 1 and exactly one letter i+ 1. Denote by AR(w0) the set of all alternating
reduced words in R(w0). We will characterize all commutation classes in AR(w0).

Proposition 29. Let w ∈ AR(w0) be an alternating word, and i ∈ {2, . . . , n}. Then,
T (w, xiy) is constant for all triples x < i < y.

Proof. Suppose the letter i occurs in w to the left of the first letter i− 1 (the other case
is analogous), that is w|{i−1,i} = (i (i−1))k or w|{i−1,i} = (i (i−1))ki, for some integer k.
Then, by the successive action of the generators of w on the identity permutation, the
first inversion (a, b) with a < b and i ∈ {a, b}, on the succession of permutations from
the identity to w0, occurs with a pair (i, y) with i < y. Thus, the integer i, after this
inversion, is in position i+ 1, and only the generators i and i+ 1 can affect it. Since w is
an alternating word, there is a letter i+ 1 before the next letter i in w, which means that
the next inversion containing the integer i is again with an integer y′ such that i < y′.
This process is repeated until each pair of integers (i, t), with i < t, is an inversion. It
follows that T (w, xiy) = −1.

We now define a subset V of T SO(n), whose elements are alternating words. More-
over, we will prove that the minimum element, in lexicographic order, of any alternating
class is an element of the set V .

Definition 30. Let V be the set of words

w−I =
∏
i∈I

w−i · w−n ·
∏
j∈J

w−j ∈ T SO(n),

where − in w−I stands for the binary vector (−)n−1 of length n − 1, and I ∪ J is any
partition of [n− 1].

According to Definition 17, we have

w−i = i(i− 1) · · · 21 and w−j = n(n− 1) · · · (n− j + 2)(n− j + 1),

for i ∈ I and j ∈ J , and thus w−I ∈ AR(w0).
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Lemma 31. The set V is a subset of AR(w0) with cardinality 2n−1. Moreover, the
commutation classes of any two distinct words of V are distinct.

Proof. By construction, each word w−I , with I ⊆ [n − 1], is the minimum element, in
lexicographic order, of its class, since they are formed by the concatenation of strictly
decreasing subwords, with the rightmost letter of a subword strictly smaller than the
leftmost letter of the subword sitting on its right. Therefore, each word in V is in a
different commutation class, and the number of words in V is the number of subsets of
[n− 1].

Example 32. For n+ 1 = 6, the set V is formed by the 24 words below:

w−∅ = 54321 · 5432 · 543 · 54 · 5, w−{1} = 1 · 54321 · 5432 · 543 · 54,

w−{1,2} = 1 · 21 · 54321 · 5432 · 543, w−{1,3} = 1 · 321 · 54321 · 5432 · 54,

w−{1,4} = 1 · 4321 · 54321 · 543 · 54, w−{2} = 21 · 54321 · 5432 · 543 · 5,
w−{2,3} = 21 · 321 · 54321 · 5432 · 5, w−{2,4} = 21 · 4321 · 54321 · 543 · 5,
w−{3} = 321 · 54321 · 5432 · 54 · 5, w−{3,4} = 321 · 4321 · 54321 · 54 · 5,
w−{4} = 4321 · 54321 · 543 · 54 · 5, w−{1,2,3} = 1 · 21 · 321 · 54321 · 5432,

w−{1,2,4} = 1 · 21 · 4321 · 54321 · 543, w−{1,3,4} = 1 · 321 · 4321 · 54321 · 54,

w−{2,3,4} = 21 · 321 · 4321 · 54321 · 5, w−{1,2,3,4} = 1 · 21 · 321 · 4321 · 54321.

Notice that the word w0 = w−[n−1] ∈ V . As a particular case of Proposition 29, we get
the following result.

Corollary 33. Let w−I ∈ V . Then, the value of T (w−I , xiy) is 1 (respectively −1) if
i− 1 ∈ I (respectively i− 1 /∈ I), for all integer x < i < y.

We will show next that each alternating reduced word in AR(w0) is in a class of an
element of V .

Theorem 34. There are exactly 2n−1 commutation classes in AR(w0).

Proof. By Lemma 10, the commutation class of w ∈ R(w0) is characterized by the values
of T (w, abc), for all triples a < b < c. Proposition 29 shows that it is enough to know
the values of T (w, k(k + 1)(k + 2)), for k = 1, . . . , n − 1. Thus, there are at most
2n−1 commutation classes in AR(w0). Lemma 31 shows that there are exactly 2n−1 such
classes.

3.3 Complete moon-polyominoes

Next we give an interpretation of alternating words as standard fillings of certain moon-
polyomino Young tableaux.

