Accepted Manuscript

Coupled vehicle-skin models for drug release
S. Barbeiro, J.A. Ferreira

PII:

S0045-7825(09)00064-4
DOI:
10.1016/j.cma.2009.02.002

Reference:
CMA 8886

To appear in: Comput. Methods Appl. Mech. Engrg.

Received Date: 24 January 2008
Revised Date: 19 November 2008
Accepted Date: 3 February 2009

Please cite this article as: S. Barbeiro, J.A. Ferreira, Coupled vehicle-skin models for drug release, Comput. Methods Appl. Mech. Engrg. (2009), doi: 10.1016/j.cma.2009.02.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Coupled vehicle-skin models for drug release *

S. Barbeiro ${ }^{\dagger}$ and J.A.Ferreira ${ }^{\ddagger}$
CMUC, Department of Mathematics, University of Coimbra
Coimbra, Portugal

November 19, 2008

Keywords: Coupled vehicle-skin models, Drug release, Integro-differential model, Numerical approximation, Stability, Convergence

Abstract

Percutaneous absorption of a drug delivered by a vehicle source is usually modeled by using diffusion Fick's law. In this case, the model consists in a system of partial differential equations of diffusion type with a compatibility condition on the transition boundary between the vehicle and the skin. Using this model, the fractional drug release in both components vehicle and skin - is proportional to the square root of the release time. Often experimental results show that the predicted drug concentration distribution in the vehicle and in the skin by the Fick's model does not agree with experimental data. In this paper we present a nonFickian mathematical model for the introduced percutaneous absorption problem. In this new model the Fick's law for the flux is modified by introducing a non-Fickian contribution defined with a relaxation parameter related to the properties of the components. Combining the flux equation with the mass conservation law, a system of integro-differential equations is established with a compatibility condition on the boundary between the two components of the physical model. The stability analysis is presented. In order to simulate the mathematical model, its discrete version is introduced. The stability and convergence properties of the discrete system are studied. Numerical experiments are also included.

1 Introduction

Percutaneous drug delivery is the penetration of drugs from an outside source - the vehicle through the skin passing the viable epidermis into the blood capillaries and the lymphatic system. The delivery device is a polymeric system which can be a hydrophilic polymer, a hydrogel or another polymeric matrix containing the drug. The polymeric matrix plays the major role as it should keep the drug available on the skin surface with a constant concentration over a long time period. In monolithic systems, the transdermal system has three different layers, an impermeable backing, an intermediate polymer matrix containing the drug and a skin adhesive layer. The polymeric matrix is designed to control the drug diffusion through the system to the skin ([32]).

Let us consider the vehicle-skin system represented in Figure 1. The objective is to calculate the concentration of the drug, in the vehicle and in the skin, at time t in the transversal sections $T\left(x^{\prime}\right)$ and $T\left(x^{\prime \prime}\right)$, respectively, which are parallel to the yoz plane.

[^0]
ACCEPTED MANUSCRIPT

Figure 1: The vehicle-skin system

Assuming that both system components are homogeneous the vehicle-skin system presented in Figure 1 can be modeled as a one-dimensional system. Then our problem consists of the computation of the drug concentration $c(x, t)$ at spatial point x and at time $t \geq 0$ for $x \in$ [$-L_{v}, L_{s}$], where L_{v} and L_{s} are the vehicle and the skin lengths and the origin is the transition point. We assume that the left boundary of the vehicle is isolated and the boundary of the skin in contact with the right boundary of the vehicle does not offer any resistance to the drug passage. This means that the drug that arrives to the right boundary of the vehicle passes to the skin. The drug concentration that passes to the blood is proportional to the drug concentration at the right boundary of the skin.

Traditionally the introduced diffusion problem is modeled by the classical diffusion equation

$$
\begin{equation*}
\frac{\partial c}{\partial t}(x, t)=D_{i} \frac{\partial^{2} c}{\partial x^{2}}(x, t), x \in I_{i}, t>0, \tag{1}
\end{equation*}
$$

with $i=v$ when $x \in I_{v}=\left(-L_{v}, 0\right)$ and $i=s$ when $x \in I_{s}=\left(0, L_{s}\right)$. As the left boundary of the vehicle is isolated, the flux at $x=-L_{v}$ is null which implies for the drug concentration at this point the next condition

$$
\begin{equation*}
\frac{\partial c}{\partial x}\left(-L_{v}, t\right)=0, t>0 . \tag{2}
\end{equation*}
$$

In the physical model it was assumed that the drug concentration that passes to the blood at $x=L_{s}$ is proportional to the drug concentration at this point which means that

$$
\begin{equation*}
\frac{\partial c}{\partial x}\left(L_{s}, t\right)=-r c\left(L_{s}, t\right), t>0 \tag{3}
\end{equation*}
$$

where r is a positive constant.
Furthermore, as the drug flux that arrives to the right boundary of the vehicles passes to the skin, for the drug concentration at $x=0$ we have

$$
\begin{equation*}
D_{v} \frac{\partial c}{\partial x}(0, t)=D_{s} \frac{\partial c}{\partial x}(0, t), t>0 . \tag{4}
\end{equation*}
$$

Finally we can assume that

$$
\begin{equation*}
c(x, 0)=c_{0}(x), x \in\left(-L_{v}, L_{s}\right), \tag{5}
\end{equation*}
$$

because the initial drug distribution is known.

ACCEPTED MANUSCRIPT

The classical diffusion model (1) - (5) was considered for instance in [20], [28], [38], [39]. This model is established by using the Fick's law for the flux $J_{i}(x, t)$ at point x at time t, which states that

$$
\begin{equation*}
J_{i}(x, t)=-D_{i} \frac{\partial c}{\partial x}(x, t) \tag{6}
\end{equation*}
$$

with $i=v$ if $x \in I_{v}=\left(-L_{v}, 0\right)$ and $i=s$ if $x \in I_{s}=\left(0, L_{s}\right)$, where $D_{i}>0$, for $i=v, s$, represents the diffusion coefficient in the vehicle and skin media respectively.

The solution of the classical diffusion equation (1) has the unphysical property that if a sudden change in the concentration is made at a point in the polymer or in the skin, it will be felt instantly everywhere. This property, known as infinite propagation speed, is not present in drug conduction phenomena and it is a consequence of the violation of principle of casuality by the Fick's law (6) for the flux. This problem was also observed in heat conduction problems in mathematical models based on the Fourier law for heat flux for instance in [8], [29], [40]. For reaction-diffusion systems the same drawback was observed in [18], [19].

The Fick's law for the flux is based on Brownian motion in fluid systems. The assumptions of the Brownian motion are not compatible with biological barriers such as the human skin. In fact the transport of substances across this membrane is a complex phenomenon comprising physical, chemical and biological interactions. It is evident from the published results that Fick's law often does not offer a good approximation to dermal absorption (see e.g. [1], [27], [30]). The concentration profiles obtained with the classical diffusion model do not agree with experimental results. A delay effect appears in this data.

It should be also pointed out that the movement of the drug particles in the polymeric device is not of Brownian type since the particle flux is not well described by Fick's law. For instance, the structure of the polymer chains of hydrogel based devices can change in contact with water or can depend on the pH and on the ionic strength of the surrounding environment. At the same time the drug trapped inside of the hydrogel starts to diffuse out of the network. Often the transport mechanism in this type of systems does not behave according to Fickian diffusion. In fact, the results obtained in experimental context support the previous sentence ([6], [10], [25], [31], [33], [34], [36], [37], see also [35] and the references contained in the last paper). However, often we find in the literature mathematical models for percutaneous drug absorption considering the system vehicle-skin established by using Fick's law (see e.g. [20], [22], [23], [28]).

Let us consider that the flux J_{i} has two main contributions: one of the Fickian type,

$$
J_{i, F}(x, t)=-D_{1, i} \frac{\partial c}{\partial x}(x, t)
$$

and another, $-J_{i, M}(x, t)$, taking into account the memory effect of the diffusion phenomena. This means that $J_{i}(x, t)=J_{i, F}(x, t)+J_{i, M}(x, t)$.

The flux $J_{i, M}$ at point x and at time t is considered as being a consequence of the concentration variation at point x and at some passed time,

$$
J_{i, M}(x, t)=-D_{2, i} \frac{\partial c}{\partial x}\left(x, t-\tau_{i}\right)
$$

where $i=v, s, \tau_{v}$ and τ_{s} are the relaxation time associated with the vehicle and with the skin, respectively. The relaxation parameters represent the time needed for one part of the media vehicle, skin - to change in neighboring parts. We assume that the delay parameters are very small.

