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In this paper we introduce a method to compute non-dominated bicriteria shortest pairs, each including
two disjoint simple paths. The method is based on an algorithm for ranking pairs of disjoint simple
paths by non-decreasing order of cost, that is an adaptation of a path ranking algorithm applied to a
network obtained from the original one after a suitable modification of the topology. Each path in this
new network corresponds to a pair of paths in the former one. Computational results are presented and
analysed for randomly generated networks.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The shortest path problem is one of the most popular in opera-
tions research. It aims to compute a route in a network that can be
used to send data or goods from one place to another, minimising
an objective function that can represent a cost or time for using that
route. Some of the many variants of the shortest path problem in-
tend to determine multiple routes, either for having alternatives to
the best route in case of failure or to use those routes simultaneously
to spread the information transmitted at a specific time. In order to
cope with this latter problem disjoint paths, that is paths with no in-
termediate nodes in common, that do not share network resources,
with minimum cost are considered. Given k ∈ IN, the determination
of k disjoint simple paths has been treated by Suurballe, Suurballe
and Tarjan, and Bhandari [1–3]. These approaches consist of formu-
lating the problem as a minimum cost flow problem and propose
the application of a labelling algorithm, changing the given network.

We present a modification of the topology of a graph that changes
the determination of a set of disjoint paths into listing paths by order
of a cost function. This work was motivated by an application to a
multicriteria routing model for Multiprotocol Label Switching MPLS
networks with traffic splitting [4] in which pairs of disjoint simple
paths (PDSP) are used to spread the traffic. This model involves two
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objective functions to beminimised, namely the cost of using the two
paths, given by the summation of their arc costs, which measures
the load balancing cost, and the number of arcs in the paths [4,5]. To
deal with this traffic splitting problem a method for listing shortest
pairs of disjoint simple paths (SPDSP) was developed, and as the aim
was to minimise two objective functions we computed only the non-
dominated pairs. Here we consider two additive cost functions. The
purpose of the paper is to introduce a method to determine PDSP,
which is also able of listing these paths by non-decreasing order of
cost. Finally this ranking method is combined with a dominance test
thus leading to a process to generate all the non-dominated solutions
when two costs are considered.

The paper has four more sections. The following introduces some
notation and the adequate problem. Section 3 proposes an algorithm
for listing PDSP by order of cost after an adequate modification in the
network topology. Section 4 focuses on a method for finding non-
dominated PDSP concerning two objective functions. Finally, tested
examples in randomly generated networks are presented and the
results are discussed in Section 5.

2. Problem definition

Let (N,A) be a network with a set N of n nodes and a set A
of m arcs. A path p from i ∈N to j ∈N in (N,A) is a sequence
of the form p= 〈i= v1,v2, . . . , j= v�(p)〉, where (vk,vk+1) ∈A, for any
k ∈ {1, . . . , �(p) − 1}, where l(p) is the number of nodes of path p.
Nodes i and j are called initial and terminal nodes of p, respectively.
If x and y are nodes of p, then the subsequence of p between x and
y is represented by subp(x, y), and called the subpath of p from x
to y.
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Definition 1. A path p is said to be simple (or loopless) if it has no
repeated nodes.

Let Pxy denote the set of paths from node x to node y in (N,A),
and P denote the set of paths from a source node s to a terminal
node t (which is, Pst =P).

Definition 2. Two paths p and q from x to y are said to be disjoint
if the only nodes they have in common are x and y.

Given p ∈Pxi and q ∈Piy let p�q represent the concatenation of
those paths, that is, p � q is the path formed by p and followed by q.
Two costs are associated with each arc (x, y) of the network: cixy ∈ IR,
i= 1, 2. Given any path p two objective functions are defined:

ci(p)=
∑

(x,y)∈p
cixy, i= 1, 2.

Our first aim is the determination of a PDSP from s to t that minimises
both objective functions.

