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Abstract: This paper tests an automated methodology for generating training data from
OpenStreetMap (OSM) to classify Sentinel-2 imagery into Land Use/Land Cover (LULC) classes.
Different sets of training data were generated and used as inputs for the image classification. Firstly,
OSM data was converted into LULC maps using the OSM2LULC_4T software package. The Random
Forest classifier was then trained to classify a time-series of Sentinel-2 imagery into 8 LULC classes
with samples extracted from: (1) The LULC maps produced by OSM2LULC_4T (TD0); (2) the TD1
dataset, obtained after removing mixed pixels from TD0; (3) the TD2 dataset, obtained by filtering
TD1 using radiometric indices. The classification results were generalized using a majority filter
and hybrid maps were created by merging the classification results with the OSM2LULC outputs.
The accuracy of all generated maps was assessed using the 2018 official “Carta de Ocupação do Solo”
(COS). The methodology was applied to two study areas with different characteristics. The results
show that in some cases the filtering procedures improve the training data and the classification
results. This automated methodology allowed the production of maps with overall accuracy between
55% and 78% greater than that of COS, even though the used nomenclature includes classes that can
be easily confused by the classifiers.

Keywords: land use land cover; training data; OpenStreetMap; Sentinel-2; COS (Carta de Ocupação
do Solo); volunteered geographical information (VGI)

1. Introduction

Knowledge regarding the Earth’s surface and its’ use for human activities is critical for several
applications, such as climate change monitoring and forecast [1,2], habitat conservation and planning [3,4],
population mapping [5,6], urban planning [7], policy making [8], among others [9,10]. Due to the speed of
population growth and the human intervention on the landscape, changes on both the land use and land
cover at a given location may occur within short time intervals. Hence, the fast generation of updated
land use land cover (LULC) maps is becoming increasingly important.

Remote sensing data has long been used as an input to generate LULC maps [11,12]. The high
revisit capabilities and wide coverage of remote sensing platforms, such as Landsat and Sentinel,
allow the automated generation of LULC maps with high temporal frequencies [13–15]. However,
supervised satellite image classification demands training data sets that are able to characterize each of
the target classes [16,17]. Hence, training data are central within the LULC map generation process,
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as their quality and representativeness of the classes will determine the quality of the classification
result. Such training data is usually generated by human photointerpretation of higher resolution
imagery, such as very high spatial resolution satellite or aerial imagery, and/or from field surveys,
which are costly and time-consuming processes [18,19]. This is a major limitation when seeking to
automatically generate LULC maps and fully explore the potential of satellite imagery with temporal
resolutions of just a few days, such as by using the imagery collected by both satellites of the Sentinel-2
constellation. Therefore, it is desirable to develop methodologies that enable the automatic generation
of training data, either by using already available sets of ancillary information, adopting a data driven
approach or utilizing a mix of the two.

Volunteered Geographic Information (VGI) [20], mainly generated with citizen contributions,
is one of the possible sources of data that can be used to create training data for a LULC classifier.
Other terms for VGI are also used, such as Geographic Citizen Science, Neogeography or Participatory
Sensing, even though they have slightly different meanings [21]. One of the most successful VGI
projects is OpenStreetMap (OSM) [22], which has millions of contributors all over the world and aims
to create a vector map of the world. The data created by all contributors are then available for free
download and use.

Arsanjani et al. [23], showed that data capable of generating LULC maps comparable to Urban
Atlas (UA) may be obtained from OSM [24]. Based on these findings, a methodology was created to
automatically convert OSM data into LULC classes [25–27] using several nomenclatures, namely level
2 classes of CORINE Land Cover (CLC) [28], and UA, as well as GlobeLand30 classes [29]. Nonetheless,
OSM data is often incomplete, even in regions where the OSM data coverage is high. This becomes
more evident in the regions where a larger amount of data is missing in OSM. To overcome this
limitation, the data derived from OSM was merged with GlobeLand30 to generate hybrid maps for
two study areas in Africa and Asia [26]. Shultz et al. [30], created a LULC product with the CLC
nomenclature using OSM derived data, and completed the regions with no data in OSM by classifying
Landsat satellite imagery using the OSM derived data as training data. The results were compared
with CLC and the obtained accuracy was higher than 80%.

Arsanjani et al. [31], also tested the use of data extracted from OSM to train the Maximum
Likelihood Classifier to classify a RapidEye image of an urban area using the UA nomenclature.
The results were compared to UA and a kappa index of 89% was obtained. In [32], OSM data was also
used to classify a time-series of Landsat satellite imagery. However, only the data regarding the OSM
keys “natural” and “landuse” were used. Several challenges were identified such as missing data in
some classes of interest, positional and thematic errors and the imbalanced class distribution in the
training data. To overcome the first problem, the authors discarded classes with less than 10 polygons
in OSM, polygons that could not be clearly associated to a single class as well as polygons with an
area inferior to a pixel (with a spatial resolution of 30 × 30 m). To overcome the second problem,
artificial training samples were generated using the synthetic minority over-sampling technique.
Several classification techniques were tested considering four, five and six classes. The accuracy results
in some cases was more than 80%.

Haufel et al. [33], developed a semi-automated approach to classify orthophotos of urban areas
into four classes: buildings, roads, low vegetation and high vegetation. For OSM roads, which are
represented in OSM by linear features, a width of two pixels was considered as spatial extent. As OSM
data may have several errors and inconsistencies, the Normalized Difference Vegetation Index (NDVI)
and the Normalized Digital Surface Model (NDSM) were used; these methods were useful for solving
spectral and geometric problems mainly related with vegetation and height of features. Random Forest
was used as a classifier and the results appeared to be promising, even though no quantitative accuracy
assessment was made.

While several methods were already proposed to consider OSM derived data as training for image
classifiers to generate LULC maps, further developments are still necessary to obtain reliable datasets
which are able to accommodate both urban and rural scenes. This paper aims to propose an automated
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methodology to generate LULC maps using three approaches which successively filter OSM data
to generate high quality training data. These three datasets were used to classify a time-series of
Sentinel-2 satellite imagery using a nomenclature with 8 classes similar to the level 1 classes of the
2018 version of the “Carta de Ocupação do Solo” (COS 2018) produced by the Portuguese national
mapping agency. A map derived from COS 2018 was used as reference data to assess the accuracy of
the obtained classifications. Experiments were made in two study areas comprising of both urban and
rural settings. Hybrid maps (i.e., LULC maps where only areas without OSM coverage are completed
by using the outputs of the classifications generated in the previous experiments) were also generated
and their quality assessed. This analysis was conducted due to the promising results given by similar
approaches [26,30], and it enabled us to assess which methodology (i.e., use OSM just for training or to
generate hybrid maps) provided better results.

Overall, the presented approaches showed that OSM may provide valuable training data to
incorporate into automated LULC classification routines. Namely, the filtering of OSM data with
several indices present in the literature (e.g., NDVI) was shown to improve accuracy metrics of the
resulting LULC maps.

2. Study Areas and Datasets

In this section the study areas used for testing the proposed methodology are presented and the
datasets used in the paper described, namely OSM data, the Sentinel-2 satellite imagery and the COS
LULC products.

