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1. Introduction

For ] a Hermitian involutive matrix, that is, J* = J, J2 = I,,, we consider C" endowed with an indef-
inite inner product [.,.] defined by [£, n] = 1*J¢, £, € C". Let M,, denote the algebra of n x n complex
matrices. A matrix A € Mj, is said to be J-Hermitian if A = A¥, where A* = JA*] denotes the J-adjoint of
A. A matrix U € My, is said to be J-unitary if U¥U = I,,. For a Hermitian involutive matrix J of signature
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(r,n—r1),0 < r < n, the J-unitary matrices form a locally compact group Uy ,_r, called the J-unitary
group. The J-Rayleigh ratio of a J-Hermitian matrix A € Mj, is the real valued function defined by

XJAx
TR xX*Jx # 0. (1)

Rx) =

If] = I, then (1) reduces to the Rayleigh ratio of a Hermitian matrix. The set of all the possible values
for a nonscalar J-Hermitian matrix is unbounded, since the set {R;(x) : x € C", x*Jx + 0} is neither lower
bounded nor upper bounded. However, the set of all values of the J-Rayleigh ratio may be semibounded
for some classes of J-Hermitian matrices when we restrict its domain as X+ = {x € C",x*Jx > 0} or
X~ ={xeC" x¥x <0}.

In [1], Ando presented a Lowner inequality of indefinite type, and in [2,11] indefinite versions of
well known matrix inequalities were given. These inequalities were obtained in the context of the
theory of numerical ranges of operators in spaces with an indefinite inner product, a subject which is
being investigated by some authors (see, e.g. [5,6,7,10,12] and the references therein).

This note is organized as follows. In Section 2, an extension of the classical theory of Courant
and Fischer on the Rayleigh ratio of Hermitian matrices [3,4,8,9,13,14] is obtained. In Section 3, an
application to Hamiltonian dynamics is presented.

2. Courant-Fischer theory for Krein spaces
In [11], the following result was proved.

Lemma 2.1. Let A € My, be J-Hermitian. The set {R;(x) : x € X} is lower bounded (upper bounded) if and
only if the set {R;(x) : x € X~} is upper bounded (lower bounded). If the former is lower bounded with the
greatest lower bound L and the latter is upper bounded with the least upper bound L,, then these optimal
values satisfy L, < Ly.

Necessary and sufficient conditions for a J-Hermitian matrix A to satisfy the above semibound-
edness were provided in [11]. To state them, we consider the generalized eigenspace X, = {x € C" :
(A — Alp)"x = 0}, and recall that the spectrum of a J-Hermitian matrix is symmetric relatively to the
real axis. The following conditions (I) or (II) are necessary for A to satisfy the semiboundedness.

(I) The spectrum o (A) of Ais real and (A — Alp)x = 0,VA € 6 (A),VX € X;;
(II) The spectrum of A is real, there exists a unique Ag € o (A) such that Ax = Ax, VA € o (A)\{ro}, VX €
X;.,and (A — roln)?x = 0,¥X € X;,,.

Throughout, we use the notation ojo (A) = {Ag}inthe cases of existence of the exceptional eigenvalue
A0, otherwise we write 6}0 A) = 9.

If (I) occurs, there exist a set of eigenvectors {uy, ..., Ur, Ury1,...,Un} Of A such that Au; = oju;(j =
1,...,n), where u]?*]uj =1G=1,...,n, uji*juj =-1=r+1,...,n), and upJu; = 0(1 < k #j < n), and
so A is J-unitarily diagonalizable. We assume thatoy > oy 2> --- Z orand ey 1 2 arp = - 2 an. IfA
is nonscalar, then min{ar, an} # max{aq, @r,1}. Denoting by a]+(A)(aJ‘ (A)) the set of eigenvalues of A,
A € R, such that Ax = rx for some x € X+ (X ™), we have

U]+(A) = {al,...,ar},af(A) = {arq1,- .- an}

The set {R;(x) : x € X*} is semibounded if and only if one of the conditions a; < an or aryq < or is
satisfied. If one of these conditions is satisfied, the eigenvalues of A are said to not interlace. Otherwise,
they are said to interlace.

