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Petr Heděnec8,9, Yusheng Yang1, Fuzhong Wu1,* and Josep Peñuelas10,11

1Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal

University, Fuzhou, 350007, China
2Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, 9090, Gontrode, Belgium
3Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
4MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
5Davines Group-Rodale Institute European Regenerative Organic Center (EROC), Via Don Angelo Calzolari 55/a, 43126, Parma, Italy
6State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300, China
7Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, 1958, Denmark
8Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
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ABSTRACT

Plant litter is the major source of energy and nutrients in stream ecosystems and its decomposition is vital for ecosystem
nutrient cycling and functioning. Invertebrates are key contributors to instream litter decomposition, yet quantification of
their effects and drivers at the global scale remains lacking. Here, we systematically synthesized data comprising 2707
observations from 141 studies of stream litter decomposition to assess the contribution and drivers of invertebrates to
the decomposition process across the globe. We found that (1) the presence of invertebrates enhanced instream litter
decomposition globally by an average of 74%; (2) initial litter quality and stream water physicochemical properties were
equal drivers of invertebrate effects on litter decomposition, while invertebrate effects on litter decomposition were not
affected by climatic region, mesh size of coarse-mesh bags or mycorrhizal association of plants providing leaf litter;
and (3) the contribution of invertebrates to litter decomposition was greatest during the early stages of litter mass loss
(0–20%). Our results, besides quantitatively synthesizing the global pattern of invertebrate contribution to instream litter
decomposition, highlight the most significant effects of invertebrates on litter decomposition at early rather than middle
or late decomposition stages, providing support for the inclusion of invertebrates in global dynamic models of litter
decomposition in streams to explore mechanisms and impacts of terrestrial, aquatic, and atmospheric carbon fluxes.
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I. INTRODUCTION

Allochthonous inputs of plant litter to stream ecosystems rep-
resent the major source of energy and nutrients for stream
heterotrophic organisms, which play a key role in the trans-
port of carbon (C) and nutrients to higher trophic levels
across landscapes (Swan, Boyero & Canhoto, 2021; Wallace
et al., 1999). Decomposition of litter by abiotic and biotic fac-
tors drives ecosystem-level processes, such as nutrient cycling,
energy flow, and trophic interactions (Chauvet et al., 2016;
Lidman et al., 2017), and is important for the maintenance
of ecosystem functioning in streams. Climate and nutrient
availability were traditionally thought to exert a greater influ-
ence on litter decomposition in terrestrial and freshwater sys-
tems than does litter quality, while it has been suggested that
decomposers (bacteria, fungi, and invertebrates) play aminor
role (Aerts, 1997; Cornwell et al., 2008; Frainer, McKie &
Malmqvist, 2014; Griffiths et al., 2021); however, recent stud-
ies from terrestrial ecosystems indicated that the contribution
of decomposer communities to litter decomposition may
have been underestimated (Bradford et al., 2016, 2017). For
example, a meta-analysis showed an average global-scale
increase in litter decomposition of 37% with presence of soil
invertebrates (García-Palacios et al., 2013), indicating the
important role of invertebrates in the decomposition process
when compared with climate and litter quality. While global
models of litter decomposition have been biased towards ter-
restrial ecosystems (Cole et al., 2007), recent models have
included some drivers of instream litter decomposition
(Boyero et al., 2021; Tiegs et al., 2019; Zhang et al., 2019),
but a comprehensive assessment of the contribution and
drivers of aquatic invertebrates to instream litter decomposi-
tion at the global scale is still lacking.

Impacts of aquatic invertebrates on instream litter decom-
position may be direct through feeding, and indirect through
trophic interactions (Graça, Ferreira & Coimbra, 2001). For
example, stream shredders contribute directly to losses in lit-
ter mass through feeding and the associated acceleration of

litter fragmentation (Graça, 2001; Raposeiro et al., 2018).
Grazers–scrapers can contribute to litter decomposition by
scraping the litter surface while feeding on the biofilm, thus
promoting littermass loss directly, and indirectly by facilitating
microbial colonization (Wang et al., 2020). Predators can also
affect litter decomposition indirectly by controlling the abun-
dance and activity of shredders (Lecerf & Richardson, 2011).
Invertebrates can also affect litter decomposition indirectly
by modifying the structure and activity of microbial decom-
poser communities (Bärlocher & Sridhar, 2014; Canhoto &
Graça, 2008). One example is that invertebrates prefer to feed
on leaf litter colonized by fungi and bacteria, which can pro-
duce cellulases, xilanases, pectinases, and other enzymes able
to digest plant cell walls and to liberate digestible compounds
that can be assimilated by invertebrates (Graça et al., 2001;
Rodrigues & Graça, 1997).
Invertebrate effects on litter decomposition can be con-

trolled by a variety of factors, including litter quality, stream
physicochemical properties, and climate. Litter quality was
recently found to be the dominant driver of litter decomposi-
tion in stream ecosystems globally (Zhang et al., 2019), where
it affects colonization by, and activity of, invertebrate and
microbe species and their interactions (De Schrijver
et al., 2012; Graça et al., 2001; Sales et al., 2015). In fact, levels
of colonization and degradation of litter by aquatic hypho-
mycetes and invertebrates are greater in litter with high
nitrogen (N) concentration and low lignin concentration
or low C:N ratio than in more recalcitrant litter
(Ostrofsky, 1997; Ramos, Graça & Ferreira, 2021). Plants
associated with different mycorrhizae generally vary in leaf
litter quality, with a general pattern of higher quality for
arbuscular mycorrhizal (AM) than ectomycorrhizal (ECM)
litter (Shi et al., 2020). Therefore, the type of mycorrhizal
association may be an important factor controlling litter
quality, and consequently controlling the litter decomposi-
tion process. Given that the effects of invertebrates are gener-
ally larger for higher quality litter (e.g. low C:N and lignin:N
ratios) in stream ecosystems (Hieber &Gessner, 2002; Ramos
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et al., 2021), invertebrate effects on instream litter decompo-
sition could be higher for litter fromAM than ECM trees, but
this has not yet been tested at the global scale.