A diagram δ is a finite subset of the two-dimensional integer lattice Z2, which we
identify with a set of cells in the plane, using the English convention for the coordinates
of each cell, i.e. matrix-like coordinates. The number |δ| of cells in the diagram is the
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size of δ. A column of δ is the set of cells along a vertical line, and a row is the set
of cells along a horizontal line. A diagonal Dk of a diagram δ, with k ∈ Z, is the set
Dk = {(i, j) ∈ δ : i− j = k}.

A diagram δ is convex if for any two cells in a either column or row, the elements of
Z2 in between are also cells of the diagram. It is intersection-free if any two columns are
comparable, i.e. the set of row coordinates of cells in one column is contained in the set
of row coordinates of cells in the other. For example, the first diagram in Figure 5 is
convex but not intersection-free, the second is neither convex nor intersection-free, while
the third is a convex intersection-free diagram.

Figure 5: Example of diagrams.

Definition 35. A moon-polyomino is a convex intersection-free diagram. A moon-
polyomino with exactly n columns is said to be an n-diagonal moon-polyomino if it has a
column of length i, for all i ∈ [n], and exactly n diagonals.

For instance, the third diagram in Figure 5 is a moon-polyomino but not a 5-diagonal
moon-polyomino. Note that since an n-diagonal moon-polyomino is convex and inter-
section-free, all columns on the right side of the column of length n are arranged in
decreasing order of their lengths, from left to right. Moreover, the top box of each one of
these columns are in the same diagonal. We call this set of columns, including the column
of length n, the right side of the moon-polyomino. Similarly, all columns on the left side of
the column of length n are arranged in increasing order of their lengths, from left to right,
and the bottom box of each one of these columns are in the same diagonal. We call these
set of columns, excluding the column of length n, the left side of the moon-polyomino.
Analogously we define the up side and down side of a moon-polyomino as the subdiagram
formed by all rows including and below the row of length n, and as the diagram formed
by all rows above the row of length n, respectively.

The shape of an n-diagonal moon-polyomino is completely determined by the sequence
of its column lengths, and thus it is identified by that sequence. For example, the shape
of the last 5-diagonal moon-polyomino in Figure 6 is (1, 5, 4, 3, 2).

Proposition 36. There are exactly 2n−1 n-diagonal moon-polyominoes.

Proof. An n-diagonal moon-polyomino is completely characterized by choosing on which
side of the moon-polyomino the column of length i will be, for each i ∈ [n− 1].

Figure 6 shows the 24 5-diagonal moon-polyominoes.
A tableau P of shape δ is an assignment of integers to the cells of δ. If the entries of the

cells of P are the integers in [|δ|] = {1, 2, . . . , |δ|}, used exactly once, the tableau is called

the electronic journal of combinatorics 27(2) (2020), #P2.21 18



Figure 6: The 5-diagonal moon-polyominoes.

standard. A Young tableau is a tableau in which the entries are increasing down columns,
and across rows, from left to right. A standard Young tableau (SYT) is a Young tableau
which is also a standard tableau. Figure 7 shows a SYT of the 5-diagonal moon-polyomino
of shape (1, 3, 5, 4, 2). Stanley [12] proved that the cardinality of R(w0) is given by the
number of all SYT with partition shape (n, n− 1, . . . , 1).

2
1 3 4

5 6 7 8 9
10111314

1215

Figure 7: SYT of 5-diagonal moon-polyomino shape

The number of SYT of shape δ is invariant under reflection in a diagonal line (i, j) 7→
(j, i) or (i, j) 7→ (−j,−i), and reflection in the origin (i, j) 7→ (−i,−j), that is rotation
by 180◦ [1], which is the composition of the other two reflections.

Let w = w1 · · ·w` ∈ AR(w0) be an alternating word with content c(w) = (c1, . . . , cn).
We assign to w a tableau P (w) that we will show is a SYT of n-diagonal moon-polyomino
shape. This tableau is constructed by the overlapping of n diagonals Di−1, where each
diagonal Di−1 contains the positions of the letters i in w. The first box of Di is placed
over or in front of the first box of Di−1, according to whether the first occurrence of the
letter i+ 1 in w is before or after the first occurrence of the letter i.

The following algorithm encodes this procedure, by constructing a sequence of tableaux
∅ = P0(w), P1(w), . . . , Pn(w) = P (w), where Pi(w) is obtained from Pi−1(w) by overlap-
ping it with the diagonal Di.
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Algorithm 1.

