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Abstract: The need to reduce the costs associated with microalgae cultivation encouraged scientific
research into coupling this process with wastewater treatment. Thus, the aim of this work was
to assess the growth of Chlorella vulgaris (Chlorophyta) in different effluents from a municipal
wastewater treatment plant (WWTP), namely secondary effluent (SE) and sludge run-off (SR). Assays
were performed, under the same conditions, in triplicate with 4 dilution ratios of the wastewaters
(25%, 50%, 75% and 100%) with the standard culture medium bold basal medium double nitrated
(BBM2N) as a control. The capability of C. vulgaris for biomass production, chlorophyll synthesis
and nutrients removal in the SE and SR was evaluated. The 25% SE and 25% SR showed increased
specific growth rates (0.47 and 0.55 day−1, respectively) and higher biomass yields (8.64 × 107 and
1.95 × 107 cells/mL, respectively). Regarding the chlorophyll content, the 100% SR promoted the
highest concentration of this pigment (2378 µg/L). This green microalga was also able to remove
94.8% of total phosphorus of SE, while in 50% SR, 31.2% was removed. Removal of 73.9% and
65.9% of total nitrogen in 50% and 100% SR, respectively, was also observed. C. vulgaris growth can,
therefore, be maximized with the addition of municipal effluents, to optimize biomass production,
while cleansing the effluents.

Keywords: microalgae cultivation; biomass production; nutrient removal; wastewater treatment;
bioactive compounds

1. Introduction

Aquatic and coastal ecosystems are essential, providing physico-chemical conditions
that support diversified communities and several ecosystem services, such as shoreline
stabilization, nutrient regulation, carbon sequestration, as well as the supply of food and
energy resources [1–3]. These ecosystems are often associated with highly populated
areas, making these habitats even more susceptible, due to the increasing anthropogenic
activity [4]. The discharge of urban and industrial effluents, as well as the intensification of
agriculture or aquaculture, are some examples of the increasing anthropogenic stressors
that endanger these habitats [5]. The sum of these stressors often causes nitrogen and
phosphorus enrichment of estuarine areas, leading to algal blooms–eutrophication—and
consequently the deterioration of water quality [4–7].

For this reason, the Directive 91/271/EEC [8], which was amended by the Directive
98/15/EC [9], establishes that discharges from urban wastewater treatment plants (WWTP)
in sensitive areas to eutrophication (such as estuaries) must present a minimum percentage
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of 80% (for total phosphorus) and 70–80% (for total nitrogen) reduction in relation to the
influent load. Moreover, the Directive 98/15/EC [9] aims to protect the aquatic environ-
ment, through a set of measurements leading to the significant decrease of the organic and
inorganic load discharged into the water bodies.

In WWTP, the effluent must complete four processes, namely the preliminary (harrow-
ing and degreasing) [10], primary (biological treatment with nitrification/denitrification
bacteria) [11], secondary (settling and sedimentation) [12] and tertiary (pathogens elimi-
nation) treatments [13]. Furthermore, the originated sludge is treated with heating and
gravitational thickening, resulting in a liquid fraction, corresponding to the sludge run-off
or centrate, and a solid fraction, the sludge, which is often incinerated or can be valorized
for agricultural purposes [14]. Nevertheless, the treated effluents and sludge run-off still
often present considerable high nutrient loads.

The need to reduce costs associated to microalgal biomass production led to a set of
studies aiming at the evaluation of wastewaters application for microalgae cultivation. In
fact, the coupling of both processes could be advantageous, since microalgae are able to
reduce the organic and inorganic load of wastewaters and sequester atmospheric carbon
dioxide [15–19]. Thus, microalgae provide a sustainable biological treatment for wastew-
aters and the microalgal biomass can be further valorized for energetic or agricultural
purposes [20–22].

Microalgae cultivation is, however, challenging since growth can be affected by several
biotic factors—light intensity [23], temperature, pH [21], aeration rate [24], nutrients and
carbon dioxide availability [25]—and abiotic factors, such as the presence of pathogenic or
predatory organisms [26,27]. Moreover, there are several systems (open or closed) [28–30],
and strategies (batch, continuous or semi-continuous) [21,31–33] that can be employed in
order to optimize microalgal culture conditions.

