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A B S T R A C T   

High-quality land use and land cover (LULC) information is of crucial importance for the performance of regional 
climate models (RCMs), in particular at high spatial resolutions down to convection permitting scales below 
4 km. Several satellite-based high-resolution products are currently available for implementation into RCMs. One 
of the most recent products is the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) 
dataset. While the ESA CCI LC has been assessed globally, an evaluation against regional, independent LULC 
datasets is necessary to identify LULC inaccuracies in the respective region of interest and to give regional 
climate modelers estimates for the uncertainty in the land use forcing. In the present work the ESA CCI LC dataset 
is compared to the COoRdination and INformation on the Environment (CORINE) Land Cover (CLC). Agreement 
between the datasets is assessed by proportional area comparison (PAC). The resulting agreement measures are 
compared to the results of a majority approach (MA) to explore possible differences between the methods. Three 
timesteps of ESA CCI LC matching the timesteps of CLC are assessed to take a change in agreement over time into 
account. In addition to the quantification of agreement, spatial patterns of possible issues with ESA CCI LC are 
identified through utilization of geospatial information systems (GIS). Using the PAC, the agreement of ESA CCI 
LC with CLC is found to be ~76 % for the research area (RA). Although the agreement decreases slightly using 
the PAC, no substantial differences in agreement measures were found compared to the results of the MA. 
Dominant LULC categories agriculture and forest show an agreement of over 80 % with CLC. A few major issues 
were found for grassland, wetlands, settlements, and water bodies in the RA of which some might influence RCM 
performance if the dataset is implemented without adjustment. We highly recommend to apply the PAC to other 
regions in Europe and further globally to investigate if the found issues are also found elsewhere. The use of more 
independent regional and specified datasets for validation but also for possible improvement of the ESA CCI LC 
dataset is suggested.   

1. Introduction 

Production of high-quality and high-resolution land use and land 
cover (LULC) information has received increased attention in the last 
decades due to the importance of land cover representation for 
numerous fields of research. One important application is in regional 
climate modelling, which is moving towards higher resolution and 
therefore needs high-quality land cover information with high spatial 
and temporal resolution and coverage. For regional climate models 
(RCMs) a realistic LULC representation is crucial to realistically model 

subsurface and near-surface energy and moisture fluxes as well as to 
investigate feedback mechanisms and coupling effects between LULC 
and regional climate (Chu et al., 2011; Verburg et al., 2011; Houghton 
et al., 2012; Bontemps et al., 2013; Brovkin et al., 2013; Davin et al., 
2019; Georgievski and Hagemann, 2019). Several RCM studies focusing 
on the quantification of uncertainties in near-surface climate parameters 
caused by LULC showed the benefits of using more precise LULC infor-
mation in RCMs (Gao et al., 2015; Santos-Alamillos et al., 2015; Sertel 
et al., 2010). 

Continuous LULC information is nowadays mostly produced by a 

* Corresponding author at: Helmholtz Zentrum Geesthacht, Climate Service Center Germany (GERICS), Germany. 

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2020.102221 
Received 16 April 2020; Received in revised form 10 August 2020; Accepted 17 August 2020   

https://www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2020.102221
https://doi.org/10.1016/j.jag.2020.102221
https://doi.org/10.1016/j.jag.2020.102221
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2020.102221&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Applied Earth Observations and Geoinformation 94 (2021) 102221

2

combination of manual and automatic interpretation of satellite imagery 
with inclusion of existing ground truth data and regional or country 
based LULC information (Loveland and Belward, 1997; Bontemps et al., 
2011). For the reconstruction of past LULC and the projection of future 
LULC, supplementary data such as population development and distri-
bution or changes in climate are used as proxies to assimilate LULC 
development with a model approach (Pongratz et al., 2008; Hurtt et al., 
2011). Historical “ground truth” documents such as cadastral maps are 
an important input source or a validation instrument when recon-
structing historical LULC with a model approach (Ramankutty and 
Foley, 1999; Petit and Lambin, 2002; Fuchs et al., 2013). 

Uncertainties in a final LULC dataset can arise from various well- 
known sources of error during the development process. Different 
classification procedures, atmospheric disturbances as well as changing 
satellite sensors and algorithms can contribute to uncertainties between 
datasets but also within multiannual datasets (Castilla and Hay, 2007; 
Verburg et al., 2011; Fuchs et al., 2013). Therefore, throughout the 
development process of a LULC dataset, a comprehensive assessment is 
required to gain information about the quality of the product. However, 
there is no uniformly applied method and the procedure itself is widely 
discussed (Foody, 2002; Olofsson et al., 2014; Sarmento et al., 2015). 

One of the most recent and detailed LULC products is the European 
Space Agency Climate Change Initiative Land Cover (ESA CCI LC) 
dataset, a continuous global dataset with 23 annual time steps 
(1992–2015) at 300 m grid resolution (ESA, 2017). Previous work found 
the ESA CCI LC epoch time steps (2000, 2005, 2010 and 2015) to be 
relatively accurate on a global scale (75.1 % for 2015, (Achard et al., 
2017). Regional quality assessments gave consistent results when 
comparing ESA CCI LC to other high-resolution LC products in the 
investigated regions respectively (Pérez-Hoyos et al., 2017; Yang et al., 
2017; Samasse et al., 2018; Koubodana et al., 2019). Hua et al. (2018) 
indicated a high consistency with other global state of the art land cover 
datasets for ESA CCI LC over Europe (over 60 % agreement with 
GLC2000 and GLOBCOVER globally and slightly higher when only 
Europe was compared). Due to its continuous global and annual avail-
ability and the detail in LULC description ESA CCI LC is most promising 
to be implemented in RCMs for various regional domains. However, a 
comparison of ESA CCI LC with independent reference data for Eastern 
Europe on a regional scale is missing. 