1. Start with the empty subset P0(w) of Z× Z.

2. Add c1 cells at positions (j, j), j = 1, . . . , c1.

3. Fill these c1 cells with the positions of the letters 1, from left to right, in w. Let
P1(w) be the resulting tableau.

4. For i = 2, . . . , n,

a. Let (a, b) be the coordinates of the cell in Pi−1(w) corresponding to the leftmost
letter i− 1 of w, and let k be its label.

b. If the first occurrence of the letter i in w is before the kth place, then

i. Add ci cells at positions (a− 1 + j, b+ j), j = 0, . . . , ci − 1.

ii. Fill these ci cells with the positions of the letters i, from left to right, in
w. Let Pi(w) be the resulting tableau.

Else, do

i. Add ci cells at positions (a+ j, b+ 1 + j), j = 0, . . . , ci − 1.

ii. Fill these ci cells with the positions of the letters i, from left to right, in
w. Let Pi(w) be the resulting tableau.

Example 37. The successive steps in the construction of the tableau P (w) corresponding
to the reduced alternating word w = 253145213425312 ∈ AR(w0) are

P1(w) = 4
8
14

, P2(w) = 1
4 7

8 11
1415

, P3(w) = 1 3
4 7 9

8 1113
1415

,

P4(w) = 1 3 5
4 7 9 10

8 1113
1415

, P5(w) = P (w) = 2
1 3 5 6
4 7 9 1012

8 1113
1415

.

Lemma 38. If w is an alternating word, then P (w) is a Young tableau.

Proof. The alternating property of the subword w|{i,i+1}, for i ∈ [n−1], shows that any two
consecutive diagonals of P (w) satisfy the tableau condition, that is the entries increase
along rows from left to right, and along columns, from top to bottom. It follows that
P (w) is a Young tableau.

Lemma 39. Let I = {i1 < · · · < ik} ⊆ [n − 1] and [n] \ I = {j1 < · · · < j` < n}. Then
the shape of P (w−I ) is the n-diagonal moon-polyomino (i1, . . . , ik, n, j`, . . . , j1).
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Proof. The word w−I can be written as a product of factors w−I = w−i1 · · ·w
−
ik
·w−n ·w−j` · · ·w

−
j1

.
By construction, each of these factors corresponds to a column of P (w−I ), with the number
of boxes equal to the length of the corresponding factor. Since all factors w−iq end with
the letter 1, then all the columns 1, 2, · · · , k + 1 end in the diagonal D0 associated with
the letter 1, and similarly, since all factor w−jp start with the letter n, then the last ` + 1
columns start in the same diagonal Dn−1.

Since the indices in I appear in w−I in increasing order, the set of row coordinates of
column q is contained in the set of row coordinates of column q + 1, for q = 1, . . . , k, and
the same happens with the last `+ 1 columns. This shows that the shape of P (w−I ) is the
n-diagonal moon-polyomino (i1, . . . , ik, n, j`, . . . , j1).

Denote by s(V ) the set of shapes of the tableaux P (v), with v ∈ V , and let PV be
the set of all Young tableaux with shapes in s(V ).

Theorem 40. The map P : AR(w0) → PV , that sends w into P (w), is a bijection.
Moreover, w ∼ v if and only if P (v) and P (w) have the same shape.

Proof. Lemma 38 shows that P is well defined. By Algorithm 1, the shape of the tableau
P (w), with w ∈ AR(w0), is completely characterized by the subwords w|{i,i+1} for i ∈
[n − 1]. It follows by Lemma 1 that given w, v ∈ AR(w0), we have w ∼ v if and only if
P (v) and P (w) have the same shape.

Note also that the map P is invertible. If Q ∈ PV , has the shape of P (w−I ), we can
construct a word w over the alphabet {1, 2, . . . , n} by setting the letter i in position k
whenever the tableauQ has the integer k in a box of theDi−1 diagonal, for all i ∈ [n]. Since
any two consecutive diagonals of Q satisfy the Young tableau condition, it follows that
each subword w|{i,i+1} is alternating and satisfy w|{i,i+1} =

(
w−I
)
|{i,i+1} for all i ∈ [n− 1].

By Lemma 1, we have w ∼ w−I , and thus w ∈ AR(w0), with P (w) = Q. This proves that
P is a bijection and that w ∼ v if and only if P (v) and P (w) have the same shape.

Example 41. The alternating word w = 253145213425312 in Example 37 is in the class
of w−{2,3} since the shapes of P (w−{2,3}) and P (w) are the same, with

P
(
w−{2,3}

)
= 6

1 3 7 11
2 4 8 1215

5 9 13
1014

.

Note that the filling of P
(
w−{2,3}

)
is obtained by writing the integers from 1 to 15 down

columns, starting from the leftmost one. The tableaux of the words in V are obtained in
the same manner.

