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Abstract: Hydrogenated amorphous carbon (a-C:H) coatings are attractive materials for protecting
metallic surfaces in extreme biological environments like the human oral cavity, due to the unusual
combination of mechanical properties, superior bioinertness, and relative easier and cheaper produc-
tion. In this work, two a-C:H coatings were deposited on AISI 316L substrates by reactive magnetron
sputtering with two CH4 flows to assess if this outstanding system could extend its application range
to orthodontics. A 30-day immersion test in Fusayama-Meyer artificial saliva was conducted to mimic
an extreme acidic intraoral pH. Extracts were quantified and used to perform in vitro assays with
mono- and co-cultures of macrophages and fibroblast to assess cell viability, while mechanical and
structural behaviors were studied by nanoindentation and visible Raman. The empirically estimated
H contents of ~28 and 40 at.% matched the hard and soft a-C:H coating regimes of 18 and 7 GPa,
respectively. After immersion, no important structural/mechanical modifications occurred, regard-
less of the H content, without corrosion signs, delamination, or coating detachment. However, the
adhesion-promoting Cr-based interlayer seems to reduce corrosion resistance via galvanic coupling.
The highest biocompatibility was found for a-C:H coatings with the lowest H content. This study
indicates that sputtered a-C:H are promising surface materials in orthodontics.

Keywords: a-C:H coatings; sputtering; nanohardness; biocompatibility; metal release

1. Introduction

Fixed orthodontic appliances are the first choice to treat malocclusions, that is, “crooked
teeth” [1], and biometals like stainless steel (SS) and Nitinol (NiTi) thrive for manufac-
turing brackets, archwires, bands, tubes, and other components [2]. Metallic orthodontic
materials are preferred over other classes of materials due to their wide range of properties,
including superior in vivo mechanical behavior [2]. However, the mouth is an extreme
environment: saliva, diet, oral hygiene procedures, and biofilm activity frequently lead to
chemical composition, pH, and temperature variations. [3–7]. This open ecosystem, which
hosts more than 700 species and subspecies of bacteria, fungi, and viruses [3], ultimately
corrodes biomaterials in several ways [8–10]. For instance, low pH values [11], and F and
Cl ions [12] easily induce pitting corrosion, while biofilm activity generates microgalvanic
cells [3]. Furthermore, backet and archwires are tightened under load with elastic or
metallic ligatures, causing fretting [3,10] and crevice [13] corrosion.

The inevitable end result of these corrosion processes is the release of metallic species
(e.g., Ni, Cr, Co, Fe, Ti, usually as ions) into the oral cavity [8,9]. Depending on their
reactivity to biomolecules [14], some metallic species are toxic or can induce allergic
reactions [8,9,15]. Among them, Ni stands out: the International Agency for Research
on Cancer (IARC) classifies Ni (II) and all Ni compounds as carcinogenic or potentially
carcinogenic to humans [16].
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Ni is also a well-known potent allergen capable of triggering hypersensitive reac-
tions [17]. Reported intra- to extra-oral, subtle to severe symptoms of allergy to Ni-
containing orthodontic components include: burning sensation, generalized urticaria,
and widespread eczema [9,18–21], while in general, the impact of Ni-related allergies in
orthodontic seems low but non-consensual [8,9,22], Ni allergies may be underdiagnosed:
symptoms can be subtle, difficult to detect, and easily attributed to poor oral hygiene or
mechanical injuries [21,22]. Nonetheless, allergies do occur, forcing orthodontists to replace
Ni-containing components with “Ni-free” alternatives, stop the treatment, or even refer
the patient to a physician for appropriate medication (e.g., antihistamines, anesthetics, or
corticosteroids) [18–21].

Despite concerns, Ni-containing alloys, like NiTi (~50 at.%) and austenitic SS (8–18 wt.%),
are unquestionably important in orthodontics, since multiple concerns still limit clinicians’
acceptance and widespread use of metal-free alternative material solutions [1,2,23]. A solu-
tion proposed by Surface Engineering is to try to improve interfacial properties, taking
advantage of the already-optimized bulk properties. Two paths are actively explored:
surface modification (e.g., ion implantation or induced passive oxide film), and protective
coatings [24]. However, solutions in clinical practice are still scarce.

Amorphous carbon films, usually termed diamond-like carbon (DLC) films [25], are
extensively used and/or studied as protective coatings for several industrial applica-
tions [26], including to prevent tribocorrosion of metallic parts [27], and clearly attractive
for biomedical applications due to their excellent biocompatibility [28]. The hydrogenated
forms of amorphous carbon, a-C:H, are a major group of DLC materials with H contents
up to 60 at.% [29]. Together with H content, the sp2/sp3 C–C bond ratio governs the
final properties of DLCs [25], which are further tunable by doping [27]. One of the major
disadvantages of DLC coatings is the low long-term adhesion to substrates [30], which
can be improved by depositing a metallic-based interlayer between the substrate and the
C-based coating [27,31].

