
Received May 20, 2021, accepted May 26, 2021, date of publication June 2, 2021, date of current version June 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3085370

Service Placement for Latency Reduction
in the Fog Using Application Profiles
KARIMA VELASQUEZ , DAVID PEREZ ABREU , MARILIA CURADO,
AND EDMUNDO MONTEIRO , (Senior Member, IEEE)
Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra, Portugal

Corresponding author: Karima Velasquez (kcastro@dei.uc.pt)

This work was supported in part by the European Regional Development Fund (FEDER), through the Regional Operational Programme of
Lisbon (POR LISBOA 2020), in part by the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the
Portugal 2020 Framework through the Project 5G with Nr. 024539 under Grant POCI-01-0247-FEDER-024539, in part by the National
Funds through the Foundation for Science and Technology (FCT), I.P., through the Project Centre for Informatics and Systems of the
University of Coimbra (CISUC) under Grant UID/CEC/00326/2020, and in part by the European Social Fund through the Regional
Operational Program Centro 2020. The work of Karima Velasquez and David Perez Abreu was supported by the Portuguese Funding
Institution, Foundation for Science and Technology (FCT), under the Ph.D. Grant SFRH/BD/119392/2016 and
Grant SFRH/BD/117538/2016.

ABSTRACT The Cloud-Fog-Internet of Things continuum combines different paradigms to provide
connectivity and ubiquity for end-users, while also granting low latency and low jitter to cope with different
challenges, including the requirements of latency-sensitive applications, such as virtual/augmented reality
and online gaming. This constitutes a complex and dynamic environment with heterogeneous resources
that need to be managed or orchestrated, in order to accomplish application requirements for low latency.
Common orchestration solutions make placement decisions based only on the resources of the underlying
network and the application resource requests; however, using the profiles of applications to make placement
decisions has the potential to enhance the final performance perceived by the end-users. This paper proposes
the use of application profiles according to their popularity to guide their placement. To corroborate the
effectiveness of the use of the profiles, two placement mechanisms are presented, one based on Genetic
Algorithms and the other inspired on graph partitions. Simulation results show that it is possible to reduce
the latency and jitter of applications via a service placement guided by the profiles. The mechanism based
on graph partitions showed better results for all scenarios, followed closely by the Genetic Algorithm in the
scenarios with lower load.

INDEX TERMS Popularity, profiles, latency, placement, fog.

I. INTRODUCTION
New applications and services enhance the usability and
impact of physical world entities by the use of digital systems
and infrastructures, like the Internet of Things (IoT). The
fusion of the physical world with the digital one enables
the evolution of applications and services, which encom-
passes a smart relation and connectivity between people,
processes, data, and things [1]. In this context, applications
(e.g., eHealth, augmented reality, smart traffic control) usu-
ally require real-time analytics, stream mining, and low
latency that could not be fulfilled entirely in the IoT devices
given their resource constraints. Thus, recent solutions lean
on the Cloud and Fog paradigms to meet the requirements
from applications and services.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Tsun Cheng .

The Cloud computing model allows the delivery of com-
puting services such as processing, storage, and network-
ing on-demand according to end-user requirements. As an
extension of the Cloud, the Fog brings computing services
closer to the source of data generation (i.e., network edge)
providing lower latency levels, mobility support, and location
awareness [2], [3]. But since the Fog represents a vast envi-
ronment filled with heterogeneous devices, it is necessary
to design and develop smart placement mechanisms that
optimize the resource usagewhile improving the performance
of the applications, particularly for those that are latency-
sensitive, such as online gaming, videoconferences, and vir-
tual/augmented reality.

The placement mechanisms should work in unison with
clever monitoring systems, to keep track of the current status
of the applications and the underlying infrastructure, and to
guarantee that the proper decisions can be made in order to

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 80821

https://orcid.org/0000-0001-8762-7268
https://orcid.org/0000-0002-0167-511X
https://orcid.org/0000-0003-1615-2925
https://orcid.org/0000-0003-3306-6148


K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

fulfill the Quality of Service (QoS) requirements from the
Cloud/Fog to the IoT [4], and thus maintaining the Quality of
Experience (QoE) for end-users [5]. It is necessary to gather
fairly complete information regarding required resources and
operational behavior of the system [6], such as applications
resource demand characteristics under different workloads
and impact of different infrastructure configurations on the
QoS and QoE. With this approach, as well as by gather-
ing data and monitoring the behavior of the components
(i.e., services, applications, and users), it is possible to iden-
tify profiles to enable smart decision mechanisms from the
orchestration point of view.

Applications can be profiled according to different fac-
tors, such as their resource requirements [7], [8] and their
workload [9], [10]. Another possibility is using their popu-
larity, measured by their request count, in order to prioritize
them during their placement. The changes in the popularity
can be grouped in profiles that can guide the placement
process. Thus, more popular applications can be favored in
the placement process, to ultimately benefit a larger number
of end-users by offering them better performance, including
lower latency.

Using the profiles of content and applications has been
studied in the past [10], [11]; however, the Cloud to
IoT ecosystem introduced new features that require a new
approach regarding how to characterize the behavior of
applications and their components in this context. Further-
more, using the popularity profiles of applications during
their placement might affect their final performance and the
response time of the overall system. Here, the following
question arises: is it possible to improve latency by taking
advantage of the profiles of applications, based on the corre-
lation between popularity and Quality of Service?

To answer the previous question, in this article we propose
two dynamic mechanisms for the placement of applications
and their components (i.e., microservices) in the Cloud/Fog
ecosystem, combining the profiles of applications and infras-
tructure metrics (e.g., propagation delay and resource con-
sumption) aimed at reducing latency. We consider four
types of popularity for application profiles over time: static,
increasing, decreasing, and oscillating. The mechanisms use
the profiles of the applications, which are updated using a
time window, to decide where to deploy the components
of an application in the substrate infrastructure. The first
mechanism uses a genetic approach that combines resource
usage and latency, weighted by the popularity of the applica-
tions, for decision making. The second one is a variation of
an already introduced mechanism, called Popularity Ranked
Placement [12], that utilizes a graph partition method to rank
the infrastructure nodes where applications prioritized by
popularity are going to be placed. Simulation results show
that it is possible to reduce the latency and the jitter of popular
applications while also reducing the latency of the overall
system.

The contributions of this paper include: (1) the proposal
of using application profiles, based on their popularity, for

service placement; (2) the new version of our Popular-
ity Ranked Placement algorithm [12], updated to support
dynamic scenarios and the handling of applications via pro-
files; and (3) a service placement solution based on the
Weighted Sum Genetic Algorithm for service placement via
application profiles.

This paper is organized as follows. Section II offers a
revision on related work on service placement in the Fog
as well as using application profiles for service place-
ment. Section III proposes the use of application profiles
to orchestrate the Fog, to later introduce two service place-
ment mechanisms that use the profiles of applications for
their placement decisions. One mechanism is based on
Genetic Algorithms (Subsection III-B) and the other is
based on graph partitions, following the PageRank algorithm
(Subsection III-C). Section IV describes the evaluation setup,
so the results presented in this paper can be recreated.
Section V outlines the experimental results and presents an
analysis of the findings. Section VI concludes the paper,
offering suggestions for future research paths to advance this
work.

