
Received June 3, 2021, accepted July 9, 2021, date of publication July 20, 2021, date of current version August 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3098644

Mitigating Virtualization Failures Through
Migration to a Co-Located Hypervisor
FREDERICO CERVEIRA , (Member, IEEE), RAUL BARBOSA , AND HENRIQUE MADEIRA
CISUC, Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra, Portugal

Corresponding author: Frederico Cerveira (fmduarte@dei.uc.pt)

This work was supported in part by the Foundation for Science and Technology (FCT), I.P., under Ph.D. Grant SFRH/BD/130601/2017,
in part by the scope of project under Grant CISUC-UID/CEC/00326/2020, in part by the European Social Fund, through the Regional
Operational Program Centro 2020, in part by the Autonomic Service Operation (AESOP) Project under Grant P2020-31/SI/2017 and
Grant 040004, in part by the FCT within project under Grant ECSEL/0018/2019, in part by the Electronic Components and Systems for
European Leadership (ECSEL) Joint Undertaking (JU) under Grant 876852, and in part by the JU from the European Union’s Horizon
2020 Research and Innovation Programme and Austria, Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Sweden, and Turkey.

ABSTRACT Many organizations are moving their systems to the cloud, where providers consolidate
multiple clients using virtualization, which creates challenges to business-critical applications. Research has
shown that hypervisors fail, often causing common-mode failures that may abruptly disrupt dozens of virtual
machines simultaneously. We hypothesize and empirically show that a significant percentage of virtual
machines affected by a hypervisor failure are capable of continuing execution on a new hypervisor. Supported
by this observation, we design a technique for recovering from hypervisor failures through efficient virtual
machine migration to a co-located hypervisor, which allows virtual machines to continue executing with
minimal downtime and which can be transparently applied to existing applications. We evaluate a proof-
of-concept implementation using fault injection of hardware and software faults and show that it can recover,
on average, 41-46% of all virtual machines, as well as having a mean virtual machine downtime of 3 seconds.

INDEX TERMS Cloud computing, dependability, fault injection, fault tolerance, virtualization.

I. INTRODUCTION
Cloud computing infrastructures provide elastic resources
to organizations, enabling them to deploy scalable online
applications and services while reducing the fixed costs of
IT infrastructures [1]. Many organizations are already devel-
oping new applications by following a cloud-first strategy
and most others are considering the move over the com-
ing years. For organizations to shift to cloud computing,
there is a need to assure that business-critical applications
fulfill service-level objectives [2] such as availability and
reliability [3].

Virtualization is one of the enabling technologies support-
ing cloud computing initiatives. Cloud providers rent their
physical infrastructure to multiple tenants, using virtualiza-
tion to execute up to hundreds of virtual machines (VMs)
on a single, powerful physical machine [4]. Although this
is a very cost-effective approach, it creates the risk of
common-mode failures [5], which have been observed in

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Boukhnifer .

previous research [6], [7] and create a significant threat to
virtualized infrastructures – numerous VMs, potentially from
different cloud tenants, lack failure independence and may
simultaneously fail due to a single fault affecting a physical
machine or the hypervisor.

This work aims to improve the availability of cloud com-
puting deployments by maintaining service continuity of the
VMs despite hypervisor failures. We hypothesize that at least
some VMs may be left in a correct state after a hypervi-
sor failure. This hypothesis derives from other works that
have shown state corruption to be a relatively uncommon
occurrence (e.g., about 2.5% of failures caused by soft errors
during hypercall execution [6]) and that recovery can be
successful even without expensive mechanisms to handle
corrupted state [8]. In these situations, the hypervisor crashes
or hangs, preventing any execution to take place, and all VMs
become unavailable (in spite of their internal state remain-
ing correct). Successfully resuming a VM after a hypervisor
failure, e.g., due to a transient hardware fault or a software
fault, has not been considered so far in literature because the
hypervisor has unrestricted access to the hardware, including

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 105255

https://orcid.org/0000-0002-0180-4815
https://orcid.org/0000-0002-2916-7571
https://orcid.org/0000-0001-8146-4664
https://orcid.org/0000-0002-1729-5453


F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

every VM’s memory space, and its failure may propagate to
the VMs [6], [7].

Fault injection experiments presented in this paper show
that our hypothesis holds and suggest that VMs can be recov-
ered after hypervisor failures. Based upon this observation,
we propose a generic and transparent fault tolerance tech-
nique to recover multiple VMs through migration between
two hypervisors (more specifically, a failed hypervisor and
a healthy hypervisor) co-residing on the same physical hard-
ware. The technique, which we named ‘Romulus’, inserts a
lightweight layer between the hardware and the hypervisors
that monitors the state of the VMs, triggers recovery action
on hypervisor failure and performs part of the VM migration
process. This layer is an essential component that allows
this technique to provide fault tolerance without external
hardware resources (e.g., Remus [9] requires two physical
hosts), in a transparent and genericmanner (i.e., without mod-
ifications to the VMs or the applications) and with acceptable
performance overhead.

A proof-of-concept implementation, which employs
design principles that can be used to overcome the implemen-
tation challenges inherent to Romulus, was developed over
Xen and evaluated using fault injection of bit-flips in CPU
registers during hypervisor execution and software faults in
hypervisor source code, as to emulate realistic hypervisor
failures. The source code of the proof-of-concept has been
made available publicly with the objective of fomenting
research and discussion around this subject. The results show
that Romulus is capable of recovering at least one VM after
the large majority of failures, whereas all VMs in the system
can be recovered successfully but not as often. Downtime is in
the order of a few seconds, which is accomplished by simply
resuming VM execution instead of restarting it.

The contributions of this work include:
1) A study on the correctness of the internal state of the

VMs after a hypervisor failure. To the best of our
knowledge this is the first study to evaluate whether the
state of the VMs remains correct and can be recovered.
Until this moment the assumption was that whenever
the hypervisor failed, all VMs were lost as well;

2) A lean fault tolerance technique for tolerating hypervi-
sor failures that allows VMs to transparently continue
execution on a co-located hypervisor, thus reducing
downtime, increasing availability and without needing
external hardware;

3) An open-source proof-of-concept implementation of
Romulus, along with design principles that can be used
to develop other implementations of the technique, and
an evaluation of its effectiveness using fault injection
to emulate realistic hypervisor failures.

The remainder of the paper is organized as follows.
Section II summarizes research in the topics closely con-
nected to this work. Section III describes the proposed fault
tolerance mechanism in a generic manner and Section IV
provides the details of the proof-of-concept implemen-
tation. Section V details the experimental methodology

used throughout this paper. Section VI contains the results
obtained from the fault injection campaigns and the eval-
uation of the proof-of-concept. Section VII discusses the
principal observations to take from the results, as well as the
limitations of the approach, proof-of-concept and evaluation.
Section VIII presents the conclusions and future work.

II. RELATED WORK
Cloud computing [10] has revolutionized the way that clients
acquire and use computing resources, reducing upfront costs
and avoiding payment for unused resources. It allows cloud
providers to rent idle computing resources and enables work-
load consolidation, i.e., sharing physical resources across
multiple clients, in an isolated manner thanks to the devel-
opment of mature virtualization support. In fact, studies
have shown that consolidation in public cloud providers,
despite far from maximized [11], still equates to an average
of 10 VMs and a 95% percentile of 31 VMs being executed
over the same hardware [4]. While economic and energy
saving benefits derive from multiple clients sharing the same
resources, new challenges appear, namely in terms of iso-
lation between VMs, availability [12], reliability [13] and
security [14], [15].

Failures are events that occur ‘when the delivered service
deviates from correct service’ [5] and may be caused due
to hardware, software and operator faults. Soft errors, i.e.
temporary errors caused by transient hardware faults that
happen due to ionizing radiation hitting a semiconductor
device [16], [17], are specially prominent in cloud computing
due to the tremendous amount of microprocessors [18] and
the usage of energy-saving techniques, such as dynamic volt-
age frequency scaling (DVFS) [19], which have been shown
to greatly increase the soft error rate [20], [21]. Furthermore,
advancements in microprocessor manufacturing, which yield
lower nodal capacitance and higher transistor density, cause
an increase in the soft error rate [21], i.e., the probability of
occurrence of a soft error. Software faults are also a threat
to the dependability of cloud computing and virtualized sys-
tems, particularly software faults in the components required
for virtualization (e.g., hypervisor, toolstack, privileged vir-
tual machine) and cloud management [22].

Failures are particularly preoccupying for cloud computing
systems because the impact of a single failure is magnified
across the multiple clients hosted on a node. This observation
is specially true when the fault affects the execution of the
hypervisor (i.e., the software component that supports the vir-
tualization of VMs), which has been shown to cause mostly
hangs that can affect multiple VMs and the less common case
of data corruption [6], [7], [23]. However, the weight of the
hypervisor on the overall availability and reliability of a node
depends on the amount of CPU time spent in this component,
which may vary significantly depending on the amount of
VMs consolidated on the system, the type of workloads and
details about the virtualization mode, but has been shown to
range between 10% and 40% of a CPU time [7].

