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RESUMO 

O abuso de substâncias e a toxicodependência estão entre as mais 

dispendiosas desordens neuropsiquiátricas. O abuso repetido de drogas está 

associado a alterações da actividade neuronal. Neste trabalho estudámos a disfunção 

neuronal induzida pelas drogas de abuso cocaína, anfetamina e heroína de rua, 

usando modelos in vitro. O trabalho experimental foi dividido em dois capítulos. No 

primeiro capítulo estudámos os efeitos crónicos das drogas de abuso estimulantes, 

cocaína e da anfetamina e no segundo capítulo estudámos os efeitos crónicos e 

agudos da heroína de rua. 

No primeiro capítulo, os efeitos da cocaína e da anfetamina foram avaliados em 

células PC12, uma linha celular catecolaminérgica, uma vez que os principais alvos 

dos estimulantes são os sistemas monoaminérgicos. A dopamina, em particular, está 

associada aos efeitos de recompensa induzidos por todas as drogas de abuso, e é um 

possível mediador dos efeitos neurotóxicos das drogas de abuso devido ao seu 

metabolismo oxidativo, que leva à produção de H2O2. Observámos que o tratamento 

crónico com cocaína (7-12 meses) sensibilizou as células PC12 para a toxicidade 

aguda da cocaína, o que poderá estar relacionado com o aumento da acumulação 

extracelular de dopamina induzido por um estímulo agudo com cocaína. A exposição 

crónica à anfetamina induziu deplecção da dopamina, embora a toxicidade aguda da 

anfetamina se tivesse mantido nestas células, sugerindo que a dopamina não é 

necessária para a citotoxicidade aguda da anfetamina. Contudo, as células PC12 

tratadas cronicamente com H2O2 apresentaram-se totalmente resistentes à 

citotoxicidade aguda do H2O2, mas não à citotoxicidade aguda da cocaína ou da 

anfetamina, sugerindo que a toxicidade aguda destas drogas é independente da 

adaptação ao stresse oxidativo. Em contraste, as células cronicamente expostas à 

cocaína ou à anfetamina apresentaram-se parcialmente resistentes ao H2O2, 

sugerindo que a exposição crónica a estas drogas envolve adaptação ao stresse 

oxidativo. Assim, estudámos a actividade de enzimas antioxidantes nas etapas iniciais 
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da exposição crónica à cocaína, anfetamina ou H2O2. A cocaína e a anfetamina 

afectaram de um modo diferente a actividade das enzimas antioxidantes. A cocaína 

induziu um aumento da actividade da glutationa peroxidase (GPx) após 4 semanas de 

exposição. A anfetamina apresentou um efeito difásico, com um aumento inicial da 

actividade da GPx e uma diminuição das actividades da glutationa redutase (GRed) e 

da superóxido dismutase (SOD), após 3 semanas de exposição. Após 4 semanas de 

exposição à anfetamina a actividade das enzimas antioxidantes regressou a valores 

semelhantes ao controlo. A exposição crónica ao H2O2 induziu um aumento gradual da 

actividade da GPx e uma diminuição da actividade da SOD. A actividade da GRed 

aumentou após 1 semana de exposição ao H2O2, regressando a valores semelhantes 

ao controlo após 2 semanas de exposição ao H2O2. Estes resultados indicam que as 

primeiras etapas de adaptação à cocaína e à anfetamina envolvem alterações da 

actividade das enzimas antioxidantes, sugerindo uma adaptação ao stresse oxidativo, 

após exposição crónica a estas drogas de abuso. 

 

No segundo capítulo, estudámos os efeitos neurotóxicos da heroína de rua. Os 

efeitos crónicos da heroína de rua foram avaliados em células PC12. Apesar de os 

opiáceos não interagirem directamente com os sistemas monoaminérgicos, foi 

anteriormente demonstrado que as células PC12 apresentam um decréscimo dos 

níveis intracelulares de dopamina e um aumento dos níveis intracelulares de ácido 

dihidroxifenilacético (DOPAC), quando expostas agudamente à heroína de rua. A 

exposição crónica à heroína de rua sensibilizou as células PC12 para a toxicidade 

aguda desta droga de abuso, o que pode estar relacionado com um aumento da 

acumulação extracelular de dopamina induzido pela exposição aguda à heroína de rua 

nestas células. As células cronicamente expostas à heroína de rua apresentaram um 

aumento da resistência à toxicidade aguda do H2O2, que se relacionou com a 

manutenção dos níveis de ATP nestas condições. Contudo, as células cronicamente 

expostas à heroína de rua apresentaram níveis intracelulares de ATP e ADP mais 

baixos, o que pode explicar o maior grau de sensibilização destas células a uma 

exposição aguda à heroína de rua, quando comparadas com as células cronicamente 

expostas ao H2O2. 
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A neurotransmissão glutamatérgica envolvendo o receptor N-metil-D-aspartato 

(NMDA) contribui para a dependência de opiáceos em humanos. Por outro lado, a 

sobre-activação dos receptores ionotrópicos do glutamato é um dos mecanismos 

envolvidos na neurotoxicidade e na morte celular. De modo a avaliar a importância do 

receptor NMDA na citotoxicidade aguda da heroína de rua, utilizaram-se células 

HEK293 transfectadas com diferentes subunidades do receptor NMDA e neurónios 

corticais. As células HEK293 foram transfectadas com as subunidades NR1-GFP 

como controlo, ou NR1/NR2A ou NR1/NR2B. A heroína de rua induziu perda da 

integridade membranar em células transfectadas com as subunidades NR1/NR2B, e 

este efeito foi bloqueado pelo maleato de dizocilpina (MK-801), um antagonista dos 

receptores NMDA, indicando que os receptores NMDA compostos pelas subunidades 

NR1/NR2B estão envolvidos na neurotoxicidade da heroína de rua. 

A disfunção do córtex pré-frontal é uma característica importante da 

toxicodependência, contribuindo para a perda do controlo da impulsividade observada 

em toxicodependentes. Neste trabalho, determinou-se a composição química da 

amostra de heroína de rua e estudaram-se as vias apoptóticas envolvidas na 

neurotoxicidade desta droga de abuso, usada numa concentração que induziu um 

decréscimo moderado da viabilidade celular. A composição da heroína de rua 

apresentou 62% de heroína, 12% de 6-monoacetilmorfina e 1% de morfina. Quando 

usada numa concentração que induziu 10% de perda de viabilidade celular sem perda 

de integridade membranar, a heroína de rua induziu a activação de caspases da via 

apoptótica mitocondrial. Foi também observada fragmentação do ADN, que foi 

prevenida pelo inibidor não-selectivo de caspases z-VAD-fmk. A activação da 

caspase-3 não foi prevenida por antagonistas dos receptores opióides, antagonistas 

dos receptores ionotrópicos do glutamato nem por antioxidantes. A activação das 

caspases pareceu ter sido mediada pela disfunção mitocondrial envolvendo a 

libertação do citocromo c, a perda de potencial da mitocôndria e um decréscimo da 

razão Bcl-2/Bax. A heroína pura, na mesma concentração presente na heroína de rua, 

induziu apenas um pequeno aumento da activação da caspase-3, sugerindo que a 

activação da caspase-3 é potenciada pela presença da mistura de compostos 
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presentes na heroína de rua. Este resultado indica também que o abuso de heroína 

impura representa um risco neurotóxico superior. 

Estes resultados demonstram que as drogas de abuso induzem 

neurotoxicidade através de vários mecanismos celulares, culminando em stresse 

oxidativo e disfunção mitocondrial, que poderão representar importantes alvos para 

futuras estratégias terapêuticas. 
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ABSTRACT 

Substance abuse and addiction are the most costly of all the neuropsychiatric 

disorders. The repeated abuse of drugs is associated with changes in neuronal activity. 

In this work, we studied the neuronal dysfunction induced by the drugs of abuse 

cocaine, amphetamine and street heroin, using in vitro models. The experimental work 

was divided into two chapters. In the first chapter we studied the chronic effects of the 

psychostimulant drugs cocaine and amphetamine, and in the second chapter we 

studied the chronic and acute effects of street heroin. 

In first chapter, chronic effects of cocaine and amphetamine were evaluated in 

PC12 cells, a catecholaminergic cell line, since the main targets of the stimulants are 

the monoaminergic systems. Dopamine, in particular, is associated with the rewarding 

effects of all the drugs of abuse, and is a candidate mediator of the neurotoxic effects 

of the drugs due to its oxidative metabolism, which produces hydrogen peroxide 

(H2O2). We observed that chronic cocaine treatment (7-12 months) sensitizes PC12 

cells to the acute toxicity of cocaine, which may be related to increased cocaine-

evoked extracellular dopamine accumulation in these cells. Chronic exposure to 

amphetamine induced dopamine depletion, but amphetamine maintained its acute 

toxicity in these cells, suggesting that dopamine is not required for acute amphetamine 

cytotoxicity. However, PC12 cells chronically treated with H2O2 were totally resistant to 

acute H2O2, but not to acute cocaine or amphetamine exposure, implicating that the 

acute toxicity induced by these stimulant drugs is unrelated to adaptation to oxidative 

stress. In contrast, cells chronically exposed to cocaine or amphetamine were partially 

resistant to H2O2, suggesting that chronic exposure to these drugs involves adaptation 

to oxidative stress. Therefore, we studied the activity of antioxidant enzymes in the 

early stages of exposure to cocaine, amphetamine and H2O2. Cocaine and 

amphetamine differentially affected the activity of the antioxidant enzymes. Cocaine 

induced an increase in the activity of glutathione peroxidase (GPx) at 4 weeks of 

exposure. Amphetamine seemed to have a biphasic effect, with an initial increase in 

GPx activity and a decrease in glutathione reductase (GRed) and superoxide 
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dismutase (SOD) activities (upon 3 weeks of exposure). One week later the activities 

returned to control levels. Chronic exposure to H2O2 induced a gradual increase in GPx 

activity and a decrease in SOD activity. GRed activity was increased upon 1 week 

exposure to H2O2, and returned to control levels after 2 weeks of H2O2 exposure. 

These data show that changes in the activity of antioxidant enzymes are involved in the 

chronic effects of cocaine and amphetamine, suggesting that oxidative stress is 

involved in the chronic effects of these drugs of abuse.  

In the second chapter we studied the neurotoxic effects of street heroin. Chronic 

effects of street heroin were also evaluated in PC12 cells. Although opiates do not 

directly interact with monoaminergic systems, PC12 cells were previously shown to 

have decreased intracellular dopamine levels and increased intracellular 

dihydroxyphenylacetic acid (DOPAC) levels, when acutely exposed to street heroin. 

Chronic exposure to street heroin or H2O2 sensitized PC12 cells to acute street heroin 

cytotoxicity, which may be related to increased extracellular dopamine accumulation 

induced by acute street heroin in these cells. Cells chronically exposed to street heroin 

presented increased resistance to acute H2O2 toxicity, which was correlated with the 

maintenance of ATP levels in these conditions. However, cells chronically exposed to 

street heroin presented lower intracellular levels of ATP and ADP, which may explain 

the higher degree of sensitization of these cells to acute street heroin exposure, when 

compared to cells chronically exposed to H2O2. 

Glutamatergic neurotransmission involving the N-methyl-D-aspartate (NMDA) 

receptor has been suggested to contribute to opiate dependence in humans. Moreover, 

hyperactivation of ionotropic glutamate receptors is one of the mechanisms involved in 

neurotoxicity and cell death. Taking this into account, we analysed the contribution of 

NMDA receptor subunits to acute neurotoxicity of street heroin n HEK293 cells, 

transfected with different subunits of the NMDA receptor, and in cortical neurons. 

HEK293 cells were transfected with NR1-GFP, as a control, or with NR1/NR2A or 

NR1/NR2B subunits. Street heroin induced loss of membrane integrity in NR1/NR2B 

transfected cells, and this effect was blocked by the NMDA receptor antagonist 

dizocilpine maleate (MK-801), indicating that NR1/NR2B composed receptors are 

involved in street heroin neurotoxicity. 
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Prefrontal cortex dysfunction is an important event in drug addiction, 

contributing to the loss of impulse control observed in drug addicts. The chemical 

composition of the street heroin sample was determined and the apoptotic mechanisms 

involved in the neurotoxicity of a concentration of street heroin that induced a moderate 

decrease in cell viability were studied. Street heroin was composed by 62% heroin, 

12% 6-monoacetylmorphine (6-MAM) and 1% morphine. In a concentration that 

induced 10% loss in cell viability without causing loss of membrane integrity, street 

heroin was shown to activate caspases through the mitochondrial apoptotic pathway. 

DNA fragmentation was also observed, and was prevented by the non-selective 

caspase inhibitor z-VAD-fmk. Caspase-3 activation was not prevented by μ-opioid 

receptor antagonists, ionotropic glutamate receptor antagonists or by antioxidants. The 

activation of caspases seemed to be mediated by mitochondrial dysfunction involving 

cytochrome c release, loss of mitochondrial potential and a decrease in Bcl-2/Bax ratio. 

Pure heroin, in the same concentration found in street heroin, only induced a small 

increase in caspase-3 activation, suggesting that caspase-3 activation is enhanced by 

the presence of the cocktail of compounds found in the street heroin sample. This also 

indicates that the use of impure heroin represents an increased neurotoxic risk. 

These results show that the drugs of abuse cause neurotoxicity by several 

intracellular pathways, culminating in oxidative stress and mitochondrial dysfunction, 

which may represent important targets for future therapeutic strategies for drug 

addiction. 
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OUTLINE 

 

This thesis is divided into the following sections: 

 

• Part I – Introduction 
 

This section reviews the most relevant literature related with neuronal 

dysfunction in drug addiction. It also provides the rationale for the objectives of this 

thesis. 

 

 

• Part II – Material and Methods 
 

This section contains the descriprion of the materials and methods used to 

perform the studies presented in Part III 

 

 

• Part III – Results and Discussion 
 

This section includes the experimental data and the discussion of the results. 
 
 
 

• Part IV - Conclusions 
 

This section contains the general conclusions of the work presented in Part III. 
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1.1 Historical and geographical 
perspective of drug abuse 

 

Drugs with psychoactive properties have been used by humans for centuries. 

The use of plants containing hallucinogenic substances is thought to have played an 

important role in the development of philosophy and religious thought in early human 

cultures (Nichols, 2004). Plant derivatives have also been used medicinally in various 

cultures, as is the case of opium, which has been used for centuries to treat pain and 

other symptoms (von Zastrow and Evans, 2006). 

 

Cocaine was first isolated in 1855 by the german chemist Friedrich Gaedcke. 

This alkaloid is extracted from the plant Erythroxylum coca, which is cultivated in the 

South American countries Bolivia, Colombia and Peru. The natives of these countries 

chew the coca leaves in magical cerimonies and initiation rites. Cocaine was present in 

coca-cola, which was invented in 1886 and was removed from its formula in 1903.  

Cocaine may be processed in water soluble or insoluble forms. Water soluble 

forms include cocaine sulphate and cocaine hydrochloride. These forms are active by 

oral, intranasal and intravenous administrations. In contrast, water insoluble forms such 

as free base cocaine or crack are mainly active through smoking, a route of 

administration that enables immediate absorption into the blood and a rapid, short, but 

very intense euphoric effect. 

According to the United Nations Office on Drugs and Crime (2006), cocaine is 

mainly processed in its countries of origin, from where it is illegally transported to the 

rest of the world. 

 

Amphetamine was first synthesized in 1887 by Lazar Edeleano at the 

University of Berlin. This drug is a synthetic derivative of the plant alkaloid ephedrine, 

extracted from plants in the genus Ephedra. Ephedra sinica, also known as Ma Huang, 
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has been used in traditional Chinese medicine for 5000 years to treat several diseases, 

such as asthma and common cold. 

Amphetamines are still used medicinally to treat narcolepsy and attention-deficit 

hyperactivity disorder (ADHD). Amphetamine production occurs mainly in North 

America, East and South-East Asia and in Europe. 

 

Opium is extracted from the opium poppy (Papaver somniferum). Historically 

there are reports of cultivation of this plant in the Mesopotamia since 3400 BC (see: 

http://www.pbs.org/wgbh/pages/frontline/shows/heroin/etc/history.html). 

Nowadays, the opium poppy is mainly cultivated in Asia, and the countries 

responsible for the majority of opium production are Afghanistan, Union of Myanmar 

and Lao People’s Democratic Republic. More recently, since 1980, the opium poppy is 

also cultivated in the South American countries Colombia, Mexico and Peru. In 2004 

most of the laboratories of opium processing were dismantled in Russia, Moldova and 

Afghanistan, from where opium was distributed to the rest of the world. 

Opium contains about 40 alkaloids that make up 10-20% of total opium 

substances. The most abundant opium alkaloids are morphine (8-17%), codeine (0.7-

5%), thebaine (0.1-1.5%), papaverine (0.5-1.5%) and noscapine (narcotine, 1-10%) 

(Schiff, 2002). 

Morphine is purified from opium extracts and converted into heroin by 

acetylation. Heroin is more lipid soluble than morphine and is easily transported across 

the blood brain barrier, being 2-4 times more potent than morphine to treat acute pain 

(Sawynok, 1986). 

Heroin was first synthesized in 1874 by C.R. Alder Wright in England but it was 

only discovered by the medical community when it was independently re-synthesized, 

23 years later, by Felix Hoffmann, who worked for Bayer. From 1898 to 1910 heroin 

was commercialized by Bayer as a non-addictive morphine substitute and cough 

medicine for children (Figure 1.1.A). The use of heroin was thought to be a potential 

cure for morphine addiction until it was found that heroin is converted into morphine, 

when metabolized in the liver (Wikipedia, 2007). 
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A B 

  
Figure 1.1: Presentations of heroin. A) Heroin commercialized by Bayer in the beginning of the 20th 

century. B) Heroin in different purification forms (images from http://heroin.know-library.net/ 
(A) and http://www.druginfo.adf.org.au/article.asp?ContentID=heroin (B)). 

 

1.1.1 Present situation 
Nowadays, the use of drugs has become a complex issue, namely due to the 

development of purification procedures that enable an increase in the effective 

quantities of the active compounds consumed. Another factor that contributed to the 

increase in the deleterious effects of drug abuse was the invention of the hypodermic 

syringe, in the mid 19th century, which allowed the direct injection of purified active 

compounds into the blood stream. This also contributed to increase infections among 

drug addicts. 

 

Presently, drug addiction seriously affects public health and society worldwide. 

The Annual Report of the European Monitoring Centre for Drugs and Drug Addiction 

(2006) refers that the most abused drugs in Europe are cannabis, cocaine, ecstasy, 

amphetamines and opiates. Worldwide, cannabis is used by 3.9% of the world 

population, followed by the amphetamines (0.6%) cocaine (0.3%) and heroin (0.3%) 

(Table 1.1). 
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Although less consumed, opiates are the drugs that lead more people to seek 

treatment, due to their severe withdrawal effects and the increased risk for infections 

and, therefore, opiates have a strong negative economic impact.  

 
Table 1.1: Percentage of drug users in the last 12 months 

 % population (age 15-64) 
 Heroin Cocaine Amphetamines Cannabis 

Europe 0.6 0.7 0.5 5.6 
West and Central Europe 0.5 1.1 0.7 7.4 

South East Europe 0.2 0.1 0.2 2.3 
East Europe 1.2 0.1 0.2 3.8 
Americas 0.3 1.5 0.8 6.4 

North America 0.4 2.3 1.1 10.3 
South America 0.1 0.7 0.4 2.6 

Asia 0.2 0.1 0.6 2.1 
Oceania 0.2 0.9 3 15.3 
Africa 0.2 0.2 0.4 8.1 
Global 0.3 0.3 0.6 3.9 

 
Global users 11,250,000 13,358,000 24,880,000 162,400,000 
Source: United Nations Office on Drugs and Crime, World Drug Report, 2006 

1.2 Polydrug use  
Polydrug use is an increasingly important issue in Europe (European Monitoring 

Centre for Drugs and Drug Addiction, 2006). A relatively common combination of drugs 

is the speedball, which consists in concurrent administration (by injection) of cocaine 

and heroin. Speedball has been reported to cause more rewarding effects in rats than 

cocaine or heroin alone (Ranaldi and Munn, 1998). This may be explained by the 

reduction of the unwanted side-effects of one drug by the other, which has different 

mechanisms of action, or by the fact that one drug enhances the effect of the other 

(Leri et al., 2003). When injected together, the different effects of the combination of 

drugs, when compared to the drugs alone, can be also due to chemical interactions 

between the molecules of the two different drugs (Garrido J. et al., unpublished 

results). If the molecules of cocaine and heroin (or morphine) interact, this may confer 

different behavioural properties to the speedball, when compared to the drugs alone. 
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Ethanol is frequently combined with other drugs of abuse. When ethanol and 

cocaine are co-consumed, the euphoric effects of cocaine are enhanced. However, this 

combination also increases the toxic effects of both drugs, because the drugs are 

combined in the liver to form a very toxic metabolite – cocaethylene (see Figure 1.7). 

Cocaethylene is a very lipophilic compound and is able to cross the blood brain barrier. 

The effects of cocaethylene are similar to those of cocaine but the metabolite has a 

longer half live, prolonging the acute effects of cocaine (Henry, 2007). 

1.3 Adulterants and contaminants  
A critical issue associated with drug abuse is the fact that the drugs available in 

the streets are illegally synthesized, usually under poor conditions. Deficient purification 

and low quality of the reagents used often leave some impurities in the final products. 

Frequently, adulterants are also intentionally added to the drugs to increase profit.  

Heroin is a semi-synthetic drug, obtained from acetylation of morphine. Heroin 

possesses little or no opioid activity (White and Irvine, 1999) but its metabolism, which 

may occur in vivo and in vitro (Hutchinson and Somogyi, 2002), generates 6-

monoacetylmorphine (6-MAM) and morphine, two μ-opioid receptor agonists (White 

and Irvine, 1999) – see section 1.5.2.2.2 (Opiates and reward).  

Street heroin may contain different quantities of heroin and other components 

depending on its origin and on the method of illicit synthesis. Street heroin is illegally 

synthesized from morphine purified from opium extracts (Figure 1.1.B). Upon illicit 

purification, morphine is often contaminated with other alkaloids, which may also suffer 

synthetic acetylation during heroin manufacture.  

 

Depending on the purification procedure, street heroin may contain some 

impurities (Moore et al., 1984), namely morphine and 6-MAM (heroin metabolites), 

codeine and acetylcodeine (Soine, 1986, for review). Heroin in seized samples may 

also contain various inert diluents (starch, lactose, fructose, sucrose, mannitol, 

powdered milk) and active adulterants (caffeine, paracetamol, strychnine, 

acetylsalicylic acid, barbiturates, quinine and amphetamines) (Chiarotti et al., 1991; 
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Sharma et al., 2005). These and other frequent additives are presented in Table 1.2. 

Common additives of cocaine are shown in Table 1.3. 

 

 
Table 1.2: Frequent heroin additives (adapted from  Roth et al., 1998; Shesser et al., 1991) 

Opium alkaloids Other pharmacologically 
active compounds Inert Volatile 

Thebaine Tolemectin Starch Rosin 
Codeine Quinine Sugar Toluene 
Acetylcodeine Phenobarbital Calcium tartarate Methanol 
Papaverine Methaqualone Calcium carbonate Acetaldehyde 
Noscapine Lidocaine Sodium carbonate Ethanol 
Narceine Phenolphtalein Sucrose Acetone 
 Caffeine Dextrine Diethyl ether 
 Dextromoramide Magnesium sulphate Chloroform 
 Chloroquine Dextrose Acetic acid 
 Diazepan Lactose  
 Nicotinamide Barium sulphate  
 N-phenyl-2-naphtylamine Silicon dioxide  
 Phenacetin Vitamin C  
 Acetaminophen   
 Fentanyl   
 Doxepin   
 Naproxen   
 Promazine   
 Piracetam   
 Procaine   
 Diphenhydramine   
 Aminopyrine   
 Allobarbital   
 Indomethacin   
 Glutethimide   
 Scoopolamine   
 Sulfonamide   
 Arsenic   
 Strychnin   
 Cocaine   
 Amphetamine   
 Methamphetamine   
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Table 1.3: Frequent cocaine additives (adapted from  Roth et al., 1998; Shesser et al., 1991). 

Pharmacologically active compounds Inert Volatile 
Lidocaine Inositol Benzene 
Cyproheptidine Mannitol Methyl ethyl ketone 
Diphenhydramine Lactose Ether 
Benzocaine Dextrose Acetone 
Mepivacaine Starch  
Aminopyrine Sucrose  
Methapyrilene Sodium bicarbonate  
Tetracaine Barium carbonate  
Nicotinamide Mannose  
Ephedrine   
Phenylpropanolamine   
Acetaminophen   
Procaine base   
Caffeine   
Acetophenetidin   
1-(1 Phenylcyclohexyl)pirrolidine   
Methaqualone   
Dyclonine   
Pyridoxin   
Codeine   
Stearic acid   
Piracetam   
Rosin (colophonum)   
Fencafamine   
Benzoic acid   
Phenothiazines   
L-Threonin   
Boric acid   
Aspirin   
Dibucaine   
Propoxyphene   
Heroin   
Amphetamine   
Methamphetamine   
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1.4 Drug addiction 
There are several reasons that lead teenagers to experiment drugs. In Portugal 

about one half of the teenagers that experimented drugs started using them at the age 

of 12-13 (Matos et al., 2007). 

Drug use usually starts due to curiosity or by the need to have fun, becoming 

part of a group or to escape from physical and/or psychological problems. The acute 

effects of drugs induce pleasurable feelings that lead the individuals to take drugs 

again. Although some regular users are able to cease drug use, about 8-32% of them 

lose control over drug consumption, becoming drug addicts (Madras, 2006). The 

factors that trigger the transition from controlled drug use to addiction are drug-specific 

and are not completely understood.  

 

The main characteristic of drug addiction is the compulsive drug use despite 

serious negative consequences. Drugs become more important than other goals and 

all activities are directed towards obtaining and consuming the drugs (Hyman et al., 

2006). Drug addiction is associated with a reduction in life-sustaining activities that has 

both medical and social consequences.  

When addiction develops, changes in the brain occur in order to adapt to the 

presence of the drug. Abstinence from the drug triggers physiological and 

psychological withdrawal, which are negative consequences of drug use.  During 

withdrawal the brain is hyper-reactive and requires the drug for its proper function. 

Withdrawal symptoms include anxiety, stress, irritability, insomnia or hypersomnia, 

aches, craving, among other effects. Upon prolonged abstinence, intense craving can 

develop, suppressing the individual’s will to control the compulsive drug-seeking, and 

often leading to relapse. The transition between these states is cyclic, as illustrated in 

Figure 1.2. 
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Figure 1.2: Cycle of addiction, as described by Madras (2006). Genotype, phenotype and 

neurodevelopment contribute to the first experience with drugs. The acute effects of the drugs 
lead to toxicity and adaptations that induce drug addiction and physical dependence. When 
the drug is absent, withdrawal symptoms appear leading to craving and relapse. During 
withdrawal, medications may be useful to prevent relapse. 

 

Addiction is considered a chronic disease (Leshner, 1997), often accompanied 

by cognitive dysfunction with loss of impulse control towards drug consumption (Pau et 

al., 2002). 

 

1.4.1 Characteristics of psychoactive drugs 
Drugs with psychoactive effects can be divided into several groups, according 

to their specific actions. The most common illicit drugs of abuse are the 

psychostimulants (include the psychomotor stimulants amphetamines and cocaine), 

depressants (include the opiate narcotic analgesics) and hallucinogens (include 

mescaline and lysergic acid - LSD). The properties of these groups of drugs are 

summarized in Table 1.4. 
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Table 1.4: Principal effects of the main illicit drugs-of-abuse (based on Roth et al., 1998). 
 

Effects Acute Chronic Withdrawal Drugs 

Psychostimulants 

Euphoria, 
tachycardia, 

hypertension, 
hyperthermia, 

increased mental 
alertness, seizures. 

Psychosis, 
paranoia, reduced 
appetite, weight 

loss, heart failure, 
nervousness, 

insomnia 

Severe 
depression 

(sometimes), 
headache 

Cocaine, 
amphetamine, 

ecstasy 

Depressants 

Pain relief, euphoria, 
drowsiness/nausea, 

constipation, 
confusion, sedation, 

respiratory 
depression and 

arrest, hypothermia, 
unconsciousness, 
seizures, coma, 

death. 

Depressed sexual 
drive, lethargy, 

general physical 
debilitation, 
infections, 
hepatitis, 
tolerance, 
addiction. 

Anxiety, 
Insomnia, 
nausea, 
vomiting, 
diarrhea, 
anorexia, 

tachycardia, 
lacrimation, 

sweating, severe 
back pains, 

stomach cramps, 
muscle spasms. 

Opium, 
morphine, 

heroin 

Hallucinogens 
Altered states of 
perception and 

feeling. 

Persisting 
perception 
disorder 

(flashbacks) 

No typical 
symptoms 

Mescaline, LSD, 
psilocybin, 

ecstasy 

 

Some drugs of abuse have effects that are common to more than one group. 

For example, ecstasy (or 3,4-methylenedioxymethamphetamine - MDMA) belongs to 

the class of psychedelic drugs, which share stimulant and hallucinogenic effects. These 

drugs are also known by empathogens or entactogens, because they induce feelings of 

empathy (Riedlinger and Riedlinger, 1994). Another example is cannabis, which shares 

properties of all the groups described (Murray, 1986). 
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1.5 Brain circuits affected by the drugs 
of abuse 

 

Drugs of abuse interact with the brain, affecting brain systems that respond to 

physiological stimuli such as food, water and social interaction, which are critical to 

survival. Imaging studies, such as positron emission tomography (PET) and functional 

magnetic resonance imaging (fMRI), have implicated the involvement of different brain 

circuits in drug addiction (reviewed by Volkow et al., 2003). The interaction of the drugs 

with these circuits may be different in the different phases of drug addiction: 

intoxication, withdrawal and craving. 

 

The main brain circuits implicated in the effects of the drugs are the ones that 

mediate reward, memory, motivation/drive and control, and are mainly composed by 

the following brain areas:  

(a) reward- nucleus accumbens (NAc) and ventral pallidum;  

(b) motivation/drive- orbitofrontal cortex (OFC) and subcallosal cortex;  

(c) memory and learning- amygdala and hippocampus;  

(d) control- the prefrontal cortex and anterior cingulate gyrus (CG) 
 

 
 

Figure 1.3: Interaction between brain circuits in addiction. The brain circuits that mediate reward, 
motivation/drive, learning/memory and control are interconnected and the interactions 
between these circuits change with experience. In drug addiction, the drug over-activates the 
reward, motivation and memory circuits, overcoming the inhibitory control exerted by the 
prefrontal cortex (based on Volkow et al., 2003). 
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For drug-addicted individuals, reward, motivation and memory circuits are over-

activated by the drug. This over-activation is accompanied by the loss of inhibitory 

control of the prefrontal cortex, which no longer regulates the activation of the other 

circuits, perpetuating the cycle of addiction (Figure 1.3). 

Imaging studies (PET and fMRI) have shown that drug-associated cues 

activate cortical regions (such as the anterior cingulate cortex and the orbitofrontal 

cortex) and the insula. The function of the insula, which is involved in conscious 

emotional feelings, seems to be essential to mediate relapse (Naqvi et al., 2007). 

 

The brain areas involved in the circuits affected by drug addiction are 

innervated by dopaminergic and glutamatergic projections, and modifications in these 

projections mediate many of the adaptations involved in drug addiction. The reward 

pathway is an important dopaminergic circuit involved in the reinforcing effects of the 

drugs of abuse. 

 

1.5.1 The reward pathway 
The reward pathway in the brain is acutely activated by all the drugs of abuse. 

This pathway consists in the projection of dopaminergic neurons in the ventral 

tegmental area (VTA) to several structures involved in emotions, thoughts, memories 

and planning and executing behaviours (Figure 1.4). One of these structures, 

implicated in the addictive effects of the drugs, is the NAc, in the ventral striatum. This 

structure is involved in reward and addiction, but also in motivation and learning (Di 

Chiara et al., 1999). Another brain structure receiving projections from VTA neurons is 

the prefrontal cortex, which coordinates executive functions.  
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Figure 1.4: Representation of the reward pathway in the human brain. This pathway is composed by 

neurons that project from the VTA to several structures, including the NAc, in the ventral 
striatum and the prefrontal cortex. Reprinted, with permission, from the Annual Review 
of Neuroscience, Volume 29 © 2006 by Annual Reviews  www.annualreviews.org” (Hyman et 
al., 2006). 

 

 

1.5.2 Molecular mechanisms involved in the 
effects of the drugs of abuse in the 
brain 

 

Drugs of abuse affect brain functions mainly due to structural similarities with 

neurotransmitters (Figure 1.5). Cocaine, amphetamine and ecstasy have structures 

that are similar to the monoamine neurotransmitters dopamine and noradrenaline.  
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Figure 1.5: Chemical structures of some neurotransmitters and psychoactive drugs. Ecstasy and LSD 

resemble the neurotransmitter serotonin. Amphetamine and cocaine are similar to dopamine 
and noradrenaline. 

 

 

The structures of ecstasy and LSD resemble the neurotransmitter serotonin 

(Figure 1.5), whereas morphine and heroin have some structure overlap with the 

neuropeptides enkephalins and endorphins (Figure 1.6). 
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Figure 1.6: Structural similarities between endogenous opioids and morphine (adapted from Romero, 
2005). 

 

 

 

The drugs of abuse may be administered in several ways, depending on the 

drug and on the desired effect. Upon administration, the drugs are usually metabolized 

and therefore the metabolites can contribute to the effects of the drugs. 

 

Cocaine is usually self-administered by nasal insuflation (snorting), smoking, 

genital application and injection (Jenkins and Cone, 1998). Cocaine may be 

metabolized by several pathways (Figure 1.7):  

• Plasma and liver cholinesterases produce the inactive metabolite ecgonine methyl 
ester 

• The second major metabolite, benzoylecgonine, is spontaneously produced at 

physiological pH.  

• N-demethylation of cocaine in the liver produces the active metabolite norcocaine. 

• When cocaine and ethanol are co-administered, the toxic metabolite cocaethylene 

is produced in the liver by transesterification. Cocaethylene is a lipid soluble 

molecule and crosses the blood brain barrier. 