ACCEPTED MANUSCRIPT

Taking a first order approximation to the flux and integrating the first order differential equation, we obtain

$$
\frac{\partial J_{i, M}}{\partial t}(x, t)+\frac{1}{\tau_{i}} J_{i, M}(x, t)=-\frac{D_{2, i}}{\tau_{i}} \frac{\partial c}{\partial x}(x, t)
$$

with

$$
\begin{equation*}
J_{i, M}(x, t)=-\frac{D_{2, i}}{\tau_{i}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(x, s) d s \tag{7}
\end{equation*}
$$

Note that, when $\tau_{i} \rightarrow 0$, the flux $J_{i}(x, t)$ defined by (7) tends to the classical Fick's flux. The previous deduction can be avoided defining the new flux by (7). In fact we can argue that the flux is not proportional to the gradient of the drug concentration but it is proportional to the "average in time" of the gradient of the concentration.

Considering the mass conservation law

$$
\frac{\partial c}{\partial t}(x, t)=-\frac{\partial J_{i}}{\partial x}(x, t)
$$

we obtain for the drug concentration the following integro-differential equations

$$
\begin{equation*}
\frac{\partial c}{\partial t}(x, t)=D_{1, i} \frac{\partial^{2} c}{\partial x^{2}}(x, t)+\frac{D_{2, i}}{\tau_{i}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial^{2} c}{\partial x^{2}}(x, s) d s, x \in I_{i}, t>0, \tag{8}
\end{equation*}
$$

with $i=v$ when $x \in I_{v}=\left(-L_{v}, 0\right)$ and $i=s$ when $x \in I_{s}=\left(0, L_{s}\right)$.
Considering now the flux definition, the boundary conditions are rewritten in the following form

$$
\begin{gather*}
D_{1, v} \frac{\partial c}{\partial x}\left(-L_{v}, t\right)+\frac{D_{2, v}}{\tau_{v}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{v}}} \frac{\partial c}{\partial x}\left(-L_{v}, s\right) d s=0, \tag{9}\\
D_{1, s} \frac{\partial c}{\partial x}\left(L_{s}, t\right)+\frac{D_{2, s}}{\tau_{s}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{s}}} \frac{\partial c}{\partial x}\left(L_{s}, s\right) d s+r c\left(L_{s}, t\right)=0, \tag{10}
\end{gather*}
$$

The integro-differential equations for the vehicle-skin system are complemented with the initial drug distribution (5) and with the transition condition at $x=0$ defined now by

$$
\begin{equation*}
D_{1, v} \frac{\partial c}{\partial x}(0, t)+\frac{D_{2, v}}{\tau_{v}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{v}}} \frac{\partial c}{\partial x}(0, s) d s=D_{1, s} \frac{\partial c}{\partial x}(0, t)+\frac{D_{2, s}}{\tau_{s}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{s}}} \frac{\partial c}{\partial x}(0, s) d s \tag{11}
\end{equation*}
$$

$t>0$.
The boundary conditions (9), (10) and the transition condition (11) are the natural conditions associated with the integro-differential model, as it will be explained in the next section.

Equation (8) can also be obtained if we assume that the vehicle and the skin have a viscoelastic response to the sudden strain induced by the penetration of the drug. In this case the flux $J_{i, M}$ is related with the viscoelastic stress σ_{i} by

$$
J_{i, M}(x, t)=D_{2, i} \frac{\partial \sigma_{i}}{\partial x}(x, t),
$$

and

$$
\begin{equation*}
\frac{\partial \sigma_{i}}{\partial t}(x, t)+\frac{1}{\tau_{i}} \sigma_{i}=c(x, t) \tag{12}
\end{equation*}
$$

The definition (12) for the viscoelastic stress σ_{i} is a particular case of the definition given by Cohen, White and Witelski in [9], where on the second member of (12) a linear combination of

ACCEPTED MANUSCRIPT

$c(x, t)$ and $\frac{\partial c}{\partial t}(x, t)$ was considered. The approach introduced in [9] was largely followed in the literature. Without being exhaustive we mention [11]- [17], [24].

In heat conduction phenomena equation (8) was used in [8], [29] and [40] in order to avoid the limitation of the traditional heat equation. In reaction-diffusion context equation (8) with a reaction term was introduced in [18], [19] in order to avoid the drawback of the classical Fisher-Kolmogorov-Petrovskii-Piskunov equation. Equation (8) was studied in [2], [3], [4] and [21] being used to model the drug diffusion in the skin in [5].

In this paper, our aim is to study analytically and numerically the initial boundary value problem (IBVP) (8)-(11). From an analytical view point, Section 2 focuses on the stability of the mathematical model. In Section 3 a discrete version of the continuous model is proposed and its stability and convergence properties are analyzed. Finally, in Section 4 we present some numerical simulations to illustrate the theoretical results. The behavior of the Fickian model and the non-Fickian model is compared numerically.

2 On the well-posedness of the non-Fickian model

In this section we analyse the stability of the IBVP (8)-(11) with respect to perturbations of the initial condition.

We use the following notation: by $v(t)$ we denote the x-function if v is defined in $\left[-L_{v}, L_{s}\right] \times$ $[0, T]$ and t is fixed. We represent by (.,.) the usual L^{2} inner product and by $\|$.$\| the usual$ L^{2}-norm. When we consider each interval $I_{i}, i=v, s$, we adopt the following notations: $(., .)_{I_{i}}$, $\|\cdot\|_{L^{2}\left(I_{i}\right)}$. By $H^{1}\left(-L_{v}, L_{s}\right)$ we represent the usual Sobolev space. Let $L^{2}\left(0, T, H^{1}\left(-L_{v}, L_{s}\right)\right)$ be the space of functions v defined in $\left[-L_{v}, L_{s}\right] \times[0, T]$ such that, for $t \in[0, T], v(t) \in H^{1}\left(-L_{v}, L_{s}\right)$ and

$$
\int_{0}^{T}\|v(t)\|_{1}^{2} d t<\infty
$$

where $\|\cdot\|_{1}$ denotes the usual norm in $H^{1}\left(-L_{v}, L_{s}\right)$. Let $L^{2}\left(0, T, L^{2}\left(-L_{v}, L_{s}\right)\right)$ be defined as $L^{2}\left(0, T, H^{1}\left(-L_{v}, L_{s}\right)\right)$ replacing $H^{1}\left(-L_{v}, L_{s}\right)$ by $L^{2}\left(-L_{v}, L_{s}\right)$.

We establish, in the following result, an estimate for the energy functional

$$
E(t)=\|c(t)\|^{2}+\sum_{i=v, s}\left(D_{1, i} \int_{0}^{t}\left\|\frac{\partial c}{\partial x}(s)\right\|_{L^{2}\left(I_{i}\right)}^{2} d s+\frac{D_{2, i}}{\tau_{i}}\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2}\right)
$$

for $t \in[0, T]$, depending on the behavior of the initial condition $c_{0}(x, t)$ for $x \in\left[-L_{v}, L_{s}\right]$.
Theorem 1 Let c be a solution of (8)-(11) such that $c \in L^{2}\left(0, T, H^{1}\left(-L_{v}, L_{s}\right)\right)$ and $\frac{\partial c}{\partial t}, \frac{\partial^{2} c}{\partial x^{2}} \in L^{2}\left(-L_{v}, L_{s}\right)$, for each $t \in(0, T]$. Then we have

$$
\begin{equation*}
E(t) \leq\left\|c_{0}\right\|^{2}, t \in[0, T] \tag{13}
\end{equation*}
$$

Proof: Multiplying (8) by $c(t)$ with respect to the inner product (.,.) and using integration

ACCEPTED MANUSCRIPT

by parts we get

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|c(t)\|^{2}= & -\sum_{i=v, s}\left(D_{1, i}\left\|\frac{\partial c}{\partial x}(t)\right\|_{L^{2}\left(I_{i}\right)}^{2}+\frac{D_{2, i}}{\tau_{i}}\left(\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s, \frac{\partial c}{\partial x}(t)\right)_{I_{i}}\right) \\
& -c\left(-L_{v}, t\right)\left(D_{1, v} \frac{\partial c}{\partial x}\left(-L_{v}, t\right)+\frac{D_{2, v}}{\tau_{v}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{v}}} \frac{\partial c}{\partial x}\left(-L_{v}, s\right) d s\right) \\
& +c(0, t)\left(D_{1, v} \frac{\partial c}{\partial x}(0, t)+\frac{D_{2, v}}{\tau_{v}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{v}}} \frac{\partial c}{\partial x}(0, s) d s\right. \\
& -c(0, t)\left(D_{1, s} \frac{\partial c}{\partial x}(0, t)+\frac{D_{2, s}}{\tau_{s}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{s}}} \frac{\partial c}{\partial x}(0, s) d s\right) \\
& +c\left(L_{s}, t\right)\left(D_{1, s} \frac{\partial c}{\partial x}\left(L_{s}, t\right)+\frac{D_{2, s}}{\tau_{s}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{s}}} \frac{\partial c}{\partial x}\left(L_{s}, s\right) d s\right) .
\end{aligned}
$$

Taking into account the boundary conditions (9), (10) and the transition condition (11) we establish

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\|c(t)\|^{2}= & -\sum_{i=v, s}\left(D_{1, i}\left\|\frac{\partial c}{\partial x}(t)\right\|_{L^{2}\left(I_{i}\right)}^{2}+\frac{D_{2, i}}{\tau_{i}}\left(\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s, \frac{\partial c}{\partial x}(t)\right)_{I_{i}}\right) \\
& -r c\left(L_{s}, t\right)^{2} \tag{14}
\end{align*}
$$

As we have

$$
\begin{aligned}
\left(\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s, \frac{\partial c}{\partial x}(t)\right)_{I_{i}}= & \frac{1}{2} \frac{d}{d t}\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2} \\
& +\frac{1}{\tau_{i}}\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2}
\end{aligned}
$$

we deduce that

$$
\frac{d}{d t} E(t)=-\sum_{i=v, s}\left(D_{1, i}\left\|\frac{\partial c}{\partial x}(t)\right\|_{L^{2}\left(I_{i}\right)}^{2}+\frac{2}{\tau_{i}}\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2}\right)-2 r c\left(L_{s}, t\right)^{2}
$$

and we conclude (13).