In this study, a detailed comparison of the global ESA CCI LC product 
over Eastern Europe and the Baltic States with the COoRdination and 
INformation on the Environment (CORINE) Land Cover (CLC) dataset is 
carried out. We consider CLC as reference, since this dataset is more 
detailed, has a higher resolution and is independent from ESA CCI LC. 
Further, the quality of CLC is well known (Jaffrain et al., 2017). How-
ever, due to the different characteristics of the ESA CCI LC and the 
reference data, resampling and nomenclature harmonization techniques 
are necessary to adjust data sets of different resolution and classification 
for comparison. As a consequence of the application of these techniques 
at least one of the products is modified majorly during the process which 
can bias agreement measures (Foody, 2002; Tchuenté et al., 2011; Yang 
et al., 2017). 

When applying a majority resampling approach (MA) to adjust the 
spatial resolution of two or more products, LULC class areas are 
changed. However, a recent approach in the region of Coimbra 
(Portugal) showed the bias in agreement measures due to use of the 
majority resampling is considerably high (Fonte et al., 2020). Against 
this background, an alternative approach is required, to reduce the bias 
due to resampling of LULC products and to improve the information 
value of LULC map comparisons. 

The present work uses an innovative approach to assess the quality of 
high resolution LULC products in a way that is not restrained by the 
static grid structure using proportional area comparison (PAC) (Sar-
mento et al., 2015). By applying PAC, the quantity of correctly classified 
cells is transformed to a quantity of area that is correctly classified and 
that is independent from the grid structure. The method can be applied 

to compare gridded datasets with different resolutions (Fritz et al., 2010, 
2011). In addition, the method can provide a spatial pattern of inac-
curacies for the individual LULC classes. 

In the present work, the method is applied to compare ESA CCI LC to 
CLC for all time steps that were available for both datasets respectively. 
In section 2, methods and data used in this study as well as the classi-
fication harmonization method are described. The agreement measures 
for the PAC and the MA for all time steps respectively, followed by maps 
of spatial disagreement patterns of the LULC categories are presented in 
section 3. Ways to deal with the identified issues in the individual cat-
egories and their possible implications for regional climate modelling 
are discussed in section 4. Finally, section 5 closes with conclusions and 
an outlook for further research. 

2. Methods and data 

2.1. ESA CCI land cover 

ESA CCI LC is a continuous global land cover product with 300 m 
grid resolution. The product has been available online since 2017 and 
was developed over nine years by the ESA Climate Change Initiative 
(CCI) program. It provides global annual LC maps for 23 consecutive 
years from 1992 to 2015 (ESA, 2017). ESA CCI LC is a combination 
product of global surface reflectance from different satellite missions 
(Table 1). One of the major purposes of ESA CCI LC was to create a land 
cover product that meets the requirements of the climate modeling 
community (Li et al., 2017). 

Validation is achieved through use of a dedicated tool provided by 
ESA and Google Earth images as background data. (Achard et al., 2017). 
Globally regularly distributed two-stage stratified random sampling 
including primary and secondary point sample units are validated by a 
network of experts for the respective region. Satellite based Google 
Earth data covering the respective time period is utilized as reference 
and validation is still ongoing. When validated using the GlobCover 
2009 validation database, on which the validation tool is based, it is 
found that the overall accuracy for the ESA CCI LC 2015 map is 75.4 %. 
(Achard et al., 2017). Global consistency with other existing high res-
olution satellite based global land cover datasets was found to be rela-
tively high for the European Continent (Hua et al., 2018). In addition, 
the ESA CCI LC is compared to existing, validated LULC products over 
the African Continent (Koubodana et al., 2019; Pérez-Hoyos et al., 2017; 
Samasse et al., 2018) and China (Yang et al., 2017) but up to now, there 
are no comprehensive assessment activities for ESA CCI LC over Central 
and Eastern Europe published. Extension of the ESA CCI LC map series 
until 2018 was provided in October 2019 (ESA, 2019). 

Table 1 
ESA CCI Product information (ESA, 2017).  

Time period Satellite products 

Baseline Production 
2003− 2012 

MERIS FR/RR global SR composites 

1992− 1999 Baseline 10-year global map AVHRR global SR 
composites for back-dating baseline 

1999− 2013 Baseline 10-year global map SPOT-VGT global SR 
composites for up and back-dating the baseline MERIS FR 
global SR composites to delineate the identified changes 
at 300 m spatial resolution PROBA-V global SR 
composites at 300 m for year 2013 to delineate the 
identified changes at 300 m spatial resolution 

2013− 2015 Baseline 10-year global map PROBA-V global SR 
composites at 1 km for years 2014 and 2015 for updating 
the baseline PROBA-V time series at 300 m for 2014 and 
2015 to delineate the identified changes at 300 m spatial 
resolution  
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2.2. CORINE land cover (CLC) 

The CLC database was initiated by a European program and includes 
land cover information for all EU member states in 1985 (Heymann, 
1994). The first dataset from 1990 therefore covers 27 countries, while 
the most recent CLC map from 2018 covers 39 countries (GISAT, 2019). 

The CLC development process includes satellite image interpretation 
(LANDSAT, SPOT, TM and MSS) and regional land cover information 
such as aerial photography, local knowledge and statistics. Table 2 
shows the technical specifications for each available CLC dataset 
(Copernicus Land Monitoring Service., 2020). 

Validation of CLC 2000 was done by reinterpretation based on 
IMAGE2000 data and by comparison to LUCAS LULC data. Reliability of 
CLC2000 was found to be 87.0 ± 0.8 % and agreement with LUCAS 
LULC data to be 74.8 ± 0.6 % respectively (Büttner and Maucha, 2006). 

For CLC2006, no individual validation was done but a change reli-
ability study from 2000 to 2006 was carried out (Büttner et al., 2011). 
The changes were found to be small (1.25 % of total CLC area) and it was 
concluded, that for CLC 2006 a similar accuracy can be expected. The 
CLC change product (2000–2006) was validated using stratified random 
sampling and including a weighted proportion of all occurring change 
types. Accuracy of changes was found to be 87.8 ± 3.3 % which con-
firms the assumption that CLC 2006 accuracy is similar to the CLC 2000 
accuracy. 

For CLC 2012, validation is done by evaluation of more than 25,000 
sampling locations which were evaluated by experts (Jaffrain et al., 
2017). Overall accuracy was found to be 85 %. 