II. RELATED WORK
There have been many efforts on the field of service place-
ment for Cloud environments, with more recent works focus-
ing on the extended Cloud-Fog-IoT continuum. Relying on
the Fog brings the advantage of reducing the latency by
bringing the service closer to end-users, however, the Fog is
a vast environment and placement in this ecosystem becomes
an NP-hard problem that must be carefully handled.

The works analyzed in this section are grouped in two cat-
egories: works related to service placement and works related
to using application profiles. Both categories are summarized
in Table 1. Regarding the service placement, several strate-
gies have been proposed to solve this problem in Cloud and
Fog environments. Many proposals are solely based on Fog
environments, with some exceptions considering Cloud/Fog
environments [13]–[17].

It is relevant to notice the use of mathema-
tical programming techniques, like Linear Program-
ming (LP), ILP, and Mixed Integer Linear Programming
(MILP) [15], [18], [19], in the design of models to find the
optimal location for services, as well as the use of mathemat-
ical models [20]–[22]. GA is another technique commonly
used for placement heuristics [14], [18], [23], [24]. An addi-
tional factor to consider is the metric guiding the placement
process. Mostly, the metrics used are based on network
aspects such as resource usage [13], [16], [18], [23], power
consumption [21], [24], reliability [25], availability [26],
QoS [17], [20], and time-related metrics such as response
time [24], [27], delay [21] and latency [14], [15], [22],
[23], [28], [29]. In the case of metrics that concern the
applications and their services, QoE, which measures the
quality as experienced by the user, is explored as metric [30];
however, no element to describe the applications and the
behavior of their services is used during the placement

80822 VOLUME 9, 2021



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

TABLE 1. Characteristics from related work.

process, except one work [15] that explores the placement
of applications according to their requests, but does not
categorize the applications accordingly. For the validation,
most works use simulation, varying the tool used, largely
iFogSim [13], [18], [25], [28], [30], but also YAFS [26],
FogTorch [20], Matlab [14], and Python [17], [23]. There is
also evaluation via testbed using dockers and containers [16],
[24].

From this review, it seems more relevant to consider the
entire Cloud/Fog environment instead of focusing only on
the Fog since this will result in a more complete solution for
real scenarios. Also, there is a lack of works that consider
the use of characteristics intrinsic to the applications and the
behavior of their services to guide the placement process.
Most of the works are focused on using network metrics
during their selection process, and no profile of the appli-
cations is used during the placement. Using an application
metric could take advantage of application profile analysis,
since different applicationsmight have different requirements
and/or behavior. Even more, there is a possibility of using

a combination of metrics during the placement process to
help in the selection of the optimal location for a given
service.

Concerning the use of application profiles, although this
topic has been vastly addressed in the context of content
placement [11], the use of profiles of applications to guide
their placement has not yet been thoroughly investigated in
the Cloud/Fog context.

From the selection of works highlighted in Table 1, some
approaches are based on service requirements, so the service
can be deployed in nodes with specific hardware characteris-
tics [7], [8], [31]. Other proposals use profiling to determine
when to scale services, after identifying workloads and satu-
ration points [9], [32]. Empirical profiling for service place-
ment has also been explored, although limited to placement
of Virtual Machines into physical ones [10]. Likewise, there
are proposals of orchestration architectures [7] that consider
scheduling/planning modules based on application profiling,
but limited to the study of Network Funtions Virtualization
(NFV) [6]. Some works present the empirical evaluation of

VOLUME 9, 2021 80823



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

their proposal using testbeds including technologies such as
Kubernetes [9], [31], [32]. Thus, to the best of our knowledge,
there are no proposals for using application profiles in the Fog
based on application features (e.g., behavior) beyond their
resource requirements.

As open issues regarding the service placement of applica-
tions composed of microservices, one possibility is studying
the use of hybrid metrics, combining profiles of applications
according to their behavior, and network-related metrics that
can guide the placement process to an optimal solution.
Both metrics can change during time, adjusting themselves to
reflect the current conditions of the network and the demands
of users, unlike other metrics used in related works, such as
hop count [28] or service resource requirement [7]–[9], [31].

This work uses the popularity profile of the applications,
indicated by their request count, as a metric to characterize
them and prioritize their placement. Two placement mecha-
nisms are proposed to validate the use of application profiles
during the placement process; both mechanisms combine the
profiles based on the popularity of the applications and
the propagation delay of the network, in order to minimize the
latency of the most popular applications, taking advantage of
the entire Cloud/Fog landscape.

III. PLACEMENT VIA APPLICATION PROFILES
Placement in Cloud/Fog environments can have a crucial
impact on reducing latency. Using characteristics from the
applications to place has proven to be useful, prioritizing
them according to a given criterion [12]. The popularity of the
applications is a good metric to use, since prioritizing popular
applications might favor a majority of users.

This section describes how the Orchestrator could take
advantage of using application profiles, to later introduce two
placementmechanisms based on prioritizing the placement of
microservices that belong to popular applications tominimize
their latency. To add dynamism to both proposals, and eval-
uate how they adapt to changing conditions on the network
and on the requests from end-users, a time-window approach
is used. This means the Orchestrator will adapt the placement
locations at the beginning of each time window, consider-
ing the new conditions in the network and the application
requests. Both placement mechanisms are described in the
following subsections.

A. USING PROFILES TO ORCHESTRATE APPLICATIONS
As stated in Section I, the Orchestrator has to monitor the
deployment infrastructure (i.e., nodes, links, services, and
users) to make smart informed decisions that will affect the
behavior of the system. An architecture for a Orchestrator
was already introduced [4], and one of its main modules
is dedicated to the execution of planning mechanisms in
charge of the selection of optimal location to deploy the
application components. To improve the performance of the
planner mechanisms, it is essential to provide them with
knowledge not only about the substrate network, but also of
the entire system, including users and applications. The use of

a behavior profile for this goal would provide theOrchestrator
the possibility to respond to the changing conditions in the
environment.

The devices in the Fog and IoT are notoriously resource
constrained in comparison with the Cloud [18]. However,
in these tiers end-users will benefit from lower latency.
Thus, it is critical to determine the proper location in which
to deploy the services. For this particular scenario, hav-
ing knowledge of the behavior of application components
would benefit the decision-making for the Orchestrator. This
knowledge has to cover past behavior and current conditions,
to be able to react to dynamic situations such as traffic load
variations.

Although the use of profiles has been explored in the
context of the Cloud, the adoption of the microservices archi-
tecture brings new challenges, given the fine granularity of
the components that can even be shared between different
applications. To the best of our knowledge, the use of behav-
ior profiles in Cloud to IoT scenarios has not been thoroughly
exploited so far from the academic point of view, because
of the complexity of the landscape and the lack of datasets
available for study to apply data analytics techniques, with
some studies using application requirement profiles [7]–[9],
[31]. Nevertheless, there have been some recent efforts to
gather real-time data in this kind of environment that are still
in an early stage [6].

