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ABSTRACT Manual assessment of the retinal thickness in optical coherence tomography images is a time-
consuming task, prone to error and inter-observer variability. The wide variability of the retinal appearance
makes the automation of retinal image processing a challenging problem to tackle. The difficulty is evenmore
accentuated in practice when the retinal tissue exhibits large structural changes due to disruptive pathology.
In this work, we propose an ensemble-learning-based method for the automated segmentation of retinal
boundaries in optical coherence tomography images that is robust to retinal abnormalities. The segmentation
accuracy of the proposed algorithm was evaluated on two publicly available datasets that included cases of
severe retinal edema. Moreover, the performance of the proposed method was compared to two existing
methods, widely referenced in the relevant literature. The proposed algorithm outperformed reference meth-
ods at segmenting the retinal boundaries in both normal and pathological images. Furthermore, a thorough
reliability analysis showed a strong agreement between the retinal thickness measurements derived from the
segmentation obtained with the proposed method and corresponding manual measurements computed with
the manual annotations.

INDEX TERMS Deep learning, ensemble learning, semantic segmentation, image processing, retinal
thickness, optical coherence tomography.

I. INTRODUCTION
Optical coherence tomography (OCT) is a non-invasive imag-
ing technology widely used in clinical practice to diagnose
retinal pathology [1], [2]. The technology allows visualiz-
ing the internal structure of the retina by acquiring high-
resolution cross-sectional images of the back of the eye.
Retinal OCT scans are extensively used in the monitoring
of sight-threatening diseases such as age-related macular
degeneration (AMD), retinal vein occlusion (RVO), diabetic
macular edema (DME), and glaucoma [3], [4].Measurements
derived from the analysis of OCT images are pivotal for
the evaluation of disease progression and treatment effec-
tiveness [5]. Retinal thickness and central macular thick-
ness (CMT) are two of such measurements that are highly
regarded as markers in the progression of various ocular
diseases [6].
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The quantitative analysis of the retinal thickness involves
segmenting the extent of the retina from other anatomical
structures in the OCT scans. Commonly, OCT scanners
include image processing tools that provide reasonably accu-
rate segmentation of the retinal boundaries on healthy and
minimal distorted retinas [7]. However, recent studies found
that these tools perform poorly in the presence of degenera-
tive diseases such as AMD [3], [8]. Similarly, other studies
reported that segmentation errors frequently occur in the
presence of disruptive pathologies like macular edema, and
retinal detachment [9], [10].

The reliability of the retinal-thickness assessment depends
largely on the accurate segmentation of the inner and outer
retinal boundaries. Segmentation errors render the retinal-
boundary delineation and derived measurements unreliable.
Depending on the extent of the segmentation error, the course
of action might involve manual correction which besides
being impractical in clinical practice is labor-intensive and
prone to inter-observer variability [11]. Therefore, there is
an unmet demand for fully automated retinal segmentation
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methods that are robust to the presence of severe pathology
which has been reported as the cause of segmentation error in
commercially available OCT scans.

A. RELATED WORK
Much effort has been dedicated to developing techniques to
segment retinal structures. In particular, work focused on
OCT retinal images produced a wide range of methods in
previous years [12].

Earlier methods were based on classical image pro-
cessing techniques, including sparse higher-order poten-
tials [13], diffusion maps [14], variational methods [15],
kernel regression classification [16], and graph-theory based
methods [17]–[19]. A common characteristic of earlier meth-
ods is their reliance on predefined rules, which helped algo-
rithms to fit curves directly to the data. Although these rules
proved to be effective in enhancing the segmentation per-
formance, they also limited the flexibility of the algorithms.
As a result, these methods performed well in normal and
mildly damaged retinas, but poorly in the presence of severe
pathology [20].

Later work addressed this limitation by building upon
machine learning methods. In contrast to earlier methods,
machine learning approaches segmentation as a classifica-
tion problem. Machine learning methods in conjunction with
graph-search algorithms have been demonstrated to improve
the segmentation of retinal layers in the presence of retinal
abnormalities [21], [22]. Similarly, machine-learning classi-
fiers such as support vector machine [23], [24], random forest
classifiers [25] or neural networks [26], [27] have shown good
performance in normal retinas.

More recently, the outstanding performance of deep learn-
ing in natural image classification has motivated the appli-
cation of deep neural networks to retinal image analysis.
Deep learning algorithms, particularly convolutional neural
networks (CNN), have been increasingly applied to reti-
nal segmentation in OCT images [28]–[31]. Methods that
combine CNN with graph-search algorithms are a com-
mon approach to improve the segmentation performance
[32]–[34]. Other deep learning approaches to retinal seg-
mentation include recurrent neural networks [35], and fully
convolutional networks [36], [37].

B. ENSEMBLE LEARNING
Deep neural networks (DNN) are at the core of deep learning.
These mathematical models ordinarily have a large number
of parameters, which are tuned to optimize an objective
function — minimize the prediction error. The sheer number
of adjustable parameters in DNN architectures makes these
algorithms highly effective at learning non-linear, complex
relationships in the data, but at the same time renders them
prone to overfitting [38].

Overfitting causes distinct models of the same DNN to
perform inconsistently on the test data. This is more for-
mally referred to as high variance. An alternative to reduce
variance is to combine the prediction of multiple models.

This approach is known as Ensemble learning and relies on
the observation that is unlikely that different models make
the same mistake on the test set. As such, the combined
prediction of a set of models that are good in different ways
is usually more accurate than any prediction of any single
model [39]–[41].

Ensemble learning encompasses a wide range of meth-
ods to combine the predictions of multiple models. The
key to effective ensembles is gathering a set of models
that disagree [42]. Common approaches to enforce differ-
ences between models are resampling-based methods such
as Bootstrap aggregating (Bagging) and k-fold cross vali-
dation [43], [44]. These methods produce base models by
training the same learning algorithm with different partitions
of the training set. Training subsets are obtained by sampling
with replacement, like in Bagging; or without replacement,
like in k-fold cross-validation. Another approach to ensemble
learning is Boosting. In this approach, ensemble members are
generated sequentially to correct the errors of earlier models.
Tracking of prediction errors determines the training set of
subsequent models such that incorrectly predicted inputs are
emphasized in later training iterations. Algorithms in this
category are AdaBoost [45], Gradient Boosting [46], and
XGBoost [47].

Model predictions are aggregated using several methods.
A common approach in segmentation tasks is averaging the
predictions of the ensemble members [48]–[50]. The advan-
tage of this method is its simplicity, but it gives the same
weight to all models regardless of how good their predictions
are. An alternative to averaging is weighting the predictions
of the ensemble members based on their performance on a
holdout set. In this way, the predictions of high-performing
models are privileged over the predictions of inferior models.
Another approach to combining the ensemble predictions
is using a machine learning algorithm. This approach is
known as Stacking and the learning algorithm is termedmeta-
classifier [51]. Common choices for the meta-classifier are
fully connected networks which allow complex, non-linear
combinations of the ensemble predictions [52].

C. CONTRIBUTION
The wide variability of the appearance of retinal structures is
challenging to capture in a single model. This variability is
accentuated in the presence of severe pathology, where large
abnormalities, like macular edema, disrupt the normal align-
ment of retinal structures. This work addresses the problem
of segmenting the retina in OCT images exhibiting disrup-
tive retinal pathology. We propose a deep learning approach
that uses an ensemble of convolutional neural networks to
delineate the retinal boundary. In contrast to single-classifier
methods, our approach does not optimize a single classifier
but instead leverages the predictions of multiple classifiers to
improve the segmentation performance.

The main contribution of this work is the development of
a fully automated method for accurate segmentation of the
retina that is robust to the presence of severe retinal pathology.
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We also introduce a framework that builds upon ensemble
learning to train classifiers that generalize better than stand-
alone models but require less annotated data. In addition,
we investigated the impact of various data augmentation tech-
niques to capture the variability of the retinal tissue appear-
ance in OCT images.

Experiments in two independent datasets demonstrated
that our method outperforms reference algorithms at seg-
menting the retinal extent in OCT scans. Furthermore,
the retinal thickness measurements derived from the segmen-
tation of the proposed algorithm showed a strong agreement
with the corresponding measurements obtained with manual
annotations.

II. MATERIALS AND METHODS
A. OCT RETINAL IMAGE DATASET
To develop and evaluate the proposed algorithmwe usedOCT
retinal images from three independent datasets. All datasets
are publicly available and contain healthy and pathological
cases (Fig. 1).