Closed systems or photobioreactors are distinguished by the absence of exchange
between the community of microalgae and the surrounding environment, offering var-
ious designs, such as tubular, plastic, flat-plate and bubble-column bags [34]. Some of
the difficulties faced by open systems, such as low efficiency, nutrient evaporation and
contamination, are solved by closed-culture systems [30]. Nevertheless, these systems
present a high demand for electricity and their implementation is costly [34].

In terms of cultivation strategies, the batch strategy is a low-cost strategy because it
does not need much control. This strategy is distinguished by no renewal of the culture
medium, which means that the culture of microalgae grows until it reaches the decline
period. Nevertheless, in practice, the microalgal culture may crash for several reasons,
such as nutrient or oxygen depletion, self-shading, pH variation or harmful compounds
concentration [21,31].

Most microalgae are photoautotrophic, meaning that their growth requirements are: il-
lumination, inorganic carbon and minerals dissolved in the culture medium [35]. However,
some microalgae are capable of growing under heterotrophic or mixotrophic conditions [36].
For instance, in heterotrophic conditions, the growth occurs in the absence of light and
microalgae uses organic carbon through aerobic respiration [37]. While under mixotrophic
conditions, microalgae assimilate organic carbon (i.e., glucose or glycerol) through aerobic
respiration [38]. Thus, the microalgal species must be wisely selected according to the
wastewater type and the final metabolic product targeted. Chlorella vulgaris is commonly
found in municipal wastewaters [18,39–41], as a unicellular, eukaryotic and green microal-
gae (Chlorophyta). This is a resilient and freshwater species, characterized for having a
coccoid shape, often exhibiting a diameter of 2 to 10 µm [25,42]. This microalgae species
holds an important economic value, thus several studies were conducted to optimize the
microalgal growth [25,43–46]. Previous research showed that the optimal conditions for
C. vulgaris growth is observed under mixotrophic conditions [45], within a temperature
range of 25 to 35 ◦C [44], an alkaline pH (9–10) [47], a 16 h (day): 8 h (night) photoperiod,
with a light intensity of 5–7 klux [44] and an aeration rate of 200 mL/ min [25].
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Moreover, all the aforementioned abiotic parameters will affect the capability of
C. vulgaris for nutrient uptake, impacting the growth efficiency. The microalgae C. vul-
garis is one of the species that, according to the carbon source and concentration, can
change their metabolism [48,49]. According to the abiotic parameters, particularly the
carbon source, C. vulgaris can exhibit a photoautotrophic, heterotrophic or mixotrophic
metabolism [45,50–52].

Microalgae growth optimization is pivotal for the research of their biotechnological ap-
plications. Furthermore, the application of wastewater as a culture medium is an important
tool to reduce the costs associated with microalgae growth, as well as, to promote Circu-
lar Economy and develop innovative products and techniques. For instance, microalgal
biomass can be used for pharmaceutical, agricultural or energy purposes.

Chlorella pigments, such as chlorophyll and carotenoids, have also been researched
for use as a natural colorant that can be employed as antioxidants in the biomedical
industry [53,54], and as a dye in textile industry [55,56].

Microalgal biostimulants include macro and micronutrients, phytohormones, carotenoids,
amino acids, antifungal agents, hormones, polyamines, carbohydrates, proteins and vi-
tamins essential to improve plant growth, nitrogen fixation and solubilize phosphate
solubilization, important for plant health [57,58].

Chlorella is also considered a potential resource for biofuel production due to its high
lipid content (ranging from 14 to 63% of dry weight). Following lipid transesterification
for biodiesel, the residual biomass can be used to generate other biofuels such as methane,
bio-oil and ethanol [46,59,60]. Nevertheless, the high costs associated with microalgae
culture medium hamper microalgal production. For this reason, this work aims to assess
the growth of C. vulgaris in different effluents from a municipal WWTP, namely secondary
effluent (SE) and sludge run-off (SR), as possible substitutes of synthetic growth media,
and evaluate the chlorophyll synthesis, as well as the nutrient removal.