The designation "natural conditions" for the boundary conditions (9), (10) and the transition condition (11) is justified in the proof of Theorem 1. In fact such conditions enable us to conclude that the total mass in the vehicle and in the skin is bounded in time. The same behavior can be observed for the gradient of the concentration in both components of the vehicle-skin system as well as for the weighed "past in time" of the concentration gradients $\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2}, i=v, s$. Furthermore, from the proof of Theorem 1 we conclude that $E(t)$ is decreasing in time.

We point out that for the Fickian model (1) - (5) we are not able to get any information to the weighed "past in time" of the concentration gradients $\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2}, i=v, s$.

If the boundary conditions (9)-(10) are replaced by the homogeneous Dirichlet boundary conditions, then using the Poincaré-Friedrichs inequality in both terms $D_{1, i}\left\|\frac{\partial c}{\partial x}(t)\right\|_{L^{2}\left(I_{i}\right)}^{2}$ we

ACCEPTED MANUSCRIPT

obtain

$$
\begin{align*}
& \frac{d}{d t}\left(\|c(t)\|^{2}+\sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2}\right) \\
& \leq \mathcal{C}\left(\|c(t)\|^{2}+\sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2}\right) \tag{15}
\end{align*}
$$

with

$$
\mathcal{C}=\max \left\{-\frac{2 D_{1, v}}{L_{v}^{2}},-\frac{2 D_{1, s}}{L_{s}^{2}},-\frac{2}{\tau_{v}},-\frac{2}{\tau_{s}}\right\}
$$

From (15) we deduce that

$$
\begin{equation*}
\|c(t)\|^{2}+\sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2} \leq e^{\mathcal{C} t}\left\|c_{0}\right\|^{2}, t \geq 0 \tag{16}
\end{equation*}
$$

which allow us to conclude, in this case, that

$$
\lim _{t \rightarrow \infty}\left(\|c(t)\|^{2}+\sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}} \frac{\partial c}{\partial x}(s) d s\right\|_{L^{2}\left(I_{i}\right)}^{2}\right)=0
$$

Estimate (16) characterizes the drug mass in the vehicle and in the skin at each time t as well as the weighed "past in time" of the concentration gradients. Such characterization can not be obtained for the Fickian model (1) - (5) even if homogeneous Dirichlet boundary conditions are considered.

The following stability result is a natural consequence of Theorem 1.
Corollary 1 Let c and \tilde{c} be solutions of (8)-(11) with initial conditions c_{0} and $\tilde{c_{0}}$, such that $c, \tilde{c} \in L^{2}\left(0, T, H^{1}\left(-L_{v}, L_{s}\right)\right)$ and $\frac{\partial c}{\partial t}, \frac{\partial^{2} c}{\partial x^{2}}, \frac{\partial \tilde{c}}{\partial t}, \frac{\partial^{2} \tilde{c}}{\partial x^{2}} \in L^{2}\left(-L_{v}, L_{s}\right)$, for each $t \in(0, T]$. Then we have

$$
E(t) \leq\left\|c_{0}-\tilde{c}_{0}\right\|^{2}+\sum_{i=v, s} D_{1, i}\left\|\frac{d c_{0}}{d x}-\frac{d \tilde{c}_{0}}{d x}\right\|_{L^{2}\left(I_{i}\right)}^{2}, t \in[0, T]
$$

If the variational problem: find $c \in L^{2}\left(0, T, H^{1}\left(-L_{v}, L_{s}\right)\right)$ such that $\frac{\partial c}{\partial t} \in L^{2}\left(-L_{v}, L_{s}\right), c$ satisfies (9)-(11) and the following variational equality

$$
\begin{equation*}
\left(\frac{\partial c}{\partial t}(t), v\right)+\sum_{i=v, s}\left(D_{1, i}\left(\frac{\partial c}{\partial x}(t), \frac{d v}{d x}\right)_{I_{i}}+\frac{D_{2, i}}{\tau_{i}} \int_{0}^{t} e^{-\frac{t-s}{\tau_{i}}}\left(\frac{\partial c}{\partial x}(s), \frac{d v}{d x}\right)_{I_{i}} d s\right)=0 \tag{17}
\end{equation*}
$$

$\forall v \in H^{1}\left(-L_{v}, L_{s}\right)$, has a solution c then, from Theorem $1, c$ is unique. In fact if we assume that the previous variational problem has two solutions c and \tilde{c} then $w=c-\tilde{c}$ is solution of the same problem with null initial condition. By Theorem 1 for w we have $E(t)=0$, for all $t \geq 0$. Consequently $w=0$ almost every where which implies that $c=\tilde{c}$ in $L^{2}\left(-L_{v}, L_{s}\right)$.

3 A discrete model

Our aim in this section is to introduce a discretization of the IBVP (8)-(11) which mimics its continuous counterpart. The discrete model is obtained discretizing the partial derivatives in

ACCEPTED MANUSCRIPT

equation (8) by using cell-centered finite-difference operators and considering for the integral term the rectangular rule.

We define the time grid $\left\{t_{n}, n=0,1,2, \ldots\right\}$,

$$
t_{0}=0, t_{n+1}=t_{n}+k, n=0,1,2, \ldots
$$

where k is the time-step. In the space domain $\left[-L_{v}, L_{s}\right]$ we introduce the grid

$$
\left\{x_{0}=-L_{v}, x_{i}=x_{i-1}+h, i=1, \ldots, M, x_{M}=L_{s}\right\},
$$

where $h=\frac{L_{v}+L_{s}}{M}$ and $x_{N}=0$ is the transition point. By $x_{i+1 / 2}$ we represent the center of the cell $\left[x_{i}, x_{i+1}\right], i=0, \ldots, M-1, I_{h}$ and \bar{I}_{h} denote, respectively, the sets $\left\{x_{i+1 / 2}, i=0, \ldots, M-1\right\}$ and $\bar{I}_{h}=I_{h} \cup\left\{x_{0}, x_{M}\right\}$. Let $I_{h, v}=I_{h} \cap\left[-L_{v}, 0\right]$ and $I_{h, s}=I_{h} \cap\left[0, L_{s}\right]$. Let $x_{-1 / 2}$ and $x_{M+1 / 2}$ be the auxiliary points $x_{-1 / 2}=-L_{v}-\frac{h}{2}, x_{M+1 / 2}=x_{M}+\frac{h}{2}$. For grid functions v_{h} defined in $\bar{I}_{h} \cup\left\{x_{-1 / 2}, x_{M+1 / 2}\right\}$ we introduce the finite-difference formula $\Delta_{h} v_{h}\left(x_{i+1 / 2}\right)$ defined as the usual second-order finite difference quotient when $i \neq 0, N-1, N, N+1, M-1, M . \Delta_{h} v_{h}\left(x_{0}\right)$ and $\Delta_{h} v_{h}\left(x_{M}\right)$ are defined using a boundary point, a cell-center point and the auxiliary points $x_{-1 / 2}$ and $x_{M+1 / 2}$, respectively. If $x_{i+1 / 2}$ is such that x_{i} or x_{i+1} is a boundary point or x_{N} then $\Delta_{h} v_{h}\left(x_{i+1 / 2}\right)$ is defined by using $x_{i+1 / 2}$, the boundary point or x_{N} and neighbor cell-center point.

Let D_{-t} be the backward finite difference operator with respect to the time variable and D_{c} the first-order centered finite difference quotient defined with respect to the space variable x by the auxiliary point and the cell-center point. D_{-x} and D_{x} represent, respectively, backward and forward finite difference operators defined using x_{N} and neighbor cell-center points.