FIGURE 1. OCT B-scans examples of the data used to train and evaluate
the proposed method. Top row: Examples of the training set. Middle row:
Examples of the test dataset containing DME cases. Bottom row:
Examples of the test dataset containing controls.

1) TRAINING DATA
The data used to train the proposed algorithm were sourced
from the RETOUCH dataset [53]. This dataset contains
112 macula-centered OCT volumes of 112 patients. Half of
the volumes are from patients with macular edema secondary
to AMD, and the other half from patients with macular edema
secondary to RVO.A third of theOCT volumeswere acquired
with a spectral-domain SD-OCT Spectralis device (Heidel-
berg Engineering, Heidelberg, Germany). Each volume in

this set has 49 B-scan with 512 × 496 pixels with axial
resolution 3.9µm and covers a macular area of 6× 6 mm2.
From this dataset, we randomly selected 110 B-scans and
split them into two parts: 100 B-scans for training the
algorithm and 10 B-scans for monitoring the learning
progress.

2) TESTING DATA
To evaluate the algorithm’s performance we used two
datasets. The first is a set of 10 OCT volumes from 10 patients
acquired with a Spectralis HRA+OCT device (Heidelberg
Engineering, Heidelberg, Germany) [16]. The volumes
were obtained from patients with DME and include B-scans
showing severe macular edema. Each volume comprises
61 B-scans of 768×496 pixels, axial resolution 3.87µm.
The second is a set of 10 OCT volumes of 10 healthy patients
acquired with an SD-OCT Spectralis device (Heidelberg
Engineering, Heidelberg, Germany) [17]. The volumes in this
set contain 61 B-scans, 496 pixels in height, axial resolu-
tion 3.87µm; and variable-width ranging from 543 pixels to
644 pixels, lateral resolution 10-12µm.

For details of the acquisition protocol and the exclusion
criteria, the interested reader is referred to the references
describing the corresponding datasets. Table 1 presents a
summary of the data used in this study.

B. DATA PRE-PROCESSING
1) DENOISING AND CONTRAST ENHANCEMENT
All B-scans in the training and testing data were pre-
processed to reduce speckle noise and to enhance the contrast.
To reduce speckle noise, we applied a median filter with
kernel size 3× 3 pixels followed by a mean filter with kernel
size 7×3 pixels. Then, to increase contrast, a power-law trans-
formation [54] was applied to the normalized pixel intensity
values. The dimensions of the kernels and the exponent of the
power-law transformation were estimated empirically to pre-
serve the continuity of the retinal boundaries in the horizontal
direction. Edge detection and morphological operations were
employed to fill blanks spaces at the top and bottom of the
B-Scans.

2) OBSERVER MANUAL ANNOTATIONS
The retinal boundaries and the retinal thickness have mul-
tiple definitions in clinical practice and consequently vary
among OCT manufacturers [55]. In this study, we defined
the retina as the region between the inner limiting mem-
brane (ILM) and the retinal pigment epithelium (RPE). Based
on this definition, an experienced grader segmented the
retina in each B-scan of the training and validation sets.
To speed up the annotation process, a preliminary segmenta-
tion was conducted with a publicly available algorithm [56].
Upon careful examination of the preliminary boundaries,
the grader adjusted the initial delineation to produce the final
segmentation.
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TABLE 1. Summary of the training, validation, and testing sets.

FIGURE 2. Input image pre-processing. (a) Input, (b) Input after median
filtering and contrast enhancement, (c) Boundary annotations, (d) Binary
ground-truth mask. Retinal boundaries are shown as red lines in (c), top
line ILM boundary, bottom line RPE boundary.

As per the testing data, both datasets provide manual anno-
tations of retinal layers. The dataset containing DME cases
has 110 annotated B-scans, whereas the dataset containing
controls includes annotations for 100 B-scans. Further infor-
mation on the annotation protocol of the test data can be found
in the papers describing the corresponding datasets [16], [17].

3) SEGMENTATION GROUND TRUTH
With the manual annotations, we produced ground-truth seg-
mentationmasks to train and evaluate the proposed algorithm.
Pixels centered within the retina were assigned to the positive
class, whereas pixels beyond the ILM or the RPE bound-
aries were assigned to the negative class. Labeling schemes
in similar classification tasks typically use more classes
[28], [35]. In this study, we opted for a two-label approach
to maximize class membership while keeping the training set
small.

Fig. 2 shows an example OCT and results of the
pre-processing.

C. ENSEMBLE-LEARNING-BASED SEGMENTATION
The proposed method uses ensemble learning to conduct a
semantic segmentation of the input OCT images. The seg-
mentation is approached as a binary classification problem
where every pixel x in a given input image is map to a
class label ŷ ∈ {0, 1}. The ensemble-learning algorithm is
implemented as a two-tier classifier in which the predictions
of the first-tier classifiersM (x) = p are combined in the sec-
ond tier through an aggregation rule to obtain the ensemble

FIGURE 3. Overview of the proposed method. The input OCT image is fed
to the first-tier classifiers, which independently predict class labels for
every pixel of the input. The first-tier predictions are then combined in
the ensemble-prediction block to construct a segmentation map of the
input OCT image. Mj : First-tier classifiers, j ∈ [1-5].

prediction ŷ. The output of the ensemble-learning algorithm
is a binary segmentation map of the input image built upon
the class label predictions of the ensemble. Fig. 3 shows the
major components of the proposed algorithm.

1) ENSEMBLE PREDICTION
To decide the ensemble prediction we used three schemes to
combine the first-tier predictions: majority voting, weighted
averaging, and stacking. In the majority-voting scheme the
ensemble prediction is decided by averaging out the pre-
dicted probabilities of the first-tier classifiers. More formally,
the predicted class label is defined as follows:

ŷ = argmax
i

1
N

N∑
j=1

pij (1)

where, pij is the predicted class probability of the jth first-tier
classifier for class label i, and N is the number of first-tier
classifiers.

In the weighting-averaging scheme, the predicted class
probabilities are weighted according to the classification per-
formance of the first-tier classifiers in a holdout set. In this
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scheme, the predicted class label of the ensemble is given by:

ŷ = argmax
i

N∑
j=1

wjpij (2)

where, wj is the weight of the jth first-tier classifier.
In the stacking scheme, the ensemble prediction is deter-

mined by feeding the predictions of the first-tier classifiers to
another machine learning algorithm termed meta-classifier.
This learning algorithm is trained to optimize a non-linear
combination of the first-tier predictions.

D. RETINAL THICKNESS ASSESSMENT
The retinal thickness is determined by computing the distance
between the ILM and RPE boundaries at every column in
the segmentation map. To compute the distance we first
identify the coordinates of the pixels in the retinal bound-
aries. Let be Smxn the matrix that represents the segmentation
map, sij an element of S, and cj = [s1j, s2j, . . . , smj]> a
column of S. Then, each boundary B(k) = [r1, r2, . . . , rn]
is a row vector of length n, k ∈ {ILM ,RPE}. Coordi-
nates in the ILM boundary correspond to the topmost pix-
els of label ŷ = 1 in the segmentation map S. Thus,
the coordinate of the ILM boundary in the column cj is
given by:

rj = argmin
i

icj (3)

For the RPE boundary, the coordinates rj belong to the lowest
pixels of the class label ŷ = 1 in S and are given by:

rj = argmax
i

icj (4)

With the coordinates of the ILM and RPE boundaries we
determined the total retinal thickness T as follows:

T = |B(RPE) − B(ILM )
| (5)

Like the retinal boundaries, the total retinal thickness is a
row vector of length n that contains thickness measurements
at every column of a given segmentationmap. In clinical prac-
tice, these measurements are aggregated to obtain thickness
profiles of different retinal regions such as the central macular
thickness (CMT), which is the region within 1 mm around the
center of the macula.

E. ENSEMBLE ARCHITECTURE
The proposed ensemble-learning algorithm comprises five
first-tier classifiers. All first-tier classifiers are convolutional
neural networks and have the same base architecture. The
number of first-tier classifiers is a hyperparameter of the
ensemble-learning algorithm and it was empirically deter-
mined. The first-tier-CNN architecture was also empirically
determined by observing the performance of several network
candidates of varying depth and complexity.