2. Materials and Methods
2.1. Microalgae Culture Preparation

The green microalgae Chlorella vulgaris (ACOI-879) was provided by Coimbra Collec-
tion of Algae (ACOI). It was inoculated in a standard growth medium, bold basal medium
double nitrated (BBM2N) [61], formulated as described in Table 1, being the pH rectified
to 7.5, through the addition of NaOH (1N). The inoculate was grown for one week under
the conditions mentioned in Table 2 in order to produce the inoculum for the experiments.
The reagents used for the culture medium BBM2N formulation were all analytical grade
(Panreac; VWR Chemical; Enzymatic; Merck; Chem-Lab and Sigma-Aldrich, Portugal).

Table 1. Chemical composition of the culture medium bold basal medium double nitrated.

Chemical Compound Concentration (g/ L)

NaNO3 0.25
MgSO4·7H2O 0.075

NaCl 0.025
K2HPO4 0.075
KH2PO4 0.175

CaCl2·2H2O 0.025
ZnSO4·7H2O 0.00882
MnCl2·4H2O 0.00144

(NH4)6Mo7O24 · 4H2O 0.00176
CuSO4·5H2O 0.00157

Co(NO3)2·6H2O 0.00049
H3BO3 0.01142
EDTA 0.05
KOH 0.031

FeSO4·7H2O 0.00498
H2SO4 0.001
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Table 2. Microalgae culture conditions.

Typology Method

Inoculum size 1.28 × 105 cells/ mL

Operation mode Batch
Temperature 25 ± 3 ◦C

Light White fluorescent
Light Intensity 5 klux
Photoperiod 16 h day; 8 h night

Working volume 250 mL
Aeration Continuous
Agitation Mechanically, daily

Aeration rate 0.05 L/ min

2.2. Wastewater Collection

Secondary wastewater and sludge run-off were collected from Vila Verde WWTP
(Figueira da Foz, Portugal), located at an estuarine area, namely Mondego estuary.

The SE and SR were transported in plastic bottles to the laboratory in cool boxes,
where they were sterilized, at 121 ◦C for 15 min, and allowed to cool to room temperature
and settle by night, for suspended particle sedimentation.

2.3. Experimental Design

Chlorella vulgaris was cultivated on two types of municipal effluents: (a) secondary
effluent (SE) (Figure 1a) and (b) sludge run-off (SR) (Figure 1b).
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Figure 1. C. vulgaris cultivation in different concentrations of (a) secondary effluent (SE) and (b) sludge run-off (SR).

The assays were performed in Erlenmeyer flasks (V = 250 mL), previously sterilized
in an autoclave for 15 min. at 121 ◦C, in order to prevent any contamination. The experi-
ment was performed under aseptic conditions, in triplicate, with 4 dilution levels of the
wastewater (25%, 50%, 75% and 100%) with the standard culture medium BBM2N, also
used as a control. The assays were conducted under the conditions mentioned in Table 2,
for 12 days. Sampling was performed every 2 days, 25 mL of sample being retrieved for
growth, chlorophyll, and nutrient analysis.

2.4. Microalgae Growth Assessment

Microalgal cells were counted by placing 20 µL in a Neubauer chamber, in a light
microscope (Kern and Sohn Gmbh, Germany) at 40× magnification. The optical density
was measured in a 6715 ultraviolet/visible (UV/VIS) spectrophotometer (Jenway, UK) at
the wavelength of 670 nm.

The correlation of the algal number of cells with optical density is shown in Figure 2,
where is possible to observe a linear relationship. The optical density in the culture can be
used as proxy measure of algal cellular density (expressed in number of cells/ mL), only if
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they are linearly related [62]. In this study, the correlation equation was used to estimate
the algal biomass concentration in the cultures.
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Figure 2. Correlation between microalgal number of cells per milliliter and optical density of the microalgal culture.

The specific growth rate (µ) was calculated through the formula [63,64]:

µ = (ln (NL) − ln (N0))/(tL − t0)

NL—the biomass concentration at time L
N0—the biomass concentration at time 0
tL—is the moment time for the end of the period L
t0—is the moment time for the start of the period 0

2.5. Determination of Physical and Chemical Parameters

In the sampling days, chlorophyll content was measured through a fluorimeter (Turner
Designs, CA, USA) and the pH was analyzed through a pH meter (WTW Inolab, Germany).