By $c_{h}^{n}\left(x_{i}\right)$ we represent the approximation to $c\left(x_{i}, t_{n}\right)$ defined by the system of equations

$$
\begin{align*}
& D_{-t} c_{h}^{n+1}\left(x_{i}\right)=D_{1, v} \Delta_{h} c_{h}^{n+1}\left(x_{i}\right)+k \frac{D_{2, v}}{\tau_{v}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{v}}} \Delta_{h} c_{h}^{j}\left(x_{i}\right), x_{i} \in I_{h, v} \cup\left\{x_{0}\right\}, \\
& D_{-t} c_{h}^{n+1}\left(x_{i}\right)=D_{1, s} \Delta_{h} c_{h}^{n+1}\left(x_{i}\right)+k \frac{D_{2, s}}{\tau_{s}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{s}}} \Delta_{h} c_{h}^{j}\left(x_{i}\right), x_{i} \in I_{h, s} \cup\left\{x_{M}\right\}, \tag{18}
\end{align*}
$$

with the boundary conditions

$$
\begin{align*}
& D_{1, v} D_{c} c_{h}^{n+1}\left(x_{0}\right)+k \frac{D_{2, v}}{\tau_{v}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{v}}} D_{c} c_{h}^{j}\left(x_{0}\right)=0, \\
& D_{1, s} D_{c} c_{h}^{n+1}\left(x_{M}\right)+k \frac{D_{2, s}}{\tau_{s}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{s}}} D_{c} c_{h}^{j}\left(x_{M}\right)+r c_{h}^{n+1}\left(x_{M}\right)=0, \tag{19}
\end{align*}
$$

and the discrete transition condition on x_{N}

$$
\begin{align*}
& D_{1, v} D_{-x} c_{h}^{n+1}\left(x_{N}\right)+k \frac{D_{2, v}}{\tau_{v}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{v}}} D_{-x} c_{h}^{j}\left(x_{N}\right) \\
& =D_{1, s} D_{x} c_{h}^{n+1}\left(x_{N}\right)+k \frac{D_{2, s}}{\tau_{s}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{s}}} D_{x} c_{h}^{j}\left(x_{N}\right) . \tag{20}
\end{align*}
$$

The initial values $c_{h}^{0}\left(x_{i}\right)$ are given by

$$
\begin{equation*}
c_{h}^{0}\left(x_{i}\right)=c_{0}\left(x_{i}\right), x_{i} \in \bar{I}_{h} . \tag{21}
\end{equation*}
$$

ACCEPTED MANUSCRIPT

3.1 Stability analysis

In order to study the stability of the numerical methods, let us introduce some notation. We denote by $L^{2}\left(\bar{I}_{h}\right)$ the space of grid functions v_{h} defined in \bar{I}_{h}. In this space, we will consider the discrete inner product

$$
\left(v_{h}, w_{h}\right)_{h}=\left(v_{h}, w_{h}\right)_{v}+\left(v_{h}, w_{h}\right)_{s}
$$

where

$$
\begin{aligned}
\left(v_{h}, w_{h}\right)_{v}= & \frac{h}{4} v_{h}\left(x_{0}\right) w_{h}\left(x_{0}\right)+\frac{3}{4} h v_{h}\left(x_{1 / 2}\right) w_{h}\left(x_{1 / 2}\right)+h \sum_{i=1}^{N-2} v_{h}\left(x_{i+1 / 2}\right) w_{h}\left(x_{i+1 / 2}\right) \\
& +\frac{3}{4} h v_{h}\left(x_{N-1 / 2}\right) w_{h}\left(x_{N-1 / 2}\right), \\
\left(v_{h}, w_{h}\right)_{s}= & \frac{3}{4} h v_{h}\left(x_{N+1 / 2}\right) w_{h}\left(x_{N+1 / 2}\right)+h \sum_{i=N+1}^{M-2} v_{h}\left(x_{i+1 / 2}\right) w_{h}\left(x_{i+1 / 2}\right) \\
& +\frac{3}{4} h v_{h}\left(x_{M-1 / 2}\right) w_{h}\left(x_{M-1 / 2}\right)+\frac{h}{4} v_{h}\left(x_{M}\right) w_{h}\left(x_{M}\right)
\end{aligned}
$$

for $v_{h}, w_{h} \in L^{2}\left(\bar{I}_{h}\right)$. We denote by $\|\cdot\|_{h}$ the norm induced by this inner product. We also need to introduce the following notation

$$
\left(v_{h}, w_{h}\right)_{h+}=\left(v_{h}, w_{h}\right)_{h v+}+\left(v_{h}, w_{h}\right)_{h s+}
$$

for grid functions defined on $I_{h} \cup\left\{x_{N}, x_{M}\right\}$, where

$$
\begin{aligned}
\left(v_{h}, w_{h}\right)_{h v+}= & \frac{h}{2} v_{h}\left(x_{1 / 2}\right) w_{h}\left(x_{1 / 2}\right)+h \sum_{i=1}^{N-1} v_{h}\left(x_{i+1 / 2}\right) w_{h}\left(x_{i+1 / 2}\right) \\
& +\frac{h}{2} v_{h}\left(x_{N}\right) w_{h}\left(x_{N}\right) \\
\left(v_{h}, w_{h}\right)_{h s+}= & \frac{h}{2} v_{h}\left(x_{N+1 / 2}\right) w_{h}\left(x_{N+1 / 2}\right)+h \sum_{i=N+1}^{M-1} v_{h}\left(x_{i+1 / 2}\right) w_{h}\left(x_{i+1 / 2}\right) \\
& +\frac{h}{2} v_{h}\left(x_{M}\right) w_{h}\left(x_{M}\right)
\end{aligned}
$$

and

$$
\left\|v_{h}\right\|_{h+}^{2}=\left\|v_{h}\right\|_{h v+}^{2}+\left\|v_{h}\right\|_{h s+}^{2}
$$

with

$$
\left\|v_{h}\right\|_{h i+}^{2}=\left(v_{h}, v_{h}\right)_{h i+}
$$

for $i=v, s$.
The following lemma has a central role in the proof of the main stability result of this section and it can be proved using summation by parts.

Lemma 1 Let w_{h}, v_{h} be grid functions defined in $\bar{I}_{h} \cup\left\{x_{-1 / 2}, x_{N}, x_{M+1 / 2}\right\}$. Then

$$
\begin{aligned}
\left(\alpha_{v} \Delta_{h} v_{h}, w_{h}\right)_{v}+\left(\alpha_{s} \Delta_{h} v_{h}, w_{h}\right)_{s} & =-\alpha_{v}\left(D_{-x} v_{h}, D_{-x} w_{h}\right)_{h v+}-\alpha_{v} D_{c} v_{h}\left(x_{0}\right) w_{h}\left(x_{0}\right) \\
& +\alpha_{v} D_{-x} v_{h}\left(x_{N}\right) w_{h}\left(x_{N}\right)-\alpha_{s} D_{x} v_{h}\left(x_{N}\right) w_{h}\left(x_{N}\right) \\
& -\alpha_{s}\left(D_{-x} v_{h}, D_{-x} w_{h}\right)_{h s+}+\alpha_{s} D_{c} v_{h}\left(x_{M}\right) w_{h}\left(x_{M}\right) .
\end{aligned}
$$

ACCEPTED MANUSCRIPT

The main stability result is established in the next theorem.
Theorem 2 Let c_{h}^{n} be a solution of the finite-difference problem (18)-(21). Then

$$
\begin{equation*}
\left\|c_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}\right\|_{h i+}^{2} \leq\left\|c_{h}^{0}\right\|_{h}^{2} \tag{22}
\end{equation*}
$$

Proof: Multiplying (18) by c_{h}^{n+1} with respect to the inner product (., . $)_{h}$ and using summation by parts we obtain

$$
\begin{align*}
& \left\|c_{h}^{n+1}\right\|_{h}^{2}=\left(c_{h}^{n}, c_{h}^{n+1}\right)_{h}-k \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2} \\
& -k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}} \sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}}\left(D_{-x} c_{h}^{j}, D_{-x} c_{h}^{n+1}\right)_{h i+} \\
& -k c_{h}^{n+1}\left(x_{0}\right)\left(D_{1, v} D_{c} c_{h}^{n+1}\left(x_{0}\right)+\frac{D_{2, v}}{\tau_{v}} k \sum_{j=1}^{n+1} e^{-\frac{t_{n+1-t_{j}}}{\tau_{v}}} D_{c} c_{h}^{j}\left(x_{0}\right)\right) \\
& +k c_{h}^{n+1}\left(x_{N}\right)\left(D_{1, v} D_{-x} c_{h}^{n+1}\left(x_{N}\right)+\frac{D_{2, v}}{\tau_{v}} k \sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{v}}} D_{-x} c_{h}^{j}\left(x_{N}\right)\right) \tag{23}\\
& -k c_{h}^{n+1}\left(x_{N}\right)\left(D_{1, s} D_{x} c_{h}^{n+1}\left(x_{N}\right)+\frac{D_{2, s}}{\tau_{s}} k \sum_{j=1}^{n+1} e^{-\frac{t_{n+1-t_{j}}}{\tau_{s}}} D_{x} c_{h}^{j}\left(x_{N}\right)\right) \\
& +k c_{h}^{n+1}\left(x_{M}\right)\left(D_{1, s} D_{c} c_{h}^{n+1}\left(x_{M}\right)+\frac{D_{2, s}}{\tau_{s}} k \sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{s}}} D_{c} c_{h}^{j}\left(x_{M}\right)\right) .
\end{align*}
$$