3. Determination of PDSP

The determination of PDSP is discussed in this section. The first
part concerns a modification of the given graph, aiming at trans-
forming pairs of simple paths between s and t into simple paths
of the modified network. The second part gives a method for list-
ing PDSP by non-decreasing order of a cost function. This algorithm
ranks paths that correspond to pairs of paths in the original network,
reducing as much as possible the calculation of pairs with nodes in
common, and, finally, it filters the disjoint pairs.

3.1. Network topology modification

Let (N,A) be a given network and s, t be an origin–destination
pair of nodes. Let (N′,A′) be a new network, such that:

• the former nodes are duplicated: N′ =N ∪ {i′ : i ∈N},
• the former arcs are duplicated and a new one, linking t and the
new node s′, is added: A′ =A ∪ {(i′, j′) : (i, j) ∈A} ∪ {(t, s′)}.

In the new network the initial node is still s and the new terminal
node is t′. The costs of the original arcs are maintained, while for the
new ones we have ci′j′ = cij, if (i, j) ∈A, and cts′ = 0. Fig. 1 shows an
example of a network and its duplication.

Each path p from s to t′ in (N′,A′) corresponds to a pair of paths
from s to t in (N,A), such that

p= q � (t, s′) � q′,

where q ∈Pst and q′ ∈P′s′t′ . If q and q′ are simple and do not share
corresponding nodes in N and N′, then they are associated with
a PDSP in (N,A). The following definitions intend to simplify the
implementation of a method to find the SPDSP.

Definition 3. A path p in P is simple iff for any node x ∈ p, if y is a
node of p previous to x then y /∈ subp(x, t).

Fig. 1. Networks (a) (N,A) and (b) (N′ ,A′).

Definition 4. Two simple paths q1, q2 ∈ P are disjoint iff, for any
node x� s, t, if x ∈ q1 then x /∈ q2.

Using a ranking algorithm we can list the simple paths from s to
t′, and check whether each one corresponds to a PDSP. This allows
only the PDSP to be filtered, ordering them by cost.

Remark 1. Regarding the memory space demanded to store the
modified network (N′,A′) defined above, the number of nodes in
N′ is 2n and the number of arcs in A′ is 2m + 1. However, ev-
ery new arc besides (t, s′) is a copy of another existing arc, there-
fore the duplication of such arcs can be avoided as long as the
corresponding arcs in A are analysed whenever an arc in A′ −
{(t, s′)} is considered, therefore only m+ 1 arcs need to be stored. In
this case operations should be implemented cautiously if the net-
work is subject to other modifications, as the sets of arcs associ-
ated with a node in N and its correspondent in N′ might become
different.

3.2. Ranking disjoint pairs of simple paths by cost

The ranking of PDSP by non-decreasing order of cost can be made
by using an adaptation of the algorithm by Martins, Pascoal and
Santos [6] for ranking simple paths. This algorithm, now briefly re-
viewed, allows to easy the incorporation of additional tests on paths
and thus reduces the number of candidates that have to be gener-
ated.

Let X be a set that stores simple path candidates to pk, k=1, . . . ,K.
The set X is initialisedwith the shortest path from s to t in (N,A), p1,
and if p1, . . . , pk−1 have been determined then pk is the next shortest
candidate in X. When pk is selected and removed from X its nodes
are analysed, in order to generate new candidates with a low cost.
The shortest deviation of pk at node vi is given by the shortest path
from vi to t, after the arc of pk that starts at vi being deleted. This
best path has the form:

p= subpk (s,vi) � (vi, j) �Tt(j),

where (vi, j) does not belong to any of the candidates computed so
far, Tt denotes the tree of shortest paths from any node to t, and
Tt(j) denotes the path from j to t in Tt . In the following �j stands
for c(Tt(j)). Node vi is called the deviation node of p, and it will be
denoted by dp.