2.1. Study Areas

Two study areas, with different characteristics, are used in this paper. Study area A is located at
the Tagus river estuary, in the west part of Portugal (corresponding to the NUTS III Metropolitan Area
of Lisbon), while study area B is located in the center of the country, corresponding to the “Beiras and
Serra da Estrela” NUTS III region. The two study areas have different degrees of OSM coverage
and detail, population density, terrain morphology and vegetation/forest types. Hence, testing the
methodology over different scenes and different levels of available OSM data. These regions were
selected since they were considered representative when it comes to OSM completion, landscape and
urban/rural differences.

2.1.1. Study Area A

Study area A occupies an area of 1560 km2 and includes the city of Lisbon and surrounding areas.
Most of the region is urban but also includes agricultural areas, natural vegetation, forest regions and
wetlands. Figure 1a shows the location of the study area in continental Portugal, Figure 1b shows the
true color visualization of the Sentinel-2 multispectral image collected in 19 June 2018 and Figure 1c
shows the OSM data available in the area.
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2.1.2. Study Area B

Study area B occupies an area of 2000 km2 and is located in the center of continental Portugal.
It includes the natural park of “Serra da Estrela”, which is a national park. It is a mountain region with
sparse vegetation, rock and forested areas, with some small and dispersed urban areas. Figure 2a shows
the location of the study area in continental Portugal, Figure 2b shows the true color visualization
of the Sentinel-2 multispectral image collected in 19 June 2018, and Figure 2c shows the OSM data
available in the area.
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2.2. OpenStreetMap Data

OSM is a collaborative project created in 2004 that aims to create a freely available vector map of
the world. The project has been very successful, and in May 2020 it had more than 6,000,000 registered
users. OSM data is structured into four data types, namely: Nodes, ways, relations and tags [34],
which are described as:
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• Nodes—Are points with a geographic location expressed by coordinates (latitude and longitude);
• Ways—Are polylines (if open) or polygons (if closed) and are formed by an ordered list of nodes;
• Relations—Are ordered lists of nodes and ways and are used to express relationships between

them, such as a travel root including bus lines and stops;
• Tags—Are associated with nodes, ways or relations and include metadata about them. They are

formed by pairs of key-value and are used to describe the properties of the elements, where the key
specifies a property which has a value for each element. A list of the tags proposed by the OSM
community is available at the OSM Wiki (https://wiki.openstreetmap.org/wiki/Map_Features),
but the volunteers may add new tags. Examples of tags (key = value) are building = commercial
or landuse = forest.

The completeness and types of features available in OSM may vary considerably from region to
region, as they depend upon the volunteer’s contributions [35]. Usually, features such as waterways
and the road network are the first to be inserted in OSM [36]. It can be seen (Figure 1c) that for study
area A, most of the missing data (shown in beige) is outside the urban areas. A large percentage of
study area B has no data in OSM and most of the data available refers to the natural park (Figure 2c).
In the zones outside the natural park, only a few data is available for the existent urban areas, such as
the city of Covilhã (bottom of Figure 2c).

2.3. Sentinel-2 Satellite Images

ESA developed a family of missions for Earth Observation, called the Sentinels, which includes
the Sentinel-2. This mission includes two twin satellites (Sentinel-2A and Sentinel-2B), which have on
board the MultiSpectral Instrument (MSI) that collects high resolution optical images of the Earth with
a temporal resolution of 5 days at the equator. The multispectral images have 13 bands with different
spatial resolutions in the Visible Near Infrared (VNIR) and the Short-Wave Infrared (SWIR) wavelengths.
Table 1 shows the bands, the corresponding wavelengths and their spatial resolutions [37].

Table 1. Bands of multispectral images collected by the Sentinel-2 mission, their central wavelength,
bandwidth and spatial resolution.

Band Central Wavelength/Bandwidth Spatial Resolution

B1 (Aerosol retrieval) 443 nm/20 nm 60 m
B2 (Blue) 490 nm/65 nm 10 m

B3 (Green) 560 nm/35 nm 10 m
B4 (Red) 665 nm/30 nm 10 m

B5 (Vegetation red-edge) 705 nm/15 nm 20 m
B6 (Vegetation red-edge) 740 nm/15 nm 20 m
B7 (Vegetation red-edge) 783 nm/20 nm 20 m

B8 (Near-infrared) 842 nm/115 nm 10 m
B8a (Vegetation red-edge) 865 nm/20 nm 20 m
B9 (Water vapor retrieval) 945 nm/20 nm 60 m

B10 (Cirrus cloud detection) 1380 nm/30 nm 60 m
B11 (SWIR) 1610 nm/90 nm 20 m
B12 (SWIR) 2190 nm/180 nm 20 m

For each study area a time series formed by three Sentinel-2 images with the processing Level-2A
was used for the analysis, so that the seasonal variation of vegetation could be captured. The collection
dates of the images are shown in Table 2, as well as the Sentinel GRID corresponding to their location.
For the study presented in this paper, only the 10 m spatial resolution bands were used in the
classification (B2–B4 and B8), as the intention was to generate a LULC map with 10 m spatial resolution.
However, band 11 was used to compute the NDBI, as explained in Section 3.3.

https://wiki.openstreetmap.org/wiki/Map_Features
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Table 2. Details about the bands and images used for the analysis made in each study area.

Satellite Product Type Collection Date Sentinel GRID

Study area A Sentinel-2A Level-2A 21 March 2018 T29SMC
Sentinel-2A Level-2A 19 June 2018 T29SMC
Sentinel-2B Level-2A 22 October 2018 T29SMC

Study area B Sentinel-2B Level-2A 26 March 2018 T29TPE
Sentinel-2A Level-2A 19 June 2018 T29TPE
Sentinel-2B Level-2A 22 October 2018 T29TPE

2.4. The Portuguese Land Cover Map (COS)

The “Carta de Ocupação do Solo—COS” product is a LULC map produced by the Direção Geral
do Território (DGT), which is the Portuguese institution responsible for producing official topographic
cartography and several types of thematic maps. This LULC product has versions for the years 1990,
1995, 2007, 2010, 2015 and 2018. The COS series is produced in the vector data model, where each
polygon delineates a homogeneous area assigned to the LULC class occupies 75% of the polygon area.
The COS minimum mapping unit (MMU) is 1 ha, while the minimum distance between lines and the
minimum width of the polygons is 20 m.

COS is obtained by using visual interpretation of orthophotos with RGB and near infrared bands.
The overall accuracy of COS 2015 for level 1 classes is 96% [38]. The overall accuracy of COS 2018 is
still under assessment, but the technical specification requires the accuracy values to be higher than
85% [39].

The nomenclature of COS follows a hierarchical structure formed by several levels, where each
level is more detailed than the previous one. The nomenclature has been updated throughout the
different versions of the COS. For example, while the version of 2015 has 5 levels and 5 classes for
level 1, the 2018 version considers 4 levels and level 1 includes 9 classes. Table 3 shows the level 1
nomenclature of COS 2015 and COS 2018.

Table 3. Classes of level 1 nomenclature of COS 2015 and COS 2018.

Class Code COS 2015 COS 2018

1 Artificial surfaces Artificial surfaces
2 Agricultural areas Agriculture
3 Forest areas and natural spaces Pasture
4 Wetlands Agroforest surfaces
5 Water bodies Forests
6 Shrubs
7 Open spaces or with little or no vegetation
8 Wetlands
9 Superficial water bodies

COS 2015 was used to assist in the identification of the classes proportion in the study areas and
for the creation of a product that will be compared with COS 2018, as described in Section 3. Therefore,
class harmonization between these versions was performed as indicated in Section 3.2.