To the authors’ knowledge, little research has been carried out in orthodontics
when compared to other medical fields (e.g., orthopedics [30,31]), despite encouraging
results [32–34]. Therefore, this work aims to study the H content effect on the overall
biological and mechanical behavior of a-C:H sputter-deposited coatings on an AISI 316L
(SS316L) bioalloy. For that, two reactive CH4 gas flows were selected, matching the
diamond and graphitic regimes of the a-C:H coatings [29,35], included in the hard and soft
categories [25], respectively. Precise characterization, before and after the 30-day immersion
test in acidic Fusayama-Meyer artificial saliva, was performed, presented, and discussed.
In addition, the cell viability was quantified both with mono- and co-cultures of fibroblasts
and macrophages. The highest biocompatibility was found for the a-C:H coatings with the
lowest H content.

2. Materials and Methods
2.1. Synthesis of a-C:H Coatings

The reactive direct current magnetron sputtering technique was used to deposit a-
C:H coatings (Teer Coating equipment, TEER Coating Ltd., Worcestershire, UK) onto
SS316L round and square-shaped substrates. The SS316L surface preparation followed the
“traditional” approach for coating deposition: samples were grinded with SiC sandpapers
(P500 to P2000), and mirror-polished with 3 µm diamond suspension. All samples were
ultrasonically cleaned in an acetone/alcohol bath and dried by hot air flow. Two film
sets were produced with CH4/Ar flow ratios of 1:9 and 1:5, corresponding to CH4 flows
of 5 and 10 sccm, respectively. Preceding the external a-C:H layer deposition, substrates
were sputter-etched with Ar+ bombardment for 30 min to remove surface impurities,
followed by a Cr-based buffer layer formation of approximately 300 nm (Cr and C targets
power of 2000 W and 50 W, respectively) to improve adhesion of the coatings to the
metallic substrates. The deposition parameters were maintained constant: total working
gas pressure of 0.6 Pa, Ar flow of 46 sccm, negative substrate bias of −50 V, and 2 graphite
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targets (99.9% purity) with a constant power of 1750 W. The deposition time was selected
to achieve a total coating thickness close to 1 µm.

Hereafter, the coatings will be termed a-C:5H and a-C:10H, according to the selected
reactive gas flow.

2.2. Coatings Characterization

The surface and cross-section morphologies were analyzed by high-resolution scan-
ning electron microscopy (SEM-ZEISS Merlin Compact/VP Compact, Oberkochen, Ger-
many). Both chemical composition and elemental distribution maps were obtained through
energy dispersive spectroscopy (EDS-coupled Oxford X-Max Instruments to the SEM sys-
tem, Oxford Instruments, Oxford, UK).

Structure and chemical bonding were studied through visible Raman spectroscopy
(LabRAM HR Evolution, Horiba, 532 nm wavelength, Kyoto, Japan). Raman spectra were
deconvoluted in the D and G bands by using Gaussian-type fitting. Two additional peaks
at 1200 and 1500 nm were considered for the a-C:10H films, matching the most frequently
used bands in the fitting process [36].

The C–C sp3 bonding fraction was calculated using Equation (1) [37]:

%sp3 = 0.24 − 48.9 (wG − 0.1580), (1)

where wG is the position of the G peak in the inverse of micrometer unit (µm−1). More-
over, the H content of the coatings was empirically estimated from the Raman spectra in
accordance with Casiraghi et al. [29] by using Equation (2):

[H (at.%)]Raman = 21.7 + 16.6 log
(

m
IG

[µm]

)
, (2)

where m is the slope of the photoluminescence (PL) background and IG is the intensity of
the G peak. This equation is valid for the limited range of 20–45 at.% H [29].

The average surface roughness (Ra) was measured by atomic force microscopy (AFM -
Veeco DiInnova, Barcelona, Spain) running in intermittent mode (vibration frequency of
11 to 19 kHz) on a 2 × 2 µm2 area. A contact angle system OCA equipment (DataPhysics
Instruments GmbH, Filderstadt, Germany) was used to assess the static contact angles
applying distilled water (at least three measurements per sample).

Mechanical properties were evaluated by depth-sensing nanoindentation, using a
Berkovich indenter (MicroMaterials NanoTest platform, Wrexham, UK). Each hardness
value was calculated from an average of 20 indentations performed under a normal load of
5 mN, with an indentation depth below 10% of the coating thickness.

Following Singha et al. [37], the H contents of the coatings were alternatively estimated
from their hardness knowledge by using Equation (3):

Hardness [GPa] = 44.195 − 0.93 × H content [at.%]. (3)

2.3. Saliva Immersion Test

Samples were immersed in a modified Fusayama-Meyer artificial saliva (Table 1)
at a constant temperature of 37 ◦C for 30 days (stirred once a day on a digital shaking
platform). According to standard ISO 10271 [38], a ratio of 1 cm2 of sample surface area
per 10 mL of solution was preserved, and the pH was set at 2.3. After immersion, samples
were ultrasonically cleaned in alcohol and air-dried prior to characterization. Released
Ni, Cr and Fe ions were measured in duplicates by inductively coupled plasma-optical
emission spectroscopy (ICP-OES) in a Horiba Jobin-Yvon Ultima apparatus (Edison, NJ,
USA). The average metal release rates (per day and per cm2) during the immersion times
were estimated. Uncoated SS316L samples were used as reference.
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Table 1. Chemical composition of the Fusayama-Meyer artificial saliva.

