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ABSTRACT Security vulnerabilities are present in most software systems, especially in projects with a
large codebase, with several versions over the years, developed by many developers. Issues with memory
management, in particular buffer overflow, are among the most frequently exploited vulnerabilities in
software systems developed in C/C++. Nevertheless, most buffer overflow vulnerabilities are not detectable
by vulnerability detection tools and static analysis tools (SATs). To improve vulnerability detection, we need
to better understand the characteristics of such vulnerabilities and their root causes. In this study, we analyze
159 vulnerable code units from three representative projects (i.e., Linux Kernel, Mozilla, and Xen). First,
the vulnerable code is characterized using the Orthogonal Defect Classification (ODC), showing that most
buffer overflow vulnerabilities are related to missing or incorrect checking (e.g., missing if construct around
statement or incorrect logical expression used as branch condition). Then, we run two widely used C/C++
Static Analysis Tools (SATs) (i.e., CppCheck and Flawfinder) on the vulnerable and neutral (after the
vulnerability fix) versions of each code unit, showing the low effectiveness of this type of tool in detecting
buffer overflow vulnerabilities. Finally, we characterize the vulnerable and neutral versions of each code
unit using software metrics, demonstrating that, although such metrics are frequently used as indicators of
software quality, there is no clear correlation between them and the existence of buffer overflow in the code.
As a result, we highlight a set of observations that should be considered to improve the detection of buffer
overflow vulnerabilities.

INDEX TERMS Software security, buffer overflow, static code analysis, vulnerability detection, orthogonal
defect classification (ODC), software metrics.

I. INTRODUCTION
Most computing systems suffer from software vulnerabilities,
a particular type of defect that may open the door to security
attacks [1]. When an attack happens, severe damages may
occur, such as gain of administrative privileges, access to con-
fidential information, financial loss, and even safety-related
violations.

Since 2020 we have witnessed a steep increase in the rel-
evance of software security due to the COVID-19 pandemic,
as most businesses and organizations have to be available
over the Internet to support online working and services more
than ever [2]. This has created more possibilities for security
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attacks, as systems that were developed without considering
strict security requirements can no longer be restricted to
corporate networks.

According to Steve Zurier, most IT leaders intend to spend
more than 40% of their 2021 budget in cybersecurity to avoid
potential attacks [3]. Moreover, a White Source report states
that C and C++ account for 52% of vulnerabilities in open
source software (C = 46%; C++ = 6%) [4]. Among these
vulnerabilities, improper use of memory, which may lead to
buffer overflows, is the most frequent type of vulnerability
in C/C++ code [4].
The secure coding practices from the Open Web Applica-

tion Security Project (OWASP) [5] and the coding standards
from the Software Engineering Institute (SEI) CERT [6],
among many other resources available, provide fundamental
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guidelines and checklists to handle memory management
properly. Despite that, many software systems are still
released with vulnerabilities of this type, which are usually
caused by the lack of knowledge and experience on applying
coding practices and guides throughout the Software Devel-
opment Lifecycle (SDLC).

Barry Boehm highlights, in his famous ‘‘Software Engi-
neering Economics’’ book, that ‘‘the earlier the defects are
discovered, the cheaper it is to fix them’’ [7]. Security vulner-
abilities, in particular memory management-related issues,
are a type of software defect for which Boehm’s statement
is particularly valid. In fact, from a business perspective,
the consequences of vulnerabilities being exploited can be
even more severe than of ‘‘classical’’ software defects. This
way, effective techniques and tools to detect software vulner-
abilities must be applied from the early stages of software
development.

Common and widely-used vulnerability detection tech-
niques are based on Static Code Analysis [8] and on the
analysis of Software Metrics (SMs) [9]. Static Analysis Tools
(SATs) analyze the code (without executing it) and report
alerts indicating potential issues, including security vulnera-
bilities. The software development team should then verify
these alerts and fix the correctly detected issues. On the
other hand, SMs can be analyzed using techniques such as
Machine Learning (ML) [9]–[11] and genetic algorithms [12]
to identify potentially vulnerable code units (e.g., files, func-
tions, and classes that probably are vulnerable). In this case,
the software development team should review, analyze (e.g.,
using SATs), and/or test the indicated code units to find and
fix the possible vulnerabilities.

Both SATs and SMs have limitations in what regards the
detection of software vulnerabilities. On one hand, although
considered effective to point the problematic (or vulnerable)
lines of code, SATs are known for reporting a high number of
false alarms [13]. On the other hand, SMs combined with ML
may achieve good results in terms of avoiding false alarms,
but creating precise and generic (i.e., not overfitted) predic-
tion models is quite challenging [14]. Also, these techniques
are usually weaker for buffer overflow vulnerabilities [15].
To improve the current situation, we need to better understand
how buffer overflow vulnerabilities are fixed, and what are
the capabilities and limitations of using SATs and SMs to
detect such weaknesses. SATs indicates potential problems in
the source code, while SMs reveal code structural character-
istics. This helps to research new approaches for vulnerability
detection or improve the existing ones (e.g., by creating new
detection rules for SATs).

This work studies the characteristics of code with buffer
overflow vulnerabilities and of the fixes applied to remove
them. To support this study, we rely on SMs and SAT alerts as
they are frequently used to collect information about the qual-
ity of the code during the development phase [16]. Moreover,
they can be easily extracted from the code under develop-
ment. Although this type of study is also important for other
types of vulnerabilities, they should be treated independently,

as different conclusions may be reached depending on the
specific characteristics of each type.

We analyze the vulnerable version and the neutral version
(after a code fix) of a set of 159 code units from three rep-
resentative C/C++ open-source projects (i.e., Linux Kernel,
Mozilla, and Xen) in an attempt to cast light on the following
Research Questions (RQs):

• RQ1:What are themain changes in the codewhen fixing
buffer overflow vulnerabilities?

• RQ2: What are the differences between SAT alerts
reported before and after fixes?

• RQ3:What is the impact of buffer overflow vulnerability
fixes on SMs that portray code characteristics?

The analysis follows three complementary directions:
i) study the changes in the source code when fixing buffer
overflow vulnerabilities by applying the Orthogonal Defect
Classification (ODC); ii) study the SAT alerts in the vul-
nerable and neutral versions of code units by running two
widely known C/C++ SATs (CppCheck and Flawfinder);
and iii) understand the eventual correlation of SMs with
the existence of buffer overflow vulnerabilities by com-
paring their variation between the vulnerable and neutral
versions of the code. The outcome is a set of key observations
that can be used in the future to improve the detection of
buffer overflow vulnerabilities.