3. Methodology

The methodology applied in this paper includes nine main steps: (1) Conversion of OSM raw data
into the CLC classes using a transformed version of OSM2LULC conversion software (OSM2LULC-4T);
(2) harmonization of the results of step 1 into the used nomenclature; (3) generation of three sets of
training data derived from the data obtained in step 2 (TD0, TD1 and TD2) through the application of
successive filtering procedures; (4) selection of training samples from each training set (TS0, TS1 and
TS2); (5) assessment of class separability and accuracy of the training sets and of the extracted samples;



Remote Sens. 2020, 12, 3428 7 of 31

(6) classification of the satellite images with the training samples generated in step 4; (7) generalization
of the classification results using a majority filter; (8) creation of hybrid maps incorporating the data
extracted from OSM and the classification results; and (9) accuracy assessment of the classification
results obtained in step 6, the generalized maps obtained in step 7 and the hybrid maps obtained in
step 8. Figure 3 shows the methodology workflow.
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3.1. Nomenclatures’ Harmonization

Data sources with different classification schemas were used throughout this study. Therefore,
it was necessary to harmonize the class nomenclatures. The nomenclature selected for use in the
classification includes the eight LULC classes listed in the left column of Table 4, which also shows
their correspondence with the classes of the remaining nomenclatures.
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Table 4. Harmonization of the nomenclatures of the used data sources.

Used Classes OSM2LULC COS 2015 COS 2018

1. Artificial surfaces

1.1 Urban fabric
1.2 Industrial, commercial and transport units
1.3 Mine, dump and construction sites
1.4.2 Sport and leisure facilities (excluding golf courses)

1. Artificial surfaces, excluding:

- Public green spaces
(1.4.1.00.0)

- Golf courses (1.4.2.01.1)

1. Artificial surfaces, excluding:

- Golf courses (1.6.1.1)
- Public gardens and

playgrounds (1.7.1.1)

2. Agricultural areas
2.1 Arable land
2.2 Permanent crops
2.4 Heterogeneous agricultural areas

2. Agriculture, excluding:

- Permanent pastures
(2.3.1.01.1)

- Agroforestry (2.4.4)
2. Agriculture

3. Herbaceous vegetation

1.4.1 Green urban areas
2.3 Pastures
3.2.1 Natural grasslands
1.4.2 Sport and leisure facilities (only golf courses)

1.4.1.00.0 Public green spaces
1.4.2.01.1 Golf courses
2.3 Permanent pastures
3.2.1 Herbaceous

3 Herbaceous
1.6.1.1 Golf courses
1.7.1.1 public gardens and
playgrounds

4. Forest areas 3.1 Forests 2.4.4 Agroforestry
3.1 Forestry

4 Agroforestry
5 Forestry

5. Shrublands 3.2.4 Transitional woodland-shrub 3.2.2 Shrublands 6 Shrublands

6. Open spaces with little
or no vegetation 3.3 Open spaces with little or no vegetation 3.3 Open spaces with little or no

vegetation
7 Open spaces with little or no
vegetation

7. Wetlands 4 Wetlands 4 Wetlands 8 Wetlands

8. Water bodies 5.1 Inland waters
5.2 Marine waters 5 Water bodies 9 Water bodies

The OSM raw data were converted into LULC classes using the OSM2LULC_4T software package,
as explained in Section 3.2. The output classes are listed in the second column of Table 4 and include
level 2 classes and some of level 3 classes of CLC nomenclature. Columns 3 and 4 of Table 4 show the
correspondence with the classes of COS 2015 and COS 2018, which were used, respectively, to define
the weights associated to the classes in the classification process (as explained in Section 3.3) and the
accuracy assessment (as explained in Section 3.4). This was performed to attenuate the class imbalance
present in the dataset.

The aim of this study was to obtain LULC maps through satellite image classification. However,
there are some land use classes that cannot be differentiated only by their spectral response. Therefore,
some vegetated areas (such as golf courses and urban vegetation), which are in some nomenclatures
included in artificial surfaces, were instead incorporated in the vegetated classes, as shown in Table 4.

Figures 4 and 5 show, respectively, the LULC maps obtained by converting COS 2018 to the
nomenclature used for the classification for study area A and study area B.
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Figure 5. Maps resulting from the conversion of COS 2018 to the classes used in the classification
(shown in Table 4) for study area B.

Table 5 shows the variation of the classes’ area when comparing the maps corresponding to COS
2015 and COS 2018. The variation in each class is smaller than 2% of the area of interest for both study
areas. Therefore, the classes’ area extracted from COS 2015 provides a good estimate of the classes’ area
in COS 2018. These values are used to generate training samples proportional to the classes’ expected
area, as explained in Section 3.5.

Table 5. Variation of classes’ area between the maps resulting from the conversion of COS 2015 and
COS 2018 to the classes used in this study.

Considered Classes
Study Area A Study Area B

Gain (%) Loss (%) Gain (%) Loss (%)

1. Artificial surfaces 0.92 0.45 0.20 0.08

2. Agricultural areas 1.04 0.92 1.15 1.34

3. Herbaceous vegetation 0.64 1.54 0.63 0.98

4. Forest areas 0.90 0.79 1.72 1.57

5. Shrublands 0.92 0.65 1.77 1.55

6. Open spaces with little or no vegetation 0.01 0.08 0.11 0.06

7. Wetlands 0.69 0.00 - -

8. Water bodies 0.01 0.69 0.02 0.002

Total class change (%) 5.12 5.6

3.2. Conversion of OSM Data to LULC

In order to use OSM features to obtain LULC classes, it is necessary to perform a series of steps
that include:
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• Mapping the OSM features into the LULC classes of interest;
• converting linear features, such as roads and waterways, into areal features;
• solve inconsistencies resulting from the association of different classes to the same location when

there are, for example, overlapping features with different characteristics, or there is missing data
indicating that a feature is underground (location = underground).

OSM2LULC [25,40] is a software package that includes a set of tools developed to address these
issues and automatically convert OSM data into LULC maps. At present, it enables the conversion
of OSM features to the LULC classes of Urban Atlas and CLC level 2 nomenclatures, and to the
GlobeLand30 nomenclature. In OSM2LULC, the linear OSM features that can be associated with LULC
classes are converted into polygons by creating buffer zones around the lines using either predefined
buffer widths or by calculating the distance to other OSM features with spatial analysis. Due to the
characteristics of OSM data, for some OSM features it is not possible to specify a unique association
with a LULC class. In some cases, when such a direct relation cannot be established, OSM2LULC uses
strategies based on the analysis of the geometric and topological properties to determine if a certain
group of OSM features should be associated with a certain LULC class or not. For example, to assign
a polygon called forest in OSM to a forest class, the area of the polygon needs to have a minimum
predefined value.

OSM2LULC has 6 modules which implement and apply these strategies to groups of OSM features.
The data produced by these modules are then integrated, merging all the results into a single layer
while solving inconsistencies resulting from overlapping polygons that have been assigned to distinct
LULC classes. The elimination of inconsistencies is done by considering a hierarchical approach that
assigns different levels of priority to the output LULC classes.

Currently, OSM2LULC has four versions (Versions 1.1 to 1.4). The differences between them are
related with the technologies and data models used [25,40]. Versions 1.1 (based on GRASS GIS) and
1.2 (based on GRASS GIS and PostGIS) use only the vector data model as an input and output data
model, while versions 1.3 (based on GRASS GIS) and 1.4 (based on GDAL and Numpy) use the raster
data model to apply the priority rules, generating results in the raster format.