Concentration [g/L]

NaCl KCl CaCl2·2H2O NaH2PO4 Na2S·9H2O CO(NH2)2 HCl (1 M)

0.4 0.4 0.795 0.78 0.005 1 until pH = 2.3

2.4. In Vitro Cytotoxicity
2.4.1. Cell Cultures

NIH/373 (ATCC® CRL-1658TM) fibroblasts [39] (the most used fibroblasts in biomedicine
and pharmacy [40,41]) and Wistar rat peritoneal macrophages (collected in-house as de-
scribed elsewhere [42]) were incubated in Dulbecco’s Modified Eagle’s Medium (DMEM–
Gibco® 1×, 11966-025, ThermoFisher Scientific, Altrincham, UK) supplemented with 5%
fetal bovine serum (FBS–Sigma-Aldrich®, F7524, St. Louis, MO, USA), 1% L-glutamine
(L-Glutamine 100×, 200 mM, XO55O-100, Biowest, Nuaillé, France, USA), and 1% antibi-
otics (penicillin and streptomycin, Lonza Pen Srep, Amphotericin, B 100×, 17-745, Lonza
Walkersville Inc., Walkersville, MD, USA) at 37 ◦C, 5% CO2, and 95% humidity (Binder
incubator, CB 150, Uster, Switzerland).

2.4.2. Extract Testing

In the present work, the cytotoxicity assays were based upon extract testing, according
to ISO 10993-5 [43] and by adapting the protocol developed and followed by Costa et al. [44].
Fibroblasts and macrophages were separately seeded or co-cultured in 48-well flat-bottom
plates (Corning Inc Costar®, 3548, Corning, NY, USA) in sterile conditions (flow laminar
chamber, Heraeus Holten, HBB 2448, LabExchange, Germany). For both monocultures and
co-cultures, a total number of 2.6 × 103 fibroblasts and/or 5 × 104 macrophages per well
were used. For controls, 800 µL of culture medium was added to each well, while for
the extracts 100 µL of each extract (a-C:5H or a-C:10H) or artificial saliva were used plus
700 µL of complete culture medium, to obtain the same total volume (800 µL). Plates were
prepared to be incubated for 3 and 5 days, under the previously described conditions
(37 ◦C, 5% CO2, 95% humidity).

2.4.3. MTT Assay

After each incubation period, the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide) assay was conducted to quantify cellular viability [45]. In aseptic conditions,
the content of each well was removed, and 720 µL of fresh complete culture medium
and 80 µL of MTT were added. The plates were placed inside the incubator for 4 h in
the previously described conditions. Afterwards, the solution of each well was removed,
and 800 µL of isopropanol were added to stabilize the formazan crystals for 15 min over
(at room temperature over the bench). Finally, the absorbance was measured at 570 nm
with a reference filter of 620 nm using a spectrophotometer (Biotek Synergy HT, Winooski,
VT, USA). After the MTT test, optical contrast phase microscopy (OPCM) micrographs of
fibroblasts provide further insights (AE31 microscope, Motic, with a Moticam Pro 285A,
Schertz, TX, USA and software Motic Images Plus 2.0 software).

2.5. Statistical Analysis

Statistical analysis was performed using the SPSS Statistics software (version 25)
from IBM Corporation, and graphs were obtained with the Prism GraphPad software
(version 5.01). Since controls varied between assays, the MTT values were expressed as
percentages of the average control value of each experiment. Cell viability between the
groups was compared by using the non-parametric Kruskal–Wallis test. To compare the
cellular viability percentage values between two specific groups, the Benferroni correction
for multiple comparisons was chosen. Statistically significant differences were determined
for a significance level of p < 0.05.
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3. Results and Discussion
3.1. As-Deposited Characterization

Table 2 summarizes the main characteristics of both sputter-deposited a-C:5H and
a-C:10H coatings.

Chemical composition and elemental cross-section distribution maps obtained by
SEM/EDS revealed a homogeneous outer C-containing layer for both coatings, followed
by a Cr-rich buffer interlayer onto the Si substrate, Figure 1. Despite all precautions,
including the intended initial low vacuum pressure of ~10−3 Pa and the substrate surface
cleaning with Ar+ sputtering etching, some residual oxygen contamination was detected,
particularly for a-C:10H (see Table 2). Nevertheless, one can conclude that this low impurity
content is preferentially located in the adhesion interlayer region, as shown by the O Kα

distribution maps in Figure 1, due to the high affinity of Cr for O, decreasing towards the
external a-C:H surfaces. Some Ar subplantation was also identified in the a-C:5H coatings
(see Table 2, EDS maps not shown), as mentioned in other research [46,47], since Ar was
the carrier gas during the sputtering film formation.
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Table 2. Main characteristics of the a-C:H coatings in both as-deposited and as-immersed conditions.

– -
a-C:5H a-C:10H

As-dep. As-imm. As-dep. As-imm.

