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ABSTRACT: Unmanned Aerial Systems (UAS) has been recently used for mapping marine litter on beach-dune environment. 

Machine learning algorithms have been applied on UAS-derived images and orthophotos for automated marine litter items detection. 

As sand and vegetation are much predominant on the orthophoto, marine litter items constitute a small set of data, thus a class much 

less represented on the image scene. This communication aims to analyse the class imbalance issue on orthophotos for automated 

marine litter items detection. In the used dataset, the percentage of patches containing marine litter is close to 1% of the total amount 

of patches, hence representing a clear class imbalance issue. This problem has been previously indicated as detrimental for machine 

learning frameworks. Three different approaches were tested to address this imbalance, namely class weighting, oversampling and 

classifier thresholding. Oversampling had the best performance with a f1-score of 0.68, while the other methods had f1-score value 

of 0.56 on average.  The results indicate that future works devoted to UAS-based automated marine litter detection should take in 

consideration the use of the oversampling method, which helped to improve the results of about 7% in the specific case shown in this 

paper.  

 

 

1. INTRODUCTION 

Coastal marine litter has a negative impact on marine 

ecosystems (Rochman et al., 2016), marine life (Kühn et al., 

2015) coastal communities (Beaumont et al., 2019) and human 

health (Werner et al., 2016). It is therefore essential to find 

proper solutions for mapping and monitoring marine litter load, 

in order to identify the sources, to propose mitigation measures, 

and to support cleaning operations (Galgani et al., 2013). 

Traditionally, the monitoring of marine litter is often based on 

in-situ visual census surveys (Cheshire et al., 2009), which are 

expensive in term of human effort and logistically limited 

(Lavers and Bond, 2017).  

 

Recent studies have proposed the use of Unmanned Aerial 

Systems (UAS) for detecting and mapping marine litter 

pollution on coastal environment (Fallati et al., 2019; 

Gonçalves et al., 2019). UAS offers a cost-efficient collection 

of the required high-resolution imagery for the detection of 

marine meso-litter items (comprised between 2.5 cm and 50 cm) 

on beaches and dunes. Furthermore, UAS allow a fast coverage 

of a wider area when compared to in-situ visual census. In spite 

of this capabilities, manual identification of marine litter items 

on UAS-derived orthophotos is subjective and time-consuming. 

In fact, the operator needs to manually localize and characterize 

each marine litter object on the orthophoto, which is a time-

consuming task and its quality directly related with the 

experience of the operator. As a consequence, automated 

detection of marine litter items would be preferable, as it would 

allow a faster and robust image processing.  

 

To date, a few approaches made use of image recognition 

algorithms to perform image classification or image 

segmentation methods to automatically identify litter on UAS 

images (Martin et al., 2018; Fallati et al., 2019) and derived 

orthophotos (Gonçalves et al., 2019). Martin et al. (2018), used 

a random forest algorithm, obtaining a significant over-

estimation of marine litter items. The authors indicated that for 

the binary classifier (litter and no litter), only 10% of the total 

number of image samples were from the litter class. Gonçalves 

et al. (2019) proposed a random forest algorithm based on 

colour features to segment litter instances on orthophotos. In 

this approach the authors used a pixel level approach, which 

required as input both the orthophoto and the masks delineating 

the litter objects. Also in this case, only a small percentage of 

the total study area contained litter. 

 

Convolutional neural networks have recently shown better 

performance for image recognition tasks on remote sensing 

optical images (Huang et al., 2017; Maggiori et al., 2017) when 

compared with traditional machine learning algorithms such as 

random forests. Regarding marine litter mapping, Fallati et al. 

(2019), used a commercial software which follows an object 

detection framework using CNN. Other details from the 

approach are not available given the commercial nature of the 

software used for the image classification step. 