OSM2LULC version 1.2 was used in this study to transform OSM tags into LULC classes,
although with a few modifications. The output of the conversion process is a vector map with the
classes of interest, where the resulting polygons do not overlap. However, as in the original OSM
data, there are frequently overlapping features that can be associated with different LULC classes;
in the training sets filtering process explained in Section 3.3, the originally overlapping regions were
excluded from the training sets. Therefore, instead of using the files resulting from the complete
workflow of OSM2LULC as input to derive the training data, the files used were the ones obtained
before the step that solves inconsistencies. Another modification included in the OSM2LULC software
used in this paper relates to the mapping of OSM features to the LULC classes. A few changes were
added that related to the association of vegetated areas to the class Artificial Surfaces (which in CLC
include regions such as golf courses and urban vegetation). As the aim here was to use this data for
training classifiers, the inclusion of vegetated regions in the training sets of Artificial Surfaces would
result in low class separability and classification problems. Therefore, the regions with tags related to
urban vegetation and golf courses were associated with Herbaceous vegetation, as shown in Table 4.
The OSM2LULC used with these changes is referred to as OSM2LULC_4T.

3.3. Training Data

The base data used in this research was obtained by running OSM2LULC_4T with the data
extracted from OSM for the considered study areas. Two filtering steps were then applied, as illustrated
in Figure 6, producing three different training sets: Training Data 0 (TD0), Training Data 1 (TD1) and
Training Data 2 (TD2).
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Figure 6. Workflow of the filtering process used to generate two additional training sets (TD1 and
TD2) from TD0, obtained from the original OSM data after the application of the OSM2LULC_4T
conversion tools.

To generate the data necessary for the filtering steps, a vector grid was generated with cells
coincident with the pixels of the Sentinel-2 images. The grid cells were intersected with the polygons
obtained from OSM2LULC_4T and the percentage of area occupied by each class in each cell was
computed. The cells with non-zero percentages associated with more than one LULC class could be
considered as corresponding to mixed pixels and the cells assigned to all classes with total percentage
inferior to 100% are cells with missing data.

The first training dataset (TD0) associated to each class included all the cells obtained with
OSM2LULC_4T, either if they are partially or fully assigned to the class. That is, all cells with a positive
percentage of area associated to the class were considered to be part of TD0.

To obtain TD1, the data in TD0 were then filtered by removing all the cells that are either assigned
to more than one class or that have a percentage of occupation by the LULC class inferior to 100%,
as these correspond to either mixed pixels or pixels with missing data in OSM. The aim of this step
was to assess if this filtering procedure will improve the quality of the training set, even at the possible
expense of losing training data.

The third level of training data (TD2) results from the application of filters to TD1 by setting
thresholds to three radiometric indices, namely the NDVI, the Normalized Difference Water
Index (NDWI) and the Normalized Difference Built-up Index (NDBI), computed, respectively,
with Equations (1)–(3), where NIR, Red, Green and SWIR correspond, respectively, to bands B8,
B4, B3 and B11 of Sentinel-2.

NDVI =
NIR−Red
NIR + Red

=
B8− B4
B8 + B4

(1)

NDWI =
Green−NIR
Green + NIR

=
B3− B8
B3 + B8

(2)

NDBI =
SWIR−NIR
SWIR + NIR

=
B11− B8
B11 + B8

(3)

NDVI varies between −1 and 1 and quantifies the difference between the spectral response in
the near infrared and red bands. It is used to identify vegetation with chlorophyll, which usually
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corresponds to NDVI values larger than 0.3 [41]. NDWI also varies between −1 and 1, and regions
with water generate positive values [42]. The NDBI index also takes values between −1 and 1 and is
used to identify build-up areas, which usually have positive values of NDBI [43].

These indices were computed for the three sets of satellite imagery used for both study areas so
that their variation could be analyzed. This analysis resulted in the identification of threshold values
used to exclude unwanted regions from the training data of each class are shown in Table 6, as well
as the number of images they have to apply to. This last condition was used because the land cover
in some regions may change along the year, and therefore indices such as the NDVI and the NDWI
also change. As a time series of images from different seasons was used, the aim was not to exclude
regions that may have variations along the year but are in fact correctly assigned to the classes; instead,
the aim was to only exclude regions that do not really correspond to the classes, and therefore should
not be used for training.

Table 6. Condition used for filtering the TD1 dataset with the NDVI, NDWI and NDBI indices, to
obtain TD2.

Classes NDVI/Images NDWI/Images NDBI/Images

1. Artificial surfaces <0.3/all <0.0/all >0.0/at least one

2. Agricultural areas >0.3/all <0.0/all -

3. Herbaceous vegetation >0.3/all <0.0/all -

4. Forest areas >0.3/all <0.0/all -

5. Shrublands >0.3/all <0.0/all -

6. Open spaces with little or no vegetation >0.0/at least one <0.0/at least one -

7. Wetlands >0.0/at least one <0.0/at least one -

8. Water bodies <0.3/at least one >0.0/all -

The thresholds defined in Table 6 were set by visual interpretation and analysis of the per-class
histograms generated for the three indices for each satellite image, as well as the mean and the standard
deviation of the indices per class in the regions under analysis and were used for both study areas.
While for classes 1 to 5 the values of the NDVI and NDWI were set to all the satellite images, this was
not the case for the classes 6–8, where if at least one of the sets of imagery would be within the threshold,
it would be considered as belonging to the class. NDBI was only used for class 1.

3.4. Classes Separability

To assess the quality of the training datasets, the classes’ separability was computed with the
Bhattacharyya distance [44] as it enables determining the statistical distance between the classes.
The greater the distance, the greater the separability is. In this paper, the separability was computed
for each class in a one class versus all comparison, using Equation (4), where i represents the training
dataset corresponding to class i (core i), ic represents the training data corresponding to all classes
except class i (core ic), BD(i, ic) represents the Bhattacharyya distance between core i and core ic,
µi and µic stands for the means of the cores i and ic, respectively, while Σi and Σic are, respectively,
the covariance matrices of cores i and ic [45].

BD(i, ic) =
1
8
(µi − µic)

T
[Σi + Σic

2

]−1
(µi − µic) +

1
2

ln


∣∣∣∣Σi+Σic

2

∣∣∣∣
(|Σi||Σic |)

1
2

 (4)
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The classification was made selecting samples from TD0, TD1 and TD2, as explained in Section 3.5.
Therefore, the class separability was computed both for these datasets and for the samples used in
the classification.

3.5. Classification and Generalization

The Sentinel-2 images were classified using the Random Forest classifier [46], available at
Sklearn [47], using 500 trees. The same parameters were used in all tests. Due to computational
constraints and to attenuate the effects of class imbalance in the different sets of training data, for each set
of experiments a random sample was extracted from the sets TD0, TD1 and TD2, denoted, respectively
as TS0, TS1 and TS2. These samples were created such that the size of the sample for each class is
proportional to the class area in COS 2015 and that each class training set could not have less than
20,000 cells. The total number of sample cells was 534,900 for study area A and 520,278 cells for study
area B. For all other parameters of the random forest classifier, the default values were used, which lead
to a full grown trees scenario.