Flow gas ratio CH4:Ar 1:9 1:5

Thickness [nm]
Cr-based
interlayera-C:H
external layer

343
743

313
849

Elemental composition
* [at.%]

C
Cr
O
Ar

95.2
2.8
0.4
1.6

94.6
3.1
0.5
1.8

91.3
2.0
6.7
0.0

91.5
2.1
6.4
0.0

Roughness [nm] Ra 4.3 4.1 5.4 5.2

Contac Angle [◦] 70 ± 1 56 ± 2 66 ± 1 53 ± 2

Nanohardness [GPa] HB 18.2 ± 1.8 18.1 ± 1.2 7.1 ± 0.3 7.0 ± 0.5

Raman bonding
configuration

G band [cm−1]
ID/IG ratio
sp3 bonds [%]

1547
0.67
39.9

1547
0.65
40.2

1573
0.59
27.5

1573
0.61
27.3

Empirical H content
[at. %] 28.0 ± 1.9 28.1 ± 1.3 39.9 ± 0.3 40.0 ± 0.5

* Chemical composition excluding H content.

Concerning the as-deposited morphology, Figure 1, a well-defined columnar Cr-based
adhesion layer of ~300 nm, contrasts with a thicker external a-C:H layer with the typical
cauliflower-like plan-view morphology [10,48–50]. Few conic defects—recognized in other
research reports [51,52]—were identified in this study.

Visible Raman spectra present dissimilar structural features, Figure 2, evidencing
the role of the H content during the a-C:H films formation. The spectra of the a-C:10H
coatings exhibit a prominent PL background in contrast to a-C:5H. This is a well-established
signature of hydrogenated amorphous carbon films, with H contents higher than ~20–25 at.%.
Close to or below this range, the PL influence is almost or completely null; for higher
values, PL background increases exponentially, obscuring the visible Raman spectra near
or above 40–45 at.% [29,37,53]. According to Marchon et al. [53], this effect is caused by
the electron/hole pairs within the sp2-rich clusters, and increases due to the progressive
saturation of non-radiative recombination sites (e.g, carbon dangling bonds), resulting
in more CHx (x = 1,2,3) terminations and polymeric-like bonds. A higher H content is
therefore expected by increasing the CH4/Ar flow ratio from 1:9 to 1:5. In fact, the estimated
H content for a-C:10H samples by applying Equation (2) was 46 at.% (Table 2). In contrast,
the PL background is absent for the a-C:5H coatings, Figure 2, evidencing an H content
below 25 at.%. Similar results were obtained in a previous work by the authors [46].

For a-C:5H coatings, a value of 28 at.% H was predicted from Equation (3), in agree-
ment with its superior nanohardness of 18 GPa (Table 2); for the softer a-C:10H coatings
(7 GPa), a higher H content of 40 at.% was estimated, agreeing with the predicted Raman
PL background (Equation (2)). As mentioned before, higher H contents modify the C–C
bonding by terminating double bonds of carbon as C(sp3)–Hx (x = 1,2,3) without increas-
ing the C–C sp3 fraction of the films. Therefore, hardness decreases with increasing H
content [37,46], corroborating the mechanical behavior evaluated by nanoindentation.

Casiraghi et al. [29] presented a classification for a-C:H coatings based on the infor-
mation extracted from the Raman analysis, and deeply related to H and sp3 contents.
According to this classification, the a-C:H with an H content ranging from 20 to 40 at.%
are named Diamond-Like a-C:H (DLCH). DLCH coatings show hardness values up to
around 20 GPa, and an sp3 range of 40%–60% [54], matching the obtained data for a-C:5H:
hardness of~18 GPa, sp3 ~40%, and an estimated H content from Equation (3) of ~28 at.%
(see Table 2).
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Figure 2. Visible Raman spectra of the as-deposited a-C:H coatings (inset: Gaussian fitting procedure for a-C:5H films), and
the corresponding AFM surface topography and drop contact angles.

For classifying the a-C:10H coatings, however, it is necessary to analyze another
noticeable Raman feature in Figure 2: the deviation of the denoted G and D bands, accepted
to be centered at around 1520–1570 cm−1 and 1350 cm−1, respectively [29,36]. The peak
fitting with Gaussian-type bands revealed a small decrease of the D/G peak intensity ratio,
I(D)/I(G), and a shift of the G band position to higher wavelength values with increasing H
content (Figure 2 and Table 2). Apparently, such behavior contradicts the expected decrease
on both the position of G and the I(D)/I(G) ratio when increasing H content above 20 at.%—
the Polymer-Like a-C:H (PLCH) category proposed by Casiraghi et al. [29]. Nevertheless,
the authors distinguish another group, which corresponds “to PLCH containing sp2 rings
or to a highly hydrogenated GLCH [Graphite-Llike a-C:H]”—GLCHH. This peculiar case
exhibits high H contents (~30–40 at.%), low hardness and sp3 contents around 30% [29].
In this work, an sp3 content of ~27.6% and an H content of ~46 at.% were calculated
from Equations (1) and (2), respectively, while the obtained hardness value of ~7 GPa
corresponds to an H content of ~40 at.% from Equation (3), agreeing with this classification.
The a-C:5H and a-C:10H coatings produced in this study can, therefore, be included in the
DLCH and GLCHH categories, respectively.