The rest of this paper is organized as follows. Section II
presents background concepts and related work. Section III
describes the approach and the experiments conducted.
The analysis of the main code changes due to vulnera-
bility fixes and the ODC classification are presented in
Section IV. Section V presents the analysis of the SAT
alerts and Section VI focuses on the impact of the fixes
on SMs. Section VII discusses the limitations of the work
and highlights the threats to validity of the results. Finally,
Section VIII concludes the paper and presents directions for
future work.

II. BACKGROUND AND RELATED WORK
This section presents concepts on software vulnerability
(in particular, buffer overflow), techniques for vulnerability
detection, and related works.

A. SOFTWARE VULNERABILITY AND BUFFER OVERFLOW
According to ISO/IEC 27000:2018 [1], a vulnerability is
a ‘‘weakness of an asset or control that can be exploited
by one or more threats’’. Such weakness, which can be a
design flaw or an implementation bug, leaves the software
system vulnerable to attacks. A successful attack may lead to
safety violations (i.e., harmful to the system, environment,
or human life), data breaches, financial loss, among other
consequences [17], depending on the type of vulnerability
exploited and the intentions of the attackers.

Buffer overflow is a weakness related to inadequate mem-
ory management. It occurs when the software allows read-
ing or writing in a memory space outside the allocated
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memory [18]. A typical example of a buffer overflow weak-
ness is the use of the C function strcpy, as it copies a
string from a memory location to another without check-
ing the boundaries of the destination buffer. As an exam-
ple, one of the vulnerable code snippets of the Linux
Kernel project analyzed in this study is shown below
(sound/oss/soundcard.c before the vulnerability fix
CVE-2010-4527). It uses the strcpy function in an old
version of the Linux Kernel. This vulnerability can be fixed
either by replacing the vulnerable function (i.e., strcpy) by
another function, such as strlcpy, or by adding a checking
before the use of strcpy.

n = num_mixer_volumes++;

strcpy(mixer_vols[n].name, name);

if (present)
mixer_vols[n].num = n;

else
mixer_vols[n].num = -1;

The Common Weakness Enumeration (CWE) [19]
provides a community-developed list of known software
and hardware weaknesses/vulnerabilities for a large set
of systems. In this categorization system, most memory
management-related vulnerabilities are classified under the
CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer identifier [18]. Although this is a
known problem, it is still themost frequent weakness found in
most C/C++ software systems for several reasons: i) there is
no built-in protection in C/C++ applications against access-
ing/overwriting data in memory; ii) C/C++ software sys-
tems do not automatically check whether data written to a
buffer respects the bounds of that buffer; and iii) several and
different possibilities and paths in the code may lead to the
buffer overflow issue, which makes it challenging to find all
possibilities, especially in complex and large projects.

B. VULNERABILITY DETECTION TECHNIQUES
There are several techniques to discover software
vulnerabilities, which can be divided into dynamic and static
techniques [20]. Dynamic techniques, such as Software Pen-
etration Testing (SPT) [21], involve the execution of the
software system and test it against simulated (or emulated)
attacks. When an attack is well-succeeded, a vulnerability is
detected and exploited. On the other hand, static techniques,
which are the main focus of this study, try to find the poten-
tial vulnerabilities by analyzing the source code without its
execution [22].

Although SATs are not limited to the identification of secu-
rity vulnerabilities, one of their main uses is for this purpose
due to the severe consequences that vulnerabilities may have.
The static analysis is normally performed by following and
checking a set of rules specified for a specific programming
language. Examples of SATs are Spotbugs [23] for Java (for-
merly known as Findbugs), Microsoft FxCop for .Net [24],
Pixy [25] for PHP, and Parasoft CppTest [26] for C/C++.
Some SATs include rules for several programming languages,

such as SonarQube [27] (27 programming languages, such
as Java, C#, C/C++, Python, and PHP) and Coverity [28]
(21 programming languages, such as C/C++, Java, Scala,
and PHP).

The techniques to identify the issues are diverse, includ-
ing syntactic pattern matching, lexical analysis, data flow
analysis (and its particular case of taint analysis), parsing,
model checking, and symbolic execution [29], [30]. Each
issue identified and reported by a SAT is called an ‘‘alert’’.
An alert includes the following main attributes: i) a type
(source of the problem), ii) a filename, and iii) the line of
code in which the alert is raised. Other attributes can also
be reported, such as the alert severity, category of the vul-
nerability, Common Weakness Enumeration (CWE), and a
message or a description. In practice, each SAT defines some
additional attributes to report.

SMs can also be used to detect software vulnerabilities.
This is usually achieved by analyzing the architectural mea-
sures of the source code through different types of metrics,
such as i) volume (e.g., Lines of Codes (LOCs)), ii) cou-
pling (e.g., coupling between objects/classes), iii) cohesion
(e.g., lack of cohesion), and iv) complexity (e.g., McCabe’s
cyclomatic complexity [31]). SMs can be analyzed using ML
algorithms [9], [11] or genetic algorithms [12] to indicate
low-quality code units (i.e., files, functions, classes) that may
be (with some probability) vulnerable. The software devel-
opment team is then responsible for reviewing the code to
identify the exact location of possible vulnerabilities.

C. RELATED WORK
Arusoaie et al. [32] benchmark 11 distinct open source
C/C++ SATs using 638 test cases from a test suite created
by Toyota [33]. Their results show that Clang has the highest
detection rate, with a value of 0.358. Although the test suite
includes an extensive number of test cases, they are not from
real projects. Their goal is to benchmark the SATs using
a well-defined set of vulnerabilities that can potentially be
detected by the tools, and the work does not analyze the vul-
nerabilities that could not be detected. Nevertheless, results
clearly show that SATs have great limitations.
Nong et al. evaluate vulnerability detection tools (both

static and dynamic analysis tools) to identify memory-related
vulnerabilities [34]. They also use the dataset created
by Toyota, with the same 638 test cases and consider
one SAT (i.e., CBMC) and four dynamic analysis tools
(i.e., AddressSanitizer, Valgrind, MemorySanitizer, DrMem-
ory). Their results show that SATs accuracy needs to be
improved and that it is difficult to obtain both good precision
and recall for the same tool. Moreover, tools that use a hybrid
approach (static and dynamic techniques) usually have better
accuracy. Once again, due to the limitations of the dataset
selected, it may not be representative of vulnerabilities in real
projects.
Medeiros et al. use SMs to predict vulnerable code with

