Electronic
Research Archive

Research article

Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians

Natália Bebiano ${ }^{1}$, João da Providência ${ }^{2, \dagger}$ and Wei -Ru Xu ${ }^{3, *}$
${ }^{1}$ CMUC, Department of Mathematics, University of Coimbra, P 3001-454 Coimbra, Portugal
${ }^{2}$ CFisUC, Department of Physics, University of Coimbra, P 3004-516 Coimbra, Portugal
${ }^{3}$ School of Mathematical Sciences, Laurent Mathematics Center, Sichuan Normal University, Chengdu 610066, China

\dagger We dedicate this paper to the memory of João da Providência, who unfortunately passed away just before the paper was published. da Providência played a crucial role in this research and he will be sorely missed.

* Correspondence: Email: weiruxu@sicnu.edu.cn, weiruxu@foxmail.com.

Abstract

In this note, we approximate the von Neumann and Rényi entropies of high-dimensional graphs using the Euler-Maclaurin summation formula. The obtained estimations have a considerable degree of accuracy. The performed experiments suggest some entropy problems concerning graphs whose Laplacians are g-circulant matrices, i.e., circulant matrices with g-periodic diagonals, or quasiToeplitz matrices. Quasi means that in a Toeplitz matrix the first two elements in the main diagonal, and the last two, differ from the remaining diagonal entries by a perturbation.

Keywords: entropy; graphs; Laplacian matrix; Euler-Maclaurin summation formula

1. Introduction

The notion of entropy is due to Rudolf Clausius (1850), and is linked with Carnot's famous theorem on the efficiency of thermal machines. This concept has many applications in different research areas, such as statistical mechanics, computation science, information theory, etc. The concept of graph entropy was introduced in information theory and is of special interest for understanding graph structure (see $[1-8]$ and references therein).

Let G be an undirected graph with n vertices and at least one edge. The degree d_{i} of a vertex i is the number of edges incident on i. Let $L(G)$ be the Laplacian matrix of G, that is, $L(G)=D(G)-A(G)$, where $D(G)$ is the diagonal matrix whose (i, i)-th entry is d_{i} and $A(G)$ is the $(0,1)$ adjacency matrix of
G [9], i.e., $a_{i j}$ is 1 if i, j are adjacent, and 0 otherwise. Since $L(G)$ is symmetric, its eigenvalues are real and as each row (and column) sum is $0, L(G)$ is singular. Normalizing this matrix by its trace, we get the density matrix of G,

$$
\rho_{L}(G)=\frac{1}{\operatorname{Tr} L(G)} L(G),
$$

which is Hermitian with unit trace. By Gershgorin Theorem, all eigenvalues of $\rho_{L}(G)$ are nonnegative [10], so G can be seen as a quantum state. The eigenvalues of $\rho_{L}(G)$ constitute the spectrum of the graph G. In view of the above, it seems natural to investigate the information content of the graph as a quantum state [11].

For A and B positive semidefinite matrices such that $\operatorname{Tr} A=1$, we consider the following matrix functions

$$
\begin{align*}
& S(A)=-\operatorname{Tr}(A \log A), \tag{1.1}\\
& S(A, B)=\operatorname{Tr} A(\log A-\log B), \tag{1.2}\\
& H_{\alpha}(A)=\frac{\log \operatorname{Tr} A^{\alpha}}{1-\alpha}, \alpha \in(0,1) \cup(1, \infty), \tag{1.3}\\
& H_{\alpha}(A, B)=\frac{\log \operatorname{Tr} A^{\alpha} B^{1-\alpha}}{\alpha-1}, \alpha \in(0,1) \cup(1, \infty) . \tag{1.4}
\end{align*}
$$

The functions $S(A), S(A, B), H_{\alpha}(A)$ and $H_{\alpha}(A, B)$ are, respectively, the von Neumann entropy of A, the von Neumann relative entropy of A, B, the α-Rényi entropy of A and the α-Rényi relative entropy of A, B.

According to the fundamental inequality of statistical thermodynamics [12]

$$
S(A, B) \geq \log \operatorname{Tr} B, \quad H_{\alpha}(A, B) \geq \log \operatorname{Tr} B .
$$

For $\operatorname{Tr} B=1$, we have $S(A, B) \geq 0$, and $H_{\alpha}(A, B) \geq 0$, with equality if $A=B$. So, $S(A, B)$ and $H_{\alpha}(A, B)$ may be conveniently used to measure the distance between the density matrices A and B. Obviously, $\lim _{\alpha \rightarrow 1} H_{\alpha}(A)=S(A)$ and $\lim _{\alpha \rightarrow 1} H_{\alpha}(A, B)=S(A, B)$.

Let G be a graph with at least one edge and let $\rho_{1}, \ldots, \rho_{n}$ be the eigenvalues of $\rho_{L}(G)$. We use the natural logarithm in the definitions of entropy and we make the convention that $0 \log 0=0$. The von Neumann entropy of the graph G, denoted $S_{L}(G)$, is the von Neumann entropy of $\rho_{L}(G)$. From (1.1),

$$
\begin{equation*}
S_{L}(G):=S\left(\rho_{L}(G)\right)=-\sum_{i=1}^{n} \rho_{i} \log \rho_{i} \tag{1.5}
\end{equation*}
$$

because $\rho_{L}(G)$ is unitarily diagonalizable and the logarithm is unitarily invariant. In terms of the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of the Laplacian $L(G)$, the von Neumann entropy of G is expressed as

$$
\begin{equation*}
S_{L}(G)=\log \sum_{k=1}^{n} \lambda_{k}-\left(\sum_{k=1}^{n} \lambda_{k}\right)^{-1} \sum_{k=1}^{n} \lambda_{k} \log \lambda_{k} . \tag{1.6}
\end{equation*}
$$