• Smoking of cocaine may produce the pyrolysis compound anhydroecgonine methyl 

ester, which can be used as a marker of this route of administration. 
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Figure 1.7 Metabolism of cocaine. Plasma and liver cholinesterases convert cocaine in ecgonine methyl 

ester. Benzoylecgonine is spontaneously produced at physiological pH. N-demethylation of 
cocaine in the liver produces norcocaine. Transesterification of cocaine and ethanol produces 
cocaethylene. Smoking of cocaine results in the pyrolysis product anhydroecgonine methyl 
ester (adapted from Jenkins and Cone, 1998). 

 

Heroin is normally administered by intramuscular or intravenous injection, 

snorting or smoking. Heroin is rapidly deacetylated to the active metabolite 6-MAM 

(Figure 1.8), which is then converted into morphine. The formation of 6-MAM may 

occur spontaneously in aqueous media. Heroin may be considered as a pro-drug, 

because it does not have intrinsic activity, but, due to its high lipophilicity it facilitates 

the distribution of the active metabolites, 6-MAM and morphine (Sawynok, 1986). 
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Figure 1.8 Heroin and its main metabolites 
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Amphetamines may be self-administered by oral, intravenous or smoked 

routes. d-Amphetamine is metabolized by deamination, oxidation and hydroxylation 

(Figure 1.9). Deamination produces the inactive metabolite phenylacetone, which is 

oxidized to benzoic acid and excreted as hippuric acid. Oxidation of amphetamine 

produces norephedrine, which is pharmacologically active.  Hydroxylation of 

amphetamine and norephedrine respectively produces hydroxyamphetamine and 

hydroxynorephedrine, which have pharmacologic activity. Methamphetamine may be 

hydroxylated to hydroxymethamphetamine or N-demethylated to amphetamine 

(Jenkins and Cone, 1998).  

 

 
Figure 1.9 Metabolism of amphetamine and methamphetamine. Deamination of amphetamine produces 

phenylacetone, which is further oxidized to benzoic acid and excreted as hippuric acid. 
Oxidation of amphetamine produces norephedrine. Hydroxylation of amphetamine and 
norephedrine produces hydroxyamphetamine and hydroxynorephedrine, respectively. 
Methamphetamine may also be hydroxylated to hydroxymethamphetamine or N-demethylated 
to amphetamine (adapted from Jenkins and Cone, 1998). 



Introduction 

 

 20 

1.5.2.1 Neurotransmitter systems affected in drug 

addiction 

1.5.2.1.1 Monoamine neurotransmitters 

Psychostimulant drugs share structural similarities with monoamines (Figure 

1.5) and thereby interfere with the activity of these neurotransmitters.  

Monoamine neurotransmitters include the catecholamines dopamine and 

noradrenaline and also serotonin. Dopamine and noradrenaline are synthesized from 

tyrosine by the highly regulated enzyme tyrosine hydroxylase (TH), giving rise to L-

dihydroxyphenylalanine (L-DOPA). L-DOPA is converted into dopamine by the enzyme 

L-aminoacid decarboxylase. In noradrenergic neurons, dopamine is converted into 

noradrenaline by the enzyme dopamine β-hydroxylase. Serotonin is synthesized from 

tryptophan by the enzyme tryptophan hydroxylase, originating 5-hydroxytryptophan, 

which is then converted into serotonin by the enzyme L-aminoacid decarboxylase. The 

monoamines are actively transported by vesicular monoamine transporters (VMATs) 

into synaptic vesicles where they are stored. When the neurons depolarize, the 

synaptic vesicles fuse with the plasma membrane releasing the neurotransmitters into 

the synaptic cleft, where they interact with pre- and post-synaptic receptors. The 

neurotransmitters are then reuptaken by the pre-synaptic neuron for further release, or 

metabolized, in order to terminate their synaptic activity. Reuptake is performed by 

specific transporters in the plasma membrane of the synaptic terminal. Dopamine 

transporter (DAT), noradrenaline transporter (NET) and serotonin transporter (SERT) 

are the specific proteins involved in the reuptake of monoamines. 

Enzymatic metabolism of monoamines is mainly mediated by the enzymes 

monoamine oxidases (MAOA and MAOB) and catechol-O-methyl-transferase (COMT). 

Monoamine oxidases are mitochondrial enzymes that catalyse the oxidative 

deamination of biogenic amines in the brain and in peripheral tissues (see also section 

1.6.2.1). The two isoforms of MAO have different substrate specificities. MAOA 

preferentially oxidizes serotonin and noradrenaline and MAOB has a preference for 
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phenylethylamine and benzylamine. Both isoforms oxidize dopamine but in humans 

dopamine is preferentially oxidized by MAOB, whereas in rodents it is predominantly 

oxidized by MAOA (Shih et al., 1999). The other enzyme involved in catecholamine 

inactivation, COMT, may be either cytoplamatic or in a membrane-bound form present 

in the synaptic cleft and may inactivate cytoplasmic or synaptic catecholamines. 

 

 

1.5.2.1.1.1 Dopaminergic pathways 

The reward circuit (Figure 1.4) is composed by dopaminergic pathways, and is 

a key mediator of the reinforcing effects of the drugs. All the drugs of abuse acutely 

induce large and fast increases in dopamine in this and other brain circuits. Dopamine 

is synthesized by a subset of neurons that express tyrosine hydroxylase. These 

neurons are present in specific regions in the brain, namely in the VTA, the substantia 

nigra and the arcuate and periventricular nuclei of the hypothalamus (Venero et al., 

2002).  

Dopamine mediates physiologic processes including reward, movement and 

lactation. There are four dopaminergic pathways: the mesolimbic, mesocortical, nigro-

striatal and tuberoinfundibular pathways (Figure 1.10). The first two of these pathways 

are part of the reward circuit activated by virtually all the drugs of abuse (Di Chiara and 

Imperato, 1988). The mesolimbic pathway is mainly involved in motivated behavior, 

whereas the mesocortical pathway, which projects to the prefrontal cortex, is involved 

in learning and memory. The nigrostriatal pathway is involved in the control of 

movement and the tuberoinfundibular pathway is involved in the stimulation of milk 

production. Blocking of dopamine neurotransmission in the tuberoinfundibular pathway 

may cause increases in blood prolactin levels, causing abnormal lactation, disruption of 

the menstrual cycle, and sexual dysfunction. 
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Figure 1.10: Dopaminergic pathways in the rat brain.  There are four dopaminergic pathways in the brain. 

The mesolimbic pathway is composed by neurons projecting from the VTA to the NAc, 
olfactory tubercle and parts of the limbic system. The mesocortical pathway originates in the 
VTA and projects to the prefrontal cortex. The nigrostriatal pathway projects from the 
substantia nigra to the caudate-putamen and globus pallidus. The tuberoinfundibular pathway  
(not represented) originates in the periventricular and arcuate nuclei of the hypothalamus and 
projects to the capillary plexus of the hypothalamic-hypophyseal portal system (Vallone et al., 
2000) (image adapted from  Salinas, 2006). 

 

 

 

As it was described in the previous sections, drugs of abuse interfere with the 

molecular and cellular pathways involving some neurotransmitters that are structurally 

similar to the drugs. The molecular targets of the drugs are the transporters or 

receptors that mediate the physiological actions of the neurotransmitters, activating 

specific intracellular signalling pathways. However, the drugs do not completely mimic 

the action of the neurotransmitters because the molecular machinery involved in the 

removal of the neurotransmitters from the synapse does not recognize the drugs, which 

are able to interfere with neurotransmission for a longer period of time (Madras, 2006). 

Specific interactions of these drugs of abuse with the neurotransmitter 

receptors/transporters are described in section 1.5.2.2.  
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1.5.2.1.2 Opioid neuropeptides 

The prediction that opioid receptors would be the target of opiate drugs of 

abuse led to the search of a natural agonist of the receptors. Enkephalins (Hughes et 

al., 1975), β-endorphin (Li and Chung, 1976) and dynorphin (Goldstein et al., 1979) 

were the first opioid neuropeptides discovered. Endomorphins were later discovered in 

the search for a more selective μ-opioid receptor agonist (see Figure 1.14) (Zadina et 

al., 1999, for review). The aminoacid sequences of the main endogenous opioids are 

represented in Table 1.5. 

 
Table 1.5: Aminoacid sequences of endogenous opioids 

 

Name Amino acid sequence 

Leucine-enkephalin Tyr-Gly-Gly-Phe-Leu-OH 
Methionine-enkephalin Tyr-Gly-Gly-Phe-Met-OH 
β-Endorphin Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln- 
 Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile- 
 Val-Lys-Asn-Ala-His-Lys-Gly-Gln-OH 
α-Neoendorphin Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys 
Dynorphin Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys- 
 Leu-Lys-Trp-Asp-Asn-Gln-OH 
Endomorphin-1 Tyr-Pro-Trp-Phe-NH2 
Endomorphin-2 Tyr-Pro-Phe-Phe-NH2 
 

β-Endorphin is a cleavage product of the proopiomelanocortin peptide (POMC) 

(Figure 1.11.A) and is expressed in the pituitary gland and in the arcuate nucleus of the 

hypothalamus. Enkephalins are cleavage products of the proenkephalin A peptide 

(Figure 1.11.B) and are the most widely distributed opioids in the central nervous 

system (CNS), with the highest concentration found in the globus pallidus.  
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A B 

 
Figure 1.11: Proteolytic processing of the pre-propeptides (A) pre-proopiomelanocortin and (B) pre-

proenkephalin A. The maturation of the pre-propeptides involves cleaving the signal sequence 
and other proteolytic processing. This results in the production of several neuroactive peptides 
such as adrenocorticotropic hormone (ACTH), γ-lipotropin, and β-endorphin (A), or multiple 
copies of the same peptide, such as met-enkephalin (B) (based on Purves et al., 2001). 

 

The distribution of opioid neuropeptides in the brain depends on the expression 

of the precursor proteins and on the distribution of specific proteases responsible for 

cleavage of the precursors. 

1.5.2.2 Short-term (acute) effects 

1.5.2.2.1 Psychostimulants and reward 

The stimulant drugs amphetamine and cocaine directly increase extraneuronal 

dopamine levels through different mechanisms (Figure 1.12).  

Amphetamine induces an increase in extracellular monoamines, by interacting 

directly with monoaminergic cells. Although amphetamine has comparable effects in 

neurons containing serotonin, noradrenaline and dopamine, the effects implicated in its 

reinforcing properties are mainly mediated by dopamine (Fleckenstein et al., 2007).  

Due to its structural similarity with dopamine, amphetamine is a substrate for 

the DAT (Sitte et al., 1998). In low concentrations amphetamine is transported by the 

DAT to the cytosol and increases the intracellular binding sites of the DAT for 

dopamine, resulting in the exchange of extracellular amphetamine by intracellular 
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dopamine, and leading to an increase in extracellular dopamine (Jones et al., 1999). 

When present in higher extracellular concentrations, amphetamine may diffuse into the 

cell, due to its lipophilicity (Sulzer et al., 1995; Kahlig et al., 2005). 

Intracellular amphetamine also induces reverse transport by the DAT because it 

contributes to increase the intracellular dopamine concentration. Amphetamine 

interferes with VMAT-2 function, impairing the active transport of the monoamines into 

synaptic vesicles, where they are stored. In addition, amphetamine may enter in the 

vesicles by diffusion, due to its weak base properties (Sulzer et al., 2005, for review). 

Since amphetamine is a weak base, at acidic pH it accepts protons leading to 

alkalinization inside the vesicles. A low pH inside the vesicles is essential to maintain 

the proton gradient used by VMAT-2 for active transport of monoamines into the 

vesicles. Therefore, amphetamine induces the release of vesicular dopamine to the 

cytosol and impairs the storage of dopamine in the vesicles. Cytosolic dopamine is 

then released to the extracellular space via reverse-transport by the DAT. 
 

Amphetamine also interferes with dopamine synthesis by inhibiting tyrosine 

hydroxylase (TH) (Ellison et al., 1978) and with dopamine metabolism, by inhibiting  

MAO (Ramsay and Hunter, 2002). 
 
Figure 1.12: Direct effects of amphetamine 
and cocaine in dopaminergic nerve 
terminals. Both drugs increase extracellular 
dopamine accumulation by different 
mechanisms. Briefly, amphetamines inhibit 
the storage of dopamine in synaptic 
vesicles, inducing an increase in cytosolic 
dopamine concentration and reversal of the 
DAT. Cocaine blocks the reuptake of 
dopamine by the DAT. 
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Cocaine inhibits the DAT (Brown et al., 2001), preventing the reuptake of 

dopamine into the nerve terminal. The inhibition of the DAT results in increased levels 

of dopamine in the synaptic cleft. Cocaine also inhibits the monoamine transporters 

NET and SERT (Gatley et al., 1998). However, as it happens with amphetamine, 

reinforcing effects of cocaine are largely dependent on its effect in dopaminergic 

neurotransmission (Ritz et al., 1987).  

Cocaine also interacts with the VMAT-2, favoring the storage of catecolamines 

inside synaptic vesicles (Brown et al., 2001). It was suggested that cocaine-induced 

inhibition of the DAT and increased vesicular sequestration of dopamine, causes a shift 

in the ratio of cytoplasmic to vesicular dopamine increasing the amount of 

neurotransmitter packaged in each vesicle before its release. This effect on the VMAT 

would contribute to further increase in synaptic dopamine, upon a depolarizing stimulus 

(Brown et al., 2001). 

 

 

1.5.2.2.2 Opiates and reward 

In contrast with the stimulant drugs, opiates induce an increase in dopamine in 

the NAc by an indirect mechanism.  

The major targets of opiates are the opioid receptors, which mediate the 

endogenous effects of the opioid neuropeptides. The drug of abuse morphine shares 

structural similarities with the opioid peptides and, therefore, is recognized by the 

opioid receptors, activating them (Figure 1.13). 
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Figure 1.13. Functional similarity between morphine and endogenous opioids. Due to its structural 

similarities with endogenous opioids, morphine is recognized by the opioid receptors and 
activates them (adapted from Romero, 2005). 

 

Opioid receptors are G-protein-coupled receptors that respond to endogenous 

opioids. There are 3 subtypes of opioid receptors, with different pharmacological 

selectivities (Figure 1.14): mu (μ), delta (δ) and kappa (κ) receptors. Morphine is a 

specific agonist of μ-opioid receptors, with binding potencies (Ki) of 14 nM for μ-opioid 

receptors, 538 nM for κ –receptors and above 1000 nM for δ –receptors (Figure 1.14) 

(Raynor et al., 1994). 

Binding of the specific ligands to any of the opioid receptors induces the 

activation of Gi/o proteins, resulting in the inhibition of adenylyl cyclase, activation of 

potassium conductance, inhibition of calcium conductance and the inhibition of 

neurotransmitter release (Williams et al., 2001).   

 

 
 

Figure 1.14: Selectivity windows of morphine and endogenous opioid peptides for the subtypes of opioid 
receptors. Met-enkephalin (Met Enk) and β endorphin preferentially bind to μ and δ opioid 
receptors. Dynorphin is selective for κ opioid receptors. Morphine selectively binds to μ opioid 
receptors (adapted from Williams et al., 2001). 
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Upon the activation of the opioid receptor, the alpha subunit of the G protein 

inhibits the enzyme adenylyl cyclase (Figure 1.15), which is responsible by the 

production of cyclic AMP (cAMP). cAMP normally activates protein kinase A (PKA), 

which is responsible for the phosphorylation of several proteins, involved in numerous 

cellular processes. One of these proteins is the transcription factor cAMP response 

element-binding protein (CREB).  

It has also been reported that acute exposure to opiates may lead to the 

activation of protein kinase (PKC), release of calcium from intracellular stores and 

activation of mitogen-activated protein kinase (MAPK) cascade (Williams et al., 2001). 

These effects seem to be mediated by the beta/gamma subunits of the G protein. 

 

 
 
Figure 1.15: Intracellular signalling 
mediated by G-protein coupled 
receptors. Binding of the agonist to 
the receptor activates heterotrimeric 
G proteins composed of α,β and γ 
subunits. Stimulatory α subunits 
activate the enzyme adenylyl 
cyclase, which produces cAMP. 
Inhibitory α subunits inhibit this 
pathway. cAMP activates PKA that 
is translocated to the nucleus. PKA 
is active in the cytosol and in the 
nucleus, phosphorylating several 
proteins such as the transcription 
factor CREB, which is activated by 
this phosphorylation. Activated 
CREB binds to CREB-binding 
protein (CBP) and activates 
transcription of its target genes, 
leading to the expression of new 
proteins (adapted from Alberts et al., 
2002). 
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Figure 1.16 summarizes the actions of opiates and other reinforcing drugs of 

abuse in the neurons of the reward pathway, which culminate in an increase in 

dopamine in dopaminergic synapses of the NAc.  

VTA neurons (represented in the bottom left of Figure 1.16) project to the NAc 

(bottom right). The activity of these projections is regulated by interneurons, which 

interact with VTA or NAc neurons.  

Due to the inhibitory actions of opiates described above, opiate drugs of abuse 

bind to μ-opioid receptors present in gamma aminobutyric acid (GABA)-releasing 

interneurons in the VTA, inhibiting the release of GABA, an inhibitory neurotransmitter 

that acts on dopaminergic neurons to inhibit dopamine release (Figure 1.16). Thus, the 

action of the opiate drugs in the GABAergic interneurons results in an increase of 

dopamine release by the dopaminergic neurons of the VTA.  Opiates also interact 

directly with NAc neurons and produce reward in a dopamine-independent manner. 

Other drugs induce dopamine release in the NAc by different mechanisms. 

Nicotine causes dopamine release by interacting with nicotinic acetylcholine receptors 

in the VTA. Ethanol interacts with GABAA receptors in the VTA.  Some drugs of abuse 

may also interact directly with NAc neurons.  

 
Figure 1.16: Effects of psychoactive drugs in the reward pathway. All the drugs of abuse induce an 

increase in the synaptic concentration of dopamine (DA) in the NAc. Stimulants act directly in 
the synaptic terminals of dopaminergic neurons projecting from the VTA. Opiates, nicotine and 
alcohol affect the activity of interneurons that regulate this pathway. Opiates, alcohol, 
cannabinoids and phenylcyclidine (PCP) may also directly affect NAc neurons. Reprinted, with 
permission, from the Annual Review of Neuroscience, Volume 29 © 2006 by Annual Reviews  
www.annualreviews.org” (Hyman et al., 2006). 
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1.5.2.3 Long-term homeostatic adaptations 

Upon chronic drug abuse and during withdrawal, dopamine function in the brain 

is markedly decreased. Several adaptations to the drugs occur, leading to the 

development of drug addiction. Chronic exposure to the drugs of abuse in humans 

induces long-lasting changes in gene expression, and some of these changes may be 

correlated with the development of the compulsive behaviour associated with drug 

addiction (Rhodes and Crabbe, 2005, for review). Changes in gene expression induced 

by chronic drug exposure may also underlie changes in the cellular responses to 

stress. These alterations are in the basis for the development of sensitization or 

tolerance, in human drug abusers, in which the response to the same dose of a drug is 

increased or decreased, respectively. These processes are responsible for the 

withdrawal symptoms and increased motivation to drug abuse (Nestler, 2004b).  

Opiates have the most evident addictive effects, involving tolerance, withdrawal 

and a high rate of relapse. Binding of opioids to their receptors activates intracellular 

signalling pathways that regulate gene expression.  
 

Figure 1.17: Activity of the cAMP pathway 
upon acute or chronic exposure to opiates. 
Acute exposure to opiates inhibits the cAMP 
pathway (lower line: cAMP and phosphorylated 
PKA levels). Upon repeated exposure to 
opiates the activity of the cAMP pathway 
recovers to normal levels. When an antagonist 
of the opiate receptors is present (withdrawal) 
the activity of the cAMP pathway increases far 
above control levels. These changes are due 
to induction of adenylyl cyclase and PKA 
expression during chronic exposure to the 
opiates (upper line: adenylyl cyclase and PKA 
protein levels) (adapted from Nestler, 2004a) 

 
Physical dependence develops when the physiology of cells, and circuits, is 

changed by the drugs in such a way that, when the drug is absent, withdrawal 

symptoms appear. It was demonstrated that acute morphine exposure decreases the 

levels of cAMP in the locus coeruleus, the major brain noradrenergic nucleus. 
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However, upon continued exposure to morphine, compensatory upregulation of the 

cAMP pathway occurs, with increase in adenylyl cyclase expression and cAMP 

recovery to normal levels (Figure 1.17 and Figure 1.18). During withdrawal or in the 

presence of an opioid receptor antagonist (such as naloxone), the upregulation of the 

cAMP pathway results in the increase in the levels of cAMP, which can rise several 

times above normal levels. The expression of other signalling molecules is also 

affected upon chronic exposure to morphine. These phenomena were also 

demonstrated to occur in NAc neurons (Chieng and Williams, 1998), which are 

implicated in the motivational aspects of drug addiction. 

 
Figure 1.18: Long-term effects of opiate drugs of abuse due to changes in gene expression. Intracellular 

signalling mediated by the activation of opioid receptors is changed upon chronic exposure to 
morphine. Several components of the cAMP pathway are upregulated, such as adenylyl 
cyclase (AC), PKA, TH and CREB, contributing to increased electrical excitability which 
underlies tolerance, dependence and withdrawal observed upon chronic exposure to opiates. 
C- catalytic subunit of PKA (adapted from Nestler, 2004a). Reprinted with permission from 
AAAS. 

 

The molecular mechanisms involved in the upregulation of the cAMP pathway 

seem to be partially mediated by the transcription factor CREB. Chronic opiate 

exposure induces CREB expression and activity, which is thought to mediate the 

expression of some of the components of the cAMP pathway. Cocaine and 
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amphetamine also induce CREB activation due to increase in the stimulation of 

dopamine (D1) receptors (Hyman et al., 2006, for review). 

 
Figure 1.19: Induction of dynorphin peptides by dopamine. One of the target genes of CREB is dynorphin, 

which is expressed in NAc neurons and regulates the activity of VTA neurons, decreasing 
dopamine release. Over-activation of CREB induced by chronic exposure to the drugs of 
abuse increases the expression of dynorphin, representing a negative-feedback loop. 
Reprinted, with permission, from the Annual Review of Neuroscience, Volume 29 © 2006 by 
Annual Reviews  www.annualreviews.org” (Hyman et al., 2006). 

 

CREB has many target genes, such as cFos, corticotropin-releasing factor 

(CRF), TH, brain derived neurotrophic factor (BDNF), adenylyl cyclase (isoform VIIII), 

enkephalins and dynorphin (Carlezon, Jr. et al., 2005). The upregulation of dynorphin 

seems to mediate the decrease in the rewarding properties of the drugs, mediated by 

CREB (Cole et al., 1995). Dynorphin acts on k-opioid receptors present on VTA 

neurons to decrease dopamine release (Figure 1.19) and represents a negative-

feedback loop.  

Upregulation of cAMP pathway by the opiates leads to decreased dopamine 

release in the VTA when opiates are present. When opiates are no longer present, the 

decrease in dopamine release mediated by dynorphin may contribute to anhedonia and 

dysphoria that characterize the early phases of opiate withdrawal. 

 

Another transcription factor involved in the chronic effects of drugs of abuse is 

ΔFosB, a member of the Fos family of transcription factors (McClung et al., 2004). 

Acute exposure to drugs of abuse transiently induces the expression of several 

members of the Fos family. However, chronic exposure to the drugs results in 

increasing accumulation of stable isoforms of ΔFosB, which persist in NAc neurons for 
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a long time after cessation of drug use (Nestler, 2004b). ΔFosB may be viewed as a 

“molecular switch”, initiating and maintaining long-lived adaptations associated with 

drug addiction. 

 

Opiates also induce changes in the synaptic activity of opiate receptors, by 

inducing desensitization, internalization and intracellular trafficking of these receptors, 

leading to decreased receptor availability or response (Figure 1.20).  

 

 
Figure 1.20: Effects of acute and prolonged activation of opioid receptors by opioid receptor agonists. 

Binding of the agonist (ag) to the G protein-coupled receptor triggers G protein activation (1) 
and phosphorylation of the receptor by G protein-coupled receptor kinases (GRK) (1), allowing 
the binding of arrestin (3), which targets the receptor to endocytosis (4). The receptor may be 
recycled to the cell membrane (5) or degraded in the lysosome (not shown) (based on Bailey, 
2007). 

 

As discussed in section 1.5.2.2.2, opioids are recognized by specific receptors, 

triggering an intracellular cascade of events. Acute exposure to opiate drugs activates 

the opioid receptors, inducing the activation of heterotrimeric G-proteins that mediate 

signal transduction events. However, upon prolonged exposure to endogenous opioids, 

the receptors are desensitized due to phosphorylation by G protein-coupled receptor 

kinases (GRKs) (Figure 1.20). This allows the binding of arrestin molecules, preventing 

the activation of G proteins, due to uncoupling of the receptor from the G protein. 

Arrestin-bound receptors are internalized by endocytosis in clatrin-coated vesicles, 

reducing the number of receptors available in the cell membrane. The internalized 

receptors may be either dephosphorylated and transported back to the plasma 
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membrane, inducing resensitization, or degradated by proteolysis in the lysosomes, 

inducing downregulation of the receptors, a permanent decrease in the number of 

receptors in the cell membrane. 
 

Studies performed in human embryonic kidney (HEK293) cells (Keith et al., 

1996), gut neurons (Sternini et al., 1996), cortical neurons (Keith et al., 1998) and 

spinal cord neurons (Trafton et al., 2000), showed that morphine was much less 

effective in inducing μ-opioid receptor internalization, when compared to endogenous 

opioids. However, in cultures of striatal neurons, representative of the GABAergic 

neurons of the NAc, μ-opioid receptors were recently shown to be internalized upon 

exposure to morphine, probably due to the presence of different isoforms of signalling 

molecules in these neurons (Haberstock-Debic et al., 2005). Two explanations for the 

tolerance induced by morphine have been reported. One possibility is that morphine 

does not trigger significant receptor internalization and the receptor remains coupled to 

the intracellular signalling systems for a long period of time, inducing tolerance due to 

adaptations in the intracellular signalling machinery (Finn and Whistler, 2001). Another 

possibility is that morphine-desensitized receptors accumulate at the cell surface and, 

in this case, tolerance may be caused by the fact that morphine-desensitized receptors 

are not efficiently internalized and resensitized (Schulz et al., 2004).  

The effect of morphine seems to be cell-specific but the end-result seems to be 

common to all systems - the cells decrease the number or the activity of receptors that 

respond to the opioids, in order to decrease the deleterious effects of the chronic 

presence of the drug. During abstinence, the amount of opiates decreases and the 

system becomes unbalanced due to adaptation to the excessive inhibitory signals, 

when the drugs are present. This may explain some of the withdrawal symptoms 

observed in opiate addicts. 

1.5.2.4 Learning and memory 

Long-term adaptations to drugs explain the withdrawal symptoms observed 

upon abstinence and the dependence on drugs, but do not completely explain the 
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persistence of relapse risk observed long time after the individuals stop consuming. It 

was suggested that the life-long risk of relapse may be explained by long-term 

associative memory processes triggered by the drugs (Hyman et al., 2006). This is 

highly suggested by the observation that most relapses occur after exposure to cues 

associated with previous drug use. These cues may be external, associated with 

sensory stimuli (persons, objects or places previously associated with drug use) or 

internal, as for example the withdrawal symptoms. Stress can also induce relapse, 

probably due to the activation of the reward pathway, resembling drug-exposure 

(Hyman et al., 2006). 

In relapse, drug-seeking is facilitated by impairment in the impulse control 

mediated by the prefrontal cortex, which is responsible for inhibiting harmful behaviours 

in non-addicts. 

An increase in synaptic dopamine induced by the drugs of abuse may be 

responsible for the activation of circuits involved in processing long-term associative 

memories because dopaminergic neurons project to several brain areas and innervate 

multiple targets (Hyman et al., 2006). 

 

 

1.5.2.5 Stress and drug addiction 

Stress also plays an important role in relapse to drug-taking behavior. The 

drugs of abuse activate the hypothalamic-pituitary-adrenal (HPA) axis, which mediates 

the stress response (Figure 1.21). The release of stress hormones begins in the brain, 

by the release of the hypothalamic neuropeptide CRF. Upon a stressful event CRF is 

released from the hypothalamus and acts in the pituitary gland, stimulating the release 

of β-endorphin and ACTH, which are derived from POMC (see section 1.5.2.1.2 and 

Figure 1.11). ACTH is secreted into the blood and triggers the release glucocorticoids, 

namely cortisol, from the adrenal glands. Cortisol acts in a negative feedback manner 

in the hypothalamus and in the pituitary to inhibit the production of CRF, ACTH and β-

endorphin. Endogenous opioids may be involved in the regulation of this axis. 
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Figure 1.21: Components of the stress-
response axis. The release of stress 
hormones begins in the brain, with the 
release of CRF to the anterior pituitary, 
stimulating the release of β-endorphin (β-end) 
and ACTH, which are derived from POMC. 
ACTH is secreted into the blood and triggers 
the release of cortisol, from the adrenal 
glands. Cortisol acts in a negative feedback 
manner in the hypothalamus and in the 
pituitary to inhibit the production of CRF, 
ACTH and β-endorphin. Endogenous opioids 
may be also involved in the regulation of this 
axis. Reproduced, with permission from 
Nature Reviews Drug Discovery (Kreek et al., 
2002) ©2002 Macmillan Magazines Ltd. 
 

 

The concentrations of glucocorticoids regulate the level of dopamine release in 

the NAc (Piazza and Le Moal, 1998). In basal conditions both glucocorticoid secretion 

and dopamine release are low. An acute stress leads to the increase in glucocorticoid 

secretion, which enhances dopamine release in the NAc and thereby increases the 

sensitivity to the reinforcing effects of the drugs of abuse, which can result in increased 

self-administration. However, since glucocorticoids activate a negative feedback that 

controls their own release, the system returns to basal levels within 2 hours. Upon 

repeated stress, the negative feedback loop becomes impaired, resulting in a long-

lasting increase in glucocorticoid secretion and, consequently, an increase in dopamine 

release in the NAc. These changes lead to a long-lasting increase in the sensitivity to 

the reinforcing effects of the drugs (Piazza and Le Moal, 1998).  
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During withdrawal, drugs of abuse increase the levels of CRF which may be 

responsible for stress-induced relapse (reviewed by Sarnyai et al., 2001; Kreek and 

Koob, 1998). 

As described above, drug addiction involves different cellular and molecular 

adaptations that are specific for each stage of the life cycle of addiction, which are 

summarized in Figure 1.22. 

 
 

Figure 1.22: Life cycle of addiction. Upper boxes show the processes associated with each stage of drug 
addiction. Lower boxes show the underlying cellular and molecular mechanisms involved. 5-
HT- serotonin.  (From Nestler and Aghajanian, 1997. Reprinted with permission from AAAS). 

 

1.6 Drugs of abuse and neurotoxicity 
Many drugs of abuse have been shown to induce toxicity in several tissues of 

the human body. Cytotoxicity was demonstrated for ecstasy (Capela et al., 2006), d-

amphetamine, methamphetamine (Cadet et al., 2003), cocaine (Zhang et al., 1999) 

and morphine (Bhat et al., 2004).  

Since addiction may be considered a brain disease (Leshner, 1997), 

neurotoxicity may underlie some of the effects of the drugs. The brain is one of the 

most metabolically active tissues. A continuous supply of glucose is essential for the 

energy-consuming neuronal functions such as axonal transport or synaptic 

transmission. Although new neurons may be formed by neurogenesis in the adult brain 

(see section 1.6.2.4) (Gage, 2002), the existing neurons do not divide and thus 

dysfunction or death of these cells may result in irreversible damage. Furthermore, the 

brain is highly sensitive to oxidative stress due to its high content in poly-unsaturated 
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fatty acids, low levels of antioxidants, the presence of transition metals and high levels 

of oxygen consumption. 

Moreover, there are evidences that chronic abuse of heroin (Fishbein et al., 

2007), cocaine (Bolla et al., 2000) and amphetamines (Barr et al., 2006) induces 

impairment of neurocognitive functions. 

1.6.1 Glutamate mediated effects of opiate 
drugs 

Many evidences suggest the involvement of glutamatergic neurotransmission in 

the mechanisms of drug dependence involving the dopaminergic reward circuit in the 

brain (Tzschentke and Schmidt, 2003).  

 

N-methyl-D-aspartate (NMDA) receptors are a subtype of ionotropic glutamate 

receptors that plays a key role in excitatory synaptic transmission. These receptors 

have been implicated in synaptic plasticity associated with learning and memory, and 

hypofunction of NMDA receptors produces memory dysfunction (Newcomer and 

Krystal, 2001). In contrast, hyperfunction of these receptors has been associated with 

acute CNS injury syndromes such as hypoxia, ischaemia, trauma and status 

epilepticus (Newcomer and Krystal, 2001). 

 

The biophysical and pharmacological properties of these receptors depend on 

their subunit composition. There are three different subtypes of NMDA receptor 

subunits, NR1, NR2 (A-D) and NR3 (A-B). NMDA receptors are heteromeric complexes 

composed of at least one NR1 subunit and one NR2 subunit. Heterotrimeric complexes 

composed of NR1/NR2 and NR3 have been also described (Cull-Candy et al., 2001).  

 

Glutamate binds to the NR2 subunits and the co-agonist glycine binds to the 

NR1 subunit. Several agonists and antagonists regulate the activity of NMDA receptors 

by interacting with different sites of the receptors (Figure 1.23). 
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Figure 1.23: Structure of NMDA receptor showing binding sites for agonists and antagonists (*). The 
extracellular portions of the subunits consist of two domains, the modulatory domain 
(Modulatory D) and the agonist binding domain (Agonist BD). The NR1 subunit contains the 
glycine-binding site and the NR2 subunit contains the glutamate-binding site. Reprinted, with 
permission, from the Annual Review of Pharmacology and Toxicology, Volume 47  ©2007 by 
Annual Reviews   www.annualreviews.org” (Hara and Snyder, 2007). 

 

Subunit composition of NMDA receptors in the brain varies during development. 

