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Abstract: In this note, we approximate the von Neumann and Rényi entropies of high-dimensional
graphs using the Euler-Maclaurin summation formula. The obtained estimations have a considerable
degree of accuracy. The performed experiments suggest some entropy problems concerning graphs
whose Laplacians are g-circulant matrices, i.e., circulant matrices with g-periodic diagonals, or quasi-
Toeplitz matrices. Quasi means that in a Toeplitz matrix the first two elements in the main diagonal,
and the last two, differ from the remaining diagonal entries by a perturbation.
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1. Introduction

The notion of entropy is due to Rudolf Clausius (1850), and is linked with Carnot’s famous theorem
on the efficiency of thermal machines. This concept has many applications in different research areas,
such as statistical mechanics, computation science, information theory, etc. The concept of graph en-
tropy was introduced in information theory and is of special interest for understanding graph structure
(see [1–8] and references therein).

Let G be an undirected graph with n vertices and at least one edge. The degree di of a vertex i is the
number of edges incident on i. Let L(G) be the Laplacian matrix of G, that is, L(G) = D(G) − A(G),
where D(G) is the diagonal matrix whose (i, i)-th entry is di and A(G) is the (0,1) adjacency matrix of
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G [9], i.e., ai j is 1 if i, j are adjacent, and 0 otherwise. Since L(G) is symmetric, its eigenvalues are
real and as each row (and column) sum is 0, L(G) is singular. Normalizing this matrix by its trace, we
get the density matrix of G,

ρL(G) =
1

TrL(G)
L(G),

which is Hermitian with unit trace. By Gershgorin Theorem, all eigenvalues of ρL(G) are nonnegative
[10], so G can be seen as a quantum state. The eigenvalues of ρL(G) constitute the spectrum of the
graph G. In view of the above, it seems natural to investigate the information content of the graph as a
quantum state [11].

For A and B positive semidefinite matrices such that TrA = 1, we consider the following matrix
functions

S (A) = −Tr(A log A), (1.1)
S (A, B) = TrA(log A − log B), (1.2)

Hα(A) =
log TrAα

1 − α
, α ∈ (0, 1) ∪ (1,∞), (1.3)

Hα(A, B) =
log TrAαB1−α

α − 1
, α ∈ (0, 1) ∪ (1,∞). (1.4)

The functions S (A), S (A, B), Hα(A) and Hα(A, B) are, respectively, the von Neumann entropy of A, the
von Neumann relative entropy of A, B, the α-Rényi entropy of A and the α-Rényi relative entropy of
A, B.

According to the fundamental inequality of statistical thermodynamics [12]

S (A, B) ≥ log TrB, Hα(A, B) ≥ log TrB.

For TrB = 1, we have S (A, B) ≥ 0, and Hα(A, B) ≥ 0, with equality if A = B. So, S (A, B) and Hα(A, B)
may be conveniently used to measure the distance between the density matrices A and B. Obviously,
limα→1 Hα(A) = S (A) and limα→1 Hα(A, B) = S (A, B).

Let G be a graph with at least one edge and let ρ1, . . . , ρn be the eigenvalues of ρL(G). We use the
natural logarithm in the definitions of entropy and we make the convention that 0 log 0 = 0. The von
Neumann entropy of the graph G, denoted S L(G), is the von Neumann entropy of ρL(G). From (1.1),

S L(G) := S (ρL(G)) = −

n∑
i=1

ρi log ρi, (1.5)

because ρL(G) is unitarily diagonalizable and the logarithm is unitarily invariant. In terms of the
eigenvalues λ1, . . . , λn of the Laplacian L(G), the von Neumann entropy of G is expressed as

S L(G) = log
n∑

k=1

λk −

 n∑
k=1

λk

−1 n∑
k=1

λk log λk. (1.6)

The α-Rényi entropy of the graph G [13], denoted Hα(G), is the α-Rényi entropy of ρL(G). For
α ∈ (0, 1) ∪ (1,∞) fixed, from (1.3) we have

Hα(G) := Hα(ρL(G)) =
1

1 − α
log

n∑
i=1

ραi . (1.7)
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In terms of the eigenvalues λ1, . . . , λn of the Laplacian L(G), the α-Rényi entropy of G is expressed as

Hα(G) =
1

1 − α

log
n∑

k=1

λαk − α log
n∑

k=1

λk

 . (1.8)

For a fixed graph G, the α-Rényi entropy Hα(G) is a monotonically decreasing function of α [2]:

Hα(G) ≤ Hα′(G) for α > α′.