If (I) occurs, the condition for the semiboundedness is more complicated. Under the condition (II),
the linear operator A restricted to X,,, is represented as the direct sum of an operator matrix

rols +Aq —Aq
Aq rols — Aq
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acting on a Krein space of type (s, s) and a scalar operator Aols, 45, acting on a Krein apace of type (s1,$2),
where A; is a positive, or negative, Hermitian matrix. Thus, U]+ (A)\{rg} is the set of all » € R such that
Ax = x for some x € X*(x € X7), and x*Jy = 0, for y € X,,,. Let aJ+(A)\{ko} ={a1,...,0r—s—s;} (A)\
{20} = {@r4stsy+1, - - -»an}, be decreasingly ordered. The set cr]+ A (a]’ (A)) contains Aq if and only if
s1 2152 2 1.

If cr]+ A)\{ro} # ¥ and o (A\{ro} # ¥, the set {R;(x) : x € X*} is semibounded if and only if one of
the conditions (I') or (II') is satisfied:

I') @1 < A¢ < ap and the Hermitian matrix A; is negative definite.
A arisys,+1 < Ao < ar—s—s; and the Hermitian matrix A; is positive definite.

The eigenvalues of A are said to not interlace if one of the above conditions (I') or (II') is satisfyed.
Otherwise, they are said to interlace.

lfrrj+ A)\{ro} =0and o (A)\{1o} = ¥, then the above conditions are relaxed as —A1, or Ay, is positive
definite.

lfa]+ A)\{ro} #+ ¥ and o (A)\{ro} = ¥, then the conditions (I'), (II') are relaxed as the following:

(I"y a1 < A and the Hermitian matrix A; is negative definite.
(I') 29 < ar—s—s, and the Hermitian matrix Ay is positive definite.

If o (A)\{*0} # ¥ and JJ+(A)\{AO} =0, then:

(l ) Ao < an and the Hermitian matrix A; is negative definite.
a’ *o < drysys,+1 and the Hermitian matrix A; is positive definite.

For an arbitrary linear subspace Sof C", let St = {x € S : x*Jx > 0} and S~ = {x € S : x*Jx < O}.
The following results were obtained in [2,11].

Theorem 2.1. Let] = I & —I;_r,0 < r < n,andletA € My beJ-Hermitian with noninterlacing eigenvalues.
(Ip) The case ajo(A) ={. Let a]+ A) ={oq,...,ar} and o (A) = {arq1,...,an} be decreasingly ordered.
The following holds:

(@) If an > aq, then maxysj—1 X*JAX = a1, MiNysjx—_1 X*JAX = an, and conversely.
(b) If ar > a1, then maxysjy—_1 X*JAX = a1, MiNys 1 X*JAX = ar,
and conversely.

(I') The case UIO(A) = {Xg}. Let afr(A)\{AO} = {a1,.. s ar—s—s;}, 0 (A\[ho} = {erysisy 41, an} be
decreasingly ordered. Let the multiplicities of the eigenvalue g € afr(A) and g € o (A) be s1 and s,
respectively. Let the pure part of A on X;,, be acting on a Krein space of type (s,s). The following holds:

@) Letan = rg = 1.

If sy > 1, then maxy«x—1X*JAx = Ag.

Ifs1 = 0, then Ry(X) < supy.j,_1y*JAy = %o, ¥x € X*.

If sy > 1, then mingsjy—_1 (—X*JAx) = Ag.

Isz =0, then infy*]y:,1 (—y*JAy) =Ag < RJ(X),VX eX™.
(D) Letar_s—s; 2 ho 2 Grpsysy+1-

If sy > 1, then maXy«jx—_1(—X*JAX) = Ag.

Ifsy =0, then Ry(x) < supy«p,__1(=y*JAY) = rg,¥x € X~.

If sy > 1, then minysjy_1X*JAXx = 1.

Ifs1 =0, then infy*]yﬂy*jAy =Xl < R](X),VX e Xt.
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Next we consider the J-Rayleigh ratio of a vector x ranging over an arbitrary (n — i + 1)- dimensional
subspace of C", and we extend Theorem 2.1 to subspaces. We investigate how far this J-Rayleigh ratio
is from the bounds obtained in the above mentioned theorem.