The α-Rényi entropy of the graph G [13], denoted $H_{\alpha}(G)$, is the α-Rényi entropy of $\rho_{L}(G)$. For $\alpha \in(0,1) \cup(1, \infty)$ fixed, from (1.3) we have

$$
\begin{equation*}
H_{\alpha}(G):=H_{\alpha}\left(\rho_{L}(G)\right)=\frac{1}{1-\alpha} \log \sum_{i=1}^{n} \rho_{i}^{\alpha} . \tag{1.7}
\end{equation*}
$$

In terms of the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of the Laplacian $L(G)$, the α-Rényi entropy of G is expressed as

$$
\begin{equation*}
H_{\alpha}(G)=\frac{1}{1-\alpha}\left(\log \sum_{k=1}^{n} \lambda_{k}^{\alpha}-\alpha \log \sum_{k=1}^{n} \lambda_{k}\right) \tag{1.8}
\end{equation*}
$$

For a fixed graph G, the α-Rényi entropy $H_{\alpha}(G)$ is a monotonically decreasing function of α [2]:

$$
H_{\alpha}(G) \leq H_{\alpha^{\prime}}(G) \text { for } \alpha>\alpha^{\prime}
$$

The complete graph K_{n} is the one with the highest possible entropy. Indeed, if the density matrix ρ is singular, its highest possible entropy is $\log (n-1)$ and that is the entropy of the graph K_{n}. In terms of the eigenvalues λ_{k} and λ_{k}^{\prime}, respectively of the Laplacian $L(G)$ and of the Laplacian $L\left(K_{n}\right)$, the relative entropy of G and K_{n} is given by

$$
\begin{align*}
& S\left(G, K_{n}\right):=S\left(\rho_{L}(G), \rho_{L}\left(K_{n}\right)\right) \\
& =\left(\sum_{j=1}^{n} \lambda_{j}\right)^{-1} \sum_{j=1}^{n} \lambda_{j}\left(\log \lambda_{j}-\log \lambda_{j}^{\prime}\right)-\log \sum_{j=1}^{n} \lambda_{j}+\log \sum_{j=1}^{n} \lambda_{j}^{\prime}, \tag{1.9}
\end{align*}
$$

where λ_{j} and λ_{j}^{\prime} are similarly, increasingly or decreasingly, ordered. Under these assumptions, the α-relative Rényi entropy of G and K_{n} is

$$
\begin{align*}
& H_{\alpha}\left(G, K_{n}\right):=H_{\alpha}\left(\rho_{L}(G), \rho_{L}\left(K_{n}\right)\right) \\
& =\frac{1}{\alpha-1}\left(\log \left(\sum_{k=1}^{n} \lambda_{k}^{\alpha} \lambda^{\prime}{ }_{k}{ }^{1-\alpha}\right)-\alpha \log \sum_{k=1}^{n} \lambda_{k}-(1-\alpha) \log \sum_{k=1}^{n} \lambda^{\prime}{ }_{k}\right) . \tag{1.10}
\end{align*}
$$

In recent years, many approaches to increase the understanding of graphical models have been developed, using entropic quantities associated to the graphs constructs (vertices, edges, etc), see e.g., Simmons et al. [6,7] and references therein. The von Neumann entropy of graphs plays a major role in this program, namely by considering the von Neumann Theil index and its generalization by the Rényi entropy. In this note, using the Euler-Maclaurin formula we approximate the von Neumann and Rényi entropies of graphs of high dimensions whose Laplacians are g-circulant matrices, that is, circulant matrices where each row is a right cyclic shift in g-places to the preceding row. In the six cases we have studied, we observe that the relative entropy of G and K_{n} does not depend on n, for n sufficiently large. We have approximated the distance of the graph G to the graph K_{n} because K_{n} is the graph with n vertices with the highest entropy. From our investigations, the following problems arise.
Problem 1. Does the above mentioned observation hold for a general graph with a g-circulant Laplacian?

Problem 2. According to our experiments, we conclude that, for a fixed number of vertices, when the average number of incident edges on each vertex increases, the von Neumann and the α-Rényi entropies increase. Does this behaviour hold in general? When the number of vertices n is fixed, the average number of incident edges on each vertex is $2 m / n$, where m is the number of edges, and the Problem may be rephrased in terms of the edges.
Problem 3. Does the question formulated in Problem 1 have a positive answer for a graph G whose Laplacian is the quasi g-Toeplitz matrix (see Case 6 below), obtained by cutting appropriate edges in a graph G with a g-circulant Laplacian? By a g-Toeplitz matrix we mean a matrix obtained from a g-circulant one by replacing its entries in the upper right and lower left corners by zeros.

2. Graph entropy for graphs with g-circulant Laplacians

Throughout the article the following form of the Euler-Maclaurin (E-M) formula will be used. For a proof, see, e.g., [14-17].

Lemma 1. Let n be a positive integer and let f be a continuous real function in $[0,1]$ of class $C^{3}(0,1)$, i.e. with continuous derivaties until order 3. Then

$$
\begin{equation*}
\sum_{k=1}^{n} f\left(\frac{k}{n}\right)=n \int_{0}^{1} f(x) \mathrm{d} x+\frac{1}{2}(f(1)-f(0))+\frac{1}{12 n}\left(f^{\prime}(1)-f^{\prime}(0)\right)+R_{n} \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{n}=\frac{1}{6 n^{2}} \int_{0}^{1} B_{3}(\{n x\}) f^{\prime \prime \prime}(x) \mathrm{d} x \tag{2.2}
\end{equation*}
$$

$B_{3}(x)=x^{3}-3 x^{2} / 2+x / 2$ the third Bernoulli polynomial and $\{x\}$ the fractional part of x.