2.6. Nutrient Analysis

Ammonia (NH3-N), total nitrogen (Total N) and total phosphorous (Total P) were
measured in the collected growth medium at the beginning of both assays and at every
sampling day for 0% SE (control) or SR, 50% SE or SR and 100% SE and SR. Aliquots
of growth medium were firstly centrifuged for 30 min at 5000 rpm and filtrated with a
polycarbonate filter of 0.4 of µm porosity prior analysis.

Nutrient analyses were performed in a continuous flow autoanalyser (SAN++ System,
Skalar, Netherlands). Working standards solutions were used for quantification by external
calibration. The working standards were prepared by dilution of stock standard solutions,
prepared monthly using analytical grade reagents (NH4Cl, NaNO2, KH2PO4). Limits of
detection were 0.04 mg/L for NH3-N, 0.14 mg/L for Total N and 0.06 mg/L for Total P.

2.7. Statistical Analysis

The statistical analysis was performed with the software Sigma Plot v.14. Data was
checked for normality (Shapiro–Wilk test) and homogeneity (the equal variance test Brown-
Forsythe). Two-way analysis of variance (ANOVA) was then performed to assess statis-
tically significant differences among the cellular density, the specific growth rates, the
chlorophyll and the nutrients concentration within the time and the effluent concentration.
The Holm–Sidak multiple comparison t-test was used after the rejection of the two-way
ANOVA null hypothesis.

3. Results
3.1. Microalgae Growth

Generally, C. vulgaris was able to grow in every tested concentration on both effluents
(Figure 3), exhibiting a typical growth curve by presenting a lag and exponential phase.
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In both experiments with SE and SR, it was observed the presence of lag phase, however
with different time intervals. For instance, in the 50% SR, it was possible to observe the
stationary phase between days 8 to 10, and the declining phase until day 12 of the assay.
On the other hand, in the 75% SE, the declining phase was observed from day 8 until
the end of the assay. Regarding cultivation in different SE concentrations (Figure 3a), no
statistically significant differences were found between the number of cells per milliliter
until day 8 of the experiment. From that day on, the 100% SE stands out (p < 0.05) from the
other treatments, showing the lowest number of cells (day 12; 2.37 × 107 cells/ mL). Since
days 8 to 12, no statistically significant differences were observed between the control, the
25 and 50% SE.
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Regarding the cultivation of C. vulgaris in SR (Figure 3b), statistically significant
differences (p < 0.05) in the cellular density were only observed at day 12 of the experiment.
In this sampling day, the 100% SR (8.42 × 106 cells/mL) stands out, by differing from all
the other treatments (p < 0.05). However, for day 12, no statistical differences were detected
when comparing control (1.95 × 107 cells/mL), the 25% (1.62 × 106 cells/mL) and the 75%
SR treatments (7.91 × 106 cells/mL) (p > 0.05).

The specific growth rate is an important parameter to assess the dynamic behavior of
the microalgae culture (Figure 4). Except for the 50% SR, it was possible to visualize an
overall increase of the specific growth rate using the SR as a growth medium, compared
to the utilization of the SE. However, the 75% concentration of both SE and SR stands out
from the other treatments (p-value < 0.05).

For the SE assay, the highest specific growth rates, and showing statistically significant
differences (p-value < 0.05) from the remaining treatments, was recorded for the 25% and
50% SE concentration (0.47 and 0.46 day−1, respectively), while the control unveiled a value
of 0.39 day−1. Comparatively, the 75 and 100% SE exhibited the lowest specific growth rate
(0.33 and 0.32 day−1, respectively).

In the SR assay, the control and 50% SR showed the highest specific growth values
(0.53 and 0.56 day−1, respectively), contrasting with the remaining treatments, where a
decreasing trend was observed in the percentages SR, namely 75, 50 and 100, exhibiting
respectively the values of 0.46, 0.43 and 0.42 day−1. No statistically significant differences
were observed among different SR concentrations.
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3.2. Physical and Chemical Parameters of Cultivation

Generally, an overall increase in the chlorophyll concentration for every treatment was
registered (Figure 5). In the SE assay, the control was the treatment in which C. vulgaris
exhibited the highest content of chlorophyll (day 12; 2301.67 µg/ L), throughout the experi-
ment (Figure 5a). Nevertheless, from day 4 until the end of the experiment, it was possible
to establish two statistical different groups, namely the group that exhibits higher—control,
25% and 50% SE—and lower chlorophyll content—75% and 100% SE (Figure 5).
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(b) sludge run-off (SR) for 12 days (mean ± standard deviation; n = 3). The symbol * indicates statistical differences among
data (p-value < 0.05).