As the classification was pixel oriented and the reference data used for accuracy assessment was a
map with a 1 ha MMU (see Section 3.6), a majority filter was applied to remove most isolated small
regions from the classification results, producing a generalized version of the classification results.
The applied filter consisted of a circular moving window, selecting for each central pixel the majority
class within the window. As 1 ha corresponds to a square with 10 × 10 cells, the radius chosen for the
moving window was 5 cells.

3.6. Accuracy Assessment

The accuracy of the training datasets TD0, TD1 and TD2, the obtained classifications and their
generalized versions were assessed using as a reference: (1) The map obtained from the conversion
of the COS 2018 to the used nomenclature, as described in Section 3.1; (2) the LULC maps obtained
with the conversion of OSM to LULC classes by running the OSM2LULC software package with the
inconsistencies solving tools, as explained in Section 3.2.

Contingency matrices were created with the map data represented in the rows and the reference
data in the columns. The values pij in the contingency matrix cells represent the area of the region under
analysis classified with class i in the map (row) and class j in the reference data (column). The overall
accuracy was computed using Equation (5), and the user’s accuracy and producer’s accuracy per class
was computed using Equation (6) and Equation (7), respectively.

Overall Accuracy =

∑n
i=1 pii

Total area
(5)

User′s Accuracyi =

∑n
j=1 pi j

Area o f class i in the map
(6)

Producer′s Accuracy j =

∑n
i=1 pi j

Area o f class j in the re f erence
(7)

Note that to assess the accuracy of LULC map extracted from OSM with OSM2LULC, the areas
considered in the denominator of Equations (5)–(7) correspond only to the regions that have data in
OSM, and therefore, as there are regions with no data in OSM in both study areas, their sum is always
smaller than the total area of the study areas.

The user’s and producer’s accuracy enable the computation of, respectively, the map commission
and omission errors per class by subtracting the accuracy values from 100%.
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3.7. Hybrid Maps

Finally, an additional test was made, corresponding to the creation of hybrid maps. These maps
were generated by directly using the information coming from OSM2LULC software package in all
regions where it is available and using the classification results obtained with each of the training
samples (TS0, TS1 and TS2) for the regions where OSM data were not available. The accuracy of these
products was assessed as explained in the previous section and was compared with the accuracy of the
classification results.

4. Results and Discussion

This section presents the results obtained in the several steps of the methodology, along with
their discussion. In Section 4.1 the training datasets TD0, TD1 and TD2 are shown, along with their
respective classes’ separability scores and selected samples, as explained in Section 3.4. The maps
obtained with the classification using the several training datasets are then presented in Section 4.2,
where some examples of the generalized maps are also presented. In Section 4.3, the accuracy of the
classified maps and their generalizations are shown. In Section 4.4, the accuracy of the hybrid maps
created (as explained in Section 3.7) are analyzed and compared with the accuracy obtained for both
the classifications and generalizations results.

4.1. Training Data

Figures 7a and 8a show, respectively, the TD0 datasets for study areas A and B. For study area A
this set corresponds to 49.6% of the whole study area, while for study area B it corresponds to 45.3%.
Figures 7b and 8b show, respectively for the study area A and B, the data removed from TD0 to obtain
TD1 (in light blue), the data removed from TD1 to obtain TD2 (in the medium shade of blue) and TD2 (in
dark blue). Table 7 shows the percentage of these data belonging to each class in each training dataset.

An analysis of Figures 7 and 8, and Table 7 shows that, for study area A, most of the regions
excluded from TD0 belonged to class 1 (artificial surfaces), therefore increasing the percentage of most
of the remaining classes in TD1 and TD2. In study area B, the decrease in percentage is also mostly
observed in class 1, but to a lesser extent, and the class with higher increase in percentage (but with a
value of only 5.5%, from TD0 to TD2) is class 4 (forest areas).

The classes separability for the datasets TD0, TD1 and TD2, and the derived samples TS0, TS1 and
TS2 are shown in Figures 9 and 10, respectively, for study areas A and B. Regarding study area A,
the classes’ separability improves for all classes except class 7 (wetlands) when the filtering procedures
transform TD0 into TD1 and TD1 into TD2. For this class the separability is the same for TD0 and
TD1, and decreases slightly for TD2. The behavior is similar for the samples extracted from these
data, however with a few differences, mainly for the classes with vegetation (classes 2–5), showing a
decrease in the differences between the separability of the samples extracted from TD0, TD1 and TD2.

Table 7. Percentage of the TD0, TD1 and TD2 datasets belonging to each class for study areas A and B.

Classes
Study Area A Study Area B

TD0 TD1 TD2 TD0 TD1 TD2

1. Artificial surfaces 50.3 44.6 27.0 6.9 4.4 1.5

2. Agricultural areas 2.7 2.7 3.6 12.8 11.9 13.4

3. Herbaceous vegetation 9.6 11.5 15.4 2.3 2.0 2.0

4. Forest areas 4.8 5.3 7.1 36.6 37.8 42.1

5. Shrublands 3.7 4.4 5.9 40.4 43.1 40.5

6. Open spaces with little or no vegetation 0.5 0.4 0.5 0.4 0.4 0.4

7. Wetlands 7.4 3.1 4.0 0.001 - -

8. Water bodies 20.9 28.0 36.4 0.8 0.4 0.2
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Figure 9. Class separability per class for the TD0, TD1 and TD2 datasets and the samples TS0, TS1 and
TS2 extracted from these datasets to train the classifier for study area A.
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Figure 10. Class separability per class for the TD0, TD1 and TD2 datasets and the samples TS0, TS1
and TS2 extracted from these datasets to train the classifier for study area B.

For study area B the class separability also increases or is unchanged for all classes from TD0 to
TD1 and from TD1 to TD2, except for class 2 (agricultural areas), where class separability decreases
from TD1 to TD2.

These results show that in most cases, class separability increases with the filtering steps. This is
particularly evident for classes 1 and 8 in both study areas. The remaining classes behave differently
when comparing study area A with study area B. The separability of both class 3 (herbaceous
vegetation) and class 5 (shrublands) is particularly low, which is expected to negatively impact the
ability to distinguish those. The use of samples for training instead of using the complete TD0,
TD1 and TD2 datasets in most classes does not appear to have a large influence over the separability,
even though it may influence the representativeness of the training data, especially for classes that are
more heterogeneous.

4.2. Classification and Generalization

Figures 11 and 12 show the classification results obtained with the three training sets, respectively,
for study areas A and B. Study area A TD0 and TD1 results show a clear misclassification of most of the
ocean part as artificial surfaces. This problem is solved with TD2, after applying the filtering process
with the NDVI, NDWI and NDBI indices.

For study area B, the most visible change in the results obtained with the data extracted from
TD0 and TD1 to TD2 is the central part of the park, which changed from class 5 (shrublands) to class
6 (open spaces with little or no vegetation). This class change is more in agreement with COS 2018,
as shown in Figure 5.

Figure 13 shows details of the effect of the generalization obtained with the 5 m radius majority
filter for two regions located in study areas A and B.