Case 1

The Laplacian matrix of the cycle (or circuit) C_{n} is the $n \times n$ circulant matrix

$$
L\left(C_{n}\right)=\left[\begin{array}{ccccc}
2 & -1 & 0 & \ldots & -1 \\
-1 & 2 & -1 & \ldots & 0 \\
0 & -1 & 2 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & 0 & \ldots & 2
\end{array}\right]
$$

whose eigenvalues are

$$
\lambda_{k}=2-2 \cos (2 \pi k / n), \quad k=1,2, \ldots n .
$$

Therefore, the eigenvalues of $\rho_{L}\left(C_{n}\right)$ are $\rho_{k}=\lambda_{k} /(2 n)$.
Consider $f(x):=(2-2 \cos (2 \pi x)) \log (2-2 \cos (2 \pi x))$. By the Euler-Maclaurin formula and having in mind (1.6), we find

$$
S\left(C_{n}\right)=\log (2 n)-\frac{1}{2}\left(2+\frac{R_{n}}{n}\right)=\log n-0.306853+\ldots
$$

because the command Integrate of Mathematica yields

$$
\int_{0}^{1}(2-2 \cos (2 \pi x)) \log (2-2 \cos (2 \pi x)) \mathrm{d} x=2
$$

We compute an upper bound for $\left|R_{n}\right| / n$. For $f(x)=(2-2 \cos (2 \pi x)) \log (2-2 \cos (2 \pi x))$ in (2.2) and using the command NIntegrate of Mathematica, we find

$$
\int_{0}^{1}\left|f^{\prime \prime \prime}(x)\right| \mathrm{d} x=24935.8
$$

so that

$$
\frac{\left|R_{n}\right|}{n} \leq \frac{1}{6 n^{3}} \times 0.0481125 \times \int_{0}^{1}\left|f^{\prime \prime \prime}(x)\right| \mathrm{d} x=\frac{1}{6 n^{3}} \times 0.0481125 \times 24935.8=\frac{199.954}{n^{3}} .
$$

From (1.9), we obtain the relative entropy of C_{n} and K_{n},

$$
S\left(C_{n}, K_{n}\right)=-\log (2 n)+1+\log (n-1)+\ldots=-\log 2+1+\ldots=0.306853+\ldots
$$

As $S\left(K_{n}\right)=\log (n-1)$, we have

$$
\lim _{n \rightarrow \infty} S\left(C_{n}, K_{n}\right)=\lim _{n \rightarrow \infty}\left(S\left(C_{n}\right)-S\left(K_{n}\right)\right)
$$

We study the asymptotic behavior of the $1 / 2$-Rényi entropy of C_{n} for large n. We use (1.8), and we introduce the function of the real variable $k / n, f(k / n):=\lambda_{k}=2-2 \cos (2 \pi k / n)$, with n a positive integer. In the spirit of the Euler-Maclaurin formula, we replace the sum

$$
\sum_{k=1}^{n} \lambda_{k}^{1 / 2}
$$

by the integral

$$
\int_{0}^{n} f(k / n)^{1 / 2} \mathrm{~d} k=n \int_{0}^{1} f(x)^{1 / 2} \mathrm{~d} x=n \int_{0}^{1}(2-2 \cos (2 \pi x))^{1 / 2} \mathrm{~d} x=\frac{4 n}{\pi},
$$

which has been evaluated using the command Integrate of Mathematica. Obviously, $\sum_{k=1}^{n} \lambda_{k}=2 n$. So, we have for the $1 / 2$-Rényi entropy,

$$
\begin{aligned}
& H_{1 / 2}\left(C_{n}\right)=2\left(\log \sum_{k=1}^{n}(2-2 \cos (2 \pi k / n))^{1 / 2}-\frac{1}{2} \log (2 n)\right) \\
& =2\left(\log \left(n\left(\frac{4}{\pi}+\frac{R_{n}}{n}\right)\right)-\frac{1}{2} \log (2 n)\right) \\
& =\log n-0.210018+\ldots .
\end{aligned}
$$

We compute an upper bound for $\left|R_{n}\right| / n$. Using the command NIntegrate of Mathematica we find

$$
\int_{0}^{1}\left|f^{\prime \prime \prime}(x)\right| \mathrm{d} x=24935.8
$$

so that by (2.2)

$$
\frac{\left|R_{n}\right|}{n} \leq \frac{1}{6 n^{4}} \times 0.0481125 \times \int_{0}^{1}\left|f^{\prime \prime \prime}(x)\right| \mathrm{d} x=\frac{1}{6 n^{4}} \times 0.0481125 \times 24935.8=\frac{199.954}{n^{4}} .
$$

For the $1 / 2$-Rényi relative entropy of C_{n} and K_{n}, using (1.10), we obtain

$$
H_{1 / 2}\left(C_{n}, K_{n}\right)=-2 \log \left(\frac{4 n}{\pi} \sqrt{n}+\ldots\right)+\log 2 n+\log n(n-1)
$$

$$
=-2 \log \left(\frac{4}{\pi}\right)+\log 2+\ldots \approx 0.210018
$$

The asymptotic behavior of the 2-Rényi entropy of C_{n} for large n follows in a similar way, using the Euler-Maclaurin formula. Indeed, we replace the sum

$$
\sum_{k=1}^{n} \lambda_{k}^{2},
$$

by the integral

$$
\int_{0}^{n}(k / n)^{2} \mathrm{~d} k=n \int_{0}^{1} f^{2}(x) \mathrm{d} x=n \int_{0}^{1}(2-2 \cos (2 \pi x))^{2} \mathrm{~d} x=6 n,
$$

and by (1.8), we get

$$
\begin{aligned}
& H_{2}\left(C_{n}\right)=-\left(\log \sum_{k=1}^{n}(2-2 \cos (2 \pi k / n))^{2}-2 \log (2 n)\right) \\
& \approx \log n-0.405465 .
\end{aligned}
$$