However, the cultivation of C. vulgaris in 100% SR significantly enhanced the chloro-
phyll synthesis comparatively with control (Figure 5b). After day 6, it was possible to
observe differences (p-value < 0.05) between the SR treatments. On day 6, the highest
chlorophyll concentration was found for 75% SR (866.67 µg/L), and was statistically differ-
ent from all the other treatments. From day 8 until day 12, 100% SR stood out positively
from all the other treatments (p-value < 0.05), achieving a maximum chlorophyll content of
237,834 µg/L (day 12).

In both assays (Figure 6a,b), it was observed an increase of pH values in the control
and 25% treatment, ranging between 7 and 9.5. Despite the slight oscillation in pH values
for 50%, 75% and 100% treatments, pH seems to stabilize around 8.
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Figure 6. pH value of the growth medium, in which C. vulgaris was grown for 12 days. Different concentrations of
(a) secondary effluent (SE) and (b) sludge run-off (SR) were tested (mean ± standard deviation; n = 3).

Regarding nutrients availability, in the SE assay (Table 3) a tendentious increase of
N-NH3 concentration was observed in control, 50% and 100% treatments. Concurrently,
total P concentration decreased, significantly (p-value < 0.05) in the 50% and 100% SE
concentrations, achieving removal rates of 45.4% and 94.8%, respectively.

Table 3. Nutrient availability in each treatment with secondary effluent (SE) (mean ± SD; n = 3). The symbol * indicates
statistical differences (p-value < 0.05) among the different effluent concentrations, in each sampling day, in comparison with
the control.

N-NH3 (mg/ L) Total P (mg/ L)
Time (Days) Control 50% SE 100% SE Control 50% SE 100% SE

0 0.12 ± 0.09 0.05 ± 0.00 0.04 a 52.23 ± 1.57 32.62 ± 4.99 * 18.68 ± 8.57 *
2 0.12 ± 0.04 0.08 ± 0.02 0.19 ± 0.04 51.33 ± 2.74 27.34 ± 5.34 * 0.97 ± 0.31 *
4 0.15 ± 0.02 0.11 ± 0.02 0.2 ± 0.07 46.5 ± 1.76 20.09 ± 1.75 * 1.16 ± 0.11 *
6 0.171 a 0.22 ± 0.03 0.2 ± 0.03 43.76 ± 4.25 19.44 ± 7.63 * 1.06 ± 0.35 *
8 0.28 ± 0.01 0.27 ± 0.02 0.15 ± 0.02 49.7 ± 4.59 15.03 ± 0.92 * 1.82 ± 0.28 *
10 0.28 ± 0.06 0.26 ± 0.04 0.26 ± 0.04 52.5 ± 5.66 17.23 ± 2.67 * 1.68 ± 0.47 *
12 0.48 ± 0.18 0.26 ± 0.02 0.66 ± 0.41 52.64 ± 5.18 17.81 ± 0.34 * 0.97 ± 0.17 *

a only 1 replicate analyzed. Note: The analysis of Total N was not possible.

For the SR experiment (Table 4), the content of N-NH3 increased in control, whereas
it significantly decreased in the other treatments, removal rates of 78.7% and 95% being
achieved, respectively, for 50% and 100% SR concentrations. Furthermore, a decrease in
total N concentration were found for all treatments. Control, 50% and 100% SR exhibited
removal rates of 52.1%, 73.9% and 65.9%, respectively. For total P, a reduction of total P
concentration was registered in control (14.7%) and 50% SR (31.2%), but an increase of this
nutrient in the 100% SR was observed.
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Table 4. Nutrient availability in each treatment with sludge run-off (SR) (mean ± standard deviation; n = 3). The symbol
* indicates statistical differences (p-value < 0.05) among the different effluent concentrations, in each sampling day, in
comparison with the control.