Before birth, NR2B subunits are found in most brain regions and NR2D subunits are 

found in the diencephalon and brain stem. After birth the levels of NR2A subunits 

increase in most brain regions and NR2C subunits appear in the cerebellum. Hence, 

NR2B subunit expression decreases during development, whereas NR2A subunit 

expression increases (Cull-Candy et al., 2001). However, subunit composition at the 

same age also differs among different brain regions. The levels of mRNA of the 

different NR2 subunits in specific brain areas in adult rats (Goebel and Poosch, 1999) 

are in the following order: 

 

           Cortex: NR2B >> NR2A  >  NR2C >> NR3A > NR2D 

Hippocampus: NR2A >> NR2B >> NR2C  > NR2D ≈ NR3A  

         Striatum: NR2B >> NR2A >> NR2C  > NR3A ≈ NR2D. 

 

It was previously suggested that glutamatergic neurotransmission involving the 

NMDA receptor contributes to opiate dependence in humans (Bisaga et al., 2001). 

NMDA receptor antagonists inhibit the development of physical dependence and 

tolerance (Trujillo, 2000). Memantine, an antagonist of the NMDA receptor, is capable 
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of preventing the acquisition of morphine-induced conditioned place-preference, 

suggesting that the glutamatergic system can modulate opiate reward (Ribeiro Do 

Couto et al., 2004). Moreover, the NMDA receptor antagonist MK-801 was shown to 

specifically block morphine-induced tolerance and neuronal apoptosis in the spinal cord 

(Mao et al., 2002).  

 

Morphine dependence reduces the affinity of glycine for NMDA receptors in the 

NAc (Siggins et al., 2003; Martin et al., 2004). Moreover, morphine-dependent rats 

show decreased NR1 and NR2A subunit expression in the frontal cortex and 

hippocampus and increased levels of NR1 and NR2A in the NAc, whereas NR2B is not 

affected (Murray et al., 2007). These data suggest that NR2A-containing NMDA 

receptors in the NAc probably contribute to the development of opiate dependence. 

Another study also suggested that chronic morphine induces an increase in NR2A 

subunit function in the NAc, and a decrease in the function of the NMDA receptor 

subunits NR2B and 2C, which could result in altered excitability and integrative 

properties (Martin et al., 2004). 

However, other authors showed that chronic morphine significantly increased 

the protein levels of NR1 and NR2B subunits in the NAc (Bajo et al., 2006). It was 

recently suggested that NR2B subunit-containing NMDA receptors may be involved in 

the rewarding effect of morphine (Kato et al., 2007; Ma et al., 2007). NR2B-containing 

NMDA receptors in the NAc and the dorsal hippocampus were proposed to play a 

significant role in mediating the reinstatement of rewarding responses to morphine (Ma 

et al., 2007). This effect seems to be specific for morphine because NR2B containing 

NMDA receptors are more involved in morphine reward rather than in natural rewards 

(Ma et al., 2006). Nevertheless, the acute exposure to opiates may have different 

effects on NMDA receptors when compared to the chronic exposure. 

NMDA receptors are highly permeable to calcium and, thus, hyperactivation of 

these receptors leads to excitotoxicity and cell death due to the activation of Ca2+-

dependent proteases. 
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These and other mechanisms of toxicity mediated by the drugs of abuse may 

involve the mitochondria, organelles with important functions in the life and death of 

cells. 

1.6.2 Mitochondria in cell life and death 
Mitochondria are the powerhouses in the cells, producing energy to supply the 

various energy-consuming cellular activities. Classically, mitochondria are composed of 

two compartments, separated by two different lipid membranes with different protein 

compositions (Figure 1.24). The outer mitochondrial membrane (OMM) separates the 

organelle from the cytoplasm, whereas the inner mitochondrial membrane (IMM) 

separates the matrix compartment - inside the mitochondria - from the intermembrane 

space (IMS). Recently, another compartment was shown to exist in the space between 

cristae, the intracristal space (ICS) (Mannella, 2006), surrounded by inner 

mitochondrial membrane. The ICS communicates with the IMS through bottleneck-like 

junctions that create a diffusion barrier. 

 

In these organelles, several important bioenergetic reactions take place. The 

goal of these reactions is to produce ATP. A series of oxidative reactions mediated by 

the electron transport chain allows the production of several ATP molecules for each 

molecule of energetic substrate consumed. 

 

 
 
Figure 1.24: Mitochondria and the electron transport chain. ICS: intracristal space, IMS: intermembrane 

space, VDAC: voltage dependent anion channel, ANT: adenine nucleotide translocator. 
 

The electron transport chain is composed by five protein complexes present in 

the IMM. NADH/H+ produced by several bioenergetic reactions (namely in the Krebs 
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cycle) serves as an electron donor, reducing a flavin mononucleotide (FMN) center in 

the mitochondrial NADH-ubiquinone reductase- the complex I of the mitochondrial 

electron transport chain. The reduction of FMN initiates a cascade of redox reactions in 

complex I that result in the reduction of a lipid-diffusible molecule of ubiquinone (or 

coenzyme Q). These redox reactions also result in the pumping of four protons from 

the matrix to the IMS.  

Complex II consists primarily of the Krebs cycle enzyme that converts 

succinate in fumarate (succinate dehydrogenase) and two iron-sulfur proteins. This 

redox reaction results in the reduction of a FAD center in the protein, ultimately 

resulting in the reduction of a lipid-soluble molecule of ubiquinone. 

The reduced lipid-soluble ubiquinone transfers the electrons to another protein 

complex in the IMM, the cytochrome c reductase or complex III. Ubiquinone reduces 

an iron-sulfur center in complex III, initiating a complex cascade of redox reactions that 

results in the reduction of two cytochrome c molecules and in the pumping of four 

protons from the matrix to the IMS. 

Reduced cytochrome c transfers one electron to a cupper center in complex IV 

(cytochrome oxidase). Complex IV uses 4 electrons transported by cytochrome c to 

reduce one oxygen molecule (O2) into two water molecules, pumping 4 protons to the 

IMS. The reduction of one O2 molecule requires the transfer of electrons from two 

electron carrier molecules. A total of ten protons are pumped across the IMM per 

electron pair donated by NADH. 

Pumping of protons by the mitochondrial electron transport chain generates a 

proton gradient across the IMM and also an electric potential (ΔΨm). This gradient is 

used by complex V (the ATP synthase) as energy to produce ATP in the mitochondrial 

matrix.  

ADP is transported into the matrix by the adenine nucleotide translocase (ANT) 

in exchange with ATP, transported into the IMS. Inorganic phosphate (Pi) is 

transported into the matrix by the Pi translocator, which also transports a proton into 

the matrix. For each ADP molecule phosphorylated by the ATP synthase in order to 

form ATP, 3 more protons are transported back to the matrix. Thus, the activity of the 



Introduction 

 

 43

electron transport chain is essential to maintain the proton gradient and also the 

electric potential. 

The oxidative reactions in the mitochondria are also generators of reactive 

oxygen species (ROS), making the mitochondria a site and a target of oxidative stress. 

1.6.2.1 Drug-addiction and oxidative stress 

Oxidative stress is defined as the imbalance in the production ROS (oxidants) 

versus the activity of the detoxifying systems (antioxidants) in the cells, towards an 

increase in the levels of oxidants. 

 
 

Figure 1.25: Oxidative metabolism of dopamine. A) Enzymatic deamination by MAO, B) Auto-oxidation. 
Both processes result in the production of H2O2. 

 

As described above, all the drugs of abuse induce an increase in the 

extracellular levels of the neurotransmitter dopamine in specific brain areas. Dopamine 

is easily oxidized, by enzymatic and non-enzymatic mechanisms (Figure 1.25) and may 

induce oxidative stress in dopaminergic and neighboring cells. This may contribute to 

the neurotoxicity of the drugs of abuse. Synaptic activity of dopamine is mainly 

regulated by two mechanisms: reuptake, responsible for 70-80% of dopamine 

recycling, and/or inactivation (metabolism). Dopamine may be metabolized 

intracellularly by MAO (see section 1.5.2.1.1), a mitochondrial enzyme, present in the 

cytoplasmic side of the outer membrane. MAO catalyses the deamination of dopamine 
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producing 3,4-dihydroxyphenylacetic acid (DOPAC) and hydrogen peroxide (H2O2). 

Dopamine auto-oxidation also produces H2O2. 

H2O2 may react with transition metal ions, via the Fenton/Haber-Weiss reactions 

(1, 2), originating the highly toxic hydroxyl radical (•OH). 
 

Fe2+ + H2O2 → Fe3+ + •OH + OH- (Fenton reaction - 1) 

 

O2
-• + H2O2 → O2

 + •OH + OH- (Haber-Weiss reaction - 2) 

 

Thus, dopamine is both a neurotransmitter and a neurotoxin, and changes in 

dopamine metabolism may induce oxidative stress and cell death in dopaminergic or 

surrounding cells (Jones et al., 2000), if the antioxidant systems are not able to deal 

with the increase in the levels of ROS. The increase in ROS levels may lead to cell 

death due to the oxidation of important cellular macromolecules such as aminoacids, 

phospholipids and nucleic acids (Cadet and Brannock, 1998). 

1.6.2.1.1 Detoxification of H2O2 

Cells have specific antioxidant systems (enzymatic and non-enzymatic) that 

respond to increases in H2O2. 

Glutathione (γ-L-Glutamyl-L-cysteinyl-glycine) is a tripeptide that can exist in 

the reduced (GSH) and oxidized (GSSG) forms. Glutathione is an antioxidant that 

reduces disulfide bonds in cytoplasmic proteins, by acting as an electron donor. When 

this happens, glutathione is oxidized and a disulfide bond is formed between two 

cysteines of two GSH molecules. The levels of GSH/GSSG are maintained by two 

enzymes: glutathione reductase (GRed) and glutathione peroxidase (GPx). The 

latter converts two molecules of GSH in GSSG and simultaneously detoxifies H2O2 

forming two water molecules. GRed reduces GSSG into 2 molecules of GSH by using 

NADPH/H+, which is converted into NADP+. NADPH/H+ is produced by glucose-6-

phosphate dehydrogenase in the pentose-phosphate pathway. This group of reactions 

is also known as the glutathione redox cycle (Figure 1.26). 
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Figure 1.26: Glutathione redox cycle. H2O2 is detoxified by glutathione peroxidase (GPx), producing water, 

using 2 molecules of GSH that are converted into GSSG. Glutathione reductase (GRed) 
converts GSSG back to GSH, using NADPH/H+, which is converted into NADP+. 

 

 

Another enzyme that detoxifies H2O2 is catalase, present in the peroxisomes, 

which catalyzes the reaction (3): 

2 H2O2 → 2 H2O + O2 (3) 

 

Superoxide dismutase (SOD), another antioxidant enzyme, contributes to 

increase H2O2 levels by detoxification of the superoxide anion (O2
.-) (4). The H2O2 

produced by SOD has to be detoxified by the systems described above. 

 

2O2
.- + 2H+ → O2 + H2O2 (4) 

 

The levels and the activity of these enzymes are regulated by the cells and are 

important to maintain cellular homeostasis. 

 

When continuously exposed to oxidants, cells may increase the levels of 

antioxidant systems in order to maintain homeostasis. Thus, the effects of chronic 

exposure to oxidants contrast with the effects of acute exposure. For example, acute 

exposure to H2O2 can induce apoptotic cell death in PC12 cells (Benedi et al., 2004; 

Jang and Surh, 2004), whereas cells chronically exposed to low concentrations of H2O2 

become resistant to the acute toxicity of this compound (Wiese et al., 1995; Davies, 

1999). Acute exposure to H2O2 may then be used as a model of cytotoxicity whereas 

chronic treatment of PC12 cells with a low concentration of H2O2 may be a model of 

cell adaptation (Jackson et al., 1994).  
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1.6.2.1.2 Amphetamines and oxidative stress 

Amphetamines were shown to induce neurotoxicity, both upon acute and 

chronic exposure. It is believed that the mechanisms involved in amphetamine toxicity 

are mediated by oxidative stress, due to an increase in the levels of H2O2 resulting from 

enzymatic and non-enzymatic oxidation of dopamine. Table 1.6 summarizes some of 

the recent studies investigating the role of oxidative stress in the effects of 

amphetamines in neurons.  

 

 

Table 1.6: Evidences for amphetamine-induced oxidative stress in the brain or in neuronal cells 

Drug Biological model Mechanisms Dose/time of 
exposure Reference 

Meth Human SH-SY5Y 
cell line 

↓ΔΨm 
↑ROS 

Protected by vitamin E 

Acute: 
0.17-1.68 mM, 

24-72h 

(Wu et al., 
2007) 

Meth Human caudate 
and frontal cortex 

↑4-HNE 
↑MDA -- (Fitzmaurice 

et al., 2006) 

Acute: ↑SOD prefrontal cortex for 1 
mg/kg 

Chronic: ↑SOD hippocampus; ↓SOD 
striatum for 1 and 4 mg/kg 

↑Catalase prefrontal cortex and 
hippocampus for 4 mg/kg 

↓Catalase hippocampus and striatum 
for 2mg/kg 

(Frey et al., 
2006b) d-

Amph 

In vivo- 
Wistar rats 

Prefrontal cortex, 
striatum, 

hippocampus 

Chronic exposure: ↑TBARS and 
↑Superoxide in prefrontal cortex and 

hippocampus 

1 mg/kg, 2 
mg/kg, or 4 

mg/kg 
Acute: 1 day 
Chronic: 7 

days 

(Frey et al., 
2006a) 

Meth 
Striatal 

synaptosomes 
(Wistar rat) 

↑ROS 
Protected by antioxidants 

Acute 
2h, 2 mM 

(Pubill et al., 
2005) 

Meth Human caudate ↑SOD 
↑GSSG -- (Mirecki et al., 

2004) 

d-
Amph Rat brain 

↑GST – hypothalamus 
↑GPx – striatum, NAc and medial 

prefrontal cortex 
↑GRed - hypothalamus 

↑Catalase - medial prefrontal cortex 
↓GRed – medial prefrontal cortex 

Chronic (14 
days) 20 

mg/kg/day 

(Carvalho et 
al., 2001) 

Meth 
In vivo- Wistar rats 
Prefrontal cortex 

Striatum 

↑ SOD 
↑ TBARS 

Acute 
10-15 mg/kg 

(Acikgoz et 
al., 2000) 

 
Abbreviations: Meth- methamphetamine, d-amph- d-amphetamine, ΔΨm- mitochondrial potential; ROS- 

reactive oxygen species; HNE- hydroxynonenal; MDA- malondialdehyde; SOD- superoxide 
dismutase; TBARS- thio-barbituric acid reactive substances; GST- glutathione-S-transferase; 
GPx- glutathione peroxidase; GRed- glutathione reductase 
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Acute exposure to amphetamine induces an increase in ROS production and 

interferes with mitochondrial function, whereas chronic exposure induces changes in 

the activity or expression of antioxidant enzymes. The changes observed seem to be 

specific for each brain region studied. 

Amphetamines interfere with the mitochondrial function in several ways. 

Methamphetamine was shown to inhibit the mitochondrial respiratory chain (Burrows et 

al., 2000), and to inhibit ATP synthesis. Moreover, amphetamines may also increase 

ATP utilization, due to hyperthermia and hyperactivity (reviewed by Brown and 

Yamamoto, 2003).  

Since amphetamines are lipophilic weak bases, they may diffuse into the 

mitochondria and contribute to the alkalinization of the matrix (Sulzer and Rayport, 

1990), disrupting the mitochondrial membrane potential (Cunha-Oliveira et al., 2006a). 

1.6.2.1.3 Cocaine and oxidative stress 

Cocaine has been shown to induce oxidative stress in the brain. Some recent 

studies investigating the role of oxidative stress in cocaine neurotoxicity are 

summarized in Table 1.7. Both acute and chronic cocaine administrations affect the 

oxidative status of neurons, especially in the striatum, frontal cortex and hippocampus. 
 
Table 1.7: Evidences for cocaine-induced oxidative stress in the brain or neuronal cell cultures 

Biological model Mechanisms Dose/time of 
exposure Reference 

In vivo: prenatal exposure- rat 
hippocampus and cortex 

Nitric Oxide 
TBARS 

Repeated: 
20 mg/kg/day 

4 days 

(Bashkatova 
et al., 2006)  

Human neuronal progenitor cells 
Frontal cortex and striatum 

Protein carbonyl 
Protein HNE 

↓GSH 

Acute: 1 μM; 30 
min; analysed after 

6-96 h 

(Poon et al., 
2007) 

In vivo: Swiss mice, striatum and 
frontal cortex 

Low dose: ↓catalase in 
striatum 

High dose: ↓catalase activity 
in cortex and striatum 

Low dose: 10-30 
mg/kg 

High dose: 90 
mg/kg 

(Macedo et 
al., 2005) 

In vivo:  rat – frontal cortex and 
striatum 

↑H2O2 
Lipoperoxidation 
↓Complex I activity 

↑SOD, ↑GPx 

20 mg/kg/day 
Acute – 1 day 

Chronic- 10 days 

(Dietrich et 
al., 2005) 

In vivo: prenatal exposure – rat 
brain 

↓GSH 
↓reduced VitE 
↑oxidized Vit E 

Single (Lipton et al., 
2003) 

Abbreviations: Vit E- vitamin E. For other abbreviations see legend of Table 1.6. 
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Cocaine was also shown to impair mitochondrial respiration (Devi and Chan, 

1997) and to disrupt mitochondrial potential (Cunha-Oliveira et al., 2006a; Yuan and 

Acosta, Jr., 1996). 

 

1.6.2.1.4 Opiates and oxidative stress 

Acute exposure to opiates was also reported to induce oxidative stress in 

neuronal tissues. Some recent studies showing changes in the levels of oxidants and 

antioxidants in neurons are summarized in Table 1.8. Acute morphine and heroin 

exposures affect the levels of antioxidants and increase damage to proteins, lipids and 

nucleic acids, in the brain. 

 
Table 1.8: Evidences of opiate-induced oxidative stress in neurons  

Drug Biological model Mechanisms Dose/time of 
exposure Reference 

Morphine Rabbit; brain and 
spinal tissues 

↑Lipid peroxidation 
↓GSH 

↓Unsaturated fatty 
acids 

6 mg/kg intraspinal (Ozmen et al., 
2007) 

Heroin Mouse brain 

↓SOD 
↓CAT 
↓GPx 

↑Oxidative damage 
to DNA, lipids and 

proteins  

i.p. (Xu et al., 2006) 

Morphine Rat brain ↓GSH Single i.p. 
3,6 or 12 mg/kg 

(Guzman et al., 
2006) 

Heroin Mouse brain 

↓GSH/GSSG 
↓SOD 

↓Catalase 
↓GPx 

↑8-OHdG 
↑Protein carbonyls 

↑MDA 

i.p. (Qiusheng et al., 
2005) 

Abbreviations: GSH- reduced glutathione; SOD- superoxide dismutase; CAT- catalase; GPx- glutathione 
peroxidase; GSSG- oxidized glutathione; 8-OHdG- 8-hydroxy-2-deoxyguanosine; MDA- 
malondialdehyde, i.p.-intraperitoneal 
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1.6.2.2 Mitochondria in cell death 

Besides being essential for cell survival, mitochondria have been also shown to 

play a crucial role in cell death. The permeabilization of mitochondrial outer membrane, 

and disruption of mitochondrial function is a fundamental step in several pathways of 

cell death (Kroemer et al., 2007). The disruption of the OMM allows the release of 

soluble proteins that usually are only present in the IMS. 

Programmed cell death can occur through several tightly regulated pathways. 

One of the best characterized types of cell death is apoptosis. Apoptosis was firstly 

described in 1972 (Kerr et al., 1972) as a form of cell death morphologically distinct 

from necrosis. Morphological hallmarks of apoptotic cells are cell shrinkage, 

fragmentation into membrane-bound apoptotic bodies, chromatin condensation and 

fragmentation. 

Biochemically, apoptotic cells maintain membrane integrity and ATP levels, at 

least in the first steps. Apoptosis is characterized by three phases: initiation, 

integration/decision and execution/degradation. The signals that trigger apoptosis may 

come from out of the cell (extrinsic) of from inside (intrinsic). Two main molecular 

pathways of apoptosis have been characterized, one being activated by extrinsic 

signals, involving the activation of death-receptors in the cell membrane, and another 

activated by intrinsic stimuli and involving mitochondrial membrane permeabilization. 

Both these pathways involve the activation of cysteine aspartic proteases, named 

caspases, which are activated by proteolysis. 

The initiation phase in the extrinsic pathway involves the activation of death-

receptors, such as tumor necrosis factor (TNF) receptor 1, CD95/Fas or the TNF-

related apoptosis inducing ligand receptors 1 and 2 (TRAIL), and the consequent 

activation of the initiator caspases -8 or -10. The initiation phase in the intrinsic 

apoptotic pathway involves the permeabilization of the mitochondrial membrane, 

releasing apoptotic factors to the cytosol, such as cytochrome c, second mitochondria-

derived activator of caspases (Smac/DIABLO), Omi serine protease (Omi/HtrA2), 

apoptosis inducing factor (AIF) or endonuclease G (EndoG). Cytosolic cytochrome c 

reacts with deoxy ATP (dATP) and apoptotic protease activating factor 1 (APAF-1) in 
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the cytosol, inducing a change in APAF-1 conformation that enables the formation of 

the apoptosome, a complex composed by seven subunits of APAF-1/cytochrome 

c/dATP, which activates the initiator caspase-9. 

The initiator caspases of both pathways activate the effector caspase -3, 

initiating the degradation phase, which has common features for the two apoptotic 

pathways. Caspase-3 cleaves several substrates in the cell, including the effector 

caspase-6, poly-ADP-ribose polymerase (PARP) – a protein involved in DNA repair, 

and caspase-activated DNAse (DFF/CAD) – a nuclease that contributes to apoptotic 

DNA fragmentation.  

These mechanisms are involved in the appearance of the hallmarks of 

apoptosis, namely phosphatydylserine exposure, membrane blebbing, DNA 

fragmentation and condensation and the formation of apoptotic bodies. 

 

Caspase-independent apoptosis has also been described (Kroemer and Martin, 

2005). The mitochondrial factors AIF and EndoG, which are also released upon OMM 

permeabilization, induce apoptotic DNA fragmentation independently of caspase 

activity. 

1.6.2.2.1 Regulation of mitochondrial membrane 

permeabilization 

The integrity of mitochondrial membranes is essential to maintain different 

molecular environments. The IMM must be impermeable to protons, in order to allow 

the establishment of the proton gradient essential to the synthesis of ATP. The 

permeability of the OMM is also regulated, although it has been assumed that the 

presence of the voltage dependent anion channel (VDAC) makes this membrane freely 

permeable to molecules up to 5 kDa. However, VDAC has been shown to control and 

limit the diffusion of Ca2+ (Rizzuto and Pozzan, 2006). OMM permeabilization mainly 

occurs through a Bax/Bak-mediated mechanism. IMM permeabilization is still a 

controversial issue, although some authors defend that a mechanism involving the 
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permeability transition pore (PTP) could contribute to mitochondrial-mediated 

apoptosis.  

1.6.2.2.1.1 Bax/Bak mediated OMM permeabilization 

Proteins of the Bcl-2 family regulate the integrity of the OMM. This family of 

proteins can be divided into sub-families, according to the presence of different Bcl-2 

homology (BH) domains in their structure, which confer different functions (Figure 

1.27). Multi-domain antiapoptotic proteins with four different BH domains, referred as 

BH1234, include Bcl-2 and Bcl-XL. Proapoptotic proteins include the multi-domain 

proteins (BH123) such as Bax and Bak, and the BH3-only proteins, including Bid and 

Bad. In all sub-families there are members with a transmembrane domain that allows 

their insertion into lipid membranes. 
 

Examples of proteins 
 
BH1234: Bcl-2, Bcl-XL, Bcl-w, Mcl-1, A1, 
Boo 
 
 
 
 
BH123: Bax, Bak, Bok 
 
 
BH3-only: Bad, Bid, Bim, Noxa, PUMA, 
Bik 

Figure 1.27: Structure of typical members of the subclasses of the Bcl-2 family. 
 

 
BH1234 normally reside in the OMM, protecting the mitochondria against 

permeabilization, namely by binding and neutralizing the proapoptotic members of the 

Bcl-2 family, which induce OMM permeabilization. BH1234 proteins may also be 

present in the membrane of the endoplasmic reticulum (ER). 

Members of the BH123 proapoptotic proteins have different sub-cellular 

locations. Bak is normally associated with the OMM, whereas Bax resides in the 

cytosol, under normal conditions. Bax-mediated OMM permeabilization is initiated by 
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the translocation of Bax from the cytosol and insertion in the OMM, where it forms 

openings in the OMM, alone or in association with other pro-apoptotic proteins. These 

openings can result from the assembly of Bax homo-oligomeric pores or from the 

destabilization of the lipid bilayer. 

BH3-only proteins can exert their pro-apoptotic function either by facilitating or 

activating BH123 proteins, which initiate OMM permeabilization. Facilitators, such as 

Bad, interact with BH1234 proteins, dissociating them from other pro-apoptotic 

proteins, which become free to promote OMM permeabilization. The activators, such 

as tBid (which results from the cleavage of Bid by caspase-8), directly activate BH123 

proteins, either by stimulating the translocation of Bax to the OMM or by interacting 

with Bak. 

 

The expression of Bax or Bak has been shown to be required for OMM 

permeabilization in several models of apoptosis. Models of OMM permeabilization that 

do not require Bax or Bak can exhibit permeabilization through a VDAC mediated 

mechanism (reviewed by Kroemer et al., 2007). 

 

 

1.6.2.2.1.2 IMM permeabilization – the permeability transition pore 

The permeability transition pore (PTP) is a voltage-dependent, high-condutance 

channel located in the OMM, permeable to solutes with a molecular mass up to 1.5 

kDa. The molecular composition of the PTP is still controversial, but some consensus 

in found for the contribution of dynamic interactions between VDAC, ANT and 

cyclophylin D (CypD). Other proteins thought to be involved in the formation of the PTP 

are hexokinase, peripheral benzodiazepine receptor (PBR) and Bcl-2 family members, 

in the OM, creatine kinase, in the IMS, the ANT and CypD, in the IMM. Consequences 

of the opening of the PTP are mitochondrial swelling and loss of mitochondrial 

potential. These pores are inhibited by cyclosporin A, a CypD ligand and are activated 

by Ca2+ (Zamzami and Kroemer, 2001). 
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1.6.2.2.1.3 Reorganization of cristae 

The observation that most of the mitochondrial cytochrome c (~85%) is present 

in the recently described mitochondrial compartment, the ICS (Scorrano et al., 2002), 

implicates that an additional mechanism is needed to enable complete cytochrome c 

release upon OMM permeabilization. This mechanism involves remodelling of the 

cristae, resulting in the removal of the diffusion barrier and mobilization of the 

cytochrome c from the ICS to the IMS. Reorganization of cristae is mediated by 

proteins involved in mitochondrial dynamics, in the processes of mitochondrial fusion 

and fission. The junctions between the ICS and IMS were recently shown to be 

maintained by Opa1 (optic atrophia 1) (Frezza et al., 2006), an integral protein of the 

IMM involved in mitochondrial dynamics. The proteolytic activation of Opa1 by the 

presenilin-associated rhomboid like (PARL), an integral protease present in the IMM, 

releases truncated Opa1 to the IMS (Cipolat et al., 2006). The soluble and the 

truncated forms of Opa1 interact to maintain the diffusion barrier between the ICS and 

the IMS (Frezza et al., 2006). Cleavage of Opa1 by PARL is therefore important to 

maintain cytochrome c in the ICS and PARL dysfunction may represent a mechanism 

involved in the triggering of mitochondria-dependent apoptosis. 

Changes in mitochondrial dynamics towards an increase in mitochondrial fission 

have been shown to be associated with mitochondrial-dependent apoptosis (Youle and 

Karbowski, 2005). 
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1.6.2.3 Drugs of abuse and apoptosis in the 

Central Nervous System 

Induction of neuronal cell death by apoptosis by some drugs of abuse has been 

documented. Recent studies about amphetamine-induced neuronal apoptosis are 

presented in Table 1.9.  

Amphetamines induce apoptosis upon acute and repeated exposures. 

Apoptotic pathways induced by amphetamines in neurons seem to be mainly mediated 

by the mitochondrial apoptotic pathway, associated with a decrease in Bcl-2 levels and 

direct interference with mitochondrial potential. 
 
Table 1.9: Evidences of apoptosis induced by amphetamine or its derivatives in the brain or neuronal cells. 

Drug Biological model Mechanisms Dose/time of 
exposure Reference 

MDMA Rat cortical 
neurons 

Stimulation of serotonin 
2A-receptor 200 - 1600 μM (Capela et al., 

2006) 

Meth In vivo- mouse 
striatum TUNEL positive cells 30 mg/kg, i.p. 

Tested 24h later (Zhu et al., 2006) 

d-Amph Rat cortical 
neurons 

Caspases -2, -9 and -3 
↓ΔΨm 

Acute (24 h) 
500 μM 

(Cunha-Oliveira 
et al., 2006a)  

d-Amph 
In vivo –mouse 
medium spiny 

striatal neurons 

Mitochondrial pathway 
Caspase-3, ↑p53, ↑Bax, 

↓Bcl-2 
Bax-KO mice are 

resistant 

Repeated: 10mg/kg, 
4 times, every 2h 

(Krasnova et al., 
2005) 

Meth, 
MDMA 

Rat cerebellar 
granule cells 

Caspase-3; ROS, 
cytochrome c Acute (48 h, 1-5 mM) (Jimenez et al., 

2004)  

d-Amph PC12 Caspase-3 
Cytochrome c Acute (5h, 300 μM) (Oliveira et al., 

2003)  

d-Amph PC12 ↓ATP/ADP Acute (96h, 1mM) (Oliveira et al., 
2002)  

Meth In vivo- mouse 
striatum ↑p53; ↓Bcl-2 Repeated: 10mg/kg, 

4 times, every 2h 
(Imam et al., 

2001) 

d-Amph 
Meth 

MDMA 

Neocortical 
neurons 

Bcl-xL/s changes 
c-Jun 

Acute (1-96 h, 
125μM-1mM) 

Apoptosis evaluated 
at 96h, 500μM 

(Stumm et al., 
1999)  

Meth 
Immortalized 

neural cells from 
rat mesencephalon 

Apoptosis 
Protection by Bcl-2 

overexpression 
ROS? 

1-3 mM (24 h) (Cadet et al., 
1997)  

Abbreviations: Meth- methamphetamine, d-Amph- d-amphetamine, MDMA- ecstasy, MDA-
malondialdehyde 
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Cocaine was also described to activate the mitochondrial apoptotic pathway. 

However, cocaine seems to be less toxic than amphetamine, and in some studies 

apoptotic neurons were not observed upon exposure to cocaine (Cunha-Oliveira et al., 

2006a; Dietrich et al., 2005). Recent studies on cocaine-induced neuronal apoptosis 

are presented in Table 1.10. 

 
Table 1.10: Evidences of cocaine-induced apoptosis in the brain or neuronal cells. 

Biological model Mechanisms Dose/time of 
exposure Reference 

Fetal locus coeruleus 
neurons 

Bax/Bcl-2 
Caspase-3 

Acute 
(30 min -24 h) 500 

ng/ml 
(Dey et al., 2007)  

Human neuronal 
progenitor cells 

Oxidative stress (48h) 
Cell death (72 h) Acute (30 min) (Poon et al., 2007)  

Rat cortical neurons 

Caspases -2,-9 and -3 
↓ΔΨm 

Mitochondrial apoptotic 
pathway 

No apoptotic morphology 

Acute (24 h) 
1 mM 

(Cunha-Oliveira et al., 
2006a)  

PC12 cells -rat 
Immediate early genes 
Transcription factors 

Caspases 

Acute (24h) 
50-2500 μM (Imam et al., 2005)  

In vivo – rat – 
dopaminergic brain 

structures 
No apoptosis 

20 mg/kg/day 
Acute – 1 day 

Chronic- 10 days 
(Dietrich et al., 2005)  

PC12 - rat Caspase-3 
Cytochrome c Acute (5 h) 300 μM (Oliveira et al., 2003)  

Prenatal exposure – 
rat  brains 

c-Fos 
Caspases 

Acute (binge) 
3 x 15 mg/kg – 1h 
interval in the day 

before birth 
Evaluated 24 h after 

birth 

(Mitchell and Snyder-
Keller, 2003) 

Cerebral vascular 
muscle cells - dog TUNEL positive cells Acute (12-24 h) 1 μM-

1mM (Su et al., 2003)  

Abbreviations: TUNEL- terminal dUTP nick-end labelling, ΔΨm – mitochondrial potential. 
 

 

Although there are some studies reporting heroin (Fecho and Lysle, 2000) and 

morphine (Bhat et al., 2004) cytotoxicity, the molecular mechanisms of neurotoxicity 

induced by these opiate drugs is scarcely documented. However, a few studies have 

shown the involvement of apoptosis in neuronal dysfunction induced by opiates (Table 

1.11). 
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 Table 1.11: Evidences of apoptosis induced by opiates in neuronal cells. 

Drug Biological model Mechanisms Dose/time of 
exposure Reference 

Morphine Rat spinal cord Caspase-3, MAPK, 
PKA 

10μg, twice daily, 7 
days 

(Lim et al., 2005) 

Heroin PC12 cells Cytochrome c 
Caspase-3 

30 μM (without 
serum) – 5 h 

(Oliveira et al., 
2003) 

Heroin PC12 cells ↑Dopamine 
metabolism 300 μM – 4 days (Oliveira et al., 

2002) 

Morphine Rat spinal cord 

↑Caspase-3 
↑Bax 
↓Bcl-2 

NMDA receptors 

20 μg, twice daily 
for 7 days 

(Mao et al., 
2002) 

Morphine Fetal human neurons Caspase-3 1 μM (without 
serum) – 5 days 

(Hu et al., 2002) 

Abbreviations: MAPK- mitogen activated protein kinase, PKA- protein kinase A, NMDA- N-methyl-D-
aspartate 

1.6.2.4 Drugs of abuse and neurogenesis  

Besides being toxic to neurons, drugs of abuse have also been shown to induce 

a decrease in hippocampal neurogenesis (reviewed by Eisch and Harburg, 2006), 

compromising the capacity of the brain to generate new neurons.  

In the adult mammalian brain there are two main neurogenic regions (Figure 

1.28), the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate 

gyrus (DG) in the hippocampus.  

 
Figure 1.28 Schematic diagram showing the two constitutively neurogenic regions of the adult mammalian 

CNS (SVZ/olfactory bulb and hippocampal dentate gyrus-DG). Reproduced with permission from 
Nature Reviews Neuroscience (Lledo et al., 2006) ©2006 Macmillan Magazines Ltd. 