Figure 1 describes the overall placement process proposed
in this work, including the gathering of information about
application behavior. Users place their requests on different
microservice-based applications. The Orchestrator (based on
the architecture presented in [4]) collects this information
and uses it to generate smart informed decisions. Particularly,
the Planner Mechanisms, in charge of determining the loca-
tion to deploy the microservices, apply a categorization to the

FIGURE 1. Overall Design of the Placement Process.

80824 VOLUME 9, 2021



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

applications based on their popularity, and also a categoriza-
tion of the substrate components of the deployment infras-
tructure (i.e., node resources and propagation delay) to make
the placement decision. The Orchestrator will re-evaluate
the placement decisions over time using a time window to
update the values regarding the popularity of the applications,
as well as the revised information about the deployment
infrastructure.

To determine if the information about the behavior of the
applications applied in the placement decisions impacts the
final performance of the applications, particularly the latency
perceived by end-users, we designed two placement mecha-
nisms that use application profiles based on popularity. Four
popularity profiles were used in this work:

• fixed, where the application does not vary the number of
requests over time;

• mixed, where the application oscillates gaining or losing
popularity over time;

• up, where the application continuously gains popularity,
and;

• down, where the application repeatedly loses popularity.

These profiles cover different changes in the popularity of
applications, showing a dynamic behavior over time. This
could model viral communications using social networks or
access to email applications during business hours (quickly
adding more requests to later on decrease them), but at the
same time applications with a more static behavior, like auto-
matic weather updates.

The following subsections describe the placement mech-
anisms designed to validate if the use of popularity profiles
influences the final performance of the applications.

B. GENETIC PLACEMENT GUIDED BY POPULARITY
The placement of applications in network nodes is an opti-
mization problem that has already been addressed by using
many optimization techniques, such as ILP [18], [19] and
other mathematical models [20]. However, the Cloud-Fog-
IoT poses a complex scenario, filled with heterogeneous
devices and dynamic conditions, that make optimization solu-
tions not suitable because of their lack of adaptability and
high response times [33]. An alternative is using Genetic
Algorithms, which are often viewed as function optimizers
and have previously been used to solve service placement
problems [14], [23], [24], [34], [35]. From the different
variants of GAs and Evolutionary Algorithms (EAs) used
for service placement in the Fog, the Weighted Sum
Genetic Algorithm (WSGA) showed a reasonable compro-
mise regarding the execution time and fitness values obtained,
while also exhibiting lower convergence times [23] which led
to the selection of this algorithm for this work.

WSGA consists of a transformation that normalizes the
values of multiple objective functions to the unit interval and
weights them to obtain a final result. The calculation used
for the fitness function is shown in Equation 1, which is the
result of the product of ωi, the scaling factor; θi, the weight;

and Xi, the value of the objective function. numObj repre-
sents the total of objective functions to be combined in this
equation.

fitness =
∑

i∈numObj

ωi × θi × Xi (1)

Table 2 lists the parameters and variables used by the
GA heuristic implemented in this work. For variables ωs
and �n the resource unit is used, where a resource unit is
a vector holding the resources (i.e., CPU, memory, storage)
of node n ∈ N . The cost matrix contains the cost (in terms
of latency) to reach a node from a gateway (gw ∈ GW ).
Cn,gw equals the propagation delay of the shortest path that
connects n ∈ N to gw ∈ GW . The instance matrix identifies
the microservices that compose an application. Ia,s equals 1
if microservice s ∈ S belongs to application a ∈ A, and 0
otherwise. Finally, the placement matrix relates the request
per application and the nodes that are selected as the location
for the microservices. Pa,rs,n = 1 if microservice s ∈ S is
located in node n ∈ N to satisfy request r ∈ R for application
a ∈ A, and 0 otherwise.

TABLE 2. Parameters and variables for the GA heuristic.

For the GA implemented in this work, individuals are mod-
eled using the placement matrix P. For a solution to be valid,
the genes or bits in P must reflect valid requests according
to R, the proper microservices s ∈ S that compose a ∈ A
according to the information from the instance matrix I , and
must comply with feasibility restrictions of node capacities
imposed by �.

The mutation is carried out by keeping fixed the informa-
tion regarding the requests (r ∈ R), applications (a ∈ A),
and microservices (s ∈ S), and altering the information of
the nodes n ∈ N . This way, the same services placed in a
previous solution are moved to different locations, generating
a different solution. If a solution is invalid, a fitness value of

VOLUME 9, 2021 80825



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

infinite is assigned, so it is not passed to the next generation.
This way, there is no need to incorporate an additional method
into the algorithm to validate the solutions.

Algorithm 1Weighted Sum Genetic Algorithm
Result: solution

1 Pt ← generateRandomPopulation(popSize)
2 objValues← getObjValues(Pt)
3 fitness← ws(objValues, ω, θ )

4 foreach i in generations do
5 Poff← ∅
6 foreach j in popSize do
7 parent1← selectParent(Pt, fitness)
8 parent2← selectParent(Pt, fitness)
9 child1,child2← crossover(parent1, parent2)
10 if random() ≤ mutationProb then
11 mutate(child1, child2, numGenes)
12 end
13 Poff← Poff ∪ child1, child2
14 end
15 objValues← getObjValues(Poff)
16 fitnessOff← ws(objValues, ω, θ )
17 fitness← fitness ∪ fitnessOff
18 Poff← Poff ∪ Pt
19 Poff← order(Poff, fitness)
20 Pt← Poff[1..popSize]
21 end

22 solution← min (Pt, fitness)

23 return solution

Algorithm 1 shows the basic procedure of this GA. It starts
at line 1 by randomly generating the size of the population
(i.e., popSize) in order to create the first generation of solu-
tions. The objective function values are calculated for the first
generation (line 2), and the fitness value is calculated (line 3).
Then, at line 4, for each generation, it initializes the offspring
population as the empty set, as seen on line 5.

On each generation, and for each individual in the popula-
tion, the parents are selected from a binary tournament selec-
tion operator (lines 7 and 8); this is, choosing the individual
with the best fitness from a subset of the population. After
selecting the parents, the children are created by applying
a crossover operator (line 9) and then mutating them with a
probability ofmutationProb, as seen in line 11. The crossover
consists of mixing a portion of the first solution (i.e., parent1)
with the remaining portion of the second solution
(i.e., parent2). The solutions of the children are mutated with
a uniformly distributed probability, as shown in line 10. The
mutation selects a node from the solution and changes it for
a different node (i.e., for a given microservice of a given
application and a given request, the location is updated).
The number of nodes to update (i.e., mutate) in the children
solutions is based on the total number of microservices in the
solution, indicated by the numGenes parameter in line 11.