N-NH3 (mg/ L) Total N (mg/ L) Total P (mg/ L)
Time

(Days) Control 50% SR 100% SR Control 50% SR 100% SR Control 50% SR 100% SR

0 0.01 a 22.62 ±
1.53 *

28.14 ±
1.88 *

15.13 ±
2.35

76.49 ±
21.36 *

22.95 ±
1.80

59.86 ±
7.54

47.94 ±
3.39

17.11 ±
0.84 *

2 0.34 ±
0.02

11.62 ±
1.76

21.42 ±
4.23 *

11.72 ±
1.03

48.36 ±
3.52 *

21.92 ±
4.16

53.29 ±
5.55

53.09 ±
2.57

12.24 ±
1.38 *

4 0.06 ±
0.02

2.86 ±
1.06

16.91 ±
3.13 *

13.57 ±
2.63

31.45 ±
1.88 *

16.52 ±
2.08

41.06 ±
10.15

43.3 ±
2.33

18.58 ±
0.34 *

6 1.46 ±
0.54

5.51 ±
3.69

12.05 ±
4.07

13.31 ±
2.21

27.35 ±
6.14

15.07 ±
2.85

65.65 ±
9.92

42.54 ±
3.86 *

31.36 ±
4.11 *

8 1.28 ±
0.97 n.a. 2.43 ±

0.75
8.17 ±

1.24 n.a. 10.09 ±
0.33

44.82 ±
11.61 n.a. 20.44 ±

4.07 *

10 1.72 ±
0.35

4.42 ±
3.15

2.03 ±
0.48

8.84 ±
1.40

24.26 ±
2.36

9.26 ±
1.03

51.08 ±
0.87

42.18 ±
0.45

21.77 ±
0.84 *

12 2.28 ±
0.37

4.82 ±
1.72

1.39 ±
0.27

7.24 ±
1.63

19.97 ±
4.05

7.82 ±
1.86

50.44 ±
13.40

32.97 ±
2.90 *

20.21 ±
1.42 *

n.a.—not analysed. a only 1 replicate analysed.

4. Discussion

Wastewater application for microalgae culture is a sustainable and low-cost culture
medium that can be used for microalgae biomass production. Municipal wastewaters are a
complex mixture of organic and inorganic compounds [17]. They are a source of nutrients
(i.e., nitrate, nitrite, phosphorus), but can also contain noxious compounds (i.e., pesticides,
household chemicals, hormones) that can affect C. vulgaris growth and compromise the
microalgae growth [65]. Moreover, previous studies showed that the inoculation of the
microalgae from a standard culture medium directly to wastewater can extend the lag
phase, resulting in a lower C. vulgaris growth [66].

The existence of lag phases for all the treatments suggested that C. vulgaris needed a
period of adaptation to the SE and SR [63]. The duration of the lag phase for each microalgae
culture was, however, different. The higher cell density observed in the SE control was
expected, because the growth medium used (BBM2N), is an optimized culture medium that
is enriched in nutrients that are pivotal for C. vulgaris metabolic processes and growth [67].
As a counterpart, throughout the experiment period, we observed a microalgae growth
reduction in the 25%, 50% and 75% SE concentrations, probably due to the lack of limiting
nutrients or due to the self-shading effect caused by the cell density [21,25].

In SE assay, C. vulgaris achieved a lower specific growth rate (0.32 day−1) in compari-
son with the studies conducted by Sydney et al. [68], Almomani and Örmeci [63] and Znad
et al. [65], in which C. vulgaris exhibited a value of 0.64, 0.52 and 0.62 day−1, respectively.
Concomitantly, Almomani and Örmeci achieved a specific growth rate of 0.25 day−1 in
centrate [63], while in this study we registered a higher value of 0.42 day−1 in the SR assay.
The enhanced specific growth rates in the 25% SR, 25% SE and 50% SE, compared to control,
can be an effect of the organic carbon present in the SE and in the SR [65]. For instance,
the presence of these organic nutrients can promote the mixotrophic growth of C. vulgaris,
enhancing the specific growth rate [69].

The chlorophyll content expresses photosynthetic activity, which varied within the
different effluent ratios tested, and is in concordance with the cellular density of the
cultures in each treatment. The chlorophyll is an essential pigment that acts as a light
converter into energy, through the process of photosynthesis [70]. Furthermore, this
pigment has several biotechnological applications for several industries, such as food,
feed or pharmaceutical [71–73]. In this context, several studies have been conducted in
order to optimize microalgae chlorophyll production [22,74–76]. Growth media with lower
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nitrogen and phosphorus content have been shown to decrease chlorophyll production,
while phosphorus-enriched growth media have revealed to be a chlorophyll production
promoter [77,78]. However, it is necessary to consider that the microalgae growth is
not only affected by nutrient concentrations, but also by the ratios of C, N and P in the
wastewater [63].