ML algorithms (Decision Tree (DT), Random Forest (RF),
Extreme Gradient Boosting (XGB), and Support Vector
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Machine (SVM)) at two levels of code units (file and func-
tion) [14] of five C/C++ projects (Mozilla, Linux Kernel,
Xen, httpd, and glibc [11], [35]). The algorithms with the
best performance at the file level are RF and XGB, in all
the scenarios evaluated. The file-level results are usually
better (recall about 0.900) than the function-level (recall
about 0.800). Nevertheless, the prediction does not take into
consideration the vulnerability type. Additionally, the work
suffers from the problem of the use of SMs: the prediction
indicates potentially vulnerable code without indicating the
exact place of the vulnerability. Furthermore, the good results
for recall hide a low precision, meaning that a large num-
ber of false alarms are raised. Consequently, additional time
needs to be spent by development teams to identify the true
vulnerabilities.
Walden et al. use static data as input (features) for sev-

eral ML algorithms (i.e., DTs, k-Nearest Neighbors (k-NN),
Naive Bayes (NB), RFs, and SVM) to detect software vul-
nerabilities [9]. Two types of features (SMs and text mining)
are extracted from PHP applications (Drupal, Moodle, and
PHPMyAdmin). Overall, their results are better when using
the text mining features in the three projects (recall varying
from 0.737 to 0.805, while with SMs, it ranges from 0.663 to
0.769). This is probably related to the small number of SMs
considered, which is 12. The results may also be overfitted
for text mining, which leads to better performance.
Morrison et al. created ODC+V, which is an extension of

ODC tailored to classify software vulnerabilities [36]. As the
standard ODC has a single value, ‘‘security/integrity’’, for
the ‘‘impact’’ attribute, authors claim that it is not possible
to characterize the impact of vulnerabilities in a precise way.
ODC+V proposes a new attribute called ‘‘security impact’’,
which may have one of the following values from Microsoft
STRIDE [37]: spoofing, tampering, repudiation, information
disclosure, denial of service, and elevation of privilege. The
work presents an evaluation considering 583 defects and 583
vulnerabilities from three projects (Firefox, PHPMyAdmin,
and Chrome). The goal is to compare if defects and vul-
nerabilities are fixed and discovered in the same manner.
Results show that vulnerabilities are usually found later in the
SDLC compared to ‘‘classical’’ defects. Moreover, vulnera-
bilities are primarily classified in one of the following ODC
defect types: Checking, Assignment/Initialization, or Algo-
rithm/Method. Furthermore, vulnerabilities are often fixed by
adding a checking condition (such as an if-clause) than other
defects. The use of STRIDE in the ‘‘impact’’ attribute has
a side-effect: ODC+V is not orthogonal (like the standard
ODC) as each attribute may have more than one value. As we
are interested in understanding the root causes and fixes
of buffer overflow vulnerabilities and not their impact, the
standard ODC is adequate for the present work.
Zheng et al. evaluate the capability of static techniques to

detect faults [38]. Three Nortel projects written in C/C++
are analyzed using the data from three SATs (FlexeLint,
Klockwork, and Reasoning’s Illuma) previously included in
the Nortel inspection process. They use ODC to identify

the faults and failure types detected by the three techniques
studied (static analysis, inspection, and testing). The results
indicate that testing is two to three times more effective
than static code analysis and inspection, which have similar
performance. Additionally, the used SATs are effective at
identifying two ODC defect types, assignment and checking.
Their results also indicate that SATs can be used to find
vulnerabilities caused by programming errors. However, their
findings are limited to the projects of a single organiza-
tion (Nortel) and may not be valid in other contexts.
Li et al. created the VulDeePecker, a deep learning-

based approach to detect vulnerabilities [39]. Code gad-
gets, which are a vector representation of the functions, are
used as input for the deep learning algorithm. The dataset
has 61, 638 code gadgets, 17, 725 of which are vulnerable:
10, 440 code gadgets with buffer errors (CWE-119), and
7, 285 with resource management errors (CWE-399). Their
evaluation uses vulnerabilities of three C/C++ software
projects (Xen, Seamonkey, and Libav), and VulDeePecker
could detect 4 vulnerabilities not reported in the National
Vulnerability Database (NVD) [40]. Nevertheless, these vul-
nerabilities were silently fixed in future versions of the eval-
uated software projects. Their results also show a lower
false positive rate (FPR) (5.7%) and false negative rate (FNR)
(7.0%), when compared to the other techniques evaluated in
the study. A key limitation of VulDeePecker is that it only
deals with vulnerabilities related to library/API function calls
(e.g., strcmp).
Jia et al. propose an offline analysis solution called

HOTrace to identify heap vulnerabilities [41]. To do that,
HOTrace uses programs’ execution traces and identifies taint
attributes during the execution. The whole process is done in
the programs themselves, without the source code. The eval-
uation was performed in 17 Windows x86/x64 applications.
Using their prototype, they identified 47 previously unknown
heap overflow vulnerabilities, including two vulnerabilities
in Microsoft Word.
Haller et al. created the fuzzer Dowser to detect buffer

overflow violations [42]. To do that, they combine taint track-
ing, program analysis, and symbolic execution. Dowser ranks
the source code to perform the analysis, which is done based
on the data-flow graph. It uses the intuition that complex
control flows are more prone to buffer overflow vulnerabil-
ities. They also reduce the symbolic input using dynamic
taint analysis to improve the performance of Dowser. The
evaluation was performed in six applications (nginx, ffmpeg,
inspircd, libexif, poppler, and snort). They could identify two
previously unknown buffer overflow vulnerabilities.
Liu et al. analyzed five open source C/C++ projects

(Linux Kernel, FFmpeg, ImageMagick, OpenSSL, and php-
src) and presented 12 findings, which were applied to
find 10 zero-day vulnerabilities [43]. The authors wanted to
understand if more vulnerabilities can be found close to iden-
tified vulnerabilities. Using the commits to fix the identified
vulnerabilities, they built the call-graph for the vulnerable
code snippets. They found that the vulnerabilities usually
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FIGURE 1. Approach for analysis of buffer overflow vulnerabilities.

follow the Pareto law and that 60% of the vulnerabilities have
at least another one close to them (in a 2-jump range in the
call-graph).