105256 VOLUME 9, 2021



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

Various fault tolerance or recovery mechanisms against
failures in cloud computing and virtualized systems have
been proposed in the past, however high-availability opera-
tion has traditionally implied expensive setups that require
more than one physical node, which sometimes are geo-
graphically far away [24], [25], and incur significant per-
formance overhead during runtime and operation costs, both
due to upfront and recurring costs (e.g., energy consumption,
bandwidth usage). Remus [9] relies on a secondary passive
host that constantly receives updates with the most recent
state of the VMs and which takes control when a failure
is detected in the active host. Hence it is capable of tol-
erating transient and permanent hardware faults that cause
a full-stop crash of the system without corruption of the
VMs, at the expense of twice as much hardware resources
and a performance hit due to the action of snapshotting a
VM and sending its state over the network. COLO [26]
employs the same concept of VM replication as Remus but
uses an active-active and on-demand approach that monitors
the external output produced by the VMs to trigger replica-
tion. As such, a VM only needs to be replicated when its
output can be detected to differ, by comparison between both
replicas. PLOVER [27] combines active-passive backup with
state machine replication across three nodes, thus overcom-
ing some limitations of Remus and avoiding expensive state
transfer.

ReHype’s [23] approach applies the concept of microre-
boot [28] (i.e., rebooting of fine-grained components in order
to renew possibly corrupted state and hence recover from a
failure) to the hypervisor. It provides a fault tolerance mecha-
nism against hypervisor failures that is attained by temporar-
ily pausing the VMs while the hypervisor is rebooted and
specific data structures are renewed with safe values. Results,
obtained from a fault injection campaign of single bit-flips
into registers during execution of the hypervisor, show decent
VM recovery performance (over 90% probability of recovery
of at least 1 VM in a 3 VM system, and around 70% chance of
recovery of the 3VMs)with no performance overhead. A pos-
terior work [29] states a basic recovery latency of less than
3 seconds for a single VM, measured through ping timings,
which is then reduced down to around 700 ms. A derivation
of ReHype that is based on microreset is able to attain almost
as good recovery rates with a recovery downtime close to
20ms [30].

RootHammer [31] aims to reduce the time required for
a normal hypervisor reboot by maintaing the VM state in
memory during this process and quickly resuming the VMs
after the reboot has completed.

HyperFresh [32] presents a technique based on nested
virtualization [33] and memory co-mapping for replacing a
possibly corrupt and unstable hypervisor with a fresh hypervi-
sor in as low as 100ms, which can be employed as a software
rejuvenation [34] mechanism to recover from transient soft-
ware failures caused by latent and non-deterministic software
faults.

DualVisor [35] uses redundant VM execution and data
structures on the same physical host as a technique for detect-
ing and tolerating errors caused by hardware faults.

TinyChecker [36] uses nested virtualization to support
monitoring of the communication between VMs and hypervi-
sor and to duplicate key data structures, in an effort to detect
and protect VMs from a misbehaving hypervisor.

III. FAULT TOLERANCE USING ROMULUS
Romulus is designed to tolerate the most frequent types of
hypervisor failure [6], [7], which are common-mode failures
that cause the entire virtualized system, including all of the
VMs, to become unresponsive due to a crash or hang of the
hypervisor. Its success depends on the failure being contained
to the hypervisor and not propagating nor corrupting the
VMs. Fortunately, this is the case with a large number of
failures, as will be shown in this paper.

The technique consists of a novel form of VM migration
where VMs are migrated from the failed hypervisor and
resumed in a co-located and working hypervisor. The novelty
of the migration resides in extracting the VM state from an
unresponsive or uncooperative hypervisor in a transparent
manner and resuming the VMs in another hypervisor. Min-
imizing migration duration is essential for increasing avail-
ability and Romulus accomplishes a low downtime, which is
mostly spent performing state migration, because its VMs can
resume operation immediately after migration and without
requiring a costly reboot.

Romulus aims to be generic enough to be implemented for
any applicable hardware architecture (e.g., x86 or ARM, Intel
or AMD CPUs), hypervisor or other software component
being considered and requires the compliance with a set
of requirements: i) a microvisor, i.e. a minimal hypervisor,
must be added directly above the hardware for managing the
failure detection and migration process; ii) the microvisor
must support nested virtualization; iii) above the microvisor,
two full-fledged hypervisors must be instantiated; iv) the
microvisor must support virtual machine introspection (VMI)
to enable the migration of VMs between hypervisors;
v) the hardware platform must support hardware-assisted
virtualization (e.g., through Intel VT-x or AMD-V exten-
sions); vi) the VMs to be recovered must be virtualized using
hardware-assisted virtualization. Most of these requirements
are already widely found in real deployments, which means
that Romulus can easily be applied to these systems. For
example, hardware-assisted virtualization is one of the most
commonly used virtualization modes and current hardware
has broad support for this virtualization mode. Furthermore,
most hypervisors support virtual machine introspection and
various libraries have been created to facilitate its usage (e.g.,
libVMI [37]).

A. MICROVISOR
The insertion of a thin software layer, called microvisor,
directly above the hardware is essential both to support the

VOLUME 9, 2021 105257



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

novel migration process and to host two hypervisors over
the same physical hardware. The microvisor is a barebones
and lean hypervisor that implements only the most essen-
tial functionalities, such as virtualizing a VM, scheduling
CPU execution and managing the system memory. When
compared to a traditional hypervisor, the microvisor does
not need to implement functionalities such as providing a
complex interface for management by the user (e.g., through
a toolstack), containing device drivers to interact with the
hardware, implementing mechanisms for inter-VM commu-
nication or memory sharing (e.g., grant-based memory shar-
ing and event channels), and more. In fact, the microvisor
delegates as many functionalities as it can to other parts of
the system and strives to occupy the least amount of CPU
time that is possible, both in order to reduce its overhead
on the system and to reduce its exposure against transient
hardware faults. Moreover, its limited set of features means
that the microvisor needs only a relatively small number of
lines of code, which in conjunction with the usage of classical
software engineering techniques can lead to the creation of a
robust piece of software.

The introduction of the microvisor replaces the single point
of failure of a traditional virtualized system, which is the
hypervisor and privileged VM, with the microvisor. Since
the microvisor itself becomes the new point-of-failure, efforts
should be taken to reduce the surface that is susceptible to
faults. In practical terms, the microvisor should contain the
least possible amount of code lines, as to reduce the likelihood
of software faults, should execute the least amount of time,
as to reduce the probability of being affected by a transient
hardware fault, and, in general, should implement only the
absolutely necessary functionalities. Furthermore, techniques
such as formal verification of the microvisor are good candi-
dates to ensure its correctness and have already been applied
to hypervisors and operating systems in the past [38]–[40].

B. ARCHITECTURE AND NESTED VIRTUALIZATION
Above the microvisor, two full-fledged hypervisors (such as
Xen or KVM) are spawned. One of the hypervisors will be
actively operating and hosting VMs, while the remaining
hypervisor will be idling or suspended without any VM run-
ning over it. This dual-hypervisor setup can be extended to
include either a pool of idle hypervisors or a mechanism that
destroys the active hypervisor after the migration process has
been concluded and replenishes the system with a new idle
hypervisor for future use.

Both hypervisors may either share the same implementa-
tion (i.e., source code) or use different hypervisor implemen-
tations (e.g., Xen and KVM). The first option is easier to
configure and provides protection against transient hardware
faults and certain software faults, such as mandelbugs and
aging-related bugs, whereas the second option also provides
coverage against other software faults (e.g., some bohrbugs)
through design diversity.

The existence of a new layer between the hardware and the
hypervisors means that nested virtualization [33] is essential

FIGURE 1. Layers of a setup that uses the proposed approach.

to the implementation of Romulus, whose architecture is
divided into 3 layers of virtualization, as shown in Figure 1.
The first layer (L0) is the microvisor, the second layer (L1)
are the two hypervisors and the last layer (L2) are the VMs
managed by the clients (IaaS) or the cloud provider-managed
VMs providing a service (SaaS and PaaS).

C. LIFECYCLE
The lifecycle of the technique can be divided into 3 phases:
preparation, monitoring and migration. The preparation
phase is used to extract the static and semi-static state (i.e.,
the state that does not change or rarely changes during a VM’s
lifecycle), specifically the configuration and emulation state,
for each of the VMs that will be recovered when a hypervisor
failure occurs. The monitoring phase takes up the majority of
the lifetime and consists in two main actions: monitoring and
storing VM state that may change dynamically, as is the case
with some of the CPU state, and monitoring the health of the
hypervisor and/or its VMs in order to detect when a recovery
action must be performed. The approach used to monitor the
hypervisor health and to trigger the recovery action when
a failure is detected (i.e., the triggering mechanism) is not
the main focus of this article and any valid option may be
combined with this failure recovery mechanism.