In line 13, the newly created children join the new popu-
lation (offspring). The fitness value is calculated in line 15
as described by Equation 2 and Equation 3. Both objectives
are combined with Equation 1 in line 16. The fitness values
are combined in line 17, and all the population members are
joined in line 18. All the elements of the population (including
the newly created children) are sorted by their fitness value
in line 19. Only the best popSize elements of the population
will survive for the next generation (line 20). Invalid solutions
(i.e., those that do not respect feasibility restrictions of node
capacities imposed by �) will be assigned infinite as fitness
value and thus will be discarded. After iterating for genera-
tion times, the returned solution will be the one with the best
fitness value, shown in line 23.

Latency and resource usage are the two different objectives
combined for the fitness value, using Equation 1. Latency
is calculated using the propagation delay of the links in the
network topology (other latency sources, e.g., processing
delay, are out of the scope of this work), and the resource
usage is calculated using a resource unit [36]. The goal is
minimizing both objectives prioritizing the latency, using the
weight factor (i.e., θ ) for this purpose.

To evaluate the latency (lat in Equation 2), information
about the propagation delay (i.e., matrix C) is added for the
services that belong to application a ∈ A (i.e., matrix I ) of the
placed applications (i.e., matrix P). This value is weighted
according to the popularity of the application, as stated by
Equation 2; where Qa is the number of requests for applica-
tion a ∈ A measuring its popularity. The objective function
value is calculated as the product of the different variables,
as described in Equation 2.

lat =
∑
a∈A

∑
r∈R

∑
s∈S

∑
n∈N

∑
gw∈GW

1
Qa
×
[
Pa,rs,n × Ia,s × Cn,gw

]
(2)

Regarding the second objective function, resource usage
(ru in Equation 3), it is calculated by adding the resources
used by the node, as shown in Equation 3; calculated as the
product of ωs, the number of resources required by service
s ∈ S; the placement matrix P; the instance matrix I; and the
cost matrix C. �n denotes the amount of resources of node
n ∈ N . Equation 3 depicts the free resources of nodes n ∈ N .

ru = 1−

∑
a∈A

∑
r∈R

∑
s∈S

∑
n∈N

[
Pa,rs,n × Ia,s × ωs

]∑
n∈N �n

(3)

Both objectives are combined in Equation 1 andminimized
in Algorithm 1 (see line 22).

According to the conditions of the scenario (i.e., size of
the topology, traffic load), the number of generations needed
to reach an optimal solution increases, impacting the compu-
tation resources and execution time needed. An alternative
heuristic for more complex scenarios is presented in the
following section.

80826 VOLUME 9, 2021



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

C. POPULARITY RANKED PLACEMENT
A heuristic based on the PageRank algorithm, called Popu-
larity Ranked Placement (PRP), was already presented [12].
Adaptations to the basic version of the heuristic were per-
formed to extend its functionalities by allowing the use of
application profiles and the support of dynamic scenarios.
The new version of PRP is described in this subsection.

Algorithm 2 Build Communities
Result: Communities for all nodes in the infrastructure

1 topology← getTopology()
2 prank← PageRank(topology, weight=PD)
3 communities← ∅
4 non_communities← ∅

5 foreach node in topology do
6 foreach element in prank do
7 if prank[element] > threshold then
8 Add element to communities[node];
9 end
10 end
11 end

12 avg_size← getCommunitySize(communities)

13 foreach node in topology do
14 mergeCommunities(node, communities);
15 end

16 non_communities← prank − communities;

17 return communities, non_communities, avg_size

The PageRank algorithm was originally introduced to rank
web pages in a search engine [37], and the idea is to rank
the nodes in a graph via probability propagation. In PRP,
the PageRank algorithm is used to rank the nodes in the
network topology in order to build communities where the
placement will take place. The idea behind this approach
is to avoid the saturation of the gateways by sharing the
load among the nodes with lower propagation delay connect-
ing routes, which are to be grouped in the community of
the gateway. Each gateway will have a community and the
requests placed in a gateway will be deployed (if possible) in
its community. The community building process is presented
in Algorithm 2.

The topology is initialized in line 1. The nodes are ranked
using the PageRank algorithm [37] using the propagation
delay (PD) of the links as a weight metric for the probability
propagation calculation [12], as seen in line 2. This means
the nodes with highest rank will be those connected via links
with the lowest propagation delay whether they are neighbors
or not. Those nodes with a transition probability higher than
a threshold (line 7) will belong to the community of the gate-
way. The nodes that did not become part of any community
will be grouped in a community, called the non-community
nodes, initialized in line 4 and updated in line 16.

After all the communities are built, it is time to deploy
the microservices as determined by Algorithm 3. The same
Placement matrix variable described in Table 2 is used to
guide the placement process, as in Algorithm 1. The com-
munities are created in line 3, using the previously described
Build Communities algorithm (Algorithm 2).

Algorithm 3 Popularity Ranked Placement
Result: Placement of applications’ modules

1 placement_matrix← ∅
2 topology← getTopology();
3 community, non_community← Build Communities()
4 reqs← getRequests();
5 apps← rankAppsByProfile();
6 expWin← getAvgCommunitySize();

7 foreach req in reqs do
8 while req > max(WindowNodeCapacity) ∧
9 ¬ ReachCommunitySize do
10 Expand expWin;
11 end

12 if req ≤ max(WindowNodeCapacity) then
13 deploy(placement_matrix, community);
14 else
15 if req ≤ max(NonComNodeCapacity) then
16 deploy(placement_matrix, non_community);
17 else
18 deploy(placement_matrix, Cloud);
19 end
20 end
21 end

22 return placement_matrix

The applications to deploy are ranked using their pop-
ularity profiles in line 5. The first option is to place the
microservices of the applications in the community of the
gateway where the request was launched. An expanding
window is used to distribute the microservices along the
nodes inside the community, trying to take advantage of
the best ranked nodes without saturating them. If the com-
munity window does not have enough resources to host
the microservice (line 8) the window will expand (line 10).
If there are enough resources within the community win-
dow, the microservice is deployed (line 13); in the case that
the community window runs out of resources, the deploy-
ment will be carried out in the non-community nodes
(line 16). If all previous attempts fail, a Cloud deployment
will be carried out (line 18). The placement decision will
be performed by the Orchestrator on each placement time
period.

Simulations experiments were carried out to validate the
performance of the placement mechanisms and to evalu-
ate the impact of using the proposed popularity profiles.
The experimental setup used is described in the following
section.

VOLUME 9, 2021 80827



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

FIGURE 2. Experimental Methodology.

IV. EXPERIMENTAL SETUP
Yet Another Fog Simulator (YAFS) [36] was selected as
simulation tool because of its strong support for Fog features
and high granularity of result reports [38]. A PC with 32GB
2400MHz DDR4 RAM and 2.80GHz Intel Core i7-7700HQ
with 4 cores and 8 threads (2 threads per core) processor was
used to run the experiments. The PC was running Microsoft
Windows 10 Pro (Build 18363) operating system and
Python 2.7.16 for YAFS. Figure 2 shows the methodology
followed during the evaluation process.

