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ABSTRACT Software metrics are widely-used indicators of software quality and several studies have shown
that such metrics can be used to estimate the presence of vulnerabilities in the code. In this paper, we present
a comprehensive experiment to study how effective software metrics can be to distinguish the vulnerable
code units from the non-vulnerable ones. To this end, we use several machine learning algorithms (Random
Forest, Extreme Boosting, Decision Tree, SVM Linear, and SVM Radial) to extract vulnerability-related
knowledge from software metrics collected from the source code of several representative software projects
developed in C/C++ (Mozilla Firefox, Linux Kernel, Apache HTTPd, Xen, and Glibc). We consider
different combinations of software metrics and diverse application scenarios with different security concerns
(e.g., highly critical or non-critical systems). This experiment contributes to understanding whether software
metrics can effectively be used to distinguish vulnerable code units in different application scenarios, and
how canmachine learning algorithms help in this regard. Themain observation is that usingmachine learning
algorithms on top of software metrics helps to indicate vulnerable code units with a relatively high level of
confidence for security-critical software systems (where the focus is on detecting the maximum number of
vulnerabilities, even if false positives are reported), but they are not helpful for low-critical or non-critical
systems due to the high number of false positives (that bring an additional development cost frequently not
affordable).

INDEX TERMS Application scenarios, machine learning, software metrics, software security, security
vulnerabilities.

I. INTRODUCTION
Several research studies show that software defects/vulner-
abilities (e.g., Buffer overflow, SQL injection) are a central
and critical source of security breaches [1]–[3] in computer
systems. Such vulnerabilities are mainly caused by
unprofessional or negligent developers who lack security
knowledge [4]. To instruct software developers to incorporate
security and, in general, quality into software, there are
several well-established andwidely known standards and best
practice recommendations, such as Software Quality Assur-
ance (SQA) [5], Quality by Design (QbD), OWASP secure

The associate editor coordinating the review of this manuscript and

approving it for publication was Biju Issac .

coding practices, ISO / IEC 27034, and Privacy byDesign [6].
However, research and experience show that modern software
still fails in meeting basic security requirements [7].

A large number of tools and techniques to detect security
vulnerabilities are nowadays available. For example, static
code analysis [8] is a well-known technique used by develop-
ers to search for software defects and vulnerabilities in early
stages of the software development. Nevertheless, detecting
software vulnerabilities or distinguishing vulnerable from
non-vulnerable code is not trivial. The low effectiveness of
vulnerability detection tools and static code analyzers is a
clear proof of this fact [9]. Thus, software is often deployed
with bugs that can be exploited by attackers causing system
outages, data breaches, or even safety issues. This has led to
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many works trying to mitigate the damage that the exploita-
tion of such vulnerabilities can cause at runtime.

In this work, we focus on prevention and on early detection
of software vulnerabilities, as fixing those vulnerabilities is
easier and less expensive and the consequences are poten-
tially smaller (compared with the detection of vulnerabil-
ities in later development stages or after deployment) [8].
In this direction, we present an empirical study on one of the
early evidences of software quality, namely software metrics,
whose correlation with the existence of security vulnerabili-
ties has been shown in previous works [10], [11]. In practice,
we aim to understand how the information provided by
software metrics can be best used by machine learning
algorithms to distinguish the vulnerable code units (files,
functions) from the non-vulnerable ones with high levels
of confidence within different circumstances, including
different application scenarios that encompass diverse
security concerns.

This study considers several commonly used machine
learning (ML) algorithms (Random Forest, Extreme Boost-
ing, Decision Tree, SVM Linear and SVM Radial) that are
applied on software metrics of all types (e.g., Cyclomatic
Complexity, Lines of Code, and Coupling Between Objects)
collected from the source code of several widely used and rep-
resentative software projects developed in C/C++ (Mozilla
Firefox, Linux Kernel, Apache HTTPd, Xen and Glibc)
at different levels (file level and function level). We con-
sider different combinations of software metrics, selected
based on different approaches (e.g., correlation analysis), and
focus on four application scenarios (Highly-Critical, Critical,
Low-Critical and Non-Critical) that have different concerns
regarding security, thus requiring diverse criteria for evaluat-
ing the classifiers. For instance, in the highly-critical systems
scenario, detection and elimination of vulnerabilities is of
high priority even if some false alarms are reported, therefore,
a criterion that measures the ratio of detected vulnerable code
units independently from false alarms seems to be of interest.
In contrast, in the non-critical systems, the number of false
alarms can be the main concern due to limited development
resources, thus, a criterion that in addition to the correctly
classified vulnerable code, strongly rewards low false alarms
seems to be adequate.

This work intends to contribute to answer the following
research questions (RQs):
• RQ1. Can software metrics effectively be used to dis-
tinguish vulnerable code units from the non-vulnerable
ones in different application scenarios?

• RQ2. What is the best combination of software metrics
to be used for this purpose?

• RQ3. How do different machine learning algorithms
perform in this context?

• RQ4. Can the results of this experiment be generalised
and applied to different types of software systems?

We use the dataset built by Alves et al. [12], which includes
software metrics and reported security vulnerabilities for all
code units (e.g., functions and files) of several versions of

different widely used software projects (Mozilla Firefox,
Linux Kernel, Apache HTTPd, Xen and Glibc). Results show
that the models created over software metrics are effective
for security-critical applications (highly-critical and critical),
in which the detection of vulnerabilities is of high priority.
In contrast, a large number of false alarms make them use-
less for scenarios with low critical or non-critical systems
(where budget to deal with vulnerabilities is limited). This
suggests that it is quite important to consider application sce-
narios when building vulnerability detecting tools. From the
analyzed classifiers, Random Forest and Extreme Boosting
are the ones that lead to more precise models for both file
and function level data. However, Decision Tree and Linear
SVM build more generalizable models, thus, giving a better
estimation when completely unknown data is used for testing.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III explains the approach,
methods and techniques used to conduct the experiments and
the analysis. A preliminary analysis of the results, focused
on defining the configurations and settings to be used in the
experiments, is presented in Section IV. Section V presents
the results and their analysis. The main outcomes of the paper
and the threats to the validity of the work are summarized and
discussed in Section VI. Section VII concludes the paper and
puts forward ideas for future work.

II. BACKGROUND AND RELATED WORK
Modern businesses, organizations, and critical infrastructures
are backed by software systems executing critical operations
and transactions, providing services and dealing with huge
amounts of sensitive data for supporting effective decisions
and constant business/system adaptation. This tremendously
increased concerns regarding security, driving researchers
and businesses to come up with tools, techniques, standards,
and regulations to help developers to ensure security in soft-
ware systems [13], [14].

We can find a lot of efforts in the literature focused on
the definition of best practices, standards, and regulations
to help developers in building high quality and secure soft-
ware (e.g., ISO/IEC 27000 [15], ISO 15408 [16], Software
Quality Assurance (SQA) [5], [17], [18], OWASP secure
coding practices [19], [20], ISO/IEC 27034 [21], and Privacy
by Design (PbD) [6]) [22]–[24]. An structured description
and comparison between most of these efforts can be found
in [25] and [26].

We also can find many works on tools and techniques to
prevent or detect and eliminate software bugs during the soft-
ware development process [27], [28], like SonarQube [29],
a platform for continuous inspection (static analysis) of code
to detect bugs, vulnerabilities, and code smells. Sensei [30] is
another example that tries to enforce secure coding guidelines
in the integrated development environment. However, it is
still very difficult for developers, if not impossible, to build
software without vulnerabilities. This has led to many works
trying to mitigate the damage that such vulnerabilities can
cause at runtime (e.g., via via intrusion detection systems and
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attack tolerance techniques) [31]–[35]. Despite all existing
efforts, software is still shipped with exploitable vulnerabil-
ities causing huge damages to the systems and businesses.
Thus, better and more effective approaches to detect vulner-
abilities earlier in the life cycle are still needed [36].