FIGURE 4. Simplified diagram of the base convolutional neural network
used to train the first-tier classifiers. (a) Network architecture, (b) Detail
of the topmost Fire module. Activation size is indicated next to the
corresponding layer.

1) FIRST-TIER-CLASSIFIER BASE ARCHITECTURE
The base architecture of the first-tier classifiers is the
SqueezeNet version 1.1 network [57]. The architecture is
20 layers deep and consists of a convolutional layer that takes
the input image, followed by 9 fire modules, a convolutional
layer, and the output layer. The fire modules comprise con-
volutional layers that perform squeeze and expand operations
over their corresponding inputs. The squeeze convolutional
layers have only 1× 1 filters, whereas the expansion convo-
lutional layers may have 1 × 1 or 3 × 3 filters. The output
layer applies a softmax function to the output of the last
convolutional layer to produce the probability scores for each
class.

2) META-CLASSIFIER
In the stacking variant of the ensemble, the meta-classifier
is a deep neural network that receives the stacked probability
scores of the five first-tier CNN. The meta-classifier architec-
ture comprises an input layer followed by a fully-connected
layer with 512 nodes and ReLU activation, a fully connected
layer with 256 nodes and ReLU activation, a softmax layer,
and a classification layer.

F. TRAINING
1) TRANSFER LEARNING
Compared to stand-alone classifiers, ensemble learning has a
drawback: the number of computations grows linearly with
the number of first-tier classifiers. To reduce the computa-
tional complexity we used transfer learning to train the first-
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tier CNNs. To train the first CNN we fine-tuned all layers of
a model pre-trained in the ImageNet dataset. Then, to train
the other four networks, we initialize each network with the
first CNN, froze all convolutional layers, and fine-tuned the
remaining layers.

2) DATA AUGMENTATION
Central to the success of ensemble learning is generating
classifiers that disagree. In our approach, we enforce diversity
by training the ensemble CNNs with augmented versions of
the training set. This allowed us to use the whole training set
to generate all first-tier classifiers, as opposed to the resam-
pling approach where each ensemble member is trained with
a fraction of the training data. To augment the data, we used
geometric and pixel-intensity value transformations. Geomet-
ric transformations included random rotation and random
vertical reflection. For the pixel-intensity we used power-law
transformations [54].

3) TRAINING SET
To produce training samples, we extracted small overlapping
patches from the OCT images and labeled them according
to the class of the central pixel. In this type of approach,
patch size has been demonstrated to influence the classi-
fication accuracy [58]. In related work, patch sizes ranged
from 33 × 33 [28] pixels to whole B-scans [37]. In this
study, we determined empirically the best patch size to be
65 × 65 pixels. Experiments with other patch sizes showed
that large patches increase the classification performance but
at cost of increasing the computational complexity.

To reduce the computational workload, we restricted the
patch extraction to the regions where pixels were not trivially
identified by standard image processing methods, e.g. by
thresholding. We defined this region of interest (ROI) as
two strips surrounding the ILM and RPE boundaries (see
Fig. 5(a)). The height of the strips was determined empirically
to be the height of one patch. Furthermore, to reduce the
occurrence of very similar patches, we limited the creation
of patches to evenly spaced columns in each B-scan.

From the OCT B-scans in the training and validation sets,
we created patches for the positive and negative classes.
To balance the number of samples per class, we randomly
selected 100 patches per class in each B-scan (200 patches per
image). The resulting training set consisted of 20,000 patches,
whereas the validation set comprised 2,000 patches. This last
set was used to enforce regularization by early stopping.

III. EXPERIMENTS
A. ENSEMBLE SETUP
1) SELECTION OF THE FIRST-TIER-CNN ARCHITECTURE
To select the architecture of the first-tier classifiers we fine-
tuned ten networks pre-trained in the ImageNet dataset and
evaluate their performance on the validation set. To adapt the
pre-trained models to our classification task, in each model
we removed the last layer and replaced it for a blank fully con-
nected layer with an output size equal to two. All pre-trained

FIGURE 5. Patch extraction. (a) Input, (b) and (c) patch examples
extracted from the region of interest (ROI), edge color correspond to pixel
color of the point of extraction. Dashed lines delineate the ROI for patch
extraction. Train patches were randomly extracted from this region only.

TABLE 2. Hyperparameters of the first-tier CNN training.

models were sourced from [59]. The models were trained in
a supervised fashion to perform binary classification, being
the classification task to label pixels as belonging to the
retina or otherwise. The network performances were evalu-
ated with 5-fold cross-validation. We also observed the train-
ing time for all folds and architectures

All CNNs were trained with stochastic gradient descent
for a maximum of 100 epochs. The learning rate and the
batch size were determined empirically through a grid search,
as recommended in [60]–[62]. The network parameters were
updated with the Adam gradient-based optimization algo-
rithm [63], to minimize the cross-entropy loss function [64].
The Adam optimizer has been demonstrated to perform well,
and to converge faster than other stochastic-gradient-descent
methods [65]. The training set was shuffled every epoch to
prevent overfitting by data-order memorization. The vali-
dation loss was checked twice per epoch, and the training
was stopped if the validation loss failed to improve for five
consecutive checkpoints. Table 2 summarize the hyperparam-
eters of the first-tier-classifier training.
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2) DETERMINATION OF THE NUMBER OF
FIRST-TIER CLASSIFIERS
After defining the CNN base architecture, we investigated the
influence of the number of first-classifier on the ensemble
performance. To that end, we trained four more first-tier clas-
sifiers with the best combination of hyperparameters found in
the grid search. To enforce predictive diversity between clas-
sifiers, we trained every network with different augmented
versions of the training set.

To observe the influence of the number of models we eval-
uated the performance of every combination of 2, 3, 4, and
5 different models. The first-tier-classifier predictions were
aggregated with three schemes: majority voting, weighted
average, and stacking. Furthermore, to compare the ensem-
ble performance to single-model performance, we evaluated
every first-tier classifier individually.

3) META-CLASSIFIER
The meta-classifier of the stacking variant of the ensemble
was trained for a maximum of 100 epochs with a batch size
of 32. The optimization algorithm was Adam and the loss
function cross-entropy. Considering the adaptive mechanism
of the parameter updates in the Adam algorithm, we selected
an initial learning rate of 0.1 and left the remaining parame-
ters at the default values.

B. COMPARISON OF METHODS
To further evaluate the performance of the proposed method,
we compared our segmentation results with corresponding
results from three other methods. The first was a fully-
convolutional network (FCN) with a U-net architecture [66]
modified as proposed in [37]. Different from our approach,
this method conducted semantic segmentation on whole OCT
inputs. The FCN in this method included four downsampling
units, each comprising two 3 × 3 convolutions, one ReLU,
and a max-pooling layer with filter size 2 × 2. The network
was trained for 100 epochs with minibatch size 8, learning
rate starting at 5e-4 up to 1.8e-4 as specified in [37]. The
loss function was the cross-entropy and the optimization
algorithm Adam [63]. We trained the network with the same
dataset and the same development environment that we used
to train our models. The other two algorithms in the com-
parison were two existing graph-based segmentationmethods
widely referenced in research: the OCT Explorer tool version
3.8, part of the Iowa Reference Algorithms (Retinal Image
Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa
City, IA) [18], [67], [68]; and the JHU OCT Segmentation
Version 2.11, part of the AURA tools [25].

C. PERFORMANCE METRICS
To evaluate the classification and segmentation performance,
we used several metrics of performance. The formal defini-
tion of the performance metrics is presented below.

1) CLASSIFICATION ACCURACY
To evaluate the classification performance we computed the
accuracy of the class-label prediction. This metric is defined
as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

where TP is the number true positives, TN is the number of
true negatives, FP is the number of false positives, FN is the
number of false negatives.

2) SEGMENTATION
To quantify the segmentation performance we used the
Sørensen–Dice similarity coefficient between the segmen-
tation maps obtained with the proposed algorithm and the
segmentation ground truths. The score es defines as:

Dice =
2TP

2TP+ FP+ FN
(7)

To measure the error of the segmentation we computed the
mean absolute error of the location of the ILM and the RPE
boundaries. This error was computed as follows:

MAE =
1
NM

N∑
j=1

M∑
i=1

|B(k)ij − B̂
(k)
ij | (8)

where, Bij represents the ground-truth location of the bound-
ary k in the A-scan i of the B-scan j, B̂ij is the predicted
location of the boundary k in the A-scan i of the B-scan j,
N is the number of B-scans,M is the number of A-scans, and
k ∈ {ILM ,RPE}.