Introduction 

 

 57

 

The first study showing that morphine and heroin induced a decrease in SGZ 

neurogenesis was published in 2000 (Eisch et al., 2000). Since then, cocaine 

(Yamaguchi et al., 2004; Mackowiak et al., 2005) and amphetamines (Teuchert-Noodt 

et al., 2000) were also reported to decrease hippocampal neurogenesis. 

Repeated or chronic exposure seems to be required to observe the inhibition in 

adult hippocampal neurogenesis induced by opiates or psychostimulants (Eisch and 

Harburg, 2006)  

Although the mechanisms involved in the decrease in neurogenesis induced by 

drugs of abuse are just starting to be investigated, they may be related with alteration 

of the proliferative environment, direct action of the drugs of abuse in the progenitor 

cells or alteration of the cell cycle of SGZ (Eisch and Harburg, 2006). 

The effect of drugs of abuse on neurogenesis seems to be selective for the 

SGZ, and does not seem to occur in the SVZ (Nixon and Crews, 2004). A decrease in 

hippocampal neurogenesis may result in long-lasting effects on learning, memory and 

cognition. 

1.7 Pharmacotherapies for drug 
addiction 

 

Some individuals that experiment drugs become addicted to them. The liability 

to addiction varies from drug to drug, being of 5-10% for cocaine and of 25-33% for 

opiates, depending not only on the effects of the drugs but also on genetic and 

environmental factors that lead to repeated drug use (reviewed by Kreek et al., 2002). 

 

Treatment for drug addiction is generally directed to alleviating the withdrawal 

symptoms, normalizing any physiological functions that were disrupted by drug use, 

and preventing craving and relapse. 
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There are three main time points for the pharmacological intervention in drug 

addiction (Figure 1.29):  

1) during active use of the drug of abuse 

2) during withdrawal (detoxification) 

3) during abstinence (or chronic maintenance or replacement treatment) - 

relapse prevention 

 

 
 

Figure 1.29: Stages of drug addiction and importance of medications. Primary prevention may be useful to 
stop the whole process of addiction, preventing the initial use of a drug. Vaccines and some 
medications may be useful to prevent sporadic intermittent use of drugs. Once addiction is 
established medications are useful and needed, because less than 20% of the addicted 
individuals sustain abstinence without medications Adapted, with permission from Nature 
Reviews Drug Discovery (Kreek et al., 2002) ©2002 Macmillan Magazines Ltd. 

 

 

 

Opiates are the drugs of abuse that induce a higher number of individuals to 

search treatment because they induce very severe symptoms. Substitution therapies 

are needed because more than 80% of the addicted individuals that do not receive 

medications are not able to sustain abstinence and eventually relapse to drug use. 

There are three effective substitution therapies for the long-term treatment of opiate 

addiction: methadone, levo-alpha-acetyl-methadol (LAAM) - two opioid receptor 

agonists, and buprenorphine - a partial opioid receptor agonist - alone or combined 

with naloxone, an antagonist of opioid receptors. The molecular mechanisms and the 

main characteristics of these treatments are described in Table 1.12. 
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Table 1.12: Substances currently used to treat opiate addiction (based on: Pouletty, 2002; Kreek et al., 

2002). 
  

Substance Characteristics 
Methadone μ-opioid receptor agonist  

Prevents withdrawal symptoms without showing opiate-like effects  
Reduces or eliminates drug craving  
Behavioural treatment needed 

LAAM μ-opioid receptor agonist  
Analogue of methadone 

Buprenorphine μ-opioid receptor partial agonist  
Slow onset and long duration of action  
It’s more difficult to overdose unintentionally 
(antagonistic effect prevails in overdosage)  
Partial agonism may  limit maximum effectiveness 

Naloxone μ-opioid receptor antagonist  
Combined with buprenorphine to prevent its abuse liability  
(naloxone is only bioavailable when injected, blocking the buprenorphine 
agonist effect) 

Naltrexone μ-opioid receptor antagonist  
Little effectiveness in the treatment of opiate addiction  
Prevents endogenous opioid activity 

 

 

Treatment with methadone consists in the substitution of one opioid for another, 

but it can improve the physical and psychological health and social functioning. It also 

reduces illicit drug use, criminality and the risk for contracting infectious diseases (Kaye 

et al., 2003). 

However, susbstitution therapy with methadone has a high initial dropout rate 

(30-90%) and an early relapse rate (Kaye et al., 2003). Combination of methadone with 

clonidine, an α2-receptor agonist, may improve treatment success. α2-Receptors are 

G-protein coupled adrenergic receptors that inhibit adenylyl cyclase. α2-Receptor 

agonists are thus helpful to suppress noradrenergic hyperactivity observed during 

withdrawal, which results in symptoms such as nausea, vomiting, cramps, sweating, 

tachycardia and hypertension. 

 

Another possible treatment is the ultrarapid detoxification, which involves the 

treatment with opioid receptor antagonists, to eliminate the withdrawal symptoms (Kaye 

et al., 2003). The withdrawal syndrome is precipitated by the administration of opioid 
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receptor antagonists (naloxone and/or naltrexone – see Table 1.12), under general 

anaesthesia. This treatment has the advantage of being a very short detoxification 

process, lasting 4 to 6 hours. However, this treatment only prevents further withdrawal 

symptoms and does is not effective in preventing relapse. 

 

Other pharmacotherapies for drug addiction are being developed (reviewed by 

Kreek et al., 2002). These are mainly directed against μ-opioid receptor and their 

endogenous ligands (β-endorphin and enkephalin peptides), the stress-responsive 

axis, components of the dopaminergic system (dopamine receptor antagonists, partial 

agonists or high efficacy agonists and monoamine reuptake inhibitors) and k-opioid 

receptor and dynorphin peptides (k-opioid receptor antagonists, partial agonists and 

high efficacy, selective agonists).  

Vaccines against the drugs of abuse could also be useful to decrease the 

kinetics of entry of the drugs into the brain and reduce their acute effects. 

Other therapeutic targets could be explored in the future, namely 1) preventing 

the toxicity and destruction of synapses, 2) enhancing cognition and improving 

decision-making capacities and 3) reducing the development of drug-associated 

memories coupled to conditional cues, which lead to relapse.  
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OBJECTIVES 

Substance abuse and addiction are the most costly of all neuropsychiatric 

disorders (Madras, 2006). 

In the last decades, much progress has been achieved in the understanding the 

effects of the drugs of abuse on the brain. However, efficient treatments that prevent 

relapse have not been developed. 

Understanding the mechanisms that underlie brain dysfunction observed in 

these individuals may contribute to improve the treatment of drug addiction, which may 

have social and economic consequences. 

 

The main objective of the work presented in Part III, is to study the neuronal 

dysfunction and neurotoxicity induced by the drugs of abuse cocaine, amphetamine 

(Chapter 1) and heroin (Chapter 2). 

 

 

The specific objectives were: 

 

1) To study the dysfunction of dopaminergic cells upon chronic exposure to 

cocaine, amphetamine – Manuscripts 1 (Chapter 1) - and street heroin- Manuscript 2 

(Chapter 2), compared to H2O2 

 

2) To analyse the contribution of NMDA receptor subunits (NR1/NR2A or 

NR1/NR2B) to street heroin toxicity – Manuscript 3 (Chapter 2) 

 

3) To investigate the mechanisms of neurotoxicity of street heroin in cortical 

neurons – Manuscript 4 (Chapter 2) 
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2.1 Materials 
Optimem medium, Neurobasal medium and B27 supplement were supplied by 

Gibco (Paisley, UK). RPMI, DMEM, Chymostatin, leupeptin, antipain, pepstatin A, N-

Acetyl-Ile-Glu-Pro-Asp-p-nitroaniline (Ac-IEPD-pNA), N-Acetyl-Val-Asp-Val-Ala-Asp-p-

nitroanilide (Ac-VDVAD-pNA), N-Acetyl-Val-Glu-Ile-Asp-p-nitroanilide (Ac-VEID-pNA) 

and N-Acetyl-Leu-Glu-His-Asp-p-nitroanilide (Ac-LEHD-pNA) trypsin, Soybean Trypsin 

Inhibitor (SBTI), 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide 

(MTT), anti-microtubule associated protein 2 (MAP-2), ifenprodil and glutathione ethyl 

ester (GSH-EE) were supplied by Sigma Chemical Co (St Louis, MO, USA). Anti-

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), trolox and N-Acetyl-Asp-Glu-

Val-Asp p-nitroanilide (Ac-DEVD-pNA) were supplied by Calbiochem (Darmstadt, 

Germany). PC12 cells and HEK293 cells were obtained from ATCC (Manassas, VA, 

USA). NT-2 cells were a kind gift from Dr. Russell Swerdlow (University of Virginia 

Health System, VA, USA). The superfect transfection reagent was obtained from 

Qiagen (Hilden, Germany). The rat NR1 (NR1a), NR2A and NR2B cDNA clones 

inserted respectively in pEGFP-N3, pcDNAI, or pDP3 were a generous gift from Dr. 

John Woodward (Medical University of South Carolina, Charleston, SC, USA). The 

antibodies anti-caspase 3, anti-caspase 9, anti-Bax and anti-cleaved poly(ADP-ribose) 

polymerase (PARP) were supplied by Cell Signaling (Beverly, MA, USA); ECF and 

anti-rabbit IgG were obtained from Amersham Biosciences (Piscataway, NJ, USA); 

MitoTracker Green, Hoechst 33342, Alexa anti-rabbit IgG 488, Alexa anti-mouse IgG 

594 and rhodamine 123 were supplied by Molecular Probes (Eugene, OR, USA). 

Antibodies against the native and denatured forms of cytochrome c were obtained from 

PharMingen (San Diego, CA, USA). MK-801 was a kind gift from Merck Sharp & 

Dohme Research Laboratories (Merck & Co. Inc., Whitehouse Station, NJ, USA). 

Idebenone was a kind gift from Seber (Odivelas, Portugal). Clocinnamox, D-Phe-Cys-

Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP), 2,3-dioxo-6-nitro-1,2,3,4-tetrahydro-

benzoquinoxaline-7-sulfonamide (NBQX), d-2-amino-5-phosphono-pentanoic acid (d-

AP-5) and naltrindole were purchased from Tocris (Bristol, UK). Anti-Bcl-2 was 
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obtained from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Amphetamine, 

May-Grünwald and Giemsa solutions were obtained from Merck (Darmstadt, 

Germany). Cocaine and a sample of seizure street heroin was provided by the Instituto 

da Droga e da Toxicodependência (IDT, Lisbon, Portugal). Morphine and codeine 

hydrochlorides were obtained from Uquipa (Lisbon, Portugal).  

 

2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Culture and incubation of PC12 cells 

 PC12 cells were cultured in 75 cm2 flasks, in RPMI 1640 medium 

supplemented with 10% (v/v) horse serum, 5% (v/v) bovine serum, 50 U/mL penicillin, 

and 50 mg/mL streptomycin. Cultures were maintained at 37ºC in a humidified 

incubator containing 95% air and 5% CO2. In one study, the cells were plated on poly-

L-lysine coated multiwells at a density of 50,000 cells/cm2 for MTT studies and 160,000 

cells/cm2 for HPLC analysis.  

For chronic treatment, PC12 cells were cultured for 7-12 months in RPMI 

medium supplemented with non-toxic concentrations of cocaine (30 μM), amphetamine 

(30 μM), street heroin (10 μM) or H2O2 (10 μM). Toxicity studies revealed similar 

responses in cells chronically exposed to the drugs or H2O2 from 7 to 12 months (data 

not shown). For acute treatment, the cells were exposed to toxic concentrations of 

cocaine (3 mM), amphetamine (1 mM), street heroin (300 μM) or H2O2 (50-75 μM), for 

24-96 h. Concentrations of the stimulant drugs (Oliveira et al., 2002) or H2O2 (data not 

shown) for chronic or acute experiments were previously established in the PC12 cells. 

Street heroin was dissolved in DMSO and the maximal concentration of DMSO (0.2 %) 

used in the experiments was not toxic per se. 
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For the study of the activity of antioxidant enzymes, the cells were grown in 

suspension, and passed twice a week, in culture medium (control) or in culture medium 

supplemented with non-toxic concentrations of cocaine (30 μM), amphetamine (30 μM) 

or H2O2 (10 μM), for 1 to 4 weeks.   

2.2.1.2 Culture and transfection of HEK293 cells  

HEK 293 cells were obtained from the American Type Culture Collection 

(Manassas, VA, U.S.A.) and were grown in Dulbecco’s modified Eagle’s medium 

(DMEM; Sigma Chemical Co., St. Louis, MO, U.S.A.) supplemented with 10% fetal 

bovine serum (Biochrom  AG, Berlin, Germany), penicillin (100 U/ml) and streptomycin 

(100 µg/ml). Cells were grown to 50-75% confluence in poly-L-lisine coated multiwells 

and transfected using the superfect transfection reagent (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions. In co-transfections the NR1:NR2 plasmid 

ratio was 1:4. Cells were transfected with the DNA-superfect mixture for 4 h and further 

incubated for 24 h with 10- 1000 μM heroin (provided by the Instituto da Droga e da 

Toxicodependência, Lisbon, Portugal) and/or 10 μM MK-801, in fresh culture media. 

The rat NR1 (NR1a), NR2A, and NR2B cDNA clones inserted respectively in pEGFP-

N3, pcDNAI or pDP3 were a generous gift from Dr. John Woodward (Medical 

University of South Carolina, Charleston, U.S.A.). NR1 is expressed as a fusion protein 

with EGFP and is referred in the manuscript as NR1-GFP. 

2.2.1.3 Culture of cortical neurons  

The frontal cortices of rat embryos (16-17 days) were dissected and the cells 

washed with isolation medium (in mM: 120.9 NaCl, 4.83 KCl, 1.22 KH2PO4, 25.5 

NaHCO3, 13.0 glucose, 10.0 HEPES) containing 0.3% BSA. The cells were 

sedimented at 1000 rpm and dissociated with isolation medium, supplemented with 

0.02% trypsin and 0.04 mg/mL DNAse for 10 min at 37ºC. Trypsin was inactivated by 

adding 0.075% SBTI (trypsin inhibitor) and the cells were centrifuged at 1000 rpm for 5 

min. The cells were then mechanically dissociated in isolation medium containing 
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0.012% SBTI and centrifuged at 1000 rpm for 5 min. The resulting pellet was 

ressuspended in Neurobasal medium with B27 supplement, 0.2 mM glutamine, 0.1 

mg/mL streptomycin and 100 U/mL penicillin (in 5% CO2/ 95% air), and plated on poly-

L-lysine (1 mg/mL) coated multiwells or coverslips. Cortical cultures contained a small 

percentage of glial cells (less than 10%) as assessed by immunofluorescence using 

anti- MAP2 and anti-glial fibrillary acidic protein (GFAP) (not shown). After 6 days in 

culture, the cells were incubated with street heroin (4.3- 1280 μg/mL), pure heroin (215 

or 840 μM), morphine (4.5 or 17.6 μM) or 6-MAM (47 or 183 μM), for 24 h, unless 

otherwise specified. Street heroin was dissolved in DMSO and the maximal 

concentration of DMSO (0.2 %) used in the experiments was not toxic per se (not 

shown). Where specified, 1 μM z-VAD-fmk, 1 μM naloxone, 1 μM clocinnamox, 1 μM 

CTOP, 1 μM naltrindole, 2 μM MK-801, 3 μM ifenprodil, 100 μM d-AP-5, 10 μM NBQX, 

3 μM idebenone, 100 μM trolox or 100 μM GSH-EE were preincubated for 30-60 min 

and were present in the culture media throughout all the experiments. The 

concentrations of the compounds tested were chosen based on previous studies (Gil et 

al., 2003; Araujo et al., 2003; Williams et al., 2001).  

2.2.1.4 Culture of NT-2 cells  

The production of the NT2 rho0 cell line used in these experiments was 

previously described (Swerdlow et al., 1997). NT-2 rho+ and rho0 cells were grown 

routinely in 75 cm2 tissue culture flasks in Optimem Medium, supplemented with 10% 

heat inactivated fetal calf serum, penicillin (50 U/mL), and streptomycin (50 µg/mL). 

Uridine (50 µg/mL) and pyruvate (200 µg/mL) were also added to rho0 cell growth 

medium. The cells were grown and maintained at 37°C in a humidified incubator 

containing 95% air and 5% CO2. The cells were plated at 0.1×106 cm-2 for cell viability 

assay and incubated with street heroin (128 μg/mL) for 24 h. 
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2.2.2 Assessment of cell viability 

2.2.2.1 MTT assay  

 Metabolic cell viability was measured using the MTT reduction assay, at 570 

nm (Mosmann, 1983). The cells were incubated with 0.5 mg/mL MTT in Na+ medium 

(in mM: 140 NaCl, 5 KCl, 1 MgCl2, 1 NaH2PO4, 1.5 CaCl2, 5.6 glucose, 20 HEPES, pH 

7.4) for 2 h and the precipitated salt was dissolved with 0.04 M HCl in isopropanol. The 

capacity of treated cells of reducing the tetrazolium salt was expressed as a 

percentage of absorbance (at 570 nm) in control cells. 

2.2.2.2 LDH assay  

The integrity of the plasma membrane of cortical neurons was determined by 

monitoring the leakage of lactate dehydrogenase (LDH), by following the rate of 

conversion of NADH to NAD+ at 340 nm, according to Bergmeyer and Bernt (1974). 

Alterations in membrane integrity were expressed as a percentage of LDH release, 

over the total LDH, compared to control cells. 

2.2.3 Measurement of dopamine and DOPAC 
levels 

The intracellular levels of dopamine and dihydroxyphenylacetic acid (DOPAC) 

were determined after cell extraction with 0.1 M perchloric acid (0-4ºC). The cells were 

centrifuged at 15,800 xg for 10 min, and the pellet was solubilized with 1 M NaOH for 

total protein analysis using the Sedmak method (Sedmak and Grossberg, 1977). The 

resulting supernatants, stored at –80ºC, were extracted with alumina, using 

dihydroxybenzylamine (DHBA) as an internal standard, and assayed for dopamine and 

DOPAC analysis by HPLC with electrochemical detection, as described previously 



Materials and Methods 

 

 70 

(Warnhoff, 1984). Dopamine accumulated in the cultured media upon acute exposure 

to cocaine or amphetamine was determined using the same procedure. 

2.2.4 Morphological analysis of PC12 cells 
Cell morphology was evaluated by staining cell smears with May-Grünwald-

Giemsa staining procedure. Naïve cells and cells chronically exposed to the stimulant 

drugs or to H2O2 (1x106 cells), before or after an acute exposure to 50 μM H2O2, were 

centrifuged at 200 xg for 5 min, ressuspended in 30 μl of FBS and placed on a slide for 

analysis at the microscope. Cell smears were stained with May-Grünwald and Giemsa 

solutions. Cell morphology was analysed by optic microscopy using a Leitz Dialux 20 

microscope associated with a digital camera. 

2.2.5 Measurement of intracellular ATP 
levels 

Intracellular ATP, ADP and AMP levels were determined after cell extraction 

with 0.3 M perchloric acid (0-4ºC). The cells were centrifuged at 15,800 xg for 10 min, 

and the pellet was solubilized with 1 M NaOH for total protein analysis using the Biorad 

protein assay (Biorad). The supernatants were neutralized with 3 M KOH in 1.5 M Tris, 

and centrifuged at 15,800 xg for 10 min. The resulting supernatants, stored at –80ºC, 

were assayed for adenine nucleotide determination, by separation in a reverse-phase 

HPLC, as described previously (Rego et al., 1997). 

2.2.6 Evaluation of the activity of 
antioxidant enzymes 

PC12 cells were centrifuged at 1000 x g for 10 minutes and then ressuspended 

in 200 μl of a lysis buffer containing 10 mM HEPES, 10 mM NaCl, 3 mM MgCl2, 1 mM 

EGTA, 0.1% Triton X-100, 2 mM DTT, 1:1000 of a protease inhibitor cocktail 

(chymostatin, leupeptin, antipain- serine and cysteine protease inhibitors and pepstatin 
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A - potent inhibitor of acid proteases; 1mg/mL each); 0.1 mM PMSF, 50 mM NaF, pH 

7.5. The cells were allowed to lyse on ice, for 40 minutes, and then the samples were 

centrifuged at 2300 x g for 12 min, 4ºC. The supernatants were collected and stored at 

-20ºC. 

2.2.6.1 Glutathione peroxidase (GPx) activity 

assay 

A reaction mixture containing 5 mM K2HPO4, 5 mM KH2PO4, 0.1 mM EDTA, 

1mM GSH, 0.24 U/mL glutathione reductase and 0.25 mM NADPH was freshly 

prepared from stock solutions. Five μl of sample were added to 175 μl of the reaction 

mixture and tested for GPx activity by initiation with 1.1 mM tert-butyl hydroperoxide 

(20 μl). The oxidation of NADPH was monitored at 340 nm for 5 minutes, against 

blanks prepared without NADPH, at 25ºC in a Spectramax Plus 384 microplate reader 

(Molecular Devices). The acitivity of GPx was calculated and normalized in percentage 

of the control. 

2.2.6.2 Glutathione reductase (GRed) activity 

assay 

A reaction mixture containing 100 mM K2HPO4, 1 mM EDTA and 0.1 mM 

NADPH was freshly prepared from stock solutions. Twenty μl of sample were added to 

170 μl of the reaction mixture and tested for GRed activity by initiation with 1 mM 

GSSG (10 μl). The oxidation of NADPH was monitored at 340 nm for 5 minutes, at 30 

ºC, against blanks prepared without GSSG, in a Spectramax Plus 384 microplate 

reader (Molecular Devices). The acitivity of GRed was calculated and normalized in 

percentage of the control. 
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2.2.6.3 Superoxide dismutase (SOD) activity 

assay 

A reaction mixture containing 43.75 mM KH2PO4, 0.088 mM EDTA and 0.025 

mM hypoxanthine, 0.025% triton X-100 and 0.1 mM NBT was freshly prepared from 

stock solutions. 10 μl of sample were added to 187 μl of the reaction mixture and 

tested for SOD activity by initiation with 0.025 U/mL Xanthine Oxidase (3 μl). The 

reduction of NBT was monitored at 560 nm for 5 minutes at 25ºC, against blanks 

prepared without hypoxanthine, in a Spectramax Plus 384 microplate reader (Molecular 

Devices). The maximum rate of NBT reduction mediated by the superoxide radical was 

determined in wells prepared without any test sample. The activity of SOD in the test 

samples was proportional to the percentage of inhibition of the maximum NBT 

reduction. The acitivity of superoxide dismutase was calculated and normalized in 

percentage of the control. 

 

2.2.7 Chemical analysis 
A street heroin sample was analysed in order to quantify diacetylmorphine, 

morphine, 6-MAM, codeine and acetylcodeine content. HPLC analyses were 

conducted on an HPLC system (Merck/Hitachi–LaChrom) equipped with a diode-array 

detector (DAD). The analytical column was a commercially prepacked reverse phase 

(RP-18) column (250 × 4.0 mm i.d., 5 μm) with precolumn (Waters, Watford, UK). An 

isocratic elution was performed at a flow rate of 1.5 mL min-1 and the absorbance was 

measured at 216 nm. The analysis was carried out, at room temperature, using a 

solution of 60% 10 mM aqueous ammonium acetate (pH 3) plus 40% acetonitrile as 

mobile phase. Prior to use, the solutions were filtered and subsequently sonicated for a 

minimum of 15 min. The volume of sample injected was 20 μL. A calibration curve of 

six standards was prepared for each of the compounds (heroin, morphine, 6-MAM, 

codeine and acetylcodeine). Compounds on seizure street heroin samples were 



Materials and Methods 

 

 73

identified by comparison of their retention times with those of known standards. For this 

study heroin and analogs were synthesized due to the nonavailability of the 

compounds from commercial sources. Heroin and acetylcodeine were synthesized by 

the classic method of acetylation, using acetic anhydride and pyridine (Garrido et al., 

2004b; Garrido et al., 2004a) at room temperature. 6-Monoacetylmorphine was 

obtained by deacetylation of the phenolic group of heroin under mild conditions 

(Garrido et al., 2004b). Qualitative and quantitative analysis of the seizure street heroin 

was accomplished using HPLC with UV detection. Street heroin maintained the same 

composition throughout the experiments. Qualitative thin-layer chromatography was 

used to detect the presence of caffeine and sugars (Moffat, 1986; Chiarotti et al., 1991; 

Sharma et al., 2005).  

2.2.8 Immunocytofluorescence 

2.2.8.1 Cytochrome c  

 The cells were incubated with MitoTracker Green (1 μM) in Na+ medium for 1 h. 

After fixation in 4% paraformaldehyde containing 4% sucrose in saline buffer (PBS, in 

mM: NaCl 137, KCl 2.7, K2HPO4 1.4, KH2PO4 4.3 at pH 7.4), the cells were incubated 

with 20 mM glycine. After cell permeabilization in the presence of saponin (0.1% in 20 

mM glycine), the cells were incubated with a specific antibody against the native form 

of cytochrome c (PharMingen, 1:100 in 0.1% saponin), which was detected by using a 

secondary antibody Alexa Fluor 594 anti-mouse IgG (1:200 in 0.1% saponin). The cells 

were visualized in a confocal microscope (Bio-Rad MRC 600). 

2.2.8.2 Cleaved PARP 

The cells were fixed in 4% paraformaldeyde, permeabilized in 0.2% Triton X-

100, for 2 min, and blocked in 3% BSA for 30 min. The fragment resulting from the 

cleavage of PARP by caspase-3 was detected by using a specific primary antibody 
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(1:100 in 3% BSA) and a secondary Alexa anti-rabbit 488 antibody (1:200 in 3% BSA). 

The nuclei were stained by using Hoechst 33342 (1 µg/mL) and the cells were 

visualized in an epifluorescence microscope (Zeiss Axioscope). 

2.2.9 Fluorimetric evaluation of rhodamine-
123 cellular retention 

The cells were loaded with 1 μM rhodamine-123 for 10 min, in the dark, at 37ºC. 

The fluorescence (λex 505nm and λem 525nm) was recorded for 10 min, before and 

after permeabilization with 0.5% Triton X-100, in a SPEX Fluorolog spectrometer 

equipped with a thermostatic water bath. Rhodamine-123 retention was determined by 

the difference between total fluorescence (after permeabilization) and the initial value 

of fluorescence. Because positively charged rhodamine-123 is retained by the 

mitochondria under normal conditions, corresponding to a high mitochondrial 

membrane potential (ΔΨm), a decrease in cellular retention of rhodamine-123 was 

associated with a decrease in ΔΨm (Palmeira et al., 1996). 

2.2.10 Colorimetric evaluation of caspases-
like activity 

The cells were dissociated in lysis buffer [in mM: 25 HEPES, 2 MgCl2, 1 EDTA, 

1 EGTA, 2 DTT, 0.1 PMSF and 1 µg/mL of protease inhibitor cocktail. The resulting 

extracts were frozen and thawed three times, centrifuged at 15,000 g for 10 min (4ºC), 

and the protein (supernatant fraction) was quantified by the Bio-Rad protein assay. The 

supernatant was tested for the activity of caspases 2, 3, 6, 8 and 9, at 405 nm, after 

reaction with the respective substrates Ac-VDVAD-pNA, Ac-DEVD-pNA, Ac-VEID-pNA, 

Ac-IEPD-pNA and Ac-LEHD-pNA (100 μM, for 2 h at 37ºC) as described by Gurtu et al 

(1997). The results were normalized over the control absorbance value, using the 

same amount of protein (25-40 μg/assay). 
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2.2.11 Western blotting 

2.2.11.1 Sample preparation  

For the analysis of caspases activation by western blotting, the cells were 

treated as for the caspases activity assay. For the analysis of Bcl-2 and Bax levels, 

total extracts were obtained using total extraction buffer (in mM: 20 Tris (pH 7); 100 

NaCl; 2 EDTA; 2 EGTA, 50 NaF; 1 sodium orthovanadate; 0.1 PMSF) supplemented 

with 100 nM okadaic acid, 1 µg/mL of protease inhibitor cocktail, 0.5% SDS and 0.5% 

Triton X-100. For the analysis of cytochrome c release, cell lysates were homogenized 

in sucrose buffer (in mM: 250 sucrose; 20 HEPES, 10 KCl; 1.5 MgCl2; 1 EDTA; 1 DTT; 

0.1 PMSF) supplemented with 1 µg/mL of protease inhibitor cocktail. The mitochondrial 

fraction (P2) was separated by centrifugation at 500 x g for 12 min (4ºC) followed by 

centrifugation of the resulting supernatant at 12,000 x g for 20 min (4ºC). Cytosolic 

fraction (P3) was obtained upon protein precipitation of the resulting supernatant with 

5% trichloroacetic acid, followed by centrifugation at 15,800 x g for 10 min and pH 

neutralization with KOH. 

2.2.11.2 Immunoblotting procedures  

Proteins (30-50 μg/sample) were denatured and separated by SDS-PAGE 

(12%), and then transferred to a PVDF membrane, which was then incubated with 

rabbit anti-caspase-3 (1:1000), rabbit anti-caspase-9 (1:1000), mouse anti-Bcl-2 

(1:500), rabbit anti-Bax (1:1000), mouse anti-cytochrome c (1:500) and mouse anti-

GAPDH (1:2500) antibodies. The secondary detection was performed using anti-

mouse IgG or anti-rabbit IgG alkaline-phosphatase-bound antibodies (1:20000). The 

bands were developed with ECF, visualized in a VersaDoc imaging system (Bio-Rad) 

and quantified using the Quantity One software (Bio-Rad). 
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2.2.12 Statistical analysis 
Data are the mean ± SEM from at least three independent experiments, 

performed in duplicate or triplicate. Statistical analysis was performed by one-way 

ANOVA with Bonferroni post hoc test or by the Student’s t-test, when comparing two 

Gaussian populations (a P<0.05 was considered significant). 
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3.1.1.1 Abstract 

Repeated abuse of the stimulant drugs cocaine and amphetamine, is 

associated with extraneuronal dopamine accumulation in specific brain areas. 

Dopamine may be cytotoxic through the generation of ROS, namely H2O2, resulting 

from dopamine oxidative metabolism. In this work we studied the cytotoxicity in PC12 

cells (a dopaminergic neuronal model) chronically and/or acutely exposed to cocaine or 

amphetamine, as compared to H2O2 exposure. Chronic cocaine treatment induced 

sensitization to acute cocaine insult and increased cocaine-evoked accumulation of 

extracellular dopamine, although no changes in DOPAC levels were observed. 

Moreover, dopamine was depleted in cells chronically exposed to amphetamine and 

acute amphetamine toxicity persisted in these cells, indicating that dopamine was not 

involved in amphetamine cytotoxicity. PC12 cells chronically treated with H2O2 were 

totally resistant to acute H2O2, but not to acute cocaine or amphetamine exposure, 

suggesting that the toxicity induced by these stimulant drugs is unrelated to adaptation 

to oxidative stress. Interestingly, chronic cocaine treatment largely, but not completely, 

protected the cells against a H2O2 challenge, whilst a decrement in intracellular ATP 

was observed. H2O2 resistance of cells chronically exposed to H2O2 appears to involve 

changes in the activity of GPx, GRed and SOD, whereas chronic cocaine increased 

GPx activity only, possibly explaining the incomplete resistance to acute H2O2. PC12 

cells chronically exposed to amphetamine initially exhibited changes in GPx, GRed and 

SOD activities that returned to control levels after 4 weeks of exposure. This biphasic 

effect may be explained by dopamine depletion evoked by amphetamine, and may 

explain the lower level of resistance to acute H2O2 of cells chronically exposed to 

amphetamine, in comparison with cells chronically exposed to cocaine. Together, these 

results indicate that cellular adaptations of PC12 cells to cocaine and amphetamine are 

associated with changes in dopamine levels and in the activity of antioxidant enzymes, 

suggesting the involvement of oxidative stress in the chronic effects of these drugs of 

abuse. 

Keywords: Amphetamine, cocaine, drug abuse, neurotoxicity, oxidative stress 
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3.1.1.2 Introduction 

The continuous abuse of drugs is sustained by the activation of the reward 

circuits in the brain, which is mainly associated with changes in dopaminergic activity 

(Di Chiara and Imperato, 1988). The stimulant drugs amphetamine and cocaine are 

known to increase extraneuronal dopamine levels through different mechanisms. 

Amphetamine can redistribute the dopamine stored in vesicles to the cytoplasm (Sulzer 

et al., 1995), inducing non-vesicular release of dopamine, which is mediated by the 

plasma membrane DAT (Kahlig et al., 2005). Amphetamine induces an increase in 

cytosolic dopamine that may contribute to its increased intracellular metabolism by the 

mitochondrial enzyme MAO. On the other hand, cocaine inhibits DAT (Brown et al., 

2001), preventing the reuptake of dopamine to the nerve terminal, thereby increasing 

the levels of dopamine in the synaptic cleft.  

Dopaminergic cells are particularly sensitive to oxidative stress because 

dopamine is easily oxidized by MAO or by auto-oxidation, resulting in the production of 

H2O2. Although amphetamine may inhibit MAO (Ramsay and Hunter, 2002), it was 

previously demonstrated that amphetamine-induced H2O2 production is MAO-

dependent (Duarte et al., 2004). Another source of intracellular H2O2 is the enzyme 

SOD, which detoxifies the radical O2
.-, with consequent formation of H2O2. H2O2 is 

detoxified by the antioxidant enzymes GPx and catalase. GPx reduces H2O2 into water, 

and simultaneously oxidizes two molecules of GSH, forming GSSG. GSSG is 

converted back to GSH by GRed. Catalase also converts H2O2 into water. However, 

while GPx is present in the brain mainly in the cytosol and mitochondria, catalase is 

restricted to the peroxisomes and has a modest activity in the brain (Mavelli et al., 

1982). 

ROS have been frequently associated with neuronal cell death due to the 

oxidation of amino acids, phospholipids and nucleic acids (reviewed by Cadet and 

Brannock, 1998). Accordingly, acute exposure to H2O2 has been reported to induce 

apoptotic cell death in PC12 cells (Benedi et al., 2004; Jang and Surh, 2004). In 

contrast, cells chronically exposed to low concentrations of H2O2 become resistant to 

H2O2-induced toxicity (Wiese et al., 1995; Davies, 1999). Thus, acute H2O2 can be 
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used as a model of cytotoxicity, whereas chronic treatment of PC12 cells with H2O2 is a 

model of cellular adaptation (Jackson et al., 1994).  