The generation of a new candidate by this method depends on the
selection of an arc, which can take into account the two constraints
considered, namely: the nodes of a path should not be repeated, and
the nodes of paths that belong to N and to N′ should be distinct,
except s, t, s′, t′. This procedure may generate paths with loops or
with common nodes in N and N′ whenever subpk (s,vi) and Tt′ (j)
share nodes. Therefore, only arcs that start at a node previous to
the first loop have to be considered. A sketch of this algorithm is
presented in the following, and further details on its original ver-
sion can be found in [6]. Algorithm 1 refers to function Disjoint, that
checks if a path p in (N′,A′) corresponds to a PDSP in (N,A). In
other words this function checks whether the path p ∩N and the
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Fig. 2. (a) Tt in (N,A) and (b) (N,A) with reduced costs.

path that corresponds to p∩N′ in the original network share other
nodes besides the initial and the terminal.

Algorithm 1. Determination of a shortest PDSP in terms of a cost
function

Tt′ ← tree of the shortest paths from i ∈N′ to t′ in terms c
p←Tt′ (s)
If (p is not defined) Then Stop /∗ There is no pair of disjoint simple paths ∗/
c̄ij ← �j − �i + cij,∀(i, j) ∈A′
Represent A′ in the sorted forward star form in terms of c̄
dp ← s; X← {p}; feasible← False
While ((X � ∅) and (not feasible)) Do
p← path in X such that c̄(p) is minimum /∗ p= 〈s ≡ v1,v2, . . . ,v�−1,v� ≡ t′〉 ∗/
X← X − {p}
i← index such that vi = dp
While ((vi � t′) and (subp(s,vi) is simple) and Disjoint(subp(s,vi))) Do

l← index such that al = (vi,vi+1)
While ((vi is the tail node of al) and

((al+1 forms a loop with subp(s,vi)) or not Disjoint(subp(s,vi) � al+1))) Do
l← l+ 1

EndWhile
If (vi is the tail node of al) Then
vj ← head node of al; q← subp(s,vi) � al �Tt(vj); dq ← vi; X← X ∪ {q}

EndIf
vi ← vi+1

EndWhile
If ((p is simple) and Disjoint (p)) Then feasible← True

EndWhile
If (not feasible) Then Stop /∗ There is no pair of disjoint simple paths ∗/

Note that the first steps of MPS algorithm compute Tt and re-
place arc costs by reduced costs. The shortest tree from any node to
the terminal and the new costs are depicted in Figs. 2 and 3 when
considering the original network (N,A) and the duplicated net-
work (N′,A′), respectively, both given in Fig. 1.

As shown in the pictures, it is also easy to prove

�i = �i′ + �s for any i ∈N.

As a consequence it is possible to compute Tt before (N,A) is
duplicated, and to use that information in themodified network with
no need of solving a new single source shortest path problem and to
determine Tt′ . Moreover, if the network arcs are not replicated, as
suggested in Remark 1, then for any i ∈N, (i′, j′) ∈A′ and c̄i′j′ = cij.
Similarly, (j′, i′) ∈A′ and c̄j′i′ = cji. The only arc that has to be treated
differently is (t, s′), as it has no corresponding arc in the original
network.

When the original graph is duplicated not only the size of the
problem but also the number of solutions that can be obtained is dou-
bled, as equivalent pairs of paths, like (p, q′) and (q, p′), can be gener-
ated. For instance, when applied to the network of Fig. 1 Algorithm
1 first determines the shortest path from 1 to 4′, p=〈1, 2, 4, 1′, 2′, 4′〉,
which corresponds to the pair (q, q′), where q = 〈1, 2, 4〉 and q′ =
〈1′, 2′, 4′〉, with cost (2,2). Since node 2′ belongs to q path p does not

lead to disjoint paths in the original graph, but still its nodes from 1
to 1′ are scanned, and the following paths are obtained:

Path Scanned node Generated path Costs pair
q1 1 〈1, 3, 2, 4, 1′, 2′, 4′〉 (7,2)
q2 2 〈1, 2, 3, 4, 1′, 2′, 4′〉 (3,2)
q3 1′ 〈1, 2, 4, 1′, 3′, 2′, 4′〉 (2,7)
Hence, it is easy to see that q1 and q3 correspond to the same pair
of paths.

