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ABSTRACT The past years have witnessed an increasing interest and concern regarding the development
of security monitoring and management mechanisms for Critical Infrastructures, due to their vital role in
ensuring the availability of many essential services. This task is not easy due to the specific characteristics
of such systems, and the natural resistance of Critical Infrastructures operators against actions implying
downtime. Digital Twins, as accurate virtual models of physical objects or processes, can provide a faithful
environment for security analysis or evaluation of potential mitigation strategies to be deployed in face
of specific situations. Nonetheless, their on-premises deployment can be expensive, implying a significant
CAPEXwhose returnwill depend on the ability to plan and deploy a suitable support infrastructure, as well as
implementing efficient and scalable data collection and processing mechanisms capable of taking advantage
of the acquired resources. This paper presents an off-premises approach to design and deploy Digital Twins
to secure critical infrastructures, developed in the scope of the ELEGANT project. Such Digital Twins are
built using real-time, high fidelity replicas of Programming Logic Controllers, coupled with scalable and
efficient data collection processes, supporting the development and validation of Machine Learning models
to mitigate security threats like Denial of Service attacks. The validation approach of ELEGANT, which
leveraged from the capabilities of the Fed4Fire federated testbeds evaluated the feasibility of using cloudified
Digital Twins, thus converting a significant part of the projected CAPEX for the in-premises model into on-
demand, pay-as-you-go OPEX, eventually paving the way for the establishment of a DTaaS (Digital Twin
as a Service) paradigm. The achieved results demonstrate that the data pipelines providing support for the
ELEGANT Digital Twins have low impact in terms of resource usage in Denial of Service and Distributed
Denial of Service attack scenarios, when higher volumes of data are generated.

INDEX TERMS Digital Twins, SCADA, pipelines, security, programmable logic controllers, DTaaS.

I. INTRODUCTION
Modern automation technologies, deployed in modern Indus-
trial Control Systems (ICS) or Industrial Automation Control
Systems (IACS), have become pervasive [1], playing a cru-
cial part in ensuring the availability of essential and critical
services (e.g., Smart Grid, Water Distribution, etc). Such
systems include many Internet of Thing (IoT) and/or sens-
ing or control components which are instrumental to manage
physical processes - thus, any disruption in their operation
may have catastrophic results. For this reason, operators and
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service utilities are often heavily regulated by standardis-
ation and steering organisations, in order to ensure proper
quality, security and privacy requirements. Compliance with
such standards and procedures necessarily means that oper-
ators have to plan and deploy proper control and monitoring
mechanisms.

In light of the above, security monitoring solutions, along
with other mechanisms for preventive and reactive purposes,
play a key role in the protection of physical infrastructures
and processes. But securing ICS is not an easy task, for
reasons such as the substantial differences between these
systems and their IT counterparts [2], their increasing com-
plexity, or the considerable amount of legacy technologies
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still in use, further aggravated by the fact that deploying
security mechanisms or migrating away from obsolete tech-
nologies often cannot be performed without disruption of
service or prohibitive costs.

Between several domain-specific security techniques,
monitoring of infrastructure components, such as Pro-
grammable Logic Controllers (PLCs), is crucial both for
operational purposes and to detect anomalous behaviour [3] -
moreover because many monitoring techniques entail a low-
overhead and low-risk approach to protect IACS/ICS. In this
perspective, Digital Twins constitute an interesting devel-
opment that may be leveraged to further evolve IACS/ICS
security analysis and monitoring techniques.

The term Digital Twin (DT) has been coined by NASA [4]
to refer to an integrated system that uses available physi-
cal models, sensor updates and other assets to mirror the
behaviour of its corresponding flying twin. The Digital Twin
approach was proposed to accelerate the certification and to
facilitate fleet management and sustainability of aerospace
vehicles. Nowadays, several areas have benefited with the
introduction of Digital Twins, including the creation and
management of complex distributed control systems, cyber-
physical systems security, Industry 4.0 systems or Industrial
IoT platforms, among other domains [5]. Indeed, companies
like General Electric (GE) employ Digital Twins in manu-
facturing processes to monitor and manage the operation of
assets [6]. The power of Digital Twins relies on the advanced
monitoring capabilities, but also on the possibility of proac-
tively assuming the role of the component being monitored.

The application of Digital Twins introduces benefits in
terms of security, as well as in the design and prototyp-
ing of systems with demanding requirements, such as real-
time remote-control applications in mission critical scenarios
requiring low latency and high levels of security and reliabil-
ity [7]. The real advantage of Digital Twins relies in its fusion
with other technologies, like Artificial Intelligence (AI),
for enhanced security analysis or to support Decision Sup-
port Systems (DSS). Besides enhancing security, Digital
Twins also contribute to the optimization of the production
processes in real-time [8], through big data analysis that
support advanced analytics, as well as efficient and proactive
monitoring.

DTs enable the development of evolved security assess-
ment and monitoring techniques that are complementary to
existing Intrusion Detection and Protection (IDPS) mecha-
nisms. In fact, not only there is a high degree of compati-
bility as, in some cases, some security mechanisms may be
leveraged for DT coupling purposes, as it is the case for the
Shadow Security Unit (SSU) [9]. Being originally conceived
to provide runtime monitoring of PLC devices, by intercept-
ing both network traffic and physical I/O channels, SSUs can
be easily repurposed as synchronisation mechanisms, feeding
a DT with a continuously updated snapshot of a device state.
This calls for the deployment of coupling mechanisms by
means of data pipelines, providing a way to synchronise
information across the physical and DT domains, as well as

with any components used for in-replica analytics, eventually
based on Machine Learning (ML) techniques and monitoring
processes.

Despite the potential gains with the deployment of DTs,
their on-premises implementation can prove to be expensive
for IACS/ICS operators, due to the required investment to
set-up and maintain the support infrastructure. Additionally,
security and safety monitoring mechanisms need also to be
adapted to synchronise with the DT replica, feeding a sim-
ulated virtual model that can be employed as the basis to
build more evolved capabilities, such as Decision Support
Systems [8].

In this scope, the ELEGANT (EnabLing sEcurity with
DiGitAl Twins) project aims to validate the use of DTs, built
with emulated control components at large scale, to estab-
lish a safe ground for analysis, development and validation
of suitable security detection techniques, outside the scope
of the production infrastructure. Instead of pursuing an in-
premises deployment model, ELEGANT focuses on leverag-
ing the capabilities of the Fed4Fire federated testbeds [10],
in order to evaluate the feasibility of using cloudified DTs,
thus converting a significant part of the projected CAPEX
for the in-premises model into on-demand, pay-as-you-go
OPEX, eventually paving the way for the establishment of
a DTaaS (Digital Twin as a Service) paradigm.