Finally, the highest contact angle values were obtained for the as-deposited a-
C:5H, a mean value of 70◦, comparable to those observed by several authors on DLC
coatings [25,55–57]. In fact, 70◦ has been considered the angle above which a surface is
named hydrophobic, i.e., the limit between hydrophobic and hydrophilic surfaces [58].
Nonetheless, Berg’s limit prefers a value of 65◦, referring to the minimum detectable
hydrophobic forces and separating hydrophilic (θ < 65◦) from hydrophobic (θ > 65◦)
surfaces [59,60]. The as-deposited a-C:10H coatings exhibited a slightly lower contact angle,
66◦, compared with a-C:5H samples, but still above Berg’s limit. The AFM roughness value,
Ra, for a-C:10H coatings could justify this difference due to the slightly higher Ra values:
4.2 vs. 5.4 nm (see Table 2 and Figure 2). According to Wenzel’s equation [61], if surface
roughness increases on a hydrophilic surface, the contact angle of a droplet increases, while
the opposite occurs on a hydrophobic surface [62]. Furthermore, an increase of H content
was expected to increase the contact angle, due to more non-polar surface C–H bonds and,
consequently, less unsaturated C=C bonds [59]; however, the presence of O contamination
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in the a-C:10H coatings may be responsible for increasing surface energy [25] and the
dipolar interaction with water molecules, which lower the contact angle.

3.2. As-Immersed Characterization

Acidic conditions of the 30-day in vitro immersion test simulated extremely low pH
values occurring inside the oral cavity, for instance, when drinking acidic soft drinks [63]
and/or caused by microbiological activity (dental plaque) [7].

The results obtained show that both a-C:H coatings are new promising surface mate-
rials in orthodontics. In fact, the comparison between the as-deposited and as-immersed
conditions, Table 2, validates the expected inertness behavior of the C-based coatings. No
appreciable microstructural or mechanical variations were detected, without any signs of
corrosion, delamination, or coating detachment from the substrates. As seen in Figure 3a,b,
surface morphologies are very similar to those observed before immersion, Figure 1, and
the conic defects remained after 30 days in acid artificial saliva.

Figure 3. Surface SEM micrographs of the as-immersed (a) a-C:5H and (b) a-C:10H coatings, and the corresponding visible
Raman spectra (inset: Gaussian fitting procedure for a-C:10H films), AFM surface topography, and drop contact angles.

Note, however, that contact angle values decreased, Figure 3, and are now below
Berg’s limit [59,60], confirming the hydrophilic nature of the coatings produced in this
study. Since the decreases are similar (~14 and 13◦) for both coatings, the most likely cause
is an analogous effect of the artificial saliva on either surface. Element adsorption from the
solution, which persisted after cleaning procedures prior to analysis, may have influenced
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surface wettability. The surface roughness, Ra, remains low for both coatings, less than
6 nm.

Raman analysis revealed that structural binding of the a-C:H coatings was unaffected
after the 30-day immersion test in aggressive acidic saliva solution, and their distinct DLCH
and GLCHH characteristics are conserved. In fact, as-deposited and as-immersed spectra
of both coatings are almost coincident (Figures 2 and 3), with no observable changes in
the G and D peak positions or sp3 content (Table 2). Mechanical behavior after acidic
immersion was also preserved in the hard (~18 GPa) and soft (~7 GPa) regimes, according
to the structural and chemical characteristics.

Such encouraging results indicate that a-C:H protective coatings should rise as
promising candidates to help solve the corrosion issue in orthodontics. However, unfor-
tunately, the ICP-OES data, due to their protective ability, were clearly beyond expecta-
tions (Figure 4). It is well known that the general corrosion mechanisms and the subsequent
metal release from SS samples involves the loss of the passive character of the chromium
oxide and/or chromium hydroxide layer. Nevertheless, SS316L is considered to have
excellent corrosion resistance, and the low Ni, Cr, and Fe ion release rates obtained confirm
this property. However, data show that a-C:H-coated samples released considerably higher
amounts of ions during the 30-day immersion test than the reference sample, Figure 4,
while the opposite was logically anticipated.

Figure 4. Metal release rates of the uncoated and coated (a-C:5H and a-C:10H) SS316L samples
during 30 days of immersion.

These findings are difficult to explain, since half of each SS316L coated substrate was
covered with an inert, stable a-C:H layer (as confirmed by the characterization performed
and presented above). In fact, a recent study [64] focusing on the characterization of the
electrochemical stability of DLC coated interlayers and interfaces highlights the crucial
role of metallic-based interlayers in increasing overall corrosion susceptibility, due to
the formation of galvanic cells, particularly if Cr–C based interlayers are used. Indeed,
most authors that found a significant in vitro decrease in metal release from DLC-coated
samples (for instance, in artificial saliva [65] and saline [66]) did not report the use of
interlayers. Ongoing studies focus on avoiding a Cr-based interlayer and replacing it with
other materials.

Despite the obvious higher metal ion release from a-C:H-coated samples when com-
pared with uncoated SS316L, Figure 4, it is necessary to notice that the values found are
considered non-toxic: dietary studies conducted in different countries estimated a daily
intake of Ni from food and drinking water of 100–300 µg/day (and consumption of Ni-
enriched foodstuff may increase this value up to 900 µg/day [22,67]). Concerning Cr, an
average daily intake of 280 µg/day was estimated [22]. Finally, Fe is an essential element
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and is consumed daily in large quantities in the human diet, including in drinking water,
and does not represent a risk to human health [68,69].