3) RELIABILITY OF THE RETINAL THICKNESS
MEASUREMENTS
To evaluate the reliability of the retinal thickness mea-
surements, we computed the mean absolute difference, and
Bland-Altman statistics of the CMT measurements.

The mean absolute difference was computed in a similar
way to the boundary location error, by comparing the CMT
obtainedwith themanual annotations to corresponding values
computed with the predicted boundary locations, as follows:

MAE =
1
N

N∑
j=1

|Cj − Ĉj| (9)

where, Cj represents the ground-truth CMT of B-scan j,
Ĉj is the estimated CMT of B-scan j, and N is the number
of B-scans.

The Bland-Altman statistics, also called limits of agree-
ment, measures the magnitude of the agreement between two
sets of measurements. This statistics comprises the mean
of the difference between pairs of corresponding measure-
ments, or bias, and the limits of the 95% confidence interval
of the bias. Let be dj be the difference between the estimated
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TABLE 3. Mean (std) accuracy and similarity score per CNN architecture.
Metrics were measured by k-cross-validation, with k=5 on the holdout
set. Training time is the mean fold-training duration in minutes.
All models were trained for 100 epochs.

CMT Ĉj and the corresponding ground truth CMT Cj, then
the bias is given by:

b = µ(dj) (10)

where,µ(.) is themean function, andN is the number of CMT
measurement pairs. The limits of agreement are defined as:

[u, l] = [b+ σ (dj), b− σ (dj)] (11)

where, u is the upper limit, l is the lower limit, and σ (.) is the
standard deviation.

D. HARDWARE AND SOFTWARE TOOLS
The development and testing environment was MATLAB R©

release 2019b and CUDA R© library version 9.0. All models
were trained on a desktop computer with Windows 10 oper-
ating system, processor Intel i7 8700K CPU @ 3.7 GHz -
6 cores and 32 GB RAM, using a GPU NVIDIA R© GeForce
GTX R© 1080 Ti with 11 GB RAM.

IV. RESULTS
A. ENSEMBLE SETUP
1) FIRST-TIER CLASSIFIER ARCHITECTURE
AND HYPERPARAMETERS
To find the first-tier CNN architecture, we evaluated ten
convolutional neural networks pre-trained in the ImageNet
dataset. The networks we fine-tuned by grid search with
different combinations of the minibatch size and the learning
rate hyperparameters. The prediction accuracy and the Dice
coefficient were evaluated on the validation set with k-fold
cross-validation (k=5). We also observed the training time
for all folds and architectures. Table 3 shows the top-five
networks for the best combination of hyperparameters, mini-
batch size = 32 and learning rate = 10−2.

2) NUMBER OF FIRST-TIER CLASSIFIERS
Upon the definition of the base-CNN architecture, we trained
four more classifiers to join the ensemble. To obtain the
ensemble prediction we evaluated three schemes to com-
bine the predictions of the first-tier classifiers: majority vote,
weighted average, and stacking. The classification accuracy
and the similarity Dice score were evaluated on the validation
set. Both metrics were evaluated for every possible combina-
tion of M models (M ∈ [2,5]) and every aggregation method.

TABLE 4. Mean (std) classification accuracy per combination of M
first-tier classifiers, from M=2 to M=5. Best results in each combination
of M classifiers are listed. The classification performance was evaluated
on the test set.

TABLE 5. Mean and standard deviation of the classification accuracy and
the Dice similarity score of individual first-tier classifiers. The
performance metrics were computed on the test set.

Table 4 shows the highest scores in every combination of
Mmodels. The performances of individual models are shown
in Table 5 for comparison. As can be seen, the classification
accuracy of the ensemble is higher than any of the individual
classifiers. Also, gains in performances are observed from the
combination of only 2 models.

B. COMPARISON OF METHODS
1) TOTAL RETINA SEGMENTATION
The performances of the proposed algorithm and reference
methods were evaluated on two independent datasets contain-
ing normal and DME cases. Part of the test data, particularly
the DME set proved to be challenging for the reference algo-
rithms. OCT-Explorer produced no segmentation for seven
whole DME volumes and left out large areas of the retina
in 26%of the remaining B-scans. These results were excluded
from the evaluation to not distort the comparison between
algorithms. Fig. 6 shows an example of the DME group
showing a severely damaged retina. The segmentation per-
formance in the control group was generally higher and the
failure rate of reference algorithms were considerably lower.
Fig. 7 shows examples of the segmentation in the control
group.

The Sørensen–Dice similarity coefficient between the
algorithm-segmentation maps and the ground-truth-
segmentation masks in the whole test data was 0.991 ±
0.002 for the proposed algorithm, whereas reference methods
Aura tools, OCT-Explorer and U-net attained 0.960± 0.051,
0.974±0.018, 0.029±0.004, and 0.906±0.027 respectively.
Boxplots in Fig. 8(a) show the distribution of the similarity
scores in the control set, whereas boxplots in Fig. 8(b) show
the score distribution in the DME set.
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FIGURE 6. Example of the segmentation obtained by evaluated
algorithms in the DME set. (a) the proposed method, (b) Aura tools,
(c) OCT Explorer, and (d) the U-net-based algorithm. The algorithm
boundaries are shown in green and the manual annotations in red.

FIGURE 7. Example of the segmentation obtained by evaluated
algorithms in the normal set. (a) the proposed method, (b) Aura tools,
(c) OCT Explorer, and (d) the U-net-based algorithm. The algorithm
boundaries are shown in green and the manual annotations in red.

As for the error of the delineation of the retinal boundaries.
The overall mean absolute error of the proposed method
was 0.9 ± 0.4 pixels for the IML, and 1.0 ± 0.5 pixels for
the RPE. Corresponding MAE values for Aura tools were
2.4± 1.9 pixels for the ILM, and 4.8±9.3 pixels for the RPE.

FIGURE 8. Boxplots of the distribution of the Dice coefficient of the
similarity between the algorithms’ segmentation and the ground truths,
as measured in (a) the normal set, (b) the DME set. PR: the proposed
method, AT: Aura tools, OE: OCT Explorer, UN: U-net based algorithm.

FIGURE 9. Boxplots of the distribution of the ILM and RPE location error.
The error was measured in the normal and DME sets by comparing the
algorithm predictions with the manual annotations. (a) Mean absolute
ILM error in the normal set, (b) Mean absolute RPE error in the normal
set, (c) Mean absolute ILM error in the DME set, and (d) Mean absolute
RPE error in the DME set. PR: the proposed method, AT: Aura tools, OE:
OCT Explorer, UN: U-net based algorithm.

The MAE of the OCT-Explorer algorithm for the ILM and
RPE were 3.1 ± 4.7 pixels, and 2.6 ± 4.8 pixels respec-
tively; whereas the U-net network obtained MAE values of
4.9± 2.6 pixels for the ILM, and 11.9 ± 4.1 pixels for the
RPE. The distribution of the boundary error grouped by
dataset is shown in Fig. 9.

2) RETINAL THICKNESS ASSESSMENT
The mean CMT computed with the ground truth in the nor-
mal set was 69.8 ± 8.2 pixels, whereas the mean estimate
of the proposed algorithm was 70.4 ± 8.0 pixels. Refer-
ence algorithms Aura tools, OCT-Explorer, and the U-net
network obtained mean CMT values of 73.1 ± 7.7 pixels,
71.2± 7.4 pixels, 86.6±5.5 pixels respectively. In the DME

VOLUME 9, 2021 67357



A. Cazañas-Gordón et al.: Ensemble Learning Approach to Retinal Thickness Assessment

FIGURE 10. Agreement between the true central macular thickness (CMT)
and corresponding measurements derived from (a) the proposed method,
(b) Aura tools, (c) OCT Explorer, and (d) the U-net-based algorithm. DME
and normal subgroups are identified by marker color and marker symbol.
The dotted line represents a perfect agreement of the two measurements.

group, the truemeanCMTwas 84.8±21.0 pixels, whereas the
algorithm estimates were 86.3± 20.6 pixels for the proposed
method, 75.9±11.5 pixels for Aura tools, 86.17±23.9 pixels
for the OCT Explorer, and 97.2 ± 20.5 pixels for the U-net
network.