The first step in the migration phase is to pause the exe-
cution of the failed L1 hypervisor, in order to prevent cor-
ruption to its data structures or VMs. In the case that the
hypervisor has already sent a shutdown signal (e.g., as a
response to a segmentation fault from hypervisor code), it is
essential that the microvisor preserves its memory state (i.e.,
it should not free the memory pages). Then the microvisor
must employ virtual machine introspection to extract the
missingVM’s state from the hypervisor’smemory, as detailed
in Section III-D. This implies that the microvisor knows the
offsets and sizes of the hypervisor’s data structures, hence it
requires a hypervisor-dependent configuration. When all of
the required VM state has been obtained, the migration can
take place. Firstly the memory of the VM is moved from the
failed to the sane hypervisor. This operation is implemented
by the microvisor without the need for memory copying,
simply by rearranging its physical-to-machine table so that
the memory pages which contain the state of the L2 VM and
that were previously mapped by the failed L1 hypervisor now
belong to the sane hypervisor.

105258 VOLUME 9, 2021



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

Algorithm 1 Algorithm for Memory State Migration of One
VM in an Intel System
Input: EPTP
1: pml4 = ∗EPTP
2: change_ownership(pml4, L1_A, L1_B)
3: for l0 = 0 to 511 do
4: pdpt = pml4[l0]
5: if (pdpt is valid) then
6: change_ownership(pdpt, L1_A, L1_B)
7: for l1 = 0 to 511 do
8: pd = pdpt[l1]
9: if (pd is valid) then
10: change_ownership(pd, L1_A, L1_B)
11: for l2 = 0 to 511 do
12: pt = pd[l2]
13: if (pt is valid) then
14: change_ownership(pt, L1_A, L1_B)
15: end if
16: end for
17: end if
18: end for
19: end if
20: end for

Algorithm 1 contains a pseudo-code implementation of
this process for a system that uses Intel EPTs hardware exten-
sion, although a similar algorithm could be produced for other
hardware extensions that provide memory virtualization. The
symbol EPTP represents the location of the nested page table
structure that contains the physical-to-machine mapping of a
VM’s pages. This multi-level data structure usually contains
four levels (herein represented by the symbols pml4, pdpt,
pd and pt, following Intel’s nomenclature), where each
level holds 512 entries that point to other pages. While the
first three levels contain pointers to the next levels, the last
level (i.e., pt) contains pointers to the real memory pages.
Given the EPTP as an input, the algorithm iterates over every
valid (i.e., allocated) page in the data structure and calls the
change_ownership function to move the ownership of
every page from the old hypervisor (represented by L1_A)
to a new hypervisor (L1_B). Ultimately, changing page own-
ership as described is quicker than copying memory pages,
which will accelerate the migration process.

After the microvisor exchanges the ownership of all of
the memory pages from the failed hypervisor to the sane
hypervisor, it should use the hypervisor’s default suspension
and resume mechanism for restoring the VM in the sane
hypervisor. This step can be simplified by updating a template
save file with the most recent known VM state (e.g., config-
uration, CPU and emulation state) and using it for resuming
the VM.

To complete the recovery of a VM, on the previously idle
hypervisor’s (now active) side, the capability for restoring
a VM’s memory state from a memory location containing
the entry of the nested page table must be available. This

restoration of a VM’s memory differs from how most hyper-
visors’ transfer memory state, which is by adding thememory
page’s contents to the save file and copying the contents into
memory on VM restore. This method of restoring a VM’s
memory state is required in this situation due to the way
the microvisor exchanges the ownership of memory between
hypervisors (based on the entry pointer for the nested pag-
ing table), however it also brings a significant performance
advantage by avoiding copying between memory and disk,
which ultimately reduces the downtime during recovery.

After the recovery of all VMs is complete, the paused
and failed hypervisor can be destroyed and its resources,
including the memory pages that still belong to it, can be
freed. At this point the lifecycle may restart, but not before a
new idle hypervisor instance is spawned to serve as the sane
hypervisor.

D. OPTIMIZED STATE EXTRACTION
One of themain elements of novelty in Romulus is themethod
for extracting VM state from a crashed or uncooperative
hypervisor, which is an essential part of the process for tol-
erating and recovering VMs from a hypervisor failure. For
this purpose, virtual machine introspection (VMI) [41], that is
‘monitoring and analyzing the state of a virtual machine from
the hypervisor level’ [41], is performed by the microvisor,
thus enabling extraction of the required state without hyper-
visor intervention as long as the internal structure is known
a priori.

The state that is required for migration can be divided into:

1) configuration state – refers to details about the VM,
such as how many memory pages, disks, CPUs, etc. it
has;

2) memory state – refers to the memory pages assigned to
a VM, which contain the data of the kernel and user
space processes;

3) CPU state – refers to the register values for each of
the CPUs used by the VM and to the data structures
required by virtualization extensions (e.g., VMCS and
VMCB which are mandatory when using Intel’s VMX
extension);

4) disk image – contains the information stored by the
VM in its physical storage;

5) emulation state – refers to the auxiliary state needed
by the hypervisor to perform the virtualization and
usually refers to the state of I/O devices (disks, network
interfaces, etc.).

Different state requires specific methods for obtaining,
treating and reusing it. Configuration state tends to be static
and defined at VM boot time, hence it can easily be pre-
obtained. Memory state is obtained and restored by taking
advantage of the available memory virtualization extension
(Intel EPT, AMDNPT, etc.) which keeps a multi-level paging
structure in memory that describes the memory structure of a
VM. CPU state, in particular the register state, is obtained by
introspecting the L1 hypervisor structures that keep track of

VOLUME 9, 2021 105259



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

each VM’s CPU state. However, different hypervisor imple-
mentations may keep track of different amounts of state, and
part of the state may not be stored by the L1 hypervisor. For
these situations, themicrovisormust keep track of themissing
state itself by trapping nested exits from the L2 VM and stor-
ing the required state. Disk state can be obtained and shared
between L1 hypervisors using a range of well-established
techniques, such as through a network file system, hence
we will not dwell on this point. Emulation state, while not
very dynamic, may change (for example when a previously
disabled network interface becomes active) and is particularly
difficult to obtain, as this state is usually stored in user-space
processes (e.g., QEMU) and hence harder to find and obtain.
However, it can still be obtained from the L1 hypervisor’s
memory using VM introspection, or simply by relying on an
outdated, but possibly correct, snapshot that is obtained after
start up of a VM.

IV. PROOF-OF-CONCEPT
Romulus requires being able to transparently extract a
VM and resume it in a different hypervisor, which is a task
that has several inherent challenges. For example, how should
one track the memory and CPU state of a L2 VM and keep it
up-to-date or how should a hypervisor be modified to allow
resuming a VM that was executing in another co-located
hypervisor. This section describes how such challenges were
dealt with in our proof-of-concept, hence providing a guide
that can be used by others to support their own implementa-
tion of Romulus.

Our proof-of-concept implementation of Romulus was
created over the source code of the universal Xen hyper-
visor [42], which was used as the basis for the microvi-
sor. VMI was provided by libVMI v0.12.0 compiled with
caching disabled and Intel VT-x hardware extensions are
required. The code of the proof-of-concept implementation is
available under an open-source license at https://github.com/
ucx-code/romulus.

With respect to the amount of modifications applied to Xen
4.11.1, a total of ∼1K lines of code were modified for the
microvisor,∼500 lines were modified for the idle hypervisor,
which we will designate as L1B for ease-of-use, and 23 lines
were modified for the active hypervisor, which we will des-
ignate as L1A, although it would have been possible to use an
unmodifiedXen 4.11.1 as the extra code has solely debugging
purposes (e.g., it helps to find the offsets of the hypervisor’s
data structure).

Our implementation was developed to support the
experimental campaigns performed in this paper. If the
proposed technique was to be used in a production
environment, the microvisor would ideally be developed
from scratch, with special attention given to reducing its
code size, focusing on a target architecture, refraining
from implementing non-essential functionalities and, pos-
sibly, using defensive programming or formal verification
techniques.

1) MICROVISOR
Xen was extended with two new hypercalls: save_nvmcs and
migrate. The save_nvmcs hypercall obtains and triggers the
monitoring of the CPU state that is not already being tracked
by Xen. Specifically, this hypercall activates the execution
of a branch added to the nvmx_n2_vmexit_handler function
(which is called after the exit of a L2 VM) that extracts and
keeps inmemory the values related to the ES, FS, CS, GS, DS,
SS, TR, GDTR, IDTR and LDTR registers. When this branch
is activated a small performance penalty can be expected.
Another approach was tested, which consisted in reading
the values directly from the memory structure where they
are stored (known as VMCS [43]), which is required by the
virtualization hardware extension, but such is not advisable
as this structure must be accessed by calling the vmread [43]
instruction, and furthermore does not follow a well-defined
or fixed schema (it may vary from CPU to CPU).

The migrate hypercall receives as input the EPTP of the
L2 VM to be migrated and the memory location on the idle
hypervisor to where the L2 VM’s memory should be moved
and performs the migration.