CORINE CLC is considered as one of the most consistent and most 
carefully prepared land cover product for Europe. Nevertheless, the 
product is only available for a few countries in Europe and few time 
steps. Therefore, CLC might be rather unsuitable for the use in high 
resolution RCMs investigating LULC change induced feedback mecha-
nisms over continental scale domains. Yet, CLC provides a valuable 
source of high resolution LULC information. This information can be 
used to compare coarser, global LULC products over these countries to 
investigate their quality in a comparative assessment. 

Its availability for three timesteps of the ESA CCI LC time series (i.e. 
2000, 2006 and 2012) makes CLC a most valuable product for validating 
ESA CCI LC. CLC is classified into 3 levels with 44 land cover and land 
use classes on level 3 (Heymann, 1994). 

2.3. Dataset harmonization 

In land cover comparison, agreement measures depend on the se-
mantic resolution of the chosen land cover typology where a lower 
number of classes is resulting in higher agreement/ accuracy (Bechtel 
et al., 2019). In order to avoid this issue, we decided to use an estab-
lished harmonization method. Harmonization of classifications is done 
following Vilar et al. (2019) who provided a robust categorization 
method for both, ESA CCI LC and CLC to eight LULC categories in total 
(Table 3). 

Overall, modification of utilized datasets was kept to a minimum 
leaving the resolution of both datasets unchanged. 

ESA CCI LC and CLC are available in different projections. Therefore, 
the projection of the ESA CCI LC maps was transformed to fit the CLC 

ETRS89 Lambert Azimuthal Equal Area (LAEA). The projection is suit-
able for all approaches where true area representation is required and is 
further suited to the research area. Since the map product classification 
consists of discrete categories on a nominal scale, a nearest neighbor 
resampling strategy was applied. Both datasets were clipped to the 
extent of the research area in Eastern Europe. In order to account for 
geoprecision of the used data, the offset between datasets was looked 
into by comparing certain landmarks like coastlines and rectangular 
features. The offset was found not to exceed 20 m, therefore the geo-
precision was found to be sufficient for the present analysis. 

2.4. Methodology 

In the present study two LC data comparison approaches are carried 
out, a PAC and a comparison method using only the majority CLC class 
per ESA CCI LC pixel. For both approaches, overall accuracy (OA), user’s 
accuracy (UA) and producer’s accuracy (PA) are evaluated for all 
assessed timesteps and countries. In the following assessment the mea-
sures OA, UA and PA are referred to as overall agreement (OA = OA), 
precision (PR = UA), recall (RE = PA), since they are used as compar-
ative measures and not as accuracy measures. Spatial comparison of ESA 
CCI LC and CLC is carried out using the PAC maps. All calculations were 
performed using SAGA GIS (Conrad et al., 2015). 

In the PAC, the proportion of each CLC category per ESA CCI LC pixel 
is counted and added. Table 4 shows the calculated area of three CLC 
classes for the proportional area method (Refprop) and for the majority 
method (Refmaj) for four example ESA CCI LC pixels (Fig. 1). 

The area proportions are added per assessed class or category. 
Agreement is measured by utilizing an area based confusion matrix 
(Story and Congalton, 1986; Stehman, 1997) where the rows of the 
matrix correspond to the assessed dataset (ESA CCI LC) and the columns 
correspond to the reference dataset. In the following comparison 
assessment, the confusion matrix is referred to as contingency table, 
since the confusion matrix term is rather to be used in the context of an 
accuracy assessment. The cell values are calculated as follows in Eq. (1): 

cij =
∑r

s=1
ppij(s) (1) 

Table 2 
CORINE (CLC) Product information.   

Satellite data Time consistency Geometric accuracy satellite data Geometric 
accuracy 

Thematic accuracy 

CLC 1990 Landsat-5 MSS/TM single date 1986–1998 ≤50 m 100 m ≥85 % (probably not achieved) 
CLC 2000 Landsat-7 ETM single date 2000 +/- 1 year ≤25 m >100 m ≥85 % 
CLC 2006 SPOT-4/5 and IRS LISS III dual date 2006 +/- 1 year ≤25 m >100 m ≥85 % 
CLC 2012 IRS LISS III and RapidEye dual date 2011–2012 ≤25 m >100 m ≥85 % 
CLC 2018 Sentinel 2A/ 2B 2017 mid-spring to mid-autumn ≤10 m >100 m ≥85 %  

Table 3 
Classification harmonization of ESA CCI LC and CLCa.   

Category ESA CCI LC CLC 

1 Agriculture 10, 11, 12, 20, 30, 40 2 
2 Forest 50, 60, 61, 62, 70, 71, 72, 

80, 81, 82, 90, 100, 160, 170 
3.1 

3 Grassland 110, 130 3.2.1 
4 Wetland 180 4 
5 Settlement 190 1 
6 Shrubland 120, 121, 122 3.2.2, 

3.2.3, 3.2.4 
7 Sparse vegetation, bare areas, 

permanent snow and ice 
140, 150, 152, 153, 200, 
201, 202, 220 

3.3 

8 Water bodies 210 5  

a Nomenclature can be found at http://maps.elie.ucl.ac.be/CCI/viewer/do 
wnload/CCI-LC_Maps_Legend.pdf (ESA CCI LC) and https://land.copernicus. 
eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelin 
es/html (CLC). 
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where cij is the value of cell in row i and column j, r is the number of 
spatial units in the reference dataset and ppij(s) is the proportion of class j 
in the spatial unit s assigned to class i in the assessment. 

The contingency table for the four example cells is shown in Table 5. 
In comparison, Table 6 shows the contingency table for the majority 
method. The main differences between the two matrices are the column 
sums appearing in decimals that correspond to the added proportions of 
area per class. 

Indices of comparison are then derived from the resulting contin-
gency tables. OA, PR and RE are calculated using Eqs. (2),(3) and (4). 

OAi =

∑n
k=1 ckk

n
(2)  

PRi =
cii

∑n
k=1 cik

(3)  

REj =
cjj

∑n
k=1 ckj

(4)  

where cij is the value of the cell in row i in column j of the contingency 
table and n is the number of classes or categories in the map. 

In addition, visual analysis of proportional overlay maps (according 
to Fig. 1) can indicate spatial patterns of agreement between ESA CCI LC 
and CLC and therefore reveal inconsistencies for certain categories. 