3.3. Biological Characterization: In Vitro Citotoxicity

The MTT cellular viability values for fibroblasts, macrophages, and their co-culture,
regarding cytotoxicity due to incubation (3 and 5 days) with the extracts, are presented in
Figure 5. Two rows of control wells per culture plate have been seeded, i.e., only cells with
medium fibroblasts, macrophages, or their co-culture, respectively.

Figure 5. MTT cell viability of (a,b) fibroblasts, (c,d) macrophages, or (e,f) co-culture after incubation with extracts for 3 and
5 days. Legend: 316L–medium conditioned with extracts from SS316L; a-C:5H–medium conditioned with extracts from
a-C:5H coatings; a-C:10H–medium conditioned with extracts from a-C:10H coatings; Saliva–medium conditioned with
extracts from artificial saliva. (MTT values are expressed in percentage of each mean value of each experimental Control.)
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3.3.1. Fibroblasts

Statistical analysis of fibroblast results after 3 days of incubation revealed statistically
significant differences (p < 0.001) between the five study groups (Control, SS316L, a-C:5H,
a-C:10H and Saliva) due to the following pairs: Control-SS316L (p = 0.001), Control-a-C:5H
(p < 0.001), Control-a-C:10H (p < 0.001) and Control-Saliva (p < 0.001).

The statistical differences between the control and the extracts may be due to their
chemical compositions, since ICP-OES analysis detected the presence of Ni, Cr, and Fe
(Figure 4). The cytotoxic and carcinogenic effect of Ni is well-established in the literature.
In fact, studies conducted by Terpilowska et al. [70] and Taira et al. [71] verified that this
element reduced cellular viability of several types of fibroblasts. As for Cr, its cytotoxic
effect and ability to induce DNA mutations and oxidative stress in cell cultures were also
reported in the literature [72,73]. According to the graph of Figure 5a, the coated metallic
samples (a-C:5H and a-C:10H) incubated with extracts showed lower cellular viability than
the ones for only-polished reference samples (SS316L), which was not expected. However,
these findings agree with the ICP-OES values, since uncoated SS316L samples revealed
lower Ni and Cr concentration values in the artificial saliva solution.

Statistically significant differences between Control and Saliva may be justified due to
the low pH value of the saliva. Borsi et al. [74] reported a significant reduction in fibroblast
proliferation for pH values below 7.0. In addition, Kruse et al. [75] indicated that fibroblast
proliferation is reduced for a pH value under 6.5, and cellular viability decreases in acidic
environments. The low pH value of the artificial saliva was easily confirmed by the phenol
red present in the culture medium (DMEM): the “pink-colored” medium (pH 7.4) became
“orange” immediately after adding the extract drops.

After 5 days of incubation, fibroblasts showed statistically significant differences
(p = 0.004) regarding Control-a-C:5H (p = 0.013) and Saliva-a-C:5H (p = 0.020). With a longer
incubation period, statistically significant differences in Control-SS316L, Control-a-C:10H,
and Control-Saliva disappeared, realizing that cells had more time to release growth factors.
Associated with intrinsic cellular defense mechanisms, these factors allowed a better
adaptation of the fibroblasts to the medium conditioned with Cr and Ni ions. Moreover,
fibroblasts, after 3 days of incubation, are still in an early growing stage; therefore, any
added stimuli into the culture medium will affect their viability. However, statistically
significant differences in Control-a-C:5H remain, as well as in Saliva and a-C:5H, which
did not appear after 3 days. From the analysis of Figure 5b, it is possible to verify that
values for Control and Saliva are similar, i.e., values of cellular viability for both media are
statistically identical (p = 0.906).

After the MTT test, the OPCM micrographs of fibroblasts (Figure 6a–e) provided
further insights. After 3 days of incubation, Control fibroblasts showed a more elongated
and flatter morphology, which is typical of further developed fibroblasts (Figure 6a). As
they continue to multiply themselves, there are also a few round-shaped, more tridimen-
sional fibroblasts present, i.e., characteristic of cells in an earlier stage of development.
Fibroblasts with this round-shape morphology are present in higher numbers in wells
conditioned with extracts (Figure 6b–d). Additionally, an expressively lower total number
of cells is observed when compared with the Control, confirming the statistical analysis.
This decrease is also perceived for Saliva samples (Figure 6e), yet not so expressive.

After 5 days of incubation, both the number and morphology of these cells show
some differences (Figure 6i–v). In the Control (Figure 6i), there is a much higher number
of fibroblasts, showing a more elongated, branched, and flatter morphology, suggesting
a more developed growing stage. In medium conditioned with extracts from SS316L
(Figure 6ii), the number of cells is lower when compared with the Control, but higher in
comparison with the 3-day homologous wells (Figure 6b). Furthermore, these fibroblasts
are in a more advanced development stage (fibrocytes). An identical feature is observed for
a-C:10H and Saliva samples (Figure 6iv,v), only exhibiting a higher number of fibroblasts
than the groups conditioned by extracts from SS316L. In the a-C:5H group, however, the
presence of fewer fibroblasts is notorious (Figure 6iii). Moreover, most of these cells are
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still in an early growth stage (round-shaped, more tridimensional), revealing develop-
ment/adhesion difficulties. This observation confirms the statistical analysis and other
results: metallic ions present in the a-C:5H extracts inhibit the usual growth and prolifera-
tion of fibroblasts.