Existing approaches for the detection of vulnerabilities in
the early stages of the software development can be divided
in two categories: static code analysis [8] and penetration
testing. In static code analysis, the source code (or compiled
code) of a software is examined statically, without executing
it. Static analysis of code can be done manually or by using
static analysis tools (SATs). Manual auditing of code is time
consuming and requires skilled human code auditors with
sufficient and deep knowledge regarding security vulnera-
bilities and security attacks to be able to effectively exam-
ine the code. In contrast, static analysis tools encapsulate
security knowledge in a way that does not require highly
skilled human auditors with security expertise, thus, are faster
and can be frequently used examine the code. Nevertheless,
the output of these tools still requires evaluation by experts.
In contrast to code static analysis, penetration testing [37] is
used when the code can already be executed. It works by
emulation of security attacks to check for exploitable vul-
nerabilities. Both static analysis tools and penetration testing
tools have limitations and their low effectiveness in detecting
vulnerabilities has been shown in several studies [27], [38].

Our work aims to help developers focusing on security
in the early stages of software coding, by collecting and
analysing measurable evidences of security issues in the
code.

Several approaches are used in the literature to deal with
vulnerability prediction based on evidences and data col-
lected from the source code [39], namely: software met-
rics, text mining, dependency graphs, and taint analysis.
In this paper, we focus on software metrics, which are
widely used as indicators of software quality (e.g., reliability
and maintainability) [40]–[42]. It is worth noting that com-
parison between software metric based approach and other
approaches are out of focus of this paper. Using software
metrics for training models to predict software bugs (not nec-
essarily security issues) is not a new topic [43]–[46]. A survey
of various machine learning algorithms with software metrics
for prediction of software faults is presented in [47].

Several studies in the literature show that there is some
correlation between software metrics and security vulnera-
bilities [48], [49]. We can also find several works related to
the detection of security issues using data mining, machine
learning, and statistical techniques combined with software
metrics [50]. However, most of these studies and works
are either done over a limited number of software metrics
(e.g., complexity metrics) [48], [51], [52], or use a com-
bination of software metrics with other features [53], [54],
or focus on a single security issue (e.g., buffer overflow) [55],
or are limited to a specific code unit (e.g., file/class or
function/method) [54] and a specific software project [11],
or make a comparison between software metrics and other

features [56]. To the best of our knowledge, there is no com-
prehensive study on software metrics and their capabilities
for the detection/prediction of security vulnerabilities in the
code.

In a previous work [57], we tried to address some of the
limitations mentioned above by performing an analysis over
a large number of software metrics obtained from different
software projects, to demonstrate the possibility of using such
metrics as an indicator of the existence of vulnerabilities.
A heuristic search algorithm (Genetic Algorithm) combined
with one classifier model (Random Forest) was used to find
the most relevant subset of software metrics leading to a
prediction model with the higher accuracy. Although the
results obtained suggest that software metrics can be used
to distinguish vulnerable code with a high level of accuracy,
the work is quite limited, as accuracy is not the best cri-
teria when dealing with imbalanced datasets. Furthermore,
the work was limited to a single classification model.

In this work, we do not just aim at building one prediction
model using a machine learning algorithm over software met-
rics as manyworks in the literature; we perform a comprehen-
sive experiment to study several machine learning algorithms,
several combination of software metrics, several application
scenarios, several code levels, and several software projects
individually and in combination, in order to find out how
to achieve the best result within different circumstances for
different scenarios and how to generalize the results.

The work most similar to ours is the one presented in [58].
The authors compare several state of the art machine learning
techniques [54], [59], [60] regarding their ability to detect
vulnerable code. There are, however, several shortcomings
in that work: i) the study is limited to file level metrics; ii)
it is limited to the use of the same single set of software
metrics in all experiments; and iii) the projects included in
the dataset are not considered individually in the experiments,
but in combination, which limits the conclusions.

III. METHODOLOGY
Our goal is to conduct a comprehensive study to understand
whether software metrics can effectively be used to distin-
guish the vulnerable code units from the non-vulnerable ones.
The experimental process is divided in two phases, as shown
in Fig. 1. The first phase, Preliminary Analysis, is focused
on defining the configurations and settings to be used in the
experiments. These configurations and settings are mainly
related to the specification of the dataset (dimensions and
class distribution), machine learning algorithms to be used
for building the classification models, and definition of the
scenarios under which the models will be evaluated. The sec-
ond phase, Experimentation and Analysis, is focused on
running the experiments based on the configurations defined
in the previous phase, and analyzing the results obtained.
In practice, these experiments involve building and evalu-
ating classification models using different machine learning
algorithms, different combinations of software metrics, and
source code of different software projects within different
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FIGURE 1. Methodology used in this work.

application scenarios. In addition to and integrated with the
above principal phases, we validate the approach andmethods
used as well as the results obtained and demonstrate whether
the results can be generalized. These Validation and Gener-
alization (V&G) activities are shown in the Fig. 1 with green
check marks. In short, our study considers:

i) Five representative software projects (Mozilla Firefox,
Linux Kernel, Apache HTTPd, Xen and Glibc), used
both individually and in combination;

ii) Five combinations of software metrics of different
types (complexity, volume, coupling and cohesion) col-
lected at different levels of code (file and function);

iii) Five widely-used machine learning algorithms (Ran-
dom Forest, Extreme Boosting, Decision Tree, SVM
Linear and SVM Radial), considering different config-
urations to achieve the best prediction results;

iV) Four application scenarios with diverse concerns
regarding security (highly-critical, critical, low-critical,
non-critical), which in practice are addressed by using
different evaluation criteria (Recall, Informedness,
F-Measure, Markedness).

The dataset used in this study, available at [61] and
described in [12], contains detailed information about the
whole source code, composing files, classes, and functions
of several versions of five software projects implemented
in C/C++: Mozilla Firefox (mozilla.org), Apache HTTPd
(httpd.apache.org), Linux Kernel (kernel.org), Xen Hypervi-
sor (xen.org), and Glibc (gnu.org/software/libc). This infor-
mation was extracted by Alves et al. from the source code of
several versions of the aforementioned projects using Under-
stand [62], and represented through a long list of software
metrics. Our analysis is performed on different architectural
levels of these projects, namely file and function levels, each
one having its own set of software metrics. It is worth noting
that class-related metrics are not considered in this work as
only one of the projects (Mozilla Firefox) is implemented in

an object-oriented language, C++ in the case, and therefore
contains classes.

As mentioned, we use a large set of software metrics
of different types, including complexity (e.g., Cyclomatic
Complexity), volume (e.g., Lines of Code), coupling (e.g.,
Coupling Between Objects), and cohesion (e.g., Lack of
Cohesion) metrics. In practice, a total of 28 function-level
metrics and 51 file-level metrics are considered (the complete
list of metrics used in this work can be found in Table 3
and Table 4, and their description can be found in [62]). The
dataset also includes detailed information about the known
vulnerabilities, obtained by analyzing of a large number of
security patches gathered from various sources (CVEDetails,
Mozilla Foundation Security Advisores (MFSA), and Xen
Security Advisores (XSA)). Table 1 presents a summary of
the projects and their vulnerabilities. It is worth mentioning
that only source files (.c and .cpp files) are considered in
our analysis, so the number of functions, files and lines
of code presented in Table 1 do not include the informa-
tion in C header files (.h files) that only contain function
declaration and not implementation. As shown in the table,
Linux Kernel and Mozilla Firefox are the biggest projects
in terms of the number of files and functions and Apache
HTTPd is the smallest one. In all projects, the percentage of
vulnerable code is quite low, so that we need to somehow deal
with highly imbalanced dataset when building the models.
It becomes worse in the case of functions. Among all, project
Glibc is extremely imbalanced.More details about the dataset
can be found online [61].