The overall mean absolute error of the CMT was 1.3 ±
1.2 pixels for the proposed algorithm, 11.5 ± 15.5 pixels
for AURA tools, 6.3 ± 14.4 pixels for OCT-Explorer, and
15.2 ± 6.6 pixels for the U-net-based algorithm. Fig. 10
shows scatter plots of the algorithm estimates of the CMT
versus corresponding true values. The CMT estimates of the
proposed algorithm and corresponding true values showed
a strong correlation with a Pearson correlation coefficient
of 0.997. By contrast, the correlation coefficients for refer-
ence algorithms were 0.154 for Aura tools, 0.246 for OCT
Explorer, and 0.891 for the U-net network.

3) RELIABILITY OF THE RETINAL
THICKNESS MEASUREMENTS
Bland-Altman plot analysis of CMT measurements showed
a strong agreement between the CMT obtained with the pro-
posed algorithm and those of the human graders (Fig. 11(a)).
The proposed algorithm’s mean difference to the true CMT
was -1.09 pixels with 95% limits of agreement between
1.78 and −3.95 pixels. Whereas, the mean differences,
and corresponding 95% limits of agreement of reference
algorithms were 3.03, [40.34 −34.28] pixels for AURA
tools; −2.78, [27.47, −33.04] pixels for OCT-Explorer;
and −14.49, [1.39, −30.38] pixels for the U-net-based
method. Corresponding bias values in metrics units were

FIGURE 11. Bland-Altman plots of the systematic difference between the
estimated central macular thickness (CMT) and the ground truth for
(a) the proposed method, (b) Aura tools, (c) OCT Explorer, and (d) the
U-net network. The 95% limits of agreement are shown in dotted lines.
The zero bias line is indicated by the dashed line. DME and normal
subgroups are identified by color.

−4.12µm for the proposed method, 11.53µm for Aura tools,
−10.57µm for OCT Explorer, and −55.08µm for the U-net
based method. The difference between the predicted CMT of
reference methods and corresponding truths increased with
the macular thickness. This confirms that segmenting severe
DME cases is challenging to said algorithms. Furthermore,
the 95% interval of agreement of the proposed method was
significantly narrower than the intervals of reference algo-
rithms and there were fewer data points outside of the limits
of agreement.

The intra-class correlation coefficient (ICC) between the
manual CMT measurements and corresponding measure-
ments derived from the proposed method was 0.961 with
95% CI [0.827 0.984] in the normal set and 0.994 with 95%
CI [0.953 0.998] in the DME set. By contrast, the ICC for
reference algorithms in the DME set was 0.1 for Aura tools,
0.03 for OCT Explorer, and 0.77 for the U-net network. In the
normal set, the corresponding ICC values were 0.87, 0.98,
and 0.16 respectively.

Table 6 summarizes the performance of the different algo-
rithms in the normal and DME groups, along with corre-
sponding values of performance for the entire test data.

V. DISCUSSION
The CNN architecture and hyperparameters of the first-tier
classifiers were empirically selected by grid search. For the
same learning rate, we observed the impact of the mini-
batch size on the prediction accuracy and the training dura-
tion. Large minibatch sizes resulted in shorter training but
higher accuracy, whereas short minibatch sizes resulted in
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TABLE 6. Mean absolute error and similarity score of the retina segmentation obtained by evaluated algorithms. Metrics were computed in the entire test
data, as well as in the DME and the normal test sets.

the opposite. This observation is consistent with prior
research regarding this hyper-parameter optimization
[60], [69]. To inform the selection of the base architecture,
we observe the performance and training time (see Table 3).
For the best set of hyperparameters, we found that the
VGG16 architecture attained the highest accuracy, but it was
the second slowest of all. On the other hand, the SqueezeNet
architecture ranked second in classification accuracy and was
the fastest.With this, we chose SqueezeNet as the architecture
for first-tier classifiers.

Regarding the influence of the number of first-tier clas-
sifiers on the ensemble performance, we observed the
performance grows with the number of models (Table 4). The
trend is consistent across all three aggregation schemes, with
the stacking scheme showing the biggest classification per-
formances in every combination of models. However, we also
noted that although the classification performance growswith
the number of models, the gains in performance tend to stabi-
lize past 3 models. Similarly, increasing the complexity of the
aggregation scheme shows no clear incentive in that gains in
performance of the most complex scheme (stacking) are not
significantly higher than those of the simplest scheme (major-
ity vote). These observations evidence a trade-off between
computational complexity and classification performance.

The proposed method used supervised learning to train
the first-tier classifiers of the deep ensemble learning.
Ordinarily, supervised learning is conducted with large sets
of annotated data to achieve high classification performance
[70], [71]. Recent works on retinal segmentation through
supervised learning reported dataset sizes in the range of
tens of thousands of annotated B-scans [28], [37], [58].
By contrast, our algorithm was trained with a dataset much
smaller, yet it accomplished high classification accuracy and
outperformed reference methods. Furthermore, we compared

the classification performance of our transfer-learning-based
approach against the performance of a U-net model trained
from scratch. Although both models were trained with the
same dataset, the performance of our model was significantly
superior in both test sets (see Table 6).

A. COMPARISON OF METHODS
The segmentation performance of our method was evaluated
with two test sets and contrasted against corresponding per-
formances of three algorithms, one based on a deep learning
network and two other non-deep-learning methods which
are highly referenced in related research. These methods,
implement graph-cut algorithms where the retinal layers are
individually segmented by fitting segmenting surfaces to esti-
mates of the layer boundaries. As a result, these algorithms
are highly sensitive to large disruptions such as those of
retinas with severe DME. The segmentation error is typically
large, and occasionally the algorithms failed to segment the
B-scan completely. Fig. 6 shows an example of severe DME,
where large intraretinal fluid pockets broke the boundaries
of the retinal layers. Graph-cut-based algorithms left parts of
the retina out (see Fig. 6(b)), or produced no segmentation at
all (see Fig. 6(c)). By contrast, the proposed method properly
segmented the retina, as shown in Fig. 6(a).
Examining the algorithm performance in the control group,

we observed an overall higher performance. Particularly,
the segmentation error and the failure rate of reference algo-
rithms were considerably lower than corresponding values
in the DME set. However, the performance of the proposed
method was significantly higher across all metrics, as shown
in Table 6. Despite the performance improvement, notice-
able errors occurred in the segmentation obtained with ref-
erence methods, especially in those from the OCT Explorer
algorithm. Such errors appeared more frequently towards
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FIGURE 12. Example of the segmentation obtained by evaluated
algorithms in the DME set. (a) the proposed method, (b) Aura tools,
(c) OCT Explorer, and (d) the U-net-based algorithm. The algorithm
boundaries are shown in green and the manual annotations in red.

the nasal quadrant, where the boundary delineations of the
ILM and RPE layers diverged from the expected location
(see Fig. 7(c) and Fig. 12(c)).

Careful examination of the OCT volumes that end up badly
segmented, led us to note that the cause of the errors is
related to the presence of abrupt transitions between adja-
cent B-scans. Reference algorithms leverage 3D features
of the OCT volumes to estimate initial boundaries upon
which they determine the final segmentation. Whereas this
approach might work well on dense volumes where neigh-
boring B-scans exhibit a strong correspondence, it results
in poor boundary estimates in volumes with a low number
of B-scans like the ones used in this study. This evidences
a limitation of reference algorithms considering that the
amount of B-scans per volume is typically an uncontrollable
variable.

The proposed method performed consistently high in both
normal and DME sets, however, a few B-scans in the lat-
ter group presented minor segmentation errors. These errors
occurred around hyperreflective foci (HF) clusters outside the
retina. HF is associated with intermediate stages of DME and
appears in the inner and outer layers as highly reflective spots,
brighter than the RPE [72]. In the presence of HF clusters,
the proposed algorithm classifies pixels in the groupings as
belonging to the retina. As a consequence, the resulting seg-
mentation oversteps the target boundary (see Fig. 13(a)). The
cause of the segmentation errors is the under-representation
of these abnormal formations in the train data, and it should
be addressed by adding more examples of mild DME to the
training set.

FIGURE 13. Example of segmentation errors produced by the proposed
method (a) in the DME set. Corresponding segmentation from Aura
tools (b), OCT Explorer (c), and the U-net-based algorithm (d) are also
presented. The algorithm boundaries are shown in green and the manual
annotations in red.

