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ABSTRACT Identity Documents (IDs) containing a facial portrait constitute a prominent form of personal
identification. Photograph substitution in official documents (a genuine photo replaced by a non-genuine
photo) or originally fraudulent documents with an arbitrary photograph are well known attacks, but
unfortunately still efficient ways of misleading the national authorities in in-person identification processes.
Therefore, in order to confirm that the identity document holds a validated photo, a novel face image
steganography technique to encode secret messages in facial portraits and then decode these hiddenmessages
from physically printed facial photos of Identity Documents (IDs) andMachine-Readable Travel Documents
(MRTDs), is addressed in this paper. The encoded face image looks like the original image to a naked eye.
Our architecture is called CodeFace. CodeFace comprises a deep neural network that learns an encoding and
decoding algorithm to robustly include several types of image perturbations caused by image compression,
digital transfer, printer devices, environmental lighting and digital cameras. The appearance of the encoded
facial photo is preserved by minimizing the distance of the facial features between the encoded and original
facial image and also through a new network architecture to improve the data restoration for small images.
Extensive experiments were performed with real printed documents and smartphone cameras. The results
obtained demonstrate high robustness in the decoding of hidden messages in physical polycarbonate and
PVC cards, as well as the stability of the method for encoding messages up to a size of 120 bits.

INDEX TERMS Steganography, machine-readable travel documents, deep neural network, hiding message
into images.

I. INTRODUCTION
In this paper, we present a new facial image steganography
method for transmitting secret messages through facial
images. That ‘‘encoded’’ information can be later ‘‘decoded’’,
independently of the image format, either digital or printed
and of the transmission media, if any. If the encoded image
is printed and captured by a digital device, the decoded
algorithm must be prepared to deal with several sources of
noise introduced by the physical and digital means. The
architecture of our method is called CodeFace and it is
schematically depicted in Figure 1, that presents, respectively,
the encoder and the decoder in the left and right black
rectangles. The secret message content is encoded inside the
facial image is robust to physical distortions of the image
carrier and other sources of noise and error. This is achieved
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through a careful design of a noise simulation module whose
parameters are learned by the decoder. This message, which
is not visible to the naked eye, can be captured by a digital
camera of a ubiquitous mobile device and further detected
and decoded by a validation algorithm through the use of deep
learning methods.

IDs and MRTDs (Identification and Machine Readable
Travel Documents) are used to identify and authenticate
identities in several scenarios such as crossing national
borders, in civil applications, sales and purchasing portals,
or admission to transaction processing systems. These
documents have several security features which mitigate and
combat document forgery. As these security systems are
difficult to circumvent, criminal attacks on ID verification
systems are now focusing on fraudulently obtaining genuine
documents and the manipulation of the facial portraits.
To reduce risks related to this fraud problem, it is necessary
that governments and manufacturers of IDs and MRTDs
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FIGURE 1. The implementation of CodeFace is performed in two pipelines, implemented using independent networks, namely the encoder and the
decoder. In the encoder pipeline, a message intended to be secret is first encoded with a binary error-correcting code algorithm and thus concealed in the
detected facial image. This encoded image is used for the issuance of an ID document that may be validated with a smartphone camera. The developed
mobile application processes the captured ID document images using the decoder pipeline. In this pipeline, the CodeFace network then extracts the
binary secret message from the image of the detected face, and the same binary error-correcting code algorithm translates it to a string. Finally, the
original and extracted messages are compared to confirm the integrity of the ID document.

continuously develop and improve security measures. With
this in mind, we introduce the first efficient steganography
method - CodeFace - which is optimized for facial images
printed in common IDs and MRTDs. CodeFace is an end-to-
end Generative Adversarial Network (Figure 2) that is formed
by an Encoder (Figure 3), that can conceal a secret message
in a face portrait and, hence, producing the encoded image,
and a Decoder (Figure 4), which is able to read a message
from the encoded image, even if it is previously printed and
then captured by a digital camera.