We selected this dataset because it includes various ver-
sions of several important and representative projects from
a security point of view: they are used by many worldwide
users, they were already targeted by many security attacks,
and they include several versions of the same file or function
(including versions with and without vulnerabilities). This
is important for building more effective prediction models
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TABLE 1. Summary of the dataset.

for real cases, namely for contexts were the same project
has many different versions and past knowledge should be
used for preventing future vulnerabilities. Each project in the
dataset is representative of a broader class of software in a
particular category, in terms of functionality (e.g., the Apache
HTTPd can be considered representative of HTTP servers).
To the best of our knowledge, this is the most complete and
extensive dataset available fitting our purposes.

A. PRELIMINARY ANALYSIS
The first phase of our exploratory study is focused on the
configuration and settings of the experiments. These config-
urations and settings are related to: i) reduction of the dataset
dimension; ii) adjustment of the dataset class distribution;
iii) selection of machine learning algorithms; and
iv) definition of application scenarios and selection of appro-
priate evaluation criteria for the scenarios.

1) DIMENSION REDUCTION
Although some software metrics may contain useful informa-
tion to detect vulnerable code units, others might be irrelevant
or redundant. This way, in order to build a high performance
classification model out of software metrics for vulnerable
code detection, it may be important to search for the most
informative and discriminative metrics and to discard the
redundant or irrelevant ones, which may reduce the accuracy
and the computational efficiency of the classifier [63]. In this
step, we aim to find out whether the process of reducing
the number of features under consideration can indeed help
achieving better results.

There are several strategies to deal with the issue of
identifying the less-informative software metrics [64]. The
basic strategy is called exponential search, which is the most
exhaustive search technique, guaranteeing that the optimal
subset of software metrics is found. Nevertheless, this strat-
egy is not promising or not feasible in practice when the
number of features (software metrics in our work) is high (for
a feature set of size n, the number of iterations would be 2n).
Another strategy is heuristic search, which tries to guarantee
the convergence to the (near) best subset of software metrics.
This strategy is time consuming and its results depend on the
classification model that is used as fitness function. Finally,
statistical-based filtering can be used to find out which met-
rics may not be informative for the detection of vulnerable
code units. In this work, we use this last strategy, since

it is relatively fast and independent from the classification
models.

Fig. 2 presents the process for dimension reduction.
As shown, we conducted a detailed correlation and redun-
dancy analysis on the software metrics at file and function
levels for the five projects included in the dataset. These anal-
yses allow identifying the least relevant or irrelevant metrics
(i.e., not or lowly correlated with the class under study, which
is the existence of vulnerability), and the redundant software
metrics (with respect to other metrics).

To identify the irrelevant metrics, we calculate the cor-
relation between metrics and the existence of vulnerabil-
ities using two well-known techniques: Pearson [65] and
Spearman [66] correlation coefficients. While the first eval-
uates the linear relationship between the software metrics
and the existence of vulnerabilities, the second evaluates
the monotonic relationship between them. Note that, in this
work, we use both Pearson and Spearman correlation coef-
ficient techniques to distinguish highly correlated features
(i.e., when value of one feature increases then the value of
other feature increases by a consistent amount) from the
irrelevant ones.

Once the calculations are done, the software metrics are
ranked by correlation value (from the highly correlated met-
rics to the least correlated ones). To select the irrelevant
software metrics from this ordered list, a threshold should be
defined. In this work, we consider the median as a thresh-
old, as it is commonly used in the literature [67]. Thus,
the software metrics with both Pearson and Spearman
correlation values below the median are considered as
Irrelevant.

To identify the redundant metrics, the Markov Blanket
Filtering [68], [69] is used. Based on this filtering technique,
letG be the current set of software metrics. If software metric
(SM) SMj has a Markov Blanket SMi within G, it suggests
that SMj contributes with no more information beyond SMi to
the target class (i.e., existence of vulnerability in this work),
and, therefore, SMj can be safely removed from G. Based on
the Approximate Markov blanket definition from [68], given
two predictive software metrics SMi and SMj and the target
class V , SMj is redundant to SMi, if both equations 1 and 2
are true:

C(SMi,V ) ≥ (SMj,V ) (1)

C(SMi, SMj) > C(SMj,V ) (2)
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FIGURE 2. Dimension reduction process.

where, C(SMi,V ) is the correlation coefficient between SMi
and the target classV ,C(SMj,V ) is the correlation coefficient
between SMj and the target class V , and C(SMi, SMj) is the
correlation coefficient between the two predictive software
metrics SMi and SMj. For this analysis, we again use both
Pearson and Spearman techniques to calculate the correlation
coefficient. In practice, we consider software metrics as
Redundant when they are identified as so (based on the
Approximate Markov blanket), using both Pearson and
Spearman techniques.

After identifying the irrelevant and redundant metrics,
we generate 5 groups of software metrics to be analyzed
in further experiments (the goal is to understand whether
dimension reduction based on correlation and redundancy
analyses can help to achieve better results):

i) All, which includes all software metrics present in the
dataset;

ii) All - Irrelevant that includes all metrics minus the ones
that are considered as irrelevant;

iii) All - Redundant, which includes all metrics minus the
ones that are considered as redundant;

iv) All - (Irrelevant AND Redundant) that includes all
metrics minus the ones that are listed as irrelevant and
as redundant; and

V) All - (Irrelevant OR Redundant), including all met-
rics minus the ones that are listed as irrelevant or as
redundant.

2) CLASS DISTRIBUTION IN THE DATASET
As shown in Table 1, the dataset used in this work is quite
imbalanced, as the vulnerable code units make a small frac-
tion of the whole dataset (e.g., 2.27% in the case of Linux
Kernel files). In such cases, research shows that machine

learning algorithms tend to be overwhelmed by the large
class and ignore the small ones [70]. On the other side,
transforming a representative dataset into a balanced dataset
(either by undersampling or by oversampling) may cause
the loss of information about the frequency of each class
and, thus, affecting the accuracy of the classification mod-
els [71]. For this reason, we performed an analysis to find
out how balanced the dataset should be in order to build
high performance classifiers for vulnerability detection (i.e.,
models with high true positive and low false positive rate).
In practice, we apply one of the most effective (in terms of
performance) and efficient (in term of time) strategies to deal
with imbalanced data, which is to moderately undersample
the majority class [72], to gradually balance the dataset (from
a fully representative and imbalanced dataset to a 100%
balanced dataset) and observe the impact on the performance.
This allows to select a dataset with the near best class distri-
bution that results in the near best performance compared to
others.