Stream physicochemical properties, such as water temper-
ature, pH, dissolved oxygen and nutrient concentration, are
known to mediate invertebrate and microbial community
composition and biological activity, strongly affecting litter
decomposition (Amani, Graça & Ferreira, 2019; Ferreira
et al., 2015a; Ferreira & Guérold, 2017; Gomes et al., 2018),
but their relative importance in controlling invertebrate
effects on litter decomposition at the global scale is unknown.
Climate is another important factor, as it determines envi-
ronmental conditions (e.g. higher water temperature in the
tropics), leaf litter quality (e.g. lower leaf litter quality in the
tropics) (Boyero et al., 2017), and detritivore distribution
(e.g. lower litter-associated shredder density and diversity in
the tropics) (Boyero et al., 2011a), which can significantly alter
invertebrate effects on litter decomposition (Boyero
et al., 2011b; Ferreira, Encalada & Graça, 2012; Gonçalves
Jr., Graça & Callisto, 2007). For example, temperature
may be positively correlated with the effects of invertebrates
on litter decomposition, as higher temperatures would favour
invertebrate activity (Ferreira & Canhoto, 2015; Follstad
Shah et al., 2017). Although litter quality, environmental con-
ditions, and climate have been shown to drive global soil litter
decomposition by invertebrates (García-Palacios et al., 2013),
their impacts and relative importance on invertebrate effects
on litter decomposition in global stream ecosystems are
unclear.

To assess invertebrate effects on instream litter decompo-
sition, researchers generally contrast litter enclosed into
fine-mesh bags that exclude invertebrates with litter enclosed
into coarse-mesh bags that allow invertebrates to enter
(Bärlocher, Gessner & Graça, 2020). The mesh size used in
coarse-mesh bags controls the size of the invertebrates
allowed to access the litter, and thus may be a vital factor con-
trolling the effects of invertebrates on litter decomposition
(Handa et al., 2014). Therefore, it is important to assess
whether the difference in litter decomposition between
coarse- and fine-mesh bags can account for invertebrate
effects quantified by invertebrate community data such as
density, biomass, and species richness (Bärlocher
et al., 2020). In addition, the effects of invertebrates on litter
decomposition can vary over the decomposition process in
response to changes in litter quality, which decreases with
increasing concentrations of recalcitrant components such
as lignin (Berg &McClaugherty, 2020; Yue et al., 2018). This
was supported by studies that have found higher invertebrate
contribution to the decomposition of high- than low-quality
litter species (Hieber & Gessner, 2002). This has been tested
in terrestrial ecosystems where nematodes regulate litter
decomposition in the early decomposition stages (García-
Palacios et al., 2016). In contrast to invertebrate communities
in soils where meiofauna such as collembolans, nematodes,
and acarina that feed on fungi account for a large proportion
of the total soil fauna community (Swift, Heal &
Anderson, 1979), the majority of invertebrates in streams

are macroinvertebrates that feed on leaf litter and the associ-
ated fungi, indicating potential different temporal patterns of
invertebrate effects on litter decomposition in streams com-
pared with terrestrial ecosystems.

Here, by systematically synthesizing 2707 observations
from 141 publications, we searched for global patterns, key
drivers, and temporal dynamics of invertebrate effects
on instream litter decomposition to test the following hypoth-
eses: (1) invertebrates would show consistent positive effects
on instream litter decomposition globally and within differ-
ent climatic regions; (2) effects of invertebrates on instream
litter decomposition are jointly driven by litter quality and
environmental factors that are closely related to invertebrate
community and activities; and (3) effects of invertebrates on
instream litter decomposition are higher in the early and
intermediate stages of decomposition where nutrients are
most rich and accessible and the colonization of microbes
is high.

II. METHODS

(1) Data collection and compilation

Data collection and compilation were carried out following
the PRISMA statement, which is an evidence-based mini-
mum set of items for reporting in systematic reviews and
meta-analysis (Moher et al., 2009). Specifically, we searched
for peer-reviewed articles, academic theses, and book chap-
ters, published in English or Chinese before March 2021,
in Web of Science, Google Scholar, and China National Knowledge

Infrastructure using the following search string [(“litter decom-
position”OR “litter decay”OR “litter breakdown”OR “lit-
ter processing” OR “leaf decomposition” OR “leaf decay”
OR “leaf breakdown” OR “leaf processing”) AND (stream
OR river OR “lotic ecosystem”)] and their equivalents in
Chinese. Studies were included in our database if they com-
plied with the following criteria: (1) decomposition of leaf lit-
ter, excluding wood, bark, or artificial substrates, was
measured in natural streams or rivers using litterbags;
(2) water bodies where decomposition studies were carried
out were not affected by pollution or artificial nutrient
enrichment experiments; (3) litterbags contained litter of only
a single plant species, rather than mixed species; and (4) litter
decomposition rates (k) and corresponding standard devia-
tions (SD) or standard errors (SE) from contrasting fine-mesh
(≤0.5 mm, which excludes invertebrates) and coarse-mesh
(ranged from 1 to 25 mm in this study, which allows all inver-
tebrate access) bags were reported or could be calculated; or
(5) litter k or mass loss from coarse-mesh litterbags and corre-
sponding mean invertebrate values (density: individuals g−1

of remaining litter mass; biomass: mg of invertebrates g−1

of remaining litter mass; or species richness: number of spe-
cies) over a given decomposition period were reported or
could be calculated. Most articles did not define inverte-
brate functional groups, hence we only focused on total
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invertebrate density, biomass, and species richness. Based
on these criteria, we derived globally distributed data com-
prising 2707 observations from 141 (135 in English and 6 in
Chinese) independent publications (Fig. 1; see references
identified with asterisks in the reference list).