 

Overall, all the works that considered an automated approach 

for marine litter detection on UAS-derived imagery experienced 

the issue of class imbalance, as only a very small percentage of 

the area contains litter in comparison with sand and vegetation 

classes (Martin et al., 2018; Fallati et al., 2019; Gonçalves et 

al., 2019, 2020). However, the class imbalance issue has been 

overlooked and not properly analysed, despite the fact that class 

imbalance has been shown to negatively affect the performance 

of traditional classifiers such as Support Vector Machine, and 

Random Forest (Japkowicz and Stephen, 2002; Mazurowski et 
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al., 2008), and convolutional neural networks (Buda et al., 

2018).  

 

The attempts proposed to address the class imbalance issue can 

be divided in two types of methods: a) data and b) algorithmic 

methods. Data level methods focus on the training data and on 

class distribution to reduce/eliminate class imbalance. Two 

main approaches can be distinguished: oversampling (Johnson 

et al., 2013; Douzas et al., 2019) and undersampling (Leichtle et 

al., 2017; Buda et al., 2018). These methods use new image 

samples generation (oversampling) or modify the subset sample 

selection (undersampling). Another approach regarding data 

level methods is the definition of weights for each of the 

samples according to its class. Hence, an image sample of the 

majority class will have a smaller input weight than a minority 

class when computing the training loss. Algorithmic methods 

instead adjust the training procedure and/or inference step. For 

instance, classifier thresholding (Buda et al., 2018) modifies the 

pre-defined threshold probability of the classifier to consider a 

given example as positive. In a one-class classification, also 

known as novelty detection, a network is trained to recognize a 

given target class instead of discriminating between two classes 

(Deng et al., 2018). Other algorithmic methods focus directly on 

the loss function which penalizes a certain type of errors (Dong 

et al., 2019). Overall, oversampling is recurrently indicated as 

the best performing approach in systematic studies (Buda et al., 

2018) and for different remote sensing applications (Johnson et 

al., 2013; Douzas et al., 2019; Xia et al., 2019). 

 

This work proposes to analyse and address the class imbalance 

issue in the automatic image classification of marine litter on 

coastal environment. Image classification is performed with a 

CNN framework, and three approaches are tested to deal with 

the class imbalance problem which are compared against a 

reference experiment (baseline) where the class imbalance is not 

taken into account. The work is structured as follows. In section 

2, we present the study area, dataset, a brief description of the 

CNN and where the approaches to address the class imbalance 

problem are described. Section 3 presents the results, followed 

by Discussion in section 4. Conclusions are reported in Section 

5.  

 

 

2. METHOD AND STUDY AREA 

This section describes the methodological approach to address 

the class imbalance issue regarding the image classification of 

litter using orthophotos derived from UAS images. First, the 

study area and dataset are described in section 2.1. The used 

CNN is briefly described in section 2.2, while the focus of this 

paper, the methods to address the class imbalance problem, are 

defined in section 2.3.  

 

2.1 Study site and dataset 

The study area was Cabedelo beach, in Figueira da Foz, 

Portugal (Figure 1). The camera gimbal of the UAS (DJI 

Phantom 4) was set to −90° to capture photos perpendicular to 

the direction of the flight and the ISO, shutter speed and 

aperture were set to 100, 1/1250 s and f/3.2, respectively. This 

allowed to generate an orthophoto of 5 mm ground sampling 

distance (GSD).The orthophoto was generated using 432 UAS 

images with a resolution of 4864 × 3648 pixels which were 

acquired at 20 m flying height and overlapped with 80% front 

and 65% side rates in order to derive the corresponding digital 

surface model generated by dense image matching.  

 

The area covered by the orthophoto was divided following a 

geomorphological procedure (Gonçalves et al. 2019), in order to 

obtain the beach and dune zones. Within each of these two 

zones, three areas were selected (and numbered) to train and test 

the automated algorithms. Areas 1-3-4-6 were used to train, 

while Area 2 and 5 were used to test the machine learning 

algorithms on beach and dune zones, respectively. 