Chronic exposure to the drugs of abuse in humans induces long-lasting 

changes in gene expression, and some of these changes may be correlated with the 

development of the compulsive behaviour associated with drug addiction (Rhodes and 

Crabbe, 2005, for review). Changes in gene expression induced by chronic drug 

exposure may underlie changes in the cellular responses to stress. These alterations 

are also in the basis for the development of sensitization or tolerance, in human drug 

abusers, in which the response to the same dose of a drug is increased or decreased, 

respectively. These processes contribute to the withdrawal symptoms and to increased 

motivation to drug abuse (Nestler, 2004b). Thus, we hypothesize that chronic drug 

exposure may also be involved in altered responses to cytotoxic insults, such as an 

acute exposure to the same drug or to other cytotoxic stimuli, such as oxidative stress.  

Psychostimulant drugs of abuse have been suggested to induce oxidative 

stress in the brain, upon chronic exposure. Moreover, there are evidences of 

adaptations to oxidative stress upon psychostimulant exposure in vivo (Frey et al., 

2006b; Carvalho et al., 2001; Acikgoz et al., 2000). Chronic d-amphetamine exposure 

has been shown to induce changes in the activity of GPx, GRed (Carvalho et al., 

2001), SOD and catalase (Frey et al., 2006b) in the rat brain. Changes in the activity of 

SOD, GPx and in the levels of GSH and hydroperoxides in the rat brain were also 

observed upon chronic exposure to cocaine (Dietrich et al., 2005). However, it has not 

been previously demonstrated if adaptation to oxidative stress occurs upon direct 

exposure of dopaminergic cells to amphetamine and cocaine. 

Taking into account our previous studies with PC12 cells exposed to the 

stimulant drugs (Oliveira et al., 2002), we analyzed the toxicity of cocaine, 

amphetamine or H2O2 (acute exposure) in PC12 cells chronically exposed to non-toxic 

concentrations of cocaine, amphetamine or H2O2 for 7-12 months, as compared to 

PC12 cells non-exposed to the drugs of abuse (naïve cells). We also evaluated the 

intracellular ATP/ADP levels and the activity of the antioxidant enzymes GPx, GRed 

and SOD upon continuous exposure of PC12 cells to cocaine, amphetamine and H2O2 

in the initial phases of cell adaptation, at 1 to 4 weeks.  
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Our data suggest that the cytotoxic responses of PC12 cells are modified 

depending on the chronic exposure to cocaine, amphetamine or H2O2. In particular, 

increased toxicity of cocaine in cells chronically exposed to this stimulant drug may 

contribute to the behavioural sensitization of drug addicts after acute cocaine exposure. 

Furthermore, changes in energy metabolism and in the activity of antioxidant enzymes 

are involved in the chronic effects of cocaine, amphetamine and H2O2. 
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3.1.1.3 Results 

3.1.1.3.1 Chronic cocaine treatment sensitizes PC12 cells 

to acute cocaine  

The toxicity of acute exposure to stimulant drugs was analyzed in naïve PC12 

cells and cells chronically exposed to cocaine, amphetamine or H2O2, by following the 

MTT reduction assay (Figure 3.1).  

 

 
Figure 3.1: Acute effect of cocaine, amphetamine or H2O2 on the viability of PC12 cells chronically 

exposed to the stimulant drugs of abuse or H2O2. Naïve PC12 cells or PC12 cells chronically 
exposed to cocaine, amphetamine or H2O2 for 7-12 months were incubated with 1 mM 
amphetamine (amph) or 3 mM cocaine for 4 days or 75 μM H2O2 for 24 h. Cell viability was 
determined by the MTT reduction assay. Data were normalized in percentage of the 
respective controls, typically with absorbance values (at 570 nm) of 0.42 (naïve), 0.84 
(cocaine), 0.83 (amphetamine) and 0.90 (H2O2). Data are the means ± SEM of at least 3 
experiments performed in triplicate. Statistical significance: ***P<0.001 as compared with the 
respective control; ###P<0.001 compared to naïve cells. 
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The effect of long-term exposure to cocaine, amphetamine or H2O2 in cell 

viability was not possible to assess using the MTT assay because cells chronically 

exposed to these agents revealed an increased capacity to reduce MTT (about 2 fold), 

which can result from an increase in cell proliferation and/or an increase in cell viability. 

Exposure of dividing mammalian fibroblasts to low concentrations of oxidants (3-15 µM 

H2O2) was previously reported to stimulate cell growth and proliferation (Davies, 1999). 

Thus, it is possible that the increase in MTT reduction observed in cells chronically 

exposed to H2O2 or to the stimulants is due to an increase in cell proliferation rather 

than a direct effect in cellular reduction systems or in cell viability. Therefore, MTT 

reduction data were normalized as a percentage of control for each sub-cell line to 

evaluate the susceptibility induced by acute exposure to the agents, after different long-

term pre-treatments. Acute cocaine exposure (3 mM, for 96 h) decreased the viability 

of naïve cells by about 40%, whereas in cells previously exposed to cocaine the 

decrement in cell viability was about 60%. Thus, chronic cocaine sensitized PC12 cells 

to acute cocaine toxicity by about 20%. In contrast, acute incubation with amphetamine 

(1 mM, for 96 h) induced the same decrease in cell viability (about 40%) in naïve cells 

or in cells previously exposed to amphetamine (Figure 3.1).  

Since cocaine and amphetamine are known to interfere with the dopaminergic 

system, we evaluated the effects of chronic and acute exposure to these 

psychostimulants in the accumulation of extracellular dopamine (Figure 3.2 A,B), 

intracellular dopamine levels (Figure 3.2 C,D) and the endogenous levels of its 

metabolite, DOPAC (Figure 3.2.E,F).  
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Figure 3.2: Dopamine and DOPAC levels upon an acute exposure to cocaine or amphetamine, of naïve 

cells or cells chronically exposed to cocaine (A,C,E) or amphetamine (B,D,F), for 7-12 
months. The cells were acutely exposed to cocaine (3 mM) or amphetamine (1 mM), for 24 h. 
Intra and extracellular dopamine and DOPAC levels were determined by HPLC with 
electrochemical detection. Data are the means ± SEM of at least 3 experiments performed in 
triplicate. Statistical analysis: *P<0.05,**P<0.01 and ***P<0.001, compared with the respective 
control; ##P<0.01 compared to naïve cells. n.d. - non-detectable levels. 
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Acute cocaine (3 mM) or amphetamine (1 mM) exposure for 24 h in naïve PC12 

cells, increased extracellular dopamine accumulation, by about 7.6-fold and 5.6-fold, 

respectively (Figure 3.2.A,B). Concordantly, under these conditions, a decrease in 

intracellular dopamine levels was observed in the presence of cocaine (decreased by 

3.5 fold) or amphetamine (decreased by 8.3-fold) (Figure 3.2.C,D). Moreover, acute 

amphetamine treatment largely decreased DOPAC levels, compared to the control, by 

4.7-fold (Figure 3.2.F), whereas no significant changes were observed in cells exposed 

to cocaine (Figure 3.2.E). The decrement of DOPAC levels in cells exposed to 

amphetamine is consistent with the ability of amphetamine to inhibit MAO (Ramsay and 

Hunter, 2002). 

In cells chronically treated with cocaine, further exposure to cocaine evoked a 

significant increase in extracellular dopamine by about 18.5% (Figure 3.2.A), when 

compared to naïve cells. This increase can be related with a non-statistical increase 

(by 2.2-fold) in intracellular dopamine levels in cells chronically exposed to cocaine, 

when compared to naïve cells (Figure 3.2.C). DOPAC levels were not significantly 

changed upon incubation with cocaine in cells chronically treated with the same drug, 

indicating that the extra dopamine was not metabolized by MAO (Figure 3.2.E). These 

data suggested that cocaine sensitization in cells chronically exposed to cocaine 

(Figure 3.1) was related with an increase in cocaine-evoked extracellular dopamine 

accumulation. 

Interestingly, no detectable levels of extracellular or intracellular dopamine 

(Figure 3.2.B,D) or intracellular DOPAC (Figure 3.2.F) were observed in cells 

chronically exposed to amphetamine. Thus, amphetamine toxicity in cells chronically 

exposed to amphetamine (Figure 3.1) can not be attributed to changes in extracellular 

or intracellular dopamine. Amphetamine-induced depletion of endogenous dopamine 

can be explained by long-term inhibition of tyrosine hydroxylase, the rate-limiting 

enzyme in the synthesis of dopamine (Bowyer et al., 1998). On the other hand, 

amphetamine is also known to decrease DAT activity (Kahlig et al., 2004), decreasing 

the reuptake of released dopamine. 
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3.1.1.3.2 Cells chronically exposed to cocaine are partially 

resistant to H2O2  

Repeated exposure to H2O2 is known to induce cellular adaptation to acute 

H2O2 in PC12 cells (Jackson et al., 1994) and in other cell types (Wiese et al., 1995; 

Seong et al., 2002). In this study, we compared the toxicity of H2O2 in cells chronically 

exposed to the drugs of abuse or to H2O2. In naïve cells, acute exposure to H2O2 (75 

μM, for 24 h) induced a decrease in cell viability by about 80% (Figure 3.1). In contrast, 

in cells chronically exposed to H2O2 the same acute exposure did not significantly 

change cell viability, indicating that these cells are completely resistant to H2O2-induced 

toxicity and thus adapted to oxidative stress injury. Moreover, upon chronic exposure to 

H2O2, the toxicity of cocaine or amphetamine was similar to the toxicity observed in 

naïve cells (Figure 3.1), suggesting that acute toxic effects mediated by the stimulant 

drugs were independent of adaptive changes induced by oxidative stress.  

Interestingly, cells chronically exposed to cocaine were more resistant to acute H2O2 

than naïve cells, showing a decrease in cell viability by about 25% only (Figure 3.1). In 

contrast, cells chronically exposed to amphetamine were only slightly more resistant to 

acute exposure to H2O2, (cell viability decreased by about 70%), in comparison with 

naïve cells. No significant changes in Bcl-2/Bax were observed in PC12 cells 

chronically exposed to cocaine, amphetamine or H2O2 (data not shown), thus not 

explaining the different susceptibility of these cells. 

Since chronic cocaine appeared to mediate some resistance to H2O2 toxicity 

(Figure 3.1), we also analyzed the morphology of PC12 cells and the intracellular levels 

of ATP upon an acute exposure to H2O2 in cells chronically treated with cocaine, which 

were compared to cells adapted to H2O2. Exposure of naïve cells to H2O2 (50 μM, for 

24 h) induced a decrease in cell viability by about 70% (data not shown), similar to 75 

µM H2O2 (Figure 3.1). Under these conditions, the cells showed membrane blebbing 

and cell shrinkage (Figure 3.3.A), indicating some degree of lesion, compatible with the 

viability assay. In contrast, cells chronically exposed to H2O2 or to cocaine, showed a 



Manuscript 1: Chronic effects of psychostimulants 

 

 92 

normal morphology after an acute exposure to H2O2 (Figure 3.3.A). These data were in 

accordance with data shown in Figure 3.1.  

 
Figure 3.3: Effect of an acute exposure to H2O2 in cells chronically exposed to cocaine or H2O2. (A) Cell 

morphology: cell smears were stained following May-Grunwald staining procedure and 
photographed under 100 x magnification in a Leitz Dialux 20 light microscope associated with 
a camera. Note the formation of blebs and cell shrinkage upon exposure of naïve cells to 50 
μM H2O2 for 24 h. Images are representative of 3 experiments performed in duplicate. (B) 
Intracellular ATP levels were detected by HPLC with UV detection, before or after incubation 
with 50 μM H2O2 for 24 h. Data are the means ± SEM of 4 experiments performed in triplicate. 
Statistical significance: *P <0.05 and **P <0.01 compared to the control.  

 

Acute exposure of naïve cells to H2O2 induced a decrease in intracellular ATP 

levels, by about 23%, whereas in cells chronically exposed to H2O2, ATP levels were 

maintained after an acute exposure to H2O2 (Figure 3.3.B), indicating a complete 

adaptation to oxidative stress-mediated changes in energy metabolism. However, in 

cells chronically exposed to cocaine, ATP levels were decreased by about 28% after 

exposure to H2O2. Thus, although cells chronically exposed to cocaine were more 

resistant to H2O2, intracellular ATP levels were still affected, suggesting that this may 

account for the increased susceptibility of cells chronically treated with cocaine, 

compared to cells treated with H2O2, when submitted to an acute H2O2 challenge 

(Figure 3.1). Endogenous levels of ADP were not significantly affected by acute 

exposure to H2O2 in naïve cells or in cells chronically exposed to cocaine or H2O2 (data 

not shown), suggesting a decrease in ATP synthesis. The apparent lack of correlation 
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between the high toxicity of acute H2O2 (Figure 3.1) and the moderate decrease in ATP 

levels (Figure 3.3), under similar experimental conditions, can be explained by the 

normalization of ATP levels over the protein content, which is not taken into 

consideration in the MTT reduction assay.  

 

 

3.1.1.3.3 Chronic exposure to cocaine or amphetamine 

induces changes in the activity of antioxidant 

enzymes  

The involvement of oxidative stress in the chronic effects of cocaine and 

amphetamine was further evaluated in PC12 cells exposed to cocaine (30 μM), 

amphetamine (30 μM) and H2O2 (10 μM) in the initial phases of cell adaptation, for 1 - 4 

weeks, by analyzing the activity of the antioxidant enzymes GPx (Figure 3.4.A), GRed 

(Figure 3.4.B) and SOD (Figure 3.4.C). Results in this section are presented as 

unpublished data, which are complementary to the results previously described. 

 

GPx detoxifies H2O2 producing water, by using GSH which is converted into 

GSSG. Chronic exposure to cocaine induced an increase in the activity of GPx (136.6 

%) in PC12 cells, upon 4 weeks exposure (Figure 3.4.A). In the case of chronic 

exposure to amphetamine, the activity of GPx was increased in PC12 cells upon 3 

weeks exposure (159.3 %), and returned to control levels upon 4 weeks exposure to 

amphetamine. Chronic exposure to H2O2 induced an increase in GPx activity in PC12 

cells, upon 3 (172.3 %) and 4 (157.8 %) weeks of exposure, which compensates for 

the increased need of the cells to detoxify H2O2. 
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Figure 3.4: Time course of glutathione peroxidase (A), glutathione reductase (B) and (C) superoxide 

dismutase activities and ATP/ADP levels (D) upon continuous exposure to cocaine, 
amphetamine or H2O2 for 1-4 weeks. PC12 cells were incubated with cocaine (30 μM), 
amphetamine (30 μM) or H2O2 (10 μM). The activity of antioxidant enzymes and the ATP/ADP 
ratio were normalized over the values of the respective controls. Data are the mean ± SEM of 
5 experiments performed in duplicate. *P< 0.05 **P< 0.01 ***P< 0.001 when compared to 
control PC12 cells. 

 

GRed reduces GSSG, regenerating GSH. Chronic exposure to cocaine did not 

significantly affect GRed activity whereas chronic exposure to amphetamine induced a 

decrease in GRed activity (59.2 %) after 3 weeks of exposure, returning to control 

levels upon 4 weeks of exposure to amphetamine (Figure 3.4.B). H2O2 initially induced 

an increase in GRed activity (141.3 %) upon 1 week exposure, returning to control 

levels upon 2 weeks of exposure of PC12 cells to H2O2. 
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SOD converts the superoxide anion into H2O2, a less toxic molecule. SOD 

activity was not significantly affected by chronic exposure to cocaine (Figure 3.4.C). In 

contrast, chronic exposure to amphetamine induced a decrease in SOD activity (46.0 

%) upon 3 weeks of exposure, returning to control levels upon 4 weeks exposure to 

amphetamine. H2O2 induced a decrease in SOD activity in PC12 cells, upon 3 (62.7 %) 

and 4 (52.9 %) weeks exposure. 

 

Oxidative stress induces changes in cell metabolism. We have previously 

shown that acute exposure to H2O2 induces a decrease in ATP levels in PC12 cells, 

whereas chronic (7-12 months) exposure showed no significant changes in cellular 

ATP (Figure 3.3.B). Therefore, earlier stages of exposure to H2O2 may involve changes 

in energy metabolism. In this context, we analyzed the intracellular levels of ATP/ADP 

in PC12 cells exposed to cocaine, amphetamine and H2O2 for 1-4 weeks (Figure 

3.4.D). We observed a decrease in ATP/ADP levels in comparison with the controls, 

upon 2 weeks of exposure to cocaine (49.1 %), amphetamine (57.2 %) or H2O2 (56.1 

%). Interestingly, the levels of ATP/ADP returned to control levels upon 3 weeks of 

exposure to the drugs of abuse or to H2O2. 
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3.1.1.4 Discussion 

3.1.1.4.1 Cocaine sensitization and dopamine toxicity 

In this study we showed that chronic cocaine increases the susceptibility of 

PC12 cells to acute cocaine toxicity, occurring concomitantly with enhanced cocaine-

evoked dopamine release. PC12 cells chronically exposed to cocaine showed a non-

statistical increase (by 2.2-fold) in intracellular dopamine levels, which could help to 

explain the increase in cocaine-evoked extracellular dopamine accumulation observed 

in Figure 3.2.A, since dopamine release induced by cocaine is dependent on the 

vesicular pool of the neurotransmitter (Pifl et al., 1995). Repeated cocaine 

administration has been described to increase tyrosine hydroxylase activity, the rate-

limiting enzyme in the biosynthesis of dopamine, in brain areas affected by cocaine, 

such as the ventral tegmental area (Sorg et al., 1993) or the substantia nigra (Vrana et 

al., 1993). Since reuptake of dopamine is inhibited by cocaine (Brown et al., 2001), 

increased intracellular levels of dopamine could be due to increased dopamine 

biosynthesis. Furthermore, under control conditions, extracellular dopamine levels in 

cells chronically exposed to cocaine were not statistically different from those in naïve 

cells (Figure 3.2A). This observation could be due to an increase in expression of 

plasma membrane DAT, as reported previously in cells subjected to low concentrations 

of cocaine (Kahlig and Galli, 2003, for review). Thus dopamine uptake during chronic 

treatment with cocaine could be preserved. Dopamine has been described to be 

cytotoxic to PC12 cells, inducing oxidative stress and apoptosis (Wang et al., 2005), in 

a process occurring through activation of NF-kB (Panet et al., 2001) or the SAPK/JNK 

pathway (Luo et al., 1998). Nevertheless, no evidences of changes in dopamine 

metabolization by MAO were found, as examined by the maintenance of DOPAC levels 

in cells exposed to cocaine (Figure 3.2.E). Importantly, the observed increase in 

cocaine-evoked dopamine release may be related to the behavioral sensitization 

induced by this drug (Williams and Steketee, 2005), which is defined by increased 

motor activity after repeated administration. 
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3.1.1.4.2 Amphetamine-induced dopamine depletion and 

amphetamine toxicity 

Chronic exposure to amphetamine induced dopamine depletion (Figure 

3.2.B,D). Nevertheless, acute amphetamine toxicity persisted in cells lacking dopamine 

(Figure 3.1), indicating that dopamine is not involved in amphetamine toxicity. In vivo 

studies demonstrated that amphetamine toxicity is associated with a decrease in 

striatal dopamine levels (Wagner et al., 1980), decreased tyrosine hydroxylase activity 

(Ellison et al., 1978) and loss of dopamine transporter activity (Saunders et al., 2000). 

Although toxic mechanisms caused by amphetamine have been largely associated with 

the dopaminergic system, a more general mechanism of toxicity for amphetamine was 

also described, which involves disruption of the mitochondrial potential due to the net 

positive charge of amphetamine (Davidson et al., 2001). In accordance, we have 

previously observed that acute exposure of PC12 cells to amphetamine (1 mM, for 96 

h) resulted in a decrease in intracellular ATP/ADP ratio (Oliveira et al., 2002).  

Moreover, increasing evidence suggest that amphetamine, or amphetamine 

derivatives, can have toxic effects in non-dopaminergic cells, such as cerebellar 

granule cells exposed in vitro to 4 mM methamphetamine or methylenedioxy-

methamphetamine (Jimenez et al., 2004) and rat medium spiny projection neurons in 

the striatum, upon in vivo exposure to 4 times 10 mg/kg d-amphetamine (Krasnova et 

al., 2005).  

 

3.1.1.4.3 Cocaine and amphetamine-induced partial 

resistance to H2O2 

Chronic cocaine treatment was shown to partially protect PC12 cells against 

H2O2-induced toxicity, despite the decrease in ATP (by ~28%), which reflects metabolic 

dysfunction. In contrast, chronic treatment with H2O2 completely prevented H2O2 acute 

toxicity, as evaluated by MTT reduction (Figure 3.1), cell morphology (Figure 3.3.A) 
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and ATP levels (Figure 3.3.B). Several mechanisms have been proposed to explain 

cellular adaptation to H2O2. Moderate concentrations of H2O2 (0.25 mM, for 24 h) 

increase the capacity of oxidant degradation by antioxidant enzymes, whereas lower 

concentrations (0.05 mM, for 24 h) block the signalling pathways triggered by toxic 

concentrations of H2O2 (1 mM) (Lee and Um, 1999). 

3.1.1.4.3.1 Involvement of antioxidant enzymes 

Our results showed that changes in energy metabolism and in the activity of 

antioxidant enzymes are involved in the chronic effects of cocaine and amphetamine 

and also H2O2.  

Chronic exposure to H2O2 induced an increase in GPx activity, statistically 

significant upon 3 and 4 weeks of exposure (Figure 3.4.A). This was expected because 

of the increased need to detoxify H2O2. Upon 1 week exposure to H2O2, GRed activity 

was also increased (Figure 3.4.B), decreasing to normal levels upon 2 weeks of 

exposure. This may be explained by an initial need to convert GSSG into GSH. The 

restoration of GRed activity suggests the maintenance of GSH/GSSG by other 

mechanisms. One possibility is the increase in GSH synthesis, which could account for 

the GSH needed to supply the increased activity of GPx observed at a later time point.  

Repeated exposure to H2O2 also caused a decrease in SOD activity (Figure 

3.4.C), upon 3 and 4 weeks of exposure, in agreement with what was described by 

Ramasarma (1990). This decrease paralleled the increase in GPx, suggesting that 

increased levels of H2O2 are then reduced to water. 

Energy levels, measured by the ratio ATP/ADP, were decreased upon 2 weeks 

of exposure (Figure 3.4.D), returning to normal levels upon 3 weeks. This may be 

explained by an increased need for ATP upon 2 weeks of exposure to support the 

changes in cellular activity that are mainly manifested upon 3 weeks of exposure to 

H2O2. After this initial energy-requiring phase, the cells became adapted to the 

presence of H2O2, which may account for the restoration of the energy levels. 
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Repeated exposure to cocaine induced an increase in GPx activity in PC12 

cells (Figure 3.4.A), statistically significant upon 4 weeks of exposure, one week later, 

compared with cells exposed to H2O2. GRed activity showed a tendency for a decrease 

upon 3 and 4 weeks of exposure to cocaine (Figure 3.4.B), in contrast with cells 

exposed to H2O2. Stimulation of GPx activity without a concomitant increase in GRed 

activity suggests an impairment of GSH regeneration by GRed. In this case, if GSH 

synthesis does not increase, stimulation of GPx activity may lead to GSH depletion. In 

accordance, total GSH was shown to decrease in the prefrontal cortex and in the 

striatum upon in vivo exposure to cocaine (Dietrich et al., 2005; Poon et al., 2007). 

Furthermore, the activity of SOD was not affected by cocaine (Figure 3.4.C). Together, 

these findings suggest that repeated exposure to cocaine is accompanied by the 

generation of H2O2, which activates GPx, thus helping to decrease endogenous levels 

of intracellular H2O2. Because SOD activity is not affected, intracellular H2O2 levels 

should be lower than the levels achieved upon direct exposure of cells to 10 μM H2O2. 

The differential effect of chronic exposures to cocaine or H2O2 in the activity of 

antioxidant enzymes may explain the partial resistance of cells chronically exposed to 

cocaine, when acutely exposed to H2O2. 

It was previously reported that in vivo cocaine exposure induced an increase in 

GPx activity in the prefrontal cortex and in the striatum (Dietrich et al., 2005). However, 

these authors also observed an increase in SOD activity in the same brain regions. 

These observations may be explained by the fact that the structures analysed are 

composed by several types of neurons, which may respond to the drugs in different 

ways. PC12 cells synthesize only dopamine, noradrenaline and acetylcholine (Shafer 

and Atchison, 1991) and, thus, the effects of the drugs of abuse in PC12 cells may only 

be mediated by these neurotransmitters.  

 

Repeated exposure to amphetamine induced an increase in GPx activity 

(Figure 3.4.A) and a decrease in GRed (Figure 3.4.B) and SOD (Figure 3.4.C) 

activities, after 3 weeks of exposure. However, upon 4 weeks of exposure to 

amphetamine, the activities of these enzymes returned to control levels. Similarly to the 

effects described for cocaine, these results may represent an initial increase in H2O2 
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production from dopamine metabolism, via MAO or auto-oxidation, which may explain 

increased activity of GPx. An increase in GPx activity and a concomitant decrease in 

GRed activity suggest GSH depletion and a decrease in GSH/GSSG. In accordance, 

an increase in GSSG was observed in the dopamine-rich caudate of human 

methamphetamine abusers (Mirecki et al., 2004).  

The fact that, upon 4 weeks of exposure to amphetamine the activities of GPx, 

GRed and SOD returned to control levels, suggests a decrease in H2O2 production 

upon 4 weeks of exposure to amphetamine. This may be explained by the inhibition of 

TH by amphetamine, decreasing the intracellular levels of dopamine (as observed in 

PC12 cells exposed to amphetamine for 7-12 months - Figure 3.2) and thus also 

decreasing H2O2 produced by dopamine oxidation. Amphetamine inhibition of MAO 

(Ramsay and Hunter, 2002) may also be more evident upon 4 weeks of exposure to 

amphetamine, further decreasing the H2O2 produced by MAO. The biphasic effect of 

amphetamine may explain the lower level of resistance of cells chronically exposed to 

amphetamine to acute H2O2 toxicity upon 7-12 months of exposure (Figure 3.1), in 

comparison with cells chronically exposed to cocaine. 

It was previously reported that exposure to amphetamine in vivo induced an 

increase in GPx in the striatum, NAc and prefrontal cortex (Carvalho et al., 2001). The 

same authors reported an increase in catalase and a decrease in GRed in the 

prefrontal cortex. Other authors reported that amphetamine exposure induced a 

decrease in SOD in the striatum and an increase in catalase in the prefrontal cortex 

and hippocampus (Frey et al., 2006b). The results of these studies are in accordance 

with the results of the present study. However, in the same studies, the reverse 

changes were observed in other brain regions such as the hypothalamus (Carvalho et 

al., 2001) and hippocampus (Frey et al., 2006b). Thus, drugs of abuse may induce 

changes in antioxidant enzymes through different mechanisms in distinct brain regions. 

 

Interestingly, the decrease in ATP/ADP observed upon 2 weeks of exposure to 

cocaine or amphetamine (Figure 3.4.D), was restored to control levels upon 3 weeks of 

exposure to the drugs of abuse or H2O2. This may be explained by an increase in 

energy demanding cellular activities upon 2 weeks of exposure, which may underlie 
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cellular adaptation to these stress conditions. Moreover, changes in the activity of 

antioxidant enzymes may help to recover the energy levels. 

 

3.1.1.4.3.2 Involvement of intracellular signalling pathways and energy 

metabolism 

H2O2 adaptation may involve increased translocation of NF-kB to the nucleus, 

which contributes to increased cell survival (Kim et al., 2001a), not involving an 

increase in Bcl-2 or Bcl-XL (Lee and Um, 1999). Another signalling pathway regulated 

by H2O2 is the SAPK/JNK pathway, which is activated by high concentrations of H2O2 

and suppressed by low adaptive concentrations of H2O2 (Kim et al., 2001b). The 

interference with these signalling pathways may confer increased cell resistance to 

H2O2, independently of an increase in the capacity of degrading H2O2 (Lee and Um, 

1999). Moreover, H2O2 adaptation induces cross-resistance to serum withdrawal and 

C2-ceramide by blocking their ability to activate the SAPK/JNK pathway (Kim et al., 

2001b). Acute H2O2 toxicity has been reported to involve the inhibition of ADP 

phosphorylation, namely through the inhibition of glyceraldehyde-3-phosphate 

dehydrogenase, in glycolysis, and the ATP-synthase complex, at the mitochondrial 

respiratory chain (Hyslop et al., 1988). This could account for the decrease in 

intracellular ATP levels observed in naïve PC12 cells and in cells chronically exposed 

to cocaine, following acute exposure to H2O2 (Figure 3.3.B). 

Furthermore, proteomic analysis showed that adaptation to low concentrations 

of H2O2 may induce upregulation of proteins involved in energy metabolism, such as 

ATP synthase and glyceraldehyde-3-phosphate dehydrogenase (Seong et al., 2002), 

which may explain the maintenance of intracellular levels of ATP (Figure 3.3.B). In 

addition, proteomic analysis also suggests that upregulation of translation and RNA 

processing, chaperoning and redox regulation may also be in the basis for adaptation 

to H2O2 (Seong et al., 2002).  

In cells chronically exposed to cocaine, H2O2 toxicity seemed to affect cell 

metabolism (Figure 3.3.B). Thus, the mechanism involved in the partial resistance of 
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these cells to acute H2O2 is certainly not related to stimulation of energy metabolism. 

Similarly to H2O2, chronic cocaine was also reported to induce the activation of NF-kB 

(Ang et al., 2001) and AP-1 (Lee et al., 2001), two transcription factors described to be 

activated under oxidative stress conditions. Thus the mechanism of partial resistance 

to H2O2 toxicity in cells chronically exposed to cocaine may possibly be explained by 

the activation of intracellular signalling pathways involved in the adaptation to H2O2, by 

low concentrations of cocaine. Nevertheless, high concentrations of cocaine induced 

toxicity in H2O2-treated cells, suggesting that toxic effects mediated by high 

concentrations of cocaine are unrelated to adaptive changes induced by oxidative 

stress. 

 

In conclusion, this study provides further data confirming functional alterations 

in dopaminergic cells chronically exposed to amphetamine or cocaine. We showed that 

chronic treatment with amphetamine induced dopamine depletion, which did not affect 

amphetamine or H2O2 cytotoxicity in these cells. Furthermore, exposure to cocaine 

increased the sensitivity to an acute cocaine exposure, along with cocaine-evoked 

extracellular dopamine accumulation, which may be related with increased motor 

activity after repeated administration of this drug of abuse (Williams and Steketee, 

2005). Moreover, in contrast to prolonged exposure to H2O2, chronic cocaine induced a 

partial resistance to H2O2-mediated cytotoxicity, which was not correlated with the 

maintenance of energy levels. These data suggest that distinct cellular mechanisms 

operate during prolonged exposure to cocaine or H2O2, implicating major changes in 

cell susceptibility. Moreover, oxidative stress, probably mediated by H2O2, is involved in 

the effects of exposure to sub-toxic concentrations of cocaine and amphetamine in a 

catecholaminergic cell line. Amphetamine seems to have a biphasic effect on oxidative 

stress, which may be due to the downregulation of TH and MAO activities. 

Furthermore, H2O2 resistance of PC12 cells chonically exposed to H2O2 involves 

adaptation to oxidative stress. 
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3.2.1.1 Abstract 

The repeated use of opiates and other drugs of abuse leads to drug 

dependence. The most studied mechanism involved in this process is the activation of 

the dopaminergic neurotransmission in the mesolimbic/ mesocortical pathway. 

Dopamine is potentially neurotoxic, due to the generation of ROS, namely H2O2, 

following its oxidative metabolism. In this work we evaluated the effect of chronic 

exposure of PC12 cells to street heroin or H2O2 upon an acute exposure to these 

compounds, in comparison with naïve PC12 cells. Cells chronically exposed to heroin 

or H2O2 were partially or totally resistant to an acute exposure to H2O2, respectively. 

This effect was related to the maintenance of ATP levels upon acute exposure to H2O2. 

Moreover, the viability of cells chronically exposed to heroin and H2O2 was highly 

affected by an acute heroin exposure. This sensitization may be related to the increase 

in extracellular dopamine accumulation induced by these compounds. On the other 

hand, acute exposure to heroin in cells chronically exposed to this drug was more 

cytotoxic than in cells chronically exposed to H2O2. This observation may be related to 

the decrease in intracellular levels of ATP and ADP induced by chronic exposure to 

street heroin. In summary, chronic exposure to street heroin induces changes in 

cellular energy levels, in extracellular dopamine levels and in the response to cytotoxic 

stimuli. Together, these observations reflect the harmful effects of repeated heroin 

abuse. 

 

Keywords: adenine nucleotides, cytotoxicity, dopamine, heroin, oxidative 

stress 
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3.2.1.2 Introduction 

The repeated abuse of drugs of abuse is responsible for the development of 

drug dependence. The most studied brain circuit involved in drug dependence, which is 

shared by the majority of the drugs of abuse, is the reward pathway. In this pathway 

dopamine neurons of the mesolimbic/mesocortical structures play a major role in 

mediating the effects of the drugs of abuse. The drugs interact directly or indirectly with 

these dopaminergic neurons, increasing dopaminergic neurotransmission (Di Chiara 

and Imperato, 1988). Dopamine is both a neurotransmitter and a neurotoxin. Oxidative 

metabolism of dopamine generates ROS, namely H2O2, which can originate the highly 

reactive •OH in the presence of transition metal ions. Thus, dopamine metabolism 

causes oxidative stress and cell death in dopaminergic and surrounding cells (Jones et 

al., 2000). In this context, acute exposure to H2O2 induces apoptotic cell death in PC12 

cells (Benedi et al., 2004; Jang and Surh, 2004), whereas cells chronically exposed to 

low concentrations of H2O2 become resistant to the acute toxicity of this compound 

(Wiese et al., 1995; Davies, 1999). Thus, H2O2 chronic treatment of PC12 cells with 

H2O2 has been considered to be a model of cell adaptation (Jackson et al., 1994). 