Case 2

Next we consider the graph with n vertices of the type represented in Figure 1. Its Laplacian, in the general case of n vertices, is the circulant matrix

$$
A_{n}=\left[\begin{array}{ccccccccc}
4 & -1 & -1 & 0 & 0 & \ldots & 0 & -1 & -1 \\
-1 & 4 & -1 & -1 & 0 & \ldots & 0 & 0 & -1 \\
-1 & -1 & 4 & -1 & -1 & \ldots & 0 & 0 & 0 \\
0 & -1 & -1 & 4 & -1 & \ldots & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 4 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-1 & 0 & 0 & 0 & 0 & \ldots & -1 & 4 & -1 \\
-1 & -1 & 0 & 0 & 0 & \ldots & -1 & -1 & 4
\end{array}\right] \in \mathbb{R}^{n \times n},
$$

whose eigenvalues are

Figure 1

$$
\begin{equation*}
\lambda_{k}=4-2 \cos 2 \pi k / n-2 \cos 4 \pi k / n, \tag{2.3}
\end{equation*}
$$

with $k=1, \ldots, n$. The eigenvalues of the density matrix are $\rho_{i}=\lambda_{i} /(4 n)$. Using the command NIntegrate of Mathematica, we find

$$
\kappa:=\int_{0}^{1}(4-2 \cos (2 \pi x)-2 \cos (4 \pi x)) \log (4-2 \cos (2 \pi x)-2 \cos (4 \pi x)) \mathrm{d} x=6.23166 .
$$

Using the Euler-Maclaurin formula, the von Neumann entropy of A_{n} is computed as

$$
\begin{equation*}
S\left(A_{n}\right)=\log (4 n)-\frac{1}{4}\left(\kappa+\frac{R_{n}}{n}\right)=\log 4 n-1.55792+\ldots \approx \log n-0.171621 \tag{2.4}
\end{equation*}
$$

An upper bound to $\left|R_{n}\right| / n$ is now estimated. Using the Command NIntegrate of Mathematica we find

$$
\int\left|f^{\prime \prime \prime}(x)\right| \mathrm{d} x=126619
$$

so that

$$
\frac{\left|R_{n}\right|}{n} \leq \frac{302.593}{n^{3}} .
$$

Notice that, for $f(x)=(4-2 \cos (2 \pi x)-2 \cos (4 \pi x)) \log (4-2 \cos (2 \pi x)-2 \cos (4 \pi x))$, we have

$$
f(0)-f(1)=f^{\prime}(0)-f^{\prime}(1)=0 .
$$

In an analogous way, we also find

$$
S\left(A_{n}, K_{n}\right)=0.171621+\ldots .
$$

Since $S\left(K_{n}\right)=\log (n-1)$ and as the command NIntegrate of Mathematica yields

$$
\int_{0}^{1}(4-2 \cos (2 \pi x)-2 \cos (4 \pi x))^{1 / 2} \mathrm{~d} x=1.88305
$$

we have

$$
\lim _{n \rightarrow \infty} S\left(A_{n}, K_{n}\right)=\lim _{n \rightarrow \infty}\left(S\left(A_{n}\right)-S\left(K_{n}\right)\right) .
$$

In order to approximate the $1 / 2$-Renyi entropy an analogous procedure holds. By (1.8) and as the command NIntegrate of Mathematica yields

$$
\int_{0}^{1}(4-2 \cos (2 \pi x)-2 \cos (4 \pi x))^{1 / 2} \mathrm{~d} x=1.88305
$$

we obtain

$$
H_{1 / 2}\left(A_{n}\right)=\log n+2\left(\log \left(1.88305+\frac{R_{n}}{n}\right)-\frac{1}{2} \log 4\right) .
$$

An upper bound to $\left|R_{n}\right| / n$ is estimated noticing that for $f(x)=(4-2 \cos (2 \pi x)-2 \cos (4 \pi x))^{1 / 2}$, we have

$$
f(0)-f(1)=f^{\prime}(0)-f^{\prime}(1)=0 .
$$

Thus

$$
H_{1 / 2}\left(A_{n}\right) \approx \log n-0.12051 .
$$

From (1.10), we get

$$
H_{1 / 2}\left(A_{n}, K_{n}\right) \approx 0.12051
$$

Case 3
The Laplacian of the graph with n vertices of the type represented in Figure 2 is

$$
B_{n}=\left[\begin{array}{cccccccccc}
6 & -1 & -1 & -1 & 0 & 0 & \ldots & -1 & -1 & -1 \\
-1 & 6 & -1 & -1 & -1 & 0 & \ldots & 0 & -1 & -1 \\
-1 & -1 & 6 & -1 & -1 & -1 & \ldots & 0 & 0 & -1 \\
-1 & -1 & -1 & 6 & -1 & -1 & \ldots & 0 & 0 & 0 \\
0 & -1 & -1 & -1 & 6 & -1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-1 & -1 & 0 & 0 & 0 & 0 & \ldots & -1 & 6 & -1 \\
-1 & -1 & -1 & 0 & 0 & 0 & \ldots & -1 & -1 & 6
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

Its eigenvalues are

Figure 2

$$
\lambda_{k}=6-2 \cos (2 \pi k / n)-2 \cos (4 \pi k / n)-2 \cos (6 \pi k / n),
$$

and the eigenvalues of the density matrix are $\rho_{i}=\lambda_{i} /(6 n)$.
Using the Euler-Maclaurin formula, the von Neumann entropy is computed as

$$
S\left(B_{n}\right)=-\sum_{k=1}^{n} \rho_{i} \log \rho_{i}=\log (6 n)-\frac{1}{6} \kappa+\ldots
$$