XV&G - Representativeness of Random Samples: In
some experiments, we do not use the whole dataset but a
random sample of it (as a result of undersampling, which
is done to balance the training sets helping to build more
effective models, as explained in Section III-A2). For this
reason, it is necessary to demonstrate that the randomly cho-
sen samples are representative of the whole dataset and, thus,
do not influence the overall results. To do so, we perform a
correlation and redundancy analyses over 10 different random
samples, including 10000 records each, from one project,
namely Firefox. This is done in order to demonstrate that the
randomly selected samples follow similar statistical patterns,
thus, are able to build pretty much similar predictive models
(to ensure that there is no sampling bias influencing the
analysis).
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3) MACHINE LEARNING ALGORITHMS
Our work is focused on the idea of using machine learn-
ing algorithms for detecting vulnerable code units based on
software metrics. Thus, we selected several commonly used
or recommended machine learning techniques to thoroughly
explore this idea. By referring to [50], [58] that survey pre-
dictionmodels used for detecting vulnerabilities, the ones that
seem to be the most commonly used in this area are: Decision
Tree [73], Random Forest [74], Support VectorMachine [75],
[76], and Logistic Regression (LR) [77]. Since, in practice,
LR and SVMwith linear kernel usually present similar results
[78], we use linear SVM in addition to radial SVM and
discard LR. In addition to these, we also include the Extreme
Gradient Boosted [79], as its good performance has been
shown in many cases [80]. In short, the machine learning
algorithms used in this study are:
• Decision Tree (DT): commonly and most used super-
vised learning technique to support decision making.
Given a dataset composed of several features and tar-
get classes, by using the Decision Tree technique,
a sequence of classification rules are generated to make
decisions in diverse cases. To generate these rules, it uses
a tree-like model to break up a complex decision into
several simpler decisions [73].

• Random forest (RF): is one of the most popular ensem-
ble learning algorithm. This algorithm consists of a
combination of several DT-based classifiers, each one
fitted on a random sample of a dataset, making it more
accurate and robust to outliers and noise than a single
DT-based classifier [74].

• Extreme Gradient Boost (EGB): a specific implemen-
tation of the Gradient Boosting method that uses more
accurate approximations to find the best tree models.
Its main difference compared with random forest is that
it builds one tree at a time. Each new tree helps to
correct errors made by the previously trained tree. EGB
models are becoming popular due to their effectiveness
at classifying complex data [79], [81].

• Linear Support Vector Machine (SVM): SVM is
another widely used supervised machine learning algo-
rithm, which is usually used for solving classifica-
tion problems with two classes. Linear SVM performs
classifications by finding a line that best differentiates
the target classes by maximizing the margin between
them [75].

• Radial Support VectorMachine (SVM): a nonlinear or
radial SVM applies the kernel trick to find a hyperplane
(decision surface), instead of a line, to best separate two
classes, when there are non-linear interactions in the
data. It does a non-linear transformation on the features
and converts them to a higher dimensional space to add
non-linearities to the learning process [76].

All of the above algorithms are used to perform super-
vised machine learning. Supervised classification requires
that the data is totally labeled, as is the case in our work.
The algorithms are tuned to achieve the best prediction result

at the cost of having longer training time. In the case of
Xboost, Linear and Radial SVM, a list of values (based on
literature) are given to the algorithms for each parameter to
try different combinations and the best result is selected in
each case. In the case of Random Forest and Decision Tree,
the recommended default values from the literature are used
for each parameter.

4) APPLICATION SCENARIOS AND DECISION CRITERIA
To improve the effectiveness of machine learning algorithms,
it is important to adequate the evaluation criteria to the rel-
evant application contexts. We consider four distinct sce-
narios where security assurance has different levels of rele-
vance, depending on the criticality level of the applications
being developed and also on the availability of resources
to deal with security problems. The four scenarios analyzed
were adapted from [82], where the authors define different
real-world scenarios of applications to benchmark static anal-
ysis tools. We analyzed the specific characteristics of each
scenario and selected an appropriate criterion associated to
each one in order to evaluate the classifiers built on top of
the selected software metrics. The scenarios and associated
criteria are:
• Highly-Critical: this scenario represents highly busi-
ness or safety critical systems with demanding security
requirements (e.g., e-banking and e-health), in which
the detection and elimination of security vulnerabilities
is of high priority (because a successful security attack
may cause serious damages to the system, to business,
or to people’s life). Thus, the classifier models should
be able to detect the highest number of vulnerable code
units, even if some false positives are reported. For this
scenario, we choose Recall as criterion to evaluate the
classifiers, as it measures the ratio of vulnerable code
units that are correctly classified independently from
false positives.

• Critical: this scenario represents not highly but still
critical systems (e.g., e-commerce web applications and
large scale social networks) in which an exploited vul-
nerability usually reflects sensitive data breaches or
considerable financial losses. In such scenario, classi-
fiers should detect the highest number of vulnerabilities
while avoiding reporting too many false positives as
the resources available to fix and remove vulnerabilities
need to be used appropriately. For this reason, we chose
Bookmaker Informedness as criterion, as it still gives
a high importance to true positive rate while moderately
penalizing classification models with high false positive
rates.

• Low-Critical: this scenario includes systems that are
less critical and less exposed to attacks. Projects devel-
oping these systems usually have limited budget to be
allocated for finding and fixing vulnerabilities. Thus,
both detecting and eliminating the highest number of
vulnerabilities and spending less resources for analysing
false positives have equal priority. In this scenario,
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TABLE 2. Summary of the application scenarios and their corresponding criteria [83].

FIGURE 3. Process of experimentation and analysis.

F-Measure that evenly combines precision and recall,
is an appropriate criterion.

• Non-Critical: this scenario includes non-critical sys-
tems from a security perspective (i.e., systems that are
not usually exposed to attackers). Thus, we are more
concerned with the number of false alarms due to tight
budget and resource restrictions, although we still want
to detect vulnerable code and eliminate vulnerabilities.
Markedness is an appropriate criterion in this context,
as it rewards low false alarms and at the same time does
not ignore true positives.

More details about the selected criteria are presented
in Table 2. In the formulas, True Positive (TP) represents the
number of vulnerable code that are correctly classified, True
Negative (TN) represents the number of non-vulnerable code
that are correctly classified, False Positive (FP) represents the
number of non-vulnerable code units that are misclassified as
vulnerable and False Negative (FN) represents the number of
vulnerable code that are misclassified as non-vulnerable.

B. EXPERIMENTATION AND ANALYSIS
The second phase of the study consists of running the exper-
iments. As shown in Fig. 3, the data (balanced training sets
and representative test sets belonging to all projects at both
file and function levels) are prepared according to the config-
urations determined in the previous phase and then passed to
the selected machine learning algorithms. The classification
models are built over the dataset of the five different projects
at file and function levels by considering the several combi-
nations of software metrics and the different application sce-
narios. It is worth noting that the machine learning algorithms
are trained using balanced training sets and tested using a
representative test set in order to build more accurate vul-
nerable code detectors and have more realistic performance
estimations. Internal and external cross-validation (CV) is
performed in all cases, as discussed next.

XV&G - Internal Cross Validation: In order to avoid any
overfitting that might be caused by unrepresentative training
sets, internal cross validation is necessary. Cross-validation
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is a statistical resampling technique used to estimate the
performance of machine learning models [84]. Using this
technique, data is split into k subsets or folds of equal size.
Each time, one fold is used as test set and the remaining
k-1 folds are used to train and fit the model. In this work,
we use an internal 10 fold cross validation for building the
models, helping to achieve a fair estimation of the perfor-
mance for each individual model.

XV&G - External Cross Validation: Internal cross val-
idation might not be enough to ensure fair comparison
between distinct models due to the fact that the initial training
and test sets might not be representative of the whole dataset.
For this reason, in this work, we use an external 4-fold
cross validation to validate the classification models built.
In practice, we divide the whole dataset into 4 folds. Each
machine learning algorithm is executed four times; each time,
it uses one fold for testing and 3 folds for training (which
internally uses a 10 folds cross validation). The final perfor-
mance estimation of each classification model is an average
of the four estimations.