 

It can be observed how the beach zone background is mostly 

composed by sand, with some sectors that were covered by 

wood and grass, mostly stranded by waves. The dune zone 

background was instead more variable, with the presence of 

sand, different types of vegetation and wooden paths. Marine 

litter items were mostly found on beach zone (Gonçalves et al. 

2019), however some items were also present on dunes. Some 

examples of marine litter objects visible on the orthophoto can 

be seen in Figure 2, where the different backgrounds of beach 

and dune can also be compared. 

 

 
 

Figure 1 Study site map (a and b) and the orthophoto used in 

this work (c).  

 

The marine litter objects visible in the training areas were 

digitalized by an experienced operator to create digital masks of 

the objects (Figure 3 a). The image Areas (1-6) were extracted 

from the orthophoto and divided in smaller 64x64px image 

patches, as required by CNN architecture (see section 2.2). The 

masks were used to categorize each of the extracted image 

patches as litter or not litter. If  an image patch contained 8 or 

more litter pixels, this was considered as a litter image patch 

else it was considered as a no litter one. The threshold value of 

8 pixels was set on the rational that, given the orthophoto GSD 

of 5.5 mm, the smallest marine meso-litter object (2.5 cm), 

which represent the lowest limit of our target, would be 

represented by 9 pixels. 

 

Table 1 presents the final amount of image patches for training 

and validation areas and also discretized between dunes and 

beach. It is worth noting that the marine litter items were less 

than 1% of the total number of image samples. Hence, a highly 

imbalanced dataset. The ratio of samples used in validation is 

~25% in the case of no litter class and   ~37% in the case of the 

litter class. 
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2.2 Convolutional neural network 

In this work it was used an adaptation of densenet121 (Huang et 

al., 2017). Densenet121 capacity was greatly reduced given that 

the original network was developed for computer vision datasets 

like ImageNET, where hundreds of classes may be considered 

and where each class may contain thousands of samples. Hence, 

by decreasing the complexity of the network, overfitting is 

attenuated and the model is faster when considering a binary 

image classification problem. 

 

Dunes 

 

Dunes 

detail 

Beach 

Beach 

detail 

Figure 2 Details of the areas considered in this study, dunes and 

beach. 

 

a) 

     

b) 

 
c) 

d) 

 
Figure 3. Examples of image samples extracted from the ortho. 

a) . Ortho and manually defined mask. On the right the resulting 

image patches, b) litter and c) oversampled litter patches (see 

section 3.3.2). 

 

 Beach Dunes Total 

 
No 

litter 
litter 

No 

litter 
litter 

No 

litter 
litter 

Training 

(1,3,4,6) 
36352 307 3990 28 40342 335 

Validation 

(2,5) 
11165 171 1985 24 13150 195 

Total 47517 478 5975 52 53492 530 

Table 1 Total number of image samples for the training and 

validation and also considering separately the beach and dune 

areas. 

 

The densenet is a network built by stacking dense blocks which 

in turn are composed by convolutional sets. The convolutional 

sets are concatenated within each dense block. This allows to 

keep feature information throughout the network, where 

between dense blocks there is a transitional block which reduces 

the size of the feature maps to a final size of 4x4px (from the 

initial 64x64px). Three dense blocks, composed each by 2, 3 

and 6 convolutional sets each, formed the main body of the 

architecture. Hence, from the original network, one dense block 

was removed and the remaining had the number of 

convolutional sets reduced (Figure 4). In the classification step a 

sigmoid activation function was used, where the final output 

was the probability of a given patch to contain litter. 

 

The batch size was considered as 600, which is the maximum 

the hardware would allow in order to have as many marine litter 

instances per batch as possible. Considering that the network 

had 530 litter and 53492 no litter image patches, choosing the 

batch size as 600 allowed to have about 6 litter patches per 

batch. Data augmentation was used with the objective of 

reducing overfitting (Krizhevsky et al., 2012) where random 

translations, rotations and shear were applied during training. 