The toolstack was adapted to support correct calling of
these hypercalls. A range of userspace utility applicationswas
developed to: i) use VMI to obtain the EPTP and part of the
CPU state of the L2 VM; ii) replace the contents of a base
save file (created after the L2 VM has been spawned) with a
more recent CPU state and the EPTP of the L2 VMon the idle
hypervisor (after migration); iii) remove the page tables that
Xen stores on the save file, in order to avoid higher migration
time due to unnecessary information on the save file.

2) HYPERVISOR
Modifications are only required for the L1 B hypervisor and
these provide the capability to restore a VM from a save
file that contains an EPTP. This extends over the normal
functionality of Xenwhich expects thememory content of the
VM to be embedded on the save file. Furthermore a simple
hypercall and matching toolstack code was added to prepare
the hypervisor to receive the memory of the L2 VMs from the
active hypervisor. This can be accomplished by calling the
alloc_domheap_pages function to allocate the free memory
and reserve it for future use.

3) LIFECYCLE AND FLOW
Figure 2 presents the flow and actions taken during the
lifecycle of a system that uses this proof-of-concept. The
shown flow assumes that, at the start, all L1 and L2 VMs are
up and running, and that the save files and IO state of the
VMs is acessible to the microvisor and both L1 hypervisors.
A total of 9 actions have been identified and grouped into
the 3 phases that had been presented in Section III-C as
constituting the lifecycle of the technique.

4) LIMITATIONS
Due to time constraints and since this is solely a proof-
of-concept, there are several limitations, most of which are

105260 VOLUME 9, 2021



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

FIGURE 2. Lifecycle and actions.

relatively easy to fix and do not represent an inherent lim-
itation of Romulus. One limitation is that recovery is only
supported for L2VMs that have just a single vCPU, do not use
hyperpaging (i.e., page sizes bigger than 4Kb), use an Intel
EPT hardware virtualization mode (HVM in Xen), do not use
Xen’s PV-on-HVMdrivers (e.g., by passing ‘nopv’ parameter
to recent Linux kernels). Furthermore, LAPIC, APIC, MCE,
XSAVE and X2APIC should not be used in the L2 VMs and
hyperpaging must be disabled on both L1 hypervisors, but
may be enabled in the microvisor.

V. EXPERIMENTAL METHODOLOGY
Experimental evaluation using fault injection was performed
to validate the assumptions and contributions of this paper,
including the proof-of-concept implementation. A consistent
set of workload, physical setup and tools were used for the
evaluation, which are described in this section.

A. PHYSICAL SETUP
The setup used for the experiments is comprised of two
different physical systems, as depicted in Figure 3. One of
the systems has the role of ‘Compute Node’ (i.e., hosting the
VMs) and the other is used as the orchestrator, client and disk
image provider for the VMs. The compute node is equipped
with two Intel Xeon Silver 4114, each with ten physical cores,
32Gb of RAM and a network interface capable of 1GbE. The
orchestrator machine is equipped with a single Intel Xeon
E5620 with four physical cores, 12Gb of RAM and a 1GbE
network interface.

The disk images used by the VMs that are running on the
compute node are stored and provided by the orchestrator
machine through NFS [44]. This is a common setup found in

FIGURE 3. Experimental setup used for the experiments.

TABLE 1. Statistical analysis of both workload profiles.

the cloud (although using more advanced technologies [45])
where there is one or more nodes dedicated to storing and
providing disk resources.

In the experiments where fault injection was used to
emulate transient hardware faults both hypervisors used
Xen 4.11.1, whereas when software faults were injected L1A
used Xen 4.12.3 and L1B used Xen 4.11.1. The usage of dif-
ferent hypervisor versions reflects a scenario where Romulus
is used to tolerate software faults of transient nature (i.e.,
mandelbugs and aging-related bugs, which are only acti-
vated when specific conditions regarding the system state
are found) through state rejuvenation and software faults of
permanent nature (i.e., bohrbugs) through design diversity.
If the same hypervisor version had been used instead, Romu-
lus would only have been able to cover software faults of
transient nature.

B. WORKLOAD AND PROFILES
The workload used during our experimental evaluation emu-
lates a Solr server [46] that provides access to a part (11Gb)
of Wikipedia’s index [47]. This is a CPU and IO-heavy
workload that also exercises memory. Only search operations
are performed during the course of the workload.

Two different profiles were used in our experiments:
a full load profile, which consists in 25 clients perform-
ing a request once every 50 milliseconds and represents
a worst-case scenario where the VM is overloaded, and a
light load profile, which represents a more common scenario
[11], [18], [48]–[50] where the system seldom reaches full
resource usage and consists of 1 client performing a request
every second. Figure 4 and Table 1 provide insight into the
resource usage of both workload profiles on a VM with
3 000Mb of RAM.

VOLUME 9, 2021 105261



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

FIGURE 4. Resource usage of the workload and its profiles.

C. FAULT INJECTION
To emulate failures of the hypervisor, fault injection of tran-
sient hardware faults in CPU registers and software faults in
hypervisor code was employed. The representativeness and
accuracy of the fault injection process and fault model was
ensured by following the best practices in the field, as is
detailed below.

To emulate transient hardware faults, a fault injection tool
was coded and integrated into the microvisor code. It operates
by performing single bit-flips [51] on the register values of a
VM during a context switch and is capable of targeting the
RIP, RSP, RBP, RAX, RBX, RCX, RDX, and R8 to R15 reg-
isters and producing a logwith the pre- and post-injection reg-
ister values. It is also capable of targeting specific processes,
including all of the hypervisor code, by filtering injections
according to the virtual memory address pointed to by the
RIP on the moment of context switch. Since it depends on a
context switch it might incur some latency between the order
to perform an injection and its execution, but since we aim
to emulate random occurrences of faults we believe that a
small delay does not represent a drawback. Furthermore it
requires that vCPU pinning (i.e., associating a physical CPU
with a vCPU) be avoided, as this technique eliminates context
switching.

For injecting software faults in hypervisor code, an existing
fault injection tool was used to generate patch files containing
realistic software faults according to the fault model defined
by Durães et al. [52]. These patch files are applied to the
source code of the L1A hypervisor one patch per each run
during the fault injection campaigns. In order to speed up the
evaluation, an analysis of the lines of the hypervisor source
code that are covered during the workload was performed and
all faults that do not affect those lines were filtered out.

A requirement we set for our experiments was that the
software fault should only be activated while the workload
(i.e., Solr) is being executed, thus after any preparatory steps
(e.g., creating base save files) have been completed. This was
accomplished by encompassing the software fault inside an
if whose activation depends on a variable (a similar practice

TABLE 2. Software fault model operators.

has been used in other works [53], [54]) that is manipulated by
the microvisor using VMI. When the value of the variable is
false, the non-faulty code is executed. Moreover, for tracking
purposes the exact moment when the fault is first activated is
stored, as well as the number of iterations that occurred before
and after the fault was activated.

Faults were only injected in lines of the L1A hypervisor,
which runs Xen 4.12.3, that do not exist in L1B hypervi-
sor, which uses Xen 4.11.1, as to emulate recovery from a
software fault that was introduced in a more recent version
of Xen and does not exist in older versions. A comparison
between the source code of both versions was made which
showed that about 8%of lines of source code (comments were
disregarded) differed between the two versions, including
lines of source code in files that implement essential function-
ality, thus suggesting that migrating VMs between different
versions of the same hypervisor, even if both versions are
relatively recent, can provide some coverage against software
faults through design diversity.

When performing fault injection of hardware faults, twelve
registers were targeted (RIP, RSP, RBP, RAX, RBX, RCX,
RDX, R8-R15) which represent all the registers that can be
targeted using this fault injection tool. For software fault
injection, the fault model includes 10 operators out of the
13 operators defined in Durães et al. fault model [52] and
used 2 operators belonging to an extended fault model [55]
(namely,WLEC andWALR). In summary, the used operators
wereWVAV,WPFV,WLEC,WAEP, MVAV,MVAE,MLAC,
MIFS, MIEB, MIA, MFC and WALR, which are shown and
briefly explained in Table 2.

Software faults were injected in 4 different source files,
namely arch/x86/hvm/vmx/vmx.c, arch/x86/hvm/vmx/vmcs.c,
arch/x86/msr.c and arch/x86/mm.c, which were chosen due to
being the files that had the highest amount of changed lines
between Xen 4.11.1 and Xen 4.12.3 that were exercised by
the workload. These files contain functionality that deals with
memory virtualization, hardware-assisted virtualization and
model-specific register (MSR) emulation.

D. TRIGGERING MECHANISM FOR THE RECOVERY
ACTION
The evaluated fault tolerance technique has to be paired with
a mechanism capable of detecting when a hypervisor or a

105262 VOLUME 9, 2021



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

VMhas failed as to commence the recovery process. Multiple
options are available for this key element, from more generic
to application specific ones. The goal in selecting the best
alternative for the recoverymechanism resides in reducing the
downtime incurred from the detection interval and increasing
the precision and sensitivity of the mechanism (i.e., reducing
the false positives and false negatives). For our experiments
we opted to use a straightforward mechanism which consists
in a constant stream of ping requests which will trigger recov-
ery after a certain amount of consecutive pings has timed out.
This proved sufficient for our requirements, which were to
detect occasions where the hypervisor had a crash or hang
failure which caused all the other VMs to fail (common-mode
failure), however it might not be capable of detecting more
complex failures where silent data corruption has occurred.
Furthermore, it represents a baseline error mechanism, which
means that better error mechanisms may possibly result in
even better performance of Romulus than what is presented
in this paper.