In this work we investigated the effect of chronic exposure of PC12 cells to sub-

toxic concentrations of street heroin or H2O2, in comparison with non-chronically 

exposed PC12 cells (naïve cells). The cells were subsequently treated with toxic 

concentrations of street heroin or H2O2 (acute exposure), in accordance with our 

previous work (Oliveira et al., 2002; Cunha-Oliveira et al., 2006b). The results suggest 

that chronic exposure to street heroin changes the capacity of PC12 cells to respond to 

cytotoxic stimuli, namely due to a compromise of the energy metabolism, induced by 

this drug. 
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3.2.1.3 Results 

In order to compare the effects of street heroin and H2O2 in the metabolic 

viability of naïve and chronically exposed PC12 cells we evaluated the capacity to 

reduce MTT. We observed that incubation with street heroin (300 μM) induced a 

decrease in cell viability, by about 30% in naïve cells, as previously observed (Oliveira 

et al., 2002). In cells previously exposed to street heroin, the same acute concentration 

of street heroin induced a decrease in cell viability by about 70% (Figure 3.5.A), 

suggesting a higher susceptibility of cells chronically exposed to street heroin, when 

exposed to a toxic concentration of the same drug. In cells previously exposed to H2O2, 

street heroin induced a decrease in cell viability by about 50% (Figure 3.5.A), reflecting 

a lower degree of sensitization to the toxic effects of street heroin, in comparison with 

cells chronically exposed to street heroin. As described in Chapter 3.1 in cells exposed 

to cocaine in these conditions, we could not compare the controls of chronically 

exposed cells by the MTT assay, since there were differences in cell proliferation along 

the time of cell adaptation to H2O2 or street heroin. Exposure to H2O2 (50 μM, for 24 h) 

induced a decrease in cell viability by about 70% in naïve cells, whereas in cells 

chronically exposed to street heroin the decrease in cell viability was of just about 40% 

(Figure 3.5.A). However, the increase in H2O2 concentration to 75 μM induced a 

decrease in metabolic activity of naïve cells by about 80%, in comparison with the 

control, whereas in cells chronically exposed to street heroin the decrease was of 

about 60% (Figure 3.5.A). The fact that in cells chronically exposed to H2O2 the acute 

exposure to the same compound did not induce a significant change in metabolic cell 

viability appears to represent a cellular adaptation to H2O2 in cells chronically exposed 

to a sub-toxic concentration of this compound. Interestingly, cells chronically exposed 

to street heroin are partially resistant to acute H2O2 (Figure 3.5.A).  

The acute exposure to H2O2 induced changes in cell morphology, as evaluated 

by May-Grunwald-Giemsa staining (Figure 3.5.B), leading to loss of membrane integrity 

and to the appearance of membrane blebs. In cells chronically exposed to H2O2, and 

subsequently exposed to acute H2O2, the morphology was similar to the controls, 

confirming the total resistance of these cells to H2O2. In cells chronically exposed to 
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street heroin, acute exposure to H2O2 induced some changes in cell morphology, when 

compared to the control (Figure 3.5.B). These changes were less evident than the 

changes observed in naïve cells, which is in accordance with the partial resistance 

suggested by the MTT assay. 

 

 
 

Figure 3.5: Analysis of cell viability of PC12 cells chronically exposed to street heroin and H2O2, before and 
after acute exposure to cytotoxic concentrations of these compounds. Naïve PC12 cells and 
PC12 cells chronically exposed to street heroin or H2O2 (for 7-12 months) were incubated with 
street heroin (0.3 mM, for 96 h) or H2O2 (50 or 75 μM, for 24 h). A) Cell viability was evaluated 
by the MTT reduction assay. Data were normalized in percentage of the respective controls. 
Data are mean ± SEM of at least 3 experiments performed in triplicate. ***P<0.001, compared 
with the respective control, ###P<0.001, compared with the same exposure in naïve cells. B) 
Cell morphology was analysed by staining cell smears using the May-Grünwald-Giemsa 
technique. Note the formation of membrane blebbings and cell shrinkage in naïve cells and in 
cells chronically exposed to street heroin, upon acute exposure to H2O2 (50 μM, for 24 h). 
Images are representative of 3 experiments performed in duplicate. 

3.2.1.3.1 Street heroin induced changes in energy 

metabolism 

Since H2O2 interferes with energy metabolism, we investigated if the partial 

resistance to H2O2 in cells chronically exposed to street heroin or the total resistance in 

cells chronically exposed to H2O2, would be related to changes in intracellular levels of 

the adenine nucleotides ATP (Figure 3.6.A) and ADP (Figure 3.6.B). We observed that 

acute exposure of naïve cells to H2O2 (50 μM) induced a decrease in intracellular ATP 
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levels (Figure 3.6.A). However, this decrease was not compensated by an increase in 

intracellular ADP (Figure 3.6.B) or AMP (not shown). Chronic exposure to street heroin 

induced a decrease in intracellular ATP (Figure 3.6.A) and ADP (Figure 3.6.B) levels, 

suggesting an energetic compromise induced by this drug of abuse. In these cells, 

acute exposure to H2O2 did not induce significant alterations in ATP levels, as 

observed in naïve cells, possibly explaining the partial resistance of these cells to H2O2, 

observed in Figure 3.5.A. In addition, and in accordance with the total resistance to 

H2O2, we did not observe significant alterations in intracellular ATP or ADP levels in 

cells cronically exposed to H2O2, before or after incubation with 50 μM H2O2 (Figure 

3.6). 

 

 
Figure 3.6: Analysis of intracellular ATP (A) and ADP (B) levels, before and after acute exposure to H2O2. 

Naïve cells and cells chronically exposed to street heroin or H2O2 were incubated with H2O2 
50 μM, for 24 h. The levels of adenine nucleotides were determined by HPLC with UV 
detection. Data correspond to mean ± SEM of 4 independent experiments, performed in 
triplicate. *P<0.05 and **P<0.01, compared to control naïve cells. 

3.2.1.3.2 Role of dopamine in heroin sensitization 

Because PC12 cells are a catecholaminergic cell line and dopamine is 

potentially neurotoxic, we investigated whether street heroin sensitization observed in 

cells chronically exposed to street heroin would be related with changes in intra- or 

extracellular dopamine levels (Figure 3.7). We observed that acute exposure to street 

heroin induced a decrease in intracellular dopamine levels (Figure 3.7.A) and in 
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parallel, an increase in extracellular accumulation of this neurotransmitter (Figure 

3.7.B), in all sub-cell lines tested. Moreover, chronic exposure to street heroin and 

H2O2 induced an increase in extracellular dopamine accumulation (Figure 3.7.B). Upon 

acute exposure to street heroin, extracellular dopamine accumulation in cells 

chronically exposed to H2O2 was significantly increased, when compared to naïve cells 

(Figure 3.7.B). This increase can be related to the increase (although non-statistically 

significant) of intracellular dopamine in these cells (Figure 3.7.A). No significant 

alterations in intracellular DOPAC levels were observed in any of the experimental 

conditions tested (data not shown). 

 
Figure 3.7: Analysis of intracellular (A) and extracellular (B) dopamine levels, before and after acute 

exposure to street heroin. Naïve cells and cells chronically exposed to street heroin and to 
H2O2 were incubated with street heroin (0.3 mM), for 96 h. Intra- and extracellular dopamine 
levels were analysed by HPLC with electrochemical detection. Data are the mean ± SEM of 3 
experiments performed in triplicate. *P<0.05 **P<0.01 and ***P<0.001 compared to the 
respective control. #P<0.05 and ###P<0.001 compared to naïve cells. n.s.= not significant. 
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3.2.1.4 Discussion 

In this work we showed that chronic treatment of PC12 cells with street heroin 

or H2O2 induced, respectively, a partial or total resistance to the acute H2O2 cytotoxicity, 

accompanied by maintenance of intracellular ATP levels, upon exposure to H2O2. Cells 

chronically exposed to street heroin showed higher susceptibility to an acute exposure 

to the same drug, in comparison with cells chronically exposed to H2O2. This fact can 

be related to the changes in energy metabolism in cells chronically exposed to street 

heroin, as evidenced by the decrease in intracellular ATP and ADP levels. In addition, 

extracellular dopamine accumulation seems to contribute to the susceptibility of cells 

chronically exposed to street heroin or H2O2, upon acute street heroin exposure, 

suggesting a cytotoxic role for dopamine.  

Cellular adaptation to H2O2 can be explained by two mechanisms. When 

present in low concentrations (0.25 mM for 24 h), H2O2 induces an increase in cellular 

antioxidant capacity, namely an increase in glutathione peroxidase expression (Lee 

and Um, 1999). Moreover, when present in low concentrations (0.05 mM for 24h), H2O2 

induces an adaptive process that may not to be associated with an increase in cellular 

antioxidant capacity. In these conditions, a blockade of cell signalling pathways 

involving nuclear factor kB (Kim et al., 2001a) or the stress activated protein kinase 

(SAPK/JNK) pathway (Kim et al., 2001b) can occur, which are usually activated by 

toxic concentrations of H2O2 (1 mM) (Lee and Um, 1999). Cellular adaptation induced 

by low concentrations of H2O2 may also be related with an increase in the expression 

of proteins involved in energy metabolism, such as ATP synthase (at the mitochondrial 

respiratory chain) and glyceraldehyde-3-phosphate (GAPDH, at the glycolytic 

pathway), as demonstrated by proteomic analysis (Seong et al., 2002). The increase in 

the expression of these enzymes may explain the maintenance of intracellular ATP 

levels and the consequent cellular resistance upon acute exposure to H2O2, in cells 

chronically exposed to H2O2 (Figure 3.6.A), but not in cells chronically exposed to street 

heroin, since these cells showed a decrease in the intracellular levels of adenine 

nucleotides (Figure 3.6). Proteomic analysis also suggests that H2O2 adaptation can 
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induce an increase in the expression of proteins associated with RNA processing, 

chaperones and proteins involved in redox regulation (Seong et al., 2002). The acute 

toxicity of H2O2 can be related to the inhibition of ADP phosphorylation, namely by 

inhibition of ATP synthase or GAPDH (Hyslop et al., 1988). These data could explain 

the decrease in intracellular ATP levels observed in naïve cells upon acute exposure to 

H2O2 (Figure 3.6.A), similar to what was previously observed by other authors 

(Milusheva et al., 2003). In addition, the decrease in intracellular energy levels induced 

by street heroin may be related to the inhibition of oxidative phosphorylation, since 

previous studies reported that the heroin metabolite morphine inhibits ATP synthase 

and the ATPase from the inner mitochondrial membrane (Gegenava and Chistyakov, 

1975).  

Previous studies demonstrated that H2O2 exposure induces dopamine release 

in rat striatal slices (Milusheva et al., 2005). These authors suggested that H2O2 may 

interfere with dopamine reuptake and/or storage of dopamine in presynaptic vesicles. It 

was also demonstrated that H2O2 induces a reversible inhibition of the activity of the 

DAT present in the plasma membrane of dopaminergic cells, via a calcium-dependent 

redox regulation (Huang et al., 2003). Taking this into account, in our conditions the 

increase in extracellular dopamine accumulation upon chronic exposure to H2O2, may 

be explained by H2O2-induced inhibition of DAT. We have previously observed that 

chronic exposure to cocaine (a classic DAT inhibitor) in PC12 cells induced similar 

effects in extracellular and intracellular dopamine levels, when compared to chronic 

exposure to H2O2 (Figure 3.2). 

Interestingly, chronic exposure to street heroin also induced an increase in the 

extracellular levels of dopamine. Moreover, acute exposure to this drug reinforced the 

accumulation of extracellular dopamine in cells chronically exposed to H2O2, in 

comparison with cells chronically exposed to street heroin (Figure 3.7.B). Heroin 

exposure has been reported to cause oxidative stress when intraperitoneally injected in 

mice (Pan et al., 2005; Qiusheng et al., 2005). In previous studies, we observed that 

acute treatment of PC12 cells with street heroin induced a non-statistical increase in 

intracellular hydroperoxides that was correlated with an increase in intracellular 

DOPAC levels (Oliveira et al., 2002). These data suggested that the cytotoxic effects of 
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street heroin could involve an unbalance between the cellular levels of oxidants and 

antioxidants. Thus, the partial resistance to H2O2 observed upon chronic exposure to 

street heroin, as well as the increase in extracellular dopamine, may be due to some 

degree of adaptation to oxidative stress. 

Together, the present results show that prolonged exposure to 

catecholaminergic cells to street heroin induces an energetic compromise in these cells 

and an increase in the sensitivity to high concentrations of the same drug. However, 

these cells are more resistant to H2O2, suggesting adaptation to oxidative stress. These 

data are important may contribute to increase our knowledge on the molecular and 

cellular mechanisms involved in drug addiction. 
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3.2.2.1 Abstract 

Repeated use of drugs of abuse, namely opiates, has been shown to affect 

glutamate-releasing neurons. Moreover, blockade of NMDA receptors prevents cell 

death by apoptosis induced by morphine, a heroin metabolite. Thus, in this study we 

investigated the involvement of different NMDA receptor subunits in street heroin 

cytotoxicity. HEK293 cells, which do not express native NMDA receptors, were 

transfected with NR1/NR2A or NR1/NR2B subunits. As a control, cells were 

transfected with NR1 alone, which does not form functional channels. Incubation with 

street heroin for 24 h induced a dose-dependent decrease in cell viability both in NR1-

transfected and non-transfected cells. The loss of membrane integrity induced by street 

heroin was more evident in cells transfected with NR1/NR2B than in cells transfected 

with NR1 alone or NR1/NR2A. This decrease in cell viability was blocked by MK-801, a 

selective and non-competitive antagonist of NMDA receptors. Nevertheless, no 

significant changes in intracellular ATP were observed in cells treated with street 

heroin. These data implicate NR2B-composed NMDA receptors as important mediators 

of street heroin neurotoxicity.  

 

Keywords: cytotoxicity, drugs of abuse, HEK293 cells, heroin, NMDA receptors 
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3.2.2.2 Introduction 

The abuse of opiates and other drugs of abuse is associated with severe 

physical and mental health problems. These drugs interact with the CNS, inducing 

changes in the release of neurotransmitters, namely in the dopaminergic system. Many 

evidences also suggest the involvement of glutamatergic neurotransmission in the 

mechanisms of drug dependence involving the dopaminergic reward circuit in the brain 

(Tzschentke and Schmidt, 2003). On the other hand, some drugs of abuse, such as 

methamphetamine, are responsible for neurodegenerative mechanisms that lead to the 

irreversible loss of neurons, with the involvement of dopaminergic and/or glutamatergic 

systems (Ohmori et al., 1996). Under this perspective, street heroin is able to induce 

cell death in PC12 cells (Oliveira et al., 2002; Oliveira et al., 2003) and morphine, a 

heroin metabolite, induces cell death by apoptosis in the spinal cord (Mao et al., 2002) 

and in human cerebrocortical neurons (Hu et al., 2002).  

Among the processes leading to cell death, the excitotoxic mechanism, which 

involves the hyperactivation of ionotropic glutamate receptors, has been largely studied 

due to its involvement in ischemia and several neurodegenerative diseases (Rego and 

Oliveira, 2003). NMDA receptors have an outstanding role in excitotoxic processes, 

due to their high permeability to calcium, which is responsible for the activation of 

several intracellular enzymes, leading to mitochondrial dysfunction and cell death. 

NMDA receptors are composed by NR1 subunits which can interact with NR2 (A-D) 

subunits, and less frequently with NR3 (A,B). NR1 subunits contain the glycine-binding 

site, whereas the NR2 subunits contain the glutamate-binding site, conferring 

heterogeneity to these receptors. Previous studies demonstrated that NR2B subunits, 

which are mainly localized in extra-synaptic sites, are associated to increased toxicity 

in comparison with NR2A synaptic subunits (Hardingham et al., 2002).  

It was previously suggested that glutamatergic neurotransmission involving the 

NMDA receptor contributes to opiate dependence in humans (Bisaga et al., 2001). 

Moreover, the NMDA receptor antagonist MK-801 was shown to specifically block 

morphine tolerance and neuronal apoptosis in the spinal cord (Mao et al., 2002). In this 
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context, in this work we analysed the involvement of NR1/NR2A and NR1/NR2B 

subunits in street heroin cytotoxicity. 
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3.2.2.3 Results and Discussion 

Previously, we showed that street heroin induces a dose-dependent decrease 

in cell viability in PC12 cells (Oliveira et al., 2002) and in primary cortical neurons 

(unpublished results). In the present study we observed a dose-dependent decrease in 

metabolic viability after 24 h exposure to street heroin in both untransfected and NR1-

GFP transfected HEK293 cells (Figure 3.8).  

 

 

Figure 3.8: Analysis of cell viability in HEK293 cells exposed to street heroin. The viability of untransfected 
HEK293 cells and cells transfected with NR1-GFP was evaluated upon exposure to increasing 
concentrations of street heroin (10-1000 μM) for 24 h, by using the MTT reduction assay. Data 
presented as mean ± SEM of at least three experiments, performed in triplicate, were 
normalized in percentage of non-treated untransfected cells (control). Statistical analysis: 
*P<0.05 and ***P<0.001 compared to the respective untreated cells. 

 

The decrease in metabolic viability was statistically significant for both 

populations at a high street heroin concentration (1 mM). A decrease in cell viability 

was also observed in untransfected (p<0.05) and NR1-GFP transfected (non-

statistically significant) HEK293 cells exposed to 100 μM street heroin. This 

concentration of street heroin was used in the following experiments, because a 
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moderate decrease in cell viability was observed under these conditions. These results 

demonstrated that street heroin is toxic to HEK293 cells. Furthermore, expression of 

non-functional NMDA receptors (NR1) did not affect street heroin toxicity.  
 

Next we evaluated the effect of functional NMDA receptors, composed of 

NR1/NR2A or NR1/NR2B, on street heroin-induced toxicity. NMDA receptor expression 

in the non-neuronal cell line per se led to a non-statistical increase (approximately 5-

10%) in LDH release, indicative of some loss of membrane integrity (Figure 3.9).  

 

 

Figure 3.9: Analysis of plasma membrane integrity in HEK293 cells transfected with different subunits of 
the NMDA receptor upon acute exposure to street heroin. The cells were transfected with 
NR1/NR2A or NR1/NR2B subunits of the NMDA receptor or with NR1-GFP (transfection 
control) and exposed to 100 μM street heroin and/or 10 μM MK-801 for 24 h. The integrity of 
the plasma membrane was evaluated by the LDH leakage assay. Data were expressed as a 
percentage of total LDH and presented as mean±SEM of at least 3 experiments, performed in 
triplicate. Statistical significance: **P<0.01 as compared to NR1-GFP, #P<0.05 compared to 
the respective untreated cells and £££P<0.001 compared to street heroin-treated cells 
expressing NR1/NR2B. 

 

 

Exposure to street heroin (100 μM, for 24 h) did not significantly change 

membrane integrity of NR1-GFP or NR1/NR2A-expressing cells (Figure 3.9). However, 

NR1/NR2B transfected cells showed a significant increase in membrane permeability in 
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the presence of the drug (p<0.05), and this effect was completely prevented by the 

NMDA receptor antagonist MK-801 (Figure 3.9). The protective effect of MK-801 

suggests that activation of NR1/NR2B receptor is necessary for street heroin-induced 

increase in membrane permeability, because MK-801 is an open-channel blocker of 

NMDA receptors. Interestingly, NR1/NR2B subtype was previously linked to cellular 

demise that occurs both in an excitotoxic paradigm (Hardingham et al., 2002) and in 

Huntington´s disease (Zeron et al., 2002).  

Cellular energy deficits are often associated with NMDA receptor-mediated 

excitotoxicity. Overactivation of NMDA receptor leads to an excessive increase in 

intracellular calcium concentration, which is exacerbated by a dysfunction of calcium 

extrusion mechanisms. This has been suggested to occur as a consequence of 

mitochondrial dysfunction and resulting decrement in ATP production (Rego and 

Oliveira, 2003). Nevertheless, neither the presence of street heroin nor the expression 

of functional NMDA receptor subtypes, NR1/NR2A or NR1/NR2B, affected ATP 

intracellular levels significantly (Figure 3.10).  

 

Figure 3.10: Measurement of intracellular ATP levels in HEK293 cells transfected with different subunits of 
the NMDA receptor upon acute exposure to street heroin. Cells transfected with NR1-GFP 
(transfection control) or with the different subunits of the NMDA receptor (NR1/NR2A or 
NR1/NR2B) were treated as described in Figure 3.9. Intracellular ATP levels were analysed 
by HPLC with UV detection. Data were expressed as pmol/μg protein and presented as mean 
± SEM of at least 3 experiments, performed in triplicate. 
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Because intact cellular energy levels are needed for the prosecution of 

apoptotic cell death (Nicotera and Melino, 2004), we hypothesize that NR1/NR2B-

mediated increase in street heroin cytotoxicity is initially mediated through apoptosis, 

rather than necrosis. Later stages of apoptosis also involve an increase in membrane 

permeability (Schwab et al., 2002), explaining the loss of membrane integrity observed 

in Figure 3.9. However, the occurrence of necrotic cell death cannot be excluded 

because, as ATP levels are normalized over the protein content in each sample, 

intracellular ATP can be over-estimated due to the detachment of necrotic cells from 

the multiwells. Therefore, it is possible that a decrease in intracellular ATP occurs in 

the total population of cells, but not in the cells that remain attached to the multiwell 

and contribute to the determination of intracellular ATP levels. 

Taken together our results indicate that the NR1/NR2B subtype of NMDA 

receptors is a mediator of street heroin-induced cytotoxicity. Previously, chronic 

exposure to morphine, a heroin metabolite that can coexist in heroin solutions 

(Hutchinson and Somogyi, 2002), was reported to alter NMDA receptor subunit 

composition in rat NAc neurons. Neuroadaptation to chronic morphine exposure was 

shown to increase NR2A activity and decrease NR2B activity (Martin et al., 2004). In 

the present work we hypothesize that overactivation of NR2B-composed receptors is 

responsible for the deleterious cellular effects induced by street heroin. It is possible 

that the decrease in the activity of NR2B-composed NMDA receptors observed by 

Martin et al. (2004) is due to selective cell death of neurons exhibiting higher 

expression levels of this NMDA receptors subunit. In this case, these neurons may be 

more susceptible to toxic insults, similarly to what was reported in Huntington´s disease 

(Zeron et al., 2002). 
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3.2.3.1 Abstract  

 Cortical function has been suggested to be highly compromised by repeated 

heroin self-administration. We have previously showed that street heroin induces 

apoptosis in neuronal-like PC12 cells. Thus, we analyzed the apoptotic pathways 

involved in street heroin neurotoxicity using primary cultures of rat cortical neurons. Our 

street heroin sample was shown to be mainly composed by heroin, 6-

monoacetylmorphine and morphine. Exposure of cortical neurons to street heroin 

induced a slight decrease in metabolic viability, without loss of neuronal integrity. Early 

activation of caspases involved in the mitochondrial apoptotic pathway was observed, 

culminating in caspase-3 activation, PARP cleavage and DNA fragmentation. Apoptotic 

morphology was completely prevented by the non-selective caspase inhibitor z-VAD-

fmk, indicating an important role for caspases in neurodegeneration induced by street 

heroin. Ionotropic glutamate receptors, opioid receptors and oxidative stress were not 

involved in caspase-3 activation. Interestingly, street heroin cytotoxicity was shown to 

be independent of a functional mitochondrial respiratory chain, as determined using 

NT-2 rho0 cells. Nonetheless, in street heroin treated cortical neurons, cytochrome c 

was released, accompanied by a decrease in mitochondrial potential and Bcl-2/Bax. 

Pure heroin hydrochloride similarly decreased metabolic viability but only slightly 

activated caspase-3. Altogether, our data suggest an important role for mitochondria in 

mediating street heroin neurotoxic effects.  

 

Keywords: Apoptosis, cell death, heroin, mitochondrial dysfunction  
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3.2.3.2 Introduction  

Heroin abuse has been associated with loss of impulse control (Pau et al., 

2002), a function of the frontal cortex associated with drug dependence. Furthermore, 

downregulation of μ-opioid receptors was reported to occur in the prefrontal cortex in 

human heroin addicts, as detected by post-mortem analysis (Ferrer-Alcon et al., 2004). 

Street heroin may contain different quantities of heroin and other components 

depending on its origin and on the method of illicit synthesis. Heroin is a semi-synthetic 

drug, obtained from acetylation of morphine. Heroin possesses little or no opioid 

activity (White and Irvine, 1999) but its metabolism, which may occur in vivo and in vitro 

(Hutchinson and Somogyi, 2002), generates 6-MAM and morphine, two μ-opioid 

receptor agonists (White and Irvine, 1999). Street heroin is illegally synthesized from 

morphine purified from opium extracts. Opium contains about 40 alkaloids that make 

up 10-20% of total opium substances. The most abundant opium alkaloids are 

morphine (8-17%), codeine (0.7-5%), thebaine (0.1-1.5%), papaverine (0.5-1.5%) and 

noscapine (narcotine, 1-10%) (Schiff, 2002). Upon illicit purification, morphine is often 

contaminated with other alkaloids, which may also suffer synthetic acetylation during 

heroin manufacture. Depending on the purification procedure, street heroin may 

contain some impurities (Moore et al., 1984), namely morphine and 6-MAM (heroin 

metabolites), codeine and acetylcodeine (Soine, 1986, for review). Heroin seized 

samples may also contain various inert diluents (starch, lactose, fructose, sucrose, 

mannitol, powdered milk) and active adulterants (caffeine, paracetamol, strychnine, 

acetylsalicylic acid, barbiturates, quinine and amphetamines) (Chiarotti et al., 1991; 

Sharma et al., 2005).  

Apoptotic cell death appears to be involved in the loss of neuronal function 

induced by opiates. We have previously shown that street heroin induces apoptosis in 

neuronal-like PC12 cells (Oliveira et al., 2002; Oliveira et al., 2003). Furthermore, 

morphine was described to induce apoptosis in neurons (Mao et al., 2002) and 

microglia (Hu et al., 2002).  
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Apoptosis may be initiated by the activation of the extrinsic and/or the intrinsic 

pathways. The extrinsic pathway is activated by death receptors in the cell membrane 

that further activate the initiator caspases 8 or 10 (Chen and Wang, 2002) and possibly 

caspase 2 (Zhivotovsky and Orrenius, 2005). The intrinsic pathway is initiated by an 

increase in mitochondrial membrane permeability, regulated by pro-apoptotic and anti-

apoptotic proteins of the Bcl-2 family, and associated with the loss of mitochondrial 

potential (ΔΨm) and the release of mitochondrial proteins to the cytosol (Scorrano and 

Korsmeyer, 2003). Among these proteins, the most studied is cytochrome c, which 

induces the formation of the apoptosome and the consequent activation of caspase-9. 

Caspase-2 may also trigger the intrinsic pathway (Enoksson et al., 2004). Initiator 

caspases activate effector caspases (such as caspases 3 or 6) that further induce 

degradation of cellular components (Fischer et al., 2003, for review). Caspase-3 

cleaves PARP, a protein involved in DNA repair, and activates DFF/CAD leading to 

apoptotic DNA fragmentation. However, apoptotic cell death may occur in a caspase-

independent manner (Kroemer and Martin, 2005). 

In this study we evaluate the neurotoxicity of street heroin in primary cultures of 

rat cortical neurons. As many drugs of abuse, such as amphetamines (Cunha-Oliveira 

et al., 2006a; Davidson et al., 2001, for review), cocaine (Cunha-Oliveira et al., 2006a; 

Nassogne et al., 1998, for review) or morphine (Mao et al., 2002; Hu et al., 2002), have 

been reported to induce neuronal apoptosis, we characterize the involvement of 

apoptotic pathways in the neurotoxicity of street heroin. Briefly, we show that street 

heroin, in a concentration that slightly decreases metabolic viability, promotes caspase-

dependent mitochondrial apoptosis, characterized by a downregulation of Bcl-2 and a 

loss of ΔΨm. The decrease in metabolic viability may be attributed to heroin itself, but 

caspase-3 activation may be due to drug-drug interaction in the cocktail of compounds 

that were identified in street heroin.  

 



Manuscript 4: Street heroin and neuronal apoptosis 

 

 132 

3.2.3.3 Results 

3.2.3.3.1 Street heroin dose-dependently affects cell 

viability 

Street heroin was shown to be composed by 62% heroin, 12% 6-MAM, 1% 

morphine, with trace quantities of codeine, acetylcodeine (less than 0.2% each), starch 

and caffeine, and other unidentified diluents and adulterants (about 25%). The results 

are in accordance with the data published by the U.S. Drug Enforcement 

Administration (DEA) which show that the purity of the majority of street heroin samples 

ranges from 10% to 70%.  

In order to define experimental conditions of moderate neurotoxicity, we 

performed a dose-response analysis of cell viability, following the MTT reduction assay 

(Figure 3.11.A) and the LDH release assay (Figure 3.11.B), after incubation with street 

heroin, for 24 h. Street heroin induced a dose-dependent decrease in metabolic 

viability, showing an IC10 value of 128 μg/mL, corresponding to 215 μM heroin, 47 μM 

6-MAM and 4.5 μM morphine. Under these conditions, plasma membrane integrity, 

determined by the LDH leakage assay, was maintained (Figure 3.11.B). The IC50 was 

calculated to be 500 μg/mL, corresponding to 840 μM heroin, 183 μM 6-MAM and 17.6 

μM morphine. Membrane integrity was only affected by high concentrations of street 

heroin (Figure 3.11.B), suggesting that, for concentrations up to 427 μg/mL, the 

neurotoxicity induced by street heroin is independent of necrosis. As the street heroin 

sample was not pure, we tested the effect of the identified components (pure heroin, 6-

MAM and morphine) on metabolic viability (Figure 3.11.C). While no toxic effects were 

induced by either 6-MAM or morphine, pure heroin induced a similar decrease in MTT 

reduction, compared to treatment with street heroin. Despite acetylcodeine and 

codeine were present in very low quantities in street heroin, we tested the effect of 

these compounds on neuronal viability, as acetylcodeine has been reported to be more 

toxic than heroin (Soine, 1986). Acetylcodeine (1-100 μM) did not significantly affect 
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cortical neuron metabolic viability, whereas codeine (10-30 μM) induced a slight 

decrease (by about 10%) in MTT reduction (not shown).   

 

 

 
Figure 3.11: Analysis of cell viability upon 
exposure to street heroin. Cortical neurons 
were incubated with increasing 
concentrations of street heroin (4,3 – 1280 
μg/mL), for 24 h, and the dose-dependent 
changes in cell viability were evaluated by A) 
the MTT reduction assay, which evaluates 
changes in metabolic viability, and by B) the 
LDH leakage assay, in order to analyze 
changes in membrane integrity. Data are the 
mean ± SEM of 3-5 experiments performed 
in duplicate or triplicate. The dotted line in A) 
represents the IC10 interpolation, 
corresponding to 128 μg/mL (215.2 μM 
heroin, 47.0 μM 6-monoacetylmorphine, 4.5 
μM morphine). Statistical significance: *P< 
0.001 as compared to the control. C) 
Analysis of cell viability upon exposure to 
pure heroin (215 and 840 μM), 6-MAM (47 
and 183 μM) and morphine (4.5 and 17.6 μM) 
using the concentrations found in street 
heroin, corresponding to IC10 and IC50. 
Statistical significance: *P< 0.05, ***P< 0.001 
as compared to the control.  
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3.2.3.3.2 Caspases of the mitochondrial apoptotic pathway 

are preferentially activated by street heroin 

We investigated the involvement of apoptotic signalling, namely caspases 

activation, induced by the concentration of street heroin corresponding to the IC10 

values determined in Figure 3.11.A. Initiator caspases of the mitochondrial pathway, 

caspases 2 and 9, were significantly activated after 12 h of street heroin exposure 

(Figure 3.12.A), whereas caspase-8 was only slightly activated at a later time point (24 

h), indicating that the extrinsic pathway was not involved in the initiation of the 

apoptotic cascade. Caspase-3 activity in cells treated with street heroin was 

significantly increased after 12 h exposure, when compared with the control (Figure 

3.12.A), and remained elevated up to 24 h. The activity of the effector caspase-6 only 

slightly increased in 24 h street heroin-treated cells (not shown). Proteolytic processing 

of caspases -9 and -3 was confirmed by western blotting (Figure 3.12.B,C). Forty-eight 

hours exposure to street heroin resulted in a massive cell death, as indicated by a large 

decrease in MTT reduction and a major decrease in caspase-3 activity (data not 

shown). Street heroin-induced increase in caspase-3 activity at 24 h was completely 

prevented in the presence of 1 µM z-VAD-fmk, a non-selective caspase inhibitor 

(Figure 3.12.D). Pure heroin (215 μM) only slightly activated caspase-3 (1.4 fold above 

the control, Figure 3.12.E), suggesting that caspase-3 may be further activated by 

other substances present in street heroin and/or that combination of street heroin 

components act synergistically to cause apoptotic cell death. 
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Figure 3.12: Caspases activation in cells incubated with street heroin. A) Time course analysis of caspase 

activation. Cellular extracts were tested for the activity of caspases 3, 9, 2 and 8, by 
determining the extent of cleavage of caspases substrates: Ac-DEVD-pNA, Ac-LEHD-pNA, 
Ac-VDVAD-pNA and Ac-IEPD-pNA, respectively. The cells were incubated with street heroin 
(IC10), for 1-24 h. Pro-caspases 3 (B) and 9 (C) processing, after 24 h of exposure to street 
heroin, was also examined by western blotting D) Complete inhibition of street heroin-induced 
caspase-3 activation in the presence of 1μM z-VAD-fmk. E) Caspase-3 activity upon 24 h 
exposure to 215 μM pure heroin, 47 μM 6-MAM or 4.5 μM morphine, corresponding to street 
heroin IC10. Data are the mean ± SEM of the fold increase above control absorbance values 
of 3 experiments performed in duplicate. Statistical significance: **P< 0.01, ***P<0.001 
compared to the control. 
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3.2.3.3.3 DNA fragmentation induced by street heroin is 

completely dependent on caspase activity 

According to data on Figure 3.12, caspase-dependent apoptotic cell death 

seems to be involved in the neurotoxic effects of street heroin. This was further 

evaluated by analyzing the occurrence of nuclear apoptotic morphology and PARP 

cleavage in cells treated with the drug of abuse (Figure 3.13). Street heroin induced an 

increase (by about 17%) in the number of cells showing fragmented or condensed 

DNA, as evaluated by nuclear staining with Hoechst 33342 (Figure 3.13). The number 

of cells showing immunoreactivity to PARP, cleaved on the caspase cleavage site, also 

increased (Figure 3.13.A), reflecting the activation of caspase-3. DNA fragmentation 

induced by street heroin was completely prevented by 1 µM z-VAD-fmk (Figure 

3.13.B), a concentration previously shown to prevent the increase in caspase-3 activity 

induced by street heroin (Figure 3.12.D). These data support an important role for 

caspases in the neurotoxic effects of street heroin. 
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Figure 3.13: Analysis of nuclear apoptotic morphology in cortical neurons exposed to street heroin. A) 

Immunocytochemical analysis of apoptotic morphology. Apoptotic cell death upon exposure to 
street heroin (IC10, for 24 h) was evaluated by labeling cleaved PARP, using a specific 
antibody (in green), and by nuclear morphology following Hoechst 33342 staining (in blue). B) 
Complete prevention of DNA fragmentation induced by street heroin, in the presence of 1 µM 
z-VAD-fmk. About 500-700 cells were counted per coverslip. Data are the mean ± SEM of 3-4 
experiments performed in duplicates. Statistical significance: ***P< 0.001 compared to the 
control, ###P< 0.001 compared to street heroin alone. 
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3.2.3.3.4 Caspase activation is not mediated by opioid or 

ionotropic glutamate receptors and appears to 

be independent of oxidative stress 

We further investigated the mechanisms leading to caspase-3 activation 

induced by street heroin by analyzing the involvement of opioid and ionotropic 

glutamate receptors and the contribution of ROS. The involvement of opioid receptors 

was determined by using a non-selective opioid receptor antagonist, naloxone, the μ-

opioid receptor antagonists, clocinnamox and CTOP, and the delta-opioid receptor 

antagonist, naltrindole (Table 3.1.A). Under these conditions, a partial prevention of 

caspase-3 activation was observed in the presence of naloxone (about 30%). Naloxone 

also prevented (by about 25%) the appearance of nuclear apoptotic morphology 

induced by street heroin (not shown). However, the selective opioid receptor 

antagonists did not significantly affect caspase-3 activity induced by street heroin. 