Taking the boundary conditions (19) and the transition condition (20) into account in (23) we deduce that

$$
\begin{align*}
& \left\|c_{h}^{n+1}\right\|_{h}^{2}=\left(c_{h}^{n}, c_{h}^{n+1}\right)_{h}-k \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2} \\
& -k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}} \sum_{j=1}^{n+1} e^{-\frac{t_{n+1}+t_{j}}{\tau_{i}}}\left(D_{-x} c_{h}^{j}, D_{-x} c_{h}^{n+1}\right)_{h i+}-r c_{h}^{n+1}\left(x_{M}\right)^{2} . \tag{24}
\end{align*}
$$

As we have

$$
\begin{aligned}
& \left(\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}, D_{-x} c_{h}^{n+1}\right)_{h i+}=\frac{1}{2}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}\right\|_{h i+}^{2} \\
& -\frac{e^{-2 \frac{k}{\tau_{i}}}}{2}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}\right\|_{h i+}^{2}+\frac{1}{2}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2},
\end{aligned}
$$

using the Cauchy-Schwarz inequality, from (24) we obtain

$$
\begin{aligned}
& \frac{1}{2}\left\|c_{h}^{n+1}\right\|_{h}^{2}+\frac{k}{2} \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2}+\frac{k^{2}}{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}\right\|_{h i+}^{2} \\
& \leq \frac{1}{2}\left\|c_{h}^{n}\right\|_{h}^{2}-\frac{k}{2} \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2}+\frac{k^{2}}{2} \sum_{i=v, s} e^{-\frac{2 k}{\tau_{i}}} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}\right\|_{h i+}^{2} \\
& -\frac{k^{2}}{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2}
\end{aligned}
$$

ACCEPTED MANUSCRIPT

which leads to

$$
\begin{align*}
& \left\|c_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}\right\|_{h i+}^{2} \tag{25}\\
& \leq\left\|c_{h}^{n}\right\|_{h}^{2}-k \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} e^{-\frac{2 k}{\tau_{i}}} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}\right\|_{h i+}^{2} .
\end{align*}
$$

Inequality (25) holds for $n \geq 1$ and we get

$$
\begin{array}{r}
\left\|c_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} c_{h}^{j}\right\|_{h i+}^{2} \\
\leq\left\|c_{h}^{1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|D_{-x} c_{h}^{1}\right\|_{h i+}^{2} . \tag{26}
\end{array}
$$

Following the proof of inequality (25) and considering (18) with $n=0$, it can be shown that

$$
\begin{equation*}
\left\|c_{h}^{1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} c_{h}^{1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|D_{-x} c_{h}^{1}\right\|_{h i+}^{2} \leq\left\|c_{h}^{0}\right\|_{h}^{2} \tag{27}
\end{equation*}
$$

From (26) and (27) we conclude (22).
The following corollaries are consequence of Theorem 2.
Corollary 2 The finite difference scheme (18)-(21) has at most one solution.
Corollary 3 If $c_{h}^{n}, \tilde{c}_{h}^{n}$ are solutions of the finite difference problem (18)-(21) with the same boundary conditions and with the initial conditions c_{h}^{0} and \tilde{c}_{h}^{0}, respectively, then $w_{h}^{n}=c_{h}^{n}-\tilde{c}_{h}^{n}$ satisfies

$$
\begin{aligned}
& \left\|w_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} w_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} w_{h}^{j}\right\|_{h i+}^{2} \\
& \leq\left\|c_{h}^{0}-\tilde{c}_{h}^{0}\right\|_{h}^{2} .
\end{aligned}
$$

3.2 Convergence

Let $e_{h}^{n}\left(x_{i}\right)=c\left(x_{i}, t_{n}\right)-c_{h}^{n}\left(x_{i}\right)$ be the global error and let $T_{h}^{n}\left(x_{i}\right)$ be the correspondent truncation error at $x_{i} \in \bar{I}_{h}$. We denote by $T_{h, v}^{n}, T_{h, s}^{n}$ and $T_{h, t}^{n}$ the truncation errors in $I_{h, v} \cup\left\{x_{0}\right\}$, $I_{h, s} \cup\left\{x_{M}\right\}$ and $\left\{x_{N}\right\}$, respectively. These errors are related by the following finite-difference equations

$$
D_{-t} e_{h}^{n+1}\left(x_{i}\right)=D_{1, v} \Delta_{h} e_{h}^{n+1}\left(x_{i}\right)+k \frac{D_{2, v}}{\tau_{v}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{v}}} \Delta_{h} e_{h}^{j}\left(x_{i}\right)+T_{h, v}^{n+1}\left(x_{i}\right)
$$

$x_{i} \in I_{h, v} \cup\left\{x_{0}\right\}$,

$$
D_{-t} e_{h}^{n+1}\left(x_{i}\right)=D_{1, s} \Delta_{h} e_{h}^{n+1}\left(x_{i}\right)+k \frac{D_{2, s}}{\tau_{s}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{s}}} \Delta_{h} e_{h}^{j}\left(x_{i}\right)+T_{h, s}^{n+1}\left(x_{i}\right)
$$

ACCEPTED MANUSCRIPT

$x_{i} \in I_{h, s} \cup\left\{x_{M}\right\}$, with the boundary conditions

$$
\begin{aligned}
& D_{1, v} D_{c} e_{h}^{n+1}\left(x_{0}\right)+k \frac{D_{2, v}}{\tau_{v}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{v}}} D_{c} e_{h}^{j}\left(x_{0}\right)=T_{h, v}^{n}\left(x_{0}\right) \\
& D_{1, s} D_{c} e_{h}^{n+1}\left(x_{M}\right)+k \frac{D_{2, s}}{\tau_{s}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{s}}} D_{c} e_{h}^{j}\left(x_{M}\right)+r e_{h}^{n+1}\left(x_{M}\right)=T_{h, s}^{n+1}\left(x_{M}\right),
\end{aligned}
$$

and the discrete transition condition on x_{N}

$$
\begin{aligned}
& D_{1, v} D_{-x} e_{h}^{n+1}\left(x_{N}\right)+k \frac{D_{2, v}}{\tau_{v}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{v}}} D_{-x} e_{h}^{j}\left(x_{N}\right) \\
& =D_{1, s} D_{x} e_{h}^{n+1}\left(x_{N}\right)+k \frac{D_{2, s}}{\tau_{s}} \sum_{j=1}^{n+1} e^{\frac{t_{n+1}-t_{j}}{\tau_{s}}} D_{x} e_{h}^{j}\left(x_{N}\right)+T_{h, t}^{n+1}\left(x_{N}\right) .
\end{aligned}
$$

The initial values $e_{h}^{0}\left(x_{i}\right)$ are given by

$$
e_{h}^{0}\left(x_{i}\right)=0, x_{i} \in \bar{I}_{h}
$$

Theorem 3 Let c_{h}^{n} be defined by (18)-(21) and let c be the solution of (8)-(11). The error e_{h}^{n} satisfies the following inequality

$$
\begin{align*}
& \left\|e_{h}^{n}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \tag{28}\\
& \leq e^{\frac{8 \eta^{2}(n-1) k}{1-8 \eta^{2} k}} \frac{1+8 \eta^{2} k}{8 \eta^{2}\left(1-8 \eta^{2} k\right)} \max _{i=1, \ldots, n} \mathcal{T}_{h}^{i}
\end{align*}
$$

where η denotes a non zero constant provided that

$$
\begin{equation*}
1-8 \eta^{2} k>0 \tag{29}
\end{equation*}
$$

and \mathcal{T}_{h}^{j} is defined by

$$
\mathcal{T}_{h}^{j}=\frac{1}{2 \eta^{2}}\left(\left\|T_{h}^{j}\right\|_{h}^{2}+\frac{1}{h}\left(\left(T_{h, v}^{j}\left(x_{0}\right)\right)^{2}+\left(T_{h, s}^{j}\left(x_{M}\right)\right)^{2}\right)+\frac{2}{h}\left(T_{h, t}^{j}\left(x_{N}\right)\right)^{2}\right)+\frac{L_{v}}{2 \epsilon^{2}}\left(T_{h, t}^{j}\left(x_{N}\right)\right)^{2} .
$$

where ϵ is such that

$$
\begin{equation*}
\epsilon^{2}-\frac{D_{1, v}}{2} \leq 0 \tag{30}
\end{equation*}
$$

