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ABSTRACT 

Mobility is a cornerstone to territorial and social development in the world. Growing technological 

progress, the improvement of economic and social conditions over the last years has contributed to 

the change in mobility patterns currently centred on the excessive use of individual motorized 

transport. 

The world is increasingly facing environmental problems caused by transport traffic. For that 

reason, the promotion of sustainable transport alternatives has been seen in the past few decades as 

one of the assets to reduce the negative externalities related to the transportation sector in urban 

areas. 

The adoption of policies contributing to a modal shift and, consequently, improve the environment 

and people life quality are urgent and needed. 

Bike-sharing systems increased their popularity consistently as transport alternatives in urban areas, 

and the number of bike-sharing schemes has grown significantly worldwide in recent years.  

These systems' success depends on their implementation design. They must be capable of 

answering peoples' needs, maximizing the investment benefits, as these are the first concerns of the 

decision-makers. 

This research focuses on bike-sharing system design. It intends to develop and provide strategic 

and practical methods and tools for transportation planners, policymakers, and investors' decision-

making.   

The main achievements of this decision support methodology are to define the potential demand 

relating it with the local characteristics, to design the system in terms of location of the stations, 

number of bicycles, and the dimension of the relocation process, considering the maximization of 

potential demand and the possible investment, and to estimate the environmental impacts. 

As an outcome, two different approaches address the demand estimation on bike-sharing systems. 

The first approach provides a quick assessment adapted to local characteristics. The second 

methodology uses regression analysis to understand the variables that influence the demand using 

an existing bike-sharing system (Boston bike-sharing system). 

The design of the system uses an optimization model that defines the location of the bicycle stations, 

the fleet size, the capacity of the stations, and the number of bicycles in each station, considering 

an initial investment lower than the given budget. In addition, it balances the annual cost of the 

system and the revenue, assuming the possibility of a supplementary budget. This budget from the 
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system provider can cover any loss resulting from the shortfall between its operating cost and the 

revenue from the subscription charges.  

Environmental impacts are estimated considering the traffic reduction resultant from a bike-sharing 

implementation, focused on small Particulate Matter (PM2.5). The results indicate a non-

homogeneous relation between traffic reduction and emission reduction across the urban space due 

to the characteristics of the roads (such as street characteristics and driving conditions), achieving 

12.5% of daily PM2.5 emissions in some urban roads. 

The work produced in this thesis provides a tool for the design implementation of bike-sharing 

systems and constitutes a solid starting point for planning and implementing this transport mode.  
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RESUMO 

A mobilidade é um fator fundamental no desenvolvimento territorial e da sociedade. No entanto, o 

desenvolvimento tecnológico e a melhoria das condições económicas e sociais nos últimos anos 

tem contribuído para a alteração dos padrões de mobilidade, atualmente muito centrada no uso do 

transporte individual motorizado.  

O sector dos transportes é um dos principais contribuintes para os problemas ambientais atuais e, 

neste enquadramento, a promoção de alternativas sustentáveis ao uso do transporte individual é 

visto como uma das  principais soluções para a redução das externalidades ambientais deste sector 

É assim, incontornável a necessidade de adotar políticas que contribuam para esta alteração modal 

e, consequentemente,  melhorar o ambiente e qualidade de vida das pessoas. 

Os sistemas de bicicletas partilhadas são cada vez mais populares como alternativa de sustentável 

de transporte e o número de sistemas implementados tem aumentado, nos últimos anos, de forma 

significativa pelo mundo.  

O sucesso destes sistemas depende da forma como a sua implementação é definida, como o sistema 

se adapta às necessidades das populações e como se maximizam os benefícios do investimento. 

Estes são os principais pontos de preocupação dos decisores.  

Neste sentido, o trabalho de investigação apresentado foca-se na implementação dos sistemas de 

bicicletas partilhados. Pretende constituir uma ferramenta útil para o planeamento de transportes, 

decisores políticos e investidores no processo de decisão. 