Looking at the reliability of the reference algorithms we
observed a high incidence of large deviations in the DME
group (see Figs. 10(b) and 10(c). Similarly, corresponding
Bland-Altman plots show that the reference algorithm’s CMT
measurements deviate in greater magnitude with thicker
retinas (Fig. 11). This evidences that segmentation errors
occurred frequently in the presence of macular edema. OCT
Explorer failed to produce any segmentation for 86 DME
B-scans, whereas Aura tools left out parts of the retina
in 29 B-scans of the DME group. The U-net-based algorithm
performed slightly better in the set of DME cases but the seg-
mentation error was 10%. By contrast, our algorithm success-
fully segmented all DME test data with a mean segmentation
error of 1%.

VI. CONCLUSION
A fully automated method based on patch classification was
developed to segment the region in between the outermost
layers of the retina in OCT B-Scans. The proposed algorithm
outperformed reference methods in the presence of macular
fluid, a retinal pathology in which existing algorithms have
been observed to have a low-performance [3].

Reference algorithms, particularly those based on graph
theory, rely on expected features of the retina layers to fit
segmentation curves or surfaces to the OCT scans or volumes.
Assumptions regarding the smoothness of the retinal contour
and the retinal thickness allow these algorithms to limit the
amount of deformation of the retina. Whereas this constraint-
driven approach has proved to be effective in segmenting
normal retinas, we observed that it fails in retinas exhibiting
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macular edema, particularly in cases with large intraretinal
cysts.

Contrary to reference algorithms, ourmethod implements a
patch-based semantic segmentation of the ROI that classifies
pixels according to their local context rather than prede-
termined constraints. This allows our algorithm to capture
pathological changes in the retinal boundaries, which are
typically variable in shape, orientation, and location. As a
result, the proposed method produces accurate segmentation
boundaries regardless of the presence of macular edema.

In conclusion, we introduced a robust method to auto-
matically segment the neurosensory retina in OCT images.
Our algorithm accurately delineates the boundaries of the
outer retinal layers, even in the presence of severe pathology.
Moreover, the proposed method can produce reliable clinical
measurements derived from the segmentation such as the
central macular thickness. Our algorithm was evaluated on
two independent OCT datasets and outperformed reference
methods at segmenting normal and edematous retinas. This
suggests that our method can be reliably used in clinical prac-
tice as an alternative to labor-intensive manual processing of
retinal OCT images.

ACKNOWLEDGMENT
The authors would like to thank the Institute for Telecom-
munications for providing the computational and physical
resources needed to develop this work.

REFERENCES
[1] J. F. De Boer, R. Leitgeb, and M. Wojtkowski, ‘‘Twenty-five years of

optical coherence tomography: The paradigm shift in sensitivity and speed
provided by Fourier domain OCT,’’ Biomed. Opt. Exp., vol. 8, no. 7,
pp. 3248–3280, 2017.

[2] M. Adhi and J. S. Duker, ‘‘Optical coherence tomography–current
and future applications,’’ Current Opinion Ophthalmol., vol. 24, no. 3,
pp. 213–221, 2013.

[3] S. M. Waldstein, B. S. Gerendas, A. Montuoro, C. Simader, and
U. Schmidt-Erfurth, ‘‘Quantitative comparison of macular segmentation
performance using identical retinal regions across multiple spectral-
domain optical coherence tomography instruments,’’ Brit. J. Ophthalmol.,
vol. 99, no. 6, pp. 794–800, Jun. 2015.

[4] W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, ‘‘Retinal
optical coherence tomography: Past, present and future perspectives,’’ Brit.
J. Ophthalmol., vol. 95, no. 2, pp. 171–177, Feb. 2011.

[5] S. M. Waldstein, J. Wright, J. Warburton, P. Margaron, C. Simader,
and U. Schmidt-Erfurth, ‘‘Predictive value of retinal morphology for
visual acuity outcomes of different ranibizumab treatment regimens
for neovascular AMD,’’ Ophthalmology, vol. 123, no. 1, pp. 60–69,
Jan. 2016.

[6] A. Wood, A. Binns, T. Margrain, W. Drexler, B. Považay, M. Esmaeelpour,
and N. Sheen, ‘‘Retinal and choroidal thickness in early age-related mac-
ular degeneration,’’ Amer. J. Ophthalmol., vol. 152, no. 6, pp. 1030–1038,
2011.

[7] A. Aojula, S. P. Mollan, J. Horsburgh, A. Yiangou, K. A. Markey,
J. L. Mitchell,W. J. Scotton, P. A. Keane, andA. J. Sinclair, ‘‘Segmentation
error in spectral domain optical coherence tomography measures of the
retinal nerve fibre layer thickness in idiopathic intracranial hypertension,’’
BMCOphthalmol., vol. 17, no. 1, Dec. 2017, pp. 1–7, doi: 10.1186/s12886-
017-0652-7.

[8] R. A. Alshareef, A. Goud, M. Mikhail, H. Saheb, H. K. Peguda,
S. Dumpala, S. Rapole, and J. Chhablani, ‘‘Segmentation errors in macular
ganglion cell analysis as determined by optical coherence tomography
in eyes with macular pathology,’’ Int. J. Retina Vitreous, vol. 3, no. 1,
Dec. 2017, pp. 1–8, doi: 10.1186/s40942-017-0078-7.

[9] P. J. Patel, F. K. Chen, L. da Cruz, and A. Tufail, ‘‘Segmentation error
in stratus optical coherence tomography for neovascular age-related mac-
ular degeneration,’’ Investigative Ophthalmol. Vis. Sci., vol. 50, no. 1,
pp. 399–404, 2009.

[10] S. Sadda, Z. Wu, A. Walsh, L. Richine, J. Dougall, R. Cortez, and
L. Labree, ‘‘Errors in retinal thickness measurements obtained by optical
coherence tomography,’’ Ophthalmology, vol. 113, no. 2, pp. 285–293,
Feb. 2006.

[11] D. Hanumunthadu, J. P. Wang, W. Chen, E. N. Wong, Y. Chen,
W. H. Morgan, P. J. Patel, and F. K. Chen, ‘‘Impact of retinal pigment
epithelium pathology on spectral-domain optical coherence tomography-
derived macular thickness and volume metrics and their intersession
repeatability,’’ Clin. Exp. Ophthalmol., vol. 45, no. 3, pp. 270–279,
Apr. 2017.

[12] D. C. DeBuc, ‘‘A review of algorithms for segmentation of retinal image
data using optical coherence tomography,’’ in Image Segmentation, vol. 1.
Rijeka, Croatia: IntechOpen, 2011, pp. 15–54.

[13] J. Oliveira, S. Pereira, L. Gonçalves, M. Ferreira, and C. A. Silva, ‘‘Multi-
surface segmentation of OCT images with AMD using sparse high order
potentials,’’ Biomed. Opt. Exp., vol. 8, no. 1, pp. 281–297, 2017.

[14] R. Kafieh, H. Rabbani, M. D. Abramoff, andM. Sonka, ‘‘Intra-retinal layer
segmentation of 3D optical coherence tomography using coarse grained
diffusion map,’’Med. Image Anal., vol. 17, no. 8, pp. 907–928, Dec. 2013.

[15] F. Rathke, S. Schmidt, and C. Schnörr, ‘‘Probabilistic intra-retinal layer
segmentation in 3-DOCT images using global shape regularization,’’Med.
Image Anal., vol. 18, no. 5, pp. 781–794, Jul. 2014.

[16] S. J. Chiu, M. J. Allingham, P. S. Mettu, S. W. Cousins, J. A. Izatt, and
S. Farsiu, ‘‘Kernel regression based segmentation of optical coherence
tomography images with diabetic macular edema,’’ Biomed. Opt. Exp.,
vol. 6, no. 4, pp. 1172–1194, 2015, doi: 10.1364/BOE.6.001172.

[17] J. Tian, B. Varga, G. M. Somfai, W.-H. Lee, W. E. Smiddy, and
D. C. DeBuc, ‘‘Real-time automatic segmentation of optical coherence
tomography volume data of the macular region,’’ PLoS ONE, vol. 10, no. 8,
Aug. 2015, Art. no. e0133908, doi: 10.1371/journal.pone.0133908.

[18] K. Li, X. Wu, D. Z. Chen, and M. Sonka, ‘‘Optimal surface segmentation
in volumetric images—A graph-theoretic approach,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 1, pp. 119–134, Jan. 2006.