In general, the main limitation of the existing works is that
they do not analyze a specific type of vulnerability, particu-
larly buffer overflow, from the perspective of understanding
how it is fixed and how effective static techniques are in
its detection. To the best of our knowledge, no other study
characterizes buffer overflow using the approach followed in
this work: using ODC classification and the analysis of SAT
alerts and SMs, in both vulnerable and neutral versions of
code units.

III. APPROACH AND EXPERIMENTATION
The approach followed in our study, depicted in Figure 1,
is composed of six steps: i) select several representative soft-
ware projects, from a security perspective; ii) retrieve vulner-
ability metadata; iii) collect source code versions; iv) classify
the vulnerabilities using ODC; v) collect and analyze SATs
alerts; and vi) collect and analyze SMs. Each step is detailed
in the following sections.

A. SELECT SOFTWARE PROJECTS
A dataset created and updated by Alves et al., which includes
the vulnerabilities reports for five open-source C/C++
projects between 2000 to 2016 [11], [35], is used as starting
point for the analysis. The vulnerabilities were collected from
CVE-Details,1 and the dataset includes SMs for both vulner-
able and neutral versions of each code unit (files, functions,
and classes) of five projects. The SMs were calculated using
the SciTools Understand [44] tool. From the five projects in
the dataset, we selected the three with the largest codebase
and with the highest number of known vulnerabilities:
1) Linux Kernel: open-source operating system ker-

nel created by Linus Torvalds in 1991 (available in
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git);

2) Mozilla: codebase of the browser Mozilla Firefox, and
other applications, e.g., the e-mail client Thunderbird
(available in https://github.com/mozilla/gecko-dev);

1https://www.cvedetails.com

TABLE 1. Number of vulnerabilities: A) all vulnerabilities,
B) vulnerabilities with the CWE-119 identifier, C) CWE-119 vulnerabilities
with ‘‘overflow’’ in vulnerability type.

3) Xen: hypervisor that supports virtualization of environ-
ments with both Linux and Windows operating systems
(available in https://xenbits.xen.org/gitweb/?p=xen.git).

The selected projects are representative from a security
perspective as they are widely used and were frequently the
target of security attacks during a long period of time, as it can
be seen in CVE-Details, the three projects are listed as the
top-50 vendors with distinct vulnerabilities.2 The other two
projects in the dataset (glibc and httpd) are not considered in
this study, as they are small projects with a small number of
reported vulnerabilities, thus, not allowing to draw relevant
observations and conclusions.

CVE-Details provides several pieces of information about
known vulnerabilities, including the Common Vulnerability
Scoring System (CVSS), the impact, the vulnerability type
(which can have multiple values), and the CWE (although
not all vulnerabilities have a CWE assigned). As we are deal-
ing particularly with ‘‘Buffer Overflow’’, we consider only
the records with the identifier CWE-119, which represent
between 12.2% to 14.2% of all vulnerabilities in each of
the three projects. From the vulnerabilities with a CWE-119
identifier, we only selected the ones whose type attribute
includes the value ‘‘Overflow’’, which represent between
2.3% to 11.3% of the vulnerabilities in each project. This is
shown in Table 1, which shows a quantitative summary of the
vulnerabilities of the three selected projects (Linux Kernel,
Mozilla, Xen).

Although the number of records for analysis is not large
(only 159), it seems to be enough as we are dealing with
a single type of vulnerability (CWE-119: Buffer Overflow).
The vulnerabilities are from several versions of three C/C++
projects with different purposes and functionalities (an oper-
ating system, a browser, and a hypervisor) and were detected
over a considerable period of time (from 2000 to 2016).
These result in diverse samples with potentially different root
causes, allowing to draw relevant observations and meaning-
ful conclusions.

B. RETRIEVE VULNERABILITY METADATA
The information about the vulnerabilities was collected from
CVE-Details. Each vulnerability entry has a unique identifier
called CVE-ID, which is composed of the prefix ‘‘CVE’’, the
year in which the vulnerability was reported, and a sequential
number. Each CVE-ID includes basic information about the

2https://www.cvedetails.com/top-50-vendors.php
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vulnerability, such as the CVSS, the impact, the vulnerability
type (which can have multiple values), the CWE, and a
table with all software versions affected by that vulnerability.
For some vulnerabilities, information on how they can be
exploited is also included.

Each CVE-ID was complemented with data from Bug-
Trackers, which are software applications that are used to
manage the issues reported for a project (e.g., Mozilla uses
Bugzilla as BugTracker). BugTrackers include key informa-
tion about the specific commit where a vulnerability was
fixed.

C. COLLECT SOURCE CODE VERSIONS
The source code of the projects considered in this study is
either stored in GitHub3 or in a mirror of the repository
available in GitHub. Knowing the commit that fixes a vulner-
ability (from the BugTracker entries), we obtained the neutral
version of the source code (with the vulnerability fixed) and
its previous version (the vulnerable one). With these, we can
manually analyze the code and run the tools to extract the
required information (e.g., SATs alerts and SMs).

D. CLASSIFY VULNERABILITIES USING ODC
The next step is to classify the vulnerabilities usingODC [45],
which is a systematic approach to classify defects identified
in a software system. It is widely used for root-cause analysis
and defines several attributes to be filled when the defect is
open and closed, based on a predefined set of values. The
attributes registered when a defect is open include: i) activity,
ii) trigger, and iii) impact. When the defect is closed, the
following attributes are captured: i) target, ii) defect type,
iii) qualifier, iv) source, and v) age.

AlthoughODC includes several attributes, we focus on two
of them: defect type and qualifier. We do not consider the
other ones as they do not bring relevant information towards
identifying potential improvements to vulnerability detection
(e.g., activity characterizes the moment that the vulnerability
was discovered, but we are focused on how it was fixed and
not when). We use the definition of defect type from [45], and
the possible values are:

1) Assignment/Initialization: a problem related to an
assignment of a variable or no assignment at all;

2) Checking: a problem with conditional logic
(e.g., condition in a if-clause or in a loop);

3) Timing: a problem with serialization of shared
resources;

4) Algorithm/Method: a problem with implementation
that does not require a design change to be fixed;

5) Function: a problem that needs a reasonable amount of
code to be fixed due to incorrect implementation or no
implementation at all;

6) Interface: a problem in the interaction between compo-
nents (e.g., parameter list).