Overall, the contributions of the ELEGANT project can be
summarised as such:

1) Design and validation of a data pipeline solution
to secure critical components within the Fed4Fire+
project [10] federated testbeds.

2) Design and validation of an off-premises approach to
deploy Digital Twins reducing the CAPEX, within ade-
quate levels of performance and security.

3) Design and validation of ML models to identify dif-
ferent type of DoS attacks targeting critical infrastruc-
tures, considering the Digital Twin model information.

4) Large scale experimentation with different deploy-
ment models for Container Network Functions
(CNFs) or Virtual Network Function (VNFs), which
are aligned with the service containerization and
microservice decoupling trends, also characteristic of
the 5G service-driven reference architecture.

5) Publicly share the datasets that were collected to
enhance the training and validation of the ML models
to enable Digital Twins. The details on the datasets are
fully disclosed at [11].

This paper will focus on the communication stream anal-
ysis and learning components required to enable efficient
digital replication of critical systems through DTs, as well
as demonstrating their use to develop and validate ML-based
detection techniques for network attack detection.

The remainder of the paper is organised as follows:
Section II introduces the background associated with
Critical Infrastructures and overviews relevant works.
Section III provide the motivation for the ELEGANT project,
while Section IV introduces the ELEGANT architecture to
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enable DTs and models to detect different types of DoS
attacks. Section V details the reference scenario that was
established to validate the ELEGANT off-premises approach,
in a distributed testbed. Section VI documents the achieved
results, and Section VII concludes the paper.

II. BACKGROUND
This section intends to introduce the reader to several relevant
aspects regarding the Critical Infrastructure (CI) security and
Industrial Control System (ICS) domains, with an emphasis
on the technologies and topics deemed relevant in the scope
of the ELEGANT project.

A. CRITICAL INFRASTRUCTURE SECURITY
When it comes to cybersecurity, the CI domain constitutes
a multidimensional challenge, in the sense that the topic
involves several aspects such as the protection of physical
process and communications infrastructures or hardware/-
software lifecycle and asset management, just to name a few.
Due to the specific characteristics of such infrastructures,
these aspects often cannot be adequately handled using strate-
gies and tools inherited from the IT world [12], requiring a
domain-specific approach.

As ICS become more complex and distributed, with an
increased number of attached actuators/sensors and smart
devices, existing security threats are also becoming more
challenging. This situation is further aggravated by the
fact that many vulnerable legacy ICS technologies are still
widespread, many of them designed at a time when operating
safety and reliability were primal design concerns, discarding
cybersecurity aspects. To some extent, the primacy of avail-
ability as the main concern over all other aspects influenced
the CI mindset to consider technological maturity as a guar-
antee of reliability.

ICS, and particularly Supervisory Control and Data Acqui-
sition (SCADA) systems - which constitute the focus of
this paper, are often vulnerable to cyberattacks [13] against
field devices (e.g., sensors or actuators), control elements
(e.g., PLCs, Remote Terminal Units), or even control cen-
ter/process control devices like Human Machine Interfaces
(HMI), or other components. As a result of this situation,
incidents involving SCADA systems have been in the head-
lines over the past years [13], [14]. An example of this is
the recent attack against a water treatment facility, involving
the modification of the dosage of chemical components [14].
To better understand the specific reasons for this, the next
subsections will delve into some of the most relevant aspects
regarding such architectures.

B. SCADA SYSTEMS
SCADA systems have been one of the cornerstones of
modern ICS technology, being used on a diverse range of
industries and infrastructures, from power generation and dis-
tribution to water and gas distribution or factory automation.
Such systems made their debut in the 1960s, having inherited
several characteristics along the way, many of which survive

up to this day. In its simplest form, SCADA systems, as illus-
trated in Figure 1, may include the following components:

FIGURE 1. Example of a basic SCADA system architecture (adapted
from [15]).

• Master Stations handle process supervision tasks, con-
trolling and monitoring slave devices - such hosts are
usually placed on the process network. Frequently, such
stations also encompass HMI (Human-Machine Inter-
face) capabilities, for process visualization, as well as
being connected to services and applications, such as
historian databases, for process-related data logging.

• Slave devices, among which RTUs (Remote Terminal
Units) and PLCs are included, are located on the control
network level. These devices, usually based on embed-
ded systems, are connected to the field-level sensors
and actuators, constituting the cyber-physical mediation
layer of the SCADA system, being in charge of most
process monitoring and control activities, under super-
vision of one or more Master Stations. RTUs have lim-
ited processing and control capabilities, being attached
to process sensors/actuators under control of the mas-
ter stations - by comparison, PLCs are more capa-
ble and autonomous, supporting different programming
languages and more sophisticated control capabilities.
PLCs are often used instead of RTUs in many applica-
tion scenarios, due to a more appealing cost/capability
ratio.

• Field devices constitute the physical interface with
the supervised process, both for data acquisition
(via sensors) and/or execution of actions controlling
its behaviour (via actuators). Such components are
deployed on the field network level.

Such components are linked together by means of proto-
cols and technologies, such as CAN Bus [16], RS-485 [17],
Industrial Ethernet [18], COTS Ethernet or TCP/IP. Commu-
nications between the Master station and the PLC/RTUs is
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supported by using SCADA-specific protocols, like Modbus
over TCP/IP [19], IEC 60870-5-104 (IEC 104) [20] or the
Distributed Network Protocol 3 (DNP3) [21], among others,
making it possible to acquire process data, as well as to
execute actions.

Particularly, SCADA communication protocols such as
Modbus [22], developed by Modicon in 1979, are still
widespread in production environments. Modbus is a client-
server application layer protocol, being often used to sup-
port communications between automation devices such as
PLCs or RTUs and the supervisory stations, being consid-
ered de facto industry standard [23]. The original version
of the protocol (Modbus Serial RTU) was later adapted for
TCP/IP frame encapsulation (Modbus TCP variant), which
the version normally used on Ethernet LANs. Its simplicity,
which is part of the reasons for its popularity (as per the
framing structure depicted in Figure 2), also makes it inse-
cure. This is due to the fact that Modbus does not support
native protection mechanisms, such as encryption. Indeed,
only recently the ModBus/TCP security protocol was spec-
ified, relying on TLS to enable encrypted data transport,
payload integrity protection, and resistance against replay
attacks [24]. Nonetheless, the Modbus security protocol has
not been widely deployed due to its potential overhead in
terms of computing and hardware resources, which renders it
incompatible with the limited capabilities of many SCADA
devices, such as certain RTU/PLC models [25], [26], while
also being incompatible with existing equipment.

FIGURE 2. Modbus framing format.