The experiment configuration was composed of three files:
(1) the definition of the request by users, which specifies the
profiles; (2) the definition of the applications, their microser-
vices, and how they communicate; and (3) the topology of the
underlying network where the applications will be deployed.
This information is loaded in the catalog, which is used by
the Orchestrator to determine the profiles of the applications
according to their changing popularity. The Planner Mecha-
nisms (as depicted in Figure 1) will make the placement deci-
sions generating the allocation definition file for the current
time window, and this information is provided to the YAFS
simulation engine which will generate the results for each
time window. This process is repeated for the different time
windows, updating the catalog and the placement decisions
accordingly. After all the timewindows are executed, the final
results are collected and plotted.

The network topologywas built using the complex network
theory, following a random Barabasi-Albert network model.
100 nodes were deployed in the Fog, and an additional node
represents the centralized Cloud for a total of 101 nodes.
The Cloud node was the one connected to the Fog with the
highest betweenness centrality. In the Fog, the nodes with
lower betweenness centrality were delegated as gateways,
representing the nodes at the edge of the network.

The applications were randomly generated following the
Growing Network graph structure, in which the vertices
are added one by one, with an edge to the last added
vertex [39]. Finally, two vertices (except the source) are

randomly selected to generate an information flow towards
the source vertex. This allows modeling applications that
collect data and send an automated answer, which covers
most of the applications typically used in Cloud-Fog-IoT con-
tinuum scenarios (e.g., sensing/actuating, eHealth, virtual/
augmented reality).

The configuration parameters for the experiments are sum-
marized in Table 3, for the network links, Fog nodes, GWs,
applications, and microservices. Values similar to these were
used in previous work [23], [26]. The requirements for
each application microservice are measured using the YAFS
resource unit [36], which is a vector that contains the capacity
of different computational elements (e.g., memory, CPU,
hard disk). For the GA, since the main goal in this work
is to minimize the latency, this objective value received a
weight of 0.9 and the resource usage only 0.1. Preliminary
tests were performed to determine the number of generations
to use; the resulting trend allowed us to determine that around
400 generations the fitness value converges, halting the evo-
lution process for all the scenarios. A similar number of
generations was also successfully used forWSGA in previous
work [23].

Regarding the network load, three different scenarios were
modelled, in order to evaluate the performance of the place-
ment mechanisms with varying conditions: (1) small: five
different applications; (2) medium: ten different applications;
and (3) large: fifteen different applications. Each application
has at least one request and follows one of the four application
profiles described in Subsection III-A: fixed, mixed, up, and
down, as listed in Table 4. Each application gets one of
the four profiles using a uniform distribution. Meanwhile,
the increase/decrease of the popularity is set as a percentage
of the previous value for each time window, in this case 25%,
as stated in Table 3. The number of requests was also deter-
mined using a uniform distribution. These profiles allow to
model the different behavior of applications regarding their
popularity. For instance, the viral transfer of content via social
media applications that can gain or lose popularity over time,

80828 VOLUME 9, 2021



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

TABLE 3. Simulation parameters.

TABLE 4. Application profiles by popularity.

or an eHealth application (e.g., to control the medication of
patients) in the vicinity of a hospital, that is constantly being
accessed with a fairly fixed popularity.

Ten time windows were used for each simulation, with
a duration of 10000 simulation time units. All the scenario
setup, the source code, and additional material (i.e., plots,
charts), as well as results for all the scenarios, are available
via aGitLab repository.1 The two proposedmechanisms, PRP
and GA, are compared to a baseline, namely a greedy First
Fit heuristic, as it was done in similar works for evaluation
purposes [12], [18], [40]. In the case of the First Fit (FF)
algorithm, the nodes were organized from lowest to highest,
according to their available resources. This way, the nodes
with fewer resources are prioritized. These nodes usually cor-
respond with the nodes deployed at the edge of the network.
Thirty simulations were executed to mitigate the statistical
error, including 95% confidence intervals in the plots. The
simulation results are presented in the following section.

V. RESULTS AND ANALYSIS
The performance of PRP and the genetic approach GA, and
the impact of using the popularity profiles, are evaluated in
this section.

Figure 3 shows the total latency per scenario. PRP always
showed the lowest latency, followed by GA and FF. As the
load grows, so does the latency for all the mechanisms,

1https://git.dei.uc.pt/kcastro/appProfiling.git

FIGURE 3. Total Latency by Scenarios.

as expected. The traffic increases, saturating the nodes
and communication links, influencing the overall latency
of the system. For the smallest load (i.e., small scenario),
GA showed an exceeding latency of 2 times the values
reported by PRP, while FF showed a surmount of around
5 times over PRP. This breach shrinks as the load grows,
as seen in the large scenario, where GA is only slightly better
than FF. This is because as the load grows, the feasibility
condition to validate solutions generated by GA (i.e., not
exceeding the capacities of the nodes) was more difficult to
reach via the mutations introduced by the algorithm, generat-
ing solutions with elevated fitness values that were discarded
for the following generations, thus evolving slower. More
generations are going to be needed as the load grows to attain
better results, impacting the execution time.

The following plots also show the latency but with a finer
granularity level. The latency is shown by mechanism and
by application for the small, medium, and large scenarios.
Themean value of the boxplot determines the average latency
of the application (see left Y axis). In contrast, the boxplot
itself reflects the variation of the latency values, i.e., the
jitter experienced by the application, which can be calculated
due to the dynamism in the scenario. Different colors are
used to code the profile to which the application belongs
(see Table 4), and finally the dashed line (see right Y axis)
shows the average popularity (i.e., number of requests) of
the application during the entire simulation (i.e., along all the
time windows).

Figure 4 shows the results for the small scenario for PRP
(Figure 4a), GA (Figure 4b), and FF (Figure 4c). The first
observation that arises is that PRP showed the lowest latency
values, followed by GA and FF, confirming the results shown
in Figure 3. On the other hand, the smallest jitter was shown
byGA, followed closely by PRP and then by FF. However, for
PRP, it is noticeable that with higher popularity, the latency
variation (i.e., jitter) is lower, giving a clearer advantage to
the most popular applications. This means that PRP showed a
better treatment of the applications according to their profile.

VOLUME 9, 2021 80829



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

FIGURE 4. Latency and Jitter per Application - Small Scenario.

FF showed no difference in the treatment of the applications
regarding their popularity.

Figure 5 shows the results for the medium scenario for PRP
(Figure 5a), GA (Figure 5b), and FF (Figure 5c). Notice the
different maximum sizes on the left Y axis in comparison

FIGURE 5. Latency and Jitter per Application - Medium Scenario.

with Figure 4. This is due to the increase in traffic load by
doubling the amount of applications in the medium scenario,
having a direct impact on the latency of the system. The aver-
age popularity size (right Y axis) also has a higher maximum

80830 VOLUME 9, 2021



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

value for the medium scenario, since Application 9 (the one
with highest popularity) was not present in the small scenario.