Figure 6. Fibroblasts post-MTT observed with OPCM at 3 days (a–e) and 5 days (i–v) of incubation (200×): (a,i) control; (b,ii)
conditioned medium with AISI 316L steel eluates; (c,iii) conditioned medium with a-C:5H coating eluates; (d,iv) conditioned
medium with a-C:10H coating eluates; (e,v) conditioned medium with artificial saliva.

3.3.2. Macrophages

In contrast to fibroblasts, statistical analysis of macrophage cellular viability revealed
no statistically significant differences between the groups after 3 and 5 days of incubation
(p = 0.110 and 0.991, respectively). These p-values allowed us to conclude that the presence
of artificial saliva or the released products from coated or uncoated samples induced no
severe effects on the cellular viability of macrophages, which are phagocytic cells.

Despite the absence of significant variations, the decrease in cellular viability is note-
worthy (Figure 5c). As for fibroblast culture, extracts from coated and uncoated metallic
samples (SS316L, a-C:5H and a-C:10H) induced variations in cellular viability due to Ni
and Cr release after 3 days. Once more, a-C:5H and a-C:10H showed lower values than
SS316L. Cellular viability values are also lower in Saliva due to the acidic pH of saliva.

For all groups, OPCM micrographs revealed a decrease in the cell number in
comparison with the Control. Macrophages displayed their typical rounded shape with
some projections (Figure 7a–e). When the medium is conditioned with the extracts
(Figure 7b–d), the round shape was maintained; however, the cells were bigger. In Saliva
sample (Figure 7e), a slight reduction in the cell number was observed due to the low
pH, but their dimensions and shapes were identical to the Control, frequently displaying
filopodia-like projections.

After 5 days of incubation (Figure 5d), the obtained results were also similar between
groups, but higher when compared with the 3-day test. Like fibroblasts, macrophages
adapted themselves to the four media, even when conditioned with the extracts from
a-C:5H. Macrophages have the ability of phagocyting released ions that are present in the
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extracts, converting the media into an adequate environment for their survival and leading
to a positive cellular response. Cellular viability variations are due to the natural death of
the naive macrophages, since these cells do to divide in vitro.

When compared with the 3-day test, OPCM micrographs after 5 days showed that
these cells maintained their rounded-shape morphology with slightly bigger dimensions
than the Control (Figure 7ii–iv) when seeded in contact with extracts (SS316L, a-C:5H
and a-C:10H). This finding agrees with previous results, i.e., macrophages phagocyted
the released products from coated and uncoated SS samples and had more phagocytic
vesicles inside. Finally, macrophages seeded in Saliva displayed similar characteristics to
the Control, demonstrating their adaptability to the acidic medium along time.

Figure 7. Macrophages post-MTT observed with OPCM at 3 days (a–e) and 5 days (i–v) of incubation (200×): (a,i)
control; (b,ii) conditioned medium with AISI 316L steel eluates; (c,iii) conditioned medium with a-C:5H coating eluates;
(d,iv) conditioned medium with a-C:10H coating eluates; (e,v) conditioned medium with artificial saliva.

3.3.3. Co-Culture (Fibroblasts and Macrophages)

When fibroblasts and macrophages were co-incubated for 3 days (Figure 5e), statisti-
cally significant differences (p = 0.04) were obtained between Control-SS316L (p = 0.034),
Control-a-C:5H (p = 0.010), Control-a-C:10H (p = 0.009), and Control-Saliva (p =0.049).
These findings indicate once again that the extracts from uncoated SS316L, and a-C:5H and
a-C:10H coatings, as well as the low pH value from the artificial saliva, induced an effect
on the cellular viability of the co-culture. Interestingly, these results are similar to those
from the fibroblast monoculture test. For the5-day incubation test, however, no statistically
significant differences were observed, showing an adaptability of cells to all conditioned
media (Figure 5f).

When compared with the Control, 3-day OPCM micrographs of the other groups
revealed that the number of macrophages continued to be higher than the number of fibrob-
lasts (Figure 8a–e). In general, macrophages showed their round-shape, tridimensional
morphologies, and fibroblasts had a more tridimensional elongated shape. Still, some of
the latter were flatter. Regarding a-C:10H group (Figure 8d), fibroblasts were, in fact, flat
and elongated, being notoriously fewer in number, justifying the low p value (p = 0.009).
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Finally, the Saliva group showed similar results to the Control, with an abundant number of
fibroblasts among macrophages. Since macrophage monoseeding did not reveal statistically
significant differences, it is possible to conclude that the obtained results for the co-culture
tests may be due to the response of fibroblasts to the extracts and artificial saliva. Under
the study conditions, this adaptation occurred due to the high number of macrophages
in the co-culture when compared with fibroblasts: a proportion of 20 macrophages per
fibroblast (keep in mind that naive macrophages do not divide in vitro). Macrophages
phagocyted the products released by coated and uncoated metallic samples, consequently
improving the media for the survival and proliferation of fibroblasts. From the study
results, it is possible to conclude that this is valid for all tested groups, including for a-C:5H.
Only the 5-day test with fibroblast monoculture for a-C:5H continued to reveal statistically
significant differences when compared with the Control. Furthermore, macrophages aided
in the neutralization of the effects of the low pH value of the artificial Saliva.