E. CORRECTNESS VERIFICATION
The workload client is prepared to verify the correctness
of the received responses according to the query that was
searched. This is accomplished by having a pre-prepared list
of all possible search queries and the expected response, and
then comparing all performed queries and respective response
against the oracle, during workload execution. This step is
essential in ensuring that failure recovery can be accom-
plished without corrupting the VM state in a manner that
leads to incorrect output being sent to the service’s clients.

F. RECOVERY ASSESSMENT
Apart from ensuring the correctness of the responses, there is
the need to assess whether each VM recovered successfully
from a failure of the hypervisor. For this purpose two different
‘points-of-view’ are considered:

1) Service point-of-view – Recovery is measured accord-
ing to whether the service (Solr) continued to execute
correctly after the hypervisor failure. This is the tra-
ditional point-of-view, which corresponds to how the
service clients experience unavailability;

2) Operating system point-of-view – A VM is considered
recovered if its operating system continues to operate
correctly, even if the service stops working. The state
of the operating system is verified by performing a
SSH check and executing a small number of simple
commands at the end of each experiment. We consider
this point-of-view because, although the service may
not be successfully recovered, the operating system
may continue to work correctly and specific methods
can be designed to take advantage of this.

VI. RESULTS
The results are divided into two parts: the first part evaluates
the hypothesis that sustains the presented technique (i.e., after

a hypervisor failure, VMs may remain uncorrupted and can
continue execution on a new hypervisor) and the second part
evaluates the performance and effectiveness of the proof-
of-concept. In terms of metrics, the experiments measure
recovery effectiveness (i.e, the probability of a VM being
successfully recovered after hypervisor failure), migration
time (i.e., the time taken in the process of migrating VMs
between hypervisors), downtime (i.e., how long the VMs
become unavailable while recovery is taking place) and run-
time overhead. To effectively measure the various metrics,
various experiment campaigns with slightly different param-
eters were used (some of the varied parameters include the
number of VMs being executed, VM memory size or the
workload profile). In such cases, the leading text will clearly
indicate the parameter values used in that specific experi-
ment. Nevertheless, various control variables remain constant
across experiments. For example, the fault models (e.g., CPU
registers that suffered fault injection).

A. HOW ARE VMs AFFECTED WHEN THE HYPERVISOR
FAILS?
When a hypervisor fails, it may fail without affecting the state
of its VMs or it may gain an erratic behaviour and eventually
corrupt its VMs [6]. If recovery is to be attained the basic
principle that the VM state has to remain sanemust be upheld.
To evaluate this hypothesis, an experimental campaign was
setup where a single VM was migrated to a new hypervisor
after its hypervisor failed, as to assess whether it continues
correct execution.

Fault injection in CPU registers during hypervisor execu-
tion between 15 and 40 seconds after the start of the workload
was used to generate hypervisor failures. The timing values
were picked as to allow the VM to warmup while provid-
ing enough time for it to recover and resume responding
to Solr requests before the workload finishes. Both profiles
of the workload (light and full load) were evaluated during
200 seconds. The recovery process is triggered by a process
that constantly performs ping checks to a VM and starts the
recovery process sensibly 8 seconds after the last successful
response.

A total of 339 failures using the full load profile and
663 failures using the light load profile were obtained,
the results of which are displayed in Table 3. Over the
course of all experiments a total of 55 678 requests were
performed and no occurrence of incorrect response data was
detected after a successful VM migration to a new hyper-
visor. Although this does not eliminate the possibility that
a VM may be successfully recovered despite its state being
partially corrupt due to the fault in the hypervisor having
propagated, which may then lead to silent data corruption
occurring inside the VM, such is not a common occurrence.
Moreover, the lower the detection interval before triggering
recovery action, the higher is the chance of preventing errors
in the hypervisor from propagating to the VMs.

A subset of all the runs, amounting to 102 failures using the
light load and 155 using the full load profile, was extended to

VOLUME 9, 2021 105263



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

TABLE 3. Recovery probability (1 VM).

include an operating system check through SSH at the end
of the run, in order to detect situations where the VM may be
responsive but the Solr process has failed. The results indicate
that in many situations, specially when a heavy workload is
used, the operating system of the VM is able to recover but
the application under use (Solr) does not, as it is killed by the
operating system. There was no run where Solr was classified
as responsive but the operating system was unresponsive.

The light load profile resulted in a higher recovery percent-
age than when using the full load profile, which suggests that
the usage level of a VM can affect its likelihood of recovery.
This is not a significant problem for cloud computing systems
since the majority of the dozens of VMs consolidated on a
physical system are idle or have a small amount of load during
short periods of time [11], [48], [50] and the presented results
can be considered to be a worst-case scenario for this setting,
specially when referring to the full load profile.

B. PROOF-OF-CONCEPT EVALUATION
The results from the experiments that evaluate the proof-
of-concept focus on four key aspects: runtime performance
overhead, duration of the recovery process, recovery effec-
tiveness of the VMs after hypervisor failure and downtime.

1) PERFORMANCE OVERHEAD
As with any fault tolerance technique, particularly when
applied to an area such as cloud computing where resources
tend to be maximized as to increase business profit, the over-
head of the solution can have a determining role on the
decision to adopt it.We compared the performance, measured
as the number of successfully answered requests over a fixed
time period and their average response time, of a system that
represents a traditional virtualized cloud computing system
(i.e., where no nested virtualization is used), a system that
uses nested virtualization but does not contain the proposed
fault tolerance technique, and a system with our implemen-
tation of Romulus. A total of 30 runs were performed for
each setup and all the runs used a single VM with 3 000Mb
of RAM and the full load profile during 60 seconds. The
L0 and L1 hypervisors, when applicable, were configured
with 1 CPU and 12 000Mb of RAM, as to represent a sit-
uation where consolidation is present. Table 4 presents the
results for the light load and full load profiles, including a
comparison of relative performance difference against the
traditional virtualized system, which show that the proof-
of-concept does not bring a measurable overhead on a system
that already uses nested virtualization, however the addition
of nested virtualization carries a significant overhead, which
can reach up to 2.5x lower performance when a heavy work-
load is used.

TABLE 4. Performance overhead of different setups.

FIGURE 5. Duration of the recovery process per VM size.

2) RECOVERY PROCESS DURATION
A significant part of the experienced downtime is due to the
time taken by the process of migrating all of the VMs. Since
the duration of this process may vary with the size of a VM,
namely its memory size, an analysis was performed where
a single VM was migrated between hypervisors (without a
hypervisor failure), 25 seconds after the workload, which
used the light load profile, was started and using varying
memory sizes, from 1 000Mb to 8 000Mb inclusive, at steps
of 1 000Mb, as well as executing 30 runs of each possible
combination. Figure 5 presents the results.

The line with circle markers, labeled as VM state migra-
tion, represents all of the steps required for recovery apart
from restoring the VM state at the L1B hypervisor, which is
represented by the line with square markers, while the solid
line with diamond markers, labeled as Memory migration,
describes the time taken solely for the step of migrating
the memory state. The total time required to complete the
recovery process is not depicted but consists on the sum of
the lines that have circle and square markers.

The algorithm of the recovery process has linear complex-
ity, which grows proportionally to the number of pages that
need to be migrated, as is empirically shown in Figure 5.
However, there is a constant time element that is attributable
to the step of restoring the VM in the new hypervisor, after the
memory has been copied. It should be noted that although the
number of pages has an impact in the migration time, it does
not affect the recovery effectiveness of Romulus (which will
be analyzed in the next section).

The dashed line represents the hypothesized time that the
step of memory migration would have taken if the proof-
of-concept implementation had support for hyperpaging (also
known as superpaging). It was obtained by measuring how
many pages would be used at the different memory levels
when hyperpaging is enabled and extrapolating from the

105264 VOLUME 9, 2021



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

known data. This extrapolation transmits a very positive out-
look for the improvements that hyperpaging can bring, since
it significantly lowers the amount of pages that need to be
migrated, thus reducing time spent migrating the memory
state to values between 45 and 54 milliseconds. According
to this data, if hyperpaging is considered we can expect the
entire recovery process to take between 2 and 4 seconds.

3) RECOVERY EFFECTIVENESS
Romulus’s objective is to tolerate common-mode hypervisor
failures that affect multiple VMs at once, hence the most
adequate metric to evaluate the effectiveness of the proof-
of-concept implementation is the total number of recovered
VMs and, indirectly, the probability of recovery of a VM.