In this case, for PRP it is noticeable that applications
with a fixed popularity profile have similar latency although
slightly different jitter when their popularity is lower (see
Application 0) or higher (see Application 1), favoring the
later. Applications with an increasing popularity profile
(see Applications 2 and 7) show similar latency and jitter,
which are also lower to those displayed by applications with
other profiles.

For the applications that have oscillating popularity values
the jitter is more erratic, since for some time windows they
were gaining popularity and for others they were losing popu-
larity, thus having less stable results. Finally, for applications
that constantly lost popularity (see Applications 3 and 6) the
jitter is higher. The advantages of having a lower jitter as the
application has more popularity are less evident with GA,
although the mixed behavior for oscillating applications is
also present. Still, GA outperformed FF in both latency and
jitter. FF showed the highest latency and jitter values, as well
as fewer discrepancies among applications regarding their
popularity levels and profiles.

Figure 6 shows the results for the large scenario for PRP
(Figure 6a), GA (Figure 6b), and FF (Figure 6c), respectively.
Again, there is an increase in the maximum size displayed in
the left Y axis due to the increase in the traffic that affects the
overall latency and jitter of the applications.

The first observation that arises is that PRP showed the
lowest latency values, followed by GA and FF, as in the
previous scenarios, although the gap between PRP and GA
increases as the traffic load grows. On the other hand,
the smallest jitter was shown byGA, followed closely by PRP
and then by FF. For PRP, it is noticeable that with higher
popularity, the latency variation (i.e., jitter) is lower, giving
a clearer advantage to the most popular applications. This
means that PRP showed a better treatment of the applications
according to their profile. FF showed no difference in the
treatment of the applications regarding their popularity.

In the large scenario, and as depicted in Figure 3,
PRP shows the most significant reduction of latency for the
overall system, with GA showing results slightly better than
FF. This confirms that as the scenario increases its complexity
and the load raises, GA becomes an unviable solution since
it is computationally heavier without having a significant
impact on the reduction of latency. Nonetheless, GA was still
able to reduce the jitter of the overall system even in the sce-
nario with the heaviest load. Latency and jitter were reduced
for the overall system, but particularly for the applications
with growing (up) and static (fixed) popularity profiles.

For all the scenarios, with PRP and GA it is noticeable
that as the popularity grows or stays fixed in a high value,
the latency tends to remain stable and low, with smaller jitter
values. On the other hand, as the popularity decreases or
oscillates, the latency shows significant variations, increasing
the jitter. FF showed less differentiating behavior regarding
the popularity of the applications, as well as displaying the

FIGURE 6. Latency and Jitter per Application - Large Scenario.

highest latency and jitter values. The reduction of jitter can be
particularly beneficial for certain types of applications, such
as real-time communications, virtual reality, Cloud games,
and videoconferences.

VOLUME 9, 2021 80831



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

Figure 7 depicts the resource usage in the network.
The Y axis shows the percentage of nodes used (100 Fog
nodes and 1 Cloud node for a total of 101 nodes in the
topology) during each time window, indicated in the X axis.
Figure 7a shows the results for the small scenario, Figure 7b
for the medium scenario, and Figure 7c for the large scenario.

FIGURE 7. Nodes Usage by Scenario.

For all the scenarios, PRP and FF exhibit similar results.
FF organizes all the nodes by resources (i.e., from fewer

resources to more resources) and fills each node with incom-
ing microservices. PRP also tries to distribute the microser-
vices within each community, prioritizing the nodes with
lower latency. Thus, the prioritized nodes on each mechanism
will fill out sooner than less favored nodes, using fewer nodes
in the network. On the other hand, for GA, since the resource
usage was included as a secondary objective within the fitness
function, this mechanism will promote leaving unused space
on each node, spreading the microservices and leading to
more used nodes, as depicted for all the scenarios in Figure 7,
although the gap is more notorious in the medium (Figure 7b)
and large (Figure 7c) scenarios. This behavior for GA will
lead to more energy consumption since more nodes are going
to be used; however, by spreading themicroservices intomore
nodes, fewer microservices would be affected in the case of
node failure. Evaluation of node failure is out of the scope of
this work.

Finally, Table 5 shows the execution time, in seconds, for
the algorithms in all the scenarios. Considering that FF has
the more straight-forward logic, it has the lowest execution
time, followed relatively close by PRP. On the other hand,
GA shows a significantly higher execution time, particularly
for the larger scenarios. Thus, GA might not be suited for
more complex and dense scenarios.

TABLE 5. Execution time (in seconds).

The mechanisms shown in this section (especially PRP)
could use different profiles based on another criterion instead
of popularity but on other relevant factors, for instance, how
sensitive the applications are to the jitter. These types of
profiles could prioritize jitter-sensitive applications, offering
lower jitter values while maintaining low latency levels for
the overall system.

VI. CONCLUSION
The complexity that derives from the combination of
paradigms such as the Cloud, Fog, and IoT requires the revi-
sion of the Orchestration mechanisms to manage this envi-
ronment. Among the tasks that have to be revised are those
related to service placement. Applying an analysis of the
applications to place provides service placement mechanisms
with additional information that optimizes their performance.
Using the popularity profiles of the applications, measured
by their requests count, is a possibility to categorize the
applications for their placement. Twomechanisms for service
placement, one based on Genetic Algorithms and one based
on the PageRank algorithm are proposed. Popularity-based
application profiles and the propagation delay were used to
guide the placement process.

80832 VOLUME 9, 2021



K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

The mechanisms are evaluated under dynamic conditions
via simulations using YAFS, and a greedy FF heuristic
was used as a baseline for evaluation purposes. The exper-
imental evaluation showed that PRP outperformed GA in
every scenario, which in turn outperformed FF. The advan-
tages of using GA are diminished as the load increases as
more generations are needed to reach better results, which
implies higher execution times and computational resources.
This was also observed in the execution times, for which
GA required a significantly higher execution time than PRP
and FF.

An advantage of using the popularity-based profiles was
observed in the results, as more popular applications suffered
lower latency and lower jitter than less popular applications,
while the latency of the entire system was also reduced.
A profiling system that organizes applications from more
sensitive to less sensitive to jitter could be used combined
with their popularity to benefit these applications. Results
regarding node usage showed that PRP and FF used signifi-
cantly fewer nodes than GA. Thus, GA might incur in greater
energy consumption but have fewer microservices affected in
case of node failure.

The mechanisms proposed, particularly PRP for scenar-
ios with heavier load, could be used along with monitor-
ing systems that collect relevant data about the behavior of
applications and their services, to gather datasets that can
be processed in order to extract key features allowing the
identification of profiles that model how applications and
services interact among them.

As future work, it is possible to explore more profiling
criteria based on different factors, for instance, categorizing
the microservices that generate more profit for the service
provider, the modules that consume more energy, or those
more prone to failure. Furthermore, it would be interesting
to evaluate the performance of the placement mechanisms in
a real testbed scenario.

REFERENCES
[1] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and

J. H. Abawajy, ‘‘Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,’’ IEEE Access, vol. 5,
no. 1, pp. 9882–9910, May 2017.