The key advantages of our model are: 1) it introduces a new
security system for encoding and decoding facial images that
are printed in common IDs and MRTDs, 2) the differences
between the encoded and original facial images are not
evident to the naked eye (see Figure 5), 3) the authentication
of persons, either using 1:1 verification or 1:N identification,
can be performed using our model, 4) the system is suitable
for and optimized to run on smartphones, 5) CodeFace
surpasses state-of-the-art methods in allowing the use of
images in their context, irrespectively of the background.
This feature also allows us to use the method without any
restrictions relating to photo parameters, as described in detail
in Section III-A, 6) our system is able to decode secret
messages from very small images (100× 100 pixels).

Considering the existing steganography models summa-
rized in section II, we have found three constraints that
make them unsuitable as security verification systems for
document portraits. Firstly, they fail to decode secret message
from small, encoded images. Secondly, they do not preserve
sufficiently the visual structure of the encoded face, thus
introducing noticeable distortion in the appearance of the
face, as shown in the comparison of Figure 5. The existing
methods also introduce extra noise into the encoded facial
images that affects the performance of biometric facial
verification systems, as shown in the metrics presented
in the plot A of Figure 6. Thirdly, as mentioned above,
these methods require the message to be encoded in a full
image. Consequently, the currently available steganography
models - to the best of our knowledge - are not suitable
security systems for application to IDs and MRTDs.

In order to overcome the aforementioned limitations,
our method presents the following improvements. In first
place, we improve the noise simulation module by adding
a resize network (using down-sampling) to decrease the
size of the decoder input image from 400 × 400 to 100 ×
100 during the training. This new resize network increases the
decoder performance when reading messages from smaller
images. Then we add a perception loss function term that
minimizes the facial embedding difference between the
original and encoded images. The method for extracting
high level features is based on a metric learning approach
introduced in FaceNet [22]. Such facial embedding is usually
used in various recognition tasks such as facial verification,
identification, clustering, and can be easily implemented
using standard conventional tools. This simple loss function
implementation enhances the face structure and improves its
perceptual appearance. Finally, we consider face detection
models in both our encoder and decoder pipeline applications
to enable the application of our method to an arbitrary part of
the face, independently of the background.

Figure 1 presents an overview of the CodeFace application
process. The application contains two separate systems, the
encoder and decoder. The encoder receives a facial photo
and an arbitrary secret message as input. Using a face
detection method described further ahead in section III-A, the
relevant part of the face is detected and cropped. In parallel,
a secret message is translated to a binary message using
a Binary Error-Correcting Codes algorithm, whose details
are presented in section III-B. Then, the encoder network
(a trained deep learning network) accepts a cropped facial
image and a binary message as input and encodes this mes-
sage into the facial image. The facial image is printed in IDs
andMRTDs. The encoder network for training is described in
section III-C. In the decoding process, a document image is
first captured using a mobile camera, then the encoded part of
the image (the portrait) is detected and cropped. The decoder
network receives the cropped encoded face as input and
recovers the binary message. A detailed description of this
decoding process is presented in section III-D. Subsequently,
the same Binary Error-Correcting Code algorithm translates
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FIGURE 2. The CodeFace training network is made from generator and
discriminator parts. The generator consists of an encoder, a decoder and
a noise simulation network. The discriminator is a combination of face
detection, alignment and cropping systems, a CNN and a simple dense
layer (fast forward network). The face detection crops the encoded image
for the FaceNet loss function. The discriminator also includes a LPIPS
perceptual loss and Critical loss functions for the encoded images, and a
dense layer and a cross entropy binary loss function for the decoded
messages.

the binary message to a string with the secret message.
Finally, the recovered message is analyzed and the integrity
of the portrait is verified.

For the encoder and decoder networks training, the
CodeFace structure uses a Generative Adversarial Network
(GAN) [12] which is comprised by four components: loss
functionsmodule, Convolutional Neural Networks (CNN) for
the encoder and the decoder and a noise simulation module.
The encoder network has a set of loss functions consisting
of perceptual loss [30], FaceNet [22], Wasserstein loss [3]
and residual regularization [24]. These loss functions are
designed to preserve the facial structure and color of the
encoded face during training. We have implemented a com-
plete noise simulation module to approximate the magnitude
of the distortions resulting from real printing and digital
imaging processes (capture) before the image is fed into the
decoder. As far as the authors are aware, this is the first time a
resize network is used to develop the noise simulation aspect,
allowing the system to validate and decode small portrait
images. The decoder is created using a Special Transfer Net-
work (STN) [15] and a Convolutional Neural Network (CNN)
that are trained by a cross-entropy loss function.