This was performed for all experiments.  

 
Figure 4 . General steps for the image classification of litter. 

Image patches are fed to the network where a densenet based 

CNN extracts features from the images which are then classified 

with a sigmoid activation function. 

 
 

2.3 Addressing class imbalance 

Three different approaches for dealing with class imbalance 

were tested in this work: oversampling, class weighting, and 

classifier thresholding. In general, the aim of the methods was 

to automate the image classification process where parameters 

could be drawn directly from the data. The reference experiment 

(baseline) does not consider any method to address the class 

imbalance problem as it currently happens in the literature.  
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2.3.1 Oversampling: While undersampling could also be 

used, it was assumed that valuable feature information could be 

lost due to this. Instead we used oversampling as already 

indicated as preferable by Buda et al. (2018). The authors also 

indicated that oversampling with CNN does not lead to 

overfitting as would happen with traditional image classification 

approaches. Hence, in this study the minority class (litter) was 

oversampled to match the same amount of no litter samples. 

This was only performed during training, where the validation 

contained only original samples. To perform this, random image 

transformations were applied to the images and new ones were 

generated, see Figure 3. These transformations were random 

noise, random rotation and zoom, which were applied randomly 

to the litter image patches. In this way the final number of 

samples for training was balanced regarding the number of 

image samples per class. 

 

 

2.3.2 Class weighting: This aims at balancing the training 

procedure by changing the weight that each training sample has 

when computing the training loss. In this case, class weighting 

was introduced, since the weight of each sample was related to 

its class. The weights of a class were tied to its proportion of 

image samples in the dataset. The litter instances are only 1% of 

the whole dataset, hence a weight of 100 has been given to that 

class, while the no litter class was 1. This approach is named 

w100 from now on.  

 

2.3.3 Thresholding: Thresholding is an approach in which 

the classification threshold of a classifier is modified. There are 

several ways of defining this threshold to accommodate class 

imbalance. (Richard and Lippmann, 1991; Lawrence et al., 

1998; Buda et al., 2018). A common approach, which can be 

driven by the imbalance ratio is for the threshold to 

accommodate this imbalance. In this case the threshold was 

inversely proportional to the ratio of litter/no litter samples 

(only ~1% of litter instances are litter). Hence, when predicting, 

an image sample is considered to have litter only if its 

prediction score probability is higher than 0.99. The 

thresholding was applied to all the experiments (class 

weighting, baseline and oversampling).  

 

3. RESULTS 

Statistical metrics of each of the approaches are presented in 

(Table 2). Within brackets the results of the thresholding 

approach for each of the experiments is also presented. The 

results are presented for both the beach and dune areas. The 

total presented in the table was determined by adding the true 

positives, false positives and false negatives of both the areas 

and consequently determine the total precision recall and f1-

scores. 

 

While baseline, weighting and oversampling were standalone 

methods, the thresholding was applied to each of the 

experiments. Examples of the results on both the beach and  

dunes (Figure 5 and Figure 6) are presented, followed by the 

plotting of the precision-recall (pr) curve of the main set of 

experiments. 

 

Overall, the oversampling method achieved the highest f1-

score. This is more accentuated when considering only the 

beach area. On the other hand, the thresholding strategy was the 

worst performing experiment. In general thresholding improved 

recall but decreased precision, worsening the f1-score of the 

experiments. While in the beach area, the w100 is still 

comparable to the baseline experiment, this is not the case in the 

dunes area. The difference between the baseline and 

oversampling experiment is also bigger on the beach region, 

where that difference is shortened in the dunes area.  