For this study a system containing 4 VMs with 1 CPU
and 900Mb of memory each and executing the Solr work-
load with the light load profile was used. Fault injection
of transient hardware faults in CPU registers and software
faults in hypervisor code was once again used to produce
realistic failure data. Injection took place between 200 and
210 seconds after the start of the workload and the recov-
ery action was triggered sensibly 40 seconds after the last
successful ping reply. This is a conservative timeout value
as to avoid inadvertent triggering, but which may reduce
the recovery effectiveness by providing the failed hypervisor
more time to corrupt the VMs state. The L1 hypervisors were
configured to have 6 CPUs, which means that the system had
a consolidation ratio of 0.66 (or in other words, 4 L2 VMs
executing over 6 CPUs).

A total of 774 hypervisor failures due to injected hardware
faults and 117 failures due to software faults were collected.
To obtain these failures, we had to inject over 2 000 hardware
faults and over 400 software faults. A part of these faults never
propagated into a failure and thus have been excluded from
our analysis. In total, 8 months of continuous experiments
were needed to obtain the results herein described.

Table 5(a) shows information about the registers that lead
to failures, while Table 5(b) presents information about the
operators that caused software failures. It should be noted that
some CPU registers and operators did not cause any failures
and have been omitted from these tables, nevertheless fault
injection using these registers and operators was performed
as usual.

Figure 6(a) and 6(b) show the histogram with the count
of successfully recovered VMs discriminated by the type
of fault, for the service and operating system point-of-view
respectively.

Hypervisor failures caused by transient hardware faults
translated to at least one VM being successfully recovered
(between 96% and 91% of all failures) and an arithmetic
mean of 1.82 recovered VMs (or 46% of all VMs). When
a hypervisor fails due to a software fault, the mean becomes
slightly lower at 1.62 recovered VMs (41% of all VMs), but
the extremes increase (no VM is recoverable between 25%
and 30% of the time, whereas all four VMs are recovered
between 10% and 34% of the time). These observations

TABLE 5. Fault injection statistics.

FIGURE 6. Total recovered VMs after a hypervisor failure.

suggest that transient hardware faults, due to their nature, are
more likely to propagate to a smaller number of VMs, leaving
the remaining VMs in a correct state and thus recoverable,
whereas software faults are more likely to affect and corrupt
either all VMs or none at all.

Comparing both of the point-of-views that were considered
for classification of a recovery outcome, the service point-
of-view, which is the most restrictive of the two, experi-
ences lower recovery probability than the operating system
point-of-view. Situations where the operating system was left
operational but Solr was not are explained by the hypervi-
sor failure having corrupted only state associated with Solr,
which lead the operating system to kill its process after
recovery. In these situations the addition of a simple appli-
cation restart mechanism could greatly increase the recovery

VOLUME 9, 2021 105265



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

FIGURE 7. Cumulative histogram of recovery probability.

likelihood, although such would lose the transparency inher-
ent to this fault tolerance technique. Figure 7 provides cumu-
lative histograms that improve the comprehension of the data
in the previous figures.

The operating system of all four VMs is recovered in 34%
of all failures caused by software faults, but Solr is only recov-
ered 10% of the time. The probability of all four VMs being
recovered after a failure due to hardware faults is much lower,
ranging between 13% for recovery of only the operating
system and 4% for recovery of Solr. The recovery percentage
increases if we consider all cases where at least 3 VMs were
recovered: 56% of failures caused by software faults leave the
operating system recoverable, but Solr can only be recovered
31% of the time, whereas if a failure is caused by a hardware
fault, the operating system is recoverable 48% of the time and
Solr 26% of the time. If we consider the operating system
point-of-view, at least half of the VMs can be recovered
in 83% and 69% of all failures, when caused by hardware
and software faults respectively, or 62% and 51% of the time,
if we use the service point-of-view. Finally, at least 1 VM is
fully recoverable in 91% of all failures due to hardware faults
and 75%of all failures due to software faults. Ultimately, even
the recovery of one VM corresponds to a big improvement
in comparison to a system that cannot tolerate hypervisor
failures.

4) DOWNTIME
Although being able to successfully recover VMs is essential,
the downtime incurred during recovery has an important
role on the overall availability of the system and should be
contemplated. Figure 8 shows the boxplot that contains the
median and quartiles of the downtime for a single VM setup
using both the full and light load profiles, as perceived
through the clients of the Solr service (service downtime) and
through the operating system logs (VM downtime), obtained
using the SAR utility.

FIGURE 8. Downtime in a single VM setup.

The VM downtime reflects the period when the VM is
operating but the network connection has not yet been
restored, hence being considerably lower than the service
downtime, ranging between 2 and 26 seconds with a mean
of 3 seconds. The discrepancy between VM and service
downtime is explained by a timeout in the network device
driver used in the Linux kernel of the VMs that is only
triggered after some seconds. Modifications to this device
driver, or the usage of another driver, would equalize the
VM and service downtimes. The 4 VM system that was
used in Section VI-B3 yielded a service downtime ranging
between 31 and 394 seconds with an average that varied
between 254 and 275 seconds.

VII. DISCUSSION & LIMITATIONS
The results confirm that nearly half of the VMs in a sys-
tem are left in a non-corrupted state after a hypervisor fail-
ure and thus can be recovered if the failed hypervisor is
replaced by a working one, which is the basis for Romulus,
the proposed technique which has been shown to tolerate
hypervisor failures by evaluation of a proof-of-concept imple-
mentation. Despite occasions where not all VMs were suc-
cessfully recovered, at least one VM was recoverable in the
large majority (> 75%) of cases, which, in itself, represents a
big improvement over a traditional virtualized system where
hypervisor failure always translates to the loss of every VM.
Furthermore, given the limitations inherent to an implemen-
tation whose objective is to demonstrate a concept, the results
represent a baseline of what can be accomplished, and imple-
mentations for use in production systems and optimized to
improve recovery effectiveness and reduce downtime should
be able to exceed the obtained results. Moreover, we suspect
that systems with higher amount of consolidated VMs (public
cloud providers average 10 VMs on the same node [4]) and
higher CPU consolidation ratios (i.e., more VMs running over
less CPUs) will perform better and benefit more from the
technique.

Fair comparisons against existing fault tolerance tech-
niques for virtualized systems are difficult to perform due to

105266 VOLUME 9, 2021



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

TABLE 6. Comparison of techniques for fault tolerance in virtualized systems.

the lack of publicly available code and the fact that different
setups were used for the evaluations found in the respective
papers, including different amount of VMs, different memory
size of each VM, different workloads and different fault
injection techniques or fault models. For example, the fault
model used for the evaluation can have a significant impact
on the reported performance (e.g., the recovery percentage),
as fault models that cause more abrupt failures are less likely
to silently corrupt the system and thus their failures are more
easily tolerated. In the case of Romulus, the fault model accu-
rately emulates software faults, including those that linger in
the system during many seconds before recovery takes place.

Nevertheless, Table 6 presents an attempt at comparing
Romulus against its three most direct competitors. It should
be noted that the downtime values presented for Romulus
refer to average values obtained for a VM with 4Gb of
memory size and that we considered recovery to be successful
whenever 3 VMs (out of the 4 VMs) are recovered. These
choices were taken as to more closely reflect the experimental
setups used in the papers of the other techniques. Finally,
assigning too much importance to performance comparisons
may be counter-productive, since the values described in
literature reflect the performance of the evaluated implemen-
tations and often there is a range of optimizations that can
be introduced to further improve the results, but which are
outside the scope of an academic work.

Our technique is the only, as far as we know, that has
been proven capable of tolerating both failures due to tran-
sient hardware faults and software faults. It is also one of
the few techniques that have an implementation published
under an open-source license. In our opinion, the biggest
threat to the adoption of this technique in production sys-
tems is not the less-than-perfect VM recovery percentage,
but rather the runtime performance overhead, and respective
cost, that is associated to nested virtualization. Neverthe-
less, if we compare the overhead of our technique against
other alternatives, our techniques possesses one strong point:
no external hardware is required. For example, Remus [9],
which provides tolerance against permanent hardware faults,
requires a secondary host and incurs a performance overhead
ranging between 30%-100% depending on the configuration
andworkload. Another point to consider is that nested virtual-
ization is gaining adoption in cloud computing, driven by user
demand, as well as being a supporting technology for other
techniques found in the literature, such as HyperFresh [32]
and TinyChecker [36]. As such, adding Romulus to a sys-
tem that already uses nested virtualization carries almost no
overhead.

In terms of limitations, the technique only supports VMs
that use hardware-assisted virtualization, systems that have
virtualization extensions and requires a microvisor that sup-
ports nested virtualization and VMI. The proof-of-concept,
due to its nature, has several limitations (which are detailed in
Section IV-4) but these are technical limitations and in noway
correspond to limitations of the technique. The experimen-
tal evaluation is limited in terms of generalizability. Cloud
computing supports many different workloads, but only one
(a Solr service) was evaluated. Another limitation is the
number of VMs running in the system, which is lower than
the average found in public clouds. These limitations are
not expected to invalidate the presented results, but future
work will try to comprehend how different setups affect the
performance of the technique.