[19] H. Xue, L. Srinivasan, S. Jiang, M. Rutherford, A. D. Edwards,
D. Rueckert, and J. V. Hajnal, ‘‘Automatic segmentation and reconstruc-
tion of the cortex from neonatal MRI,’’ NeuroImage, vol. 38, no. 3,
pp. 461–477, Nov. 2007.

[20] J. Oliveira, S. Pereira, L. Gonçalves, M. Ferreira, and C. A. Silva, ‘‘Sparse
high order potentials for extending multi-surface segmentation of OCT
images with drusen,’’ in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. (EMBC), Aug. 2015, pp. 2952–2955.

[21] S. P. K. Karri, D. Chakraborthi, and J. Chatterjee, ‘‘Learning layer-specific
edges for segmenting retinal layers with large deformations,’’Biomed. Opt.
Exp., vol. 7, no. 7, pp. 2888–2901, 2016.

[22] A. Montuoro, S. M. Waldstein, B. S. Gerendas, U. Schmidt-Erfurth, and
H. Bogunović, ‘‘Joint retinal layer and fluid segmentation in OCT scans
of eyes with severe macular edema using unsupervised representation and
auto-context,’’ Biomed. Opt. Exp., vol. 8, no. 3, pp. 1874–1888, 2017.

[23] K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, ‘‘Auto-
mated segmentation by pixel classification of retinal layers in ophthalmic
OCT images,’’ Biomed. Opt. Exp., vol. 2, no. 6, pp. 1743–1756, 2011.

[24] P. P. Srinivasan, S. J. Heflin, J. A. Izatt, V. Y. Arshavsky, and S. Farsiu,
‘‘Automatic segmentation of up to ten layer boundaries in SD-OCT images
of the mouse retina with and without missing layers due to pathology,’’
Biomed. Opt. Exp., vol. 5, no. 2, pp. 348–365, 2014.

[25] A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying,
and J. L. Prince, ‘‘Retinal layer segmentation ofmacular OCT images using
boundary classification,’’ Biomed. Opt. Exp., vol. 4, no. 7, pp. 1133–1152,
2013.

[26] K. McDonough, I. Kolmanovsky, and I. V. Glybina, ‘‘A neural network
approach to retinal layer boundary identification from optical coherence
tomography images,’’ in Proc. IEEE Conf. Comput. Intell. Bioinf. Comput.
Biol. (CIBCB), Aug. 2015, pp. 1–8.

[27] S. Thangaraj, V. Periyasamy, and R. Balaji, ‘‘Retinal vessel segmentation
using neural network,’’ IET Image Process., vol. 12, no. 5, pp. 669–678,
May 2018.

[28] L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu,
‘‘Automatic segmentation of nine retinal layer boundaries in OCT images
of non-exudative AMD patients using deep learning and graph search,’’
Biomed. Opt. Exp., vol. 8, no. 5, pp. 2732–2744, 2017.

VOLUME 9, 2021 67361

http://dx.doi.org/10.1186/s12886-017-0652-7
http://dx.doi.org/10.1186/s12886-017-0652-7
http://dx.doi.org/10.1186/s40942-017-0078-7
http://dx.doi.org/10.1364/BOE.6.001172
http://dx.doi.org/10.1371/journal.pone.0133908


A. Cazañas-Gordón et al.: Ensemble Learning Approach to Retinal Thickness Assessment

[29] K. Hu, B. Shen, Y. Zhang, C. Cao, F. Xiao, and X. Gao, ‘‘Automatic
segmentation of retinal layer boundaries in OCT images using multi-
scale convolutional neural network and graph search,’’ Neurocomputing,
vol. 365, pp. 302–313, Nov. 2019.

[30] M. Pekala, N. Joshi, T. Y. A. Liu, N. M. Bressler, D. C. DeBuc,
and P. Burlina, ‘‘Deep learning based retinal OCT segmentation,’’
Comput. Biol. Med., vol. 114, Nov. 2019, Art. no. 103445, doi:
10.1016/j.compbiomed.2019.103445.

[31] A. Shah, M. D. Abramoff, and X. Wu, ‘‘Simultaneous multiple surface
segmentation using deep learning,’’ in Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support. Cham,
Switzerland: Springer, 2017, pp. 3–11.

[32] D. Alonso-Caneiro, J. Kugelman, J. Hamwood, S. A. Read, S. J. Vincent,
F. K. Chen, and M. J. Collins, ‘‘Automatic retinal and choroidal bound-
ary segmentation in OCT images using patch-based supervised machine
learning methods,’’ in Proc. Asian Conf. Comput. Vis. Cham, Switzerland:
Springer, 2018, pp. 215–228.

[33] J. Kugelman, D. Alonso-Caneiro, Y. Chen, S. Arunachalam, D. Huang,
N. Vallis, M. J. Collins, and F. K. Chen, ‘‘Retinal boundary segmentation
in stargardt disease optical coherence tomography images using automated
deep learning,’’ Transl. Vis. Sci. Technol., vol. 9, no. 11, p. 12, Oct. 2020.

[34] P. Zang, J. Wang, T. T. Hormel, L. Liu, D. Huang, and Y. Jia, ‘‘Automated
segmentation of peripapillary retinal boundaries in OCT combining a
convolutional neural network and a multi-weights graph search,’’ Biomed.
Opt. Exp., vol. 10, no. 8, pp. 4340–4352, 2019.

[35] J. Kugelman, D. Alonso-Caneiro, S. A. Read, S. J. Vincent, and
M. J. Collins, ‘‘Automatic segmentation of OCT retinal boundaries
using recurrent neural networks and graph search,’’ Biomed. Opt. Exp.,
vol. 9, no. 11, pp. 5759–5777, 2018.

[36] A. G. Roy, S. Conjeti, S. P. K. Karri, D. Sheet, A. Katouzian, C.Wachinger,
and N. Navab, ‘‘ReLayNet: Retinal layer and fluid segmentation of mac-
ular optical coherence tomography using fully convolutional networks,’’
Biomed. Opt. Exp., vol. 8, no. 8, pp. 3627–3642, 2017.

[37] F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. van Grinsven,
S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, ‘‘Robust total
retina thickness segmentation in optical coherence tomography images
using convolutional neural networks,’’ Biomed. Opt. Exp., vol. 8, no. 7,
pp. 3292–3316, Jul. 2017.

[38] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
‘‘Understanding deep learning requires rethinking generalization,’’ 2016,
arXiv:1611.03530. [Online]. Available: http://arxiv.org/abs/1611.03530

[39] A. Krogh and J. Vedelsby, ‘‘Neural network ensembles, cross validation
and active learning,’’ in Proc. 7th Int. Conf. Neural Inf. Process. Syst.
Cambridge, MA, USA: MIT Press, 1994, pp. 231–238.

[40] Z.-H. Zhou, J. Wu, and W. Tang, ‘‘Ensembling neural networks: Many
could be better than all,’’ Artif. Intell., vol. 137, nos. 1–2, pp. 239–263,
2002.

[41] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016, ch. 7, pp. 256–258.

[42] Y. Ren, L. Zhang, and P. N. Suganthan, ‘‘Ensemble classification and
regression-recent developments, applications and future directions [review
article],’’ IEEE Comput. Intell. Mag., vol. 11, no. 1, pp. 41–53, Feb. 2016,
doi: 10.1109/MCI.2015.2471235.

[43] B. Efron andR. J. Tibshirani,An Introduction to the Bootstrap. Boca Raton,
FL, USA: CRC Press, 1994, ch. 6, pp. 45–56.

[44] M. Kuhn and K. Johnson, Applied Predictive Modeling, vol. 26. NewYork,
NY, USA: Springer, 2013, pp. 192–198.

[45] Y. Cao, Q.-G. Miao, J.-C. Liu, and L. Gao, ‘‘Advance and prospects of
AdaBoost algorithm,’’Acta Automatica Sinica, vol. 39, no. 6, pp. 745–758,
Mar. 2014.

[46] A. Natekin and A. Knoll, ‘‘Gradient boosting machines, a tutorial,’’ Fron-
tiers Neurorobot., vol. 7, p. 21, Dec. 2013, doi: 10.3389/fnbot.2013.00021.