As by the command NIntegrate of Mathematica, we obtain

$$
\begin{aligned}
& \kappa:=\int_{0}^{1}((6-2 \cos (2 \pi x)-2 \cos (4 \pi x)-2 \cos (6 \pi x)) \\
& \times \log (6-2 \cos (2 \pi x)-2 \cos (4 \pi x))-2 \cos (6 \pi x)) \mathrm{d} x=11.4670
\end{aligned}
$$

we get

$$
S\left(B_{n}\right) \approx \log n-0.119406
$$

For the relative entropy, by (1.9), we obtain,

$$
S\left(B_{n}, K_{n}\right) \approx 0.119406
$$

Using the Euler-MacLaurin formula, for $\rho(k)=\rho_{k}=\lambda_{k} / \sum_{j=1}^{n} \lambda_{j}$ and $f(n / k)=\lambda_{k}$, we have

$$
\begin{aligned}
& H_{\alpha}\left(B_{n}\right)=\frac{1}{1-\alpha}\left(\log \left(n \int_{0}^{1} f^{\alpha}(x) \mathrm{d} x\right)-\alpha \log \sum_{k=1}^{n} \lambda_{k}+\ldots\right) \\
& =\frac{1}{1-\alpha}\left((1-\alpha) \log n+\log \int_{0}^{1} f^{\alpha}(x) \mathrm{d} x-\alpha \log 6+\ldots\right) .
\end{aligned}
$$

Having in mind that

$$
\kappa^{\prime}:=\int_{0}^{1}(6-2 \cos (2 \pi x)-2 \cos (4 \pi x)-2 \cos (6 \pi x))^{1 / 2} \mathrm{~d} x=2.34793
$$

we get

$$
H_{1 / 2}\left(B_{n}\right) \approx \log n+2 \log \kappa^{\prime}-\log 6=\log n-0.0846939
$$

Case 4

The Laplacian of the graph with n vertices of the type represented in Figure 3 is the 2-circulant matrix

$$
D_{n}=\left[\begin{array}{ccccccccc}
4 & -1 & -1 & 0 & 0 & \ldots & 0 & -1 & -1 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
-1 & -1 & 4 & -1 & -1 & \ldots & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & \ldots & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 4 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-1 & 0 & 0 & 0 & 0 & \ldots & -1 & 4 & -1 \\
-1 & 0 & 0 & 0 & 0 & \ldots & 0 & -1 & 2
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

Figure 3

In order to determine the eigenvalues and eigenvectors of D_{n} we consider a vector of the form $w=\left(x \mathrm{e}^{i \theta_{k}}, y \mathrm{e}^{i \theta_{k}}, \ldots, x \mathrm{e}^{i m \theta_{k}}, y \mathrm{e}^{i m \theta_{k}}\right)^{\mathrm{T}}, \theta_{k}=2 \pi k / m, k=1, \ldots, m$, and the secular equation

$$
D_{n} w=\lambda w
$$

which yields

$$
\mathcal{S}(x, y)^{\mathrm{T}}=\lambda(x, y)^{\mathrm{T}},
$$

where

$$
\mathcal{S}=\left[\begin{array}{cc}
4-2 \cos \theta_{k} & -1-\mathrm{e}^{-i \theta_{k}} \\
-1-e^{i \theta_{k}} & 2
\end{array}\right], \quad \theta_{k}=\frac{2 \pi k}{m}, \quad n=2 m, k=1, \ldots, m,
$$

The matrix \mathcal{S} is called the symbol associated to D_{n}, and its eigenvalues are

$$
\lambda_{k}^{(1,2)}=3-\cos \theta_{k} \pm \frac{\sqrt{7+\cos 2 \theta_{k}}}{\sqrt{2}}
$$

Defining

$$
\begin{aligned}
& \kappa_{1}=\int_{0}^{1}\left(3-\cos 2 \pi x-\sqrt{\frac{7+\cos 4 \pi x}{2}}\right) \log \left(3-\cos 2 \pi x-\sqrt{\frac{7+\cos 4 \pi x}{2}}\right) \mathrm{d} x, \\
& \kappa_{2}=\int_{0}^{1}\left(3-\cos 2 \pi x+\sqrt{\frac{7+\cos 4 \pi x}{2}}\right) \log \left(3-\cos 2 \pi x+\sqrt{\frac{7+\cos 4 \pi x}{2}}\right) \mathrm{d} x,
\end{aligned}
$$

we obtain, using the command NIntegrate of Mathematica,

$$
\begin{aligned}
\kappa_{1} & =0.429296, \\
\kappa_{2} & =7.75746,
\end{aligned}
$$

and so

$$
S\left(\rho\left(D_{n}\right)\right)=\log n-0.265847+\ldots
$$

For

$$
\begin{aligned}
\kappa_{1}^{\prime} & :=\int_{0}^{1}\left(3-\cos 2 \pi x+\sqrt{\frac{7+\cos 4 \pi x}{2}}\right)^{1 / 2} \mathrm{~d} x \\
\kappa_{2}^{\prime} & :=\int_{0}^{1}\left(3-\cos 2 \pi x-\sqrt{\frac{7+\cos 4 \pi x}{2}}\right)^{1 / 2} \mathrm{~d} x
\end{aligned}
$$

we find, using the command NIntegrate of Mathematica,

$$
\begin{aligned}
\kappa_{1}^{\prime} & =2.20059 \\
\kappa_{2}^{\prime} & =0.973707
\end{aligned}
$$

and, using (1.8), we get

$$
H_{1 / 2}\left(D_{n}\right) \approx \log n-0.174734
$$

and

$$
H_{2}\left(D_{n}\right) \approx \log n-0.367725
$$

Case 5
The Laplacian of the graph with n vertices of the type represented in Figure 4, is the 3-circulant matrix

$$
F_{n}=\left[\begin{array}{ccccccccc}
4 & -1 & -1 & 0 & 0 & 0 & \ldots & -1 & -1 \\
-1 & 3 & -1 & -1 & 0 & 0 & \ldots & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 & 0 & \ldots & 0 & 0 \\
0 & -1 & -1 & 4 & -1 & -1 & \ldots & 0 & 0 \\
0 & 0 & 0 & -1 & 3 & -1 & \ldots & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 3 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & 0 & 0 & 0 & 0 & 0 & \ldots & 3 & -1 \\
-1 & 0 & 0 & 0 & 0 & 0 & \ldots & -1 & 3
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