Summarizing, the need of algorithms to achieve better
security in ID documents able to conceal secret information
in face portraits and able to be used in a mobile application
to validate the encoded information, and consequently able
to decode information in printed items, has motivated the
work herein described. As presented in the next section,
our model is inspired in the StegaStamp [24], the first
printer-proof steganography method, however not applicable
to face portrait.

II. RELATED WORK
A. IMAGE STEGANOGRAPHY
The use of deep learning in steganography brought a
disruptive change in its capabilities and applications. The

FIGURE 3. The encoder network is created by a UNet network with no
pooling layers, and three convolutional layers.

FIGURE 4. The decoder network is made from two CNNs with a special
transformed network (STN).

state-of-the-art methods that take advantage of traditional
methods (without deep learning), are discussed in [13], [21].
In this work, we focus on deep learning-based steganography
techniques.

Image steganography using deep learning is a rela-
tively new research area, typically based on opposing
networks (mainly GANs) to encode and decode information.
The most interesting methods to achieve this result are
SteganoGAN [29] and HiDDeN [32]. The latter also adds a
noise simulation network to improve the ability to recover
images with distortion. The HiDDeN noise simulation
component is implemented between the encoder and the
decoder. The authors propose the noise simulation for a
discrete cosine transform (DCT), a JPEG compression,
a JPEG-Mask, and a JPEG-Drop as distortion types for
generating the noisy samples. However, the noise simulation
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model in SteganoGAN and HiDDeN have a rather simple
formulation and they do not entirely consider other noise
sources introduced by physical printing and capturing with
a digital camera.

The first successful example of steganography with printed
imageswas performed by StegaStamp [24], where the authors
demonstrated how to achieve robust decoding of messages
even under physical transmission. StegaStamp considers a set
of different image corruptions between the encoder and the
decoder that successfully approximates the set of distortions
resulting from real printing transmission. Additionally, the
method adds a Perceptual Loss function (the Learned
Perceptual Image Patch Similarity, LPIPS) [30] that preserves
the high quality of the images. According to our research,
the performances of other models, such as LFW [13],
HiDDeN [32] and SteganoGAN [29], are under 10% when
decoding messages from small printed encoded face images.
Therefore, in this work we only compare our model with
StegaStamp. It was the first notable steganographymodel that
could encode and decode hyperlinks in photos captured from
real prints. Nevertheless, StegaStamp has some limitations in
its application as a security element to verify the integrity of
documents. Firstly, StegaStamp deals with relatively large,
printed images that make it unsuitable for small facial photo
applications, as the document security of IDs and MRTDs.
Secondly, the encoded StegaStamp facial image has excessive
noise when compared to the original image, as can be seen
in Figure 5. This excessive noise also affects other biometric
face verification systems as shown in the plots of Figure 6
for the Euclidean distance between the original and encoded
image. Finally, the StegaStamp pipeline uses BiSeNet [28]
to detect the encoded image, a neural network that does not
have the ability to hide and read messages from specific parts
of facial images.

CodeFace can overcome the aforementioned limitations.
We apply a new loss function, inspired by FaceNet [22],
to preserve the structure of encoded faces.We also introduced
a resize network before the decoder as a new noise simulation
module. This resize network (that performs down-sampling
of the input images) enables the decoder to read a message
from small face images in the decoding process. Furthermore,
we add the face detection [4], [7], [8] into the CodeFace
application to enable it to hide and read the encoded message
only within the image of the face.