4.3. Accuracy Assessment

Table 8 shows the overall accuracy of TD0, TD1 and TD2 datasets for both study areas. Figures 11
and 12 show the maps obtained with the classification and the generalized maps. The accuracy of the
maps obtained from OSM with the OSM2LULC software was also computed. To enable a comparison
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with the classification results, the accuracy of the classifications obtained with the several training data
for the regions where OSM data is available are also shown in Table 8.
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Table 8. Overall accuracy (%) of: the TD0, TD1 and TD2 training datasets; the maps resulting from the
classification with the samples extracted from these datasets; their generalized versions; the classified
maps considering only the regions where OSM data is available; and of the map generated using
OSM2LULC software. The maps derived from COS 2018 with nomenclature harmonization were used
as reference data.

Study Area A Study Area B

Dataset TD0 TD1 TD2 TD0 TD1 TD2

Training datasets 64 74 76 87 89 93
Classification results 55 64 73 65 65 65

Generalized maps 55 64 78 69 69 69
Classification only for regions with OSM data 69 73 66 66 66 66

Data obtained with OSM2LULC 70 87

The results show that, for both study areas, the overall accuracy of the training datasets increases
from TD0 to TD1 and from TD1 to TD2, showing that the filtering process is indeed removing regions
incorrectly included in the original data. Regarding the classification results, the overall accuracy also
increases with the improved training datasets for study area A, varying between 55% when using the
sample extracted from TD0 and 73% when using the sample extracted from TD2. However, that is not
observed for study area B, where the overall accuracy has a constant value of 65%. The accuracy of
the generalized maps obtained with the samples extracted from TD0, TD1 and TD2 for study area A
only changed for the map obtained with training data from TD2 (improved 5%). For study area B,
the overall accuracy increased the same 4% for the maps generated with the samples extracted from
TD0, TD1 and TD2, achieving 69% for all of the samples.

The accuracy of the LULC map obtained with OSM2LULC was 70% for study area A and
87% for study area B. The classified regions obtained for the regions where OSM data is available
(which corresponded to 50% of study area A and 45% of study area B) achieved overall accuracies of
between 66% and 73% for study area A and a constant value of 66% for study area B, which are 21%
lower than the accuracy obtained for the results obtained with the complete OSM2LULC procedure.

Tables 9 and 10 show, respectively, the user’s and producer’s accuracy per class of the TD0,
TD1 and TD2 datasets for study area A, the classification results obtained with the training data
extracted from each of the datasets alongside their generalized versions.

The results for study area A show that, for the training data, the filtering used from TD0 to TD1
improved the user’s accuracy (which correspond to a decrease of commission errors) for all classes
except class 3 (herbaceous vegetation), where there was a decrease of 3% (Table 9). Regarding the
producer’s accuracy, the main results show an increase larger than 20% for classes 1, 3 and 5 (Table 10)
(corresponding to a decrease of omission errors of the same magnitude) and a decrease in accuracy
mainly for classes 2 and 4, of, respectively, 40% and 32%. This shows that this filtering step decreased
the commission errors, removing locations that were not classified in the same way in the reference
data, but also introduced relevant omissions, mainly in classes 2 (agricultural areas) and 4 (forest areas).
However, this does not appear to have been a problem, given that both the user’s and producer’s
accuracy of the classification improved or was kept unchanged for most classes, with only three
exceptions of small magnitude, namely in class 5 (shrublands) for the user’s accuracy, where a decrease
of 3% was observed, and classes 1 and 6 for the producer’s accuracy.
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Table 9. User’s Accuracy per class (%) (equal to 100 minus the commission errors), for study area A, of
the training datasets TD0, TD1 and TD2 and of the maps resulting from the classification with TS0,
TS1 and TS2 (Figure 11). The reference data used are the maps derived from the COS 2018 with the
nomenclature harmonization.

Training Datasets

Classes TD0 TD1 TD2 TD1-TD0 TD2-TD1

1. Artificial surfaces 71 81 97 10 16

2. Agricultural areas 62 72 72 10 0

3. Herbaceous vegetation 12 10 10 -3 0

4. Forest areas 75 84 84 9 0

5. Shrublands 38 40 40 3 0

6. Open spaces with little or no vegetation 42 47 48 5 0

7. Wetlands 16 34 34 18 0

8. Water bodies 94 97 99 3 1

Classification

Classes TS0 TS1 TS2 TS1-TS0 TS2-TS1

1. Artificial surfaces 41 48 88 7 40

2. Agricultural areas 53 53 42 0 −11

3. Herbaceous vegetation 4 5 6 1 1

4. Forest areas 72 73 63 1 −10

5. Shrublands 41 38 26 −3 −12

6. Open spaces with little or no vegetation 22 25 6 3 −19

7. Wetlands 15 28 25 13 −3

8. Water bodies 97 99 99 2 0

Generalization

Classes TS0 TS1 TS2 TS1-TS0 TS2-TS1

1. Artificial surfaces 41 47 89 6 42

2. Agricultural areas 61 60 45 −1 −15

3. Herbaceous vegetation 2 4 6 2 2

4. Forest areas 75 77 69 2 −8

5. Shrublands 55 53 42 −2 −11

6. Open spaces with little or no vegetation 36 45 32 9 −13

7. Wetlands 16 30 29 14 −1

8. Water bodies 97 99 99 2 0
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Table 10. Producer’s Accuracy per class (%) (equal to 100 minus the omission errors) for study area A,
of the training datasets TD0, TD1 and TD2 and of the maps resulting from the classification with TS0,
TS1 and TS2 (Figure 11). The reference data used are the maps derived from the COS 2018 with the
nomenclature harmonization.