Remark 2. Based on this example one can discard equivalent pairs
of simple paths, or else derive a pruning technique that prevents

one of those paths from being computed. This can be done by al-
lowing only paths p such that c(subp(s, t))�c(subp(s′, t′)) (or instead
c(subp(s, t))�c(subp(s′, t′)), since the symmetric path will still be ob-
tained. Thus, aiming to reduce the number of paths to be stored, the
inner While loop in Algorithm 1 can be replaced by

While ((vi is the tail node of al) and

EquivalentPair (subp(s,vi) � al+1 �Tt′ (head node of al+1)) and
((al+1forms a loop with subp(s,vi)) or

not Disjoint (subp(s,vi) � al+1))) Do

where EquivalentPair stands for a boolean function that, given a path
p from s to t′, returns the value True iff

c(subp(s, t)) > c(subp(s′, t′)).

By applying this test equivalent pairs of paths, both with the same
cost, can still be obtained. Extending it by replacing the strict in-
equality by � , in order to avoid such cases, may prevent other pairs
of paths from being computed. Instead, those pairs can be identified
if compared with the already computed ones, either when they are
generated or else when they are selected in X.
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Fig. 3. (a) Tt′ in (N′ ,A′) and (b) (N′ ,A′) with reduced costs.

Remark 3. It should also be noted that to allow ranking PDSP by
order of the objective function c one only has to change the stopping
condition of the outer While loop in this algorithm. Moreover, if
the network (N,A) is replicated k times, then Algorithm 1 can be
applied to determine the shortest set of k disjoint simple paths, k ∈
IN.

In terms of the theoretical number of performed operations, the
determination of Tt′ can be made in O(m′ + n′ logn′), where n′ and
m′ are the number of nodes and the number of arcs of (N′,A′),
if Dijkstra's algorithm [7] is used together with a Fibonacci heap
[8]. Replacing arc costs by reduced costs and then sorting A, in
order to represent (N,A) in the sorted forward star form, takes
O(m′ logn′). Each While loop demands choosing the best path in X,
scanning at most n nodes, selecting the next arc to generate a new
candidate and inserting it in X, which can be made in O(m′ + log |X|).
If K1 paths are computed and the While loop is executed K2 times,
then the total number of operations executed by Algorithm 1 will
be O(m′ logn′ + K2(m′ + logK1)). In general K1, K2 cannot be known
in advance once the paths to be generated may not satisfy to the
imposed constraints.

4. Method for finding non-dominated solutions

In the bicriteria problem of finding non-dominated PDSP we in-
tend to find PDSP from s to t which minimise the functions c1 and
c2 in P. In general, if the objective functions are conflictual, this
problem has no optimal solution. Therefore, we will determine a set
of non-dominated solutions, formed by PDSP such that there is no
other which improves one objective function without worsening the
other.

Given (pi, qi), i=1, 2, two PDSP from s to t in (N,A), pair (p1, q1)
is said to dominate pair (p2, q2), written (p1, q1)D(p2, q2), if and only
if ci(p1) + ci(q1)�ci(p2) + ci(q2), i = 1, 2, and at least one of the in-
equalities is strict. (p1, q1) is non-dominated if there is no PDSP that
dominates it. These notions can be extended for simple paths from
s to t′ in the modified network (N′,A′).