We divided the resulting data into three separate databases:
database 1 (281 observations from 45 publications) included
pairwise k values from coarse- and fine-mesh litterbags (with
and without invertebrate activity, respectively), which was used
to calculate the overall invertebrate effects; database
2 (761 observations from 89 publications) contained k values
and corresponding invertebrate density, biomass, and/or spe-
cies richness data from coarse-mesh litterbags, which was used
to assess the overall relationships between litter decomposition
and invertebrate community; and database 3 (1665 observa-
tions from 69 publications) represented litter mass loss from
coarse-mesh litterbags and corresponding invertebrate density,
biomass, and/or species richness data, which was used to evalu-
ate the temporal dynamics of invertebrate effects at different
stages of litter decomposition. The difference between database
2 and database 3 is the variable used for litter decomposition,
where database 2 included k values while database 3 included
litter mass loss. Litter k was either extracted directly from pri-
mary studies or estimated based on mass-remaining data using
the single exponential model (Olson, 1963):

k=−
1
t
ln

Mt

M 0

� �
, ð1Þ

where M0 is initial litter mass and Mt is remaining mass at
sampling time t (days).

To quantify drivers of invertebrate effects on litter decom-
position, we extracted data on stream physicochemical

properties [water temperature, discharge rate, current veloc-
ity, pH, conductivity, alkalinity, and levels of dissolved
oxygen (O2), nitrate (NO3

−), ammonium (NH4
+) and

phosphate (PO4
3−)], initial litter quality [levels of C, N, and

phosphorus (P); C:N ratio, lignin concentration and lignin:
N ratio], and experimental conditions (litterbag mesh size,
initial litter mass, and experiment duration). Table S1 details
the range of these variables obtained from the 141 publica-
tions, where available. Study sites were organized into three
climatic regions (Ferreira et al., 2015a), according to the abso-
lute latitude of the study area (tropical: 0–23.5�; temperate:
23.5–55�; and boreal: >55�) and mesh size of coarse-mesh
litterbags was categorized as 1–5 (including 1 and 5) mm,
5–10 (including 10) mm, or 10–25 (including 25)
mm. Mycorrhizal association of the plant contributing litter
was classed as AM, ECM, or AM+ECM. Data were
extracted directly from the main text, tables, and appendices
of the articles/theses, or digitized from figures using Engauge
Digitizer (v. 11.3; http://markummitchell.github.io/
engauge-digitizer).

(2) Statistical analysis

To quantify overall (presence/absence) effects of inverte-
brates on litter decomposition (database 1), we calculated
the individual natural logarithm response ratio (lnRR):

lnRR= ln
kcoarse

kfine

� �
, ð2Þ

where kcoarse and kfine were k values recorded in coarse- and
fine-mesh litterbags, respectively. The variance (v) associated
with each lnRR was estimated as:

Sample size
20

40

60

80

Database
Database 1 (lnRR of k)

Database 2 (k)

Database 3 (litter mass loss)

Fig. 1. Global distribution of observations derived from the 141 publications used in our meta-analysis (see references marked with
an asterisk in the reference list). The number of observations (sample size) at each site is represented by symbol size, and different
colours indicate different databases (the full data set is available in figshare, see Section VI). k, litter decomposition rate; lnRR,
natural logarithm response ratio.
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v=
s2coarse

ncoarsek
2
coarse

+
s2fine

nfinek
2
fine

, ð3Þ

where ncoarse and nfine are the sample sizes, and scoarse and sfine
are the SDs of k in coarse- and fine-mesh litterbags, respec-
tively. The weight of each lnRR estimate in the analyses
was calculated as the inverse of its variance (1/v). We first
ran an intercept-only linear mixed model using the lme4

package in R (Bates et al., 2015) to estimate the overall
weighted effects (lnRR++) of invertebrates on litter decompo-
sition, in which lnRRwas fitted as a response variable and the
identity of primary studies was included as a random effect
factor to account explicitly for potential dependence among
observations extracted from a single study. Then, we used
meta-regression to assess effects of stream physicochemical
properties, initial litter quality, and experimental conditions
on lnRR by fitting them as fixed effect factors; the effects of
each factor were assessed separately, aiming to include as
many observations in the model as possible. To aid interpre-
tation, lnRR++ and the corresponding 95% confidence inter-
vals (CIs) were back-transformed using the equation
elnRR+ + −1ð Þ×100; lack of overlap of the 95% CIs with zero
indicates significant effects of invertebrates on litter decom-
position. To evaluate the relative importance of stream phys-
icochemical properties, litter quality, and experimental
conditions that affected lnRR, we adopted mixed-effects
meta-regression model selections using the glmulti package
in R (Calcagno & deMazancourt, 2010), based onmaximum
likelihood estimation; the importance of each factor was
computed as the sum of Akaike weights for models in which
it was included, with a cutoff of 0.8 to differentiate essential
from non-essential factors following previous studies (Jiang
et al., 2019; Terrer et al., 2016).