B. DOCUMENT SECURITY VERIFICATION
The focus of this paper is on concealing security encoded
data in ID and MRTD documents while allowing for the
integrity verification of the portrait. In terms of document
security, it is also important to maintain the system’s ability
to recognize persons using facial recognition algorithms. The
main existing market solutions for the validation of ID cards
and passport portrait photos using mobile devices are the
Jura Digital IPI [18] and the IDEMIA Lasink [16], which
are focused on altering the facial photo of the documents.
Using the Jura Digital IPI as the data encoding technique,

the photo is encoded by a digital technology and the secret
information encoded in the portrait will only be visible when
using a decoding device. The encoder uses a halftone process
and the validation relies on the scanned image and the prior
knowledge of the encoded message. In the IDEMIA Lasink,
the image is modulated by a set of lines which encodes the
secret information.

Other work relatedwith ours is the VIPPrint [9], that recog-
nizes a signature of a specific printer. Every printer introduces
special and unique effects into its printed materials. VIPPrint
model detects these effects and use them to build a validation
system. While this is an effective model in practice, it is not
a steganography model.

The ongoing research in facial recognition is typically
focused on searching for the best facial representation. The
state-of-the-art methods here referred typically utilize deep
learning CNN based networks [7], [22], [23]. One of the
closest works to our proposed system is the Medvedev’s
algorithm [20]. The authors introduce a portable and efficient
biometric system for validating ID and travel documents.
Their model consists of a machine-readable code, that is
derived from the biometric template of a digital frontal facial
image and printed on ID cards. In the validation process of the
documents, the application reads and compares two biometric
templates, one from the frontal face photo and the other from
the machine-readable code. This work, however, does not
disguise the information in the portrait and consequently the
machine-readable code is visually available.

On the other hand, 1 : 1 facial verification has largely
been resolved [7], [22], [25], while 1 : N facial identification
solutions typically suffer from lower performance.

Our model can be used as a 1 : N identification and a
1 : 1 verification algorithm, with the ability to encode a
unique security number for each individual in its document’s
facial photo. Although out of the scope of this article, the
decoder can thus read this security number and find user’s
data on a sovereign database.

III. CodeFace
The CodeFace is a model to encode and decode a secret
message in facial images in the context of IDs and MRTDs.
Our model is the first one to be designed as a security method
for the verification of document portraits and it is inspired
by steganography models such as [24], [32]. CodeFace is
composed of two processes: the encoder and the decoder,
as shown in Figure 1.

In the encoder, the facial image and the secret message
are first received as inputs. The relevant part of the image
is detected and cropped using a face detection model [4], [8].
Simultaneously, the secret message is coded by a binary error
correcting codes algorithm [5], [11]. At the end of the encoder
application, a pretrained encoder model embeds the message
in the cropped face and produces an encoded facial image.
The encoded cropped image then replaces the original facial
image which is subsequently printed on an ID card.
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FIGURE 5. From left to right respectively: original images, StegaStamp
encoded and CodeFace encoded are shown. All encoded images hide a
random secret message. We encoded 100 bits within the facial image,
which is a reasonable amount of information for security purposes.

As for the decoder, the ID card’s encoded facial image
is captured by a digital camera. The face detection module
then detects the encoded part of the facial image, which
the CodeFace decoder network then receives, retrieving the
hidden message. A binary-error codes algorithm converts
the retrieved binary message into a number or a string. Then
the final resulting message, the retrieved message, is checked
using a hash function or checksum verification algorithm
to validate the message, thus providing a way to check the
integrity of the face portrait in IDs and MRTDs.

The CodeFace encoder and decoder networks are trained
using GANs, whose structure is shown in Figure 2.
It is composed of four parts: the encoder, decoder, noise
simulation module and loss functions. The encoder and
decoder networks are trained to hide and read messages in
facial images while the noise simulation layers, included
before the decoder, create a realistic environment for the
complete network during the training. Loss functions consist
of various pre-defined network components and additional
loss functions that preserve the appearance of the encoded
face andmessage during the training. In this section, we detail
all components of the CodeFaceGANgenerator that aremade
from the encoder network, the noise simulation module and
the decoder. In the final section, CodeFace’s discriminator is
described, including the loss functions and related networks.