Theorem 2.2. Let | =1, ® —I,_r,0 <1 < n, and let A € My, be a J-unitarily diagonalizable J-Hermitian
matrix with noninterlacing eigenvalues satisfying an > oq Or ar 2 opyq.

(@) Ifan > a1 Or ar > ary 1, then the sets {Rj(x) : x € ST} and {R;(x) : x € S™} are closed for an arbitrary
linear subspace S of C".

(b) If{uq, ..., ur, Ury1, ..., un} is aj-orthonormal system of eigenvectors of A with associated eigenvalues
a1, 0r, Oy 1, - - - on and S is the linear subspace spanned by {u;,, ..., U, Wi, ..., U;,}, then the
sets {Ry(x) : x € St} and {R;(x) : x € S~} are closed under the condition an 2> ay O ar 2 aryq.

Proof. (a) Let o > 1 and consider a sequence of vectors X, in S such that xj, ] xm = —1 and

Ry Xm) = —xp JAXm — Ro 2 an (2)

as m — oo. We observe that the last inequality in (2) is a consequence of Theorem 2.1 (a). Expressing
Xm in the J-orthonormal basis {uy, ..., Ur, Ury1,..., U} S Xm = ZJ 1a (m)uJ, we claim that the set

{a;"“ eC:m=1,2,3,...) (3)

is bounded for each 1 < j < n. Assuming that the clalm is proved, by taking a subsequence of (3) we
may conclude that there exists a vector xo, = ZJ’-‘:] ; uJ € S satisfying |a(m) (oo)| — 0asm — oo.
Thus, the vector X, € S satisfies x*_Jxoc = —1 and —x_JAxo = Ro.

We prove the claim by contradiction. Indeed, suppose that (3) is unbounded and assume that the
sequence (mp);‘*‘:1 satisfies

> o = 3l

k=r+1 k=1

as p — oo. Then, we have

n r
2
_ p) (mp)
X JAXmy = Y ak‘ak ’ ak’ak ‘
k=r+1 k=1
an+ocn ) ")‘ ak p)’

= an + (on — a1)Z

mp)
ak ‘

as p — oo, which contradicts (2). Thus, (3) is bounded. The case o; > «r, 1 is treated similarly.
(b) In this case, A(S) c S and by considering the restriction of A to S, we may assume that S = C".
Let an = @1 > @rOT oy 1 > ap = . We show that under the condition o, > oy, we necessarily have

R :x € XT} = (—o0,1], {RX) : X € X7} = [an, 00).

In fact, for w(t) = (cosh tu; + sinh tu, 1) we get w(t)*Jw(t) = 1 and
WO JAW() = aq — (41 — ) sinh? ¢,

(0 < t < 00). For v(t,s) = (sinh tuy 4 cosh t(v/su; 1 4 /T — sup)) we find v(t,s)*Jv(t,s) = —1 and
V(t,8)*JAV(t,s) = —(1 — S)ag — (41 + (ar4q — o) SiNh? 1),

(0 <t < 00,0 < s < 1). Thus, we obtain the desired relation. [
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We treat three classes of J-Hermitian matrices with noninterlacing eigenvalues:

(Ip): O‘JO(A) =@and ap > o OT o > Qr 1.

aIp: (J‘JO(A) = @, Ais nonscalar and o = o OF oy = @p 1.

(I1y): 0(A) {*0} and the pure part of A on X;,, acts on a Krein space of type (s,s) withs > 1, being
> 0and s, > 0 the multiplicities of A¢ € a*(A) and xg € o "~ (A), respectively.

Sometimes, it is convenient to consider the class (I) as a degenerate class of (IIy) with A\g = an = aq
or g = ar = ar41,5 = 0,51 > 1,55 > 1. We represent by (II') the union of (I;) and (Ily).

Theorem 2.3. For] =1 @ —I,_r,0 < 1 < n,letA € My, be aJ-Hermitian matrix with noninterlacing eigen-
values. Let S;(1 < i < n) be an arbitrary (n — i + 1)-dimensional linear subspace of C".