 

Beach 
 

f1 precision recall 

baseline(t) 0.56(0.21) 0.73(0.91) 0.45(0.12) 

w100(t) 0.57(0.47) 0.59(0.83) 0.55(0.32) 

oversampling(t) 0.63(0.57) 0.62(0.46) 0.65(0.77)     

Dunes 
 

f1 precision recall 

baseline(t) 0.65(0.30) 1.00(1.00) 0.48(0.17) 

w100(t) 0.52(0.65) 0.45(1.00) 0.61(0.48) 

oversampling(t) 0.68(0.63) 0.67(0.92) 0.70(0.48) 

        

Total 
 

f1 precision recall 

baseline(t) 0.57(0.35) 0.76(0.22) 0.46(0.84) 

w100(t) 0.55(0.24) 0.55(0.14) 0.55(0.78) 

oversampling(t) 0.64(0.38) 0.62(0.25) 0.66(0.80) 

 

Table 2. Statistical measures of the experiments, f1 score, recall 

and precision for all the experiments and considering the beach, 

dunes and all the image data. Between brackets the thresholded 

version of the experiments (t). 

 

Regarding the precision and recall of the experiments, the w100 

maintains the same value for both of these metrics. Hence, the 

model is having a similar rate of false negatives and false 

positives. On the other hand, the baseline experiment contains a 

higher rate of false negatives when compared with the false 

positives. The oversampling approach is also balanced in terms 

of the false positive and true positive rate. 

 

Figure 5 and Figure 6, present the results for the dune and beach 

area, respectively. For each experiment details of the classified 

orthophotos are presented. True positives (green), false 

negatives (blue) and false positives (red). In Figure 5, the 

baseline experiment was only able to detect 1 of the litter 

instances, while the oversampling detected them all. The 

weighting approach also detected one more litter instance, 

however, at the expense of having more false positives. 

 

In Figure 6 the baseline experiment only detected one litter 

patch correctly. This experiment, while not having false 

positives, contains several false negatives.  The oversampling 

and weighting present the same number of false positives; 

however, the oversampling approach correctly detects much 

more litter patches than the class weighting method. 

 

The precision-recall curve shows the tradeoff between precision 

and recall for different classification thresholds. This gives us a 

general performance visualization of a given model, which is 

especially relevant when the aim is to compare performances. It 

is also indicated when the datasets are highly imbalanced (Saito 

and Rehmsmeier, 2015). The higher the curve is on the y axis 

the better the model performs. This performance can be 

quantified by calculating the area under the curve (AUC). In 

Figure 7, the precision-recall curves of each of the main 

experiments are assessed, baseline, weighting and 

oversampling. The AUC is 0.67 for the baseline, 0.66 for the 

oversampling and 0.55 for the weighting. Hence, this chart 

indicates the baseline experiment as the best model, even if just 

marginally. Moreover, it is visible from the figure that there are 
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regions in the chart where the baseline experiment is above the 

oversampling one. 

 

 1 2,3 

a) 

 

 

 

b) 

 

 

 

c) 

 

 

 

 

Figure 5. Details of the results for the dunes. Blue tiles are false 

negatives, red tiles false positives and green tiles true positives. 

Detail 1, 2 and 3 considering each of the approaches (a – 

baseline, b – w100 and c – oversampling). 

 

4. DISCUSSION 

Both the statistical metrics and the presented image patches 

with results point to the oversampling approach as the best 

approach to deal with the class imbalance problem. This 

happened when testing against classification thresholding, class 

weighting and against a baseline experiment where the class 

imbalance was not taken into account. These results are in 

agreement with the literature when  addressing the class 

imbalance problem: oversampling approaches often are the best 

performing ones (Johnson et al., 2013; Buda et al., 2018; 

Douzas et al., 2019), even if in this case a binary classification 

problem was considered and an imbalance ratio of around 

1:100. 

 

 
a) 

 
b) 

 
c) 

 

Figure 6. Details of the results for the beach. Blue tiles are false 

negatives, red tiles false positives and green tiles true positives. 

a) baseline, b) w100 and c) oversampling. 