To assess effects of invertebrate density, biomass, and spe-
cies richness on litter decomposition (databases 2 and 3), we
performed linear mixed-effects models using the lme4 pack-
age in R (Bates et al., 2015), with litter k or litter mass loss as
a response variable, invertebrate density, biomass, or rich-
ness as a fixed effect, and the identity of primary studies as
a random effect. Although an issue with endogeneity is not
likely to occur in each model because we assessed each vari-
able individually (Angrist & Pischke, 2009), we are aware that
the relationship between the response variable and predictor
may not be a causal relationship or ‘effect’. Nevertheless, the
relationships between litter decomposition and invertebrate
variables can explain, at least to a certain degree, how inver-
tebrates may affect litter decomposition. Therefore, for easy
description and understanding, we use the term ‘effect’ in
this study. We assessed the impacts of each stream physico-
chemical, leaf litter, and experimental condition factor on
invertebrate effects on k or mass loss by fitting their interac-
tion with the invertebrate fixed-effect factors. Linear regres-
sion was used to detect the relationships between lnRR of
k and invertebrate density, biomass, and species richness.
Variation in invertebrate effects on litter mass loss among
stages of decomposition was tested with a 10% mass loss

interval using database 3, i.e. data were allocated to 10%
mass loss intervals (0–10, 10–20, 20–30, …, 80–90, and
90–100%) and differences in invertebrate effects among mass
loss intervals were then assessed. Estimates and correspond-
ing 95% CIs are reported, with lack of overlap of 95% CIs
with zero indicating significant effects of invertebrates on lit-
ter decomposition.

(3) Publication bias

To address potential publication bias that can arise when
studies published and included in our database are not a ran-
dom subset of the total number of performed studies, we used
Egger’s regression test along with a funnel plot (Egger
et al., 1997) and trim-and-fill test (Duval & Tweedie, 2000).
Both Egger’s regression and trim-and-fill tests were applied
using the meta-analytic residuals, which consist of sampling
errors as well as the effect-size-level effects that are equivalent
to normal residuals (Nakagawa & Poulin, 2012). The R0 esti-
mator was used and implemented with the trimfill function in
the R package metafor to perform the trim-and-fill test
(Viechtbauer, 2010). Egger’s regression test on the meta-
analytic residuals showed potential funnel asymmetry
(P = 0.047; Table S2), but the trim-and-fill test suggested
no evidence for publication bias (Fig. S1). Taken together,
it is likely that publication bias in the data used for our study
is very limited and the studies included in the database are a
representative sample of available studies.

III. RESULTS

(1) Overall effects of invertebrates

At the global scale, the presence of invertebrates increased
instream litter k by an average of 74% (database 1;
Fig. 2A). Invertebrate effects on instream litter k were not
affected by climatic region (34–103% increase across
regions), litterbag mesh size (73–89% increase across sizes),
or type of mycorrhizal association (50–98% increase across
types) (Fig. 2A). Initial litter lignin concentration and C:N
ratio, and stream water temperature negatively influenced
the effect of invertebrates on litter k, while initial litter N con-
centration and stream water pH, dissolved O2, and NO3

−

concentration had a positive influence (Table 1). Initial litter
C:N ratio, stream water pH and dissolved O2 were the most
important drivers of invertebrate effects on litter k (Fig. 2B).

(2) Effects of invertebrate density, biomass, and
species richness

Invertebrate density, biomass, and species richness all had
positive effects on instream litter k (database 2; Fig. 3). These
effects were not affected by climate, coarse litterbag mesh
size, or mycorrhizal association, even though non-significant
slopes were identified for tropical regions, the largest mesh
size (10–25 mm), and litter species associated with both types
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of mycorrhizae (Fig. 3). Litter k mediated by invertebrate
density was negatively affected by current velocity and pH,
that mediated by invertebrate biomass was positively affected
by initial litter N and lignin concentrations and lignin:N
ratios, whereas litter kmediated by invertebrate species rich-
ness was negatively affected by discharge rate and current
velocity (Table 1).

We found positive effects of invertebrate density, bio-
mass, and species richness on litter mass loss (database 3),
regardless of climatic region, litterbag mesh size, and
mycorrhizal association, although there were differences
in the magnitude of invertebrate effects between levels of
these factors (Fig. S2). Litter mass loss mediated by inverte-
brate density was positively affected by initial litter lignin
concentration, and water dissolved O2 and NO3

− concen-
tration, and negatively affected by current velocity and
pH; litter mass loss mediated by invertebrate biomass was
positively related to litterbag mesh size; and litter mass loss
mediated by invertebrate species richness was negatively
related to stream water temperature and PO4

3− concentra-
tion, and positively related to stream discharge rate
(Table S3). We were unable to identify the relative

importance of these litter, stream, and experimental factors
on invertebrate density, biomass, or species richness effects
on litter k or mass loss using model selection analyses,
because not all factors were reported in a single study. In
addition, we found consistent negative linear relationships
between log-transformed invertebrate density, biomass,
and species richness and lnRR of k (Fig. 4).

(3) Variation in invertebrate effects with stage of
litter decomposition

Effects of invertebrate density (P < 0.001), biomass
(P< 0.05), and species richness (P< 0.001) on litter mass loss
varied with stage of litter decomposition, with litter decom-
position being positively related to invertebrate parameters
only in the <20% mass loss interval for invertebrate density
and species richness and <10%mass loss interval for inverte-
brate biomass (Fig. 5). Limitations in the available data pre-
vented analysis of effects and relative importance of litter
quality, stream physicochemical properties, and experimen-
tal conditions on invertebrate-mediated litter mass loss with
decomposition stages.
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Sum of Akaike weights