In 1982, Clímaco and Martins [9] introduced a method to solve
the bicriteria shortest path problem. This method is adapted here to
determine the set of non-dominated PDSP. The idea involved in their
method is to list solutions by non-decreasing order of one of the ob-
jective functions (using the method described in Section 3), and add
a dominance test to this enumeration in order to filter only the non-
dominated solutions. The dominance test results from the observa-
tion that if the enumeration is made by non-decreasing order of the
first objective function, then the sequence of the second objective
function values of non-dominated solutions is non-increasing. Thus,
every time a simple path p in (N′,A′) is found the associated ob-
jective function values, (c1(p), c2(p)), have to be compared with the
previously obtained ones. Let M1 be the greatest value of c1 deter-
mined so far, and let m2 be the least value of c2 determined. The two
possible situations are:

1. c1(p)=M1
• If c2(p) >m2 then p is dominated.

Table 1
CPU times for ORA ranking K = 5000 PDSP in random networks, n= 1000.

Min. Average Max.

(a) m= 5000
(1) 0.000 0.000 0.004
(2) 0.000 0.001 0.004
(3) 0.488 0.662 1.204

(b) m= 10000
(1) 0.000 0.000 0.004
(2) 0.000 0.004 0.160
(3) 0.524 1.282 18.350

(c) m= 20000
(1) 0.000 0.000 0.004
(2) 0.000 0.004 0.096
(3) 0.500 0.986 3.998

(1) Constructing (N′ ,A′), (2) finding the best PDSP, (3) ranking 5000 solutions.

• If c2(p) <m2 then p dominates the solutions with cost (M1,m2)
and p is a candidate to non-dominated solution. Value m2 is
updated.
• If c2(p)=m2 then p is a candidate to non-dominated solution.

2. c1(p) >M1
• If c2(p)�m2 then p is dominated.
• If c2(p) <m2 then the solutions with cost (M1,m2) are non-

dominated and p is a candidate to non-dominated solution.
Values M1 and m2 are updated.

The method to find the set of non-dominated solutions incorpo-
rates this dominance test in a ranking algorithm. Let p∗i be a path
in (N′,A′) that corresponds to a SPDSP in (N,A) in terms of ci,
i= 1, 2, and let

c∗i = ci(p
∗
i ), i= 1, 2, ĉ1 = c1(p∗2), ĉ2 = c2(p∗1).

Assuming the solutions are ranked according to c1 the first solution,
p, satisfies c1(p) = c∗1, then the values of c1 increase along the al-
gorithm and all the non-dominated solutions satisfy c1(p)� ĉ1 and
c2(p)�c∗2. The scheme below summarises the method to find non-
dominated solutions, using the procedure described in the previous
section to rank PDSP by cost.

• Find the shortest simple path from s to t′ in (N′,A′) concerning
c2 corresponding to a PDSP in (N,A), p= q � (t, s′) � q′
• ĉ1 ← c1(p), c∗2 ← c2(p)
• Find the shortest simple path from s to t′ in (N′,A′) concerning
c1 corresponding to a PDSP in (N,A), p1 = q � (t, s′) � q′
• m2 ← ĉ2 ← c2(p1), M1 ← c∗1 ← c1(p1)
• k← 1
• While c1(pk)� ĉ1 and c2(pk)�c∗2 Do

◦ k← k+ 1
◦ Find the next shortest disjoint simple path from s to t′ in
(N′,A′) concerning c1 corresponding to a PDSP in (N,A),
pk = qk � (t, s′) � q′k.
◦ Apply the dominance test to pk and update M1,m2 and PN.
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Algorithm 2. Determination of non-dominated shortest PDSP

Construct the modified network (N′,A′)
p∗c2 ← shortest pair of disjoint simple paths in terms of c2;ĉ1 ← c1(p∗c2 )
p∗c1 ← shortest pair of disjoint simple paths in terms of c1;M1 ← c1(p∗c1 );m2 ← c2(p∗c1 )
PX ← {p∗c1 };PN ← ∅;continue← True;k← 0
While (continue) Do

k← k+ 1
pk ← k-th shortest feasible simple path concerning c1
If (c1(pk)=M1) Then /∗ Dominance test ∗/

If (c2(pk)=m2) Then PX ←PX ∪ {pk}
Else
If(c2(pk) <m2) Then
PX ← {pk}; m2 ← c2(pk)
EndIf

EndIf
Else
If (c2(pk) <m2) Then
PN ←PN ∪PX; PX ← {pk}; M1 ← c1(pk); m2 ← c2(pk)
If (c1(pk) > ĉ1) Then continue← False

EndIf
EndIf

EndWhile

In [10] Hansen proved the bicriteria shortest path problem to be
intractable. The number of operations that Algorithm 2 performs in
order to obtain all non-dominated solutions depends on the ranking
method—see Algorithm 1—as well as on the number of paths that
has to be listed.