[2] L. M. Vaquero and L. Rodero-Merino, ‘‘Finding your way in the fog:
Towards a comprehensive definition of fog computing,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, Oct. 2014.

[3] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and
C. Mahmoudi, ‘‘Fog computing conceptual model,’’ Nat. Inst. Standard
Technol., Gaithersburg, MD, USA, Tech. Rep. NIST 500-325, Mar. 2018.

[4] K. Velasquez, D. P. Abreu, D. Gonçalves, L. Bittencourt, M. Curado,
E. Monteiro, and E.Madeira, ‘‘Service orchestration in fog environments,’’
in Proc. IEEE 5th Int. Conf. Future Internet Things Cloud (FiCloud).
Prague, Czech Republic: IEEE, Aug. 2017, pp. 329–336.

[5] H. Nashaat, E. Ahmed, and R. Rizk, ‘‘IoT application placement algorithm
based on multi-dimensional QoE prioritization model in fog computing
environment,’’ IEEE Access, vol. 8, no. 1, pp. 111253–111264, Jun. 2020.

[6] M. G. Khan, J. Taheri, A. Kassler, and M. Darula, ‘‘Automated analysis
and profiling of virtual network functions: The NFV-inspector approach,’’
in Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw.
(NFV-SDN). Verona, Italy: IEEE, Nov. 2018, pp. 1–2.

[7] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba, ‘‘Re-
architecting NFV ecosystem with microservices: State of the art and
research challenges,’’ IEEE Netw., vol. 33, no. 3, pp. 168–176, May 2019.

[8] I.-D. Filip, F. Pop, C. Serbanescu, and C. Choi, ‘‘Microservices scheduling
model over heterogeneous cloud-edge environments as support for IoT
applications,’’ IEEE Internet Things J., vol. 5, no. 4, pp. 2672–2681,
Aug. 2018.

[9] J. Han, Y. Hong, and J. Kim, ‘‘Refining microservices placement employ-
ing workload profiling over multiple kubernetes clusters,’’ IEEE Access,
vol. 8, no. 1, pp. 192543–192556, Oct. 2020.

[10] K. Ye, H. Shen, Y. Wang, and C. Xu, ‘‘Multi-tier workload consolidations
in the cloud: Profiling, modeling and optimization,’’ IEEE Trans. Cloud
Comput., early access, Feb. 24, 2020, doi: 10.1109/TCC.2020.2975788.

[11] A. Passarella, ‘‘A survey on content-centric technologies for the current
Internet: CDN and P2P solutions,’’ Comput. Commun., vol. 35, no. 1,
pp. 1–32, Jan. 2012.

[12] K. Velasquez, D. P. Abreu, L. Paquete, M. Curado, and E. Monteiro,
‘‘A rank-based mechanism for service placement in the fog,’’ in 2020 IFIP
Networking. Paris, France: IEEE, Jun. 2020, pp. 64–72.

[13] M. Taneja and A. Davy, ‘‘Resource aware placement of IoT application
modules in fog-cloud computing paradigm,’’ in Proc. IFIP/IEEE Symp.
Integr. Netw. Service Manage. (IM). Lisbon, Portugal: IEEE, May 2017,
pp. 1222–1228.

[14] C. Shi, Z. Ren, K. Yang, C. Chen, H. Zhang, Y. Xiao, and X. Hou, ‘‘Ultra-
low latency cloud-fog computing for industrial Internet of Things,’’ in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC). Barcelona, Spain:
IEEE, Apr. 2018, pp. 1–6.

[15] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, ‘‘Towards end-to-
end resource provisioning in fog computing over low power wide area
networks,’’ J. Netw. Comput. Appl., vol. 175, Feb. 2021, Art. no. 102915.

[16] Z. Nezami, K. Zamanifar, K. Djemame, and E. Pournaras, ‘‘Decentral-
ized edge-to-cloud load balancing: Service placement for the Internet of
Things,’’ IEEE Access, vol. 9, no. 1, pp. 64983–65000, Apr. 2021.

[17] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, ‘‘Demand-driven
deep reinforcement learning for scalable fog and service placement,’’
IEEE Trans. Services Comput., early access, Apr. 27, 2021, doi:
10.1109/TSC.2021.3075988.

[18] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, ‘‘Opti-
mized IoT service placement in the fog,’’ Service Oriented Comput. Appl.,
vol. 11, no. 4, pp. 427–443, Dec. 2017.

[19] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
‘‘Dynamic service placement for mobile micro-clouds with predicted
future costs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4,
pp. 1002–1016, Apr. 2017.

[20] A. Brogi and S. Forti, ‘‘QoS-aware deployment of IoT applications through
the fog,’’ IEEE Internet Things J., vol. 4, no. 5, pp. 1185–1192, Oct. 2017.

[21] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, ‘‘Multiobjective
optimization for computation offloading in fog computing,’’ IEEE Internet
Things J., vol. 5, no. 1, pp. 283–294, Feb. 2018.

[22] A.-C. Pang, W.-H. Chung, T.-C. Chiu, and J. Zhang, ‘‘Latency-driven
cooperative task computing in multi-user fog-radio access networks,’’ in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS). Atlanta, GA,
USA: IEEE, Jun. 2017, pp. 615–624.

[23] C. Guerrero, I. Lera, and C. Juiz, ‘‘Evaluation and efficiency compari-
son of evolutionary algorithms for service placement optimization in fog
architectures,’’ Future Gener. Comput. Syst., vol. 97, no. 1, pp. 131–144,
Aug. 2019.

[24] B. V. Natesha and R.M. R. Guddeti, ‘‘Adopting elitism-based genetic algo-
rithm for minimizing multi-objective problems of IoT service placement
in fog computing environment,’’ J. Netw. Comput. Appl., vol. 178, no. 1,
Mar. 2021, Art. no. 102972.

[25] J. P. Martin, A. Kandasamy, and K. Chandrasekaran, ‘‘CREW: Cost and
reliability aware Eagle-Whale optimiser for service placement in fog,’’
Softw., Pract. Exper., vol. 50, no. 12, pp. 2337–2360, Sep. 2020.

[26] I. Lera, C. Guerrero, and C. Juiz, ‘‘Availability-aware service placement
policy in fog computing based on graph partitions,’’ IEEE Internet Things
J., vol. 6, no. 2, pp. 3641–3651, Apr. 2019.

[27] S. Venticinque and A. Amato, ‘‘A methodology for deployment of IoT
application in fog,’’ J. Ambient Intell. Humanized Comput., vol. 10, no. 5,
pp. 1955–1976, May 2019.

[28] C. Guerrero, I. Lera, and C. Juiz, ‘‘A lightweight decentralized ser-
vice placement policy for performance optimization in fog computing,’’
J. Ambient Intell. Humanized Comput., vol. 10, no. 6, pp. 2435–2452,
Jun. 2019.

[29] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, ‘‘Multitier fog
computing with large-scale IoT data analytics for smart cities,’’ IEEE
Internet Things J., vol. 5, no. 2, pp. 677–686, Apr. 2018.