Proof: Following the proof of Theorem 2 it can be shown that for e_{h}^{n} we have

$$
\begin{align*}
& \left\|e_{h}^{n+1}\right\|_{h}^{2}+\frac{k}{2} \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n+1}\right\|_{h i+}^{2}+\frac{k^{2}}{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& \leq\left(e_{h}^{n}, e_{h}^{n+1}\right)-\frac{k}{2} \sum_{i=v, s} D_{1, i}\left\|_{-x} e_{h}^{n+1}\right\|_{h i+}^{2}+\frac{k^{2}}{2} \sum_{i=v, s} e^{-\frac{2 k}{\tau_{i}}} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \tag{31}\\
& -\frac{k^{2}}{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|D_{-x} e_{h}^{n+1}\right\|_{h i+}^{2}+k\left(T_{h}^{n+1}, e_{h}^{n+1}\right)-k e_{h}^{n+1}\left(x_{0}\right) T_{h, v}^{n+1}\left(x_{0}\right) \\
& -k e_{h}^{n+1}\left(x_{N}\right) T_{h, t}^{n+1}\left(x_{N}\right)+k e_{h}^{n+1}\left(x_{M}\right)\left(-r e_{h}^{n+1}\left(x_{M}\right)+T_{h, s}^{n+1}\left(x_{M}\right)\right) .
\end{align*}
$$

ACCEPTED MANUSCRIPT

Using the following representation

$$
\begin{aligned}
e_{h}^{n+1}\left(x_{N}\right) & =e_{h}^{n+1}\left(x_{0}\right)+\frac{h}{2} \frac{e_{h}^{n+1}\left(x_{1 / 2}\right)-e_{h}^{n+1}\left(x_{0}\right)}{h / 2}+\sum_{i=1}^{N-1} h D_{-x} e_{h}^{n+1}\left(x_{i+1 / 2}\right) \\
& +\frac{h}{2} \frac{e_{h}^{n+1}\left(x_{N}\right)-e_{h}^{n+1}\left(x_{N-1 / 2}\right)}{h / 2}
\end{aligned}
$$

it can be shown that

$$
\begin{equation*}
-e_{h}^{n+1}\left(x_{N}\right) T_{h, t}^{n+1}\left(x_{N}\right) \leq \epsilon^{2}\left\|D_{-x} e_{h}^{n+1}\right\|_{h v+}^{2}+\eta^{2}\left\|e_{h}^{n+1}\right\|_{h}^{2}+\left(T_{h, t}^{n+1}\left(x_{N}\right)\right)^{2}\left(\frac{1}{\eta^{2} h}+\frac{L_{v}}{4 \epsilon^{2}}\right), \tag{32}
\end{equation*}
$$

where η and ϵ are arbitrary non zero constants.
Considering (31), (32) and the inequalities

$$
\begin{aligned}
& e_{h}^{n+1}\left(x_{0}\right) T_{h, v}^{n}\left(x_{0}\right)+e_{h}^{n+1}\left(x_{M}\right) T_{h, s}^{n}\left(x_{M}\right) \leq 2 \eta^{2}\left\|e_{h}^{n+1}\right\|^{2}+\frac{1}{4 \eta^{2} h}\left(\left(T_{h, v}^{n+1}\left(x_{0}\right)\right)^{2}\right. \\
&\left.+\left(T_{h, s}^{n+1}\left(x_{M}\right)\right)^{2}\right), \\
&\left(e_{h}^{n}, e_{h}^{n+1}\right) \leq \frac{1}{2}\left\|e_{h}^{n}\right\|^{2}+ \frac{1}{2}\left\|e_{n}^{n+1}\right\|^{2}, \\
&\left(T_{h}^{n+1}, e_{h}^{n+1}\right) \leq \eta^{2}\left\|e_{h}^{n+1}\right\|^{2}+\frac{1}{4 \eta^{2}}\left\|T_{h}^{n+1}\right\|^{2},
\end{aligned}
$$

we obtain

$$
\begin{align*}
& \left(1-8 \eta^{2} k\right)\left\|e_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n+1}\right\|_{h i+}^{2} \\
& +k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& \leq\left\|e_{h}^{n}\right\|^{2}+2 k\left(\epsilon^{2}-\frac{D_{1, v}}{2}\right)\left\|D_{-x} e_{h}^{n+1}\right\|_{h v+}^{2}-k D_{1, s}\left\|D_{-x} e_{h}^{n+1}\right\|_{h s+}^{2} \\
& +k^{2} \sum_{i=v, s} e^{-\frac{2 k}{\tau_{i}} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2}} \tag{33}\\
& +k\left(\frac{1}{2 \eta^{2}}\left(\left\|T_{h}^{n+1}\right\|_{h}^{2}+\frac{1}{h}\left(\left(T_{h, v}^{n+1}\left(x_{0}\right)\right)^{2}+\left(T_{h, s}^{n+1}\left(x_{M}\right)\right)^{2}\right)+\frac{2}{h}\left(T_{h, t}^{n+1}\left(x_{N}\right)\right)^{2}\right)\right. \\
& \left.+\frac{L_{v}}{2 \epsilon^{2}}\left(T_{h, t}^{n+1}\left(x_{N}\right)\right)^{2}\right) .
\end{align*}
$$

If ϵ is fixed and satisfies (30) then, from (33), we obtain

$$
\begin{align*}
& \left\|e_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|_{-x} e_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& \leq \frac{1}{1-8 \eta^{2} k}\left(\left\|e_{h}^{n}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2}\right) \tag{34}\\
& +\frac{k}{1-8 \eta^{2} k} \mathcal{T}_{h}^{n+1},
\end{align*}
$$

ACCEPTED MANUSCRIPT

provided that k satisfies (29).
The inequality (34) implies that, for $n \geq 2$,

$$
\begin{align*}
& \left\|e_{h}^{n}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \tag{35}\\
& \leq\left(\frac{1}{1-8 \eta^{2} k}\right)^{n-1}\left(\left\|e_{h}^{1}\right\|_{h}^{2}+k \sum_{i=v, s}\left(D_{1, i}+k \frac{D_{2, i}}{\tau_{i}}\right)\left\|D_{-x} e_{h}^{1}\right\|_{h i+}^{2}+\frac{1}{8 \eta^{2}} \max _{i=2, \ldots, n} \mathcal{T}_{h}^{i}\right) .
\end{align*}
$$

As for e_{h}^{1} it can be shown that the following estimate holds

$$
\left\|e_{h}^{1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \leq \frac{k}{1-8 \eta^{2} k} \mathcal{T}_{h}^{1}
$$

from (35) we deduce

$$
\begin{aligned}
& \left\|e_{h}^{n}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& \left.\leq\left(\frac{1}{1-8 \eta^{2} k}\right)^{n-1} \frac{1+8 \eta^{2} k}{8 \eta^{2}\left(1-8 \eta^{2} k\right)} \max _{i=1, \ldots, n} \mathcal{T}_{h}^{i}\right),
\end{aligned}
$$

which concludes the proof of (28).
We remark that if c, as a function of x, belongs to $C^{3,1}\left[-L_{v}, L_{s}\right]-\{0\}$, then $T_{h}\left(x_{N}\right)=O(h)$ and consequently $\mathcal{T}_{h}^{i}=O(h)$ leading to

$$
\left\|e_{h}^{n}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2}=O(h)+O\left(k^{2}\right) .
$$

If the concentration is known for all time t at $x=-L_{v}$, that is, if we assume a Dirichlet boundary condition at $x=-L_{v}$, then $e_{h}^{n+1}\left(x_{0}\right)=0$. In what concerns the term $e_{h}^{n+1}\left(x_{M}\right)$ of (31) we can prove that

$$
e_{h}^{n+1}\left(x_{M}\right) T_{h, s}^{n+1}\left(x_{M}\right) \leq \sum_{i=v, s} \gamma_{i}^{2}\left\|D_{-x} e_{h}^{n+1}\right\|_{h i+}^{2}+T_{h, s}^{n+1}\left(x_{M}\right)^{2} \sum_{i=v, s} \frac{L_{i}}{4 \gamma_{i}},
$$

where $\gamma_{i}, i=v, s$, denote positive constants. Then (33) is replaced by

$$
\begin{aligned}
& \left(1-4 \eta^{2} k\right)\left\|e_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& \leq\left\|e_{h}^{n}\right\|_{h}^{2}+2 k\left(\epsilon^{2}+\gamma_{v}^{2}-\frac{D_{1, v}}{2}\right)\left\|D_{-x} e_{h}^{n+1}\right\|_{h v+}^{2}+2 k\left(\gamma_{s}^{2}-\frac{D_{1, s}}{2}\right)\left\|D_{-x} e_{h}^{n+1}\right\|_{h s+}^{2} \\
& +k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& +k\left(\left\|T_{h}^{n+1}\right\|_{h}^{2}+\frac{L_{v}}{2 \epsilon^{2}}\left(T_{h, t}^{n+1}\left(x_{N}\right)\right)^{2}+T_{h}^{n+1}\left(x_{M}\right) \frac{1}{2}\left(\frac{L_{v}}{\gamma_{v}^{2}}+\frac{L_{s}}{\gamma_{s}^{2}}\right)\right) .
\end{aligned}
$$