Training Datasets

Classes TD0 TD1 TD2 TD1-TD0 TD2-TD1

1. Artificial surfaces 66 97 95 31 −2

2. Agricultural areas 73 33 63 −40 30

3. Herbaceous vegetation 11 42 59 31 17

4. Forest areas 56 24 30 −32 6

5. Shrublands 21 41 52 20 11

6. Open spaces with little or no vegetation 49 45 48 −4 3

7. Wetlands 67 61 78 −6 17

8. Water bodies 85 93 93 8 0

Classification

Classes TS0 TS1 TS2 TS1-TS0 TS2-TS1

1. Artificial surfaces 93 92 62 −1 −30

2. Agricultural areas 40 40 74 0 34

3. Herbaceous vegetation 3 5 7 2 2

4. Forest areas 44 47 58 3 11

5. Shrublands 9 14 18 5 4

6. Open spaces with little or no vegetation 46 44 46 −2 2

7. Wetlands 42 51 60 9 9

8. Water bodies 50 68 95 18 27

Generalization

Classes TS0 TS1 TS2 TS1-TS0 TS2-TS1

1. Artificial surfaces 97 97 75 0 −22

2. Agricultural areas 36 36 85 0 49

3. Herbaceous vegetation 2 4 6 2 2

4. Forest areas 44 48 64 4 16

5. Shrublands 6 9 12 3 3

6. Open spaces with little or no vegetation 47 44 47 −3 3

7. Wetlands 45 53 66 8 13

8. Water bodies 48 67 95 19 28

Regarding the filtering made from TD1 to TD2, both the user’s and producer’s accuracy of the
training data increased for all classes, except for a decrease of only 2% in the producer’s accuracy
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for class 1. However, for the classification results, the user’s accuracy showed an increase of 40% for
class 1 (artificial surfaces), a slight increase of 1% for classes 3 (herbaceous vegetation), no changes
for class 8 (water bodies) and a decrease of between 3% and 19% for all the other classes. In contrast,
the producer’s accuracy increased for all classes (Table 10), except for class 1 (artificial surfaces),
which shows a decrease of 30%. These results show that, for study area A, the filtering process from
TD0 to TD1 not only improved the overall classification results, as shown in Table 8, but also the
classification of most classes, even though there are still some classes that are very poorly classified,
from which the worst class is class 3 (herbaceous vegetation) with values that are always smaller
than 7%. The filtering process performed from TD1 to TD2 mainly showed a problem with class 1
(artificial surfaces). This filtering step removed a large part of the regions previously classified as urban,
as shown in Table 7 and Figure 7b). Even though this did not have much impact in the accuracy of the
training datasets, and even resulted in an increase of the overall accuracy, as shown in Table 8, it had a
very large influence on the accuracy of class 1, increasing the omission errors in 30%. This shows that
this filtering process may have removed from the training data of class 1 important data to classify the
artificial surfaces of this study area. However, a more detailed analysis of the classification results
shows that these results are very much influenced by two aspects: (1) Some classes used in COS are
land use classes; and (2) COS has an MMU of 1 ha. This is illustrated in the two examples shown in
Figure 14, which shows for two smaller areas: Very high resolution images (Figure 14b,c); the maps
obtained from COS 2018 (Figure 14d,e), used as a reference; the classification results (Figure 14f,g);
and the generalization results (Figure 14h,i). The region represented on the left of Figure 14 includes a
large polygon classified as an urban area in COS, which is a military facility, and is therefore included
in class 1. However, the region is in fact covered by vegetation, and was therefore in the classification
results included in the vegetated classes. A similar phenomenon can be seen on the region shown on
right-side, where a parcel with urban vegetation was not included in the class artificial surfaces in
the classification but was included in that class in COS 2018. It is also evident that the classification
results have much more detail, not shown in COS due to its MMU. However, these differences are
smaller when considering the generalized version of the classification results, resulting in an increase
of accuracy when considering COS as reference.

Both the user’s and producer’s accuracy of the generalized maps have a behavior very similar to the
accuracy of classification results for all classes, but with better results for most of them, which resulted
in an increase of the overall accuracy of these maps.

Tables 11 and 12 show the results corresponding to, respectively, Tables 9 and 10, but for study
area B.

The results for study area B show in general less variation than for study area A. For the training
datasets, with the filtering process from TD0 to TD1, both the user’s and producer’s accuracy improved
or remained unchanged for all classes, with larger improvements for classes 1 and 8 (respectively,
20% and 42%). Regarding the classification results, the most significative changes are for class 8 (water
bodies), which shows a decrease of 29% of the user’s accuracy (Table 11) and an increase of 26% in the
producer’s accuracy (Table 12). This shows that commission errors increased, and omission errors
decreased. That is, less water regions were missing from the map, but some regions were wrongly
classified as water when compared with the reference data. A detailed analysis shows that the accuracy
of the training sets improved because many water ways are narrow streams that do not occupy the
cells entirely, and therefore the filtering process removes most of these cells from TD1. On the other
hand, the commission errors of the classification increased because these streams are not mapped in
COS because of its MMU. The other class showing more differences is class 1, with a decrease of 4% in
the user’s accuracy and an increase of 6% in the producer’s accuracy. The behavior is therefore similar
to what was observed for the class water but with a smaller amplitude. This also occurs because the
urban tissue in this region is mainly formed by dispersed buildings and narrow roads mixed with
agricultural areas and other types of vegetation, which in most cases occupied cells only partially and
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therefore were eliminated during the filtering process. On the other hand, these small features are not
represented in COS because of its MMU.Remote Sens. 2020, 12, x FOR PEER REVIEW 24 of 31 
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Figure 14. Detailed data for two example zones 1 and 2 in the study area A. (a) Shows the location of
both regions in study area A, (b,c) show very high resolution imagery for, respectively, example regions
1 and 2; (d,e) show the COS derived reference map; (f,g) show the classification results obtained with
the training data extracted from TD2; (h,i) show the generalized maps corresponding to (f,g) for,
respectively, example zones 1 and 2.
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Table 11. User’s Accuracy per class (%) (equal to 100 minus the commission errors) for Study area B
of the training datasets TD0, TD1 and TD2 and of the maps shown in Figure 12 resulting from the
classification with TS0, TS1 and TS2. The reference data used are the maps derived from the COS 2018
with the nomenclature harmonization.

Training Datasets

Classes TD0 TD1 TD2 TD1-TD0 TD2-TD1

1. Artificial surfaces 48 68 90 20 22

2. Agricultural areas 99 99 99 0 0

3. Herbaceous vegetation 71 72 69 2 −4

4. Forest areas 100 100 100 0 0

5. Shrublands 80 80 86 0 6

6. Open spaces with little or no vegetation 97 98 98 1 0

7. Wetlands - - - - -

8. Water bodies 51 93 99 42 6

Classification

Classes TS0 TS1 TS2 TS1-TS0 TS2-TS1

1. Artificial surfaces 52 48 58 −4 9

2. Agricultural areas 63 63 63 1 0

3. Herbaceous vegetation 46 47 42 1 −6

4. Forest areas 71 72 74 0 2

5. Shrublands 60 60 59 0 −1

6. Open spaces with little or no vegetation 54 53 41 −1 −12

7. Wetlands - - - - -

8. Water bodies 93 63 88 -29 24

Generalization

Classes TS0 TS1 TS2 TS1-TS0 TS2-TS1

1. Artificial surfaces 77 72 77 −5 5

2. Agricultural areas 63 64 63 1 −1

3. Herbaceous vegetation 74 75 56 1 −19

4. Forest areas 75 75 78 0 3

5. Shrublands 65 65 65 0 0

6. Open spaces with little or no vegetation 78 82 42 4 −40

7. Wetlands - - - - -

8. Water bodies 94 78 90 −16 12
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Table 12. Producer’s Accuracy per class (%) (equal to 100 minus the omission errors) for Study area
B of the training datasets TD0, TD1 and TD2 and of the maps shown in Figure 12 resulting from the
classification with TS0, TS1 and TS2. The reference data used are the maps derived from the COS 2018
with the nomenclature harmonization.