C. NETWORK ATTACKS AGAINST SCADA SYSTEMS
Successful attacks against SCADA targets are often the ulti-
mate result of several exposed weaknesses and vulnerabilities
which provide suitable intrusion or disruption vectors for fur-
ther exploitation. These may be leveraged to deploy network,
service or process-level attacks, whose ultimate outcomes
may range from loss of process visibility to asset destruction
and even loss of human life, in extreme cases.

Among those, network-level Denial of Service (DoS)
attacks will constitute the main concern for this paper.
Such attacks constitute a serious threat to critical infras-
tructures, which can explore different techniques [27] such
as resource exhaustion, for service degradation (i.e., disturb
data collection or monitoring processes), or vulnerability
exploitation, to explore flaws or holes in applications or in
the design of protocols. Network-level DoS attacks are

commonly performed from spoofed IP addresses (i.e., false
IP addresses) or hijacked devices to avoid/hamper identifica-
tion of their origin – when performed using multiple nodes,
such attacks lead to Distributed Denial of Service (DDoS)
incidents.

Flooding and amplification are two types of DoS attacks
that may impact several devices in a ICS, leading to network
and computing resource exhaustion [27]. For instance, SYN
Flooding involves sending a high volume of SYN messages
to a critical target (e.g., PLCs) in ICS. This type of attack
exploits the TCP three-way handshake mechanism, to target
either the destination IP of the stream or a third-party device,
that will receive the ACK messages because the source
IP was spoofed (in this latter case it becomes a reflection
attack). This may cause the exhaustion of resources in the
target nodes (half-open sockets consume resources) or at the
communications network level (by consuming the available
bandwidth).

Amplification attacks rely mainly on UDP traffic, where
small size packets are sent to the targeted components. Such
traffic, with the origin in spoofed IP addresses, leads to sat-
uration of the available bandwidth, impacting protocols like
Modbus/TCP. Such DoS attacks impact the response times
of Modbus requests, the performance of the protocol and the
monitoring of Modbus devices [28]. Indeed, many critical
infrastructures are very sensitive to delay (and delay varia-
tions), thus any impact on the performance of the protocol
in terms of response time, and the number of requests that
can be handled in specific time periods, may have serious
consequences.

D. THE CASE FOR DIGITAL TWINS
It is recognised that critical infrastructure operators must
deploy stronger, adaptable and resilient cyber-defence solu-
tions. However, designing these solutions is not a straight-
forward process, as it is well known that there is no single
solution capable of addressing the specific requirements and
needs of all CI. This is further true if we consider that themost
sophisticated attacks against cyber-physical systems usually
take advantage of process-specific knowledge to maximise
their impact.

Standards such as the ISA/IEC 62443 [29] series have con-
tributed to fill the gap regarding the establishment of security
guidelines specifically dedicated to ICS. Such guidelines are
perfectly coherent with the ISO 270xx standards series, being
complemented by other recommendations such as the NERC
CIP requirements [30], the NIST Guide to ICS Security [31],
the ENISA Recommendations for ICS Protection [32] or the
IAEA Computer Security at Nuclear Facilities Guide [33],
just to name a few.

Despite these efforts, CIP protection remains a deli-
cate issue due to its specific characteristics, which often
advise against deploying inline monitoring mechanisms or
executing aggressive pentesting campaigns (as recommended
by NIST SP800-82 guidelines [31]), due to the possi-
ble cost of downtime associated to a potential failure or
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unsuccessful procedure. Thus, operators are often advised to
resort to simulation or out-of-band mechanisms to deal with
vulnerability or risk assessment, as well as predictive analysis
of potential cascading faults.

From this perspective, Digital Twins constitute an interest-
ing approach - these consist of virtual systems providing a
real-time digital counterpart (a ‘‘live replica’’) of a physical
object or process. DTs necessarily involve emulating parts
of the system, using real inputs collected from the field to
feed models, which allow to make comparisons with the real
operating parameters, for ongoingmonitoring. Their develop-
ment necessarily requires at least two fundamental resources:
modelling, at least for parts of the system, and proper data
collection mechanisms to feed such models.

The benefits of DTs are manifold: they can provide a
real-time ICS replica whose behaviour can be accurately
compared to the production system, in order to search
for faults or potential incidents and, if properly designed,
a DT can also provide a faithful environment for security
analysis or evaluation of potential mitigation strategies to
be deployed in face of specific situations. When coped with
minimally invasive mechanisms such as the Shadow Security
Unit (SSU) [3], [34] DTs can be fed with real-time data
collected from the production environment.

Nevertheless, implementing an on-premises DT can prove
to be expensive for an ICS operator, due to the required
investment required to set-up and maintain the entire support
infrastructure, both for the DT and also for the required
security and safety monitoring mechanisms.

III. MOTIVATION
The ELEGANTproject establishes its motivation considering
the security issues in Critical Infrastructures (CI) discussed in
the previous section, namely Denial of Service (DoS) attacks.
ELEGANT also considers Digital Twins that relying on cur-
rent communication protocols trends like the Modbus/TCP
provide off-premises solutions to enhance the security and
monitoring in CIs.

Motivation #1 Usage of insecure protocols such as
Modbus/TCP [19] is still widespread [3] for reasons such
as hardware and computational overhead or compatibility
with existing systems, as the migration to secure protocols
relying on TLS such as the Modbus Security protocol [24]
would imply extensive infrastructure updates with associated
downtime. In this regard, approaches that reduce the impact
on production systems (e.g., no replacement of devices/sen-
sors or firmware upgrade), but add extra security levels, are
needed.

Motivation #2 Standards devoted to ICS security, such
as NIST SP 800-82 [31], advise against the execution of
many security assessment procedures in production environ-
ments, due to the sensitive nature of automation equipment
and processes. Additionally, several ML techniques require
training based on specific data sets for each use-case sce-
nario - a requirement that transfer learning approaches may
not fully address and which requires experimentation on the

production environment, something that is out of question for
most operators. In this regard, solutions that rely on DTs, sup-
ported by efficient data collection mechanisms, can provide
safe, off-path and even off-premise environments for analysis
and development of security solutions.

Motivation #3 Assess how the design of Digital Twins
can be promoted to enhance security analysis without down-
time in critical components. The design of Digital Twins for
enhanced security levels is not a trivial task, either in themod-
elling or data collection processes. Indeed, the complexity
can scale according to the dimension, number of devices in
the ICS infrastructure or may require costly and customised
hardware solutions. Enabling DT as accurate virtual models
can rely on the advances of virtualization techniques like
containers/micro-services.