XV&G - Generalization Assessment: We perform two
sets of tests to understand to which extent we can general-
ize the obtained results. The first set of tests is focused on
inter-project cross assessment. In these tests, the machine
learning algorithms are trained using the dataset of one
project (e.g., Linux Kernel) and are tested using the dataset
of the other projects. This helps to understand how machine
learning algorithms perform in new situation. In the second
set of tests, the machine learning algorithms are trained using
a combined dataset including all projects and tested using the
dataset of each project individually. This helps to understand
whether it is helpful to combine all existing information from
source code of different software projects to achieve a better
result.

IV. PRELIMINARY ANALYSIS PHASE
We used the R Project [85] and several R libraries, includ-
ing CARET [86], RandomForest [87], e1071 [88], and
dplyr [89] to perform the experiments. All the experiments
were executed on virtual machines with Ubuntu 16.04.6 LTS,
a 2.0 GHz Intel Xeon E312xx (Sandy Bridge) processor,
8GB RAM and 16MB cache. In this section, we present and
analyze the results obtained during the preliminary analysis
phase.

A. DIMENSION REDUCTION
Correlation and redundancy analysis were performed for all
projects at both file and function levels. Tables 3 and 4
present the results obtained for both levels. Although the
list of irrelevant or redundant metrics identified are not the
same in all projects, we can see a high level of similarity
between them. For instance, as shown in Table 3, from the
27 file-level metrics (out of a total of 51 metrics) that are con-
sidered as irrelevant in all five projects, 25 appear at least in
3 projects (e.g., AvgCyclomatic, AltAvgLineBlank, AvgCy-
clomaticModified, AvgCyclomaticStrict). Similarly, from the

38 file-level metrics considered as redundant in all projects,
26 appear at least in 3 projects (e.g., AvgCyclomatic, Count-
LineBlank, CountLineCodeExe, CountSemicolon). Despite
these similarities, in order to be more precise, we run our
experiments over the 5 groups of software metrics (i.e., All,
All - Irrelevant,All - Redundant,All - [Irrelevant ANDRedun-
dant], and All - [Irrelevant OR Redundant]) that were created
separately for each individual project at both file and function
levels, which are used as input features for the machine
learning algorithms.

B. CLASS DISTRIBUTION IN THE DATASET
One important factor to build high performance classifiers
(i.e., classifiers with high true positive and low false positive
rate) is related to the distribution of the classes (i.e., vulnera-
ble and non-vulnerable code units in this work) in the dataset.
As explained before, we used undersampling to gradually
balance the dataset (from fully imbalanced dataset to 100%
balanced) and observed the impact on performance. Table 5
presents the characteristics of those resampled datasets. This
study is performed at file level for the Linux Kernel project
by using various machine learning algorithms. Linux Kernel
was chosen for this analysis due to the fact that it has a higher
number of reported vulnerabilities than other projects, so a
low number of vulnerable records would not be a threat to
the validity of the results.

In all experiments, 75% of the resampled dataset was
used to train the machine learning algorithms and 25% of it
(disjoint from the training sets) was used to test them (TS1).
In addition, to guarantee a fair and representative evaluation
of the classification models, we (randomly) created an addi-
tional test set composed of 25% of the whole dataset (TS2),
which is fully imbalanced and is ensured to be disjoint from
the training sets. By doing this, we aim to understand how
the estimation made by a balanced test set differs from the
estimation made by an imbalanced, but representative test
set.

Fig. 4 (x-axis: % of vulnerable records in the dataset (from
2.27% to 50%), y-axis: true positive rate (left) and false
positive rate (right)) shows how performance, in terms of true
positive rate and false positive rate estimated using resampled
test set (TS1), changes when the training set becomes more
balanced. For all machine learning algorithms, we observe
that the true positive rate increases (e.g., from 0.54 to 0.92
in the case of Random Forest and from 0.08 to 0.73 in the
case of Decision Tree). This means that more vulnerable code
units are detected and less vulnerable code units are mis-
classified as non-vulnerable. Thus, for highly critical systems
where one wants to detect as many vulnerabilities as possible
(regardless of the false alarms), it is quite effective to balance
the dataset when the number of vulnerable records is lower
than the number of non-vulnerable ones.

Another observation is that the false positive rate increases
for all algorithms (e.g., from 0.003 to 0.08 in the case of Ran-
dom Forest and from 0.0007 to 0.31 in the case of Decision
Tree), which means that a higher number of non-vulnerable
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TABLE 3. Irrelevant and redundant file-level software metrics (a) and their frequency in 10 random samples of Mozilla Firefox (b).

code units are misclassified as vulnerable. Thus, for scenarios
in which there are limited resources for fixing or removing
vulnerabilities, undersampling the non-vulnerable class to
balance the dataset does not seem to be a good approach. Sim-
ilar results are obtained for true positive rate and false positive
rate, using the imbalanced test set (TS2). This way, since we
aremore concerned about detecting vulnerable code units and
aim to improve the tools and techniques in this regard, we
have decided to use the totally balanced (50% vulnerable

code units) datasets for training the machine learning
algorithms.

We also conducted a more detailed comparison between
the classifiers using balanced and imbalanced test sets. For
this comparison, we used all machine learning algorithms,
trained using a totally balanced training set and tested using
both balanced (TS1) and imbalanced (TS2) test sets, and
evaluated the classification models by using the four crite-
ria representing the four scenarios under study. As shown
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TABLE 4. Irrelevant and redundant function-level software metrics.

TABLE 5. Resampled datasets (Linux Kernel files).

FIGURE 4. Impact of undersampling on performance.

in Fig. 5, the Recall and Informedness obtained using TS1 are
in par with the results obtained using TS2. This means that

using either a balanced or an imbalanced test set does not
influence the classification results when highly-critical and
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FIGURE 5. Balanced versus imbalanced representative test sets.

critical scenarios are the target of the analysis. But we observe
lower values for F-measure and Markedness in TS2 across
all machine learning algorithms. This is caused by the high
number of false positives compared to true positives, which
comes naturally from the TS2 that has a much higher per-
centage of non-vulnerable records. Thus,we have decided to
use imbalanced but representative test sets in the follow-
ing experiments, in order to have realistic performance
estimation for all scenarios.

It is worth noting that, since this analysis is done only at file
level, our decision regarding how to train and test the models
may not perfectly fit in function-based experiments, but we
believe that the implications are negligible, due to the fact that
the nature and context of the problem is quite similar.

In order to demonstrate that the samples generated for
training or testing are representative, we performed the V&G
- Representativeness of Random Samples validation analysis.
To do so, we repeated the correlation and redundancy anal-
yses (presented in Section IV-A) ten times over 10 random
samples (with 10000 records each) of file level data from the
Mozilla Firefox project. Results show that in all cases, 30
software metrics (out of a total of 51 file level metrics) are
identified as irrelevant and 28 software metrics are identified
as redundant. In addition to that, there is a large group of
metrics that appear repeatedly across different sample sets as
irrelevant and redundant. For example, as shown in the last
two columns of Table 3, 26 out of 30 irrelevant metrics are
identified in at least 7 samples (e.g., FanOut in 10 samples,
AvgCyclomatic in 9 samples). We obtained similar results
regarding redundant metrics: out of a total of 28 redundant
metrics, 23 are identified as such in at least 6 samples (e.g.,
AvgCyclomatic in 10 samples, AltAvgLineBlank in 7 sam-
ples). These results show that the random samples have quite
similar characteristics and patterns in terms of correlation

between the software metrics, and between the software met-
rics and the existence of vulnerabilities, which are important
factors in building predictive models out of software met-
rics. One of these samples is randomly chosen for further
experiments and analysis to re-ensure the avoidance of any
sampling bias that may exist.