ACCEPTED MANUSCRIPT

Let $\gamma_{i}, i=v, s$ and ϵ be such that

$$
\epsilon^{2}+\gamma_{v}^{2}-\frac{D_{1, v}}{2} \leq 0, \gamma_{s}^{2}-\frac{D_{1, s}}{2} \leq 0
$$

Then, for k satisfying

$$
1-4 \eta^{2} k>0
$$

we obtain

$$
\begin{aligned}
& \left\|e_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& \leq \frac{1}{1-4 \eta^{2} k}\left\|e_{h}^{n}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n+1}\right\|_{h i+}^{2} \\
& +k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n} e^{-\frac{t_{n}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& +\frac{k}{1-4 \eta^{2} k}\left(\left\|T_{h}^{n+1}\right\|_{h}^{2}+\frac{L_{v}}{2 \epsilon^{2}}\left(T_{h, t}^{n+1}\left(x_{N}\right)\right)^{2}+T_{h}^{n+1}\left(x_{M}\right) \frac{1}{2}\left(\frac{L_{v}}{\gamma_{v}^{2}}+\frac{L_{s}}{\gamma_{s}^{2}}\right)\right) .
\end{aligned}
$$

Following the proof of Theorem 3, it can be shown that

$$
\begin{aligned}
& \left\|e_{h}^{n+1}\right\|_{h}^{2}+k \sum_{i=v, s} D_{1, i}\left\|D_{-x} e_{h}^{n+1}\right\|_{h i+}^{2}+k^{2} \sum_{i=v, s} \frac{D_{2, i}}{\tau_{i}}\left\|\sum_{j=1}^{n+1} e^{-\frac{t_{n+1}-t_{j}}{\tau_{i}}} D_{-x} e_{h}^{j}\right\|_{h i+}^{2} \\
& =O\left(k^{2}\right)+O\left(h^{4}\right)+O\left(h^{2}\right)
\end{aligned}
$$

where the term $O\left(h^{2}\right)$ is associated with $\frac{L_{v}}{2 \epsilon^{2}}\left(T_{h, t}^{n+1}\left(x_{N}\right)\right)^{2}$.

4 Numerical results

We first compare numerically the behaviour of the proposed model with the diffusion model considered for instance in [20] and [28], which is defined by the diffusion equations (1), the initial condition (5), the boundary conditions (2), (3) and the transition condition (4). The discretization of the the diffusion equations are obtained using the same numerical method we used for the integro-differential model, with $D_{2, i}=0, i=v, s$.

For the simulation we consider that initially there is no drug in the skin and the concentration in the vehicle is 1 , i.e.,

$$
c(x, 0)=1,-L_{v}<x \leq 0, \quad c(x, 0)=0,0<x<L_{s}
$$

In all numerical experiments, we use the following constant values: $L_{v}=0.2, L_{s}=0.8, D_{v}=0.5$ and $D_{s}=1$. For the boundary condition we consider $r=0.5$.

In the first example we took the parameters $D_{1, v}=0.05, D_{2, v}=0.45, D_{1, s}=0.1$ and $D_{2, s}=0.9$, for the integro-differential model. The results are plotted in Figure 2.

The results considering $D_{1, v}=0.25, D_{2, v}=0.25, D_{1, s}=0.5$ and $D_{2, s}=0.5$ are plotted in Figure 3.

As we expected, in both examples, the propagation velocity of the numerical approximations to the solution of the integro-differential model is lower.

ACCEPTED MANUSCRIPT

Figure 2: Concentration using the differential model (D) and the integro-differential model (ID), $D_{1, v}=0.05, D_{2, v}=0.45, D_{1, s}=0.1, D_{2, s}=0.9, \tau_{v}=0.005, \tau_{s}=0.005$, with $k=0.00001$ and $h=0.0125$.

Figure 3: Concentration using the differential model (D) and the integro-differential model (ID), $D_{1, v}=0.25, D_{2, v}=0.25, D_{1, s}=0.5, D_{2, s}=0.5, \tau_{v}=0.005, \tau_{s}=0.005, k=0.00001$ and $h=0.0125$.

Figure 4: Concentration using the differential model (D) and the integro-differential model (I-D), $\tau_{v}=0.005, \tau_{s}=0.005(\mathrm{left}), \tau_{v}=0.00005, \tau_{s}=0.00005(\mathrm{right})$ with $D_{1, v}=0.25, D_{2, v}=0.25$, $D_{1, s}=0.5, D_{2, s}=0.5, k=0.0001, h=0.0001$ and $T=0.1$.

ACCEPTED MANUSCRIPT

Figure 5: Time versus flux at the point $x=L_{s}, D_{1, v}=0.25, D_{2, v}=0.25, D_{1, s}=0.5, D_{2, s}=0.5$, $\tau_{v}=0.005, \tau_{s}=0.005, k=0.00001$ and $h=0.0125$.

In Figure 4 the values of τ_{v} and τ_{s} change. We observe that for smaller values the two curves are closer.

Figure 5 shows the flux along the time at the extreme point $x=L_{s}$.
In Tables 1 and 2, the rate of convergence is computed using the numerical solutions corresponding to mesh-sizes h and $h / 2$. The error is defined by the right hand side of (28). The error is computed using a numerical solution obtained with a much finer mesh, taking $h=9.766 e-05$ and $k=1.000 e-08$, since the exact solution is not available. In Table 1 we consider $T=0.01$ and, in Table 2, $T=0.1$.

h	N_{v}	N_{s}	error	rate
$1.000 \mathrm{e}-01$	2	8	$7.896 \mathrm{e}-04$	2.66
$5.000 \mathrm{e}-02$	4	16	$1.247 \mathrm{e}-04$	1.72
$2.500 \mathrm{e}-02$	8	32	$3.790 \mathrm{e}-05$	1.93
$1.250 \mathrm{e}-02$	16	64	$9.969 \mathrm{e}-06$	2.01
$6.250 \mathrm{e}-03$	32	128	$2.483 \mathrm{e}-06$	2.03
$3.125 \mathrm{e}-03$	64	256	$6.064 \mathrm{e}-07$	2.07
$1.563 \mathrm{e}-03$	128	512	$1.446 \mathrm{e}-07$	-

Table 1: Rate of convergence, $D_{1, v}=0.25, D_{2, v}=0.25, D_{1, s}=0.5, D_{2, s}=0.5, \tau_{v}=0.01$, $\tau_{s}=0.01, k=1 e-08, T=0.01$.

Table 3 shows the variation of the rate of convergence with k.
Theorem 3 establishes that the convergence order is equal to one with respect to the time step size and $\frac{1}{2}$ with respect to space step size. The numerical estimates for the rate of convergence presented in Tables 1,2 are bigger than the rate of convergence, with respect to the space step size, theoretically established in Theorem 3. From Table 3, we conclude that the numerical estimates confirm the theoretical estimate given in the previous result for the rate of convergence with respect to the time step size.

ACCEPTED MANUSCRIPT

h	N_{v}	N_{s}	error	rate
$1.000 \mathrm{e}-01$	2	8	$6.493 \mathrm{e}-04$	1.99
$5.000 \mathrm{e}-02$	4	16	$1.629 \mathrm{e}-04$	2.02
$2.500 \mathrm{e}-02$	8	32	$4.023 \mathrm{e}-05$	1.99
$1.250 \mathrm{e}-02$	1.6	64	$1.011 \mathrm{e}-05$	1.95
$6.250 \mathrm{e}-03$	32	128	$2.618 \mathrm{e}-06$	1.88
$3.125 \mathrm{e}-03$	64	256	$7.122 \mathrm{e}-07$	1.76
$1.563 \mathrm{e}-03$	128	512	$2.101 \mathrm{e}-07$	-

Table 2: Rate of convergence, $D_{1, v}=0.25, D_{2, v}=0.25, D_{1, s}=0.5, D_{2, s}=0.5, \tau_{v}=0.01$, $\tau_{s}=0.01, k=1 e-08, T=0.1$.

k	error	rate
$1.000 \mathrm{e}-04$	$3.909 \mathrm{e}-04$	1.82
$5.000 \mathrm{e}-05$	$1.104 \mathrm{e}-04$	1.91
$2.500 \mathrm{e}-05$	$2.938 \mathrm{e}-05$	1.95
$1.250 \mathrm{e}-05$	$7.580 \mathrm{e}-06$	1.98
$6.250 \mathrm{e}-06$	$1.923 \mathrm{e}-06$	1.99
$3.125 \mathrm{e}-06$	$4.831 \mathrm{e}-07$	2.00
$1.563 \mathrm{e}-06$	$1.205 \mathrm{e}-07$	-

Table 3: Rate of convergence, $D_{1, v}=0.25, D_{2, v}=0.25, D_{1, s}=0.5, D_{2, s}=0.5, \tau_{v}=0.01$, $\tau_{s}=0.01, h=6.250 e-03, T=0.1$.