Fig. 2. Overall effects of invertebrates (presence versus absence in coarse- versus fine-mesh litterbags) on litter decomposition rate (k) in
streams (A) andmodel-averaged importance of drivers (P< 0.05) of invertebrate effects (B) assessed using database 1. Values in (A) are
mean ± 95% confidence intervals of the per cent difference between fine- and coarse-mesh litterbags; number of pairwise
observations are shown in parentheses; values on the x-axis indicate per cent changes in litter k due to the presence of
invertebrates. In (B), factor importance is estimated from the sum of Akaike weights, based on model selection analysis using
corrected Akaike’s information criteria; the cut-off (red vertical line) is set at 0.8 to differentiate essential from non-essential factors.
Coloured symbols depict significant effects; grey and/or ns indicates a statistically non-significant result. AM, arbuscular
mycorrhizal; ECM, ectomycorrhizal. *P < 0.05, **P < 0.01, ***P < 0.001.
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IV. DISCUSSION

(1) Consistent positive effects of invertebrates on
litter decomposition

Supporting our first hypothesis, we found that invertebrates
consistently elicited positive effects on instream litter decom-
position at the global and regional scales, although some het-
erogeneity was found among climatic regions and
invertebrate metrics (density, biomass, and species richness).
In terrestrial systems, soil fauna increased global litter
decomposition by 37% (García-Palacios et al., 2013), while
our results showed that invertebrates accounted for an aver-
age increase of 74% of global-scale instream litter decompo-
sition. Differences in the invertebrate communities between
soils and streams may be the main explanation for this differ-
ence (Graça, 2001; Swift et al., 1979), because a large propor-
tion of soil invertebrates are micro- and mesofauna
(e.g. millions of collembolans and Acarina) that feed on fungi
rather than on leaf litter (except for Isopoda and some Gas-
tropoda), whereas in small forest streams macroinvertebrate
shredders that feed directly on leaf litter represent an impor-
tant proportion of invertebrate communities (Vannote
et al., 1980; Wallace et al., 1997), contributing to a larger litter
mass loss. Also, rates of litter decomposition and effects of soil
fauna on litter decomposition in terrestrial ecosystems are

driven by environmental factors, such as temperature, mois-
ture, and nutrient availability (Aerts, 1997; García-Palacios
et al., 2013). By contrast, the environmental conditions of
streams tend to be characterized by buffered temperature
ranges, and generally consistent water availability and nutri-
ent supply from upstream (Graça et al., 2015), making these
unlikely limiting factors for invertebrate activities across an
annual period in streams compared with soil systems, and
potentially leading to a higher contribution of invertebrates
to litter decomposition in streams than in terrestrial
ecosystems.

Climate only influenced invertebrate biomass and species
richness effects on instream litter decomposition (litter mass
loss; Fig. S2B,C). Invertebrate effects on litter decomposition
showed a non-significant trend to increase from tropical to
boreal regions (Fig. 2A), although previous evidence showed
that this pattern can be significant (Boyero et al., 2011b). Cli-
mate variations in invertebrate biomass and species richness
effects on litter mass loss (Fig. S2B,C) may be explained by
contrasting environmental conditions, such as stream water
temperature, pH, nutrients and dissolved O2 across climatic
regions that drive invertebrate abundance and community
structure (Ferreira et al., 2015a; Iñiguez-Armijos et al., 2016;
Pettit et al., 2012).

Surprisingly, we found no effects of litterbag coarse-mesh
size on invertebrate-mediated litter decomposition, with the

Table 1. Univariate linear mixed-effects modelling analysis of the relationship between experimental condition, initial litter quality,
and stream physicochemical properties and the effect of invertebrates on instream litter decomposition [natural logarithm response
ratio (lnRR) of litter decomposition rate (k); database 1] and the effects of their interactions with invertebrate density, biomass, and
species richness on k (database 2). Data were log10-transformed prior to analysis; bold P-values indicate significant effects

Predictor

lnRR of k Invertebrate effect on k

Density Biomass Species richness

Slope P N Slope P N Slope P N Slope P N

Experimental condition
Litterbag coarse mesh size (mm) −0.034 0.760 293 −0.014 0.940 323 0.634 0.279 131 1.148 0.191 100
Experimental duration (days) −0.086 0.347 263 0.104 0.380 304 0.101 0.580 100 −0.114 0.788 101
Initial litter mass (g) 0.176 0.252 291 0.056 0.741 336 0.365 0.196 135 0.731 0.465 109

Initial litter quality
C concentration (%) −0.734 0.807 25 0.564 0.142 40 0.793 0.128 29
N concentration (%) 0.273 0.024 53 −0.309 0.516 47 1.003 0.002 32
C:N ratio −0.759 < 0.001 30 0.485 0.065 43 −0.407 0.150 29
Lignin concentration (%) −0.196 0.046 34 −1.515 0.402 12 1.809 0.029 14
Lignin:N ratio −0.123 0.077 34 −0.966 0.348 12 1.602 0.009 12

Stream physicochemical properties
Water temperature (�C) −0.333 0.001 216 −0.027 0.884 189 −0.217 0.208 94 −0.485 0.294 57
Discharge rate (l/s) 0.007 0.881 48 −0.090 0.093 107 −0.112 0.169 62 −0.774 < 0.001 25
Current velocity (m/s) −0.028 0.398 83 −0.558 < 0.001 66 0.119 0.355 40 −0.537 0.043 46
pH 0.752 < 0.001 222 −0.566 0.010 172 −0.112 0.432 84 −0.179 0.763 73
Conductivity (μ/s cm) −0.011 0.758 224 −0.003 0.978 163 0.105 0.244 77 0.228 0.468 65
Alkalinity (mg CaCO3/l) 0.084 0.208 43 −0.096 0.506 63 −0.036 0.404 41 −1.208 0.651 16
Dissolved O2 (mg/l) 0.591 0.028 111 −0.105 0.858 105 0.337 0.523 30 −2.431 0.300 45
[NO3