Os principais objetivos desta ferramenta são a definição da procura potencial devidamente 

relacionada com as características locais, o design do sistema incluindo a localização das estações, 

o número de bicicletas necessário e dimensionamento do processo de relocalização, considerando 

a maximização da procura potencial e possível investimento, e ainda o dimensionamento dos 

impactos ambientais. 

Neste trabalho são apresentadas duas abordagens distintas à estimativa da procura de sistemas de 

bicicletas partilhadas: a primeira constitui uma rápida avaliação da procura que é adaptável às 

características do território, a segunda abordagem usa uma analise de regressão de forma a perceber 

as variáveis que influenciam o uso do sistema, através do estudo de um sistema já implementado 

(Sistema de bicicletas partilhadas de Boston). 

O design do sistema é definido por um modelo de otimização que define a localização das estações 

de bicicletas e a sua capacidade, o número de bicicletas necessário em cada estação e, 
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consequentemente, o tamanho da frota considerando um valor inicial de investimento inferior a um 

orçamento definido. Adicionalmente, este modelo faz o balanço entre o custo anual do sistema e o 

retorno financeiro do mesmo assumindo ainda um possível investimento regular para cobrir 

despesas necessárias. 

Os impactos ambientais são estimados em função da redução de tráfego resultante da 

implementação do sistema de bicicletas partilhadas, focado nas  partículas finas em suspensão 

(PM2.5). Os resultados demonstram um impacto não proporcional entre a redução de tráfego e a 

redução de emissões, uma vez que este impacto depende das características das ruas e das condições 

de circulação. 

Em suma, acredita-se que o trabalho desenvolvido é constitui uma ferramenta importante na 

implementação e design dos sistemas partilhados de bicicletas. Constitui-se como um ponto de 

partida no planeamento e decisão deste modo de transporte.  
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1 INTRODUCTION 

1.1 Background and Motivation  

Mobility is a cornerstone to the territorial and individual development of our society, the 

technological progress, the improvement of both economic and social conditions over the last years 

have contributed to the increase of individual motorized transport, changing mobility patterns. But 

the excessive use of private car has adverse impacts on the environment and on the quality of life.  

Most of the developed countries present a high and growing car ownership rate. In the European 

Union there was an increase from 334 passenger cars per 1000 inhabitants in 1991 to 569 in 2019 

(European Commission, n.d.)  and, in the United States, 837 vehicles per 1000 inhabitants in 2018 

(Statista, 2020).  Regarding Portugal case, the Portuguese insurance authority (ASF - Autoridade 

de Supervisão de Seguros e Fundos de Pensões, 2020) presents 639 passenger cars per 1000 

inhabitants in 2019, an addition of 46% to 2009 levels (437 passenger cars per 1000 inhabitants).  

The motorization rate all over the world in 2014 is present in Figure 1, considering automobiles, 

SUVs, trucks, vans, buses, commercial vehicles, and freight motor road vehicles (and excluding 

motorcycles and other two-wheelers). 

 

Figure 1 – Road motor vehicles per 1000 inhabitants in 2014 

Source (Our World in Data, n.d.) 

The high rate of car ownership, and its dependence on fossil fuels, turn the transportation sector 

into one the most pollutant sectors in the total of air pollutants emissions in Europe. It represents 

27% of the emissions in Europe. According to European Environment Agency (EEA, 2019), urban 
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motorized transportation is responsible for 40% of carbon dioxide emissions of road transport (and 

up to 70% of other greenhouse gas emissions). 

The following figure shows the contribution of the transport sector to the total of pollutants 

emissions in Europe.  

 

Figure 2 - Contribution of the transport sector to total emissions of the main air pollutants 

Adapted from (EEA, 2019) 

 

The exposure to pollutants is associated with the increased cases of cancer, respiratory and 

cardiovascular diseases (Chow, 2006; Künzli et al., 2000; Lim et al., 2012; Loomis et al., 2013; 

McGinnis, 1993; Pope & Dockery, 2006; Stephen S Lim‡, Theo Vos, Abraham D Flaxman, 

Goodarz Danaei et al., 2012). 