3https://github.com

As for the qualifier, we can have:
1) Missing: new code needs to be added to fix the defect;
2) Incorrect: the code is incorrectly implemented and

needs adjustment to fix the defect;
3) Extraneous: unnecessary code needs to be removed to

fix the defect.
AsGitHub highlights the code changes from the vulnerable

to the neutral version, we have the information needed to
classify these two attributes for each vulnerability. How-
ever, because the classification has to be done manually,
we decided to have it done by two different researchers to
get more accurate results. To have a common baseline for
the two researchers, they started by analyzing and classifying
together a sub-set of 30 vulnerabilities (out of the 159), which
allowed discussing divergences in the approach and reaching
a common rationale. This is very important as the experience
of the two researchers is different. While one is a post-
doctoral researcher that has worked with ODC before, the
other is a Ph.D. student having the first practical experience
with ODC in this work. After that step, each researcher
classified the remaining 129 vulnerabilities individually, and
the results were merged and consolidated at the end (the
divergences in the classification were discussed to come up
with a final classification).
As the fix of some vulnerabilities involves several code

changes (in more than one block of code in a file or even
in several files), each vulnerability may lead to a differ-
ent number of ODC classifications by different researchers.
Hence, the total number of ODC classifications (as presented
in section IV) is larger than the total of vulnerabilities ana-
lyzed (Table 1).
To assess if the classification of the researchers is con-

sistent, we calculated the inter-rater reliability (IRR) metric
Cohen’s Kappa [46] on the items classified separately by the
two researchers. To interpret the metric, we use the Landis
and Koch interpretation [47]: a) less than 0: no agreement;
b) 0–0.20: slight agreement; c) 0.21–0.40: fair agreement;
d) 0.41–0.60: moderate agreement; e) 0.61–0.80: substantial
agreement; and f) 0.81–1.0 almost perfect.

E. COLLECT AND ANALYZE SAT ALERTS
To collect the SAT alerts, we ran two widely used SATs in
both the vulnerable and neutral code versions for each vulner-
ability. The tools used were CppCheck (version 1.82) [48],
a widely-used open-source SAT for C/C++, and Flawfinder
(version 2.0.10) [49], another open-source SAT for C/C++
developed by D. A. Wheeler. Although there are other avail-
able C/C++ SATs (such as the ones used in [32]), they are
either commercial or require the source code to be com-
piled. Examples of studies that use CppCheck or Flawfinder
include [32], [39], [50]–[52]. Also, these SATs are known for
revealing vulnerabilities, such as CVE-2017-1000249, which
was initially identified by CppCheck. As the vulnerabilities
are from a prolonged period (from 2000 to 2016) and exist in
different versions of the codebase, it would not be possible
to automate the SAT alert collection (even in the versions of
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the same project) with the selected SATs. Moreover, some
projects changed the build mechanism, such as Mozilla,
which stopped using make and started using mach.
By analyzing the differences in terms of the alerts reported

in the two versions of each code unit, we can study the ones
that disappear due to a vulnerability fix (when compared
with the vulnerable version) and the ones that appear in a
vulnerability fix (which can lead to other vulnerabilities in
the future).

F. COLLECT AND ANALYZE SOFTWARE METRICS
SMs can be obtained using tools such as SciTools Under-
stand [44], and can be calculated at several levels, including
files, functions, and classes. In fact, as mentioned before,
a large number of SMs has been collected and made available
by Alves et al. [11], [35] for five different projects. From that
dataset, we used the file-level metrics for the Linux Kernel,
Mozilla, and Xen projects (for the 159 buffer overflow vul-
nerabilities). We considered only the SMs at the file level,
as most of the C/C++ code in these projects is not struc-
tured in classes. Also, for our analysis, the function metrics
would not providemore information compared to filemetrics,
as some files are not structured in functions (such as scripts or
header files). Hence, we decided to keep in the higher-level
SMs of files. The main SMs are detailed in Appendix.

IV. MAIN CODE CHANGES WHEN FIXING
VULNERABILITIES (RQ1)
The 159 buffer overflow vulnerabilities were classified
according to the twoODC attributes, defect type and qualifier,
by the two researchers. The subset of 30 vulnerabilities clas-
sified by the two researchers together (in a meeting that lasted
a bit more than one hour) led to a total of 35 classifications,
as some vulnerabilities were classified with more than a
pair of type/qualifier values. Although ODC is an orthogo-
nal classification (meaning that an attribute should not have
more than one value assigned), this happens in our case as
a vulnerability fix may require one or more independent
code changes. In other words, several block changes may be
needed in a single fix, which leads to more than one ODC
classification per vulnerability (in practice, we can say that
several code weaknesses/faults lead to one vulnerability).

The 129 vulnerabilities that were classified separately
resulted in 167 and 177 classifications by each researcher
(each one spent between 5 to 6 hours in this classification
step). With these data, we computed the IRR Cohen’s Kappa
metric to assess the consistency between the classifications.
We obtained the following values: i) defect type: 0.4476
(moderate agreement), and ii) qualifier: 0.3939 (fair agree-
ment). Additionally, we computed the Cohen’s Kappa con-
sidering both ODC attributes (defect type + qualifier) as a
single classification. The result is 0.4255, a moderate agree-
ment between the researchers. Although these results do not
indicate an excellent agreement, they show a fair to moderate
agreement according to Landis and Koch interpretation [47],

FIGURE 2. Number of changed files per vulnerability fix.

FIGURE 3. Summary of the analysis of the buffer overflow vulnerabilities
using ODC.

suggesting that our ODC classification for the buffer overflow
vulnerabilities is quite consistent.

The divergences in the classifications were discussed (in a
meeting that lasted 2 hours), resulting in 216 classifications
(pairs of defect types and qualifiers) for the 159 vulnera-
bilities. This happens because 35 (22.01%) vulnerabilities
were fixed by changing more than one file, as can be seen
in the box plot in Figure 2, which indicates that some buffer
overflow vulnerabilities are due to the interaction of more
than one software component. Such interactions clearly make
the vulnerability detection process difficult to automate.