V. EXPERIMENTATION AND ANALYSIS PHASE
In this section, we present and analyze the results obtained
during the experimentation and analysis phase, including the
performance of the machine learning algorithms, importance
of software metrics, and generalization of the approach.

A. PERFORMANCE OF THE MACHINE LEARNING
ALGORITHMS
We first focus on the results obtained for each project indi-
vidually and then make a comparison. Fig. 6 and Fig. 7
present the results obtained respectively for file and function
level software metrics of the Linux Kernel project. Both
figures include the results obtained by all machine learning
algorithms for different scenarios over five combinations of
software metrics. It is worth reminding that all 5 software
projects are analyzed by using four criteria representing four
different scenarios. In fact, the assumptions regarding the
criticality level of the projects are made based on scenarios.

File level results show that the best performance is
always achieved by Random Forest and Xboost algorithms.
As expected from the non-linear nature of the dataset, radial
SVM always achieve a better performance than linear SVM,
which is almost in par with Decision Tree. Among differ-
ent combinations of software metrics, the combination from
which the irrelevant metrics are eliminated slightly shows a
better result than other combinations in most cases. In Fig. 6,
we can also see that the combination in which the redundant
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FIGURE 6. File level results for Linux Kernel project.

FIGURE 7. Function level results for Linux Kernel project.

metrics are eliminated shows (slightly) worse results than
the combination with all metrics. In contrast, function level
results show no significant difference between these com-
binations. This happens because the function-level dataset
is not considered as a high-dimensional dataset (it only has
28 features), and in such cases it is hard to achieve a better
result with dimension reduction. However, this is not always
the same for other projects (see Fig. 8 and Fig. 9).

After analysing the results of all projects and all algo-
rithms, we can state that, dimension reduction, does not
always help to achieve a better performance. In fact,

dimension reduction has to be done carefully and several
techniques should be tried depending on the classification
model in use and the characteristics of the dataset in order
to achieve a better performance.

Regarding the effectiveness of using software metrics
and machine learning algorithms to detect vulnerable code,
we can conclude that, although the machine learning algo-
rithms could achieve a reasonable performance in terms of
Recall and Informedness (highly critical and critical scenar-
ios), the results for F-measure and Markedness (low-critical
and non-critical scenarios), which are highly dependent on
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FIGURE 8. File level results for Glibc project.

FIGURE 9. Function level results for Glibc project.

the number of false positives compared to true positives
(refer to Table 2), are not convincing at all. Despite having
high true positive (TPR = TP/P) and low false positive rates
(FPR = FP/N), having a very imbalanced test set leads to a
high number of false positive cases when compared to the
number of true positive cases.

Similar observations can be pointed for the function level
results presented in Fig. 7, with the difference that the
performance of the algorithms using file level metrics is

usually higher than when using function level metrics. Also,
the difference between machine learning algorithms is more
visible in file level results. For example, we cannot see any
difference between the algorithms in terms of F-Measure and
Markedness in Fig. 7. These are happening due to the fact
that the function-level data is even more imbalanced than the
file-level data (refer to Table 1).

To make a comparison between different projects,
we present in Fig. 10 the results obtained for all projects over
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the data sets with all file level metrics. In general, the results
for the different projects are quite different mainly due to
the fact that the characteristics of the datasets (i.e., size and
distribution of classes) are different for each project. In most
cases, the best performance is achieved for the Linux Kernel
dataset, which is the biggest project and has more vulnera-
ble code units. This means that the machine learning algo-
rithms had more evidences and more balanced information
to avoid overfitting and learn (of course not equally) about
both classes involved in the dataset. We also have high Recall
and Informedness for Glibc, but, by looking to the very low
F-measure and Markedness values, we can conclude that the
high true positive rate in this case is achieved thanks to highly
overfitted models.

Interestingly, the results achieved by both ensemble algo-
rithms, Random Forest and Xboost, are quite similar in the
case of all projects, for both file and function level metrics
(see Fig. 10 and Fig. 11). Random Forest and Xboost are
both tree-based algorithms. In both cases, the performance of
the model depends on two distinct sources of error: bias and
variance. Gradient boosting models deal with these sources
of error by boosting for many rounds at a low learning rate.
In contrast, Random Forest models deal with them via the
number of trees and tree depth. Achieving very similar results
by these algorithms in almost all cases may imply that both
models were able to achieve their best model with our dataset
and no bias or variant could be reduced by neither methods
due to the limitations that exist in the dataset (e.g., being
imbalanced with imperfect labeling).

We also observe similar patterns between Linear SVM
and DT. However, showing a comparable performance does
not imply that the code is classified or misclassified sim-
ilarly by these classifiers. For this reason, we decided to
analyse their behaviour in more detail. Fig. 12 presents
Venn diagrams showing all possible intersections between
the subset of vulnerable code units (respectively, files and
functions of the Linux kernel project) that are classified as
non-vulnerable by the different machine learning algorithms.
The diagram shows that 76 vulnerable files and 102 vulner-
able functions are misclassified by all classifiers. Interest-
ingly, 136 out of 146 vulnerable files and 137 out of 163
vulnerable functions that are classified as non-vulnerable
by XBoost, are also misclassified by Random Forest. This
led us to analyze the characteristics of the vulnerable/non-
vulnerable files and functions that are misclassified by
all classifiers to find the missing information that the
machine learning algorithms could use to improve their
performance.

In our analysis we observed that most of the vulnerable
code units that are classified as non-vulnerable are small
and simple in terms of structure. In contrast, most of the
files and functions that are incorrectly classified as vulner-
able are huge or complex. An example of a misclassified
vulnerable file from Linux Kernel source code is presented
below.

We added the first 13 lines just to provide some information
about the file. File path is added in line 2 and the values
of several representative software metrics are added in lines
4 to 12. The values of the metrics show how simple the file
is. Indeed, it is impossible to indicate this file as vulnerable
file by using software metrics, but we are aware of one
exploitable vulnerability that has been reported for this file
(i.e., CWE-264 - Permissions, Privileges, and Access Con-
trols). The vulnerability consists of a Wrong Assignment
Value (according to the ODC classification [90]) in line 29,
which allows local users to cause a denial of service (system
crash). To fix this vulnerability the line should be simply
replaced by .splice_write = iter_file_splice_write,. Given this
example, the analysis of the misclassified vulnerable but sim-
ple files and functions, may allowfinding other evidences that
help to improve the performance of vulnerability detection
tools. This will be explored in future work.

Fig. 13 and Fig. 14 present the average value of several
software metrics respectively for misclassified files and func-
tions. As we can see, there is a huge difference between these
two groups of misclassified code units (i.e., false positives
and false negatives). Note that the standard deviation is high
too, which means that the average variation around the mean
is quite large. Regarding the false positive cases, asmentioned
before, the source of information regarding the vulnerabilities
is limited to security reports. Consequently, the functions
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FIGURE 10. File-level results for all projects over all software metrics.

FIGURE 11. Function-level results for all projects over all software metrics.

and files without reported vulnerabilitis are not necessarily
flawless. For this reason, given the above results regarding
misclassified non-vulnerable files and functions, it is quite
probable that some of the considered false positives are
indeed vulnerable (although no vulnerability has yet been
disclosed). A few lines of an example of a missclassied
non-vulnerable file (i.e., no attack related to this file is
reported so far) from Linux Kernel source code is presented
below (the whole file is not presented due to the lack of
space).