These data suggest that opioid receptors do not mediate street heroin neurotoxicity, 

and that naloxone may prevent caspase-3 activation, and apoptosis, by an opioid 

receptor-independent mechanism, as previously reported (Liu et al., 2002). 
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Table 3.1 Analysis of cellular mechanisms involved in caspase-3 activation in cells incubated with street 
heroin (IC10). 

 
A) The involvement of opioid receptors was investigated by testing the effect of a non-selective antagonist 
(1 μM naloxone) and antagonists of mu (1 μM clocinnamox and 1 μM CTOP) and delta (1 μM naltrindole) 
opioid receptors. B) The involvement of ionotropic glutamate receptors in caspase-3 activation was 
investigated using antagonists of NMDA (2 μM MK-801, 3 μM ifenprodil or 100 μM d-AP-5) and AMPA (10 
μM NBQX) receptors. C) The involvement of reactive oxygen species in caspase-3 activation induced by 
street heroin was investigated using antioxidants idebenone (3 μM), trolox (100 μM) and glutathione ethyl 
ester (100 μM GSH-EE). Data are the mean ± SEM of 3 experiments performed in duplicate. Statistical 
significance: **P< 0.01, compared to street heroin alone. 

 
Moreover, as apoptotic cell death frequently depends on excitotoxic events 

mediated by ionotropic glutamate receptors, and these receptors were reported to be 

present in embryonic cortical neurons (Babb et al., 2005), we also tested the effect of 

the NMDA receptor antagonists MK-801, ifenprodil and d-AP-5, and the AMPA receptor 

antagonist NBQX, in the activation of caspase-3 induced by street heroin (Table 3.1.B). 

The results indicate that ionotropic glutamate receptors are not involved in street heroin 

neurotoxicity, as the antagonists of NMDA or AMPA receptors did not prevent street 

heroin-induced caspase-3 activation. 

Because apoptotic cell death has been associated with oxidative stress we 

tested whether the antioxidants idebenone (a benzoquinone derivative of coenzyme 
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Q10), trolox (an analog of vitamin E) or glutathione ethyl ester (a cell-permeable form 

of reduced glutathione), protected against street heroin-induced apoptosis (Table 

3.1.C). None of the antioxidants tested prevented street heroin-induced caspase-3 

activation, indicating that oxidative stress is not involved in the apoptotic process 

induced by this drug of abuse.  

3.2.3.3.5 Street heroin induces cytochrome c release and 

mitochondrial dysfunction                    

Initiator caspases (2 and 9) activated by street heroin at early time points 

(Figure 3.12.A) have been largely associated with the mitochondrial apoptotic pathway. 

Thus we analyzed whether the release of cytochrome c and mitochondrial dysfunction 

contributed to the neurotoxic effects of street heroin. 

Analysis of cytochrome c release by immunocytochemistry (Figure 3.14.A) 

showed a decrease in co-localization between cytochrome c (labeled with a specific 

antibody) and the mitochondria (labeled with MitoTracker Green) upon treatment with 

street heroin, indicating a decrease in mitochondrial cytochrome c content. Street 

heroin-mediated release of cytochrome c to the cytosol was further evidenced by 

western blotting, showing a decrease in mitochondrial cytochrome c content (by about 

60%) and a consequent increase in the cytosolic fraction (Figure 3.14.B). An increase 

in mitochondrial permeability, responsible for cytochrome c release, has been 

associated with a decrease in ΔΨm. Thus, we evaluated the changes in ΔΨm, induced 

by street heroin (Figure 3.14.C), by following the cellular retention of rhodamine 123, 

described to be higher in cells maintaining ΔΨm (Palmeira et al., 1996). Our data 

suggest that exposure to street heroin causes a great decrease in ΔΨm (by about 55%).  

 

Because street heroin neurotoxicity involved mitochondrial dysfunction, we 

investigated the requirement of a functional respiratory chain. Thus, we analyzed street 

heroin neurotoxicity in NT-2 rho0 cells, which do not possess a functional electron 

transport chain (Cardoso et al., 2001), in comparison with NT-2 rho+ cells (Figure 

3.14.D). The toxicity of street heroin in NT-2 rho0 cells was not significantly different 
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compared to NT-2 rho+ cells, suggesting that street heroin neurotoxicity is independent 

of an interaction with a functional mitochondrial respiratory chain.  

Pro-apoptotic proteins, such as Bax, have been shown to mediate the release 

of cytochrome c, whereas anti-apoptotic proteins, such as Bcl-2, modulate the activity 

of pro-apoptotic proteins. Thus, we determined the total levels of Bcl-2 and Bax, by 

western blotting, after exposure to street heroin (Figure 3.14.E and F). We found a 

significant decrease (by about 37%) in Bcl-2 levels (Figure 3.14.E), without major 

changes in the levels of Bax (Figure 3.14.F) in cortical neurons treated with street 

heroin. These results indicate that street heroin induces a decrease in Bcl-2/Bax ratio, 

favoring the proapoptotic activity of Bax, which could help to explain the mechanism 

involved in cytochrome c release induced by street heroin. The fact that street heroin 

neurotoxicity seems to be independent of a functional mitochondrial respiratory chain, 

suggests that street heroin-induced decrease in ΔΨm in cortical neurons may be due to 

the formation of mitochondrial permeability transition or Bax-composed pores. As it was 

previously described that Bax channel inhibitors can block the decrease in ΔΨm 

induced by a pro-apoptotic inducer (Hetz et al., 2005), a decrease in Bcl-2/Bax may 

lead to mitochondrial permeabilization and consequent loss of ΔΨm. 
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Figure 3.14: Analysis of cytochrome c release and mitochondrial dysfunction after exposure to street 

heroin (IC10, for 24 h). A,B) Analysis of cytochrome c release from the mitochondria, by 
immunocytofluorescence (A), using MitoTracker Green to label the mitochondria (in green), 
and an antibody against the native form of cytochrome c (in red), or by western blotting (B) 
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using subcellular fractions corresponding to the same samples. C) Analysis of rhodamine 123 
(Rh123) retention capacity of cortical neurons after exposure to the drug of abuse. Rh123 
retention capacity was used to evaluate ΔΨm in cortical neurons incubated with street heroin 
(IC10). The cells were incubated with 1 µM Rh123, for 10 min. The fluorescence of the probe 
was recorded before (Fi) and after (Ff) cell permeabilization with Triton X-100. Rh123 
retention capacity was calculated by the difference: Ff - Fi. D) Analysis of street heroin 
cytotoxicity in NT-2 rho+ and rho0 cells by following the cellular capacity to reduce MTT after 
exposure to street heroin (IC10, 24 h). E,F) Analysis of total Bcl-2 and Bax levels, by western 
blotting. Images are representative of at least 3 experiments, performed in duplicate. 
Quantitative data are the mean ± SEM of at least 3 experiments performed in duplicate or 
triplicate. Statistical significance: ***P<0.001 compared to the control. 
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3.2.3.4 Discussion 

In this study we show that street heroin induces cell death by a mitochondrial-

dependent apoptotic pathway, initiated by caspases 2 and 9, and involving cytochrome 

c release, loss of mitochondrial potential and downregulation of Bcl-2. This process is 

not dependent on the activation of opioid or ionotropic glutamate receptors, nor is it 

dependent on oxidative stress. Due to the fact that the street heroin sample was a 

mixture, the effects observed in this study may be either due to heroin, or to the 

combination of street heroin components, which can act synergistically. 

Acetylcodeine has been reported to be more toxic than heroin (Soine, 1986). 

However, in our experimental conditions, acetylcodeine did not significantly affect 

cortical neurons metabolic viability, whereas codeine induced a slight decrease in MTT 

reduction, when used in higher concentrations than those achieved in street heroin. 

Noscapine (20 μM), another alkaloid present in opium extracts, has been shown to 

induce apoptosis in HeLa cells and thymocytes (Ye et al., 1998). In addition to opium 

substances, street heroin often contains some adulterants, namely paracetamol 

(acetaminophen), caffeine and theophylline (Zhang et al., 2004), which may also 

exhibit toxic effects. Very toxic adulterants are not usually detected in this type of 

samples because when present, they are found in very low concentrations (Chiarotti et 

al., 1991; Sharma et al., 2005).  

The mechanisms of cell death induced by heroin are largely unknown. Fecho 

and Lysle (2000) showed that heroin decreased the number of leukocytes in the rat 

spleen, which presented several apoptotic features, such as annexin V labeling and 

DNA fragmentation. In contrast, the cytotoxicity of morphine, a metabolite of heroin that 

may coexist in heroin solutions (Hutchinson and Somogyi, 2002), has been 

investigated by several groups. Hu et al. (2002) showed that morphine increased the 

number of apoptotic microglia and neurons. This process of cell death was blocked by 

naloxone and involved caspase-3 activation and DNA fragmentation. Other authors 

(Mao et al., 2002) showed that prolonged morphine administration increased rat spinal 
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neuronal apoptosis, with upregulation of caspase-3 and Bax, and downregulation of 

Bcl-2 in the spinal dorsal horn. The non-selective caspase inhibitor, z-VAD-fmk and the 

caspase-3 inhibitor Ac-DEVD-CHO blocked neuronal apoptosis induced by morphine. 

Moreover, in this study, the apoptotic pathway was reported to be mediated by the 

NMDA receptors (Mao et al., 2002). In another study, Yin et al. (1999) showed that 

morphine induced the expression of Fas and promoted Fas-L-mediated apoptosis of 

lymphocytes. This effect was blocked by naloxone, suggesting the involvement of the 

opioid receptors. Furthermore, Singhal et al. (2002) showed that morphine induced 

apoptosis of T-cells, with activation of caspases -3, -8 and -10 and PARP cleavage. 

This apoptotic pathway was reported to be mediated by c-Jun N-terminal kinase (JNK) 

activation. Together, these studies suggest that morphine is able to induce apoptosis in 

several cell types, including neurons, in a process mediated by opioid receptors. 

Another study (Jiang et al., 2003) showed that morphine, heroin and cocaine 

upregulate mouse double minute-2 (MDM2) in several brain regions. MDM2 is known 

for suppressing the activity of p53. Increased MDM2 may reflect an increase in p53 

activity induced by the drugs of abuse (Jiang et al., 2003). The neurotoxicity and 

apoptotic cell death induced by morphine were also suggested to be mediated by an 

increase in JNK3 expression (Fan et al., 2003). According to our results only pure 

heroin slightly contributed for caspase-3 activation and loss of cell viability, whereas 

morphine did not exhibit toxic effects. 

Cortical neurons were previously reported to express both μ and δ opioid 

receptors (Lee et al., 2002). In the present work, although we observed a reduction of 

caspase-3 activation (by about 30%) and a reduction in apoptotic nuclear morphology 

(by about 25%, data not shown) in the presence of naloxone, the involvement of opioid 

receptors in apoptotic cell death induced by street heroin was not corroborated by 

using specific opioid receptor antagonists (Table 3.1.A). Naloxone was previously 

shown to mediate neuroprotection independently of the interaction with opioid 

receptors (Liu et al., 2002). Moreover, the stereoisomer (+)-naloxone, which has no 

activity as an opioid receptor antagonist, effectively inhibits microglial activation and 

has been demonstrated to be neuroprotective (Liu et al., 2002). It was previously 
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suggested that naloxone could also directly interact with the nicotinic receptor (Tome et 

al., 2001). In our cellular model, street heroin’s neurotoxicity is largely independent of 

opioid receptors, and naloxone may prevent apoptotic cell death induced by street 

heroin by a mechanism independent of the interaction with opioid receptors. Morphine 

was previously reported to induce loss of ΔΨm in human glioma cells by a mechanism 

mediated by naloxone-sensitive receptors (Mastronicola et al., 2004). Thus, naloxone-

mediated neuroprotection observed in the present work may be related with the 

inhibition of street heroin-induced loss of ΔΨm. In addition to these results, the PKA 

activator forskolin (1-30 µM) was not able to prevent street heroin-induced caspase-3 

activation (data not shown), suggesting that the mechanism involved in apoptosis 

induced by street heroin is not dependent on PKA inhibition, which is known to occur 

upon activation of opioid receptors.  Moreover, the fact that opioid receptors are not 

involved in street heroin-induced apoptosis is in agreement with the lack of major 

apoptotic effects of the opioid components identified in our street heroin sample (Figure 

3.12.E). 

Ionotropic glutamate receptor activation, frequently associated with excitotoxic 

cell death, was not involved in street heroin-induced apoptosis either, because 

antagonists of the NMDA or AMPA receptors were not able to rescue caspase-3 

activation induced by heroin (Table 3.1.B). Moreover, nicotine, an agonist of the 

nicotinic acetylcholine receptor, previously shown to be neuroprotective in cortical cell 

cultures through a decrease in caspase activation and inhibition of apoptosis induced 

by oxygen deprivation (Hejmadi et al., 2003), did not prevent street heroin-induced 

caspase-3 activation, when used at 10-30 µM (data not shown).  

Other mediators of cell death involving mitochondrial dysfunction are ROS. 

Previously, other authors reported that in vivo exposure of mice to heroin induced 

oxidative stress (Pan et al., 2005; Qiusheng et al., 2005). However, in the present 

study the antioxidants idebenone, trolox and glutathione ethyl ester did not prevent 

street heroin-induced caspase-3 activation (Table 3.1.C), indicating that, in our 

conditions, an increase in ROS levels is not upstream of caspase-3 activation. In 

addition, although nitric oxide synthase activation has been reported to mediate 
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mitochondrial dysfunction and apoptosis in cortical neurons subjected to glutamate 

(Almeida and Bolanos, 2001), in this work the nitric oxide synthase inhibitors N-omega-

nitro-L-arginine methyl ester (100-500 μM L-NAME) or 7-nitroindazole (10-100 μM 7-

NI) were also unable to prevent street heroin-induced caspase-3 activation (data not 

shown). 

The time course of apoptotic events in this work suggests the activation of 

caspases 2 and 9 upon 6-12 h of street heroin exposure, resulting in the activation of 

caspase 3. Caspase-3 activity is also suggested by the occurrence of PARP cleavage 

and DNA fragmentation. In addition, upon 24 h exposure to street heroin, metabolic 

viability was decreased by about 10% but there were no evidences of changes in 

plasma membrane integrity, suggesting that necrosis was not involved at this time 

point. Although the mechanism underlying street heroin-induced apoptosis does not 

seem to involve the activation of plasma membrane receptors (opioid or glutamate 

receptors), it is likely to be explained by intracellular drug-drug interactions of one or 

more components of street heroin. This interaction is likely to be directed to Bcl-2 

expression and to the mitochondria, resulting in the downregulation of Bcl-2 and the 

loss of ΔΨm. These changes may help to explain cytochrome c release. Moreover, 

street heroin-induced loss of ΔΨm in cortical neurons was similar to that induced by 

amphetamine in cortical neurons (Cunha-Oliveira et al., 2006a), although activation of 

all of the caspases studied was more evident upon treatment with street heroin. 

Furthermore, a possible interaction of heroin (or other components of street heroin) 

with the mitochondria does not require a functional mitochondrial respiratory chain, 

since the drug was as toxic in NT-2 rho0 cells as in NT-2 rho+ cells.  

Concluding, we demonstrate the importance of the mitochondrial apoptotic 

pathway involving caspases activation in the neurotoxicity of street heroin, which may 

be caused either by the drug itself or by the cocktail of street heroin components that 

can act synergistically. 

Although further studies are required to determine the mitochondrial changes 

upon in vivo heroin administration, the intrinsic apoptotic pathway appears to be an 
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important target for neuroprotective strategies in heroin addicted individuals, for whom 

the use of impure heroin represents an increased neurotoxic risk.  
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In Part III, several functional alterations were observed in PC12 cells upon 

chronic exposure to amphetamine, cocaine and street heroin. PC12 cells chronically 

exposed to H2O2 were used as a model of cellular adaptation to oxidative stress. Some 

changes observed in cells chronically exposed to the drugs of abuse were comparable 

to those induced by chronic exposure to H2O2, suggesting a role of oxidative stress on 

the adaptation of catecolaminergic cells to the drugs of abuse. 

 

Chronic exposure to amphetamine caused dopamine depletion upon 7-12 

months of exposure. At initial time-points of chronic exposure to amphetamine 

alterations in the activity of antioxidant enzymes were observed, which returned to 

control levels after 4 weeks. Moreover, acute amphetamine toxicity was shown to be 

independent of dopamine and oxidative stress. Briefly, amphetamine exposure induced 

the following changes in PC12 cells: 

 
 

i. Dopamine depletion, suggesting long-term tyrosine hydroxylase inhibition; 

ii. Toxicity when incubated in dopamine-depleted cells, suggesting that acute 

amphetamine effects are independent of dopamine, and possibly mediated by 

mitochondrial dysfunction; 

iii. Toxicity in cells chronically exposed to H2O2, suggesting that acute 

amphetamine effects are independent of oxidative stress; and 

iv. Biphasic changes in the activity of the antioxidant enzymes GPx, GRed and 

SOD during initial chronic amphetamine exposure, indicating the involvement 

of oxidative stress mediated by H2O2, which tends to recover at a later time 

point possibly due to dopamine depletion and/or MAO inhibition. 

 

Chronic cocaine increased PC12 sensitivity to a toxic cocaine insult. Chronic 

cocaine also increased the resistance against acute H2O2 toxicity, although only 

partially, in contrast to the complete resistance of PC12 cells chronically exposed to 

H2O2, suggesting some degree of adaptation to oxidative stress. The incomplete 

adaptation to oxidative stress may be explained by differential effects of chronic 

exposure to cocaine or H2O2 on the activity of antioxidant enzymes, observed in early 

time-points of chronic exposure. However, acute exposure to cocaine was suggested 
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to be independent of oxidative stress. Briefly, exposure of PC12 cells to cocaine 

caused the following: 

 

 

i. Increased sensitivity to acute cocaine toxicity in cells chronically treated with 

cocaine; 

ii. Increased cocaine-evoked extracellular dopamine accumulation, which may 

explain increased motor activity in response to cocaine, upon repeated 

cocaine administration in vivo; 

iii. Toxicity in cells chronically exposed to H2O2, suggesting that acute cocaine 

effects are independent of oxidative stress; 

iv. Increased resistance to H2O2 acute toxicity, highly suggesting that chronic 

exposure to cocaine involves adaptation to oxidative stress; and 

v. Increased GPx activity, probably occurring as a consequence of enhanced 

H2O2 production. 

 

Chronic street heroin caused a decrease in energy levels that may underlie the 

observed increase in cellular sensitivity to acute street heroin treatment. Cells 

chronically exposed to street heroin exhibited a partial resistance against oxidative 

stress. The following changes were observed upon exposure of PC12 cells to street 

heroin: 

 

i. Decreased intracellular levels of ATP and ADP; 

ii. Increased toxicity upon acute exposure, probably mediated by an increase in 

extracellular dopamine accumulation; 

iii. Increased toxicity in cells chronically exposed to H2O2, suggesting that acute 

street heroin effects are independent of oxidative stress; and  

iv. Increased resistance against acute H2O2 treatment, suggesting adaptation to 

oxidative stress upon chronic exposure to street heroin. 

 

Furthermore, acute cytotoxic effects of street heroin were shown to be mediated 

by NR1/NR2B composed NMDA receptors in transfected HEK293 cells. In these cells, 
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the cytotoxic effects of street heroin involved loss of plasma membrane integrity, 

suggesting the occurrence of necrotic cell death.  

In rat primary cortical neurons, a concentration of street heroin that induced a 

mild decrease in metabolic cell viability, without loss of membrane integrity, was shown 

to induce apoptotic cell death, involving early caspase -2, -3 and -9 activation, and a 

late activation of caspases -6 and -8. Street heroin-exposed cortical neurons exhibited 

chromatin condensation and fragmentation, which were caspase-dependent. Apoptotic 

cell death induced by street heroin was mediated by the mitochondrial apoptotic 

pathway and involved mitochondrial dysfunction. However, NMDA-receptors were not 

involved in street heroin-induced apoptosis. This result suggests that NMDA receptors 

mediate more severe forms of street heroin cytotoxicity, involving loss of membrane 

integrity, probably associated with necrotic cell death. Briefly, acute street heroin 

toxicity was shown to involve: 

 

i. Increased toxicity in HEK293 cells expressing NR1/NR2B composed 

receptors, in comparison with cells expressing NR1/NR2A functional 

receptors; 

ii. Activation of the mitochondrial apoptotic pathway in rat primary cortical 

neurons showing: 

 

1. Decreased Bcl-2/Bax, cytochrome c release and increased activity of 

caspases associated with the mitochondrial apoptotic pathway; 

2. Prevention of apoptosis by the non-selective caspase-inhibitor z-VAD-fmk 

and by naloxone; 

3. Caspase activation independently of the activation of opioid receptors, 

ionotropic glutamate receptors or oxidative stress; 

4. Mitochondrial dysfunction, as determined by a decrease in mitochondrial 

membrane potential; 

5. Loss of metabolic viability similarly caused by pure heroin, but the latter 

was less efficient in activating caspase-3, highly suggesting that the use of 

impure heroin represents an increased neurotoxic risk. 
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In conclusion, drugs of abuse cause the dysfunction of PC12 cells and cortical 

neurons. Chronic and acute exposures to the drugs of abuse in dopaminergic cells 

involve neuronal dysfunction and neurotoxicity mediated by changes in dopamine 

levels. Increased oxidative stress may also underlie the chronic effects of these drugs 

in dopaminergic cells. Acute, severe, street heroin toxicity seems to be mediated by 

NR1/NR2B composed NMDA receptors, in transfected HEK293 cells. However, 

apoptosis evoked by a mild insult with street heroin in primary cortical neurons does 

not involve activation of NMDA receptors or oxidative stress. Hence, apoptotic effects 

of street heroin are mediated by mitochondrial dysfunction and are dependent on the 

activity of caspases. 

Moreover, we showed that chronic exposure to cocaine or street heroin may 

sensitize the cells for subsequent drug exposure, increasing drug toxicity, and 

contributing to further brain dysfunction that may potentiate the development of drug 

addiction. Chronic exposure to amphetamine caused dopamine depletion, which may 

contribute to long-term amphetamine effects, since dopamine mediates several 

important brain functions. 

Future therapies for drug addiction disorders should take into account the 

impact of the neurotoxic effects of these drugs. Oxidative stress and mitochondrial 

dysfunction are suggested as new targets for the development of future therapeutic 

strategies against drug addiction. 



 

 

 

 

 

 

 

 

REFERENCES 

 



 

 



References 

 

 157

 

Acikgoz O, Gonenc S, Kayatekin BM, Pekcetin C, Uysal N, Dayi A, Semin I, Gure A 
(2000) The effects of single dose of methamphetamine on lipid peroxidation 
levels in the rat striatum and prefrontal cortex. Eur Neuropsychopharmacol 
10:415-418. 

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Cell 
Communication. In: Molecular Biology of the Cell New York: Garland Science; 
Taylor & Francis Group. 

Almeida A, Bolanos JP (2001) A transient inhibition of mitochondrial ATP synthesis by 
nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J 
Neurochem 77:676-690. 

Ang E, Chen J, Zagouras P, Magna H, Holland J, Schaeffer E, Nestler EJ (2001) 
Induction of nuclear factor-kappaB in nucleus accumbens by chronic cocaine 
administration. J Neurochem 79:221-224. 

Araujo IM, Ambrosio AF, Leal EC, Santos PF, Carvalho AP, Carvalho CM (2003) 
Neuronal nitric oxide synthase proteolysis limits the involvement of nitric oxide in 
kainate-induced neurotoxicity in hippocampal neurons. J Neurochem 85:791-800. 

Babb TL, Mikuni N, Najm I, Wylie C, Olive M, Dollar C, MacLennan H (2005) Pre- and 
postnatal expressions of NMDA receptors 1 and 2B subunit proteins in the 
normal rat cortex. Epilepsy Res 64:23-30. 

Bailey C (2007) Morphine tolerance - getting hooked. Biochemist 29:12-15. 

Bajo M, Crawford EF, Roberto M, Madamba SG, Siggins GR (2006) Chronic morphine 
treatment alters expression of N-methyl-D-aspartate receptor subunits in the 
extended amygdala. J Neurosci Res 83:532-537. 

Barr AM, Panenka WJ, MacEwan GW, Thornton AE, Lang DJ, Honer WG, Lecomte T 
(2006) The need for speed: an update on methamphetamine addiction. J 
Psychiatry Neurosci 31:301-313. 

Bashkatova V, Meunier J, Vanin A, Maurice T (2006) Nitric oxide and oxidative stress 
in the brain of rats exposed in utero to cocaine. Ann N Y Acad Sci 1074:632-642. 

Benedi J, Arroyo R, Romero C, Martin-Aragon S, Villar AM (2004) Antioxidant 
properties and protective effects of a standardized extract of Hypericum 
perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells. Life 
Sci 75:1263-1276. 

Bergmeyer H.U., Bernt E. (1974) Lactate dehydrogenase UV assay with pyruvate and 
NADH. Methods in Enzymatic Analysis 2:574-579. 



References 

 

 158 

Bhat RS, Bhaskaran M, Mongia A, Hitosugi N, Singhal PC (2004) Morphine-induced 
macrophage apoptosis: oxidative stress and strategies for modulation. J Leukoc 
Biol 75:1131-1138. 

Bisaga A, Comer SD, Ward AS, Popik P, Kleber HD, Fischman MW (2001) The NMDA 
antagonist memantine attenuates the expression of opioid physical dependence 
in humans. Psychopharmacology (Berl) 157:1-10. 

Bolla KI, Funderburk FR, Cadet JL (2000) Differential effects of cocaine and cocaine 
alcohol on neurocognitive performance. Neurology 54:2285-2292. 

Bowyer JF, Frame LT, Clausing P, Nagamoto-Combs K, Osterhout CA, Sterling CR, 
Tank AW (1998) Long-term effects of amphetamine neurotoxicity on tyrosine 
hydroxylase mRNA and protein in aged rats. J Pharmacol Exp Ther 286:1074-
1085. 

Brown JM, Hanson GR, Fleckenstein AE (2001) Regulation of the vesicular 
monoamine transporter-2: a novel mechanism for cocaine and other 
psychostimulants. J Pharmacol Exp Ther 296:762-767. 

Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: 
role of free radicals and oxidative stress. Pharmacol Ther 99:45-53. 

Burrows KB, Gudelsky G, Yamamoto BK (2000) Rapid and transient inhibition of 
mitochondrial function following methamphetamine or 3,4-
methylenedioxymethamphetamine administration. Eur J Pharmacol 398:11-18. 

Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine 
systems. Neurochem Int 32:117-131. 

Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of 
methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. 
FASEB J 17:1775-1788. 

Cadet JL, Ordonez SV, Ordonez JV (1997) Methamphetamine induces apoptosis in 
immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse 
25:176-184. 

Capela JP, Ruscher K, Lautenschlager M, Freyer D, Dirnagl U, Gaio AR, Bastos ML, 
Meisel A, Carvalho F (2006) Ecstasy-induced cell death in cortical neuronal 
cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia. 
Neuroscience 139:1069-1081. 

Cardoso SM, Santos S, Swerdlow RH, Oliveira CR (2001) Functional mitochondria are 
required for amyloid beta-mediated neurotoxicity. FASEB J 15:1439-1441. 



References 

 

 159

Carlezon WA, Jr., Duman RS, Nestler EJ (2005) The many faces of CREB. Trends 
Neurosci 28:436-445. 

Carvalho F, Fernandes E, Remiao F, Gomes-Da-Silva J, Tavares MA, Bastos MD 
(2001) Adaptative response of antioxidant enzymes in different areas of rat brain 
after repeated d-amphetamine administration. Addict Biol 6:213-221. 

Chen M, Wang J (2002) Initiator caspases in apoptosis signaling pathways. Apoptosis 
7:313-319. 

Chiarotti M, Fucci N, Furnari C (1991) Comparative analysis of illicit heroin samples. 
Forensic Sci Int 50:47-56. 

Chieng B, Williams JT (1998) Increased opioid inhibition of GABA release in nucleus 
accumbens during morphine withdrawal. J Neurosci 18:7033-7039. 

Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, 
Frezza C, Annaert W, D'Adamio L, Derks C, Dejaegere T, Pellegrini L, D'Hooge 
R, Scorrano L, De Strooper B (2006) Mitochondrial rhomboid PARL regulates 
cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. 
Cell 126:163-175. 

Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to 
amphetamine and dopamine: molecular mechanisms of prodynorphin gene 
regulation in rat striatum. Neuron 14:813-823. 

Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, 
development and disease. Curr Opin Neurobiol 11:327-335. 

Cunha-Oliveira T, Rego AC, Cardoso SM, Borges F, Swerdlow RH, Macedo T, de 
Oliveira CR (2006a) Mitochondrial dysfunction and caspase activation in rat 
cortical neurons treated with cocaine or amphetamine. Brain Res 1089:44-54. 

Cunha-Oliveira T, Rego AC, Morgadinho MT, Macedo T, Oliveira CR (2006b) 
Differential cytotoxic responses of PC12 cells chronically exposed to 
psychostimulants or to hydrogen peroxide. Toxicology 217:54-62. 

Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: 
necrotic and apoptotic mechanisms and relevance to human abuse and 
treatment. Brain Res Brain Res Rev 36:1-22. 

Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a 
new paradigm for oxidative stress. IUBMB Life 48:41-47. 



References 

 

 160 

Devi BG, Chan AW (1997) Impairment of mitochondrial respiration and electron 
transport chain enzymes during cocaine-induced hepatic injury. Life Sci 60:849-
855. 

Dey S, Mactutus CF, Booze RM, Snow DM (2007) Cocaine exposure in vitro induces 
apoptosis in fetal locus coeruleus neurons by altering the Bax/Bcl-2 ratio and 
through caspase-3 apoptotic signaling. Neuroscience 144:509-521. 

Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase 
synaptic dopamine concentrations in the mesolimbic system of freely moving 
rats. Proc Natl Acad Sci U S A 85:5274-5278. 

Di Chiara G, Tanda G, Bassareo V, Pontieri F, Acquas E, Fenu S, Cadoni C, Carboni E 
(1999) Drug addiction as a disorder of associative learning. Role of nucleus 
accumbens shell/extended amygdala dopamine. Ann N Y Acad Sci 877:461-485. 

Dietrich JB, Mangeol A, Revel MO, Burgun C, Aunis D, Zwiller J (2005) Acute or 
repeated cocaine administration generates reactive oxygen species and induces 
antioxidant enzyme activity in dopaminergic rat brain structures. 
Neuropharmacology 48:965-974. 

Duarte JA, Carvalho F, Fernandes E, Remiao F, Bastos ML, Magalhaes J, Appell HJ 
(2004) D-amphetamine-induced hydrogen peroxide production in skeletal muscle 
is modulated by monoamine oxidase inhibition. Int J Sports Med 25:446-449. 

Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ (2000) Opiates inhibit 
neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci U S A 97:7579-
7584. 

Eisch AJ, Harburg GC (2006) Opiates, psychostimulants, and adult hippocampal 
neurogenesis: Insights for addiction and stem cell biology. Hippocampus 16:271-
286. 

Ellison G, Eison MS, Huberman HS, Daniel F (1978) Long-term changes in 
dopaminergic innervation of caudate nucleus after continuous amphetamine 
administration. Science 201:276-278. 

Enoksson M, Robertson JD, Gogvadze V, Bu P, Kropotov A, Zhivotovsky B, Orrenius S 
(2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts 
the binding of cytochrome c to anionic phospholipids. J Biol Chem 279:49575-
49578. 

European Monitoring Centre for Drugs and Drug Addiction (2006) Annual report 2006: 
the state of the drugs problem in Europe. 



References 

 

 161

Fan XL, Zhang JS, Zhang XQ, Ma L (2003) Chronic morphine treatment and 
withdrawal induce up-regulation of c-jun n-terminal kinase 3 gene expression in 
rat brain. Neuroscience 122:997-1002. 

Fecho K, Lysle DT (2000) Heroin-induced alterations in leukocyte numbers and 
apoptosis in the rat spleen. Cell Immunol 202:113-123. 

Ferrer-Alcon M, La HR, Garcia-Sevilla JA (2004) Decreased immunodensities of micro-
opioid receptors, receptor kinases GRK 2/6 and beta-arrestin-2 in postmortem 
brains of opiate addicts. Brain Res Mol Brain Res 121:114-122. 