A. FACE DETECTION
For a robust ID verification process that conceals a message
in the facial image, we need a face detection model to
identify the part of the face where the secret message is
hidden. It is important to note that the facial detection model

should reveal the exact part of the face used to encode
information. To achieve this, we applied and carried out
extensive tests using a set of facial detection approaches such
as BlazeFace [4], MobileNets V2 float32, MobileNets V2
int8 [14], SSD int8 MTCNN [19], LBP cascade (opencv) and
PRnet [26].

A cascade classifier (like HAAR and LBP) is a con-
ventional technique used for various detection purposes
that can be easily applied by the OpenCV Toolkit in a
smartphone. However, in comparison with deep learning
methods, it is not accurate enough. BlazeFace and Mobilenet
V1/V2 are significantly faster and more accurate deep
learning architectures for modern mobile devices.

Furthermore, PRnet provides a complete solution for facial
detection and facial pose analysis, that increases the detection
accuracy under pose variation and occlusion.We chose PRnet
method as it had the best performance for our purposes.
We significantly optimized the network and reduced its size
by converting the model to the TensorFlow Lite format in
order to embed it into a mobile application.

B. ERROR-CORRECTING CODES ALGORITHM
Aiming to stabilize the accuracy of the decoding,
we employed an error-correction code algorithm. Although
the choice of the better method for binary-correction is
not within the scope of this work, we selected cyclic
error-correcting codes namely the BCH algorithm [11] and
Solomon algorithm [5], [27].

C. ENCODER
The first part of the generator is the encoder network. The aim
of the encoder training process is to optimize the trade-off
between its ability to restore the perceptual properties of
the input images and the decoder performance to extract the
hidden message.

The encoder network architecture that we selected is based
on UNets, however, the pooling layers were removed to
preserve the information of the secret messages that may
otherwise be lost during the network training. It thus receives
an aligned face and a random binary message as inputs
and produces an encoded image of the same size. The
secret binary message is transformed (by reshaping and up-
sampling) to coincide with the size of the encoder input as
expected. The input face image is then processed by the
encoder. Since the encoder does not have pooling layers,
we need to design its architecture in a special manner by
manually matching the parameters of convolutions to avoid
layer connection errors.

Figure 3 displays CodeFace encoder network’s details that
are prepared for 400× 400× 3 input images.

D. DECODER
The decoder network that is presented in Figure 4 is
incorporated into the whole architecture after applying the
noise to the images. The decoder is designed to recover a
message that is encoded in a facial image. For this network,
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FIGURE 6. (A) the deviation in the Euclidean distance from facial features between the original and the encoded faces by StegaStamp. (B) the
probability distribution function of the variation in the facial features between original and CodeFace encoded images. (C) summarizes basic
statistics that are used to compare both models for a dataset of 809 images.

FIGURE 7. Samples of our model deployed on printed test ID cards.
We used facial images of celebrities that were downloaded directly from
the internet. The figure shows the full process of our model. The correct
green box shows the number of frames in which the encoded and
decoded messages were the same. The false red box shows the number
of frames in which the decoder cannot correctly read and decode the
message. The processing was made at 10 frames per second.

we applied CNNs with STN based on StegaStamp [24] and
HiDDeN [32]. STN helps to crop out the appropriate region
and normalize its scale, which can simplify the subsequent
steganography decoding task and lead to better performance.
It removes the spatial invariance from the encoded images by
applying a learnable affine transformation that is followed by
interpolation. The STN block is placed before the CNN.

E. PERTURBATION SIMULATION
To simulate the noise from printers and digital cameras,
we applied several types of noise to the output images of
the encoder network, before using the decoder. Based on two
works, HiDDeN and StegaStamp, our model encompasses
the same set of noise types such as perspective warp, motion
and defocus blur, camera noise, color manipulation and JPEG
compression. Perspective warp is a random homography that
simulates the effect of a camera that is not precisely aligned
with the encoded image marker. Motion and defocus blur can

result from both the camera motion and inaccurate autofocus,
which are very common on mobile devices. To simulate
motion blur, a random angle is sampled to generate a
straight-line blur kernel with a width between 3 and 7 pixels.
The camera types of noise, which include photon, dark and
shot noise from the camera system, has beenwell documented
in previous works [24], [32]. Color manipulation, which
is noise that can result from printers and monitors, has a
limited color gamut compared to the full RGB color space
and includes hue shift, saturation, brightness and contrast.
The last added noise is a JPEG compression, which affects
the image when it is stored in a lossy format, such as JPEG.
All of these types of noise are applied to CodeFace between
the encoder and the decoder in the training phase (refer to
Figure 2). According to the objective of the CodeFace system,
it should be able to read a message from a small face image
printed on a ID or on anMRTD.We then developed and added
to the training network the new noise simulation layers. All
of the layers have a scalar hyper parameter that governs the
distortion intensity.