A summary of the ODC classification process can be
seen in Figure 3 and the consolidated results are presented
in Table 2. Regarding the defect type, the most frequent
vulnerabilities are from ‘‘Checking’’ (85 cases, 39.35%),
followed by ‘‘Algorithm/Method’’ (64 cases, 29.63%), and
‘‘Assignment/Initialization’’ (42 cases, 19.44%). This con-
firms the observations of Morrison et al. [36] in their study
using ODC+V. Regarding the qualifier, ‘‘Incorrect’’ is the
most frequent one (123 cases, 56.94%) followed by ‘‘Miss-
ing’’ (88 cases, 40.74%).

Table 3 (defect type) and Table 4 (qualifier) summarize
the results of classification per project. Similar to the over-
all results, the majority of the classifications belong to the
‘‘Checking’’ defect type, for both Linux Kernel and Mozilla
projects. This seems to be an obvious approach to prevent out-
of-bound access, but developers still fail to add them to the
source code. This probably happens as the developers do not
anticipate the need for the ‘‘Checking’’ since it is difficult to
consider all possibilities and identify the ones that may lead
to a buffer overflow problem. Moreover, the developers are
probably not supported by adequate tools that help them iden-

VOLUME 9, 2021 142885



J. D’Abruzzo Pereira et al.: Characterizing Buffer Overflow Vulnerabilities in Large C/C++ Projects

TABLE 2. Vulnerability distribution across the ODC defect type and the qualifiers.

TABLE 3. Vulnerability distribution across the ODC defect type for the
projects (Linux Kernel, Mozilla, Xen).

TABLE 4. Vulnerability distribution across the ODC qualifier for the
projects (Linux Kernel, Mozilla, Xen).

tifying or verifying the ‘‘Checking’’ and conditions. Another
possible reason is the lack of testing skills, such as applying
boundary-value analysis when creating the functionality.

Regarding the qualifier attribute, more than half of the
Linux Kernel classifications are labeled as ‘‘Incorrect’’
(74 cases, 61.67%), while for the Mozilla project the number
of ‘‘Incorrect’’ (46 cases, 50.55%) and ‘‘Missing’’ (42 cases,
46.15%) are quite similar. The small number of classifica-
tions for the Xen project does not allow further analysis.

The above results help answering the RQ1, about the
main changes in the code when fixing buffer overflow vul-
nerabilities, and indicate that projects lack mechanisms to
verify simple conditional logic (‘‘Checking’’ defect type) and
assignment and initialization of variables (‘‘Assignment/Ini-
tialization’’ defect type). Moreover, some review effort could
be beneficial to identify major issues in the implementation
(‘‘Algorithm/Method’’ defect type). In all cases, issues can be
either absent (‘‘Missing’’ qualifier) or poorly implemented
(‘‘Incorrect’’ qualifier) code. At first sight, the detection of
some of these cases may be easily automated (e.g., by adding

simple rules to SATs), but many others require human inter-
vention or other advanced detection techniques (e.g., in the
case of vulnerabilities that occur due to multiple weaknesses
in different files). As an example, let’s take a look at the
Linux Kernel vulnerability CVE-2014-0049, whose fix can
be seen below. It shows the code of the Linux Kernel file
arch/x86/kvm/x86.c after the fix of CVE-2014-0049.

if (vcpu->mmio_cur_fragment >= vcpu->
mmio_nr_fragments) {
// removed due to space constraints

}

In this example, the if-clause was classified as being
‘‘Incorrect’’ because the operator had to be changed
from == (equal comparison in C/C++) to >= (greater than
or equal comparison) to fix the vulnerability. The buffer over-
flow happened as the execution of the function was not inter-
rupted when the number of the current fragment exceeded the
total number of fragments. This cannot be automated through
SAT rules as it requires a complex and semantic interpre-
tation. Although the Linux Kernel development team could
create a rule for this specific case, it turns to be totally context-
specific, thus, when used in different contexts, it would lead
to a high number of false alarms.

Key Observations:
• Most buffer overflow vulnerabilities are fixed by a
simple change in conditional logic (either incorrect
or missing), which is not anticipated by developers
and not identified by tools

• Some vulnerabilities could have been detected with
the use of adequate SATs

• Not all vulnerabilities can have their identification
automated as they involve intricate issues in several
files

• A manual review process could help identifying
vulnerabilities earlier in the SDLC

V. SAT ALERTS BEFORE AND AFTER VULNERABILITY
FIXES (RQ2)
The analysis of the SAT alerts started with the execution of
two tools (CppCheck and Flawfinder) over the two versions
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TABLE 5. Number of alerts (minimum and maximum among all commits)
reported by the SATs for the complete code-base in all vulnerabilities.

of each code (vulnerable and neutral) for each buffer over-
flow vulnerability. With this, we can analyze what has been
changed between the vulnerable and the neutral version.
Three cases are possible: i) alerts disappearing from the
vulnerable version to the neutral version due to the code fix;
ii) new alerts appearing in the code that fixed the vulnera-
bility; and iii) SAT alerts either appearing or disappearing in
untouched code (part of the code that was not affected by
the fixes). Depending on the techniques used by the SATs
(e.g., data flow analysis, taint analysis), some code changes
may cause raising new alerts in parts of the code that were
not touched. Thus, we consider all the alerts, and not only
the ones in the changed code. Nevertheless, as most alerts are
kept equal from one version to the other, we can filter these
out. In practice, we are simplifying the analysis by excluding
the alerts that have the same type and are raised in the same
(or corresponding) lines of code in both the vulnerable and
the neutral versions of each code unit.

Considering the types of SAT alerts for which we identified
variations between the vulnerable and the neutral versions of
each vulnerability, none appeared in more than one project.
For example, the alert typewcscpy fromFlawfinder is raised
in the Mozilla project but not in the Linux Kernel and Xen
projects. This happens both for CppCheck and Flawfinder
alerts in the different projects. Due to the reduced number of
vulnerabilities in Xen, we could not observe much regarding
SAT alerts changing due to code fixes: only one alert with
CppCheck (doubleFree) and none with Flawfinder.

Table 5 shows a summary of the minimum and the maxi-
mum number of alerts per SAT raised for different commits
of each project. For example, Linux Kernel has 98 vulner-
abilities analyzed in this study (see Table 1), we ran the
SATs for those vulnerabilities for different commits, and
counted all reported alerts per vulnerability for each com-
mit. The smallest number of alerts raised for Linux Kernel
by CppCheck belongs to a specific commit and is equal to
35, 110 alerts, and the largest number of alerts raised for
Linux Kernel by CppCheck belongs to another commit and
is equal to 79, 135. Overall, CppCheck reports more alerts
for the complete codebase of each project than Flawfinder.
The project with the largest number of alerts is Linux Kernel
(maximum of 79, 000 reported by CppCheck). On the other
hand, Xen is the project with the smallest number of reported
alerts (minimum of 3, 000 reported by Flawfinder).