The complete graph Kn is the one with the highest possible entropy. Indeed, if the density matrix ρ
is singular, its highest possible entropy is log(n− 1) and that is the entropy of the graph Kn. In terms of
the eigenvalues λk and λ′k, respectively of the Laplacian L(G) and of the Laplacian L(Kn), the relative
entropy of G and Kn is given by

S (G,Kn) := S (ρL(G), ρL(Kn))

=

 n∑
j=1

λ j


−1 n∑

j=1

λ j

(
log λ j − log λ′j

)
− log

n∑
j=1

λ j + log
n∑

j=1

λ′j, (1.9)

where λ j and λ′j are similarly, increasingly or decreasingly, ordered. Under these assumptions, the
α-relative Rényi entropy of G and Kn is

Hα(G,Kn) := Hα(ρL(G), ρL(Kn))

=
1

α − 1

log

 n∑
k=1

λαkλ
′ 1−α
k

 − α log
n∑

k=1

λk − (1 − α) log
n∑

k=1

λ′k

 . (1.10)

In recent years, many approaches to increase the understanding of graphical models have been
developed, using entropic quantities associated to the graphs constructs (vertices, edges, etc), see e.g.,
Simmons et al. [6,7] and references therein. The von Neumann entropy of graphs plays a major role in
this program, namely by considering the von Neumann Theil index and its generalization by the Rényi
entropy. In this note, using the Euler-Maclaurin formula we approximate the von Neumann and Rényi
entropies of graphs of high dimensions whose Laplacians are g-circulant matrices, that is, circulant
matrices where each row is a right cyclic shift in g-places to the preceding row. In the six cases we
have studied, we observe that the relative entropy of G and Kn does not depend on n, for n sufficiently
large. We have approximated the distance of the graph G to the graph Kn because Kn is the graph with
n vertices with the highest entropy. From our investigations, the following problems arise.

Problem 1. Does the above mentioned observation hold for a general graph with a g-circulant Lapla-
cian?

Problem 2. According to our experiments, we conclude that, for a fixed number of vertices, when
the average number of incident edges on each vertex increases, the von Neumann and the α-Rényi
entropies increase. Does this behaviour hold in general? When the number of vertices n is fixed, the
average number of incident edges on each vertex is 2m/n, where m is the number of edges, and the
Problem may be rephrased in terms of the edges.

Problem 3. Does the question formulated in Problem 1 have a positive answer for a graph G whose
Laplacian is the quasi g-Toeplitz matrix (see Case 6 below), obtained by cutting appropriate edges in
a graph G with a g-circulant Laplacian? By a g-Toeplitz matrix we mean a matrix obtained from a
g-circulant one by replacing its entries in the upper right and lower left corners by zeros.
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2. Graph entropy for graphs with g-circulant Laplacians

Throughout the article the following form of the Euler-Maclaurin (E-M) formula will be used. For
a proof, see, e.g., [14–17].

Lemma 1. Let n be a positive integer and let f be a continuous real function in [0, 1] of class C3(0, 1),
i.e. with continuous derivaties until order 3. Then

n∑
k=1

f (
k
n

) = n
∫ 1

0
f (x)dx +

1
2

( f (1) − f (0)) +
1

12n
( f ′(1) − f ′(0)) + Rn, (2.1)

with

Rn =
1

6n2

∫ 1

0
B3({nx}) f ′′′(x)dx, (2.2)

B3(x) = x3 − 3x2/2 + x/2 the third Bernoulli polynomial and {x} the fractional part of x.

Case 1

The Laplacian matrix of the cycle (or circuit) Cn is the n × n circulant matrix

L(Cn) =



2 −1 0 . . . −1
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 2


,

whose eigenvalues are
λk = 2 − 2 cos(2πk/n), k = 1, 2, . . . n.