VIII. CONCLUSION
Hypervisor failures are a threat to the availability of cloud
computing systems because theymay propagate to the dozens
of VMs that are usually consolidated on the same phys-
ical hardware and cause service disruption. Thus far the
assumption was that whenever the hypervisor failed, all VMs
were lost. On the contrary, this paper empirically verifies the
hypothesis that a significant percentage of VMs remain cor-
rect after hypervisor failure and could be resumed in another
hypervisor.

Based on this observation, this paper presents a tech-
nique for tolerating hypervisor failures without requiring
spare redundant hardware nor modifications to the virtual
machines, which means that legacy applications executing in
the cloud are natively supported. It performs efficient migra-
tion of the VM state from the failed hypervisor to a co-located
hypervisor with the purpose of continuing VM execution
after failure. This process has inherent challenges regarding
how to transparently extract and resume a VM in a different
co-located hypervisor, all of which were solved in a proof-
of-concept implementation that demonstrates the viability of
Romulus.

Experimental results using the proof-of-concept have
shown that it is capable of recovering an average of 41-46%
of the VMs in the system after a hypervisor failure, includ-
ing those caused by transient hardware faults and software
faults, while incurring a VM downtime in the range of
a few seconds, which accounts in large part for the time
taken to migrate the VM state between hypervisors. If the
system over which Romulus is applied already uses nested
virtualization, the overhead of the technique is almost non-
existent, otherwise the introduction of nested virtualization,

VOLUME 9, 2021 105267



F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

which is a requirement of Romulus, will bring a considerable
amount of overhead. Nevertheless, the overhead is still in line
or better than that of other high-availability techniques and
future developments to nested virtualization should lower the
overhead.

As future work, development of the proof-of-concept
implementation will continue to introduce optimizations
and remove limitations, such as adding support for hyper-
paging and multi-CPU VMs, and experimental evaluations
using setups that have higher VM consolidation and use
other workloads will be conducted. Furthermore, we will
consider relaxing some of the current constraints, such as
providing a transparent technique that can be used with
legacy systems, and investigate using instrumentation at the
VM and application-level to significantly improve recovery
effectiveness.

ACKNOWLEDGMENT
The authors, the VALU3SConsortium, and the ECSEL JU
are not responsible for the use which might be made of the
information contained in here.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘A view of
cloud computing,’’ Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010, doi:
10.1145/1721654.1721672.

[2] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. Santos,
and A. Shraer, ‘‘Verifying cloud services: Present and future,’’ ACM
SIGOPS Operating Syst. Rev., vol. 47, no. 2, pp. 6–19, Jul. 2013, doi:
10.1145/2506164.2506167.

[3] Q.-H. Zhu, H. Tang, J.-J. Huang, and Y. Hou, ‘‘Task scheduling
for multi-cloud computing subject to security and reliability con-
straints,’’ IEEE/CAA J. Automatica Sinica, vol. 8, no. 4, pp. 848–865,
Apr. 2021.

[4] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, ‘‘State-of-the-practice
in data center virtualization: Toward a better understanding of VM usage,’’
in Proc. 43rd Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2013, pp. 1–12.

[5] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic concepts
and taxonomy of dependable and secure computing,’’ IEEE Trans. Depend.
Sec. Comput., vol. 1, no. 1, pp. 11–33, Jan./Mar. 2004.

[6] F. Cerveira, R. Barbosa, H. Madeira, and F. Araujo, ‘‘The effects
of soft errors and mitigation strategies for virtualization servers,’’
IEEE Trans. Cloud Comput., early access, Feb. 11, 2020, doi:
10.1109/TCC.2020.2973146.

[7] X. Xu and H. H. Huang, ‘‘On soft error reliability of virtualization
infrastructure,’’ IEEE Trans. Comput., vol. 65, no. 12, pp. 3727–3739,
Dec. 2016.

[8] B. Fang, Q. Guan, N. Debardeleben, K. Pattabiraman, and
M. Ripeanu, ‘‘LetGo: A lightweight continuous framework for HPC
applications under failures,’’ in Proc. 26th Int. Symp. High-Perform.
Parallel Distrib. Comput., Jun. 2017, pp. 117–130, doi: 10.1145/3078597.
3078609.

[9] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, ‘‘Remus: High availability via asynchronous virtual machine
replication,’’ in Proc. 5th USENIX Symp. Netw. Syst. Design Implement.,
San Francisco, CA, USA, 2008, pp. 161–174.

[10] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ NIST,
Gaithersburg, MD, USA, Tech. Rep. SP 800-145, 2011.

[11] C. Delimitrou and C. Kozyrakis, ‘‘Quasar: Resource-efficient and QoS-
aware cluster management,’’ ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 127–144, Feb. 2014, doi: 10.1145/2644865.2541941.

[12] P. T. Endo, M. Rodrigues, G. E. Gonçalves, J. Kelner, D. H. Sadok,
and C. Curescu, ‘‘High availability in clouds: Systematic review and
research challenges,’’ J. Cloud Comput., vol. 5, no. 1, p. 16, Oct. 2016,
doi: 10.1186/s13677-016-0066-8.

[13] X. Xu and H. H. Huang, ‘‘Understanding reliability implication
of hardware error in virtualization infrastructure,’’ in Proc.
10th Workshop Hot Topics Syst. Dependability (HotDep), 2014,
pp. 1–6.

[14] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, ‘‘Security and privacy challenges
in cloud computing environments,’’ IEEE Secur. Privacy Mag., vol. 8,
no. 6, pp. 24–31, Nov. 2010.

[15] K. Ren, C. Wang, and Q. Wang, ‘‘Security challenges for the
public cloud,’’ IEEE Internet Comput., vol. 16, no. 1, pp. 69–73,
Jan. 2012.

[16] J. W. McPherson, ‘‘Reliability challenges for 45 nm and beyond,’’ in
Proc. 43rd Annu. Design Automat. Conf., New York, NY, USA, Jul. 2006,
pp. 176–181.

[17] S. Borkar, ‘‘Design perspectives on 22 nm CMOS and beyond,’’ in Proc.
46th Annu. Design Automat. Conf. (DAC), New York, NY, USA, 2009,
pp. 93–94.

[18] L. A. Barroso, J. Clidaras, and U. Hlzle, The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines, 2nd ed.
San Mateo, CA, USA: Morgan & Claypool Publishers, 2013.

[19] G. Magklis, G. Semeraro, D. H. Albonesi, S. G. Dropsho, S. Dwarkadas,
and M. L. Scott, ‘‘Dynamic frequency and voltage scaling for a multiple-
clock-domain microprocessor,’’ IEEE Micro, vol. 23, no. 6, pp. 62–68,
Nov./Dec. 2003.

[20] A. Dixit and A. Wood, ‘‘The impact of new technology on soft error
rates,’’ in Proc. Int. Rel. Phys. Symp., Apr. 2011, pp. 5B.4.1–5B.4.7, doi:
10.1109/IRPS.2011.5784522.

[21] V. Chandra and R. Aitken, ‘‘Impact of technology and voltage scal-
ing on the soft error susceptibility in nanoscale CMOS,’’ in Proc.
IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., Oct. 2008,
pp. 114–122.

[22] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,
‘‘How bad can a bug get? An empirical analysis of software failures in the
OpenStack cloud computing platform,’’ in Proc. 27th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., New York, NY, USA,
Aug. 2019, pp. 200–211, doi: 10.1145/3338906.3338916.

[23] M. Le and Y. Tamir, ‘‘ReHype: Enabling VM survival across hypervi-
sor failures,’’ in Proc. 7th ACM SIGPLAN/SIGOPS Int. Conf. Virtual
Execution Environ. (VEE), New York, NY, USA, 2011, pp. 63–74, doi:
10.1145/1952682.1952692.

[24] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen,
and D. Zage, ‘‘Steward: Scaling Byzantine fault-tolerant replication to
wide area networks,’’ IEEE Trans. Dependable Secure Comput., vol. 7,
no. 1, pp. 80–93, Jan./Mar. 2010.

[25] M. Eischer and T. Distler, ‘‘Resilient cloud-based replication
with low latency,’’ 2020, arXiv:2009.10043. [Online]. Available:
https://arxiv.org/abs/2009.10043

[26] Y. Dong,W. Ye, Y. Jiang, I. Pratt, S.Ma, J. Li, and H. Guan, ‘‘Colo: Coarse-
grained lock-stepping virtual machines for non-stop service,’’ in Proc. 4th
Annu. Symp. Cloud Comput., New York, NY, USA, 2013, pp. 1–16, doi:
10.1145/2523616.2523630.

[27] C. Wang, X. Chen, W. Jia, B. Li, H. Qiu, S. Zhao, and H. Cui,
‘‘PLOVER: Fast, multi-core scalable virtual machine fault-tolerance,’’
in Proc. 15th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
Renton, WA, USA, Apr. 2018, pp. 483–489. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/wang

[28] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
‘‘Microreboot—A technique for cheap recovery,’’ in Proc. 6th Conf. Symp.
Operating Syst. Design Implement., Renton, WA, USA, vol. 6, 2004, p. 3.