(Ip) The case ojo(A) =¢. Let o]+(A) ={o1,..arh o (A) = {ari1,...,an} be decreasingly ordered. The
following holds:

(a) Letap > aq.
Ifi <n-—r,then mlnxesf Ry(%) < ap_j;1, and maxg, min, s Rj(%) = ap_jt1.
Ifi < r, then maxxesr R] () 2 «; and ming, MaXy g+ Rix) = a.

(b) Let o > aryq.
Ifi <r,then m1nx€5+ Ry(%) < ar_jy1 and maxs, mmxes+ Rix) =ar_j11.

Ifi <n—r, then max, s~ Rj(x) 2 o and ming; maXx, - Rj(X) = ap.
1 1

(l'y The case UO(A) = {rg} or UJO(A) =¢ and (7]+(A) Noy (A) = {ro}. Let (r]+(A)\{A0} ={ay,---,
or_s—s;} (A)\ AO} {Cr4s4s,+1, - - - »an}, be decreasingly ordered. Let A restricted to X, be the direct

sum ofx0151+52 on a Krein space of type (s1,S2) and a pure nondiagonalizable part on a Krein space of type
(s,5). The following holds:

@) Letan = rg = 7.
Ifs+s,+1<i<n-r,then infxesf Ry(%) < an_itsys,+1, and maxs, infxes; Ry%) = an_iysysy41-
Ifs>T1ands; +1<i<$sy+s, then mfxesi-R](x) = ), and sups, ianGs;RJ(X) =Ag.
Ifsy > 1and 1 < i< sy, then mlnxes Rj(x) = Ao, and maxs, minxes Rj(x) = Aq.
Ifs+s1+1<i<r, then SUPycs+ Rj(x) 2 aj_s_s,, and ming, SUPycs+ Ry%) = aj_s_s,-
Ifs>1andsy; +1<i<sy+s, then supX€5+R](x) = Ao, and inf supX€S+R](x) = Ap.
Ifs; 2 1and 1 <i < sq, then maxxeSrR](x) = X0, and ming, maxxeS;R](x) =Ag.

(b') Let Ur_s—s; = Ao = Or 4545541+
Ifs+s1+1<i<r, then inf,_ s Rj%) < ar_iy1, and maxs, infx€5+ Rix) < ar_iy1-
Ifs>1andsy +1<i<sq+S,then 1nfxES+Rj(x) = o, and sups, mfxes+R](x) = Ap.
Ifsy > 1and1 <i< sq,then m1nxeS+Rj(x) = X0, and maxs, m1nxeS+R](x) =Ap.
Ifs+s,+1<i<n-r,then SUPyes- Ry(%) > ar4; and ming, SUPyes- Ryx) = api-
Ifs>1andsy; +1 <i<sy+5s, then SUPyes; Ry (%) = rg, and infs, SUPyes; Rj(x) = 2.
Ifso > 1and1 < i< sy, then MaXys- Rj(x) = Ao, and ming, MaXy s R](x) =Ap.

Proof. (Ip) The case O'JO(A) = . Let {uq,...,un} be a standard J-orthonormal system of eigenvectors of
A associated with the eigenvalues «y, .. .,an. We prove (a). Suppose that i < n —r. Let T; be the linear
space spanned by the set of vectors {u,_j,1,...,un}, where r +1 < n — i + 1. There exists a nonzero
vector u € C" belonging to S; and T;, because dimS; + dimT; = (n —i+1)+i=n+1.Since u € T, it
follows that there exist aj € C,j =1,...,i, such thatu = }>;, ;. gju;. Since i < n —r, all the vectors
Un_it1,- - -» Un have negative J-norm. Therefore, u*Ju < 0. We clearly have
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n a2 n a2

WAL =D 9191 Dk %19l
- n - n

uju — Y ken_is11aj1? Dken_it11aj1?