Motivation #4 The deployment of on-premises DTs is
also a complex task and can introduce high costs, as well as
adding more complexity to management processes that are
already complex. The ELEGANT project decided to go for
an off-premises approach, deploying the DT on the Fed4Fire
project [10] with federated testbeds. The rationale for this
strategy was focused on evaluating an alternative approach
for DT deployment, allowing ICS operators to shift the bulk
of the CAPEX into OPEX while maintaining an adequate
level of performance.

IV. ELEGANT: SCALABLE AND SECURE CRITICAL
COMPONENTS
This section details the ELEGANT architecture to enable off-
premise Digital Twins, the approach for scalable and secure
data pipelines to enhance the DTs’ accuracy and ML models
to detect different types of Denial of Service attacks.

A. ELEGANT ARCHITECTURE
The ELEGANT architecture is designed to enable Digital
Twins following an off-premise approach with scalable data
pipelines to secure and monitor critical infrastructures. Data
pipelines correspond to the path on which data is transmitted,
stored, processed and analysed. The data pipeline constitutes
the fundamental mechanism allowing for the communication
of data and the respective processing and analysis supported
by ML models [35]. Also, the same data pipelines allow
for bridging the physical and DT domains, providing the
means to synchronize them, by providing the state infor-
mation which is necessary to feed the simulated/emulated
components.

The ELEGANT project also considers critical elements
that can be distributed over different locations - remote sites,
and a central site to process the collected data from distributed
sites. In this regard, the following components are required at
all sites:

• PLC slave(s) - act as SCADA slave devices that are
connected to the field-level sensors/actuators on each
site. To monitor and manage devices, PLC slave(s)
components implement the control logic in the form of
PLC programs.
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FIGURE 3. Proposed architecture for secure data pipelines.

• Data collection elements - compliant with scalable
approaches for data collection. For instance imple-
menting Kafka producer(s) that stream data to Kafka
client(s).

The central site, besides including all components required
in all sites, also includes a set of components to allow security
analysis and other processes in the data pipeline, including:
• Data Pipeline Cluster(s) - nodes organised in cluster(s)
with efficient mechanisms to allow the processing of
high volumes of data in real-time, andwith data retention
policies for off-line analysis. Such clusters can be imple-
mented with multiple Kafka broker nodes that enable
stream processing in a scalable fashion and for different
types of application/services [36].

• Human Machine Interface (HMI) - nodes with secu-
rity dashboards for human monitoring. Dashboards are
organised per site and aggregate the monitoring infor-
mation regarding the status of components.

• PLC Master(s) - nodes performing the monitoring and
actuation in the critical components through Modbus
TCP/IP traffic. These components, along with HMI,
assure the functionalities of the SCADAmaster devices.

• Security Analysis elements - components with
MLmodels performing the analysis of the streamed data
to detect Denial of Service attacks. Such elements can
be instantiated as Kafka consumers consume data per
required flow analysis. This allows to have distinct types
of analysis per site, for instance considering different
threat models.

The architecture also includes monitoring services in all
the components to allow an integrated approach assessing
resource usage and the behaviour of components.

B. CRITICAL COMPONENTS DISTRIBUTION
Figure 4 illustrates the deployment of the ELEGANT archi-
tecture in multiple sites, which are interconnected through
a central site. Such kind of ICS deployment is also vulner-
able to different type of threat models: i) external to the
sites, where malicious users attack ICS components from the

FIGURE 4. Multi site scenario.

outside network (i.e., from Internet); ii) inside each site,
where attackers can be personnel managing the ICS infras-
tructure, considered as insider threats.

The distribution of components can also consider different
factors such as geographical locations, as exemplified in the
Figure 4, where the Virtual Wall sites are on Belgium and
Grid5000 are on France.

Key enablers for the distributed critical components
include security mechanisms between the interconnection
of sites like Virtual Private Networks (VPN), the Mod-
bus/TCP protocol [37], and monitoring agents. As stated ear-
lier, the Modbus/TCP protocol is one of the most employed
protocols in critical infrastructures. The PLC nodes support-
ing Modbus/TCP, sense data from in-field devices and stream
it to the PLC master nodes in the central sites via polling
mechanisms.

Figure 5 illustrates how the information of the distributed
devices is collected and modelled to enable Digital Twins.
Each PLC slave implements the control logic, as specified
in the PLC programs, which are developed in the Ladder
Logic language [38], using graphical diagrams to express
the circuits (i.e., connections to devices) and the relay logic.
Within PLC programs and the Modbus/TCP protocol the
information of devices is mapped into specific type of reg-
isters considering the data and controls supported by the
respective device. The discrete input coils (i.e., identified
as %IX) contain values of devices with two possible states:
connected - 1/true, and disconnected - 0/false. The analog
registers (i.e., identified as %IW or %QW depending if they
are input or outputs) allow to store information from devices
which measurements vary in a scale/range and that can be
mapped to 16 bits (e.g., water level sensors).

The registers of each PLC client are mapped into the
PLC master to enable the functional modelling of each PLC
distributed in the diverse sites. This mapping relies on the
polling mechanisms of Modbus/TCP, which have also asso-
ciated specific function codes, according to the operation
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FIGURE 5. Distribution of critical components.

to be performed. For instance, the function code 0 × 02
implies reading discrete input coil registers, while the func-
tion code 0× 05 writes values to output coil registers.

The monitoring component also enables the aggregation
of data in the HMI, using an approach that relies on time-
series databases (e.g., Prometheus, InfluxDB, etc), on which
informational dashboards can be designed to convey real-time
status information of the monitored devices, as well as their
resource usage.

C. SCALABLE PIPELINES FOR SECURITY
Human Machine Interface (HMI) components are relevant in
critical infrastructures to gather information regarding critical
components in informative dashboards for human operators.
HMI components, besides providing real-time status of the
critical components, also enable simple mechanisms to detect
abnormal behaviour, based on simple rules/thresholds. For
instance, if metrics are not polled within the configured inter-
val, an alarm can be generated, as well when the values in the
PLC addresses change quickly. Nonetheless, they can provide
erroneous information to operators on successful attacks like
Man-in-the-Middle (MiTM).

Secure data pipelines can include components and func-
tionalities that are able to collect critical traffic, exchanged
betweenModbus slave andModbus master nodes, and propa-
gate the gathered data streams for enhanced security analysis.

Data pipeline cluster(s) can rely on the distributed stream-
ing capabilities of Kafka for different types of application/ser-
vices [36]. It is employed in several domains, ranging from
IoT security, data collection for automation, event processing
in networks, among others. Kafka also supports a failure tol-
erant architecture with multiple brokers configured in cluster
mode. Data is replicated between cluster nodes according to
configured policies, the most frequent topic data is stored in
specific partitions for performance or reliability purposes.