The symbol associated to F_{n} is

$$
\mathcal{S}=\left[\begin{array}{ccc}
4 & -1-\mathrm{e}^{-i \theta_{k}} & -1-\mathrm{e}^{-i \theta_{k}} \\
-1-\mathrm{e}^{i \theta_{k}} & 3 & -1 \\
-1-\mathrm{e}^{i \theta_{k}} & -1 & 3
\end{array}\right], \quad \theta_{k}=\frac{2 \pi k}{m}, \quad n=3 m, k=1, \ldots, m,
$$

and its spectrum is

Figure 4

$$
\sigma(\mathcal{S})=\left\{4,3-\sqrt{4 \cos \theta_{k}+5}, 3+\sqrt{4 \cos \theta_{k}+5}\right\} .
$$

With the command NIntegrate of Mathematica, we find

$$
\begin{aligned}
& \kappa_{1}:=\int_{0}^{1} 4 \log 4 \mathrm{~d} x=5.54518, \\
& \kappa_{2}:=\int_{0}^{1}\left(3-\sqrt{4 \cos \theta_{k}+5}\right) \log \left(3-\sqrt{4 \cos \theta_{k}+5}\right) \mathrm{d} x=0.19892, \\
& \kappa_{3}:=\int_{0}^{1}\left(3+\sqrt{4 \cos \theta_{k}+5}\right) \log \left(3+\sqrt{4 \cos \theta_{k}+5}\right) \mathrm{d} x=8.42759 .
\end{aligned}
$$

By (1.6), we get

$$
S\left(F_{n}\right)=\log \frac{10 n}{3}-\frac{1}{10}\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)+\ldots=\log n-0.213196+\ldots
$$

Using the command NIntegrate of Mathematica, we find

$$
\begin{aligned}
\kappa_{1}^{\prime} & :=\int_{0}^{1} \sqrt{4} \mathrm{~d} x=2 \\
\kappa_{2}^{\prime} & :=\int_{0}^{1}\left(3-\sqrt{4 \cos \theta_{k}+5}\right)^{1 / 2} \mathrm{~d} x=0.973707 \\
\kappa_{3}^{\prime} & :=\int_{0}^{1}\left(3+\sqrt{4 \cos \theta_{k}+5}\right)^{1 / 2} \mathrm{~d} x=2.20059
\end{aligned}
$$

Thus, by (1.8)

$$
H_{\alpha}\left(F_{n}\right)=\log \frac{n}{3}+2 \log \left(\kappa_{1}^{\prime}+\kappa_{2}^{\prime}+\kappa_{3}^{\prime}\right)-\log 10+\ldots \approx \log n-0.148615
$$

Case 6

Up to now we have considered graphs with g-circulant Laplacians. Next, we evaluate the entropy of the graph of the type of the one in Figure 5, which is obtained by deleting in Figure 1 appropriate edges. Its Laplacian is the matrix

$$
A_{n}^{\prime}=\left[\begin{array}{cccccccc}
2 & -1 & -1 & 0 & \ldots & 0 & 0 & 0 \\
-1 & 3 & -1 & -1 & \ldots & 0 & 0 & 0 \\
-1 & -1 & 4 & -1 & \ldots & 0 & 0 & 0 \\
0 & -1 & -1 & 4 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -1 & 3 & -1 \\
0 & 0 & 0 & 0 & \ldots & -1 & -1 & 2
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

Let

$$
A_{n}^{\prime}=A_{n}+\Delta_{n},
$$

where

Figure 5

$$
\Delta_{n}=-\left[\begin{array}{cccccccc}
2 & 0 & 0 & 0 & \ldots & 0 & -1 & -1 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 \\
-1 & -1 & 0 & 0 & \ldots & 0 & 0 & 2
\end{array}\right] \in \mathbb{R}^{n \times n},
$$

and let $A_{n}^{\prime}(\eta)=A_{n}+\eta \Delta_{n}$. In the end we take $\eta=1$. Regarding Δ_{n} as a perturbation of A_{n}, the eigenvalues of A_{n}^{\prime} are easily obtained using perturbation theory. The eigenvalues of A_{n} are given by (2.3) and the respective eigenvectors are

$$
u_{k}=\frac{1}{\sqrt{n}}\left(\mathrm{e}^{i k \theta_{1}}, \ldots, \mathrm{e}^{i k \theta_{n}}\right)^{\mathrm{T}}, \quad \theta_{j}=\frac{2 \pi j}{n}, \quad j=1, \ldots, n .
$$

We have, for the eigenvalues $\lambda_{k}(\eta)$ of $A_{n}^{\prime}(\eta)$,

$$
\lambda_{k}(\eta)=\lambda_{k}(0)+\eta \lambda_{k}^{\prime}(0)+O\left(\eta^{2}\right)
$$

See e.g., [18]. Then,

$$
\delta \lambda_{k}=\lambda_{k}^{\prime}(0)=u_{k}^{*} \Delta_{n} u_{k}=\frac{1}{n}\left(6-4 \cos k \theta_{n-2}-2 \cos k \theta_{n-1}\right) .
$$

Theorem 2.1. Under the above notations, we have

1) $\lim _{n \rightarrow \infty}\left(S\left(A_{n}^{\prime}\right)-S\left(A_{n}\right)\right)=0$,
2) $\lim _{n \rightarrow \infty}\left(S\left(A_{n}^{\prime}, K_{n}\right)-S\left(A_{n}, K_{n}\right)\right)=0$,
3) $\lim _{n \rightarrow \infty}\left(H_{\alpha}\left(A_{n}^{\prime}\right)-H_{\alpha}\left(A_{n}\right)\right)=0$,
4) $\lim _{n \rightarrow \infty}\left(H_{\alpha}\left(A_{n}^{\prime}, K_{n}\right)-H_{\alpha}\left(A_{n}, K_{n}\right)\right)=0$.