Corollary 42. The map s : V → s(V ) is a bijection that sends each word v ∈ V to the
shape of P (v).
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Note that (w−n )
•R

= wn and for i 6= n,
(
w−i
)•R

= w−i and
(
w−i
)•R

= w−i . That is,(
w−I
)•R

= w−[n−1]\I , and thus the shape of P (w−I ) is the 180 degree rotation of the shape of

P (w−[n−1]\I). Therefore, the operation •R establishes a bijection between the commutation

classes [w−I ] and [w−[n−1]\I ]. In particular, the commutation classes of w0 = w−[n−1] and

w•R0 = w−∅ have the same number of elements. For n = 5, the shapes corresponding to
the words in the classes of w0 = w−[n−1] and w−∅ are, respectively:

and .

Note that P (w0) is a shifted standard Young tableau, i.e. a standard Young tableau of
shifted shape given by the strict partition (n, n− 1, . . . , 1). The bijection P extends the
bijection between reduced words in the class of w0 and standard Young tableau of shifted
shape given by (n, n − 1, . . . , 1) constructed in [10]. A formula for the number of these
standard Young tableau of shifted shape can be found in [11].

Proposition 43 (See [10]). The commutation classes of w−∅ and of w−[n−1] have

(
n

2

)
!
n−2∏
i=0

i!

(2i+ 1)!
(6)

elements each.

Proof. It is proven in [10] that the number of reduced words in the commutation class of
w0 = w−[n−1] is given by (6). This is also the number of elements in the commutation class

of the word w−∅ , since w•R0 = w−∅ and •R establishes a bijection between the commutation
classes [w−[n−1]] and [w−∅ ].

If I ∪ J is a partition of [n − 1], then we have
(
w−I
)R

= w+
J , and the shape of the

tableau of
(
w−I
)R

is the reflection under the diagonal line (i, j) 7→ (j, i) of the tableau of
w−I . Moreover, if the entry of position (i, j) of P

(
w−I
)

is a, then the entry in position

(j, i) of P (
(
w−I
)R

) is n− a+ 1. It follows that(
w−I
)R

= w+
J ∼ w−I′ ,

where I ′ = {n− i : i ∈ I}. Therefore, the operation R establishes a bijection between the
commutation classes of [w−I ] and [w−I′ ], for each I ⊆ [n− 1]. Since the operations • and R
are involutions that commute with each other, it follows that the operation • establishes
a bijection between the commutation classes of [w−I ] and [w−[n−1]\I′ ], for each I ⊆ [n− 1].

Lemma 44. Let wb
I ∈ T SO(n). Then wb

I is an alternating word if and only if b has
constant sign.
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Proof. When b = (−)n−1 the word w−I is an element of the set V ⊆ AR(w0), and if
b = (+)n−1 then, as we have seen above, w+

I ∼ w−I′ , where I ′ = {n − i : i /∈ I}. Now,
suppose b is not a constant vector and let i ∈ {2, . . . , n − 1} be the first index such
that bi 6= bi−1. We assume bi = − (the other case is analogous), and consider a two
sided ordered word wb

I . Note that if a 6 c < d < b, then the word t+a,b · t
−
c,d is not

alternating, since
(
t+a,b · t

−
c,d

)
|{d−1,d} = (d − 1)d2(d − 1). If i /∈ I, then wb

I has a factor

w
bj
n−j+1 · w

bi
n−i+1 = t+a,b · t

−
c,d, for some j < i and a 6 c < d < b. Similarly, if i ∈ I, then wb

I

has a factor wbi
n−i+1 · w

bj
n−j+1 = t−c,d · t

+
a,b, for some j < i and a 6 c < d < b, where we let

w
bj
n−j+1 = wb1

n if j = 1. It follows that wb
I is not an alternating word.

We are now ready to compute the number of commutation classes having an element
of the set T SO(n) as a representative. Given wb

I ∈ T SO(n) and i ∈ [n], define the
integers

xi := 1 + #{j < i : bj = +} and yi := n+ 1−#{j < i : bj = −}.

Note that the permutation associated with wbi
n+1−i sends xi to yi if bi = +, and sends yi

to xi if bi = −.

Lemma 45. Let wb
I ∈ T SO(n). For i ∈ [n], define the sets

∆i =

{
{(xi, z) : xi < z 6 yi}, if bi = +
{(z, yi) : xi 6 z < yi}, if bi = − and ∆i

I =
⋃
j>i

n+1−j∈I

∆j.