In the ELEGANT architecture, depicted in Figure 3,
the data collection points or Kafka producers are distributed
in the diverse sites, to allow the collection of data in a scalable
fashion. Such collection points capture network level data,
which includes theModbus/TCP traffic and do some process-
ing (e.g., data format conversion) and stream it to the Kafka
cluster(s).

Within the complete set of data from PLCs, enhanced secu-
rity analysis can be performed. The network level along with
the critical information data (i.e., Modbus/TCP) allowDigital
Twins to identify with higher accuracy attacks targeting PLC
nodes. Each critical component like the PLCs in each site,
also includes a monitoring component inspecting the infor-
mation in the Modbus registers and resource usage feeding
the real-time dashboards in the HMI. Despite the duplication
of data, this approach is useful for accuracy in the Digital
Twins components, as information does not solely relies on
a single origin/process, which could be compromised or not
considered trustful.

D. SECURITY ANALYSIS WITH MACHINE LEARNING
Security analysis in critical infrastructures with SCADA
components has been relying on correlation engines [39],
that do not scale to complex infrastructures. In particular,
the engines rely on static rules, which are complex to manage
and have limited detection scope. Early versions of Shadow
Security Unit for SCADA systems [34] used an embedded
correlation engine for event aggregation and processing pur-
poses, whose outputs was sent to a Security Information and
Event Management (SIEM) service (often based on classic
rule-based correlation engines). More recently, SSUs have
evolved to include advanced security mechanisms based on
AI models without the restrictions associated with pure, rule-
based, correlation technologies [9].

Modern IACS/ICS security solutions have evolved towards
incorporating anomaly-based techniques based on data-
driven approaches or ML models, to deal with threats
such as Denial of Service (DoS) and Man-in-the-Middle
(MiTM) attacks. In such context, solutions have consid-
ered aspects related to the computing capabilities of critical
components [40], as well as the capabilities for distributed
processing [41].

The detection of DoS threats can rely on models that detect
SYN flooding attacks by analysing the arrival rate, or dif-
ference between SYN and SYN-ACK packets, or SYN and
FIN packets, which should be coherent as per the handshake
schemes of TCP/IP [42]. The analysis relies on statistical
features of the TCP/IP headers and employs different types
of ML models like Decision Trees and Artificial Neural Net-
works for flooding detection. With accuracy concerns other
ML techniques are explored to detect DDoS in industrial IoT
networks [43]. For instance, Random Forests are combined
with Artificial Neural Networks to achieve accuracy levels
of 99%, and considering features like network flow charac-
teristics such as packet-length, interval between packets and
the protocol used.

Other approaches [44] employ Deep Learning algorithms
but with the restriction of requiring more computational
resources and increased training times of the deep neural net-
works. Additionally, the data used for training is not always
available, limiting the reproducibility or employment of such
models in critical infrastructures.
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The ELEGANT architecture enables off-premise data col-
lection, and off-path security analysis, thus reducing the
potential impacts on running processes of critical infrastruc-
tures. The data required to train ML models for anomaly
detection can also be streamed to the Kafka cluster(s) without
disrupting PLC nodes. As an example, attacks to a ’virtual’
PLC slave (i.e., not participating in the monitoring of critical
processes) can be performed considering the patterns of DoS
attacks [45]. Such data within the relevant features is then fed
into the data pipeline for analysis with ML models.

V. REFERENCE SCENARIO
This section details the reference scenario that was employed
to evaluate and assess the performance of the ELEGANT
architecture as enablers of accurate Digital Twins.

A. EXPERIMENTATION TESTBED
The distributed ELEGANT architecture was evaluated in
Grid5000 (g5k), virtualWall1 (vWall1) and virtualWall2
(vWall2) Fed4FIRE+ testbeds [10]. The federated testbeds
are made available by the Fed4FIRE+ consortium for
research. The vWall1 testbed was employed to validate solu-
tions for the components pictured in Figure 6.

FIGURE 6. Experimentation scenario and nodes interfaces.

The central site was deployed in the vWall2 testbed
and the remaining sites were implemented in the g5k and
vWall1 testbeds. Since the g5k testbed is located in France,
while the others are in Belgium, there was the need to inter-
connect such sites using VLAN technologies available in the
interconnection links between testbeds managed by different
entities.

The components have data and control interfaces, as high-
lighted in Figure 6. The data interfaces include the exchange
of critical information between PLC slaves and PLC masters
via the ModBus/TCP protocol. This information is mainly
employed to monitor and control critical devices, for instance
to stop a water pump. OpenPLC [46] is employed as the open-
source solution to enable PLC slave and PLC master nodes,
as it brings support for Modbus/TCP, includes APIs to upload
PLC programs, and supports other communication protocols
like DNP3 [21].

TABLE 1. Reference nodes in the experimentation.

The control interface of nodes uses a specific physical
network card and is relevant to manage the data collection
process. For instance, through such interface the PLC nodes
can be instrumented tomodify the polling intervals, which are
set at 100ms by default. The bridge nodes are placed in the
path of data interfaces of critical components to enable data
collection points without impacting critical information flows
(Modbus/TCP) exchanged on the data interfaces. The data
collection points placed at the bridge nodes stream the data
to the Kafka cluster(s), as per the configured Kafka topics,
thus enabling the handling of high data volume in a scalable
fashion.

The components were deployed in physical servers with
different computation power, as summarised in Table 1, that
depicts the nodes’ information employed in the experiment
participating actively in the data pipeline.

B. MODBUS/TCP SETTINGS
Regarding the reference architecture, there are both hor-
izontal (PLC-PLC) and vertical (PLC-HMI) communica-
tion patterns. The PLC master, placed in the central site
has multiple configured slaves, as per the PLC slaves
in the diverse sites. The polling mechanisms of Mod-
bus/TCP to collect critical information is configured in
intervals of 100ms (default in OpenPLC). In addition, the
PLC master is configured to map all the registries of PLC
slaves in different addresses, considering the type of PLC
programs running in the PLC slaves of the distributed
sites.

On real-world deployments the polling interval can
be reduced to values around 40ms, leading to rates
around 25pkts/s [47]. Despite introducing higher volumes of
traffic in the network, it has the advantage of allowing a faster
detection of anomalous behaviour. The value of 25pkts/s is
considered as the reference rate for the Modbus/TCP polling
process. In other words, values bellow this threshold trigger
an alarm in the HMI dashboard.