Therefore, the eigenvalues of ρL(Cn) are ρk = λk/(2n).
Consider f (x) := (2 − 2 cos(2πx)) log(2 − 2 cos(2πx)). By the Euler-Maclaurin formula and having

in mind (1.6), we find

S (Cn) = log(2n) −
1
2

(2 +
Rn

n
) = log n − 0.306853 + . . . .

because the command Integrate of Mathematica yields∫ 1

0
(2 − 2 cos(2πx)) log(2 − 2 cos(2πx))dx = 2.

We compute an upper bound for |Rn|/n. For f (x) = (2− 2 cos(2πx)) log(2− 2 cos(2πx)) in (2.2) and
using the command NIntegrate of Mathematica, we find∫ 1

0
| f ′′′(x)|dx = 24935.8,
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so that

|Rn|

n
≤

1
6n3 × 0.0481125 ×

∫ 1

0
| f ′′′(x)|dx =

1
6n3 × 0.0481125 × 24935.8 =

199.954
n3 .

From (1.9), we obtain the relative entropy of Cn and Kn,

S (Cn,Kn) = − log(2n) + 1 + log(n − 1) + . . . = − log 2 + 1 + . . . = 0.306853 + . . . .

As S (Kn) = log(n − 1), we have

lim
n→∞

S (Cn,Kn) = lim
n→∞

(S (Cn) − S (Kn)).

We study the asymptotic behavior of the 1/2-Rényi entropy of Cn for large n. We use (1.8), and
we introduce the function of the real variable k/n, f (k/n) := λk = 2 − 2 cos(2πk/n), with n a positive
integer. In the spirit of the Euler-Maclaurin formula, we replace the sum

n∑
k=1

λ1/2
k ,

by the integral ∫ n

0
f (k/n)1/2dk = n

∫ 1

0
f (x)1/2dx = n

∫ 1

0
(2 − 2 cos(2πx))1/2dx =

4n
π
,

which has been evaluated using the command Integrate of Mathematica. Obviously,
∑n

k=1 λk = 2n. So,
we have for the 1/2-Rényi entropy,

H1/2(Cn) = 2

log
n∑

k=1

(2 − 2 cos(2πk/n))1/2 −
1
2

log(2n)


= 2

(
log

(
n
(
4
π

+
Rn

n

))
−

1
2

log(2n)
)

= log n − 0.210018 + . . . .

We compute an upper bound for |Rn|/n. Using the command NIntegrate of Mathematica we find∫ 1

0
| f ′′′(x)|dx = 24935.8,

so that by (2.2)

|Rn|

n
≤

1
6n4 × 0.0481125 ×

∫ 1

0
| f ′′′(x)|dx =

1
6n4 × 0.0481125 × 24935.8 =

199.954
n4 .

For the 1/2-Rényi relative entropy of Cn and Kn, using (1.10), we obtain

H1/2(Cn,Kn) = −2 log
(
4n
π

√
n + . . .

)
+ log 2n + log n(n − 1)
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= −2 log
(
4
π

)
+ log 2 + . . . ≈ 0.210018.

The asymptotic behavior of the 2-Rényi entropy of Cn for large n follows in a similar way, using the
Euler-Maclaurin formula. Indeed, we replace the sum

n∑
k=1

λ2
k ,

by the integral ∫ n

0
(k/n)2dk = n

∫ 1

0
f 2(x)dx = n

∫ 1

0
(2 − 2 cos(2πx))2dx = 6n,

and by (1.8), we get

H2(Cn) = −

log
n∑

k=1

(2 − 2 cos(2πk/n))2 − 2 log(2n)


≈ log n − 0.405465.