Nitrogen is an important and limiting nutrient for microalgae, being necessary for pro-
tein, nucleic acid and chlorophyll molecules synthesis [79]. Consequently, lower contents
of nitrogen can lead to a significant reduction of chlorophyll production [80,81]. Phos-
phorus is equally a pivotal and limiting nutrient for microalgae growth and development.
This nutrient plays an important role in several metabolic pathways, such as the Calvin
cycle, phosphorylation processes and ATP synthesis [82,83]. Thus, growth media with
low phosphorus content will directly affect the microalgae growth and chlorophyll pro-
duction [65,80]. In this context, the higher phosphorus concentration found in the SR in
comparison to SE can explain the highest chlorophyll content found in C. vulgaris cultivated
in SR.

According to some authors, the carbon source also influences C. vulgaris metabolism,
that can present a photoautotrophic, heterotrophic or mixotrophic metabolism [84]. Due
to the absence of a carbon source in the control (with BBM2N growth medium), C. vul-
garis show a photoautotrophic metabolism and carbon is provided through the aeration
(atmospheric carbon dioxide) [45]. When municipal wastewater is added to the growth
medium, an organic carbon food source is also added [65,85]. In the presence of an organic
carbon source, C. vulgaris can present a mixotrophic metabolism. According to Znad
et al. [65], during the photoautotrophic growth pH values often increase, whereas in the
mixotrophic metabolism a low pH range variation is observed. Based on these findings, the
pH range variation and C. vulgaris growth registered herein suggest that the SE and the SR
are also an organic carbon source. Ammonia concentration can also affect pH values [86].
Ammonia is a critical nutrient, but in high concentrations can be toxic for microalgae [87].
In fact, a previous study shown that an ammonia concentration higher than 28 mM can
reduce the microalgae culture viability [88]. Here, the reported ammonia concentration
was significantly lower and did not present a toxic risk for C. vulgaris growth.

In light of the results presented here, the application of wastewater for microalgae
cultivation revealed to be advantageous, maximizing the growth of C. vulgaris, particularly
for 25% and 50% SE and 25% SR treatments. The addition of effluent to growth media
will reduce the costs inherent to microalgae biomass production enhancing the economic
viability of the process.

The present study showed that the cultivation of C. vulgaris can be coupled with
bioremediation of effluents since removal of nutrients was verified during the 12 days of
cultivation. No differences were observed in the total P of the control, which could be
caused by the nitrogen phosphorus ratio, whereas high levels of nitrogen are required to
ensure the efficient removal of phosphorus [89]. On the other hand, in effluent, phosphorus
removal (94.8%) occurred and in this study a higher removal was registered in comparison
with the study conducted by Singh and Dhar (2007), where C. vulgaris presented a removal
rate of 49.6% [90]. Higher phosphorous removal has also been reported by other works.
For instance, an 85% decrease in phosphorus content was observed after two days of
C. vulgaris cultured in secondary effluent [91]. The cultivation of C. vulgaris in SR also
showed to remove considerable amount of nitrogen. Previous research, using centrate as
culture medium, demonstrated a total nitrogen and total phosphorus removal of 33.6 and
25.8%, respectively [63]. Furthermore, high removal rates of ammonia and nitrogen, 78.3%
and 82.8% respectively, were registered by Wang et al. when C. vulgaris was cultivated in
sludge run-off [20]. This approach combining microalgae cultivation-bioremediation shows
potential for further application at industrial scale, possibly by integrating algal farms
with wastewater treatment. The application of such practice will promote the production
of biomass, reducing the cost of the cultivation process, while enhancing the removal of
nutrients from effluents improving the efficiency of wastewater treatments.
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Nevertheless, upscaling the usage of municipal wastewaters for microalgae cultivation
currently faces several drawbacks from an economic perspective. Despite close systems
providing higher control under the abiotic culture conditions, the costs associated to
illumination and sterilization hinders its industrial application [92–94]. Moreover, the
suspended microalgal biomass harvesting is still expensive, so techniques have been being
developed to tackle this problem, such as microalgae immobilization [94]. Furthermore, the
added-value product can be valorized for different applications. For instances, microalgae
cultivation in municipal wastewater can be used for bioactive compounds extraction if the
safety and quality of the biomass is guaranteed. In fact, recent studies showed the potential
of microalgae wastewater cultivation for polyhydroxyalkanoate extraction [95], which is
a compound with several biomedical applications [96–98]. Another bioactive compound
produced by microalgae is chlorophyll, a well-known antioxidant, and a pigment, that can
be employed in the textile industry as a natural dye [55].