2.5. Research area 

The total size of the Research Area (RA) in Eastern Europe is 
~867.000 km2. Countries included in the RA investigated in this paper 
are Estonia, Latvia, Lithuania, Poland, Hungary, Romania and Slovakia 
(Fig. 2) for the available CLC time steps 2000, 2006 and 2012. Cells that 
are not covered by one of the used datasets are left out of the analysis. 

The RA in Eastern Europe and the Baltic States was chosen following 
preliminary investigations that show extensive land use changes sug-
gested by ESA CCI LC (Figs. 2 & 3 ). The bars in Fig. 3 shows the area 
gains and losses of the eight LULC categories according to the dataset. 
The colors show the respective categories that the area was gained from 
or lost to. Most dynamics are found in the categories agriculture and 
forest. Most agricultural area loss is due to forest gain and most of 
agricultural area gain is due to forest area loss. The dynamics might 
indicate a spatial shift of LULC categories, where net area is not lost but 
moved. Most of settlement area gain is due to agricultural area loss 
which is a common dynamic all over the European continent, where 
urban areas are known to expand. 

3. Results 

3.1. Contingency tables and agreement measures 

Table 7 shows the proportion of each harmonized LULC category for 
each assessed time step according to ESA CCI LC and CLC. Dominant 
categories are agriculture and forest with total share of more than 80 % 
in both datasets. Sparse vegetation is almost non-existent in the RA in 
both datasets after classification harmonization while shrubland is 
completely vanished in ESA CCI LC. For agriculture, the difference be-
tween the two datasets is ~2 % and for forest ~4% respectively. For 
grassland and shrubland the proportional areas differ widely. 

The proportional areas of categories do not change substantially 
between the assessed time steps for most of the categories in the indi-
vidual data sets. The largest relative changes are found for settlement 
areas, which double the percentage share over the assessed time period 
in the ESA CCI LC dataset. However, CLC settlement area proportions are 
~5 % while the area in ESA CCI LC is much lower with 1.5–2.5 %. 

Table 4 
Proportional area (Refprop) of three LULC categories (see Table 3 for category 
descriptions) for four example ESA CCI LC pixels (Fig. 1) in comparison to a 
majority comparison method (Refmaj).  

Pixel 
ID (k) 

Map 
Class i 
(ESA 
CCI 
LC) 

Refprop Refmaj 

Reference 
Class j 
(CLC) 

Proportion in 
pixel ppij (k) 

Reference 
Class j 
(CLC) 

Proportion 
in pixel ppij 

(k) 

1 2 

1 pp11 (1) = 0.20 1 pp11 (1) = 0 
2 2 

5 pp12 (1) = 0.45 5 pp12 (1) = 1 
pp15 (1) = 0.35  pp15 (1) = 0 

2 1 

1 
pp11 (2) = 0.60 

1 
pp11 (2) = 1 2 2 

5 
pp12 (2) = 0.25 5 pp12 (2) = 0 
pp15 (2) = 0.15  pp15 (2) = 0 

3 5 

1 pp11 (3) = 0.30 1 pp11 (3) = 0 
2 2 

5 
pp12 (3) = 0.10 5 pp12 (3) = 0 
pp15 (3) = 0.60  pp15 (3) = 1 

4 2 

1 
pp11 (4) = 0.25 

1 
pp11 (4) = 0 2 2 

5 
pp12 (4) = 0.6 5 pp12 (4) = 1 
pp15 (4) = 0.15  pp15 (4) = 0  

Fig. 1. PAC with three LULC classes for four example pixels (a-d). Proportional 
area covered by CLC categories agriculture, forest and settlement can be found 
in Table 4. Pixel IDs refer to example pixels as follows: a) Pixel ID = 1; b) Pixel 
ID = 2; c) Pixel ID = 3; d) Pixel ID = 4. 

Table 5 
Example contingency table using the PAC. Values derived from Table 4 (Refprop).   

1 (Agriculture) 2 (Forest) 5 (Settlements) Sum 

1 (Agriculture) 0.6 0.25 0.15 1 
2 (Forest) 0.45 1.05 0.5 2 
3 (Settlements) 0.3 0.1 0.6 1 
Sum 1.35 1.4 1.25 4  

Table 6 
Example contingency table using the majority method. Values derived from 
Table 4 (Refmaj).   

1 (Agriculture) 2 (Forest) 5 (Settlements) Sum 

1 (Agriculture) 1 0 0 1 
2 (Forest) 0 2 0 2 
3 (Settlements) 0 0 1 1 
Sum 1 2 1 4  
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A contingency table gives quantitative information on agreement 
between the datasets and on issues between LULC categories. Table 8 
shows the contingency table for the PAC between ESA CCI LC and CLC 
for the year 2012. Table 9 shows the same matrix but for the MA. Since 
there are no significant changes in agreement measures RE and PR 
among the assessed time steps, only one pair of matrices is exemplarily 
shown. 

Agreement (PA) of ESA CCI LC agriculture and forest with CLC is 
over 80 %. ~58.000 pixels of CLC agriculture are classified as settlement 
by ESA CCI LC which is not a major share for agriculture areas but makes 
a considerable difference for settlements. ESA CCI LC forest areas show 
the highest agreement with CLC. Nevertheless, the classification of CLC 
forest areas as agriculture and grassland areas might be not negligible 
for the performance of RCMs and needs to be discussed. The low 

accuracies of categories 6 and 7 (shrubland and sparse vegetation) might 
occur because they are not (or almost not) present in the RA in one or 
both datasets used after classification harmonization. With ~36 %, 
agreement for settlements is very low. Most of the CLC settlement areas 
are classified as agriculture by ESA CCI LC. Grassland and wetlands 
accuracies are also not on a high level. For both categories, ~50 % of the 
respective area is classified as forest or agriculture. Possible reasons for 
this very high disagreement in three categories between the two datasets 
are investigated in the visual map analysis. Table 9 shows a very similar 
picture in the contingency table for the majority method. The differences 
between the methods are not apparent using only the confusion 
matrices. Nevertheless, the modification step of using only the dominant 
LULC class of the reference dataset in the MA can give a biased picture of 
the agreement between two datasets, depending on resolution and 

Fig. 2. Research area (upper left) with ESA CCI LC representation of the city Riga (Latvia) in 1992 (lower left) and 2015 (lower right) as an example for extensive 
LULC changes in the whole RA. 