Case 2

Next we consider the graph with n vertices of the type represented in Figure 1. Its Laplacian, in the
general case of n vertices, is the circulant matrix

An =



4 −1 −1 0 0 . . . 0 −1 −1
−1 4 −1 −1 0 . . . 0 0 −1
−1 −1 4 −1 −1 . . . 0 0 0
0 −1 −1 4 −1 . . . 0 0 0
0 0 −1 −1 4 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

−1 0 0 0 0 . . . −1 4 −1
−1 −1 0 0 0 . . . −1 −1 4


∈ Rn×n,

whose eigenvalues are

Figure 1
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λk = 4 − 2 cos 2πk/n − 2 cos 4πk/n, (2.3)

with k = 1, . . . , n. The eigenvalues of the density matrix are ρi = λi/(4n). Using the command NInte-
grate of Mathematica, we find

κ :=
∫ 1

0
(4 − 2 cos(2πx) − 2 cos(4πx)) log(4 − 2 cos(2πx) − 2 cos(4πx))dx = 6.23166.

Using the Euler-Maclaurin formula, the von Neumann entropy of An is computed as

S (An) = log(4n) −
1
4

(κ +
Rn

n
) = log 4n − 1.55792 + . . . ≈ log n − 0.171621. (2.4)

An upper bound to |Rn|/n is now estimated. Using the Command NIntegrate of Mathematica we
find ∫

| f ′′′(x)|dx = 126619,

so that
|Rn|

n
≤

302.593
n3 .

Notice that, for f (x) = (4 − 2 cos(2πx) − 2 cos(4πx)) log(4 − 2 cos(2πx) − 2 cos(4πx)), we have

f (0) − f (1) = f ′(0) − f ′(1) = 0.

In an analogous way, we also find

S (An,Kn) = 0.171621 + . . . .

Since S (Kn) = log(n − 1) and as the command NIntegrate of Mathematica yields∫ 1

0
(4 − 2 cos(2πx) − 2 cos(4πx))1/2dx = 1.88305,

we have
lim
n→∞

S (An,Kn) = lim
n→∞

(S (An) − S (Kn)).

In order to approximate the 1/2-Renyi entropy an analogous procedure holds. By (1.8) and as the
command NIntegrate of Mathematica yields∫ 1

0
(4 − 2 cos(2πx) − 2 cos(4πx))1/2dx = 1.88305,

we obtain

H1/2(An) = log n + 2
(
log(1.88305 +

Rn

n
) −

1
2

log 4
)
.

An upper bound to |Rn|/n is estimated noticing that for f (x) = (4−2 cos(2πx)−2 cos(4πx))1/2, we have

f (0) − f (1) = f ′(0) − f ′(1) = 0.

Thus

H1/2(An) ≈ log n − 0.12051.

From (1.10), we get

H1/2(An,Kn) ≈ 0.12051.
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Case 3

The Laplacian of the graph with n vertices of the type represented in Figure 2 is

Bn =



6 −1 −1 −1 0 0 . . . −1 −1 −1
−1 6 −1 −1 −1 0 . . . 0 −1 −1
−1 −1 6 −1 −1 −1 . . . 0 0 −1
−1 −1 −1 6 −1 −1 . . . 0 0 0
0 −1 −1 −1 6 −1 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...

−1 −1 0 0 0 0 . . . −1 6 −1
−1 −1 −1 0 0 0 . . . −1 −1 6


∈ Rn×n.

Its eigenvalues are

Figure 2

λk = 6 − 2 cos(2πk/n) − 2 cos(4πk/n) − 2 cos(6πk/n),

and the eigenvalues of the density matrix are ρi = λi/(6n).
Using the Euler-Maclaurin formula, the von Neumann entropy is computed as

S (Bn) = −

n∑
k=1

ρi log ρi = log(6n) −
1
6
κ + . . . .

As by the command NIntegrate of Mathematica, we obtain

κ :=
∫ 1

0
((6 − 2 cos(2πx) − 2 cos(4πx) − 2 cos(6πx))

× log(6 − 2 cos(2πx) − 2 cos(4πx)) − 2 cos(6πx))dx = 11.4670,

we get
S (Bn) ≈ log n − 0.119406.

For the relative entropy, by (1.9), we obtain,

S (Bn,Kn) ≈ 0.119406.

Electronic Research Archive Volume 30, Issue 5, 1864–1880.