Proof. To approximate the entropy of A_{n}^{\prime} we need the sum

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(\lambda_{k}+\delta \lambda_{k}\right) \log \left(\lambda_{k}+\delta \lambda_{k}\right)=\sum_{j=1}^{n}\left(\lambda_{k}+\delta \lambda_{k}\right) \log \left(\lambda_{k}\left(1+\delta \lambda_{k} / \lambda_{k}\right)\right) \\
& =\sum_{j=1}^{n}\left(\lambda_{k}+\delta \lambda_{k}\right)\left(\log \lambda_{k}+\frac{\delta \lambda_{k}}{\lambda_{k}}+\ldots\right) \\
& =\sum_{j=1}^{n} \lambda_{k} \log \lambda_{k}+\sum_{j=1}^{n} \delta \lambda_{k}\left(1+\log \lambda_{k}\right)+\ldots,
\end{aligned}
$$

where we have neglected terms of higher order than the first, in the correction. We are therefore led, by the Euler-Maclaurin formula, to consider the integral

$$
\int_{0}^{1}\left(6-4 \cos \frac{4 \pi x}{n}-2 \cos \frac{2 \pi x}{n}\right)(1+\log (4-2 \cos 2 \pi x-2 \cos 4 \pi x)) \mathrm{d} x
$$

For n large, we may replace this integral by

$$
\frac{72}{n^{2}} \int_{0}^{1} x^{2}(1+\log (4-2 \cos 2 \pi x-2 \cos 4 \pi x)) \mathrm{d} x
$$

which is easily evaluated using Mathematica. If n is sufficiently large, the magnitude of the perturbation will be small enough in comparison with the magnitude of A_{n} and first order perturbation theory is valid. An approximation for $S\left(A_{n}^{\prime}\right)$ will now be obtained:

$$
\begin{aligned}
S\left(A_{n}^{\prime}\right)= & \log \left(\sum_{k=1}^{n}\left(\lambda_{k}+\delta \lambda_{k}\right)\right) \\
& -\left(\sum_{k=1}^{n}\left(\lambda_{k}+\delta \lambda_{k}\right)\right)^{-1} \sum_{k=1}^{n}\left(\lambda_{k}+\delta \lambda_{k}\right) \log \left(\lambda_{k}+\delta \lambda_{k}\right) \\
= & \log (4 n-6)-\frac{1}{4 n-6}\left(\sum_{k=1}^{n} \lambda_{k} \log \lambda_{k}+\sum_{k=1}^{n} \delta \lambda_{k}\left(1+\log \lambda_{k}\right)+\cdots\right) \\
= & \log \left(n-\frac{3}{2}\right)+2 \log 2-\frac{n \kappa}{4 n-6} \\
& -\frac{36}{n(2 n-3)} \int_{0}^{1} x^{2}(1+\log (4-2 \cos 2 \pi x-2 \cos 4 \pi x)) \mathrm{d} x+\cdots \\
= & \log n+\log \left(1-\frac{3}{2 n}\right)+2 \log 2-\frac{\kappa}{4} \cdot \frac{1}{1-\frac{3}{2 n}} \\
& -\frac{36}{n(2 n-3)} \int_{0}^{1} x^{2}(1+\log (4-2 \cos 2 \pi x-2 \cos 4 \pi x)) \mathrm{d} x+\cdots \\
= & \log n-\frac{3}{2 n}+\cdots+2 \log 2-\frac{\kappa}{4}\left(1+\frac{3}{2 n}+\cdots\right) \\
& -\frac{36}{n(2 n-3)} \int_{0}^{1} x^{2}(1+\log (4-2 \cos 2 \pi x-2 \cos 4 \pi x)) \mathrm{d} x+\cdots \\
= & S\left(A_{n}\right)-\frac{3}{2 n}-\frac{3}{8 n} \kappa \\
& -\frac{36}{n(2 n-3)} \int_{0}^{1} x^{2}(1+\log (4-2 \cos 2 \pi x-2 \cos 4 \pi x)) \mathrm{d} x+\cdots \\
= & \log n-0.171621-\frac{3.83687}{n}-\frac{10.5986}{n^{2}}+\ldots .
\end{aligned}
$$

Hence, 1) follows. The remaining assertions are similarly shown.

3. Discussion

The obtained results for the first five cases previously considered, are summarized in Table 1. They lead to the conclusion that the relative entropy of the different graphs with respect to the complete graph K_{n} does not depend on n for sufficiently high n, and that the distance between the graphs G and K_{n} slightly decreases when the average number of incident edges on each vertex of G increases. We compute $H_{2}(G)$, the 2-Rényi entropy of G, by Eq (2) in [2], and then get the values of $\log _{2} n-H_{2}(G)$. Compared with $H_{2}\left(G, K_{n}\right)$, the 2-relative Rényi entropy of G and K_{n}, our estimation method is better.

We have verified that $S\left(G, K_{n}\right)$ does not depend on n if n is large, and we have determined the $\lim _{n \rightarrow \infty} S\left(G, K_{n}\right)$, for several cyclic graphs G. We have seen that, asymptotically, $S\left(G, K_{n}\right)$ behaves like $S\left(K_{n}\right)-S(G)$. The following question naturally arises. Does $S\left(C_{n}, K_{1, n-1}\right)$, where $K_{1, n-1}$ is the star

Table 1. Comparing relative von Neumann, 1/2-Rényi and the 2-Rényi entropies, for large n. In the last column the average number of incident edges in each vertex is shown.