According to the International Agency for Research on Cancer, human exposure to outdoor 

pollution is related to increases in genetic damage that have been shown to be predictive of cancer 

in humans, and it can promote cancer progression (IARC Monographs, 2015). 

As referred by Künzli, it should be considered air pollution and traffic-related air pollution as a 

widespread cause of impaired health. Thus, the adoption of measures that has a consequence of the 

reduction of pollutants emissions will improve the life quality on the planet (Künzli et al., 2000). 

According to Organisation for Economic Co-operation and Development  (OECD/EU) (European 

Commission, 2010), about 168.000 to 346.000 premature deaths in 2018 in European countries can 

be related to small Particulate Matter (PM2.5). The transportation sector is a relevant source of PM2.5 

emissions, particularly in urban areas (EEA, 2020a). 
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The concerns about environmental issues, their impacts on human health, and energy-saving 

stimulated sustainable policies worldwide.  

The Kyoto Protocol (United Nations, 1998), signed on 11 December 1997, was the first step in the 

international commitment to greenhouse gas (GHG) emissions reduction. The aim of the European 

Union was a 20%-30% reduction of the emissions below levels of 1990 (base year) until 2020. 

In December 2015, the Paris Agreement, a new international treaty, was signed, including green 

gas emissions reduction objectives. It works on a five-year objectives cycle to face the growing 

climate challenges until 2035 (United Nations, 2015).  

More recently, on June 2021, the European Commission established the Climate Law that aims to 

turn Europe’s economy and society climate-neutral by 2050, investing in green technology and 

protecting the natural environment (European Commission, 2021a). 

In this context, the main elements of the European strategy for low-emission mobility concerns are 

the increase of the transport system efficiency, the deployment of low-emission alternative energy 

for transport, and the transition towards zero-emission vehicles (European Commission, 2016). 

The use of alternative power sources in transport, such as electric, led to the implementation of 

electric cars as substitutes for the internal combustion engine. Although controlling emissions, the 

new alternatives do not spare urban space and do not avoid congestion.  

According to The World Bank Data (The World Bank, n.d.), in 2016, 54% of the world population 

lived in urban areas, and this proportion is higher in European Union – 76% or in North America – 

82%. And the impacts of transportation tend to be severest in urban areas because of congestion 

and building density (Dias et al., 2018; Tchepel et al., 2012).  

The European Commission emphasizes the importance of motorized single transport alternatives 

to promote sustainable mobility in economic, social, and environmental dimensions. And, at the 

same time, encouraging active travel (cycling and walking) contributing to healthy habits 

(Comission of the European Communities, 2007, 2011; European Commission, 2016, 2017). 

Within the sustainable alternatives, promoting walking and cycling conditions turned to be of 

utmost importance, recently reinforced by the need to keep distance while in public spaces due to 

the Covid19 situation. Adding, and particularly during these times of Covid19, the maintenance of 

good individual health is fundamental. Active mobility behaviors play a relevant role in this health 

(Mueller et al., 2015). 
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On this framework, local authorities have a crucial role by ensuring accessibility and creating high-

quality and efficient transport systems alternatives while reducing congestion and the excessive 

occupation of public space, pollution, and accidents (European Commission, 2017).  

One of the best transport alternatives in urban areas that answer this environmental urgency is the 

bicycle. Bicycles are environmentally friendly, in terms of CO2 emissions and noise. From the user 

point of view, they are cheaper, healthier, and for short distances in urban areas they can have some 

travel time gains and low space occupancy (European Commission, 1999; Qiu & He, 2018). 

However,  cycling and walking, face some problems related to longer travel distances or ascending 

slopes, carrying loads, and weather conditions. In any case, these are good alternatives to single 

motorized mobility in urban areas (Heinen et al., 2010). 

The public bicycle service with electric bicycles and coordinated with transportation systems can 

address some problems associated with cycling. The main goal of bicycle-sharing systems is to 

provide public vehicles to individuals for traveling in a city. The service allows picking up (and 

dropping it down) a bicycle at different city points (stations) in coordination with other transport 

modes. 