1872

Using the Euler-MacLaurin formula, for ρ(k) = ρk = λk/
∑n

j=1 λ j and f (n/k) = λk, we have

Hα(Bn) =
1

1 − α

log
(
n
∫ 1

0
f α(x)dx

)
− α log

n∑
k=1

λk + . . .


=

1
1 − α

(
(1 − α) log n + log

∫ 1

0
f α(x)dx − α log 6 + . . .

)
.

Having in mind that

κ′ :=
∫ 1

0
(6 − 2 cos(2πx) − 2 cos(4πx) − 2 cos(6πx))1/2dx = 2.34793,

we get
H1/2(Bn) ≈ log n + 2 log κ′ − log 6 = log n − 0.0846939.

Case 4

The Laplacian of the graph with n vertices of the type represented in Figure 3 is the 2-circulant
matrix

Dn =



4 −1 −1 0 0 . . . 0 −1 −1
−1 2 −1 0 0 . . . 0 0 0
−1 −1 4 −1 −1 . . . 0 0 0
0 0 −1 2 −1 . . . 0 0 0
0 0 −1 −1 4 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

−1 0 0 0 0 . . . −1 4 −1
−1 0 0 0 0 . . . 0 −1 2


∈ Rn×n.

Figure 3

In order to determine the eigenvalues and eigenvectors of Dn we consider a vector of the form
w = (xeiθk , yeiθk , . . . , xeimθk , yeimθk)T, θk = 2πk/m, k = 1, . . . ,m, and the secular equation

Dnw = λw,
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which yields
S(x, y)T = λ(x, y)T,

where

S =

[
4 − 2 cos θk −1 − e−iθk

−1 − eiθk 2

]
, θk =

2πk
m
, n = 2m, k = 1, . . . , m,

The matrix S is called the symbol associated to Dn, and its eigenvalues are

λ(1,2)
k = 3 − cos θk ±

√
7 + cos 2θk
√

2
.

Defining

κ1 =

∫ 1

0

3 − cos 2πx −

√
7 + cos 4πx

2

 log

3 − cos 2πx −

√
7 + cos 4πx

2

 dx,

κ2 =

∫ 1

0

3 − cos 2πx +

√
7 + cos 4πx

2

 log

3 − cos 2πx +

√
7 + cos 4πx

2

 dx,

we obtain, using the command NIntegrate of Mathematica,

κ1 = 0.429296,

κ2 = 7.75746,

and so

S (ρ(Dn)) = log n − 0.265847 + . . . .

For

κ′1 :=
∫ 1

0

3 − cos 2πx +

√
7 + cos 4πx

2

1/2

dx,

κ′2 :=
∫ 1

0

3 − cos 2πx −

√
7 + cos 4πx

2

1/2

dx,

we find, using the command NIntegrate of Mathematica,

κ′1 = 2.20059,

κ′2 = 0.973707,

and, using (1.8), we get

H1/2(Dn) ≈ log n − 0.174734,

and

H2(Dn) ≈ log n − 0.367725.
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Case 5

The Laplacian of the graph with n vertices of the type represented in Figure 4, is the 3-circulant
matrix

Fn =



4 −1 −1 0 0 0 . . . −1 −1
−1 3 −1 −1 0 0 . . . 0 0
−1 −1 3 −1 0 0 . . . 0 0
0 −1 −1 4 −1 −1 . . . 0 0
0 0 0 −1 3 −1 . . . 0 0
0 0 0 −1 −1 3 . . . 0 0
...

...
...

...
...

...
. . .

...
...

−1 0 0 0 0 0 . . . 3 −1
−1 0 0 0 0 0 . . . −1 3


∈ Rn×n.

The symbol associated to Fn is

S =


4 −1 − e−iθk −1 − e−iθk

−1 − eiθk 3 −1
−1 − eiθk −1 3

 , θk =
2πk
m
, n = 3m, k = 1, . . . ,m,

and its spectrum is

Figure 4

σ(S) =
{
4, 3 −

√
4 cos θk + 5, 3 +

√
4 cos θk + 5

}
.