5 Conclusions

The coupled vehicle-skin system is usually modeled by using the classical diffusion equation. The numerical results obtained from such a model lead to concentration profiles which do not agree with experimental data. In fact experimental data profiles present a delay effect. In order to introduce the delay effect in the diffusion phenomenon an integro-differential model was introduced in this paper.

The integro-differential model is established replacing Fick's law for the flux by a new law where a delay parameter τ is introduced. Of course when $\tau \rightarrow 0$, the new law for the flux coincides with Fick's law and consequently the new model coincides with the classical diffusion model.

The stability of the integro-differential model was established as a consequence of energy estimates. These estimates enable us to characterize the qualitative behaviour of the drug concentration in space and in time.

Numerical methods for drug concentrations were introduced and their stability properties were established. The approximations obtained with these methods have the same qualitative properties of the drug concentrations defined by the integro-differential model. In fact the results proved for the discrete case can be seen as discretizations of the continuous counterpart. The numerical experiments illustrate the delay effect of the new model.

The convergence properties of the numerical methods were analyzed and the numerical results illustrate the proved convergence results.

ACCEPTED MANUSCRIPT

References

[1] M. Ansari, M. Kazemipour, M. Aklamli, The study of drug permeation though natural membranes, International Journal of Pharmaceutics, 327, 6-11, 2006.
[2] A. Araújo, J.R. Branco, J.A. Ferreira, On the stability of a class of splitting methods for integro-differential equations, to appear in Applied Numerical Mathematics.
[3] A. Araújo, J.A. Ferreira, P. de Oliveira, Qualitative behaviour of numerical traveling waves solutions for reaction diffusion equations with memory, Applicable Analysis, 84, 1231-1246, 2005.
[4] A. Araújo, J.A. Ferreira, P. de Oliveira, The effect of memory terms in the qualitative behaviour of the solution of the diffusion equations, Journal of Computational Mathematics, 91-102, 2006.
[5] S. Barbeiro, J.A. Ferreira, Integro-differential models for percutaneous drug absorption, International Journal of Computer Mathematics, 84, 451-467, 2007.
[6] D.L. Bernik, D. Zubiri, ME. Monge, R.M. Negri, New kinetic model of drug release from swollen gels under non-skin conditions, Colloids and Surfaces A: Physicochemical Engineering Aspects, 273, 165-173, 2006.
[7] J.R. Branco, J.A. Ferreira, P. de Oliveira, Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation, Applied Numerical Mathematics, 57, 89-102, 2007.
[8] C. Cattaneo, Sulla condizione de calore, Atti del Seminario Matematico e Fisico dell' Universitá de Modena,3, 3-21, 1948.
[9] D.S. Cohen, A. B. White Jr., T. P. Witelski, Shock Formation in a Multi-Dimensional Viscoelastic Diffusive System, SIAM Journal on Applied Mathematics, 55, 348-368, 1995.
[10] C.A. Coutts-Lendon, N.A. Wright, E.V. Mieso, J.L. Koenig, The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems, Journal of Controlled Release, 93, 223-248, 2003.
[11] D.A. Edwards, D.S. Cohen, An unusual moving boundary condition arising in anomalous diffusion problems, SIAM Journal on Appled Mathematics, 55, 662-676, 1995.
[12] D.A. Edwards, Constant front speed in weakly diffusive non-Fickian systems, SIAM Journal on Appled Mathematics, 55, 1039-1058, 1995.
[13] D.A. Edwards, A mathematical model for trapping skinning in polymers, Studies in Applied Mathematics, 99, 49-80, 1997.
[14] D.A. Edwards, Skinning during desorption of polymers: An asymptotic analysis, SIAM Journal on Appled Mathematics, 59, 1134-1155, 1999.
[15] D.A. Edwards, A spatially nonlocal model for polymer-penetrant diffusion, Journal of Applied Mathematics and Physics, 52, 254-288, 2001.

ACCEPTED MANUSCRIPT

[16] D.A. Edwards, R. A. Cairncross, Desorption overshoot in polymer-penetrant systems: Asymptotic and computational results, SIAM Journal on Applied Mathematics, 63, 98115, 2002.
[17] D.A. Edwards, A spatially nonlocal model for polymer desorption, Journal of Engineering Mathematics, 53, 221-238, 2005.
[18] S. Fedotov, Traveling waves in a reaction-diffusion system: diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinectics, Physical Review E, 4, 5143-5145, 1998.
[19] S. Fedotov, Nonuniform reaction rate distribution for the generalized Fisher equation: ignition ahead of the reaction front, Physical Review E, 4, 4958-4961, 1998.
[20] M. Fernandes, L. Simon, N.W. Loney, Mathematical modeling of transdermal drug-delivery systems: analysis and applications, Journal of Membrane Science, 26, 184-192, 2005.
[21] J.A. Ferreira, P. de Oliveira, Memory effects and random walks in reaction-transport systems, Applicable Analysis, 86, 99-118, 2007.
[22] K. George, A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption, BioMedical Engineering OnLine, 4:40, 15 pages, 2005.
[23] K. George, K. Kubota, E.H. Twizell, A two-dimensional mathematical model for percutaneous drug absorption, BioMedical Engineering OnLine, 3:18, 13 pages, 2004.
[24] C.K. Hayes, D.S. Cohen, The evolution of steep fronts in non-Fickian polymer-penetrant systems, J. Poly. Sci. B, 30, 145-161, 1992.
[25] A.L. Iordanskii, M. M. Feldstein, V.S. Markin, J.Hadgraft, N.A. Plate, Modeling of the drug delivery from a hydrophilic transdermal therapeutic system across polymer membrane, European Journal of Pharmaceutics and Biopharmaceutics, 49, 287-293, 2000.
[26] K. Yamaguchi, T. Mitsui, Y. Aso, K. Sugibayashi, Analysis of in vitro skin permeation of 22-oxacalcitriol from ointments based on a two- or three-layer diffusion model considering diffusivity in a vehicle, International Journal of Pharmaceutics, 336(2), 310-318, 2007.
[27] F. Yamashita, M. Hashida, Mechanistic and empirical modelin of skin permeation of drugs, Advanced Drug Delivery Reviews, 55, 1185-1199, 2003.
[28] K. Kubota, F. Dey, S.A. Matar, E.H. Twizell, A repeated-dose model of percutaneous drug absorption, Applied Mathematical Modelling, 26, 529-544, 2002.
[29] D.Joseph, L. Preziosi, Heat waves, Reviews of Modern Physics, 61, 41-73, 1989.
[30] D. van der Merve, J.D.Brook, R. Gerhring, R.E, Baynes, N.A. Monteiro-Riviere, J.E. Riviere, A physiological based pharmacokinetic model for organophostate dermal absorption, Toxicological Sciences, 89, 118-204, 2006.
[31] A. Mourgues, L. Michele, C. Charmette, J. Sanchez, G. Marti-Mestres, Ph. Gramain, Desalination, 127-129, 2006.
[32] E.M. Ouriemchi, T.P. Ghosh, J.M. Vergnaud, Transdermal drug transfer from a polymer device: study of the polymer and the process, Polymer Testing, 19, 889-897, 2000.

ACCEPTED MANUSCRIPT

[33] E.M. Ouriemchi, J.M. Vergnaud, Process of drug transfer with three different polymeric systems with transdermal drug delivery, Computational and Theoretical Polymer Science, 10, 391-401, 2000.
[34] S. Patachia, A.J.M. Valente, C. Baciu, Effect of non-associative electrolyte solutions on the behaviour of poly(vinyl alcohol)-based hydrogels, European Polymer Journal, 43, 460-467, 2007.
[35] N. Peppas, R. Langer, Origins and development of biomedical engineering within chemical engineering, Americal Institute of Chemical Engineering, 50, 536-546, 2004.
[36] F. Tirnaksiz, Z. Yuce, Development of transdermal system containing nicotine by using sustained release dosage design, Il Farmaco, 60, 763-770, 2005.
[37] L. Serra, J. Doménech, N.A. Peppas, Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrohels, Biomaterials, 27, 54405451, 2006.
[38] L. Simon, Repeated applications of a transdermal patch: analytical solution and optimal control of delivery rate,Mathematical Bioscience, 209, 593-607, 2007.
[39] L. Simon,N. W. LOney, An analytical solution for percutaneous drug absorption: applications and removal of vehicle, Mathematical Bioscience, 197, 119-139, 2005.
[40] P. Vernotte, La véritable de équation de la chaleur, Comptes rendus de l'Académie des sciences, 247, 1958.

[^0]: *This work was partially supported by Project:PTDC/MAT/74548/2006
 ${ }^{\dagger}$ email:silvia@mat.uc.pt,webpage-http://www.mat.uc.pt/~silvia
 ${ }^{\ddagger}$ email:ferreira@mat.uc.pt, webpage-http://www.mat.uc.pt/~ferreira