It should be noted that the macrophage:fibroblast ratio used (20:1) represents an ex-
treme scenario. However, this is quite common in orthodontic patients since they are more
susceptible to the onset lesions of the oral mucosa due to the presence of the orthodontic
appliances and the maintenance procedures performed by the dentist. Therefore, a higher
number of macrophages may be present in their oral mucosa [76,77].

OPCM micrographs of the 5-day co-culture test revealed a higher number of macrophages
compared to fibroblasts in the Control, occupying almost the entire surface (Figure 8i).
These cells presented higher dimensions when compared with the ones of the 3-day
controls (Figure 8a), due to the growth factors released by fibroblasts during the incubation
period. In the other groups, a reduction of the number of cells was observed regarding
the Control (Figure 8ii–iv). Some macrophages had larger dimensions than the respective
3-day homologous groups. This occurred due to the phagocytotic process of the released
products present in the extracts. In addition, some elongated flat fibroblasts were seen,
particularly in the media conditioned with artificial saliva (Figure 8v), and extracts from
SS316L (Figure 8ii).

Figure 8. Macrophage and fibroblast co-culture post-MTT observed with OPCM at 3 days (a–e) and 5 days (i–v) of incubation
(200×): (a,i) control; (b,ii) conditioned medium with AISI 316L steel eluates; (c,iii) conditioned medium with a-C:5H coating
eluates; (d,iv) conditioned medium with a-C:10H coating eluates; (e,v) conditioned medium with artificial saliva.
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According to the ISO 10993-5 [43], the results of the 3-day incubation tests for extracts
revealed that the coatings are somewhat cytotoxic for both cell types, since cellular via-
bilities decreased more than 30%. However, these reductions were not observed after 5
days of incubation. Along time, macrophages helped fibroblasts to adapt to the environ-
ment since they phagocyted possible intercurrent substances/products, and fibroblasts
also helped macrophages due to the release of growth factors. Both kinds of cells inter-
acted and helped each other, as expected, leading to a mutual adaptation that made the
coatings non-cytotoxic.

In order to draw definitive and more robust conclusions, on the cytotoxicity of the
studied coatings regarding several mono- or co-cultured cell types, more replicates of each
group should be done for other periods of time. For instance, a seven-day study should
be carried out to evaluate whether cellular viability is maintained beyond 5 days. It is
necessary to note that seven days is a long incubation period for naive macrophages since
they do not divide it vitro. Specially if there is no aggression stimuli, such as in controls and
artificial saliva groups, no important response is needed from these cells [78]. Nevertheless,
seven days matches the beginning of the in vivo stabilization of the healing process and
angiogenesis [79,80]. In the particularly complex environment of the oral cavity, sutures
should be ideally removed between the 5th and the 15th day after surgery, according to the
surgical procedure (e.g., exodontia, aesthetics) [81].

An ongoing study includes a seven-day co-culture incubation test with fibroblasts
and macrophages. Macrophages should be able to prepare the environment for fibrob-
lasts through phagocytosis of undesirable products released either by coated or uncoated
samples, allowing their better development. On the other side, the production of growth
factors by fibroblasts might increase the lifespan of macrophages.

4. Conclusions

Amorphous hydrogenated carbon structures by magnetron sputtering in two reactive
CH4 atmospheres diluted in Ar (6% and 18%, respectively) were successfully deposited on
SS316L, with a Cr-based adhesion-promoting interlayer.

Two different types of a-C:H coatings were found in the hard (18 GPa) and soft (7 GPa)
regimes, included in the DLCH and GLCHH classification, respectively.

The acid Fusayama-Meyer artificial saliva immersion of 30 days did not influence
the structural or mechanical behavior of the sputtered coatings, regardless the H content.
No signs of corrosion, delamination, or coating detachment from the substrates were
observed. However, leaching of metallic ions from coated samples into the artificial
saliva was higher in comparison with the reference ones, due to the galvanic effects from
the Cr-based interlayer. Such findings illustrate the crucial importance of the interface
between metal substrate/coating system when C-based coatings are to be considered for
orthodontic applications.

The cell viability with macrophages and fibroblasts, either in mono- or co-culture in
extracts, was confirmed for both coatings. The highest biocompatibility was found for
coatings with the lowest H content.

Considering that Ni-containing alloys will continue to be used in biomedical applica-
tions, this research contributes by reinforcing the fact that a-C:H coatings can extend their
application range to orthodontics.

Ongoing studies focus on replacing the Cr-based interlayer with other types of materi-
als and architectures, while extending both fibroblast monoculture and co-culture assay
durations. Furthermore, in vitro microbiological assays with representative oral bacteria
will soon be performed to understand their influence on the a-C:H coatings.
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