Fig. 3. Category to category changes from 1992-2015 in the RA according to ESA-CCI LC (in 300 × 300 m cell units).  
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complexity of classification. 
A summary of agreement measures OA, RE and PR is given in 

Tables 10–12. Like for the confusion matrices, only minor differences 
are found between the two methods for the agreement measures. OA 
(Table 10) gives a quantification of the overall agreement of the two 
datasets. It is steady over all assessed timesteps and for both methods. A 
more distinguished picture is given by PA and PR (Tables 11 and 12). 

Table 11 shows the PR, the proportional share of reference pixels of 
CLC correctly classified by ESA CCI LC for each category. PR for agri-
cultural and forest is highest. Also, the PR for settlements is high in 2000 
but is decreasing considerably per timestep for both approaches. PR for 
water bodies appears to increase slightly but remains below 75 %. A 
relatively low proportion of wetlands and an extremely low proportion 
of grassland is classified correctly by ESA CCI LC. 

The RE in Table 12 shows the proportion of area classified by ESA 
CCI LC that agrees with the respective category in CLC. While PR gives 
information on the reliability of the assessed dataset, RE gives 

Table 7 
Proportional area of every LULC category for ESA CCI LC and CLC [%]. Assessed 
time steps are 2000, 2006 & 2012.   

Area per category in the RA [%]   

2000 2006 2012  

Category ESA 
CCI 
LC 

CLC ESA 
CCI 
LC 

CLC ESA 
CCI 
LC 

CLC 

1 Agriculture 54.99 57.74 53.81 56.48 53.63 55.54 
2 Forest 34.82 30.87 35.02 31.24 35.05 31.38 
3 Grassland 6.08 0.79 6.11 1.05 6.15 1.04 
4 Wetland 0.90 1.13 0.90 1.09 0.93 1.07 
5 Settlement 1.54 4.57 2.47 4.86 2.58 5.19 
6 Shrubland 0 3.02 0 3.38 0 3.86 
7 Sparse vegetation, 

bare areas, 
permanent snow 
and ice 

0.04 0.10 0.04 0.07 0.04 0.07 

8 Water bodies 1.60 1.74 1.61 1.79 1.60 1.81  

Table 8 
contingency table for the year 2012 - Refprop. Proportional area and SUM are given in thousands (e.g. 8,6 = 8600 spatial units). Recall (RE) and precision (PR) are given 
in percentage.   

1 2 3 4 5 6 7 8 SUM PR [%] 

1 Agriculture 4373.9 379.0 20.3 14.6 264.0 79.5 1.8 29.9 5163.0 84.72 
2 Forest 437.9 2564.0 32.6 21.6 34.0 262.3 1.7 19.8 3374.0 75.99 
3 Grassland 450.8 51.0 45.2 5.5 15.7 18.7 1.7 3.3 592.0 7.64 
4 Wetland 8.5 8.1 1.6 57.4 0.8 8.6 0.2 4.4 89.6 64.04 
5 Settlement 58.7 5.2 0.0 0.3 180.4 1.0 0.1 2.7 248.4 72.60 
6 Shrubland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 
7 Sparse vegetation 0.2 0.2 0.2 0.1 1.5 0.5 1.5 0.3 4.4 35.01 
8 Water bodies 16.3 13.2 0.5 4.1 4.1 1.8 0.3 113.9 154.2 73.84 
SUM 5346.4 3020.7 100.5 103.6 500.4 372.3 7.5 174.3   
RE [%] 81.81 84.88 45.01 55.36 36.05 0.00 20.55 65.34    

Table 9 
contingency table for the year 2012 - Refmaj. Area of categories and SUM are given in thousands (e.g. 8,6 = 8600 spatial units). Recall (RE) and precision (PR) are given 
in percentage.   

1 2 3 4 5 6 7 8 SUM PR [%] 

1 Agriculture 4173.1 358.7 20.6 13.7 255.7 77.6 1.8 26.7 4927.8 84.68 
2 Forest 415.6 2551.4 30.7 20.8 32.5 256.8 1.7 19.2 3328.9 76.64 
3 Grassland 452.6 47.5 45.5 5.5 15.1 17.9 1.5 3.1 588.6 7.74 
4 Wetland 8.6 7.3 1.7 58.2 0.7 8.6 0.3 5.0 90.5 64.37 
5 Settlement 60.4 5.6 0.1 0.4 180.5 0.9 0.1 2.6 250.5 72.08 
6 Shrubland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.00 
7 Sparse vegetation 0.3 0.2 0.2 0.1 1.4 0.4 1.6 0.3 4.4 36.56 
8 Water bodies 16.4 13.6 0.5 4.1 3.8 1.6 0.4 114.3 154.7 73.90 
SUM 5127.0 2984.2 99.4 102.7 489.9 363.7 7.3 171.2   
RE [%] 81.39 85.50 45.84 56.70 36.86 0.00 22.20 66.77    

Table 10 
Overall agreement for all assessed categories and time steps.  

Overall agreement (%) 

2000 2006 2012 
Refprop Refmaj Refprop Refmaj Refprop Refmaj 

76.38 76.59 76.64 76.68 76.21 76.26  

Table 11 
Precision for all assessed categories and time steps.   

Precision (%)  

2000 2006 2012  

Refprop Refmaj Refprop Refmaj Refprop Refmaj 

1 Agriculture 85.30 85.48 85.51 85.47 84.72 84.69 
2 Forest 75.12 75.91 75.90 76.64 75.99 76.68 
3 Grassland 5.83 5.93 7.75 7.94 7.64 7.74 
4 Wetland 61.66 62.88 65.76 65.89 64.04 64.37 
5 Settlement 79.24 78.61 71.46 71.00 72.60 72.06 
6 Shrubland 0.00 – 0.00 – 0.00 – 
7 Sparse vegetation 36.08 37.35 33.90 33.92 35.01 36.55 
8 Water bodies 72.47 72.48 73.25 73.38 73.84 73.88  

Table 12 
Recall for all assessed categories and time steps.   