Finn AK, Whistler JL (2001) Endocytosis of the mu opioid receptor reduces tolerance 
and a cellular hallmark of opiate withdrawal. Neuron 32:829-839. 

Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive 
update of caspase substrates. Cell Death Differ 10:76-100. 

Fishbein DH, Krupitsky E, Flannery BA, Langevin DJ, Bobashev G, Verbitskaya E, 
Augustine CB, Bolla KI, Zvartau E, Schech B, Egorova V, Bushara N, Tsoy M 
(2007) Neurocognitive characterizations of Russian heroin addicts without a 
significant history of other drug use. Drug Alcohol Depend. 

Fitzmaurice PS, Tong J, Yazdanpanah M, Liu PP, Kalasinsky KS, Kish SJ (2006) 
Levels of 4-hydroxynonenal and malondialdehyde are increased in brain of 
human chronic users of methamphetamine. J Pharmacol Exp Ther 319:703-709. 

Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into 
the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681-
698. 

Frey BN, Valvassori SS, Gomes KM, Martins MR, Dal-Pizzol F, Kapczinski F, Quevedo 
J (2006a) Increased oxidative stress in submitochondrial particles after chronic 
amphetamine exposure. Brain Res 1097:224-229. 

Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, 
Kapczinski F, Quevedo J (2006b) Changes in Antioxidant Defense Enzymes after 
D-: amphetamine Exposure: Implications as an Animal Model of Mania. 
Neurochem Res 31:699-703. 

Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, 
Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 
controls apoptotic cristae remodeling independently from mitochondrial fusion. 
Cell 126:177-189. 

Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612-613. 



References 

 

 162 

Garrido JMPJ, Delerue-Matos C, Borges F, Macedo TRA, Oliveira-Brett AM (2004a) 
Voltammetric Oxidation of Drugs of Abuse II. Codeine and Metabolites. 
Electroanalysis 16:1427-1433. 

Garrido JMPJ, Delerue-Matos C, Borges F, Macedo TRA, Oliveira-Brett AM (2004b) 
Voltammetric Oxidation of Drugs of Abuse III. Heroin and Metabolites. 
Electroanalysis 16:1497-1502. 

Gatley SJ, Gifford AN, Volkow ND, Fowler JS (1998) Pharmacology of Cocaine. In: 
Handbook of Substance Abuse: Neurobehavioral Pharmacology (Tarter et al., 
ed), pp 161-185. New York: Plenum Press. 

Gegenava GP, Chistyakov VV (1975) Effect of morphine in vitro on oxidative 
phosphorylation in rat liver mitochondria. Bulletin of Experimental Biology and 
Medicine V80:1218-1220. 

Gil J, Almeida S, Oliveira CR, Rego AC (2003) Cytosolic and mitochondrial ROS in 
staurosporine-induced retinal cell apoptosis. Free Radic Biol Med 35:1500-1514. 

Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat 
brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, 
NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69:164-170. 

Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(1-13), 
an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A 76:6666-6670. 

Gurtu V, Kain SR, Zhang G (1997) Fluorometric and colorimetric detection of caspase 
activity associated with apoptosis. Anal Biochem 251:98-102. 

Guzman DC, Vazquez IE, Brizuela NO, Alvarez RG, Mejia GB, Garcia EH, Santamaria 
D, de Apreza MR, Olguin HJ (2006) Assessment of oxidative damage induced by 
acute doses of morphine sulfate in postnatal and adult rat brain. Neurochem Res 
31:549-554. 

Haberstock-Debic H, Kim KA, Yu YJ, von ZM (2005) Morphine promotes rapid, 
arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons. J 
Neurosci 25:7847-7857. 

Hara MR, Snyder SH (2007) Cell signaling and neuronal death. Annu Rev Pharmacol 
Toxicol 47:117-141. 

Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose 
synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat 
Neurosci 5:405-414. 



References 

 

 163

Hejmadi MV, jas-Bailador F, Barns SM, Jones B, Wonnacott S (2003) Neuroprotection 
by nicotine against hypoxia-induced apoptosis in cortical cultures involves 
activation of multiple nicotinic acetylcholine receptor subtypes. Mol Cell Neurosci 
24:779-786. 

Henry J (2007) Cocaine powder trail. Biochemist 29:16-19. 

Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, 
Church DJ, Korsmeyer SJ, Martinou JC, Antonsson B (2005) Bax channel 
inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a 
model of global brain ischemia. J Biol Chem 280:42960-42970. 

Hu S, Sheng WS, Lokensgard JR, Peterson PK (2002) Morphine induces apoptosis of 
human microglia and neurons. Neuropharmacology 42:829-836. 

Huang CL, Huang NK, Shyue SK, Chern Y (2003) Hydrogen peroxide induces loss of 
dopamine transporter activity: a calcium-dependent oxidative mechanism. J 
Neurochem 86:1247-1259. 

Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) 
Identification of two related pentapeptides from the brain with potent opiate 
agonist activity. Nature 258:577-580. 

Hutchinson MR, Somogyi AA (2002) Diacetylmorphine degradation to 6-
monoacetylmorphine and morphine in cell culture: implications for in vitro studies. 
Eur J Pharmacol 453:27-32. 

Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role 
of reward-related learning and memory. Annu Rev Neurosci 29:565-598. 

Hyslop PA, Hinshaw DB, Halsey WA, Jr., Schraufstatter IU, Sauerheber RD, Spragg 
RG, Jackson JH, Cochrane CG (1988) Mechanisms of oxidant-mediated cell 
injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are 
major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 
263:1665-1675. 

Imam SZ, Duhart HM, Skinner JT, Ali SF (2005) Cocaine induces a differential dose-
dependent alteration in the expression profile of immediate early genes, 
transcription factors, and caspases in PC12 cells: a possible mechanism of 
neurotoxic damage in cocaine addiction. Ann N Y Acad Sci 1053:482-490. 

Imam SZ, Itzhak Y, Cadet JL, Islam F, Slikker W, Jr., Ali SF (2001) Methamphetamine-
induced alteration in striatal p53 and bcl-2 expressions in mice. Brain Res Mol 
Brain Res 91:174-178. 



References 

 

 164 

Jackson GR, Sampath D, Werrbach-Perez K, Perez-Polo JR (1994) Effects of nerve 
growth factor on catalase and glutathione peroxidase in a hydrogen peroxide-
resistant pheochromocytoma subclone. Brain Res 634:69-76. 

Jang JH, Surh YJ (2004) Possible role of NF-kappaB in Bcl-X(L) protection against 
hydrogen peroxide-induced PC12 cell death. Redox Rep 9:343-348. 

Jenkins AJ, Cone EJ (1998) Pharmacokinetics: Drug absorption, distribution, and 
elimination. In: Drug abuse handbook (Karch SB, ed), pp 165-215. CRC Press 
LLC. 

Jiang Y, Yang W, Zhou Y, Ma L (2003) Up-regulation of murine double minute clone 2 
(MDM2) gene expression in rat brain after morphine, heroin, and cocaine 
administrations. Neurosci Lett 352:216-220. 

Jimenez A, Jorda EG, Verdaguer E, Pubill D, Sureda FX, Canudas AM, Escubedo E, 
Camarasa J, Camins A, Pallas M (2004) Neurotoxicity of amphetamine 
derivatives is mediated by caspase pathway activation in rat cerebellar granule 
cells. Toxicol Appl Pharmacol 196:223-234. 

Jones DC, Gunasekar PG, Borowitz JL, Isom GE (2000) Dopamine-induced apoptosis 
is mediated by oxidative stress and Is enhanced by cyanide in differentiated 
PC12 cells. J Neurochem 74:2296-2304. 

Jones SR, Joseph JD, Barak LS, Caron MG, Wightman RM (1999) Dopamine neuronal 
transport kinetics and effects of amphetamine. J Neurochem 73:2406-2414. 

Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A 
(2005) Amphetamine induces dopamine efflux through a dopamine transporter 
channel. Proc Natl Acad Sci U S A 102:3495-3500. 

Kahlig KM, Galli A (2003) Regulation of dopamine transporter function and plasma 
membrane expression by dopamine, amphetamine, and cocaine. Eur J 
Pharmacol 479:153-158. 

Kahlig KM, Javitch JA, Galli A (2004) Amphetamine regulation of dopamine transport. 
Combined measurements of transporter currents and transporter imaging support 
the endocytosis of an active carrier. J Biol Chem 279:8966-8975. 

Kato H, Narita M, Suzuki M, Yoshimoto K, Yasuhara M, Suzuki T (2007) Role of 
tyrosine kinase-dependent phosphorylation of NR2B subunit-containing NMDA 
receptor in morphine reward. Nihon Arukoru Yakubutsu Igakkai Zasshi 42:13-20. 

Kaye AD, Gevirtz C, Bosscher HA, Duke JB, Frost EA, Richards TA, Fields AM (2003) 
Ultrarapid opiate detoxification: a review. Can J Anaesth 50:663-671. 



References 

 

 165

Keith DE, Anton B, Murray SR, Zaki PA, Chu PC, Lissin DV, Monteillet-Agius G, 
Stewart PL, Evans CJ, von ZM (1998) mu-Opioid receptor internalization: opiate 
drugs have differential effects on a conserved endocytic mechanism in vitro and 
in the mammalian brain. Mol Pharmacol 53:377-384. 

Keith DE, Murray SR, Zaki PA, Chu PC, Lissin DV, Kang L, Evans CJ, von ZM (1996) 
Morphine activates opioid receptors without causing their rapid internalization. J 
Biol Chem 271:19021-19024. 

Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with 
wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257. 

Kim DK, Cho ES, Lee BR, Um HD (2001a) NF-kappa B mediates the adaptation of 
human U937 cells to hydrogen peroxide. Free Radic Biol Med 30:563-571. 

Kim DK, Cho ES, Seong JK, Um HD (2001b) Adaptive concentrations of hydrogen 
peroxide suppress cell death by blocking the activation of SAPK/JNK pathway. J 
Cell Sci 114:4329-4334. 

Krasnova IN, Ladenheim B, Cadet JL (2005) Amphetamine induces apoptosis of 
medium spiny striatal projection neurons via the mitochondria-dependent 
pathway. FASEB J 19:851-853. 

Kreek MJ, Koob GF (1998) Drug dependence: stress and dysregulation of brain reward 
pathways. Drug Alcohol Depend 51:23-47. 

Kreek MJ, Laforge KS, Butelman E (2002) Pharmacotherapy of addictions. Nat Rev 
Drug Discov 1:710-726. 

Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in 
cell death. Physiol Rev 87:99-163. 

Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725-730. 

Lee BR, Um HD (1999) Hydrogen peroxide suppresses U937 cell death by two 
different mechanisms depending on its concentration. Exp Cell Res 248:430-438. 

Lee MC, Cahill CM, Vincent JP, Beaudet A (2002) Internalization and trafficking of 
opioid receptor ligands in rat cortical neurons. Synapse 43:102-111. 

Lee YW, Hennig B, Fiala M, Kim KS, Toborek M (2001) Cocaine activates redox-
regulated transcription factors and induces TNF-alpha expression in human brain 
endothelial cells. Brain Res 920:125-133. 

Leri F, Bruneau J, Stewart J (2003) Understanding polydrug use: review of heroin and 
cocaine co-use. Addiction 98:7-22. 



References 

 

 166 

Leshner AI (1997) Addiction is a brain disease, and it matters. Science 278:45-47. 

Li CH, Chung D (1976) Isolation and structure of an untriakontapeptide with opiate 
activity from camel pituitary glands. Proc Natl Acad Sci U S A 73:1145-1148. 

Lim G, Wang S, Lim JA, Mao J (2005) Activity of adenylyl cyclase and protein kinase A 
contributes to morphine-induced spinal apoptosis. Neurosci Lett 389:104-108. 

Lipton JW, Gyawali S, Borys ED, Koprich JB, Ptaszny M, McGuire SO (2003) Prenatal 
cocaine administration increases glutathione and alpha-tocopherol oxidation in 
fetal rat brain. Brain Res Dev Brain Res 147:77-84. 

Liu Y, Qin L, Wilson BC, An L, Hong JS, Liu B (2002) Inhibition by naloxone 
stereoisomers of beta-amyloid peptide (1-42)-induced superoxide production in 
microglia and degeneration of cortical and mesencephalic neurons. J Pharmacol 
Exp Ther 302:1212-1219. 

Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in 
neuronal circuits. Nat Rev Neurosci 7:179-193. 

Luo Y, Umegaki H, Wang X, Abe R, Roth GS (1998) Dopamine induces apoptosis 
through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 
273:3756-3764. 

Ma YY, Chu NN, Guo CY, Han JS, Cui CL (2007) NR2B-containing NMDA receptor is 
required for morphine-but not stress-induced reinstatement. Exp Neurol 203:309-
319. 

Ma YY, Guo CY, Yu P, Lee DY, Han JS, Cui CL (2006) The role of NR2B containing 
NMDA receptor in place preference conditioned with morphine and natural 
reinforcers in rats. Exp Neurol 200:343-355. 

Macedo DS, de Vasconcelos SM, dos Santos RS, Aguiar LM, Lima VT, Viana GS, de 
Sousa FC (2005) Cocaine alters catalase activity in prefrontal cortex and striatum 
of mice. Neurosci Lett 387:53-56. 

Mackowiak M, Markowicz-Kula K, Fijal K, Wedzony K (2005) Acute and repeated 
administration of cocaine differentially regulates expression of PSA-NCAM-
positive neurons in the rat hippocampus. Brain Res 1055:149-155. 

Madras B (2006) Introduction. In: Cell Biology of Addiction (Madras B, Colvis CA, 
Pollock JD, Rutter JL, Shurtleff D, von Zastrow M, eds), pp 1-12. New York: Cold 
Spring Harbour Laboratory Press. 

Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane 
cristae. Biochim Biophys Acta 1763:542-548. 



References 

 

 167

Mao J, Sung B, Ji RR, Lim G (2002) Neuronal apoptosis associated with morphine 
tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 
22:7650-7661. 

Martin G, Guadano-Ferraz A, Morte B, Ahmed S, Koob GF, De LL, Siggins GR (2004) 
Chronic morphine treatment alters N-methyl-D-aspartate receptors in freshly 
isolated neurons from nucleus accumbens. J Pharmacol Exp Ther 311:265-273. 

Mastronicola D, Arcuri E, Arese M, Bacchi A, Mercadante S, Cardelli P, Citro G, Sarti P 
(2004) Morphine but not fentanyl and methadone affects mitochondrial 
membrane potential by inducing nitric oxide release in glioma cells. Cell Mol Life 
Sci 61:2991-2997. 

Matos MG, Simões S, Gaspar T, Tomé G, Ferreira M, Linhares F, Dinis JA, Equipa do 
projecto Aventura Social (2007) Aventura Social & Saúde: Consumo de 
substâncias nos adolescentes portugueses. Aventura Social- relatório. 

Mavelli I, Rigo A, Federico R, Ciriolo MR, Rotilio G (1982) Superoxide dismutase, 
glutathione peroxidase and catalase in developing rat brain. Biochem J 204:535-
540. 

McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton O, Nestler EJ (2004) 
DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res 
Mol Brain Res 132:146-154. 

Milusheva E, Baranyi M, Kittel A, Sperlagh B, Vizi ES (2005) Increased sensitivity of 
striatal dopamine release to H2O2 upon chronic rotenone treatment. Free Radic 
Biol Med 39:133-142. 

Milusheva E, Sperlagh B, Shikova L, Baranyi M, Tretter L, dam-Vizi V, Vizi ES (2003) 
Non-synaptic release of [3H]noradrenaline in response to oxidative stress 
combined with mitochondrial dysfunction in rat hippocampal slices. Neuroscience 
120:771-781. 

Mirecki A, Fitzmaurice P, Ang L, Kalasinsky KS, Peretti FJ, Aiken SS, Wickham DJ, 
Sherwin A, Nobrega JN, Forman HJ, Kish SJ (2004) Brain antioxidant systems in 
human methamphetamine users. J Neurochem 89:1396-1408. 

Mitchell ES, Snyder-Keller A (2003) c-fos and cleaved caspase-3 expression after 
perinatal exposure to ethanol, cocaine, or the combination of both drugs. Brain 
Res Dev Brain Res 147:107-117. 

Moffat AC (1986) Clarke's Isolation and Identification of Drugs. Pharmaceutical Press. 

Moore JM, Allen AC, Cooper DA (1984) Determination of Manufacturing Impurities in 
Heroin by Capillary Gas-Chromatography with Electron-Capture Detection After 



References 

 

 168 

Derivatization with Heptafluorobutyric Anhydride. Analytical Chemistry 56:642-
646. 

Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: 
application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63. 

Murray F, Harrison NJ, Grimwood S, Bristow LJ, Hutson PH (2007) Nucleus 
accumbens NMDA receptor subunit expression and function is enhanced in 
morphine-dependent rats. Eur J Pharmacol 562:191-197. 

Murray JB (1986) Marijuana's effects on human cognitive functions, psychomotor 
functions, and personality. J Gen Psychol 113:23-55. 

Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007) Damage to the insula disrupts 
addiction to cigarette smoking. Science 315:531-534. 

Nassogne MC, Evrard P, Courtoy PJ (1998) Selective direct toxicity of cocaine on fetal 
mouse neurons. Teratogenic implications of neurite and apoptotic neuronal loss. 
Ann N Y Acad Sci 846:51-68. 

Nestler EJ (2004b) Molecular mechanisms of drug addiction. Neuropharmacology 47 
Suppl 1:24-32. 

Nestler EJ (2004a) Historical review: Molecular and cellular mechanisms of opiate and 
cocaine addiction. Trends Pharmacol Sci 25:210-218. 

Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 
278:58-63. 

Newcomer JW, Krystal JH (2001) NMDA receptor regulation of memory and behavior 
in humans. Hippocampus 11:529-542. 

Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131-181. 

Nicotera P, Melino G (2004) Regulation of the apoptosis-necrosis switch. Oncogene 
23:2757-2765. 

Nixon K, Crews FT (2004) Temporally specific burst in cell proliferation increases 
hippocampal neurogenesis in protracted abstinence from alcohol. J Neurosci 
24:9714-9722. 

Ohmori T, Abekawa T, Koyama T (1996) The role of glutamate in behavioral and 
neurotoxic effects of methamphetamine. Neurochem Int 29:301-307. 

Oliveira MT, Rego AC, Macedo TR, Oliveira CR (2003) Drugs of abuse induce 
apoptotic features in PC12 cells. Ann N Y Acad Sci 1010:667-670. 



References 

 

 169

Oliveira MT, Rego AC, Morgadinho MT, Macedo TR, Oliveira CR (2002) Toxic effects 
of opioid and stimulant drugs on undifferentiated PC12 cells. Ann N Y Acad Sci 
965:487-496. 

Ozmen I, Naziroglu M, Alici HA, Sahin F, Cengiz M, Eren I (2007) Spinal morphine 
administration reduces the fatty acid contents in spinal cord and brain by 
increasing oxidative stress. Neurochem Res 32:19-25. 

Palmeira CM, Moreno AJ, Madeira VM, Wallace KB (1996) Continuous monitoring of 
mitochondrial membrane potential in hepatocyte cell suspensions. J Pharmacol 
Toxicol Methods 35:35-43. 

Pan J, Zhang Q, Zhang Y, Ouyang Z, Zheng Q, Zheng R (2005) Oxidative stress in 
heroin administered mice and natural antioxidants protection. Life Sci 77:183-
193. 

Panet H, Barzilai A, Daily D, Melamed E, Offen D (2001) Activation of nuclear 
transcription factor kappa B (NF-kappaB) is essential for dopamine-induced 
apoptosis in PC12 cells. J Neurochem 77:391-398. 

Pau CWH, Lee TMC, Chan SFF (2002) The impact of heroin on frontal executive 
functions. Archives of Clinical Neuropsychology 17:663-670. 

Piazza PV, Le Moal M (1998) The role of stress in drug self-administration. Trends 
Pharmacol Sci 19:67-74. 

Pifl C, Drobny H, Reither H, Hornykiewicz O, Singer EA (1995) Mechanism of the 
dopamine-releasing actions of amphetamine and cocaine: plasmalemmal 
dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 
47:368-373. 

Poon HF, Abdullah L, Mullan MA, Mullan MJ, Crawford FC (2007) Cocaine-induced 
oxidative stress precedes cell death in human neuronal progenitor cells. 
Neurochem Int 50:69-73. 

Pouletty P (2002) Drug addictions: towards socially accepted and medically treatable 
diseases. Nat Rev Drug Discov 1:731-736. 

Pubill D, Chipana C, Camins A, Pallas M, Camarasa J, Escubedo E (2005) Free radical 
production induced by methamphetamine in rat striatal synaptosomes. Toxicol 
Appl Pharmacol 204:57-68. 

public broadcasting service website (2007) Opium throughout history. http://www pbs 
org/wgbh/pages/frontline/shows/heroin/etc/history html. 



References 

 

 170 

Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A, McNamara JO, Williams 
SM (2001) Neurotransmitters. In: Neuroscience (Purves D, Augustine GJ, 
Fitzpatrick D, Katz LC, LaMantia A, McNamara JO, Williams SM, eds), Sinauer 
Associates. 

Qiusheng Z, Yuntao Z, Rongliang Z, Dean G, Changling L (2005) Effects of 
verbascoside and luteolin on oxidative damage in brain of heroin treated mice. 
Pharmazie 60:539-543. 

Ramasarma T (1990) H2O2 has a role in cellular regulation. Indian J Biochem Biophys 
27:269-274. 

Ramsay RR, Hunter DJ (2002) Inhibitors alter the spectrum and redox properties of 
monoamine oxidase A. Biochim Biophys Acta 1601:178-184. 

Ranaldi R, Munn E (1998) Polydrug self-administration in rats: cocaine-heroin is more 
rewarding than cocaine-alone. Neuroreport 9:2463-2466. 

Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (1994) Pharmacological 
characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol 
Pharmacol 45:330-334. 

Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in 
excitotoxicity and apoptosis: implications for the pathogenesis of 
neurodegenerative diseases. Neurochem Res 28:1563-1574. 

Rego AC, Santos MS, Oliveira CR (1997) Adenosine triphosphate degradation 
products after oxidative stress and metabolic dysfunction in cultured retinal cells. 
J Neurochem 69:1228-1235. 

Rhodes JS, Crabbe JC (2005) Gene expression induced by drugs of abuse. Curr Opin 
Pharmacol 5:26-33. 

Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J (2004) 
Effects of NMDA receptor antagonists (MK-801 and memantine) on the 
acquisition of morphine-induced conditioned place preference in mice. Prog 
Neuropsychopharmacol Biol Psychiatry 28:1035-1043. 

Riedlinger TJ, Riedlinger JE (1994) Psychedelic and entactogenic drugs in the 
treatment of depression. J Psychoactive Drugs 26:41-55. 

Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine 
transporters are related to self-administration of cocaine. Science 237:1219-
1223. 



References 

 

 171

Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular 
determinants and functional consequences. Physiol Rev 86:369-408. 

Romero C (2005) Powerpoint Lectures for Biology. In: The Chemical Context of Life 
(Campbell N, Reece J, eds), Pearson Education. 

Roth BA, Benowitz NL, Olson KR (1998) Emergency management of drug abuse-
related disorders. In: Drug Abuse Handbook (Karch SB, ed), pp 580-652. New 
York: CRC Press LLC. 

Salinas J (2006) Behavioral Neuroscience course slides. http://homepage psy utexas 
edu/homepage/class/Psy332/Salinas/Neurotransmitters/Slide08 GIF. 

Sarnyai Z, Shaham Y, Heinrichs SC (2001) The role of corticotropin-releasing factor in 
drug addiction. Pharmacol Rev 53:209-243. 

Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, Leeb-Lundberg LM, Carvelli 
L, Javitch JA, Galli A (2000) Amphetamine-induced loss of human dopamine 
transporter activity: an internalization-dependent and cocaine-sensitive 
mechanism. Proc Natl Acad Sci U S A 97:6850-6855. 

Sawynok J (1986) The therapeutic use of heroin: a review of the pharmacological 
literature. Can J Physiol Pharmacol 64:1-6. 

Schiff PL (2002) Opium and its alkaloids. American Journal of Pharmaceutical 
Education 66:186-194. 

Schulz S, Mayer D, Pfeiffer M, Stumm R, Koch T, Hollt V (2004) Morphine induces 
terminal micro-opioid receptor desensitization by sustained phosphorylation of 
serine-375. EMBO J 23:3282-3289. 

Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, Tam J, Xu D, 
Xanthoudakis S, Nicholson DW, Carafoli E, Nicotera P (2002) Cleavage of 
plasma membrane calcium pumps by caspases: a link between apoptosis and 
necrosis. Cell Death Differ 9:818-831. 

Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ 
(2002) A distinct pathway remodels mitochondrial cristae and mobilizes 
cytochrome c during apoptosis. Dev Cell 2:55-67. 

Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by 
proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437-
444. 

Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein 
using Coomassie brilliant blue G250. Anal Biochem 79:544-552. 



References 

 

 172 

Seong JK, Kim DK, Choi KH, Oh SH, Kim KS, Lee SS, Um HD (2002) Proteomic 
analysis of the cellular proteins induced by adaptive concentrations of hydrogen 
peroxide in human U937 cells. Exp Mol Med 34:374-378. 

Shafer TJ, Atchison WD (1991) Transmitter, ion channel and receptor properties of 
pheochromocytoma (PC12) cells: a model for neurotoxicological studies. 
Neurotoxicology 12:473-492. 

Sharma SP, Purkait BC, Lahiri SC (2005) Qualitative and quantitative analysis of 
seized street drug samples and identification of source. Forensic Sci Int 152:235-
240. 

Shesser R, Jotte R, Olshaker J (1991) The contribution of impurities to the acute 
morbidity of illegal drug use. Am J Emerg Med 9:336-342. 

Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu 
Rev Neurosci 22:197-217. 

Siggins GR, Martin G, Roberto M, Nie Z, Madamba S, De LL (2003) Glutamatergic 
transmission in opiate and alcohol dependence. Ann N Y Acad Sci 1003:196-211. 

Singhal P, Kapasi A, Reddy K, Franki N (2002) Opiates promote T cell apoptosis 
through JNK and caspase pathway. Adv Exp Med Biol 493:127-135. 

Sitte HH, Huck S, Reither H, Boehm S, Singer EA, Pifl C (1998) Carrier-mediated 
release, transport rates, and charge transfer induced by amphetamine, tyramine, 
and dopamine in mammalian cells transfected with the human dopamine 
transporter. J Neurochem 71:1289-1297. 

Soine WH (1986) Clandestine drug synthesis. Med Res Rev 6:41-74. 

Sorg BA, Chen SY, Kalivas PW (1993) Time course of tyrosine hydroxylase expression 
after behavioral sensitization to cocaine. J Pharmacol Exp Ther 266:424-430. 

Sternini C, Spann M, Anton B, Keith DE, Jr., Bunnett NW, von ZM, Evans C, Brecha 
NC (1996) Agonist-selective endocytosis of mu opioid receptor by neurons in 
vivo. Proc Natl Acad Sci U S A 93:9241-9246. 

Stumm G, Schlegel J, Schafer T, Wurz C, Mennel HD, Krieg JC, Vedder H (1999) 
Amphetamines induce apoptosis and regulation of bcl-x splice variants in 
neocortical neurons. FASEB J 13:1065-1072. 

Su J, Li J, Li W, Altura BT, Altura BM (2003) Cocaine induces apoptosis in cerebral 
vascular muscle cells: potential roles in strokes and brain damage. Eur J 
Pharmacol 482:61-66. 



References 

 

 173

Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine 
redistributes dopamine from synaptic vesicles to the cytosol and promotes 
reverse transport. J Neurosci 15:4102-4108. 

Sulzer D, Rayport S (1990) Amphetamine and other psychostimulants reduce pH 
gradients in midbrain dopaminergic neurons and chromaffin granules: a 
mechanism of action. Neuron 5:797-808. 

Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter 
release by amphetamines: a review. Prog Neurobiol 75:406-433. 

Swerdlow RH, Parks JK, Cassarino DS, Maguire DJ, Maguire RS, Bennett JP, Davis 
RE, Parker WD (1997) Cybrids in Alzheimer's disease: A cellular model of the 
disease? Neurology 49:918-925. 

Teuchert-Noodt G, Dawirs RR, Hildebrandt K (2000) Adult treatment with 
methamphetamine transiently decreases dentate granule cell proliferation in the 
gerbil hippocampus. J Neural Transm 107:133-143. 

Tome AR, Izaguirre V, Rosario LM, Cena V, Gonzalez-Garcia C (2001) Naloxone 
inhibits nicotine-induced receptor current and catecholamine secretion in bovine 
chromaffin cells. Brain Res 903:62-65. 

Trafton JA, Abbadie C, Marek K, Basbaum AI (2000) Postsynaptic signaling via the 
[mu]-opioid receptor: responses of dorsal horn neurons to exogenous opioids and 
noxious stimulation. J Neurosci 20:8578-8584. 

Trujillo KA (2000) Are NMDA receptors involved in opiate-induced neural and 
behavioral plasticity? A review of preclinical studies. Psychopharmacology (Berl) 
151:121-141. 

Tzschentke TM, Schmidt WJ (2003) Glutamatergic mechanisms in addiction. Mol 
Psychiatry 8:373-382. 

United Nations Office on Drugs and Crime (2006) World Drug Report. 

Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. 
Neurosci Biobehav Rev 24:125-132. 

Venero JL, Absi e, Cano J, Machado A (2002) Melatonin induces tyrosine hydroxylase 
mRNA expression in the ventral mesencephalon but not in the hypothalamus. J 
Pineal Res 32:6-14. 

Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain: insights from 
imaging studies. J Clin Invest 111:1444-1451. 



References 

 

 174 

von Zastrow M, Evans CJ (2006) Opioids as a model for cell biological studies of 
addictive drug action. In: Cell Biology of Addiction (Madras B, Colvis CA, Pollock 
JD, Rutter JL, Shurtleff D, von Zastrow M, eds), pp 193-210. 

Vrana SL, Vrana KE, Koves TR, Smith JE, Dworkin SI (1993) Chronic cocaine 
administration increases CNS tyrosine hydroxylase enzyme activity and mRNA 
levels and tryptophan hydroxylase enzyme activity levels. J Neurochem 61:2262-
2268. 

Wagner GC, Ricaurte GA, Johanson CE, Schuster CR, Seiden LS (1980) 
Amphetamine induces depletion of dopamine and loss of dopamine uptake sites 
in caudate. Neurology 30:547-550. 

Wang LZ, Sun WC, Zhu XZ (2005) Ethyl pyruvate protects PC12 cells from dopamine-
induced apoptosis. Eur J Pharmacol 508:57-68. 

Warnhoff M (1984) Simultaneous determination of norepinephrine, dopamine, 5-
hydroxytryptamine and their main metabolites in rat brain using high-performance 
liquid chromatography with electrochemical detection. Enzymatic hydrolysis of 
metabolites prior to chromatography. J Chromatogr 307:271-281. 

White JM, Irvine RJ (1999) Mechanisms of fatal opioid overdose. Addiction 94:961-972. 

Wiese AG, Pacifici RE, Davies KJ (1995) Transient adaptation of oxidative stress in 
mammalian cells. Arch Biochem Biophys 318:231-240. 

Wikipedia (2007) Heroin - http://en.wikipedia.org/wiki/Heroin. 

Williams JM, Steketee JD (2005) Time-dependent effects of repeated cocaine 
administration on dopamine transmission in the medial prefrontal cortex. 
Neuropharmacology 48:51-61. 

Williams JT, Christie MJ, Manzoni O (2001) Cellular and synaptic adaptations 
mediating opioid dependence. Physiol Rev 81:299-343. 

Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, Chi CW, Lee HC (2007) 
Enhanced oxidative stress and aberrant mitochondrial biogenesis in human 
neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. 
Toxicol Appl Pharmacol 220:243-251. 

Xu B, Wang Z, Li G, Li B, Lin H, Zheng R, Zheng Q (2006) Heroin-administered mice 
involved in oxidative stress and exogenous antioxidant-alleviated withdrawal 
syndrome. Basic Clin Pharmacol Toxicol 99:153-161. 



References 

 

 175

Yamaguchi M, Suzuki T, Seki T, Namba T, Juan R, Arai H, Hori T, Asada T (2004) 
Repetitive cocaine administration decreases neurogenesis in adult rat 
hippocampus. Ann N Y Acad Sci 1025:351-362. 

Ye K, Ke Y, Keshava N, Shanks J, Kapp JA, Tekmal RR, Petros J, Joshi HC (1998) 
Opium alkaloid noscapine is an antitumor agent that arrests metaphase and 
induces apoptosis in dividing cells. Proc Natl Acad Sci U S A 95:1601-1606. 

Yin D, Mufson RA, Wang R, Shi Y (1999) Fas-mediated cell death promoted by 
opioids. Nature 397:218. 

Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 
6:657-663. 

Yuan C, Acosta D, Jr. (1996) Cocaine-induced mitochondrial dysfunction in primary 
cultures of rat cardiomyocytes. Toxicology 112:1-10. 

Zadina JE, Martin-Schild S, Gerall AA, Kastin AJ, Hackler L, Ge LJ, Zhang X (1999) 
Endomorphins: novel endogenous mu-opiate receptor agonists in regions of high 
mu-opiate receptor density. Ann N Y Acad Sci 897:136-144. 

Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora's box 
opens. Nat Rev Mol Cell Biol 2:67-71. 

Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, 
Raymond LA (2002) Increased sensitivity to N-methyl-D-aspartate receptor-
mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 
33:849-860. 

Zhang D, Shi X, Yuan Z, Ju H (2004) Component analysis of illicit heroin samples with 
GC/MS and its application in source identification. J Forensic Sci 49:81-86. 

Zhang L, Xiao Y, He J (1999) Cocaine and apoptosis in myocardial cells. Anat Rec 
257:208-216. 

Zhivotovsky B, Orrenius S (2005) Caspase-2 function in response to DNA damage. 
Biochem Biophys Res Commun 331:859-867. 

Zhu JP, Xu W, Angulo JA (2006) Methamphetamine-induced cell death: selective 
vulnerability in neuronal subpopulations of the striatum in mice. Neuroscience 
140:607-622. 

 
 

 

 



 

 



Notes 

 

 177

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Notes 

 

 178 

 