As the values of software metrics show (lines 4 to 12),
the file is quite complex. Using our models, this file is classi-
fied as vulnerable. To find out whether this file is vulnerable
or a real false alarm, we applied several static code analyser
tools including FlawFinder, CppCheck, and Rats [91] over
the file. These tools found several issues in the file, of which
two vulnerabilities were confirmed by a security expert. One
of these vulnerabilities is found in line 18 of the code below
(i.e.,CWE-134 - Use of Externally-Controlled Format String)
where sprintf operation is used without checking the input
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value (Missing Checking Input Value bug according to
ODC classification).

B. IMPORTANCE OF SOFTWARE METRICS
In all the experiments above, we collected information
regarding the importance of the software metrics calculated
by each machine learning algorithm for the five projects.
In general, the rankings given by the algorithms are dif-
ferent from each other, as the algorithms build the models
differently and the datasets of the projects have different
characteristics (in terms of size, distribution of classes, and
structure of the code).

To better understanding the results, we compared the rank-
ing of the software metrics given by the two classifiers that
performed higher (Xboost and Random Forest) in the two
projects with the best results (Linux Kernel and Mozilla
Firefox). We compared the most important (importance of
software metrics refers to the score assigned to them by each
classifier based on how useful they are at predicting a vulner-
able code) file and function level software metrics (one-third
of software metrics with highest score - 10 out of 28 function-
level metrics and 17 out of 51 file-level metrics) given by each
algorithm for the two projects. Table 6 presents the software
metrics that appear in the list of the most important (i.e.,
discriminative) metrics in both Linux Kernel and Mozilla
Firefox projects for each classifier at both file and function
levels. As shown, whenXboost is used to build themodel over
the Linux Kernel and Mozilla Firefox data, 9 out of 10 most
important function level metrics are the same, although with
different scores and rankings. Similarly, whenRandomForest
is used to build the model over the Linux Kernel and Mozilla
Firefox data, 6 out of 10most important function level metrics
are the same. Regarding the file-level metrics with Xboost
and Random Forest, respectively, 11 and 9 out of 17 most
important metrics are repeated in both projects.

Despite these spontaneous similarities that we can find
in some cases, according to the ranking results (some of
which presented above), and according to the results pre-
sented in the previous section regarding the different subsets

of software metrics, it seems that the correlation between
software metrics and also their correlation with security
issues in the code is sufficiently complex to be identified
by our simple correlation and redundancy analysis. Even
the machine learning algorithms did not rank them equally
(or evenwith a high level of similarity). Thus, giving privilege
to a group of metrics for building vulnerability prediction
models does not seem to be a promising idea.

C. GENERALIZATION ASSESSMENT
To understand to which extent we can generalize the
results and how the machine learning algorithms perform
in new (previously unseen) situations, we first performed
a inter-project cross assessment, where data of a specific
project are used for training and data of the other projects are
used for testing. At the file level and using data of Linux Ker-
nel as training set, we observe that the performance decreases
in all projects, except in the case of the Linux Kernel itself,
whose data is used for training the machine learning algo-
rithms (see Fig. 15). An interesting observation is that Linear
SVM and DT seem to make better classifications than other
machine learning algorithms when the test set is completely
unknown to the classifiers. This means that these machine
learning algorithms build more generalizable models than
other algorithms, thus being more suitable for unseen code.
This is simply because, they build simpler models, which is
more appropriate when the data is more non-parametric in
nature (i.e., when we cannot make assumptions about the
distribution of data).

At function level and using data of Linux Kernel as training
set (see Fig. 16), all classifiers seem to perform similarly.
Interestingly, for Low Critical and Non-Critical scenarios,
Xen achieves a better result than the other project. This hap-
pens due to the fact that this small project has amore balanced
test set compared to other projects (Refer to Table 1). The
same model with more balanced test set, gives less false
positive alarms compared to the number of true positive cases,
which leads to achieve higher F-Measure and Markedness.
The same observations are seen when data of Mozilla Firefox
is used as training set in both file and function levels, but in
other cases, when the data of the small projects are used for
training, we observed that the performance of the classifiers
is way lower and all classifiers perform similarly in both file
and function level. This happens because the training set is
small and there is not enough variation in training set.

The results of the experiments in which the machine
learning algorithms are run over the combined dataset, are
presented in Fig. 17 and Fig. 18 for files and functions,
respectively. We can observe that the performance of the
classifiers is slightly degraded when we use a dataset com-
posed of all 5 projects for building the classification mod-
els. This potentially means that classifiers are able to find
similar characteristics and patterns in the code of five differ-
ent projects, thus achieving a reasonable performance level.
The results are similar for function level metrics. This is
a promising observation as it may mean that we can build
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FIGURE 12. Venn diagram of misclassified vulnerable files (a) and misclassified vulnerable functions (b) of Linux
Kernel.

FIGURE 13. Software metrics’ value for misclassified files.

TABLE 6. The most important software metrics with both Linux Kernel and Mozilla Firefox projects.

a dataset with higher diversity (including different types of
software project), which is quite helpful for vulnerebility

prediction of unseen code but still have a reasonable level of
performance.
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FIGURE 14. Software metrics’ value for misclassified functions.

FIGURE 15. File-level inter-project cross-validation results (Linux Kernel data is used as training set).

VI. DISCUSSION AND THREATS TO VALIDITY
The main objective of this work was to perform a compre-
hensive experiment to demonstrate how effective software
metrics combined with machine learning techniques can be to
distinguish vulnerable from non-vulnerable code units in dif-
ferent application scenarios. Thus, we used several machine
learning algorithms, several software project at both file and
function levels, several application scenarios with different
security concerns and several subset of software metrics to
explore this idea. The main insights from the results are as
follows:

• Machine learning algorithms using software metrics
data can detect vulnerable code with a relatively high
level of confidence for security-critical software systems
(e.g., Recall and Informedness more than 0.8). How-
ever, a high number of false alarms makes the software
metrics almost useless for low-critical or non-critical
systems (i.e., response to RQ1 defined in Section I).

• The larger and more complex a unit of code is, the more
likely it is to have security issues. Thus, models built
over software metrics that provide information regard-
ing the structure and complexity of code can help to
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FIGURE 16. Function-level inter-project cross-validation results (Linux Kernel data is used as training set).

FIGURE 17. File-level generalization results.

predict vulnerabilities. Nevertheless, the high number
of false alarms implies that software metrics are not
sufficient to distinguish vulnerable and non-vulnerable
code with high level of confidence and low cost (as
false positives require resources to be verified). More-
over, software metrics are not able to indicate the exact
place of the existing vulnerabilities. These limitations
of software metrics imply that more evidences of low
quality code (e.g., code smells or absence of security

best practices) and deeper static (and dynamic) code
analyses are required for building a high performance
vulnerability detection/prediction tool.

• Undersampling the larger class of a dataset, in which a
low percentage of data belongs to vulnerable code, helps
to detect more vulnerable code, but with a higher false
positive rate. Thus, the class distribution in the dataset
to be used to train the classifiers is influenced by the
application scenario.

VOLUME 8, 2020 219193



N. Medeiros et al.: Vulnerable Code Detection Using Software Metrics and Machine Learning

FIGURE 18. Function-level generalization results.

• Random Forest and Xboost were able to build more
precise models than other algorithms to detect vulner-
able code in a software project when data from the
same project is used for training. In contrast, Decision
Tree and Linear SVM seem to build more generaliz-
able models, thus, give a better estimation when the
data from another project is used to evaluate the model
(i.e., response to RQ3).