−] (μg/l) 0.104 < 0.001 155 −0.007 0.909 136 −0.068 0.209 85 0.226 0.346 33
[NH4

+] (μg/l) 0.100 0.122 85 0.083 0.276 119 −0.047 0.696 59 0.507 0.084 35
[PO4

3−] (μg/l) 0.026 0.376 100 −0.078 0.319 123 0.096 0.632 50 0.047 0.891 25
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Fig. 3. Effects of invertebrate density (A), biomass (B), and species richness (C) on instream litter decomposition assessed using
database 2. Values are estimated slopes and 95% confidence intervals of fixed effects of invertebrate variables on litter
decomposition rates (k) from linear mixed-effects models. Invertebrate data were log10-transformed prior to analysis; number of
observations is shown in parentheses. Coloured symbols represent significant effects of invertebrate density, biomass, and species
richness on litter decomposition (*P < 0.05, **P < 0.01, ***P < 0.001); grey and/or ns indicates a statistically non-significant
result. AM, arbuscular mycorrhizal; ECM, ectomycorrhizal.

log10 (density)

ln
R

R
 o

f k
 v

al
ue

log10 (biomass) log10 (species richness)

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

0 1 2

p < 0.001
R2 = 0.488

p < 0.001
R2 = 0.427

p = 0.015
R2 = 0.241

A B C

Fig. 4. Relationship between invertebrate effect sizes on litter decomposition rates [natural logarithm response ratio (lnRR) of litter
decomposition rate (k)] and log10-transformed invertebrate density (A), biomass (B), and species richness (C) using pairwise data points
from databases 1 and 2. Linear fitted lines and 95% confidence intervals are shown.

Biological Reviews (2022) 000–000 © 2022 Cambridge Philosophical Society.

8 Kai Yue and others



exception of invertebrate biomass-mediated litter mass loss
that was greater with larger mesh sizes (Fig. S2B). Given
the unique environmental conditions in streams, comparing
litter k between coarse- and fine-mesh litterbags to account
for invertebrate effects may overestimate their real effects if
litter mass loss due to physical abrasion by current velocity
and fine sediments is substantial in coarse-mesh litterbags,
and if litter mass loss is impaired by the reduced water
exchange and low-oxygen environment in fine-mesh litter-
bags. On the other hand, this method may underestimate
invertebrate effects if large shredders are unable to reach lit-
ter inside bags. However, our results indicated that our
methods capture the majority of variation in invertebrate
effects on instream litter decomposition: results from com-
paring litter k between coarse- and fine-mesh litterbags
(Fig. 2) and from assessing the relationships between litter
k/mass loss (Figs 3 and S2) and invertebrate communities
were similar, and there was a consistently non-significant
effect of litterbag coarse mesh size. The observed non-
significant effects of invertebrate density, biomass, or species
richness on litter k (Fig. 3) may perhaps be attributed to the
low sample sizes that limited the statistical power of our ana-
lyses (Loladze, 2014).

When using pairwise observations, we found negative
linear relationships between lnRR of k and log-
transformed invertebrate density, biomass, and species

richness (Fig. 4). Potential mechanisms explaining these
results may be that not all invertebrates make a direct con-
tribution to litter decomposition (Graça, 2001), thus the
total density, biomass, and richness of invertebrates may
not be an accurate reflection of the effects assessed by
lnRR of k. However, because of the lack of data on shred-
ders, we cannot directly assess the relationships between
lnRR of k and the shredder community. It is noteworthy
that invertebrate effects quantified by the slope of the rela-
tionships shown in Fig. 4 may also be affected by other
factors such as environmental gradients regulating both lit-
ter decomposition and invertebrates, which could bias the
assessment of ‘real’ invertebrate effects. Nevertheless,
given the consistent positive effects of invertebrates by
both methods and the consistently non-significant effects
of litterbag mesh size, it is likely that lnRR of k can, at
least to a certain degree, accurately describe invertebrate
effects on litter decomposition.

(2) Litter quality and stream environmental drivers
of invertebrate effects

Consistent with our second hypothesis, our results show that
initial litter quality and stream water physicochemical proper-
ties are equally important global drivers of invertebrate effects
on instream litter decomposition. We found negative impacts
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Fig. 5. Effects of invertebrate density (A), biomass (B), and species richness (C) on instream litter decomposition over the stages of
decomposition (0–100% mass loss) assessed using database 3. Values are estimated slopes and 95% confidence intervals of fixed
effects of invertebrates on litter mass loss from linear mixed-effects models. Data were log10-transformed prior to analysis. Number
of observations is shown in parentheses. Coloured symbols represent significant effects of invertebrate density, biomass, and species
richness (*P < 0.05, **P < 0.01, ***P < 0.001); grey symbols indicate a statistically non-significant slope.
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of initial litter lignin concentration and C:N ratio and positive
impacts of N concentration on lnRR of k (Table 1), reflecting
their effects on litter k in streams (Zhang et al., 2019). Litter
with low levels of lignin and low C:N ratios tends to be more
palatable and attractive to invertebrate consumers and micro-
bial colonizers (Ab Hamid & Rawi, 2017; Gonçalves
Jr. et al., 2012; Swan& Palmer, 2006), and higher levels of sub-
strate colonization by microbes have been shown to render lit-
ter more digestible to invertebrates (Jinggut & Yule, 2015). In
contrast to the negative effects of lignin concentration on
overall invertebrate effects, we also found that lignin concen-
tration was positively related to invertebrate biomass and
density-mediated litter k and mass loss, respectively
(Tables 1 and S3). One plausible explanation for this incon-
sistency may be that the relationship between litter lignin
concentration and invertebrate effects on instream litter
decomposition may depend on taxonomic and functional
group preferences for specific litter lignin concentrations
(Graça, 2001; Graça et al., 2001; Patoine et al., 2017). When
invertebrates of specific taxonomic groups that account for a
high proportion of biomass or density of the whole inverte-
brate community prefer some particular types of litter with
high lignin concentration, invertebrate effects on litter
decomposition can be positively related to litter lignin con-
centration. In addition, we found that positive effects of
invertebrates on litter decomposition did not depend on
mycorrhizal associations of the litter-producing taxa, but
there were differences in the degree of positive impacts of
invertebrate density and richness in litter mass loss according
to these mycorrhizal associations (Fig. S2). This is possibly a
result of differences in litter quality from taxa with different
types of mycorrhizal association (Shi et al., 2020), given that
litter quality was found to be an important driver of inverte-
brate effects on instream litter decomposition. Overall, our
results show that initial litter quality, besides controlling litter
k as reported elsewhere (Yue et al., 2018; Zhang et al., 2019),
also drives invertebrate effects on instream litter decomposi-
tion at the global scale.