Thus, since we are assuming that an > o

SRW < opjyr-
Recalling that u also belongs to S;, from Lemma 2.2 (ly) it follows that

mf Rj(x) Rj%) < an_isa

and by Theorem 2.1 the greatest lower bound of R;(x) is attained at some vector x € S;".
To prove that maxs, min,g- Rj(x) = ap_j 1, it suffices to show the existence of an (n — i + 1)-dimen-
1
sional subspace such that min R;(x), when x ranges over all nonzero vectors of this subspace, is equal
to ap_j, 1. Consider the linear space V; spanned by the vectors uy, ..., ur, Ur41,...,Up_j;1. Foranyu e V;
such that u*Ju < 0, there are complex numbers cy, ..., ¢,_j,1 such that u= Z" i1 crug. We have

uJAu Z Ckckakjk >
Ty k 1
wju Zn * Ckcldk

Hence minyey, Ry(1) = ap_j;1, being the minimum attained when ¢;,_j 1 #0 and ¢c; =y =--- =
Cn_iy+2 = 0. That is, the minimizing vector is an eigenvector of A associated with a;_;, 1.

Now, leti < r. Considering the i-dimensional linear space T; spanned by u4, . . ., u;, we may conclude
that there exists a vector u' € C" belonging simultaneously to S; and T;, because dimS; + dimT; =
nm—r+i)+i=n+1.Sincei < r,wehaveu’ = ZJ 14 u],fora notallzero(; =1,...,0.Sou*Ju’ > 0,

because all the vectors uy, ..., u; have positive J-norm. We ea51ly find

On—i+1-

i 112

u™JAu Zj:l a]|aj|
= 7 .

u/*]u/ Zj:l |aj{|2

Hence, under the assumption o > a1, we obtain ¢; < Rj(t) < «y. Recalling that v’ belongs to S;, from
Theorem 2.1 (Iy) it follows that

sup R](x) R whH =

xeS

By Theorem 2.2, it can be shown that the minimum is attained at a certain x; € Sf .
The other statement is proved similarly.

(b) The proof follows analogous steps to (a).

(II'y The proof is similar to that of (I). [

In the next theorem we denote by R;”B (x) the J-Rayleigh ratio associated with A + B.

Proposition 24. Let | =1, ® —I;,_r,0 <1 < n, and let A,B € My, be J-unitarily diagonalizable J-Hermi-
tian matrices with noninterlacing eigenvalues, a1 > --- 2 oy € rrj+(/-\),(xr+1 >...>ape o Ay and g1 >

> pre afr(B), Bri1 2 -+ 2 Bn € of (B). Let S; be an (n — i + 1)-dimensional linear subspace of C".

(a) Let ap > a7 and By > B1. Then A + B is J-unitarily diagonalizable and the following holds.
Ifn—i > r, then maxs, min, - RA+B(x) > an_iy1 + Bn.
Ifi <r, then ming, MaX, g+ R; A+B x) < aj+ Bi1.

(b) Let oy > ary1 and Br > .3r+1 Then A + B is J-unitarily diagonalizable and the following holds.
Ifi < r, then maxs, minxes+ RA+B(X) = or_ip1 + Br.

Ifr +1 < n, then ming, max, g R}“+B(x) < aryi+ Bryt-
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Proof. (a) Let ap > 1 and By > .
For any x,y such that x*Jx = 1,y*Jy = —1 we get

=y J(A+B)y = —y*JAy — y*JBYy = an + pn
> a1 + B1 = x*JAX + x*]Bx = x*J(A + B)x

and so the J-Hermitian matrix A + B is J-unitarily diagonalizable.
Ifn—i > r, by Theorem 2.3 (a) we have

. X*J(A+ B)x . X*JAx
max min M > max min J
Si xeS; xX*Jx Si xeS; X*Jx

+ Bn = on_iy1 + Bn.

Analogously, ifi <r

min max R}“+B(x) <o+ b1
Si xeSt

and (a) follows. The proof of (b) is similar. []
Fori=1,...,n,1;(X) denotes the eigenvalues of X € M;, decreasingly ordered.