Recall (%)  

2000 2006 2012  

Refprop Refmaj Refprop Refmaj Refprop Refmaj 

1 Agriculture 81.24 80.86 81.48 81.04 81.81 79.46 
2 Forest 84.73 85.51 85.09 85.77 84.88 84.75 
3 Grassland 44.81 46.08 44.87 46.05 45.01 45.78 
4 Wetland 48.93 50.69 54.25 55.46 55.36 56.68 
5 Settlement 26.79 27.68 36.35 37.13 36.05 36.87 
6 Shrubland – 0 – 0 – 0 
7 Sparse vegetation 15.33 18.13 20.55 23.09 20.55 22.20 
8 Water bodies 66.29 68.30 65.34 67.48 65.34 66.76  
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information on the probability of a pixel in the reference map being 
classified correctly by the assessed dataset. Previously identified issues 
with grassland, wetlands, settlements and water bodies appear for each 
assessed timestep. A considerable increase of RE for wetlands and set-
tlements can be noted between 2000 and 2006 but the RE is still below a 
reasonable level. 

It needs to be considered, that slight changes in proportional area 
influence the agreement measures especially for categories that are 
rather rarely present in the RA (categories 3, 4,5 and 8). Therefore, in 
addition to the agreement measures, we provide the visual map analysis, 
which can give insight on the spatial occurrence of disagreement, also 
for categories that are rarely occurring in the respective RA. 

3.2. Visual map analysis 

A spatial analysis of the data, in addition to the raw quantification 
shown in the confusion matrices, reveals in which areas the disagree-
ments between ESA CCI LC and CLC occur. Since agricultural areas and 
forest areas are the most well represented categories in the RA with a RE 
of 81.8 % and 84.88 % respectively, special focus of the maps is on 
grassland, wetlands, settlements and water bodies. The categories 
shrubland and sparse vegetation, bare areas, permanent snow and ice 
are not relevant for the RA and the present analysis and will therefore be 
neglected in the visual map analysis. The effects of disagreement occur 

throughout the whole RA. Since the mostly small LULC features are not 
displayable in a sufficient way for the whole RA, Figs. 4–7 show map 
sections which highlight typical effects of the disagreeing categories 
grassland, wetlands, settlements and water bodies for the most recent 
assessed timestep 2012. 

3.2.1. Grassland 
RE of grassland for ESA CCI LC reaches around 45 % in the RA. For 

2012, ~20 % of the CLC grassland areas are classified as agricultural 
areas and ~32 % are classified as forest while only ~45 % are classified 
correctly. According to CLC most of the grassland areas in the RA are in 
Hungary and around the Carpathian Arc. Fig. 4 shows that the grassland 
areas classified as forest and agriculture by ESA CCI LC are located 
around correctly classified areas. Due to the location of the disagreeing 
areas mostly in mountainous regions, the orography of the area might 
have major influence on classification results of grassland in ESA CCI LC. 
Another reason for the low agreement is the classification harmoniza-
tion. The ESA CCI LC classification includes many mixed classes where 
for example grassland and low tree density occur as one class. In the 
harmonization, many of these classes are assigned to the forest class, 
although the classes might not incorporate actual forest surface prop-
erties. The same applies to agriculture in ESA CCI LC, where mixed 
agriculture-shrubland or agriculture-forest classes are present. 

Fig. 4. Romania and parts of Hungary including the grassland proportional area overlay. Grey areas show the agreement of ESA CCI LC with CLC in the grassland 
category, colors green and orange show the disagreement and the respective other ESA CCI LC category (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article). 
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3.2.2. Wetlands 
Wetlands in the RA are found in the Danube river delta in Romania 

and in the Baltic States Estonia, Latvia and Lithuania where they appear 
as fens and bogs (Fig. 4). Most of the falsely classified areas are assigned 
to the categories forest and agriculture by ESA CCI LC (reference year 
2012: ~14 % to agriculture and ~21 % to forest, respectively. ~57 % of 
wetland areas were correctly classified). The map shows the propor-
tional overlay map of ESA CCI LC and CLC for wetlands in Estonia for 
2012. Here, the wetlands themselves are reasonably well recognized but 
the surrounding transition areas are often confused with forest or agri-
cultural areas. Although the overall proportion of wetlands in the RA is 
relatively small (~1 %) an underestimation of wetlands might have an 
influence on RCM performance. 

3.2.3. Settlements 
In the reference year 2012, ~52 % of the total settlement area was 

classified as agriculture by ESA CCI LC. Fig. 6 shows the Romanian cities 
Bucharest, Ploiești and the surrounding area as an example. ESA CCI LC 
works quite well for metropolitan areas but cannot capture smaller, 
rural settlements which are rather classified as agriculture. Further, 
linearly distributed features and infrastructure like streets are not 
identified as settlements or urban areas. There is no clear pattern indi-
cated regarding an influencing spatial factor. The 300 m pixel size of 
ESA CCI LC has most definitely an influence on the classification results. 
However, there are also settlement structures seen in the map that are 
not recognized as such but that are clearly bigger than the minimum 

mapping unit (MMU) of ESA CCI LC (9 ha). ESA CCI LC includes only 
one urban LULC class while CLC includes a set of more distinguished 
artificial areas, which might also be partly responsible for the low 
agreement of the datasets in the RA. 

3.2.4. Water bodies 
Around 66 % of water bodies in the RA are correctly classified by ESA 

CCI LC. As for all other categories, most of the disagreeing areas (~28 % 
in total) are assigned to agriculture and forest. Fig. 6 shows that most of 
the disagreeing areas are in or around narrow streams that could not be 
identified as such by ESA CCI LC, presumably due to surface reflection or 
surrounding vegetation. Nevertheless, the biggest issue here might be 
the resolution. The ESA CCI LC resolution of 300 m is in fact not able to 
capture micro scale landscape features, especially when the features are 
line shaped. 