The novel idea proposed in this research is to attach a
resize network to our model as an additional noise simulation
module. This is designed to help the decoder read messages
from smaller photos in comparison with previous approaches.
The resize network decreases the size of the encoded images
that the decoder receives.

F. LOSS FUNCTIONS
All the outputs of the CodeFace generator are received by the
CodeFace discriminator. The discriminator is designed with
a set of loss functions to improve the model’s performance.
The most important loss functions in our model are LPIPS
and face embedding.

LPIPS demonstrated its efficiency in StegaStamp. There-
fore, we use it as perceptual loss function in our model.
In addition to LPIPS, there is need to preserve the facial
structure and its high-level representation, thus it was
modified the loss function with the similarity function that is
estimated by the output of a FaceNet model. FaceNet model
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uses the Inception Resnet V1 architecture that was trained
with the VGG2 dataset. Themodel receives a 160×160 pixels
RGB facial image and delivers a 128 dimensional vector
of facial features. The Euclidean distance between the two
sets of features expresses the degree of similarity between
their source images. Our model thus computes the Euclidean
distance to minimize the difference in facial features between
the original and encoded facial images during the training
process.

The two loss function terms are then summed with other
loss terms that were used in the aforementioned models,
[24], [32]. In summary, the complete loss function in the
CodeFace model includes the following components:
• LPIPS perceptual loss function LP,
• FaceNet loss function LF - an arbitrary biometric
recognition system which measures the closeness of two
face templates by Euclidean distance,

• The Wasserstein loss LW - utilised as a perceptual loss
for the encoder/decoder pipeline [3],

• Residual regularization LR [24],
• The cross entropy message LB - that trains the decoder
network in order to recover the message.

In the training process, the loss functions are the weighted
sum of the five image loss terms,

Loss = FLF + PLP +WLW + RLR + BLB (1)

where F , P, W , R, and B are the weights for each loss
function components. At the early stage of the training F ,
P, W , and R are initially set to zero (B is set to 0.01) until
the decoder achieves high accuracy in these weights (this
usually occurred after 500 to 700 steps in our experiments).
Afterwards, these weights are increased linearly in every step.
We slowly improve the effectiveness of the loss function by
increasing these coefficients.

G. DATASETS
For the training of the CodeFace models, seven databases of
frontal facial images were incorporated, including the PICS
face dataset,1 the Color FERET face dataset,2 the AT&T
Database of Faces,3 the BioId face dataset,4 the Georgia Tech
Face Database5 and the FEI Face Database.6

For the purpose of CodeFace, we needed a dataset to
meet the requirements of international institutions such as
ICAO (International Civil Aviation Organization) concerning
identification documents [1], [10]. The first requirement
concerns the size of the photos, which must be at least
35mm×45mm (width× height) and the size of the image of
the face that must be at least 16mm×20mm (excluding ears).
The second requirement concerns the framing of the image:

1http://pics.psych.stir.ac.uk/
2https://www.nist.gov/itl/ products-and-services/color-feret-database/
3https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/
4https://www.bioid.com/facedb/
5http://www.anefian.com/ research/face_reco.htm
6https://fei.edu.br/ cet/facedatabase.html

FIGURE 8. The first plot shows the LPIPS loss function between original
and the CodeFace encoded images (red line), and between the original
and StegaStamp encoded images (green line). Second plot shows the
structural similarity index (SSIM) between the original and the encoded
images for both CodeFace (red) and StegaStamp (green) images.

the image should depict a complete frontal image of the face,
showing the full head and centered in the eyes. The third
requirement regards the background: the photo should have
an uniform white background with sufficient contrast with
the face. The fourth requirement states that the eyes should
be fully visible. If the person uses glasses, the lenses must
be fully transparent (without distortion due to reflections and
shadows).