[47] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[48] A. Lahiri, A. G. Roy, D. Sheet, and P. K. Biswas, ‘‘Deep neural ensemble
for retinal vessel segmentation in fundus images towards achieving label-
free angiography,’’ in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. (EMBC), Aug. 2016, pp. 1340–1343.

[49] Z. Ji, Q. Chen, S. Niu, T. Leng, and D. L. Rubin, ‘‘Beyond retinal layers:
A deep voting model for automated geographic atrophy segmentation in
SD-OCT images,’’ Transl. Vis. Sci. Technol., vol. 7, no. 1, p. 1, Jan. 2018,
doi: 10.1167/tvst.7.1.1.

[50] Y. Guo, Ü. Budak, and A. Şengür, ‘‘A novel retinal vessel detection
approach based on multiple deep convolution neural networks,’’ Comput.
Methods Programs Biomed., vol. 167, pp. 43–48, Dec. 2018.

[51] D. H. Wolpert, ‘‘Stacked generalization,’’ Neural Netw., vol. 5, no. 2,
pp. 241–259, Jan. 1992.

[52] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. New York, NY,
USA: Springer, 2009.

[53] H. Bogunović et al., ‘‘RETOUCH: The retinal OCT fluid detection and
segmentation benchmark and challenge,’’ IEEE Trans. Med. Imag., vol. 38,
no. 8, pp. 1858–1874, Aug. 2019.

[54] R. C. Gonzalez and R. E. Woods, Digital Image Processing. New York,
NY, USA: Pearson, 2018, pp. 125–129.

[55] NEMA. (2015). III.6 Retinal Thickness Definition. Accessed:
Feb. 28, 2021. [Online]. Available: http://dicom.nema.org/DICOM/
2013/output/chtml/part17/sect_III.6.html

[56] M. K. Garvin, M. D. Abramoff, X. Wu, S. R. Russell, T. L. Burns,
and M. Sonka, ‘‘Automated 3-D intraretinal layer segmentation of mac-
ular spectral-domain optical coherence tomography images,’’ IEEE Trans.
Med. Imag., vol. 28, no. 9, pp. 1436–1447, Sep. 2009.

[57] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and<0.5 MBmodel size,’’ 2016, arXiv:1602.07360. [Online]. Avail-
able: http://arxiv.org/abs/1602.07360

[58] J. Hamwood, D. Alonso-Caneiro, S. A. Read, S. J. Vincent, and
M. J. Collins, ‘‘Effect of patch size and network architecture on a
convolutional neural network approach for automatic segmentation of
OCT retinal layers,’’ Biomed. Opt. Exp., vol. 9, no. 7, pp. 3049–3066,
2018.

[59] MATLAB. Pretrained Deep Neural Networks. Accessed: Feb. 28, 2020.
[Online]. Available: https://www.mathworks.com/help/deeplearning/
ug/pretrained-convolutional-neural-networks.html

[60] J. Bengio, ‘‘Practical recommendations for gradient-based training of deep
architectures,’’ in Neural Networks: Tricks of the Trade (Lecture Notes in
Computer Science), G.Montavon, G. B. Orr, and K. R.Müller, Eds. Berlin,
Germany: Springer, 2012, pp. 437–478.

[61] T. M. Breuel, ‘‘The effects of hyperparameters on SGD training
of neural networks,’’ 2015, arXiv:1508.02788. [Online]. Available:
http://arxiv.org/abs/1508.02788

[62] L. N. Smith, ‘‘Cyclical learning rates for training neural networks,’’
in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2017,
pp. 464–472.

[63] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[64] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006, ch. 4, pp. 206–212.

[65] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
2016, arXiv:1609.04747. [Online]. Available: http://arxiv.org/abs/1609
.04747

[66] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[67] H. Bogunovic, M. Sonka, Y. H. Kwon, P. Kemp, M. D. Abramoff, and
X. Wu, ‘‘Multi-surface and multi-field co-segmentation of 3-D retinal
optical coherence tomography,’’ IEEE Trans. Med. Imag., vol. 33, no. 12,
pp. 2242–2253, Dec. 2014.

[68] X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abràmoff, and
M. Sonka, ‘‘Three-dimensional segmentation of fluid-associated abnor-
malities in retinal OCT: Probability constrained graph-search-graph-cut,’’
IEEE Trans. Med. Imag., vol. 31, no. 8, pp. 1521–1531, Aug. 2012.

[69] A. Cazañas-Gordón, E. Parra-Mora, and L. A. da Silva Cruz, ‘‘Evaluating
transfer learning for macular fluid detection with limited data,’’ in Proc.
28th Eur. Signal Process. Conf. (EUSIPCO), Jan. 2021, pp. 1348–1352,
doi: 10.23919/Eusipco47968.2020.9287859.

[70] C. Shorten and T.M. Khoshgoftaar, ‘‘A survey on image data augmentation
for deep learning,’’ J. Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi:
10.1186/s40537-019-0197-0.

[71] R. L. Figueroa, Q. Zeng-Treitler, S. Kandula, and L. H. Ngo, ‘‘Predicting
sample size required for classification performance,’’ BMCMed. Informat.
Decis. Making, vol. 12, no. 1, pp. 1–10, Dec. 2012, doi: 10.1186/1472-
6947-12-8.

[72] V. Schreur, L. Altay, F. van Asten, J. M. M. Groenewoud, S. Fauser,
B. J. Klevering, C. B. Hoyng, and E. K. de Jong, ‘‘Hyperreflective
foci on optical coherence tomography associate with treatment outcome
for anti-VEGF in patients with diabetic macular edema,’’ PLoS ONE,
vol. 13, no. 10, Oct. 2018, Art. no. e0206482, doi: 10.1371/journal.pone.
0206482.

67362 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.compbiomed.2019.103445
http://dx.doi.org/10.1109/MCI.2015.2471235
http://dx.doi.org/10.3389/fnbot.2013.00021
http://dx.doi.org/10.1167/tvst.7.1.1
http://dx.doi.org/10.23919/Eusipco47968.2020.9287859
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1186/1472-6947-12-8
http://dx.doi.org/10.1186/1472-6947-12-8
http://dx.doi.org/10.1371/journal.pone.0206482
http://dx.doi.org/10.1371/journal.pone.0206482


A. Cazañas-Gordón et al.: Ensemble Learning Approach to Retinal Thickness Assessment

ALEX CAZAÑAS-GORDON received the B.E.
degree in electrical engineering from National
Polytechnic School, Quito, Ecuador, in 2003, and
the M.Sc. degree in information technology from
The University of Queensland, Brisbane, QLD,
Australia, in 2015. He is currently pursuing the
Ph.D. degree in electrical and computer engineer-
ing with the University of Coimbra, Coimbra,
Portugal.

Since 2018, he has been a Researcher with the
Multimedia Signal Processing Laboratory, Department of Electrical and
Computer Engineering, University of Coimbra. His research interests include
signal processing, deep learning, optical coherence tomography, scanning
laser ophthalmoscopy, and fundus photography.

ESTHER PARRA-MORA received the bache-
lor’s degree in electronics and information net-
works from National Polytechnic School, Quito,
Ecuador, in 2007, and the master’s degree in com-
puter science from The University of Queensland,
Brisbane, QLD, Australia, in 2015. She is cur-
rently pursuing the Ph.D. degree with the Univer-
sity of Coimbra, Coimbra, Portugal.

Since October 2017, she has been a Researcher
with the Department of Electrical and Computer

Engineering, University of Coimbra. Her research interests include auto-
matic diagnosis of retinal diseases using deep learning techniques and dif-
ferent modalities of retinal images.

LUÍS A. DA SILVA CRUZ (Senior Member, IEEE)
received the Licenciado andM.Sc. degrees in elec-
trical engineering from the University of Coimbra,
Portugal, in 1989 and 1993, respectively, and the
M.Sc. degree in mathematics and the Ph.D. degree
in electrical computer and systems engineering
from Rensselaer Polytechnic Institute (RPI), Troy,
NY, USA, in 1997 and 2000, respectively. Since
1990, he has been a Teaching Assistant with the
Department of Electrical and Computer Engineer-

ing, University of Coimbra, and as an Assistant Professor, since 2000.
He is currently a Researcher with the Institute for Telecommunications of
Coimbra, where he works on image and video processing and coding and
medical image processing. He is also a member of the EURASIP, SPIE, and
IEEE technical societies.

VOLUME 9, 2021 67363