5. Computational tests

The approaches proposed in the previous sections to deal with
PDSP were implemented in C language and some experiments were
run on a laptop, Core 2 at 1.66GHz, with 1Gb of RAM. First we im-
plemented two versions of Algorithm 1 for ranking PDSP, the origi-
nal method, ORA, and the modification that reduces the number of
repeated pairs of paths, MRA, described in Remark 2. Equivalent PDSP
with the same cost are filtered when they are selected in the set of
candidates, X. Afterwards these codes were used to implement two
versions of Algorithm 2, for computing the non-dominated PDSP,
OBA and MBA, when considering the original and the modified meth-
ods, respectively, as above. In these implementations the whole set
A′ was maintained. In this section some computational results of
these experiments on randomly generated networks are presented
and discussed.

The first set of tests aimed to evaluate the applicability and the
efficiency of the two versions of Algorithm 1 when extended to rank
a given number of PDSP. The program ran on networks of 1000
and 2000 nodes and average degree d= 5, 10, 20 (d=m/n). For each
network size 50 instances, corresponding to 50 initial–terminal pairs
of nodes, were considered. The minimum, average and maximum
CPU times demanded by ORA for ranking the 5000 shortest solutions
in those 50 instances are presented in Tables 1 and 2.

For these instances both the conversion of the original network
and the determination of the shortest PDSP were extremely fast. On
the other hand, for 2000 node instances ORAwas able to produce the
5000 best solutions in about 1–2.5 s. The CPU times seem to be more
sensitive to the increase in the number of network nodes rather than
to the network density.

Version MRAwas also tested under the same conditions of the first
set. Table 3 presents a comparison between the average processing
times obtained with ORA and MRA for ranking 5000 solutions on

this test bed. These results show the latter version, MRA,
decreased the time for ranking 5000 PDSP in about 30%.

The second set of experiments tested the implementations of
Algorithm 2, OBA and MBA, for finding the non-dominated PDSP.
This set is composed of random networks with 1000, 2000, 3000,
4000 and 5000 nodes and m= 4n arcs, and again 50 instances were
considered for each size. As for ranking PDSP, as expected MBA out-
performed OBA for solving the bicriteria problem, so we decided to
include in the paper only the MBA results. Tables 4–8 report the re-
sults obtained by MBA concerning two types of information for each
network size, the number of paths in the modified topology that had
to be generated and the CPU times (in seconds) demanded by the
algorithm. In both cases we refer to the four phases into which the
algorithm is divided, namely: the construction of network (N′,A′),
the determination of the SPDSP concerning c1; the determination
of the SPDSP concerning c2; and finally the ranking of PDSP con-
cerning c2, until all the non-dominated solution pairs have been
found. The tables on the left (a) present the number of paths gen-
erated in the several phases of the algorithm, while the tables on
the right (b) present the running times observed for each of the four
phases.