Tomeet these requirements, we implemented a verification
system that removes facial images that did not fulfil all the
requirements. After the mentioned datasets were filtered,
1900 images remained, respecting the ICAO standards.
Although this is not a large dataset, we are able to obtain very
good results with it. All the facial images that are presented
in this paper belong to celebrities.

IV. EXPERIMENTS
We have monitored and verified the performance of our
encoder and decoder networks using three smartphone
cameras with medium to high capacities (HUAWEI P40Pro,
HUAWEI P20Pro and iPhone 10s). All the decoding tests
have been done using a set of images (grayscale and RGB)
physically printed on polycarbonate, PVC cards and regular
paper. In terms of printer, we used two commercial printers
(Brother HL-3270CDW and HP Color LaserJet CP5225n),
one laser engraving printer for polycarbonate cards from the
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FIGURE 9. Comparison of the face verification performance. First, the
blue plot is the face verification applied to the original image without any
message. The second plot, in orange, shows the ROC of the face
verification when an image is generated by CodeFace. The last plot,
in green, is the ROC for StegaStamp generated images.

manufacturer Muehlbauer, and a Thermal Transfer printer
from DataCard.

Since the results of the experiments showed no significant
differences regarding the type of printer used or the material
(paper, polycarbonate or PVC), we do not present separate
results for each printer and material.

We will show that CodeFace is better at improving
the image perception quality than similar state-of-the-art
approaches such as StegaStamp [24]. We compare our
result with the StegaStamp model because it is the only
printer-proof steganography model to the best of authors’
knowledge.

In the experiments, we recorded the videos from the ID
cards and analyzed them. Figure 7 shows samples of these
videos and the number of frames in which the encoded and
decoded messages were the same. A frame is considered
correct if the decoder recovers the expected message and
passes the validation step. It is worth noticing that the method
fails when any of the network modules is not able to achieve
successful results. For instance, the method fails if a face
detection is not achieved or if the correct crop of the region
of interest is not correctly performed. The method also fails
if the decoder is unable to produce a correct bit stream for the
error-correcting code method.

Instead of running the method for a single frame or image,
CodeFace analyzes frames from the video feed to improve
the user experience. The user then has a more fluid and
friendly interface with the application, while increasing the
probability of achieving a successful decoding since more
frames are analyzed. CodeFace code was developed using
TensorFlow library and it is trained in Python. After training,
themodel was converted and optimized for the TFLite format,
running in Java (Android studio).

A. PERFORMANCE
Facial images encoded with our CodeFace approach out-
perform the StegaStamp generated images in terms of their

perception quality. The visually perceptible results from
both CodeFace and StegaStamp for 100 bit messages are
presented in Figure 5. The results clearly show, qualitatively,
that our model better preserves facial structure and texture.
Quantitatively, Figure 6 presents the Euclidean distances of
facial features and the probability distribution function of
the difference in the facial features between the original and
encoded images generated by CodeFace and StegaStamp.
CodeFace reduced the impact of noise on the system by
at least 90 percent compared to StegaStamp. Therefore,
we expect that when using CodeFace for encoding, the face
detection and face verification systems have a negligible
error rate caused by the encoding of the hidden message.
Additionally, we have used 100 frontal face images from the
VGGFace2 dataset to compare perceptual similarity using
LPIPS and the Structural Similarity Index (SSIM) between
the original and encoded images from both CodeFace and
StegaStamp, as depicted in Figure 8. As shown in the two
plots, CodeFace images are much more similar to the original
images when compared with StegaStamp encoded images.
LPIPS is adopted for the training of both CodeFace and
StegaStamp.