4. Discussion 

The present work investigated the ESA CCI LC dataset regarding 
agreement with CLC and spatial disagreement patterns of LULC in 
Eastern Europe and the Baltic States for 2000, 2006 and 2012. The aim 
of the study was to test if ESA CCI LC agrees with a regional, high- 
resolution LULC product to investigate the datasets suitability for 
implementation in regional climate models. Classification harmoniza-
tion was achieved through transformation of both dataset classifications 
into eight LULC categories. A PAC was tested against a majority 

Fig. 5. Proportional area overly map for wetlands in Continental Estonia. Grey areas show the agreement of both data sets.  
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comparison. Main benefit of the PAC for a LC comparative assessment of 
two or more LC products is that it makes datasets with different reso-
lution and structure comparable without performing preliminary spatial 
modification. Following the quantitative assessment, spatial disagree-
ment issues for the all categories were investigated through visual an-
alyses. Several issues could be identified for all categories except for 
shrublands and sparse vegetation, which are not relevant for the RA. 

Previous work found the ESA CCI LC epoch time steps (2000, 2005, 
2010 and 2015) to be relatively accurate on a global scale (75.4 % for 
2015 according to Achard et al., 2017). The present analysis shows 
consistent OA results for the assessed region (~76 %) for both ap-
proaches and all timesteps respectively. However, the comparability 
between the agreement measures is limited because in all comparative 
assessment approaches, different data harmonization techniques are 
used. Nevertheless, the results of the global studies can give a good 
measure of reliability of the present results. A further restriction is the 
absence of the categories shrublands and sparse vegetation in the RA. To 
achieve full comparability with other approaches regarding overall 

agreement, all existing categories need to be present in the investigated 
region. Since the aim of the present analysis was to investigate agree-
ment of ESA CCI LC with a regional LULC product in a certain region and 
from a climate modelling perspective, this criterion can be neglected. 

Based on the results for the RA, there are no significant differences in 
agreement measures between the majority and the PAC for the investi-
gated time steps and categories. The comparison was carried out on the 
basis of recent findings that showed a considerable bias in agreement 
measures for the MA due to the loss of small landscape features (Fonte 
et al., 2020). The findings could not be confirmed in the present study. A 
reason could be the MMU of CLC which is in fact larger than the MMU of 
ESA CCI LC (9 ha and 25 ha respectively). Due to the manufacturing 
process of CLC, small landscape features still appear which makes the 
product have greater detail than ESA CCI LC. It is expected that when a 
high resolution product in vector format is used as reference that the 
differences in agreement measures between the two methods become 
more apparent. The PAC is therefore still recommended because it can 
be applied to combine gridded or vector data sets regardless their 

Fig. 6. Proportional overlay map for settlements. ~50 % of the CLC settlement areas are classified as agriculture by ESA CCI LC. Biggest urban agglomerations are 
the Romanian cities Bucharest (middle of map) and Ploiești (North of Bucharest). 
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structure and resolution. The possibility to compare LULC data products 
with even less modifications makes the approach advantageous against 
common LULC dataset comparison techniques. It is therefore highly 
recommended to be used in LULC dataset comparisons including 
high-resolution gridded or vector format land cover data. 

No substantial changes in overall agreement of ESA CCI LC and CLC 
over time were found. ESA CCI LC shows a consistent agreement of ~76 
% with CLC for every assessed time step. Since the accuracy of CLC was 
not consistently assessed for all time steps, the reference data set can be 
biasing the present analysis. Although the CLC database is considered to 
be one of the most accurate and consistent land cover products for 
Europe, errors can occur during the production process. Since CLC is 
only available for certain countries in Europe, independent regional land 
cover data sets and other available ground truth data need to be used 
when transferring the PAC to other regions of the globe accordingly. The 
fact that the data structure of the reference data set does not matter for 
the PAC solves the issue of finding suitable reference data partly. All 
types of reference data, which might come in different formats and 
structures should be used simultaneously for comparison without spatial 
transformation biasing the agreement measures. 

Agriculture and forest are the predominant categories in the RA. 
Compared to CLC, Recall of ESA CCI LC is over 80 % for both which can 
be considered as relatively high. However, consistency between other 
global state of the art LC products seems problematic for both categories 
(Fritz et al., 2011) Especially for land-climate interaction scenarios that 

depend highly on LU and LC, overestimation of forest and agriculture 
has, due to specific LULC related surface properties (e.g. high surface 
roughness and albedo), most certainly an impact on RCM performance. 
Therefore, it can be beneficial to use a modification or a combination of 
the ESA CCI LC data set with other reliable, independent LULC data (Chu 
et al., 2011). Crowdsourcing approaches like the Geo-Wiki (https: 
//www.geo-wiki.org/) can further be a valuable source of high resolu-
tion input data to test reliability and to refine LULC maps in the desired 
region of interest. 

For grassland, mostly present in Hungary and Romania, inaccuracies 
tend to be found in areas around mountains and in valleys along the 
Carpathian Arc. Over 50 % of the grassland is differently classified by 
ESA CCI LC, ~32 % of it as forest. These inaccuracies might occur due to 
shadowing in the valleys caused by steep and narrow slopes. The con-
straints of satellite image classifications in mountainous regions are 
widely known in the remote sensing community and also permanent 
improvement was achieved during the last decades (Giles, 2001; Mos-
tafa, 2017; Shahtahmassebi et al., 2013). It needs to be investigated if 
the issue for grassland occurs only in the investigated region or also in 
other mountainous regions to see whether this is a global issue of ESA 
CCI LC. Further, the mixed classes of ESA CCI LC are a biasing factor. It 
needs to be checked, if these disagreements also occur with different 
reference datasets or with a different dataset harmonization method. 

Issues with wetlands are mostly found in the Baltic Countries where a 
considerable area of wetlands are classified as forest by ESA CCI LC. 

Fig. 7. Proportional overlay map for water bodies. ~28 % of the CLC water bodies are classified as agriculture or forest by ESA CCI LC. The map shows the 
southeastern part of Romania including the water body proportional agreement results. 
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These findings are consistent with (Törmä et al., 2015) who discovered 
misclassification of bogs, mires and marshes as forest in Finland. Against 
the background of widely differing surface properties of forest and 
wetland respectively, it should be investigated how this issue can be 
handled for implementation in RCMs. 