[29] M. Le and Y. Tamir, ‘‘Resilient virtualized systems using ReHype,’’ Dept.
Comput. Sci., UCLA, Los Angeles, CA, USA, Tech. Rep. #140019, 2014.

[30] D. Zhou and Y. Tamir, ‘‘Fast hypervisor recovery without reboot,’’ in Proc.
48th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2018,
pp. 115–126.

[31] K. Kourai and S. Chiba, ‘‘A fast rejuvenation technique for server consol-
idation with virtual machines,’’ in Proc. 37th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2007, pp. 245–255.

[32] H. Bagdi, R. Kugve, and K. Gopalan, ‘‘HyperFresh: Live refresh of hyper-
visors using nested virtualization,’’ in Proc. 8th Asia–Pacific Workshop
Syst., New York, NY, USA, Sep. 2017, doi: 10.1145/3124680.3124734.

[33] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. HarEl,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, ‘‘The turtles
project: Design and implementation of nested virtualization,’’ in Proc. 9th
USENIX Conf. Operating Syst. Design Implement., Renton, WA, USA,
2010, pp. 423–436.

105268 VOLUME 9, 2021

http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/2506164.2506167
http://dx.doi.org/10.1109/TCC.2020.2973146
http://dx.doi.org/10.1145/3078597.3078609
http://dx.doi.org/10.1145/3078597.3078609
http://dx.doi.org/10.1145/2644865.2541941
http://dx.doi.org/10.1186/s13677-016-0066-8
http://dx.doi.org/10.1109/IRPS.2011.5784522
http://dx.doi.org/10.1145/3338906.3338916
http://dx.doi.org/10.1145/1952682.1952692
http://dx.doi.org/10.1145/2523616.2523630
http://dx.doi.org/10.1145/3124680.3124734


F. Cerveira et al.: Mitigating Virtualization Failures Through Migration to Co-Located Hypervisor

[34] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, ‘‘Software rejuvena-
tion: Analysis, module and applications,’’ in 25th Int. Symp. Fault-Tolerant
Comput. Dig. Papers, 1995, pp. 381–390.

[35] X. Xu and H. H. Huang, ‘‘DualVisor: Redundant hypervisor execu-
tion for achieving hardware error resilience in datacenters,’’ in Proc.
15th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2015,
pp. 485–494.

[36] C. Tan, Y. Xia, H. Chen, and B. Zang, ‘‘Tinychecker: Transparent pro-
tection of VMs against hypervisor failures with nested virtualization,’’
in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw. Workshops (DSN),
Jun. 2012, pp. 1–6.

[37] H. Xiong, Z. Liu, W. Xu, and S. Jiao, ‘‘Libvmi: A library for bridging the
semantic gap between guest OS and VMM,’’ in Proc. IEEE 12th Int. Conf.
Comput. Inf. Technol., Oct. 2012, pp. 549–556.

[38] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, ‘‘Sel4: Formal verification of an OS kernel,’’ in Proc.
ACM SIGOPS 22nd Symp. Operating Syst. Princ., New York, NY, USA,
2009, pp. 207–220, doi: 10.1145/1629575.1629596.

[39] R. C. Bhushan and D. K. Yadav, ‘‘Verification of virtual machine
architecture in a hypervisor through model checking,’’ Procedia
Comput. Sci., vol. 167, pp. 67–74, Jan. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050920306487

[40] S. Li, X. Li, R. Gu, J. Nieh, and J. Hui, ‘‘A secure and formally
verified Linux KVM hypervisor,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), Los Alamitos, CA, USA, May 2021, pp. 839–856. [Online].
Available: https://www.computer.org/csdl/proceedings-article/sp/2021/
893400a839/1t0x8ICrxwQ, doi: 10.1109/SP40001.2021.00049.

[41] J. Pfoh, C. Schneider, and C. Eckert, ‘‘A formal model for virtual machine
introspection,’’ in Proc. 1st ACM Workshop Virtual Mach. Secur., 2009,
pp. 1–10, doi: 10.1145/1655148.1655150.

[42] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, ‘‘Xen and the art of virtualiza-
tion,’’ SIGOPSOper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Oct. 2003, doi:
10.1145/1165389.945462.

[43] Intel 64 and IA-32 Architectures SoftwareDeveloper’sManual, Intel Corp.,
Santa Clara, CA, USA, Sep. 2016.

[44] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck, ‘‘Rfc3010: Nfs version 4 protocol,’’ Internet Soc., Reston,
VA, USA, Tech. Rep. RFC 3010, 2000.

[45] Q. Feng, J. Han, Y. Gao, and D. Meng, ‘‘Magicube: High reliability and
low redundancy storage architecture for cloud computing,’’ in Proc. IEEE
7th Int. Conf. Netw., Architecture, Storage, Jun. 2012, pp. 89–93.

[46] D. Smiley, E. Pugh, K. Parisa, and M. Mitchell, Apache Solr Enterprise
Search Server. Birmingham, U.K.: Packt Publishing, 2015.

[47] Wikimedia.Enwiki DumpProgress on 20200301. Accessed: Apr. 20, 2020.
[Online]. Available: https://dumps.wikimedia.org/enwiki/20200301/

[48] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes, ‘‘Long-term
slos for reclaimed cloud computing resources,’’ in Proc. ACM
Symp. Cloud Comput., New York, NY, USA, 2014, pp. 1–13, doi:
10.1145/2670979.2670999.

[49] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
‘‘Towards understanding heterogeneous clouds at scale: Google trace anal-
ysis,’’ Intel Sci. Technol. Center Cloud Comput., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. ISTC-CC-TR-12-101, 2012, vol. 84.

[50] H. Liu, ‘‘A measurement study of server utilization in public clouds,’’
in Proc. IEEE 9th Int. Conf. Dependable, Autonomic Secure Comput.,
Dec. 2011, pp. 435–442.

[51] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, ‘‘One bit is (not) enough:
An empirical study of the impact of single and multiple bit-flip errors,’’
in Proc. 47th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2017, pp. 97–108.

[52] J. A. Duraes and H. S. Madeira, ‘‘Emulation of software faults: A field data
study and a practical approach,’’ IEEE Trans. Softw. Eng., vol. 32, no. 11,
pp. 849–867, Nov. 2006.

[53] E. V. D. Kouwe, C. Giuffriday, R. Ghituletez, and A. S. Tanenbaum,
‘‘A methodology to efficiently compare operating system stability,’’ in
Proc. IEEE 16th Int. Symp. High Assurance Syst. Eng., Jan. 2015,
pp. 93–100.

[54] D. Cotroneo, L. De Simone, P. Liguori, and R. Natella, ‘‘ProFIPy: Pro-
grammable software fault injection as-a-service,’’ in Proc. 50th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Los Alamitos, CA,
USA, Jun. 2020, pp. 364–372, doi: 10.1109/dsn48063.2020.00052.

[55] R. Barbosa, F. Cerveira, L. Gonçalo, and H. Madeira, ‘‘Emulating repre-
sentative software vulnerabilities using field data,’’ Computing, vol. 101,
no. 2, pp. 119–138, Feb. 2019, doi: 10.1007/s00607-018-0657-y.

[56] M. Le and Y. Tamir, ‘‘Resilient virtualized systems using ReHype,’’ 2021,
arXiv:2101.09282. [Online]. Available: https://arxiv.org/abs/2101.09282

FREDERICO CERVEIRA (Member, IEEE) is cur-
rently pursuing the Ph.D. degree with the Uni-
versity of Coimbra, Portugal. His Ph.D. topic
deals with the evaluation and improvement of the
dependability of cloud computing systems in the
presence of hardware and software faults.

RAUL BARBOSA received the Ph.D. degree in
computer engineering from the Chalmers Univer-
sity of Technology. He was an Adjunct Associate
Teaching Professor with the Institute for Software
Research, Carnegie Mellon University. He is cur-
rently anAssistant Professor with the University of
Coimbra (UC). He collaborated with UC. He was
the principal investigator at UC in diverse research
projects. His research interests include reliable
software and distributed systems, including princi-

ples for designing and evaluating computer systems that must ensure safety
and availability. These topics are systematically addressed using formal
approaches, such as model checking and experimental approaches, such as
fault injection.

HENRIQUE MADEIRA is currently a Full Pro-
fessor with the University of Coimbra, Coim-
bra, Portugal, where he has been involved in
the research on dependable computing, since
1988. His research interests include experimental
dependability evaluation, dependability and secu-
rity benchmarking, fault injection, and error detec-
tion mechanisms.

VOLUME 9, 2021 105269

http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1109/SP40001.2021.00049
http://dx.doi.org/10.1145/1655148.1655150
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1145/2670979.2670999
http://dx.doi.org/10.1109/dsn48063.2020.00052
http://dx.doi.org/10.1007/s00607-018-0657-y