TABLE 6. CppCheck SAT alerts reported in Linux Kernel that changed
from the vulnerable to the neutral versions.

TABLE 7. CppCheck SAT alerts reported in Mozilla that changed from the
vulnerable to the neutral versions.

TABLE 8. Flawfinder SAT alerts reported in Linux Kernel that changed
from the vulnerable to the neutral versions.

TABLE 9. Flawfinder SAT alerts reported in Mozilla that changed from the
vulnerable to the neutral versions.

Table 6 and Table 7 show the CppCheck results for Linux
Kernel and Mozilla, respectively. Table 8 and Table 9 show
the Flawfinder results (as this tool defines categories for the
types of alerts, they are also included in the tables). As shown,
the total number of alerts that vary from vulnerable to neutral
versions is very small when compared to the number of alerts
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raised per project. For example, for the Mozilla project, the
total number of Flawfinder alerts varies between 5, 755 and
22, 543 (Table 5) over the 56 commits considered. However,
the alerts that changed between the vulnerable and neutral
versions of all vulnerabilities are only 21 (Table 9). In other
words, 21 alerts that were raised in vulnerable versions dis-
appeared when fixes were implemented. On the other hand,
19 new alerts appeared after vulnerabilities fixes.

From the 159 vulnerabilities analyzed, only 22 fixes
(13.84%) impacted the SAT alerts, but only one impacted the
alerts raised by both SATs (CVE-2007-6151). Furthermore,
although all projects are written in the same programming
languages (C/C++) and the vulnerabilities analyzed are of
the same type (CWE-119), very different SAT alerts are raised
in the three projects (with no clear overlap), suggesting that
the root causes of buffer overflow vulnerabilities differ a lot
from each other. Let’s analyze a couple of examples.

The following code snippet presents the fix of the
Linux Kernel CVE-2010-4527 vulnerability in the file
linux/sound/oss/soundcard.c. In this case, the
vulnerable function strcpy has been replaced by
strncpy, which is also considered vulnerable (line 102).
Flawfinder raised alerts in both the vulnerable and the (sup-
posedly) neutral versions, meaning that part of the alerts on
the strcpy version migrated to strncpy version. This fix
also changes the strcmp (considered unsafe) to strncmp
(line 90), but none of the SATs raised an alert for th unsafe
function strcmp.

// Line 90
if (strncmp(name, mixer_vols[i].name, 32) == 0)

{

// Unchanged lines: 91-101

// Line 102
strncpy(mixer_vols[n].name, name, 32);

To replace the vulnerable function strncpy by a safe
one, strlcpy can be used, as done in CVE-2013-2850
(file drivers/target/iscsi/iscsi_target_
parameters.c). Note that the use of vulnerable functions
is a known weakness still present in many software systems.
In fact, OWASP lists ‘‘using components with known vul-
nerabilities’’ as one of the top 10 weaknesses that software
developers should prevent [53].

strlcpy(extra_response->key, key, sizeof(
extra_response->key));

The following code snippet shows an example of a
‘‘Checking‘‘ that was missing in the code, and that was not
detected by any of the SATs. This is part of the vulnerability
CVE-2013-1721. In the vulnerable version, only the first part
of the condition was included; the second condition has been
added to fix the vulnerability by checking the required space
needed for a buffer in use.

else if (mWritePosition + requiredSpace >
mBufferSize ||

mWritePosition + requiredSpace <
mWritePosition) // Recycle

These results help answering RQ2 about the difference
between SAT alerts reported before and after fixes. As shown,
in most cases, the vulnerability fixes do not change the out-
come of the SATs, suggesting a low capability of these tools
to detect buffer overflow vulnerabilities.

Key Observations:
• A small number of vulnerabilities are detected by
SATs, especially when unsafe functions are used

• Some fixes lead to new SAT alerts, sometimes
related to the use of other unsafe functions
(e.g., wcscpy to wcsncpy)

• Not all vulnerabilities can be detected by SATs
as they involve the interaction among diverse
components

• New SAT rules are needed to detect specific vulner-
abilities, in particular the other related to checking
conditions

VI. IMPACT ON SOFTWARE METRICS (SMs) DUE TO
VULNERABILITY FIXES (RQ3)
One of the main arguments in previous works for using SMs
to detect software vulnerabilities is that they allow portraying
the size and complexity of the source code and, usually, more
complex code is more prone to have vulnerabilities [9], [10].
However, this assumption needs to be confirmed in order to
gain trust in the use of SMs to detect software vulnerabilities.
The 54 SMs used in this study portray different characteristics
of the source code, such as volume, coupling, cohesion, and
complexity.

Table 10 presents the top 10 of the SMs that changed
more frequently when buffer overflow vulnerabilities were
fixed, which are mostly volume metrics. For example, con-
sidering the Linux Kernel project, we can observe that
the CountLine metric changed for 68 files, out of a total
of 75 files modified to fix 98 vulnerabilities. The Count-
Line metric indicates the number of physical lines in a file.
As shown, nine out of the ten metrics are the same for
the three projects. They either reflect the size of the code
(CountLine, AltCountLineCode,CountLineCode,CountStmt,
CountLineCodeExe, CountSemicolon, and CountStmtExe) or
its complexity (SumCyclomaticStrict and SumCyclomatic-
Modified). Table 12 in Appendix details all the SMs presented
in this section.

Although this suggests a correlation between vulnerabil-
ity fixes and the value of some metrics, there may not be
causality. In fact, a detailed analysis of the values of volume
(e.g., lines of code) and complexity (e.g., McCabe cyclo-
matic complexity) metrics allows observing that the value of
most metrics increases when a buffer overflow vulnerability
is fixed. This is confirmed by the ODC analysis, in which
40.74% of the classifications showed that some code had to
be added to fix a vulnerability. The problem is that this may
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TABLE 10. Top 10 SMs impacted by the vulnerability fixes per project
(more than 10 items listed as Xen ties in some SMs).

TABLE 11. Unchanged SMs in the vulnerability fixes per project.

go against the assumption that smaller and simpler code is
less prone to be vulnerable.