Almost half of the settlement areas in the RA (~47 %) are classified 
as agricultural areas by ESA CCI LC. Mostly missing are rural settlements 
and infrastructure like roads without an agglomeration center and of 
linear shape. This might be because ESA CCI LC only incorporates one 
explicit urban LULC class. Since RCMs are moving to finer resolution, 
explicit representation of settlement structures is becoming critical. In 
particular, when RCMs are used on high spatial resolutions down to 
convection permitting scales below 4 km and are increasingly employ-
ing an explicit urban parameterization, relevance of high quality urban 
input data is extremely increased (Trusilova et al., 2013; Daniel et al., 
2019; Langendijk et al., 2019). Modifications of the ESA CCI LC maps, 
which take the linear shaped infrastructure and rural settlements into 
account, might be necessary. For instance, LULC datasets that are 
specialized on urban representation like the urban atlas for Europe 
(Montero et al., 2014) or equivalent regional and global data products 
for other regions could be combined with the ESA CCI LC dataset. 

The water bodies show a similar picture like the settlements 
regarding spatial disagreement issues. Coherent features like lakes or 
larger basins are captured very well but when it comes to rivers and 
streams, ESA CCI LC classifies water bodies as agriculture. Considering 
the surface properties of water bodies as well as the influence of rivers 
and streams on the surrounding landscape features, the missing features 
in ESA CCI LC will be relevant when implementing the data set into an 
RCM. Since the disagreement seems to be limited to the streams and 
rivers that are represented very well by CLC, it might be beneficial to 
improve the ESA CCI LC dataset through the integration of CLC or other 
suitable reference data that represents the river network in a more suf-
ficient way. ESA CCI LC addressed the issue themselves with publishing 
a global water bodies map on 150 m horizontal resolution (Lamarche 
et al., 2017). That map could be integrated into ESA CCI LC before ag-
gregation into coarser resolution, to preserve the small water body 
proportions for further use of the data. 

5. Conclusion 

The present work investigated the agreement of the ESA CCI LC 
dataset with CLC over Eastern Europe and the Baltic states to explore 
ESA CCI LCs suitability for implementation into RCMs over Europe. 
Three timesteps of the annual ESA CCI LC dataset were compared to 
CORINE LC, applying a PAC and a majority method, respectively. 
Classification harmonization of the assessed and the reference dataset 
was achieved through transformation into eight LULC categories. 

Taking all results regarding overall agreement of ~76 % and tem-
poral consistency into account the ESA CCI LC is considered to be suit-
able for implementation into RCMs by taking the following issues found 
in the present study under consideration. Disagreement with CORINE 
LC, which is considered a reliable reference for Europe, is for ESA CCI LC 
~55 % for grassland, ~43 % for wetland, ~64 % for settlements and 
~34 % for water bodies in the investigated RA. 

Regional quality of the dataset must be confirmed for each region of 
interest separately with comparison to independent reference data. 
Although ESA CCI LC was found to be overall suitable for implementa-
tion in RCMs, spatial disagreement patterns were found that might in-
fluence RCM performance on certain scales which must also be 
investigated in each region of interest. 

To get a deeper understanding of spatial disagreement not only for 
the RA but for the whole European Continent a consistent reference 
database for Europe should be developed. In addition to the continuous 
LULC product CLC, regional, independent datasets or also datasets 
specified on one LULC aspect should be included in the analysis which 
then can be compared using the PAC, regardless spatial structure and 

resolution. 
In order to investigate the effects of detected LULC issues on the 

performance of RCMs and on regional climate in a region of interest, 
different LULC distributions and maps could be implemented into an 
RCM and tested. The testing would include different intensities of LULC 
over- and underestimation as well as varying spatial resolutions to 
quantify the impact of inaccuracies of LULC on different scales and to 
specify how to treat inaccuracies in LULCC products in regional climate 
modelling. 
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Katragkou, E., de Noblet-Ducoudré, N., Radtke, K., Raffa, M., Soares, P.M.M., 
Sofiadis, G., Strada, S., Strandberg, G., Tölle, M.H., Warrach-Sagi, K., Wulfmeyer, V., 
2019. Biogeophysical impacts of forestation in Europe: First results from the LUCAS 
Regional Climate Model intercomparison. Earth Syst. Dyn. Discuss. (February), 
1–31. https://doi.org/10.5194/esd-2019-4. 

ESA, 2017. Land Cover CCI Product User Guide Version 2.0. http://maps.elie.ucl.ac. 
be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf. 

ESA, 2019. ESA/CCI Viewer. http://maps.elie.ucl.ac.be/CCI/viewer/download.php. 
Fonte, C.C., See, L., Laso-Bayas, J.C., Lesiv, M., Fritz, S., 2020. Assessing the accuracy of 

land use land cover (LULC) maps using class proportions in the reference data. Isprs 
Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. V-3–2020, 669–674. https://doi. 
org/10.5194/isprs-annals-V-3-2020-669-2020. 

Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote Sens. 
Environ. 80 (1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4. 

Fritz, S., See, L., Rembold, F., 2010. Comparison of global and regional land cover maps 
with statistical information for the agricultural domain in Africa. Int. J. Remote Sens. 
31 (9), 2237–2256. https://doi.org/10.1080/01431160902946598. 

Fritz, S., See, L., McCallum, I., Schill, C., Obersteiner, M., Velde, Mvander, Boettcher, H., 
Havlík, P., Achard, F., 2011. Highlighting continued uncertainty in global land cover 
maps for the user community. Environ. Res. Lett. 6 (4), 044005. https://doi.org/ 
10.1088/1748-9326/6/4/044005. 

Fuchs, R., Herold, M., Verburg, P.H., Clevers, J.G.P.W., 2013. A high-resolution and 
harmonized model approach for reconstructing and analysing historic land changes 
in Europe. Biogeosciences 10 (3), 1543–1559. https://doi.org/10.5194/bg-10-1543- 
2013. 

Gao, Y., Weiher, S., Markkanen, T., Pietikäinen, J.-P., Gregow, H., Henttonen, H.M., 
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