In addition, microalgae grown in municipal wastewater can contribute to human
health through the production of metabolic by-products during the wastewater treatment
process, making them renewable sources for sustainable agriculture, highlighting three
main objectives: environment, economic feasibility, and socioeconomic net patrimony.
Since microalgae produce high levels of important micronutrients and macronutrients
for plant growth, they can be used as biofertilizers. Several studies have identified an
association between higher nutrient absorption, higher biomass accumulation and higher
cultivation yield through the incorporation of microalgae-based fertilizers [99–101]. In a
study that examined the effects of algae extracts on plant growth, faster germination and
greater rice seed growth were observed [102]. The use of the green microalga Chlorella sp. is
reported in some studies of microalgae-based fertilizers spread application on agricultural
land, for instance, liquid extract application of C. vulgaris as a foliar spray has promoted
the germination percentage, the radicle and plumule length of three plant species, Lepidium
sativum (garden cress), Eruca sativa (arugula) and Vigna radiata (mung bean) [103–106].
Moreover, dried C. vulgaris can be used as a soil conditioner and natural fertilizer, enriching
the soil with nutrients, and promoting Zea mays (maize) seedling [107].

Microalgae production in municipal wastewaters has been studied for energy pro-
duction [108,109]. Microalgal lipidic profile, particularly the triacylglycerides (i.e., C14:0,
C16:0, C16:1, C18:0, C18:2 and C18:3), through transesterferication have been shown to be
suitable for biofuel production. For instance, researchers demonstrated that Chlorella sp.
cultivated in municipal wastewater exhibited a 27.4% lipid content [110], while C. vulgaris
produced 18.6% [111] and Auxenochlorella protothecoides (formerly Chlorella protothecoides)
presented a lipidic concentration of 33.4% [112].

After lipids extraction, the residual biomass still contains carbohydrates, which are
also interesting for bioethanol production [113]. The content of lignin and cellulose that is
synthesized by microalgae can be converted into methane-rich biogas through anaerobic
digestion. For example, previous research demonstrated that through this method, Chlorella
sorokiniana and Chlorella vulgaris were able to achieve a biogas yield up to 40–73% [114].
Another study points out that the biomass of C. vulgaris cultured in urban sewage allowed
the production of biogas, presenting a yield of 442 mL/g Volatile Solids (VS), in batch
reactors [115]. Furthermore, C. vulgaris can also be used as a feedstock for bio-hythane, an
alternative to fossil fuels, by coupling dark fermentation with anaerobic digestion [60].

5. Conclusions

This study shows that the municipal effluents’ application for C. vulgaris growth
is feasible, it being possible to achieve higher specific growth rates, biomass yields and
chlorophyll content through the addition of these wastewaters into conventional nutrient-
rich growth media. Hereby, the highest nutrient concentration was found in the sludge run-
off, resulting in a higher chlorophyll content, particularly in the 100% SR. The application
of wastewater for microalgae growth was shown to be advantageous, particularly in 25%
and 50% SE and 25% SR, where higher specific growth rates were observed.
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However, microalgae cultivation in municipal wastewater, still faces several bot-
tlenecks, which hampers the upscaling of this technique. Several up and downstream
processed need to evolve, in order to reduce the costs associated with electric, harvest and
biorefinery processes.

Currently, research on the application of microalgae to wastewater bioremediation
from different sources has evolved and has been focused on coupling bioremediation with
biomass growth and further valorization of microalgal feedstock, with novel photobioreac-
tors design, in order to improve its economic viability at an industrial scale. Furthermore,
this coupling represents a multipurpose solution with widespread applications.
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