 

Nonetheless the precision-recall curve indicates a smaller 

difference between oversampling and baseline experiment 

where the latter even had a marginal improvement when it 

comes to the pr-AUC. Looking at the pr curve the baseline 

seems to perform in pair with the oversampling. This indicates 

that the oversampling approach may not have more recognition 

capabilities but instead allows to follow the common 

classification threshold of  > 0.5 to consider an image sample as 

one containing litter. In the baseline approach the search for an 

optimal classification threshold would have to be empirically 

tested. This is translated in a more automated process, which 

does not rely on the a posteriori empirical search for the 

optimal classification threshold. 

 

In fact, throughout this paper, the automation of the parameters 

was central. The parameters for both the weighting and 

thresholding scheme were derived from the data and the 

imbalance rate presented in the image data. Such thresholds are 

not optimal (e.g. weighting approach); however, they enable the 

automation of the training procedure, which is not dependent on 

empirically tested thresholds on a given set of data.  
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While the oversampling approach worked better it was also the 

slowest during training given the higher amount of image 

samples. Nonetheless, testing time is the same given the 

methods to address the class imbalance were all either data or 

classifier level methods, where the network was always the 

same. 

 
Figure 7. Precision-Recall curves for the 3 main experiments 

(baseline-blue, oversampling-orange and w100-green) 

considering all the validation data (from both the beach and 

dunes).  

 

In this work a patch-based image classification approach was 

tested to derive a binary classifier to identify coastal litter. Such 

approach is less computationally expensive when comparing 

with pixel based approaches (Fallati et al., 2019; Gonçalves et 

al., 2019) and where the labelling can be more coarse than the 

delineation of each litter instance. This greatly reduces the effort 

in the labelling of the data to feed to the networks. 

 

The binary nature of the approach also does not allow for the 

identification of each of the localized litter instances. However, 

given the data limitation this was not possible and needs to be 

addressed in a future work, when more image data is available. 

To this regard it may be useful to also consider several classes 

of no litter (Martin et al., 2018), however, this would make the 

approach more location dependent (vegetation, sidewalks, rock 

formations, etc.). A one-class classification approach (Deng et 

al., 2018) could also be tested given the highly imbalanced data 

(~1% of litter image samples) instead of the presented binary 

approach. Even more relevant if new advancements in computer 

vision such as generative adversarial networks are considered 

for one class classification (Akcay et al., 2019). 

 

Geographical transferability must also be tested. This test only 

addressed a single orthophoto from a given region and 

considering only an UAS survey. More image data from other 

captures in different beach-sand systems need to be captured in 

order to test the approach with different image characteristics, 

resolution and different beach-dune systems. This must be 

tested to assess the generalization power when applied to 

different beach-dune systems. 

 

To note that even if using a GSD of 5 mm, it is often difficult to 

assess the difference between litter and other objects present in 

the scene, such as rocks and more dense vegetation. 

 

5. CONCLUSIONS 

The use of UAS have been recently applied for marine litter 

mapping on beach-dune environment. The related works have 

experienced the class imbalance issue when machine learning 

algorithms have been applied on marine litter objects detection, 

as sand and vegetation are predominant on the orthophoto.  

 

In this work, we applied a Convolutional Neural Network to 

automatically detect marine litter object on a beach-dune 

systems. In the image data used, image patches containing litter 

instances were less than 1% of the total number of samples, thus 

a clear class imbalance was observed.  

 

Three different approaches were tested to address the class 

imbalance, based on data level and algorithm level methods,  

namely oversampling, class weighting and thresholding. From 

the experiments, the oversampling approach achieved best 

results, whereas a priori class weighting inverse to the class 

presence performed worst. The classifier thresholding applied to 

the baseline, weighting and oversampling approaches, overall 

performed worst than the baseline approach.  

 

Considering a monitoring application, more work is needed. For 

example, in this study only a dataset was used. More tests need 

to assess the transferability of the method when considering 

different surveys with different flying parameters, camera, 

lighting conditions, needs to be assessed. Moreover, the 

geographical transferability of the method should also be tested, 

given that it is time consuming to generate location specific 

training data. 
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