Training Datasets

Classes TD0 TD1 TD2 TD1-TD0 TD2-TD1

1. Artificial surfaces 96 98 96 2 −2

2. Agricultural areas 86 93 99 8 6

3. Herbaceous vegetation 89 96 99 7 3

4. Forest areas 94 97 98 4 1

5. Shrublands 98 99 100 2 0

6. Open spaces with little or no vegetation 4 4 7 0 3

7. Wetlands - - - - -

8. Water bodies 93 97 97 4 0

Classification

Classes TS0 TS1 TS2 TS1-TS0 TS2-TS1

1. Artificial surfaces 47 53 39 6 −14

2. Agricultural areas 85 84 85 −1 1

3. Herbaceous vegetation 5 6 4 1 −2

4. Forest areas 73 73 70 0 −3

5. Shrublands 54 55 54 1 0

6. Open spaces with little or no vegetation 8 8 38 0 30

7. Wetlands - - - - -

8. Water bodies 38 64 47 26 −17

Generalization

Classes TS0 TS1 TS2 TS1-TS0 TS2-TS1

1. Artificial surfaces 47 55 37 8 −18

2. Agricultural areas 91 90 91 −1 1

3. Herbaceous vegetation 2 3 1 1 −2

4. Forest areas 78 77 74 −1 −3

5. Shrublands 56 57 56 1 −1

6. Open spaces with little or no vegetation 4 4 38 0 34

7. Wetlands - - - - -

8. Water bodies 40 58 47 18 −11

Regarding the filtering from TD1 to TD2, the accuracy of the training data showed results similar
to the ones obtained for study area A for class 1, that is, a significant increase of the user’s accuracy
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(22%) and a slight decrease of the producer’s accuracy (2%). The user’s accuracy of all other classes was
either unchanged or showed an increase of 6% (classes 5 and 8), except for class 3, with a decrease of 3%.
The producer’s accuracy increased or was kept unchanged for all other classes. However, the accuracy
of the classification results obtained with the training data extracted from TD2 showed larger differences
when compared to the results obtained with the training data extracted from TD1. The user’s accuracy
only increased for by 9%, 2% and 24%, respectively, for classes 1, 4 and 8, and the major decrease of
user’s accuracy was obtained for class 6 (12%). The producer’s accuracy also decreased for classes 1, 3,
4 and 8, and a large increase of 30% was observed for the 6. This increase corresponds to the central
part of the park, which was correctly classified with the training data extracted from TD2. Therefore,
the most significant changes are for the water bodies, with a decrease of commission errors of 24% and
an increase of omission errors of 17%, class 6 (open spaces with little or no vegetation), with an increase
of commission errors of 12% and a decrease of omission errors of 30% and class 1 (artificial surfaces),
with a decrease of commission errors of 9% and an increase of omission errors of 14%. A more detailed
analysis of why the omission errors increased for class 8 shows that it is due to the fact that several
streams are covered by trees tops, and therefore the spectral response, and therefore the NDVI and
NDWI values correspond to vegetated areas instead of water areas. For class 1, the main problems are
due to the mixture of the urban fabric with agriculture and other types of vegetation, which in COS are
classified as class 1 (due to the MMU) but in the image classification were classified as either classes 2
or 3. The accuracy of the generalized maps was similar to the accuracy of the classification results,
meaning it was slightly better for some classes and worse for others, but resulted in an improvement
of the overall accuracy of 4%, as shown in Table 8.

Overall, such accuracy results consolidate the relevance of OSM to generate LULC maps [25–27,30,31,33].
The use of the indices to filter the raw OSM data was also successful. Namely, the use of the NDVI, NDWI
and NDBI, expanding on the approach proposed in [33], which only used NDVI for such a task.

4.4. Hybrid Maps

The results of the accuracy assessment showed that the overall accuracy of the data obtained
with the OSM2LULC software package is high in both study areas, and in most cases higher than the
classification results (Table 8). Therefore, hybrid maps were created for both study areas, as explained
in Section 3.6, and their accuracy assessed. Table 13 shows the overall accuracy obtained for these
hybrid maps (HM), and the difference between the values obtained for the hybrid maps and the maps
obtained exclusively with the classification (Class) and their generalized versions (Gen).

Table 13. Overall accuracy (%) of the: (1) Classification results (Class) and the generalized maps (Gen)
obtained with the samples TS0, TS1 and TS2; (2) of the hybrid maps (HM) using the data produced
with OSM2LULC and the classification results obtained with TS0, TS1 and TS2; and (3) the difference
between: the overall accuracy obtained for the hybrid maps and the classification results (HM-Class);
and the hybrid maps and the generalized maps (HM-Gen).

Class/Gen Hybrid Map (HM) HM—Class/HM—Gen

TS0 TS1 TS2 TS0 TS1 TS2 TS0 TS1 TS2

Study area A 55/55 64/64 73/78 56 62 76 1/1 −2/−2 3/−2
Study area B 65/69 65/69 65/69 75 75 74 10/10 10/10 9/9

The results show that, for study area A, the best overall accuracy was obtained for the generalized
maps obtained after performing the classification with TS2 (78%). For study area B, the hybrid maps
had the highest accuracy, achieving 75% when using the classification data obtained with TS0 and TS1
datasets and 74% when using TS2 training data. These results show that only for study area B the use
of hybrid maps provided better results. Hence, the advantages of this approach seem to depend on the
characteristics of the region and the OSM data available (e.g., coverage or quality) for a given region.
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Therefore, it may be advantageous to use the OSM data just as training data instead of the creation of
the hybrid maps as proposed in Schultz et al. [30].

5. Conclusions

This paper presented an automated methodology to obtain LULC maps with the classification of
Sentinel-2 multispectral images using training sets extracted from OSM. A nomenclature of eight classes
was selected, resulting from an adaptation of the nomenclature of COS 2018. A mapping between both
nomenclatures was made, and COS 2018 was used as reference data for accuracy assessment.

The results show that, in general, the filtering processes improved the class separability,
showing that the problematic regions were successfully removed from the training datasets. The overall
accuracy of the training datasets confirms this for both study areas, as it increases from TD0 to TD1
and from TD1 to TD2. The accuracy of the classification results and their generalized versions also
increased with the successive filtering procedures for the study area with more urban characteristics
(study area A), achieving an accuracy of 78% in the best case, while it remained unchanged for the rural
study area (study area B), achieving a best value of 69%. This indicates that the filtering procedures in
some cases improves the quality of the training data. For study area B the overall accuracy of hybrid
maps was higher than that of the classification results and their generalization, which was not the case
for study area A, where the generalized version of the map obtained with TS2 was the best. The quality
of these hybrid products is very much dependent on the characteristics of the region and the data
available in OSM, as the data available in the satellite’s imagery is not used in the regions with OSM
data. On the other hand, OSM may contain land use information that may be difficult to obtain from
the imagery, such as the differentiation between a cultivated field and natural vegetation.

The obtained values for the user’s and producer’s accuracy showed that the values of the overall
accuracy increased, even though some classes were very hard to classify. In particular, classes 2
(agricultural areas), 3 (herbaceous vegetation), 5 (shrublands) and 6 (open spaces with little or no
vegetation) were in some cases confused, which was not surprising due to the similarity of their
spectral responses in some parts of the study areas.

The accuracy results were obtained using COS 2018 as reference data, in order to have a
comparison with an official LULC map. However, this product has a 1 ha MMU, and therefore it is
not the best reference data to assess the accuracy of a pixel-based (10 × 10 m pixel size) classification.
The generalization procedure applied to the classification results attenuated this issue, and an increase
in accuracy was observed in some cases. Therefore, to assess the real quality of the generated products,
a pixel-oriented reference database should be used in the future.

Due to the computational requirements necessary to perform the classifications with the complete
TD0, TD1 and TD2 datasets, only samples extracted from them were used for the classifications, which is
not ideal, as the class representativeness may be lost due to the exclusion of potentially valuable
training data. Additionally, these tests were made considering only four bands of the Sentinel-2 images
instead of the available 13 bands. In future work, all available training data and bands will be used to
train the classifiers, taking advantage of cloud computation capabilities. Time series with more images
per year may also be considered, so that the changes along the year may be better represented.

In the future, work tests will also be made to automatically obtain the thresholds used to filter
data using the radiometric indices so that they can be set for other regions and different sets of
images. These will be derived from a statistical analysis of the indices’ variation within the available
training data.

Overall, OSM showed that it may provide enough data to perform a classification with reasonable
quality with an automated approach, even when classes with similar spectral responses are used.
However, additional studies are still necessary to identify the best choices in terms of considered classes
and filtering methodologies, so that high quality LULC maps may be obtained with the desired frequency,
as no time-consuming human intervention is necessary when applying automated methodologies.
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