VOLUME 9, 2021 80833

http://dx.doi.org/10.1109/TCC.2020.2975788
http://dx.doi.org/10.1109/TSC.2021.3075988


K. Velasquez et al.: Service Placement for Latency Reduction in the Fog Using Application Profiles

[30] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, ‘‘Quality
of experience (QoE)-aware placement of applications in fog computing
environments,’’ J. Parallel Distrib. Comput., vol. 132, no. 1, pp. 190–203,
Oct. 2019.

[31] A. Jindal, V. Podolskiy, and M. Gerndt, ‘‘Performance modeling for cloud
microservice applications,’’ in Proc. ACM/SPEC Int. Conf. Perform. Eng.
New York, NY, USA: ACM, Apr. 2019, pp. 25–32.

[32] G. Yu, P. Chen, and Z. Zheng, ‘‘Microscaler: Cost-effective scaling
for microservice applications in the cloud with an online learning
approach,’’ IEEE Trans. Cloud Comput., early access, Apr. 6, 2020, doi:
10.1109/TCC.2020.2985352.

[33] K. Y. Lee and M. A. El-Sharkawi, Modern Heuristic Optimization Tech-
niques: Theory and Applications to Power Systems. Hoboken, NJ, USA:
Wiley, 2008.

[34] H. Moens, B. Hanssens, B. Dhoedt, and F. De Turck, ‘‘Hierarchical
network-aware placement of service oriented applications in clouds,’’ in
Proc. IEEE Netw. Oper. Manage. Symp. (NOMS). Krakow, Poland: IEEE,
May 2014, pp. 1–8.

[35] S. Khebbache, M. Hadji, and D. Zeghlache, ‘‘A multi-objective non-
dominated sorting genetic algorithm for VNF chains placement,’’ in Proc.
15th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC). Las Vegas, NV,
USA: IEEE, Jan. 2018, pp. 1–4.

[36] I. Lera, C. Guerrero, and C. Juiz, ‘‘YAFS: A simulator for IoT scenarios in
fog computing,’’ IEEE Access, vol. 7, no. 1, pp. 91745–91758, Jul. 2019.

[37] L. Page, S. Brin, R. Motwani, and T. Winograd, ‘‘The PageRank citation
ranking: Bringing order to the Web,’’ Stanford InfoLab, Stanford, CA,
USA, Tech. Rep. 1999-66, Nov. 1999.

[38] A.Markus and A. Kertesz, ‘‘A survey and taxonomy of simulation environ-
ments modelling fog computing,’’ Simul. Model. Pract. Theory, vol. 101,
no. 1, May 2020, Art. no. 102042.

[39] B. Yao, X. Liu, W. Zhang, X. Chen, andM. Yao, ‘‘Nested growing network
models for researching the Internet of Things,’’ in Proc. IEEE 7th Joint
Int. Inf. Technol. Artif. Intell. Conf. Chongqing, China: IEEE, Dec. 2014,
pp. 450–454.

[40] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, ‘‘Towards QoS-aware
fog service placement,’’ in Proc. IEEE 1st Int. Conf. Fog Edge Comput.
(ICFEC). Madrid, Spain: IEEE, May 2017, pp. 89–96.

KARIMA VELASQUEZ received the B.S. and
M.S. degrees in computer science from the Central
University of Venezuela, in 2005 and 2013, respec-
tively. She is currently pursuing the Ph.D. degree
with the University of Coimbra, Portugal.

From 2006 to 2014, she worked as a Researcher
with the Laboratory of Computer Networks, Cen-
tral University of Venezuela. She also works with
the Centre for Informatics and Systems, Labora-
tory of Communications and Telematics. She has

published several conference papers and journal articles. Her current research
interests include fog and cloud computing, network performance, and quality
of service.

DAVID PEREZ ABREU received the B.S. and
M.S. degrees in computer science from the Central
University of Venezuela, in 2005 and 2013, respec-
tively. He is currently pursuing the Ph.D. degree
with the University of Coimbra, Portugal.

From 2006 to 2014, he worked as a Researcher
with the Laboratory for Mobile and Wireless Net-
works, Central University of Venezuela. He also
works with the Laboratory of Communications
and Telematics, University of Coimbra. He has

published several conference papers and journal articles. His research inter-
ests include operating systems, virtualization, cloud computing, resilience,
and the Internet of Things.

MARILIA CURADO received the Ph.D. degree
in computer engineering from the Department
of Informatics Engineering (DEI), University of
Coimbra, Portugal, in 2005.

She is currently a Full Professor with the
Department of Informatics Engineering (DEI),
University of Coimbra. She is also the Director of
the Laboratory for Informatics and Systems, Pedro
Nunes Institute. She has participated in a large
number of national and international projects,

in particular the European FP6EuQoS, CONTENT, andWEIRDprojects and
in the European projects FP7 MICIE, GINSENG, and COCKPIT-CI. She is
involved in the H2020 ATENA and POSEIDON projects, being the Principal
Investigator of the EUREKA Eurostars OUTERMOST and FCT DenseNet
projects, and the Coordinator of the UC Team in the PT2020 MobiWise and
Mobilizer 5G projects. Her research interests include resilience and quality
of service in 5G networks, the Internet of Things, and communications in the
cloud.

Dr. Curado is a member of the Editorial Board of Computer Networks
(Elsevier),Computer Communications (Elsevier), Transactions on Emerging
Telecommunications Technologies (Wiley), and Internet Technology Letters
(Wiley), and has been involved in the scientific organization and coordination
of several international conferences, such as WoWMoM, IM, ACM SAC,
IoT-SoS, WMNC, and CloudNet.

EDMUNDO MONTEIRO (Senior Member,
IEEE) graduated in electrical engineering (infor-
matics specialty) from the University of Coimbra,
in 1984. He received the Ph.D. degree in informat-
ics engineering (computer communications) and
the Habilitation degree in informatics engineering
from the University of Coimbra, in 1996 and 2007,
respectively.

He is currently a Full Professor with the Depart-
ment of Informatics Engineering (DEI), University

of Coimbra (UC), Portugal. He is also a Senior Member of the Research
Centre for Informatics and Systems of the University of Coimbra (CISUC).
He has more than 25 years of research and industry experience in the field
of computer communications, wireless technologies, quality of service and
experience, network management, and computer security. He participated
in many Portuguese and European research projects and initiatives. His
publications include six books (authored and edited), several book chapters
and journal publications, and over 200 papers in national and international
refereed conferences. He has coauthored nine international patents.

Dr. Monteiro is a member of the Ordem dos Engenheiros (the Portuguese
EngineeringAssociation), and a SeniorMember of the IEEECommunication
and Computer Societies and the ACM SIGCOMM. He is also a member of
the Editorial Board of Wireless Networks (Springer) journals, and involved
in the organization of many national and international conferences and
workshops.

80834 VOLUME 9, 2021

http://dx.doi.org/10.1109/TCC.2020.2985352