Even though the instances of this second set of tests were bigger
than the instances of the first one, the computation of the SPDSP
was still very fast, in average up to 27 paths had to be listed be-
fore the best solution has been found and this took 0.003 s of CPU
time. Also the number of path generated at phase (4) depended di-
rectly on the number of network nodes, the CPU times showed a
similar behaviour, although they were more sensitive to the size of
the problem. In average, for the bigger instances (n= 5000) the set
of bicriteria PDSP demanded 258 paths to be computed, 6 of them
being non-dominated, in 0.015 s. These results are suitable for both
offline and real-time applications. In fact, as mentioned in the in-
troduction this approach was used in the context of a traffic split-
ting problem in MPLS networks, aiming at the minimisation of two
objective functions: the number of arcs in the route from the ori-
gin to the destination and a measure of the load balancing cost
of routes, subject to additional constraints related to the transmis-
sion delay and the available bandwidth in the arcs to be used. The
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Table 2
CPU times for ORA ranking K = 5000 PDSP in random networks, n= 2000.

Min. Average Max.

(a) m= 10000
(1) 0.000 0.001 0.004
(2) 0.000 0.003 0.020
(3) 1.008 1.856 15.253

(b) m= 20000
(1) 0.000 0.000 0.004
(2) 0.000 0.005 0.120
(3) 1.008 1.618 6.151

(c) m= 40000
(1) 0.000 0.001 0.004
(2) 0.000 0.005 0.064
(3) 1.012 2.511 15.361

(1) Constructing (N′ ,A′), (2) finding the best PDSP, (3) ranking 5000 solutions.

Table 3
Average CPU times improvement (1 − MRA/ORA%) for ranking K = 5000 PDSP in
random networks.

d= 5 d= 10 d= 20

n= 1000 32.29 28.62 27.59
n= 2000 32.33 29.13 23.38

Table 4
Bicriteria non-dominated PDSP with MBA in random networks, n= 1000, m= 4000.

Min. Average Max.

(a) Number of paths generated
(2) 2 11.980 162
(3) 2 14.600 156
(4.a) 1 125.920 1323
(4.b) 1 4.020 10

(b) Running times (in seconds)
(1) 0.000 0.001 0.004
(2) 0.000 0.000 0.004
(3) 0.000 0.000 0.004
(4) 0.000 0.003 0.036

(1) Construction of network (N′ ,A′), (2) finding the SPDSP concerning c1, (3) finding
the SPDSP concerning c2, (4) finding the non-dominated solutions, (4.a) generated
deviation paths, (4.b) non-dominated solutions.

Table 5
Bicriteria non-dominated PDSP with MBA in random networks, n= 2000, m= 8000.

Min. Average Max.

(a) Number of paths generated
(2) 2 9.960 41
(3) 2 9.000 110
(4.a) 1 92.040 603
(4.b) 1 4.540 19

(b) Running times (in seconds)
(1) 0.000 0.001 0.004
(2) 0.000 0.001 0.008
(3) 0.000 0.004 0.032
(4) 0.000 0.005 0.036

(1) Construction of network (N′ ,A′), (2) finding the SPDSP concerning c1, (3) finding
the SPDSP concerning c2, (4) finding the non-dominated solutions, (4.a) generated
deviation paths, (4.b) non-dominated solutions.

method developed here was adapted for this traffic splitting prob-
lem and tested on networks with up to 100 nodes with satisfactory
results [4].

Table 6
Bicriteria non-dominated PDSP with MBA in random networks, n=3000, m=12000.

Min. Average Max.

(a) Number of paths generated
(2) 2 19.280 272
(3) 2 14.580 133
(4.a) 1 155.240 1055
(4.b) 1 5.540 14

(b) Running times (in seconds)
(1) 0.000 0.002 0.020
(2) 0.000 0.002 0.020
(3) 0.000 0.001 0.008
(4) 0.000 0.005 0.032

(1) Construction of network (N′ ,A′), (2) finding the SPDSP concerning c1, (3) finding
the SPDSP concerning c2, (4) finding the non-dominated solutions, (4.a) generated
deviation paths, (4.b) non-dominated solutions.

Table 7
Bicriteria non-dominated PDSP with MBA in random networks, n=4000, m=16000.

Min. Average Max.