PLC master node(s) query the diverse PLCs slaves, which
implement the sensing logic to gather information from sen-
sors and to actuate as per the control logic of PLC pro-
grams. In the experimentation scenario the PLC slaves have
the role of sensing and actuating on the collected data (see
next section). OpenPLC was also employed as it allow to
emulate devices with different characteristics (e.g., ESP8266,
Arduino).
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C. WATER LEVEL PLC PROGRAM
Each PLC slave executes the logic specified in theWater level
PLC program. As stated, OpenPLC provides APIs and a web
interface to upload such programs on PLCs. Figure 7 depicts
the Water level program in execution, after the successful
compilation of the instructions specific in the Ladder Logic
language.

FIGURE 7. ELEGANT water level PL program.

The underlying logic considers a process for water level
control in a tank, using a level sensor and a water pump
(labelled as SWITCH in Figure 7) which is activated if a
certain threshold (corresponding to setpoints in the PLC Lad-
der Logic language) is achieved. The Water level program,
defines a setpoint of 10, as per line 2 in the program listing 1.
The Water level program, performs actuation by considering
the monitored values and their attachment to the setpoint
(line 6). If exceeding is verified (line 8) then actuation is
performed (line 9), otherwise the actuation considers the
default value (zero, as per line 11).

Listing. 1. Code fragments of the PLC program.

D. DENIAL OF SERVICE ATTACKS
Two types of Denial of Service attacks have been considered,
as per their impact and probability of occurrence in critical
infrastructures [27]:
• Amplification/Volumetric based on UDP traffic with
spoofed IP addresses with small UDP packets (60 bytes)
aiming to overload the network of critical components,
more specifically the data interfaces networks.

• Flooding based on TCP SYN traffic with spoofed
IP addresses, which is sent with different rates and with
packet size of around 120 bytes.

DoS attacks have been performed considering multiple
configurations. Each test was performed using the hping3

TABLE 2. DoS attack rate settings.

tool [48] with the ability to randomise source node IP
(–rand-source option). In addition, two traffic rate classes
were considered for the inter-arrival packet times. Rate 1
includes packet interval rates in a ratio of 10 times higher
than the normal rate of the Modbus/TCP polling pro-
cess. Rate 2 assumes the maximum flood that can be per-
formed with the attack node (--flood option), as summarised
in Table 2.

The attack tests using the hping3 tool were also performed
in a distributed fashion (identified as DDoS), using multiple
nodes in the testbeds. The synchronisation of attacks was per-
formed through the jFed multiple commands functionality.
The DoS targeted the PLC master in the central site, acting
as the SCADA master, polling information from PLCs in
other sites. Both types of attacks were instrumented to use
port 502 as the destination port, which is the default port of
Modbus/TCP.

E. DATA COLLECTION
The data collection was performed at the bridge nodes, acting
as data collecting points, through the use of dumpcap, tshark
tools [49] and custom Python scripts. The data processing in
the Data pipeline includes diverse steps: capture, processing,
and retention as illustrated in Fig. 8.

FIGURE 8. Data processing steps.

The capture was implemented using the dumpcap tool
from the wireshark project, which was configured to dump
network traffic in a ring buffer with file sizes between 2 and
20MB. Such option introduces flexibility, since the capture
does not require specific hardware, only disk space to keep
collected data locally in the Packet CAPture (PCAP) format.
The split between the capture and the processing introduces
reliability in the process, since packet loss in capture process
is avoided (initially, these functionalities were performed in
a single step, which led to high and non-acceptable packet
losses, higher than 15%, in attack scenarios). The ring buffer
configuration of dumpcap also allows to configure the data
collection in terms of duration or intervals that should be kept
in the collection process.
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The processing step was performed through Python scripts
with support for multi-threading. Such scripts include spe-
cific processes to convert data from PCAP format (which
is the result of the previous step) to JSON/CSV format in
order to be streamed and published in the configured Kafka
topics (one per site). One thread was employed to perform
the reading, considering the timestamp of the last processed
packet, and another thread performs the data conversion and
respective publishing in the configured Kafka topics. In order
to support high volumes of data, the data for each site is
streamed to a specific topic (that can be stored in a specific
Kafka partition, or as per other configuration policies). The
processing of the captured traffic in the data collection points
includes the creation of Kafka messages in JSON/CSV for-
mat with fields of the captured packets like IP.src, IP.dst,
ETH.mac.src, ETH.mac.dst, among others and respective
forwarding to the site topic(s) configured in the Kafka
cluster.

The data retention step, besides including the storage of
data, also makes available standard APIs for data consump-
tion, per different policies (e.g., time based, partitions with
specific event streams [50]).

F. SECURITY ANALYSIS WITH MACHINE LEARNING
MODELS
The security analysis has mainly the purpose of detecting
anomalous activity due to DoS and DDoS attacks. In con-
crete, the model developed analyses the incoming traffic
and classifies the flow as Normal (Label 0) or as Attack
traffic (Label 1). The classification considers features in the
TCP/IP header, the packet timestamp information, the packet
length, the TCP sequence numbers, flags and options. In addi-
tion, the features of the framing format, as illustrated
in Figure 2, are considered from the Modbus/TCP protocol:
transaction ID, protocol ID, length, data size, function code,
byte count, response time.

FIGURE 9. Machine learning security analysis pipeline.

Figure 9 presents an overview of the model architecture
and pipeline, including the training and validation steps. The
model was integrated with the ELEGANT data pipeline,
one of the key goals of this work, and the model output
is integrated in the HMI informative dashboards. Overall,
the ML approach is a classifier that receives traffic flow time-
windows as input with the set of features and outputs if the
flow is normal or if it is an attack.Moreover, the classification
is done in two steps:

1) regressing the behaviour of the sampled data;
2) a classification rule based on a threshold applied to the

error of the observed behaviour.
In the training phase the system trains a model that learns

what is considered as normal behaviour, that corresponds to
situations with captured traffic during regular polling mech-
anisms between PLC slaves and PLC master without any
disruption or attack. The results obtained in the training
phase provide the baseline for the prediction error in regular
monitoring and control between PLC nodes. The model, after
being deployed for security analysis, compares the observed
traffic in a configured time-window (e.g., 60s in the experi-
ments), with the predictions of what the traffic should be for
that period. If the error between what is observed and what
is predicted surpasses a certain threshold with statistically
significant differences, it is classified as an Attack. On the
contrary, if there are no statistically significant differences
between what is observed and what is predicted, the traffic
is classified as Normal.
The system deployed for testing and production is based

on Extreme Gradient Boost (xgboost) [51]. The reason for
employing this technique is related with a binary classifica-
tion problem, where two types of traffic, the Normal and the
Attackmust be distinguished. Within the binary classification
problem, there are four possible outcomes: True Positive
(TP); False Positive (FP); True Negative (TN) and; False
Negative (TN); where a positive is when an Attack occurs.