Then, we have

T (wb
I , xizyi) =

{
+1, if (bi = + and (z, yi) /∈ ∆i

I) or (bi = − and (xi, z) ∈ ∆i
I)

−1, if (bi = − and (xi, z) /∈ ∆i
I) or (bi = + and (z, yi) ∈ ∆i

I)
.

Proof. Let i ∈ [n] and assume bi = + (the other case is analogous). The set ∆i
I stores all

pairs of integers (a, b) with a < b such that w(a) > w(b) for w the permutation associated

with one of the factors w
bj
n+1−j, with j > i. Then the permutation associated with wb

I

sends xi to yi. If the pair (z, yi) was not inverted by now (that is, (xi, z) ∈ ∆i
I), then the

pair (xi, z) is inverted before the pair (z, yi) and, consequently, T (wb
I , xizyi) = +1.

Proposition 46. The elements of the set T SO(n) belong to 3 × 4n−2 − 2n−1 distinct
commutation classes.

Proof. By Theorem 34, the number of commutation classes in the set of all alternating
words AR(w0) is 2n−1, and by Lemma 44, each one of these classes has exactly two
words from T SO(n). Consequently, using Lemma 23 we conclude that there are at most
3× 4n−2 − 2n−1 distinct commutation classes in the set T SO(n).

If two T SO(n) words wb
I and wb′

I′ are different and have the same T -value for all
triples of integers in [n + 1], then by Lemma 45, b and b′ have opposite constant signs
and I ′ = [n− 1]\I. By Lemma 44, both words are alternating words.
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In the next result, we prove that the cardinality of the commutation class of an alter-
nating word v ∈ V is a local maximum; that is, the cardinality of [v] is the largest among
all classes connected to it by a single long relation.

Proposition 47. The class [v] is a local maximum, for any alternating reduced word
v ∈ V .

Proof. Let I = {i1, . . . , ik} and w−I ∈ V , with {j1, . . . , j`} = [n− 1] \ I and j1 < · · · < j`.
A reduced word w /∈ [w−I ] is connected to some word v ∈ [w−I ] only by a long relation
121 ∼

L
212 or n(n − 1)n ∼

L
(n − 1)n(n − 1), since between two consecutive letters i of

w−I , with i 6= 1, n − 1, there is always a letter i − 1 or a letter i + 1, by the definition of
an alternating word. A long relation 121 ∼

L
212 is obtained by using short relations in

w−I between the letters 1 and 21 of two subwords w−iq and w−iq+1
, respectively (assuming

w−iq+1
= w−n if q = k), in order to form a factor 121. Similarly, a long relation n(n− 1)n ∼

L

(n − 1)n(n − 1) is obtained by using short relations in w−I between the letters n(n − 1)
and n of two subwords w−jp+1

and w−jp , respectively (assuming w−jp+1
= w−n if p = `), in

order to form a factor n(n− 1)n.
Let v = t1tt2 ∼ w−I be a word in the commutation class of w−I with a factor t = 121,

and let w = t1tt2 ∼
L
v, with t = 212. Any sequence of short relation on the factor t1 or t2

of w can be replicated in v. Moreover, a sequence of short relations which uses one letter
2 in t can be replicated with the corresponding letter 1 of t. This defines an injection f
from the set [w] into [v]. Note also that the sequence of short relations in v that sends
the letter 1 of t to the opposite side of the closest letter 3 is not in f([w]), showing that
the cardinality of [w] is strictly less than that of [w−I ]. An analogous argument shows
that if w is connected with v ∼ w−I by a long relation n(n− 1)n ∼

L
(n− 1)n(n− 1), then

the cardinality of [w] is again strictly less than the cardinality of [w−I ]. Therefore, we can
conclude that [w−I ] is a local maximum.

Among the cardinalities of all classes in R(w0), the four atoms we described in Theorem
27 are the classes with fewest elements, and the last result shows that each alternating
class [w−I ], with I ⊂ [n − 1] is a local maximum. Computational evidence leads to the
following conjecture.

Conjecture. The alternating classes of w−I and
(
w−I
)•R

= w−J are the ones with maximum
cardinality amongst all classes of R(w0), where I and J are, respectively, the sets of all
odd numbers and all even numbers in [n− 1].

For instance, when n = 6 we have w−I = 1 · 321 · 54321 · 654321 · 6543 · 65 and
w−J = 21 · 4321 · 654321 · 65432 · 654 · 6. Moreover, when restricted to the alternating
classes in AR(w0), we conjecture that the classes w0 = w−[n−1] and w−∅ are the ones having

fewest elements, so that |[w0]| 6 |[w]| 6 |w−I | for any w ∈ AR(w0).
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