(a) Number of paths generated
(2) 2 14.880 124
(3) 2 10.220 79
(4.a) 3 130.920 826
(4.b) 1 5.313 12

(b) Running times (in seconds)
(1) 0.000 0.001 0.004
(2) 0.000 0.001 0.012
(3) 0.000 0.001 0.004
(4) 0.000 0.008 0.040

(1) Construction of network (N′ ,A′), (2) finding the SPDSP concerning c1, (3) finding
the SPDSP concerning c2, (4) finding the non-dominated solutions, (4.a) generated
deviation paths, (4.b) non-dominated solutions.

Table 8
Bicriteria non-dominated PDSP with MBA in random networks, n=5000, m=20000.

Min. Average Max.

(a) Number of paths generated
(2) 2 21.800 108
(3) 2 26.080 512
(4.a) 12 258.660 4611
(4.b) 1 6.120 15

(b) Running times (in seconds)
(1) 0.000 0.001 0.004
(2) 0.000 0.003 0.016
(3) 0.000 0.002 0.060
(4) 0.000 0.015 0.072

(1) Construction of network (N′ ,A′), (2) finding the SPDSP concerning c1, (3) finding
the SPDSP concerning c2, (4) finding the non-dominated solutions, (4.a) generated
deviation paths, (4.b) non-dominated solutions.

6. Conclusions

In this paper we proposed a method for finding non-dominated
PDSP when two additive objective functions are considered. This
problem arose when dealing with the application of a routing model
for MPLS networks with traffic splitting that involves two objec-
tive functions and demands PDSP to be used. The method presented
is based on a procedure that allows PDSP to be ranked by non-
decreasing order of cost after a proper change in the topology of the
given network, and is combined with a dominance test to filter only
the non-dominated solutions. This method was tested in randomly
generated networks of different sizes and that made it possible to
compute all non-dominated solutions in 5000 node networks in an
average time of about 0.015 s.
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In the application that motivated this study are involved two
criteria and the determination of pairs of disjoint paths. Possible
aspects for future research on this topic include the extension of the
presented ideas combined with the method proposed in [11], in a
context involving more than two criteria, and the evaluation of this
method when applied to the determination of sets of more than two
disjoint simple paths.

References

[1] Bhandari R. Survivable networks: algorithms for diverse routing. Norwell, MA,
USA: Kluwer Academic Publishers; 1998.

[2] Suurballe J. Disjoint paths in a network. Networks 1974;4:125–45.
[3] Suurballe J, Tarjan R. A quick method for finding shortest pairs of disjoint

paths. Networks 1984;14:325–36.
[4] Craveirinha J, Clímaco J, Pascoal M, Martins L. Traffic splitting in

MPLS networks—a hierarchical multicriteria approach. In: VI international
conference on decision support for telecommunications and information
society—DSTIS'2007, Warsaw, Poland, July 2007.

[5] Clímaco J, Craveirinha J. Multiple criteria decision analysis—state of the art
surveys. In: Figueira J, Greco S, Erghott M, editors. Multicriteria analysis
in telecommunication network planning and design—problems and issues.
International series in operations research and management science, vol. 78.
Berlin: Springer; 2005. p. 899–951.

[6] Martins E, Pascoal M, Santos J. Deviation algorithms for ranking shortest paths.
The International Journal of Foundations of Computer Science 1999;10(3):247
–63.

[7] Dijkstra E. A note on two problems in connection with graphs. Numerical
Mathematics 1959;1:269–71.

[8] Fredman M, Tarjan R. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the Association for Computing Machinery
1987;34:596–615.

[9] Clímaco J, Martins E. A bicriterion shortest path algorithm. European Journal
of Operational Research 1982;11:399–404.

[10] Hansen P. Bicriterion path problems. In: Fandel G, Gal T, editors. Multiple
criteria decision making: theory and applications. Lectures notes in economics
and mathematical systems, vol. 177. Berlin: Springer; 1980. p. 109–27.

[11] Clímaco J, Martins E. On the determination of the nondominated paths in
a multiobjective network problem. Proceedings of the V sympösium über
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