Theorem 2.5. Suppose that A,B are J-Hermitian matrices with noninterlacing eigenvalues. Let afr(A)\

{ro} ={at,. .., ar—s—5; ], Uf(A)\{)LO} = {“r+s+52+1v ...,an} and Uf(B)\{VO} ={B1, - Br—t—t1 }» Uf(B)\
{vo} = {Br+t+ty+1, - - -» Bn}, be decreasingly ordered and satisfy
on > a1, Pn > P1.
Then all the eigenvalues of A + B are real and the following inequalities hold
n—r+k n—r+k
Yo HA+B < Y KA +NB), k=11
j=n-r+1 j=n-r+1

and

k—r n
Y AA+B+ > 2A+B)
j=1 j=n-r+1
k—r n
<Y A +45BY+ Y KA +4B), k=r+1,...,n

j=1 Jj=n—-r+1
Proof. To prove the theorem, we recall the extremal representation obtained in Theorem 3.1 of [2].
Suppose that A is a J-diagonalizable J-Hermitian matrix with noninterlacing eigenvaluesay > -+ = ar
in afr(A) and aryq 2 -+ 2 an inoy (A) satisfying an > o1.

Let k be an arbitrary natural number satisfying 1 < k < n. Then there exists a J-orthonormal system
of vectors {uq,...,Ur,Ur 1, ..., U} such that the form

r k
FeAsuq, ... Up, Ui, ..., Ug) == Zu}‘]AuJ- -y u?JAu;
j=1 j=r+1
attains the maximum A, 1 (A) + - - - + Ap_r4k(A) at this system when k < r. If k > r, the maximum is
replaced by 11 (A) + -+ + A_r(A) + (hry1(A) + - + An(A).
Next we use a perturbative method. We consider the case chO (A) + @ or a]o (B) # @. The J-Hermitian
matrix

A+ 1 -1
1 r-—1)
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which is nondiagonalizable under a J-unitary transformation, is approximated by the J-Hermitian
matrix

rMm+1+e -1
1 rMm—1-¢€¢/)’

where € > 0, which is J-unitarily diagonalizable. We also perturbe the eigenvalues of A and B so that
they satisfy the condition (I), having in mind that the eigenvalues of a matrix depend continuously on
its entries. So we may assume that A, B are J-unitarily diagonalizable and satisfy o, > o1 and g, > 1.
Then from the inequality

< max Fe(A uq,... Ur Upyq, ..., Ug) + Max FeBsug, ..., Ur, Uryq, ..., Uy)
Ug,...,Ug Ug,..,Ug
the desired inequality follows. []

Theorem 2.6. Let | = I & —I;,_+,0 <1 < n, and let A € My be a J-Hermitian matrix with noninterlacing
eigenvalues. Then any principal submatrix A’ of A has real spectrum and its eigenvalues do not interlace.
Moreover, if A satisfies the condition (I') or (II') and A’ acts on a Krein space of type (s,n — i+ 1 —s), then
the following inequalities hold:

)‘r—l’+1—t(A) 2 )\s—t(A/)
fors—t>1,r—i+1—-t>1,and
Asi14t @A) 2 ApyiptA),

fors+1+t<n—i+1,r+i+t<n.

Proof. By using a perturbative method, we may assume that A is J-unitarily diagonalizable and satisfies
ar > a1 As an operator defined on a nondegenerate subspace of C", the submatrix A’ of A is J-
Hermitian. Since the J-Rayleigh ratio relative to A’ satisfies the semiboundedness, the eigenvalues of A’
are real. The J-Rayleigh ratio relative to A’ is a restriction of the J-Rayleigh ratio of A, so the inequalities
rs(A) = Ar(A) and As 1 (A") < Ary1(A) hold. Thus, the eigenvalues of A’ do not interlace.

Letwy,...,Ws—t,Ws 1, ..., Wy_i,1 be theJ-orthonormal eigenvectors of A’ associated with the eigen-
valuesii(A), ..., As—t(A), A1 (A)), ..., kn_iy1 (A), respectively. Consider the (n — i + 1 — t)-dimensional
linear subspace S; generated by these eigenvectors. By Theorem 2.3 (Iy), we have

As—t(A) =minRy(X) < Aryq_i¢(A).
xeS;
The theorem easily follows using similar arguments.

Theorem 2.7. If A is a J-Hermitian matrix, then R;(x) for any x € X*(x € X™) has a stationary value with
respect to X at an eigenvector xo associated with a real eigenvalue g, XjJXo = 1(x§Jxo = —1) and Ry(xo) =
.