While local- and global-scale studies have demonstrated
that initial litter quality accounts for much of the variation
in litter k in streams (Boyero et al., 2016; Leroy &
Marks, 2006; Zhang et al., 2019), our findings showed that
stream water physicochemical properties may represent
an equally important driver of invertebrate effects at the
global scale (Fig. 2B). Similar to findings from terrestrial
ecosystems (García-Palacios et al., 2013), we found that tem-
perature was a key driver of invertebrate-mediated litter
decomposition (negative relationship; Table 1). Previous
studies suggested that activity of litter decomposers and,
therefore, litter k, tends to be positively related to tempera-
ture (Ferreira et al., 2015a; Ferreira & Canhoto, 2015).
However, decreases in levels of dissolved O2 in water with
increasing water temperature may be detrimental to
decomposer activities (Iñiguez-Armijos et al., 2016; Pettit
et al., 2012). Supporting these previous studies, our results
showed a positive relationship between dissolved O2 and
invertebrate effects on litter decomposition (Tables 1 and

S3). In addition, stream water NO3
− and PO4

3− concentra-
tions, pH, and current velocity, were also important drivers
of invertebrate effects on litter decomposition, likely
because they are directly or indirectly related to inverte-
brate metabolism and activity during the litter decomposi-
tion process (Graça et al., 2015; Leroy & Marks, 2006).
For example, higher concentrations of NO3

− were found
to stimulate litter-associated fungal biomass (Ferreira,
Gulis & Graça, 2006), which would make litter more palat-
able to invertebrates. By contrast, a recent meta-analysis
suggested that excess amounts of N and P have negative
effects on invertebrate populations (Nessel et al., 2021), indi-
cating the importance of ambient N and P in regulating
invertebrate effects on instream litter decomposition.

(3) Greater effects of invertebrates during the early
stages of decomposition

Partly consistent with our third hypothesis, we found evidence
for themost significant effects of invertebrates only during the
early stages of litter mass loss (< 20%mass loss; Fig. 5). Previ-
ous studies of terrestrial ecosystems show that thenet contribu-
tion of soil invertebrates to litter decomposition increases as
conditions for microbial decomposition become increasingly
adverse, particularly when concentrations of N and other
nutrients in the litter substrate and in the surrounding environ-
ment decline (Peguero et al., 2019). In contrast to thisfinding in
terrestrial ecosystems, however, our results indicate that the
contribution of invertebrates to instream litter decomposition
is greatest during the early stages. Although heavy leaching
can contribute to 10–20% of initial litter mass loss in the early
decomposition stages (Gessner, Chauvet & Dobson, 1999),
this does not conflict with our findings of higher invertebrate
effects in the early decomposition stages when nutrient avail-
ability is higher, because previous local-scale studies showed
that invertebrate effects on litter decomposition are greater
for species with higher litter quality (Hieber &
Gessner, 2002). This result is further supported by a positive
relationship between invertebrate effects and stream water
nutrient concentrations (Table 1). Another potential explana-
tion may be that microbes were found to regulate early-to-
middle litter decomposition (0–40% mass loss interval; Gar-
cía-Palacios et al., 2016), and the relatively higher colonization
and effects of microbes during the early stages of decomposi-
tion could render the litter more digestible to invertebrates
(Jinggut & Yule, 2015), and thus stimulate the effects of
invertebrates.

(4) Research gaps and recommendations

We identify three key research gaps in our understanding of
the global contributions of invertebrates to decomposition
of litter in stream ecosystems. First, our study shows that ini-
tial litter quality is a major driver of invertebrate effects on
stream litter decomposition. However, of the 141 articles
from which we extracted data, only 28 reported initial litter
quality whereas the majority contained data on stream water
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physicochemical properties. This asymmetry in the available
data limits any analysis of the relative importance of litter
quality versus stream physicochemical properties on inverte-
brate effects on litter decomposition among different stages
of the litter decomposition process. Secondly, the majority
of studies included in this synthesis either compared litter
k between litterbags with contrasting mesh size or only used
litterbags with larger mesh sizes to measure litter k and inver-
tebrate communities. This lack of pairwise data from the two
approaches limits the precise assessment of the effects of
invertebrates on stream litter decomposition. The majority
of primary studies only used fine-mesh litterbags of
�0.5 mm to exclude invertebrates, although such a mesh
remains accessible for micro- and meso-invertebrates. Thus,
the effects of micro- and meso-invertebrates on instream lit-
ter decomposition are generally not assessed, and were there-
fore not considered in the present study. More importantly,
in future studies different functional groups, especially shred-
ders, should be evaluated independently in order to allow a
precise assessment of invertebrate effects on instream litter
decomposition. Thirdly, the results included in our synthesis
were focussed on Europe and the Americas (Fig. 1), with
other regions of the world poorly represented, possibly lead-
ing to a misrepresentation of global-scale effects and drivers
of invertebrate-mediated instream litter decomposition.
Overall, we suggest that future experiments should describe
initial litter quality, stream physicochemical properties, and
microbial communities as potential drivers of invertebrate
effects, and employ advanced approaches, such as 13C label-
ling, which may allow the derivation of correction factors to
assess the ‘true’ contribution of invertebrates to litter decom-
position by tracking fluxes in C. To ensure future robust
global-scale analyses of invertebrate effects on litter decom-
position, we further propose multisite, multi-species experi-
ments distributed across all global regions and running for
multiple years to account for temporal changes in litter
chemistry during all stages of litter decomposition (Boyero
et al., 2021; Yue et al., 2018).