To compare the influence of StegaStamp and CodeFace on
the performance of face verification, we selected a dataset of
32000 pairs of facial images from the VGG2 database (16000
with the identity matched and 16000 non-matched). In each
image pair, we chose one image to generate an encoded copy
using StegaStamp and CodeFace. Next, we evaluated the
facial verification performance across three setups, namely
original, StegaStamp and CodeFace images. The similarity
score is estimated by the standard DLib face verification
module [17]. We used an accuracy metric to fix the similarity
threshold at 0.6 (as used in [22]). With these settings,
we obtained a 99.9% percent accuracy for face verification
using only original images, 99.3% accuracy for the CodeFace
encoded images and 88.8% accuracy for the StegaStamp
images whose ROC curves are shown in Figure 9.

B. ABLATION STUDY
Figure 10 presents the encoded CodeFace images with
messages of different sizes, without the resize network, from
80 to 200 bits. As one can see, after 120 bits the perceptual
quality of encoded images is slightly degraded.

In order to test the performance of the resize network
(regarding the noise simulation aspect), the experiments
were performed based on the videos captured by the
smartphone camera in a variety of real-world environments.
In the experiments, we first converted the images to the
same resolution by a super resolution network [31]. Then
we encoded a special message in 100 facial images of
celebrities, and finally we removed the background from all
of the encoded images by applying a Portrait Segmentation
model [6]. By using a commercial office printer, the encoded
images are printed with sizes ranging from 1 cm to 6.5 cm
wide on paper. As the size and shape of people’s faces are
not uniform, we do not have a fixed range of dimensions
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FIGURE 10. Encoded CodeFace images are shown with different sizes of
the message, from 80 bits up to 200 bits.

FIGURE 11. The plot shows the decoders’ performance tests carried out
with a handheld HUAWEI P20Pro smartphone camera. Videos were
captured in a variety of real-world environments (in-the-wild). Encoded
images, which are of celebrities, are printed by a consumer printer.
We repeated the test five times to achieve higher precision. As can be
seen, CodeFace with the resize layers has better performance in small
images with widths above 4 cm (the actual size of a typical ID card
portrait).

for all images. For each test, we preserved the width of the
images, while the height can be scaled accordingly to the
original aspect ratio. In the end, we test the 100 facial images
with a HUAWEI P20Pro smartphone camera. An image was
validated and accepted if the decoder recovers the complete
message at least once in the first 10 frames, and at least twice
in the first 20 frames. The result of the experiments, which
are presented in Figure 11, demonstrate that the CodeFace
system achieved an accuracy of 100%, for images whose
width is larger than 6 cm, while the CodeFace system,with the
resize network model, has an accuracy of 100% for images
whose width is larger than 4 cm. It means that above this
size, we expect the CodeFace model to work with no error
irrespectively of the use of the resize network. We emphasize
that the results are dependent both on the smartphone camera
and the printer.

In summary, the use of the resize network can improve
the model accuracy for smaller images at a small cost on the
perceptual structure of encoded faces.

In terms of computational performance, for 100 random
images of the dataset, the mean execution time to encode
a message in a single image is approximately 1.2 seconds,
running in a regular PC, while the mean execution time of
the decoder to read and validate a message is approximately
0.8 milliseconds.

V. CONCLUSION
In this paper, we introduce a novel deep learning printer-proof
steganography approach for document security systems.
We significantly optimized the performance of the CodeFace
encoder and decoder to incorporate and read messages
in facial images by combining the steganography with
face detection, considering a new loss function and a
noise simulation pipeline. The new loss function combines
perceptual and high-level facial representation parts to
measure the variation of the facial structure during training.
The noise simulation pipeline is modified with a resize
layer that decreases the size of the encoded images used
throughout the training. Therefore, CodeFace with the resize
layer can better read a message from a smaller image and
the storage size of the decoder network was decreased.
This is achieved at a small cost to the perceptual structure
of the encoded face. In comparison with state-of-the-art
approaches, we have demonstrated significant improvements
in terms of perceptual quality of the encoded images and
their compliance with modern facial recognition systems
and document issuing requisites. CodeFace presents an
innovation that can be easily implemented in real world
document validation systems and applied directly to ID cards
and MRTDs as a security protocol.

As future paths for research, we intent to increase the
amount of information encoded in the face images. To achieve
this goal, we will study new coding and compression
algorithms as local sensitive hashing [2]. We also intend to
study alternative possibilities to use the whole face image,
instead of a smaller part of the portrait.
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