G	$S\left(G, K_{n}\right)$	$H_{1 / 2}\left(G, K_{n}\right)$	$H_{2}\left(G, K_{n}\right)$	$\log _{2} n-H_{2}(G)$	$\# d_{a v}$
C_{n}	0.306853	0.210018	0.405465	0.584963	2
A_{n}	0.171621	0.120510	0.223144	0.321928	4
B_{n}	0.119406	0.0846939	0.154151	0.251062	6
D_{n}	0.265847	0.174734	0.367725	0.530515	3
F_{n}	0.213196	0.148615	0.277632	0.400538	$10 / 3$

graph, behave asymptotically like $S\left(K_{1, n-1}\right)-S\left(C_{n}\right)$? Let us compute $S\left(C_{n}, K_{1, n-1}\right)$ using (1.6). The eigenvalues of $L\left(C_{n}\right)$ are $\lambda_{k}=2-2 \cos 2 \pi k / n, k=1, \ldots, n$, so, the highest eigenvalue of $L\left(C_{n}\right)$ is 2 . The eigenvalues λ_{k}^{\prime} of $L\left(K_{1, n-1}\right)$ are 0,1 , with multiplicity $n-2$ and n. We find

$$
\begin{aligned}
& S\left(C_{n}, K_{1, n-1}\right) \\
& =\frac{1}{2 n}\left(\sum_{k=1}^{n} \lambda_{k} \log \lambda_{k}-2 \log 2+2(\log 2-\log n)\right)-\log 2 n+\log 2(n-1) \\
& =1-\frac{\log n}{n}+\log (1-2 / n)+\ldots,
\end{aligned}
$$

and so

$$
\lim _{n \rightarrow \infty} S\left(C_{n}, K_{1, n-1}\right)=1 .
$$

On the other hand

$$
S\left(K_{1, n-1}\right)=-\frac{1}{2(n-1)} n \log n+\log 2(n-1),
$$

and so

$$
\lim _{n \rightarrow \infty} \frac{S\left(K_{1, n-1}\right)}{\log n}=\frac{1}{2}
$$

while

$$
\lim _{n \rightarrow \infty} \frac{S\left(K_{n}\right)}{\log n}=\lim _{n \rightarrow \infty} \frac{S\left(C_{n}\right)}{\log n}=1 .
$$

The answer to the above question is negative.

Acknowledgments

The first author was partially supported by Fundação para a Ciência e Tecnologia, Portugal, under the Project UID/FIS/04564/2019, and by the Centre for Mathematics of the University of Coimbra, under the Project UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. The third author was supported by joint research project of Laurent Mathematics Center of Sichuan Normal University and National-Local Joint Engineering Laboratory of System Credibility Automatic Verification (No. ZD20220106).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. N. Bebiano, S. Furtado, J. da Providência, W. R. Xu, J. P. da Providência, Approximations for the von Neumann and Renyi entropies of graphs using the Euler-Maclaurin formula, Electron. Trans. Numer. Anal., 48 (2018), 227-242. https://doi.org/10.1553/etna_vol48s227
2. M. Dairyko, L. Hogben, J. C. H. Lin, J. Lockhart, D. Roberson, S. Severini, et al., Note on von Neumann and Rényi entropies of a graph, Linear Algebra Appl., 521 (2017), 240-253. https://doi.org/10.1016/j.laa.2017.01.037
3. V. Giovannetti, S. Severini, The Kirchhoff's matrix tree theorem revisited: counting spanning trees with the quantum relative entropy, preprint, arXiv: 1102.2398. https://doi.org/10.48550/arXiv.1102.2398
4. H. Lin, B. Zhou, On the von Neumann entropy of a graph, Discrete Appl. Math., 247 (2018), 448-455. https://doi.org/10.1016/j.dam.2018.04.004
5. G. Minello, L. Rossi, A. Torsello, On the von Neumann entropy of graphs, J. Complex Networks, 7 (2019), 491-514. https://doi.org/10.1093/comnet/cny028
6. D. E. Simmons, J. P. Coon, A. Datta, Symmetric Laplacians, quantum density matrices and their von Neumann entropy, Linear Algebra Appl., 521 (2017), 240-253. https://doi.org/10.1016/j.laa.2017.06.038
7. D. E. Simmons, J. P. Coon, A. Datta, The von Neumann Theil index: characterizing graph centralization using the von Neumann index, J. Complex Networks, 6 (2018), 859-876. https://doi.org/10.1093/comnet/cnx061
8. C. Ye, R. C. Wilson, C. H. Comin, L. F. Costa, E. R. Hancock, Approximate von Neumann entropy for direct graphs, Phys. Rev. E, 89 (2014), 052804. https://doi.org/10.1103/PhysRevE.89.052804
9. R. Grone, R. Merris, V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl., 11 (1990), 218-238. https://doi.org/10.1137/0611016
10. R. A. Horn, C. R. Johnson, Matrix Analysis, $2^{\text {nd }}$ edition, Cambridge University Press, Cambridge, 2013.
11. J. V. Neumann, Mathematical Foundations of Quantum Mechanics, Number 2, Princeton University Press, Princeton, N.J., 1955.
12. L. D. Landau, E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford-Edinburgh-New York, 1969.
13. A. Rényi, On measures of entropy and information, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, 4 (1961), 547-562.
14. T. M. Apostol, An elementary view of Euler's summation formula, Amer. Math. Monthly, 106 (1999), 409-418. https://doi.org/10.1080/00029890.1999.12005063
15. V. Lampret, The Euler-Maclaurin and Taylor formulas: twin, elementary derivations, Math. Mag., 74 (2001), 109-122. https://doi.org/10.1080/0025570X.2001.11953046
16. V. Lampret, The Euler-Maclaurin Formula and Sums of Powers Revisited, Int. J. Contemp. Math. Sci., 5 (2010), 2401-2407.
17. M. Z. Spivey, The Euler-Maclaurin formula and sums of powers, Math. Mag., 79 (2006), 61-65. https://doi.org/10.1080/0025570X.2006.11953378
18. A. Greenbaum, R. C. Li, M. L. Overton, First-order perturbation theory for eigenvalues and eigenvectors, SIAM Rev., 62 (2020), 463-482. https://doi.org/10.1137/19M124784X
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