Proof. Let x = 9ix +i3x € X, 91X = (¢1,....&n)T = Y 4_; &el and 3x = (n1,...,nn)" = Yf_; nkel, be-
ing {eq,...,en} the standard basis of C". Viewing R;(x) as areal valued function of the 2n-independent
real variables &1,...,& and #q,...,7n, we write Rj(x) = Rj(é1,...,&n, n1,...,nn). Consider the bilinear
form

D&, .. Enn, - M) = XJAX — TXX,

where 7 is a real Lagrange multiplier fixing the norm of x, that is, x*Jx = 1. It is equivalent to require
that the partial derivatives of Ry, or of @, vanish. We easily find that
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g = el JAx — te}Jx + x*JAex — 1x*Je;, = 0,

k

o . T LT - P

I = —ie} JAX +ive, Jx + ix*JAex —itx*Je, =0, k=1,...,n.
K

Thus, there exist x = Xy and © = o such that
AXxg = apXg, XBIA = aoxal.

Clearly, Rj(xp) = op. [

3. The indefinite Rayleigh ratio in Hamiltonian dynamics

The concept of Krein space is encountered in Hamiltonian dynamics. The dynamical state of an
n-dimensional Hamiltonian system is characterized by a time dependent vector v = v(t) € R*" whose
components are the canonical momenta and coordinates, respectively, py,qi,. k= 1,...,n,

V=01 PGt )"

Denoting the Hamiltonian function by H = H(p,q) = H(1,...,Pn,q1,- - -»qn), the time evolution of the
components of v is determined by the Hamilton equations,

oH g oH
- 4= —

oy 9Pk
For physical consistency, the Hamiltonian should be bounded from below, so that it is natural to
suppose that it has a minimum at a finite point. Assume that the minimum is attained at the origin

(v = 0), and so the above partial derivatives vanish at the origin. For small amplitude oscillations the
Hamiltonian may be expanded as

Pk = k=1,...,n.

52
apaq

1 9%2H

2 9qg?

1 8%H
H(p,q) = H(0,0) + ) W

2 2

p=q=0 p=q=0

Thus, H is a bilinear form with real coefficients in the coordinates and momenta, and so

p=q=

1 n
H=3 > (@upkbi + budrdi + 2¢PkdD. G = e, by = by
ki=1

For the n x n real matrices A = (ay;), B = (by), C = (cy), let us consider the Hermitian matrices

Ay (0 —I
K_(CT B)' L“’(In 0,1)'

where O, denotes the null matrix of size n and L2 = I,,,. Then H = v Kv, and the Hamilton equations
may be compactly written as
iLv = Kv

It is natural to interpret the Hermitian involutive matrix L as a metric matrix endowing C*" with a
Krein space structure. We associate dynamical states with vectors of this Krein space. The so-called
normal modes are associated with an exponential time evolution, i.e., a time evolution given by the
exponential factor exp(iwt), where w is a normal frequency. Normal modes and normal frequencies are
the eigenvectors and the eigenvalues of LK, respectively, being determined by the eigenvalue problem

wlu = Ku,u e C*". (4)
The Rayleigh ratio

u*Ku _ u*L(LK)u
T urlu ~ urlu

2
, ueC™
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is stationary at the normal modes and its minimum for u C*" such that u*Lu > 0, is the frequency
of the fundamental harmonic. For simplicity we consider the model with C = 0, which ensures time-
reversal invariance. Under this assumption, it follows that

Au = —iwv, Bv =iou
so that
Au =iw(-Vv), B(-V) = —iwu.

This implies that the eigenvalues of LK in (4) occur in symmetric pairs +o;. Moreover, the norms of the
eigenvectors associated with positive and negative eigenvalues have opposite signs. Since the origin
is a minimum, K is positive definite and so the eigenvalues of LK do not interlace. Thus, consider-
ing the L-Rayleigh quotient relative to the matrix LK, we conclude, by Theorem 2.1 (Iy), that the set
{RL(X) : x*Lx > 0} is a half-line. Conversely, if {R; (x) : X*Lx > 0} is a half-line, then, by Theorem 2.1 in
[2], the matrix LK does not have complex eigenvalues and, henceforth, dynamical stability is ensured.
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