The accuracy of the ML model for the security analysis
considers 3 metrics, that are based on the confusion matrix
covering the types of outcomes from the classification task:

• Precision is concernedwithmeasuring the percentage of
traffic classified as attack that was correctly classified,
as formulated in Equation 1.

Precision =
TP

TP+ FP
(1)

• Recall measures the percentage of actual attacks that
were correctly classified, as per Equation 2

Recall =
TP

TP+ FN
(2)

• F1-measure is an weighted average between the preci-
sion and the recall, as per Equation 3

F1−Measure = 2 ∗
Precision ∗ Recall
Precision+ Recall

(3)

The model achieves best results when the value of the
mentioned metrics are maximised. Considering the positive
class as an attack, Precision shows how well the model is
robust to falsely identify normal traffic as an attack whereas
Recall provides feedback on how fair the system is able to
identify the attacks. In the particular case for accurate Digital
Twins, we argue that high recall values are important but
avoiding low Precision values is also key, so the F1-measure
is important to capture a balance between these two metrics.
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VI. RESULTS
This section presents and discusses the achieved results val-
idating the ELEGANT towards accurate Digital Twins for
security and monitoring. The validation first presents the
overhead in the data pipelines steps, in terms of memory and
CPU overhead, as discussed in section VI-A, and in terms
of input & output impact, as discussed in section VI-B. The
overhead of the background processes, considered as user
services to avoid overlapping with the processes terminol-
ogy in ICS, is also discussed in section VI-C, such services
enable the diverse steps in the data pipeline. The discussion
regarding the security analysis services, the machine learning
models, is performed in section VI-D, while section VI-E dis-
cusses and presents the performance of the devised xgboost
ML models.

This section discusses the experimentation results in the
Denial of Service - DoS, in the Distributed Denial of Service
- DDoS attacks, performed in diverse variants as summarised
in Table 2 and considering the characteristics of the nodes
presented in Table 1.

A. MEMORY AND CPU OVERHEAD IN THE DATA PIPELINE
This subsection discusses the overhead in terms of CPU, sys-
tem and memory usage in the data collection and processing
steps of the data pipeline.

Figure 10 illustrates the overall CPU usage of the elements
participating in the data pipeline, during the DoS and DDoS
attacks. One can observe that the DDoS attacks have an
higher impact in the CPU usage of the diverse elements, since
the DDoS attacks have higher usage ratios, in particular for
the user processes - usage_user, such as OpenPLC in the
bridge nodes, InfluxDB in HMI, among others. Such impact
is more evident in the elements performing the capture of
traffic (i.e., bta1, btsiteb), where in some cases it can go up
to 60%. The amplification attacks lead to higher CPU usage
ratios.

FIGURE 10. CPU usage in the data pipeline.

The memory usage overhead is illustrated in Fig. 11 for the
DDoS and DoS attacks. The node with higher memory usage
ratios are the HMI and kafkasrv nodes, which are associated
with the stream processing and data retention steps of the
data pipeline. The HMI node also hosts the security analysis

FIGURE 11. Memory usage in the data pipeline.

component of the Digital Twin (recall Figure 5). The security
analysis only includes the devised ML model to detect DoS
attacks according to the data being streamed in the pipeline.

The usage ratios do not increase with the higher volumes
of traffic introduced by the distributed DoS attacks (as per
the CPU usage), since the processing of the security analysis
component is performed in a time-window period (60s). For
instance, the consumer of Kafka feeding ML model acquires
data using the timestamp approach for the offsets to fetch
data considering the current time and the previous 60 seconds.
The normal fetching processes consider the current position
of messages in the topics that were read and do not rely
on time information [50]. Higher time-window flow periods,
above 60s, will lead to higher memory usage.

The system load of the diverse nodes is depicted
in Figure 12, considering the load in the previous minute -
load1, and on the previous 5 minutes - load5.
The system load is higher in the distributed DoS attacks,

in particular in the bridge nodes that performing the capture
of packets. The attacks last two minutes in average, which
impacts the load in the 1 minute period - load1 metric. The
HMI, hosting the security analysis component also has an
increased system load due to higher volumes of information
that need to be analysed in the distributed DoS attacks.

B. DATA PIPELINE INPUT & OUTPUT IMPACT
As stated in section V-E the data pipeline includes several
steps: data collection, data processing and data retention in
Kafka components. The data collection step includes the
capture of network traffic in PCAP files and their storage
in the local file system of the bridge nodes for reliability
purposes. Such step impacts the disk input output - diskIO
performance in terms of write and read operations, for write
times, and on the respective waiting times for an operation.

Figure 13 depicts the number of read operations, which
illustrates HMI as the node that is more impacted with the
data pipeline steps. Such performance impact relies in the
fact of using time-series databases to feed the visualisation
dashboards. The number of read operations is almost constant
in the Kafka nodes in the different types of attacks.

When considering the write operations, as pictured
in Figure 14, it is clear that the diskIO performance in the
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FIGURE 12. System load in the data pipeline.

FIGURE 13. DiskIO number of read operations.

data capture step is not impacted by the volume of traffic
that is generated in the distributed DoS attacks. This puts in
evidence that the packet ring buffer option available in the
dumpcap tool scales well for high volumes of data that need
to be collected.

The data retention and processing at the kafkasrv and
HMI nodes leads to a high number of disk operations, in par-
ticular for thewrite operations. HMI also aggregates real-time
database series, necessary for the monitoring component of
the Digital Twin, justifying the higher values, in comparison
to the remaining nodes.

The bottleneck in terms of input and output must also
consider the waiting times of the respective operations. That
is considering the required number of operations, the average
time (in milliseconds) the I/O requests have waited for the
availability of the disk device. Figure 15 depicts the wait time
for the write operations, where the wait times increase with
the distributed DoS (DDoS) attacks in the nodes participat-
ing in the different steps of the data pipeline. For instance,
btsiteb in the DDoS attacks has higher wait times in the write
operations, in particular in the amplification attacks where the
volume of data being captured is higher. Despite, not pictured,
the waiting times for the read operations is also higher in the
HMI node, due to the employment time-series database to
feed the data visualised in the dashboards.

FIGURE 14. DiskIO number of writes operations.

FIGURE 15. DiskIO write waiting times in milliseconds.

Figure 16 illustrates the bytes received and sent over the
network interfaces of the ELEGANT components.

FIGURE 16. Network usage in terms of read and sent bytes.

The distributed DoS attacks lead to high volumes of traffic
traversing the ELEGANT components, as highlighted in the
number of bytes received and written in the btsiteb node.