With the command NIntegrate of Mathematica, we find

κ1 :=
∫ 1

0
4 log 4 dx = 5.54518,

κ2 :=
∫ 1

0

(
3 −

√
4 cos θk + 5

)
log

(
3 −

√
4 cos θk + 5

)
dx = 0.19892,

κ3 :=
∫ 1

0

(
3 +

√
4 cos θk + 5

)
log

(
3 +

√
4 cos θk + 5

)
dx = 8.42759.
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By (1.6), we get

S (Fn) = log
10n
3
−

1
10

(κ1 + κ2 + κ3) + . . . = log n−0.213196 + . . . .

Using the command NIntegrate of Mathematica, we find

κ′1 :=
∫ 1

0

√
4 dx = 2

κ′2 :=
∫ 1

0

(
3 −

√
4 cos θk + 5

)1/2
dx = 0.973707,

κ′3 :=
∫ 1

0

(
3 +

√
4 cos θk + 5

)1/2
dx = 2.20059.

Thus, by (1.8)

Hα(Fn) = log
n
3

+ 2 log(κ′1 + κ′2 + κ′3) − log 10 + . . . ≈ log n − 0.148615.

Case 6

Up to now we have considered graphs with g-circulant Laplacians. Next, we evaluate the entropy
of the graph of the type of the one in Figure 5, which is obtained by deleting in Figure 1 appropriate
edges. Its Laplacian is the matrix

A′n =



2 −1 −1 0 . . . 0 0 0
−1 3 −1 −1 . . . 0 0 0
−1 −1 4 −1 . . . 0 0 0
0 −1 −1 4 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . −1 3 −1
0 0 0 0 . . . −1 −1 2


∈ Rn×n.

Let

A′n = An + ∆n,

where

Figure 5
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∆n = −



2 0 0 0 . . . 0 −1 −1
0 1 0 0 . . . 0 0 −1
0 0 0 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 0 0 0
−1 0 0 0 . . . 0 1 0
−1 −1 0 0 . . . 0 0 2


∈ Rn×n,

and let A′n(η) = An+η∆n. In the end we take η = 1. Regarding ∆n as a perturbation of An, the eigenvalues
of A′n are easily obtained using perturbation theory. The eigenvalues of An are given by (2.3) and the
respective eigenvectors are

uk =
1
√

n
(eikθ1 , . . . , eikθn)T, θ j =

2π j
n
, j = 1, . . . , n.

We have, for the eigenvalues λk(η) of A′n(η),

λk(η) = λk(0) + ηλ′k(0) + O(η2).

See e.g., [18]. Then,

δλk = λ′k(0) = u∗k∆nuk =
1
n

(6 − 4 cos kθn−2 − 2 cos kθn−1).

Theorem 2.1. Under the above notations, we have

1) lim
n→∞

(S (A′n) − S (An)) = 0,

2) lim
n→∞

(S (A′n,Kn) − S (An,Kn)) = 0,

3) lim
n→∞

(Hα(A′n) − Hα(An)) = 0,

4) lim
n→∞

(Hα(A′n,Kn) − Hα(An,Kn)) = 0.

Proof. To approximate the entropy of A′n we need the sum

n∑
j=1

(λk + δλk) log(λk + δλk) =

n∑
j=1

(λk + δλk) log(λk(1 + δλk/λk))

=

n∑
j=1

(λk + δλk)
(
log λk +

δλk

λk
+ . . .

)

=

n∑
j=1

λk log λk +

n∑
j=1

δλk
(
1 + log λk

)
+ . . . ,

where we have neglected terms of higher order than the first, in the correction. We are therefore led,
by the Euler-Maclaurin formula, to consider the integral∫ 1

0
(6 − 4 cos

4πx
n
− 2 cos

2πx
n

)(1 + log(4 − 2 cos 2πx − 2 cos 4πx))dx.
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For n large, we may replace this integral by

72
n2

∫ 1

0
x2(1 + log(4 − 2 cos 2πx − 2 cos 4πx))dx,

which is easily evaluated using Mathematica. If n is sufficiently large, the magnitude of the perturbation
will be small enough in comparison with the magnitude of An and first order perturbation theory is
valid. An approximation for S (A′n) will now be obtained:

S (A′n) = log

 n∑
k=1

(λk + δλk)


−

(∑n
k=1(λk + δλk)

)−1 ∑n
k=1(λk + δλk) log(λk + δλk)

= log(4n − 6) −
1

4n − 6

 n∑
k=1

λk log λk +

n∑
k=1

δλk(1 + log λk) + · · ·


= log(n −

3
2

) + 2 log 2 −
nκ

4n − 6

−
36

n(2n − 3)

∫ 1

0
x2(1 + log(4 − 2 cos 2πx − 2 cos 4πx))dx + · · ·

= log n + log(1 −
3
2n

) + 2 log 2 −
κ

4
·

1
1 − 3

2n

−
36

n(2n − 3)

∫ 1

0
x2(1 + log(4 − 2 cos 2πx − 2 cos 4πx))dx + · · ·

= log n −
3

2n
+ · · · + 2 log 2 −

κ

4
(1 +

3
2n

+ · · · )

−
36

n(2n − 3)

∫ 1

0
x2(1 + log(4 − 2 cos 2πx − 2 cos 4πx))dx + · · ·

= S (An) −
3

2n
−

3
8n
κ

−
36

n(2n − 3)

∫ 1

0
x2(1 + log(4 − 2 cos 2πx − 2 cos 4πx))dx + · · ·

= log n − 0.171621 −
3.83687

n
−

10.5986
n2 + . . . .

Hence, 1) follows. The remaining assertions are similarly shown.

3. Discussion

The obtained results for the first five cases previously considered, are summarized in Table 1. They
lead to the conclusion that the relative entropy of the different graphs with respect to the complete
graph Kn does not depend on n for sufficiently high n, and that the distance between the graphs G and
Kn slightly decreases when the average number of incident edges on each vertex of G increases. We
compute H2(G), the 2-Rényi entropy of G, by Eq (2) in [2], and then get the values of log2 n − H2(G).
Compared with H2(G,Kn), the 2-relative Rényi entropy of G and Kn, our estimation method is better.

We have verified that S (G,Kn) does not depend on n if n is large, and we have determined the
limn→∞ S (G,Kn), for several cyclic graphs G. We have seen that, asymptotically, S (G,Kn) behaves like
S (Kn) − S (G). The following question naturally arises. Does S (Cn,K1,n−1), where K1,n−1 is the star
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Table 1. Comparing relative von Neumann, 1/2-Rényi and the 2-Rényi entropies, for large
n. In the last column the average number of incident edges in each vertex is shown.

G S (G,Kn) H1/2(G,Kn) H2(G,Kn) log2 n − H2(G) #dav

Cn 0.306853 0.210018 0.405465 0.584963 2
An 0.171621 0.120510 0.223144 0.321928 4
Bn 0.119406 0.0846939 0.154151 0.251062 6
Dn 0.265847 0.174734 0.367725 0.530515 3
Fn 0.213196 0.148615 0.277632 0.400538 10/3

graph, behave asymptotically like S (K1,n−1) − S (Cn)? Let us compute S (Cn,K1,n−1) using (1.6). The
eigenvalues of L(Cn) are λk = 2 − 2 cos 2πk/n, k = 1, . . . , n, so, the highest eigenvalue of L(Cn) is 2.
The eigenvalues λ′k of L(K1,n−1) are 0, 1, with multiplicity n − 2 and n. We find

S (Cn,K1,n−1)

=
1

2n

 n∑
k=1

λk log λk − 2 log 2 + 2(log 2 − log n)

 − log 2n + log 2(n − 1)

= 1 −
log n

n
+ log(1 − 2/n) + . . . ,

and so
lim
n→∞

S (Cn,K1,n−1) = 1.

On the other hand

S (K1,n−1) = −
1

2(n − 1)
n log n + log 2(n − 1),

and so
lim
n→∞

S (K1,n−1)
log n

=
1
2
,

while
lim
n→∞

S (Kn)
log n

= lim
n→∞

S (Cn)
log n

= 1.

The answer to the above question is negative.
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