• Considering particular application scenarios when
building or choosing vulnerability detection tools is
an important factor. We balanced the training set to
build the classification models, which was helpful for
detecting more vulnerable code at the cost of more
false positive alarms, (suitable for highly critical sys-
tems where one prefers to detect more vulnerabilities,
no matter how many false alarms are reported). In spite
of that, balancing the training set for building the model
was harmful for low or non-critical applications, making
the models almost useless for these scenarios.

• In general, we cannot conclude that dimension reduc-
tion is or is not helpful to achieve better results
in terms of performance. Indeed, the combination of
metrics that leads to the best performance strongly
depends on the machine learning algorithm. For exam-
ple, Xboost achieves the best result when all metrics are
used, while Decision Tree shows a better performance
when the redundant file-level metrics are eliminated
(i.e., response to RQ2).

• Misclassified vulnerable files seem to have different
characteristics from misclassified non-vulnerable files
in terms of structure and complexity. The same is true in

the case of misclassified functions. Performing a deeper
analysis of the source code in these files and functions
can help to find new evidences or features that enable
improving the performance of classifiers. To give an
example, looking at Fig. 13 and Fig. 14, the average
value of CountPath for missclassified vulnerable func-
tions is 5.67, way lower than the average value for miss-
classified non-vulnereble functions. It means that, most
of the missclassfied vulnerable functions are quite small
and simple. By looking at their source code, wemay find
that only a single line of code with a sensitive opera-
tion (e.g., memcpy) made the code exploitable against
attackers that could be simply avoided by adding a check
before the operation. We intend to explore this deep
analysis of the missclassified code in future.

• Our analysis of missclassified code shows that, although
there is a group of code units that are missclassified by
all the models, a bigger group of code units are miss-
classifed by only one or two models. Thus, it might be
helpful to build a hybrid prediction model using several
machine learning algorithms to lower the number of
false alarms.

• The complex correlation between software metrics and
between metrics and the existence of a vulnerability
in the code makes it very difficult, if not impossible,
to find a meaningful universal ranking of software met-
rics based on their importance in the prediction of vul-
nerable code (i.e., response to RQ2).

• The generalization assessment showed that the perfor-
mance of classifiers is not degraded significantly when
a dataset with diverse projects is used for training the
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models. This can generally imply that the idea of using
software metrics for the indication of vulnerable code
can be generalized (i.e., response to RQ4).

We are aware that this experimental work has limitations
that need to be taken into account when considering the
insights above. Most of these threats to validity are related
to the dataset used (selected due to the reasons mentioned
in Section III). First, all the selected projects in the dataset
are implemented in C/C++, and each programming language
has its own characteristics in terms of security [92]. Conse-
quently, some of the outcomes obtained from our analysis
may not be representative for software implemented in other
languages (e.g., Java).

The source of information regarding the vulnerabilities
in the projects is limited to security reports. Consequently,
the functions and files without reported vulnerabilities are
not necessarily flawless. To build the classifier model,
we followed a supervised approach, which considers that
our dataset is completely labeled. However, although the
records with vulnerabilities are (reliable) labeled, but the rest
can be seen as being unlabeled. This way, semi-supervised
approaches should be studied as alternative choices for such
cases, where it is not trivial to verify the label of all records
due to the size of the dataset and complexity of the code.

Although we used the well-known, commonly used, rec-
ommended, and representative machine learning algorithms,
the number and diversity are still limited for a comprehensive
analysis. Furthermore, the analysis for demonstrating the
representativness of random samples as well as the analysis
performed for the understanding the impact of class distribu-
tion are done over the source code of a single project. This
may have some implications on the results obtained with the
other projects.

We believe that main limitation and thread to the validity
of this work and to the other similar works in the literature,
comes from the fact that it is extremely difficult to build a
dataset that is relatively balanced (i.e., having enough number
of vulnerable code to prevent over-fitting), precisely labeled
(i.e., all existing vulnerabilities identified for code labeled
as vulnerable, and for code labeled as non-vulnerable assure
that it is free of any vulnerability), and highly representative
(i.e., covering a vast range of software projects implemented
in different languages). Without such dataset, we will not be
able to fully understand how effective software metrics can
be to detect/predict vulnerable code for different application
scenarios. Even if we imagine that such dataset already exists
or can be built, it will be still a big challenge to build models
that can guarantee a good performance with a low number of
false alarms for previously unseen patterns of code.

VII. CONCLUSION AND FUTURE WORK
This paper presented a comprehensive study on the use of
software metrics and machine learning algorithms for the
detection/prediction of vulnerable code. The most important
observation is that using machine learning algorithms on top
of software metrics helps identifying vulnerable code units

with relatively high level of confidence for security-critical
software systems (where the focus is on detecting the max-
imum number of vulnerabilities, even if false positives
are reported), but they are not helpful for low-critical or
non-critical systems due to the relatively high number of false
positive alarms reported when compared to the number of
true positive cases (that bring an additional development cost
frequently not affordable), which is mainly caused by the
imbalanced nature of our dataset (and similar datasets used
in other works).

According to our observations, insights and threats to
the validity of the work, we can conclude that software
metrics are not sufficient evidence of security issues to
be used solely for building detection/prediction mod-
els that are able to distinguish vulnerable code from
non-vulnerable code with good performance and low vul-
nerability removal cost. Moreover, due to the natural limita-
tions of existing datasets for training and testing thesemodels,
it becomes even more difficult to precisely understand how
effective software metrics can be to detect vulnerable code in
different application scenarios. Based on this strong conclu-
sion, we have two directions in front of us for future works.

The first direction will be focused on using other evidences
rather than software metrics, like code smells [93], lack of
security best practices in the code, alerts given by static code
analysers, among others, to improve the detection/prediction
models to produce less false alarms and try to find the location
and type of vulnerabilities to provide some suggestions to
developers for removing the detected or predicted vulnerabil-
ities and improving the code. This requires a deep understand-
ing of all (known) types of security issues and vulnerabilities
as well as possible solutions for fixing them. In this scenario,
we will still face the aforementioned limitations of models
in new unknown situation. To address this issue, we can let
the models to continuously adjust themselves by receiving
feedback from developers of the code under development.
After analysing the situation, and in the case of false alarms,
the developers will send feedback to the analyser platform to
readjust the prediction model. Otherwise, the suggestion is
applied in the code either by writing new code or by chang-
ing (or removing) existing code. In practice, the prediction
model will be continuously improved by new data generated
from the code under development and feedback provided by
developers. Here, the main challenge is to ensure that i) the
software functionality remains after applying the changes;
and ii) the changes do not introduce a new bug or vulnerability
in the system.

The second direction will be focused on using software
metrics not for predicting or detecting vulnerabilities but
for assessing the trustworthiness of the code and warn the
developers about their untrustworthy (insecure) code units.
In a previous work [94], we proposed a trustworthiness model
directly by using a group of software metrics that were
weighted based on the scores given by a classification model.
Despite the merit of that work, the results of the current
work show that such model cannot be generalized, since it is
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almost impossible to find a meaningful universal ranking of
software metrics, based on their importance in the prediction
of vulnerable code, to be used for any kind of software. For
this reason, we suggest to build a trustworthiness model,
not directly based on software metrics, but based on the
classification results of several machine learning algorithms
that are trained using software metrics. This solution does
not find vulnerable code, but may be able to warn developers
about the units of code that seem to be more untrustworthy.
By assigning a trustworthiness score to each unit of code,
it is up to the developers to decide what part of the code
needs more attention (depending on the criticality of the
application and the available resources), thus being suitable
for any application scenarios.
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