The type of attack also impacts the critical components,
where the SYN flooding attack - flood 2 attack, occurring in
higher frequency intervals, leads to higher values in the sent
bytes. Which means that PLC components process received
packets, and send the respective replies to conclude the
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negotiation of the TCP handshake process. Even if this
handshake is to be performed with malicious, and forged
IP addresses employed by attacking nodes.

C. USER SERVICES OVERHEAD IN THE DATA PIPELINE
This subsection presents the overhead of the user services,
implemented as scripts and running as background pro-
cesses in the Linux hosts to validate the diverse steps of the
data pipeline. The data collection step includes the dump-
cap, tshark processes. The data processing step includes the
Python scripts to process the PCAP files and stream it to
the data pipeline cluster. On the other hand, the data stor-
age/retention step includes the Java processes running in the
Kafka nodes. The Monitoring includes the telegraf, influxdb,
chronograf processes. It should be noticed that the user ser-
vices performing the security analysis are not included here,
they are reported in section VI-D.

Figure 17 illustrates CPU utilisation rate of the diverse user
services employed in the data pipeline steps.

FIGURE 17. CPU usage by the user services.

The approach to implement the monitoring, to enable the
Digital Twin approach introduces low overhead, since the
CPU used by the programs/scripts is negligible. Opposed to
the processes performing the data collection process, which
can lead to significant CPU usage ratios around 60% in the
distributed DoS attacks. As expected, with higher rates in
the flooding and amplification DoS attacks lead to higher
CPU utilisation.

The distributed DoS attacks also impact other steps in
the data pipeline, although with lower impact severity. For
instance, the user services of Kafka to retain/store the data
consume more CPU in such type of attacks.

Figure 18 illustrates memory utilisation rate of the diverse
data pipeline steps, assured by the respective user services.

Opposed to the trends verified in the CPU utilisation rate,
the monitoring has an high impact in the HMI node in
terms of the memory that is used. The HMI, as stated pre-
viously, aggregates diverse functionalities, which include the
informed dashboards (poweredwith chronograf and influxdb)

FIGURE 18. Memory usage by the user services.

as well as the security analysis. The impact of the security
analysis is not pictured here (refer to subsection VI-D).

The memory required to picture the status of components
in the dashboards increases with the type of DoS attack,
where the flooding with maximum rates - flood2 leads to
higher variation in the memory.

D. SECURITY OVERHEAD ANALYSIS
This section provides the results of the Security analysis
overhead that is deployed on the HMI node. This overhead
includes CPU and memory utilisation rates. The Security
Analysis includes the processes of the Machine Learning
models, with Python3 scripts running in docker containers.

As illustrated in Figure 19 the CPU utilisation increases
according to the number of events that must be analysed.
The distributed DoS attacks lead to higher CPU usage, rates
above 10% in the amplification tests. In the DoS attacks from
a single attacker the ratios are bellow 5% in all the test cases.

FIGURE 19. CPU usage by security analysis component.

As per the memory utilisation, depicted in Figure 20,
the difference between the diverse attack tests is minimal
(bellow 0.2%). In addition, the increased number of events
to be analysed does not introduce significant impact, since
the analysis is performed in 60s time windows, thus leading
to the same memory footprint in a single analysis step.

E. MACHINE LEARNING MODEL PERFORMANCE
In this section we present and discuss the results obtained
with the xgboost ML model for the security analysis,
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FIGURE 20. MEM usage by security analysis component.

TABLE 3. Digital Twins traffic classification results.

in particular to detect DoS attacks. The system was imple-
mented using the scikit-learn Python library [52] The
reported results rely on the following configurations. In what
concerns the hyper-parameters, we used a value of 0.1 of
learning rate and a maximum tree depth for base learners
of 20.

Our classifier was trained using 10 minutes (2 million
data points) of traffic to establish what corresponds a normal
traffic flow in the system. Such data was considered from the
site running in grid5000 testbed (recall Figure IV-B). After
the training, the testing phase included a period of 20 minutes
of combined normal and attack traffic, and the Precision,
Recall and F1-Score were computed.

The results are summarised in Table 3 and show that the
xgboostMLmodel is able to distinguish between normal and
DoS traffic, attaining a high value (> 0.95) in all the met-
rics considered. Looking at the Recall for the Attack traffic
(= 1.00), it shows that the system was able to detect and
correctly identify all the traffic associated with an attack.

Looking at the Recall metric for the normal traffic, we can
see that it has the lowest value, meaning that there is some
normal traffic that is being classified as attack. These results
are expected, since the xgboostmodel in the security analysis
of the Digital Twin is adjusted to detect any abnormalities
in the traffic, even if they result from a normal increase in
the traffic flow in the system. As an example, such increase
can correspond to the addition of PLC components in the
diverse sites, upon new sensors that may be deployed and that
require management. This result is particularly important to
the conditions in which xgboostMLmodel will be operating,
since classifying normal traffic as attack is far less dangerous
than classifying Attack traffic as normal. In addition, such
inaccuracy can also be detected with the monitoring data that
is pictured in the informed dashboards of HMI (e.g., new
devices being added in the sites).

VII. CONCLUSION
The ELEGANT project validated an off-premises approach
to design and deploy Digital Twins to secure critical infras-
tructures. Such Digital Twins are built using real-time, high
fidelity emulated replicas of Programming Logic Controllers
(PLCs), coupled with scalable and efficient data collection
processes, supporting the development and validation of
ML models to mitigate security threats like Denial of Ser-
vice (DoS) attacks, which can occur with different patterns
(flooding and amplification).

The achieved results in ELEGANT to enable Digital Twins
as accurate virtual models of physical objects or processes,
demonstrate that DTs provide a faithful environment for secu-
rity analysis or evaluation of potential mitigation strategies
to be deployed in face of threats with high impact, such as
distributed DoS attacks.

The approach to enable Digital Twins in ELEGANT has
been motivated by the widespread of Modbus/TCP protocol
with insecure deployment (no encryption) - Motivation#1,
by the need of efficient data collection mechanisms able to
provide safe and off-path environments for multiple analysis
inDTs -Motivation#2, by the prohibited costs associatedwith
on-premisesmonitoring and security analysis -Motivation#4,
and by the need of solutions that can scalewith the complexity
of the IACS/ICS infrastructure -Motivation#3. The validation
approach of ELEGANT, which leveraged from the capabili-
ties of the Fed4Fire federated testbeds evaluated the feasi-
bility of using cloudified DTs, thus converting a significant
part of the projected CAPEX for the in-premises model into
on-demand, pay-as-you-go OPEX, eventually paving the way
for the establishment of a DTaaS (Digital Twin as a Service)
paradigm.

Our next steps include further research on the enablement
of DTaaS concept in SmartGrids powered with 5G networks,
edge computing and associated virtualisation technologies.
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