Moreover, although the value of somemetrics is frequently
varying from the vulnerable to the neutral versions, it does
not say much about the potential existence of vulnerabilities.
For example, the metric Henry Kafura Size (HK), which was
proposed by Henry and Kafura [54], also appears as being
frequently impacted by vulnerability fixes (in fact, it is among
the metrics whose values varies more). HK is the result of
the multiplication of three other metrics, being two of them
squared (length∗(FanIn∗FanOut)2, where length is a volume
metric, such as LOC). Consequently, small changes in the
code can result in a large value variation for HK, but we
cannot assure that is not strictly related to vulnerability fixes
(in fact, we can observe similar variations across different
versions of the same file, even when no vulnerabilities are
being dealt with).

Table 11 shows the SMs that remain unchanged due to vul-
nerability fixes per project. For example, the SMMaxNesting
has the same value before and after fixing the vulnerability in
all the analyzed files for Mozilla and Xen projects. Among
these, there is one, CountDeclClass (number of classes),

that never varies at all (in italic in the table). Clearly, these
are metrics that cannot help in the detection of software
vulnerabilities.

These results help answering RQ3 about SMs changing
when buffer overflow vulnerabilities are fixed. Althoughmost
of the fixes lead to changes in SMs, metrics are not more
impacted by fixes than by other code improvements. In fact,
there is no clear causality between the value of a metric and
the existence of a vulnerability. Hence, no SM can be used
to detect the presence of buffer overflow vulnerabilities. This
has been confirmed by other works that use SMs to detect
software vulnerabilities [14], [55].

Key Observations:
• Most vulnerability fixes add code to the codebase,
leading to an increase in the value of the metrics
that are related to volume and complexity

• Causality between vulnerability fixes and the vari-
ation on metrics cannot be established

• Code changes related to vulnerability fixes cannot
be easily distinguished from other improvements
using software metrics

• SMs are not good indicators of the existence of
vulnerabilities, in particular buffer overflow, but
probably can be used to indicate less trustworthy
code units

VII. THREATS TO VALIDITY
This section discusses the threats to the validity of the
approach and the results obtained. The threats are mainly
related to the projects considered, the ODC classification,
the SATs used, and the number and types of vulnerabilities
analyzed.

The study considers a single type of vulnerability: buffer
overflow. Although it is the most relevant vulnerability type
for C/C++ projects, other vulnerabilities (e.g., input valida-
tion) are not considered and may lead to different observa-
tions and conclusions as the SAT alerts and SMs may vary.

All the projects analyzed in this study are developed in
C/C++ and have a large code-base. Buffer overflow vulnera-
bilities are more relevant for C/C++ projects, but not limited
to them. Hence, some key observations may not be the same
for projects in other programming languages and with differ-
ent sizes. Nevertheless, the observations are still relevant as
buffer overflow is still one of themost frequent issues inmany
programming languages and has a severe impact on software
security, particularly in C/C++ projects that compose many
essential and highly used software projects.

The different levels of experience of the researchers and
the complexity of some of the fixes may lead to different
classification results. We tried to mitigate this by performing
an initial joint classification effort before the individual
ones. Moreover, individual classifications were discussed
in a consensus meeting to reach a final agreed classifi-
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TABLE 12. Description of the Software Metrics at the File level (adapted from SciTools understand
(https://support.scitools.com/t/what-metrics-does-understand-have/66)).

cation. However, both researchers may have misclassified,
in the same way, some vulnerabilities. To mitigate this issue

in the future, more experts can be asked to perform the
classification.
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The number of SATs used to generate alerts is lim-
ited to two. Nevertheless, these two SATs (CppCheck and
Flawfinder) are widely used and have a high number of rules
to detect software issues and vulnerabilities. Hence, they
provide relevant input for the analysis.

Although the main objective of the selected tools for this
study is to detect vulnerabilities, we used them to characterize
only buffer overflow vulnerabilities. Thus, another limitation
of the study is related to the limited techniques used for
the characterization of the buffer overflow vulnerabilities,
as other software vulnerability detection techniques, in par-
ticular, dynamic techniques such as SPT and fuzzing, could
reveal additional characteristics of the buffer overflow vulner-
abilities. Nevertheless, due to the project characteristics and
the time span of the vulnerabilities, it would not be doable to
apply techniques like that in the dataset considered for this
study.

Only 159 vulnerabilities are analyzed. This is not a large
number, but the diversity of the causes and the represen-
tativeness of the projects support some relevant observa-
tions. Moreover, most of the analysis involves manual valida-
tion of the vulnerability fixes. Hence, performing this study
in a larger dataset would be even more time-consuming.
Automatizing the ODC classification would be an option
(such as it was performed in [56]). However, a manual review
would still be needed to validate the classification and fix the
incorrect ones.

VIII. CONCLUSION AND FUTURE WORK
This work analyzed a set of buffer overflow vulnerabilities
to study potential ways to improve vulnerability detection,
either by improving existing techniques or devising new ones.
The vulnerabilities of three open-source C/C++ projects
were used in the analysis (Linux Kernel, Mozilla, and Xen).
Each vulnerability was classified using ODC. Moreover, the
SAT alerts and SMs were analyzed and compared for both the
vulnerable and neutral versions. The results showed that most
of the vulnerable code units are labeled with ODCs defect
types checking and algorithm/method. On the other hand,
SATs lack rules to detect most vulnerabilities, in particular
missing or incorrect checking logic. Also, we could not find
any causality between buffer overflow vulnerabilities fixes
and the value of SMs.

As future work, we plan to expand the analysis for other
types of vulnerability as well as considering more recent
vulnerabilities. The results of this workwill help us to develop
new SAT rules or improve the existing ones to trigger alerts
that allow discovering more software vulnerabilities. The
goal is to plug the new or improved rules into an existing
SAT, such as CppCheck or Flawfinder. Moreover, we plan
to create a prioritization mechanism to sort the SAT alerts to
be analyzed by the software development teams reducing the
review and correction cost. Also, we intend to understand the
differences between buffer overflow vulnerabilities and other
vulnerabilities types from the point of view of SAT alerts and
SMs. Finally, we plan to conduct a study to understand the
changes in SAT alerts and SMs in commits that introduced

vulnerabilities, and also at different levels of the source code
(e.g., modules or functions).

APPENDIX
SOFTWARE METRICS
SMs are presented in Table 12, with their name and descrip-
tion based on the SciTools Understand.
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