V. CONCLUSIONS

(1) To our knowledge, this quantitative synthesis represents
the most comprehensive global-scale assessment of inverte-
brate effects on instream litter decomposition, complement-
ing previous site-specific studies (Graça et al., 2001) and a
recent global study that included few study sites (Boyero
et al., 2021). Our results clearly show a positive effect of inver-
tebrates on instream litter decomposition globally, increasing
litter k by an average of 74%, and that this effect is driven
jointly by initial litter quality and stream physicochemical
properties.
(2) Invertebrate effects were not affected by climatic region,
litterbag mesh size, or type of mycorrhizal association across
the whole decomposition stage, but the magnitude and signif-
icance of the relationship between invertebrate parameters

(density, biomass, and species richness) and litter mass loss
depended on these factors. Effects of invertebrates on litter
decomposition were most apparent during the early stages
of decomposition (<20% mass loss).
(3) Our results not only quantitatively synthesize global pat-
terns of invertebrate contributions to instream litter decom-
position, but also show that the most significant effects of
invertebrates on litter decomposition are at early rather than
middle or late decomposition stages. The results highlight the
importance of the inclusion of invertebrates in global
dynamic models of litter decomposition in streams to explore
the mechanisms and impacts of terrestrial, aquatic, and
atmospheric carbon fluxes.
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*Gonçalves, J. F. Jr.,Couceiro, S. R.,Rezende, R. S.,Martins, R. T.,Ottoni-

Boldrini, B. M., Campos, C. M., Silva, J. O. & Hamada, N. (2017). Factors
controlling leaf litter breakdown in Amazonian streams. Hydrobiologia 792(1),
195–207.
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Pozo, J. (2016). Drought and detritivores determine leaf litter decomposition in
calcareous streams of the Ebro catchment (Spain). Science of the Total Environment
573, 1450–1459.

*Mora-G�omez, J., Elosegi, A., Mas-Martı́, E. & Romanı́, A. M. (2015). Factors
controlling seasonality in leaf-litter breakdown in a Mediterranean stream.
Freshwater Science 34(4), 1245–1258.

*Mosele Tonin, A., Ubiratan Hepp, L. & Gonçalves, J. F. Jr. (2018). Spatial
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litter decomposition of three riparian tree species and associated macroinvertebrates
of Eswathu Oya, a low order tropical stream in Sri Lanka. International Review of

Hydrobiology 96(1), 90–104.
Wang, F., Lin, D., Li, W.,Dou, P.,Han, L.,Huang, M.,Qian, S.& Yao, J. (2020).

Meiofauna promotes litter decomposition in stream ecosystems depending on leaf
species. Ecology and Evolution 10(17), 9257–9270.

*Wang, L., Yang, H. J., Li, L., Nan, X. F., Zhang, Z. X. & Li, K. (2017).
Relationship between leaf litter decomposition and colonization of benthic
macroinvertebrates during early frost period in a headwater stream in the
Changbai Mountains, Northeast China. Chinese Journal of Applied Ecology 28(11),
3775–3783.

*Whiles, M. R. & Wallace, J. B. (1997). Leaf litter decomposition and
macroinvertebrate communities in headwater streams draining pine and
hardwood catchments. Hydrobiologia 353(1), 107–119.

*Wright, M. S. & Covich, A. P. (2005). The effect of macroinvertebrate
exclusion on leaf breakdown rates in a tropical headwater stream. Biotropica
37(3), 403–408.

*Yan, L., Zhao, Y.,Han, C. & Tong, X. (2007). Litter decomposition and associated
macro-invertebrate functional feeding groups in a third-order stream of northern
Guangdong. Chinese Journal of Applied Ecology 18(11), 2573–2579.

Yue, K., Garcı́a-Palacios, P., Parsons, S. A., Yang, W., Peng, Y., Tan, B.,
Huang, C. & Wu, F. (2018). Assessing the temporal dynamics of aquatic and
terrestrial litter decomposition in an alpine forest. Functional Ecology 32(10), 2464–
2475.

Zhang, M., Cheng, X.,Geng, Q., Shi, Z., Luo, Y.&Xu, X. (2019). Leaf litter traits
predominantly control litter decomposition in streams worldwide. Global Ecology and
Biogeography 28(10), 1469–1486.

X. SUPPORTING INFORMATION
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Table S1. The range of variables for stream physicochemi-
cal properties, litter quality, and experimental conditions
used in this study.
Table S2. Results of publication bias analysis using Egger’s
regression tests on the meta-analytic residuals and trim-and-
fill tests from the multi-level meta-analytical model.
Fig. S1. Funnel plot displaying the residuals from the mixed-
effect model plotted against the inverse standard error (preci-
sion) of invertebrate effects.
Fig. S2. Effects of invertebrate density, biomass, and species
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Table S3. Univariate linear mixed-effects modelling analy-
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