To plan a bike-sharing system as a mobility alternative for commuting travel is a challenging step 

to ensure the system's success and to contribute to a mobility revolution. Besides, it needs to address 

different users' needs. 

The bike-sharing theme was not a popular subject on scientific research publications in 2011, the 

starting year of the present research work. However, worldwide interest in this topic became visible 

in recent scientific publications on bike-sharing, as reflected on  Figure 3. 

  

Figure 3 – Number of scientific publications on Bike-sharing  

source: app.dimensions.ai (July, 2021) 
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The following sections describe the objective of this research work, the used methodology, and this 

thesis structure. 

 

1.2 Objectives 

This research focuses on bike-sharing planning and implementation. It intends to develop and 

provide strategic and practical methods to transportation planners, policymakers, and investors' 

decision-making. 

The main goal of this decision support methodology is to determine the optimal location of bike-

sharing stations according to a potential demand to the system, aiming additionally to measure some 

environmental impacts of the system.  

Under this goal, some specific objectives orient this research in a segmented and sequential way: 

• To study the demand of bike-sharing systems by understanding the characteristics that 

influence the systems usage, including user characteristics (as age, gender, or occupation), 

trip characteristics (as purpose or distance), and land use (work or commercial zones). 

• To develop an optimization model that estimates the best location of the stations to 

maximize the potential demand to the system, considering economic investment 

constraints. 

• To estimate the environmental impact of a bike-sharing system implementation through the 

consequent traffic reduction. 

 

1.3 Research Questions and Global Methodological Approach 

This thesis is related to the design of bike-sharing systems, promoting its implementation and 

assuming that these systems are one of the strategies to promote sustainable mobility. 

A methodological strategy was developed based on assumptions to answer these objectives. As 

complex as it may seem, these systems are implemented nowadays without the expression of 

precise criteria, which implies, many times, the misplaced of the stations and the inadequate 

allocation of resources. 
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Moreover, in Southern European countries such as Portugal, where bike use is still at low levels, 

the implementation of bike-sharing systems requires studying its potential demand, dimensioning, 

and impacts. These studies' results can help to promote the best decisions for bike-sharing systems 

implementation. 

Between the objectives and the methodological approach, some guiding research questions: 

• Are bike-sharing systems a keystone within the present goals for sustainable mobility? 

• What are the main lessons learned so far? 

• What are the procedures to initiate its implementation? 

• How can we identify the demand for these systems in countries where cycling mode is still 

at low levels? 

• How can we dimension these systems assuming a certain level of demand and other 

restrictions? 

• How can we convince politicians that these systems contribute to a better urban 

environment? 

 

So the first methodological step was to study the history and the present characterization of bike-

sharing systems across the world (chapter 2). 

From this literature review, it was possible to be sure that the following methodological steps would 

be the most adequate to obtain, at least partially, some of the research questions answers. 

The second step was to use some of the available knowledge to estimate the potential cycling 

demand for bike-sharing systems, showing the potential power of this approach for countries with 

low levels of cycling use (chapter3).  

The city of Coimbra in Portugal is used as a case study. This choice also relates to the fact that, in 

Coimbra, the great majority of trips are short distances and the orographic characteristics are 

irregular (which increases the justification for the demand study). In this case, the demand 

estimation uses mobility behavior aggregate studies and other population and city characteristics. 

And what could we learn from existing systems databases? Can those databases teach us something 

new about the usefulness of these systems' implementations? That is why the Boston system 

(Hubway/Bluebikes) database study is an example that can help future demand studies (3.4). 

Although some information can be drawn from these databases, the usual multiple regression 

approaches have some limitations due to the databases' heterogeneous nature (associated with city 
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characteristics). There are some limitations in finding the complete profile of users and other city 

characteristics that most likely relate to the bike-sharing system use. 

However, these two demand studies' conclusions are helpful in the discussion of bike-sharing 

systems' use applicability and efficiency. Moreover, they can provide important clues on how to 

develop future demand studies for bike-sharing systems. 

These demand studies are just a part of the problem. After demand identification, locating and 

dimensioning the system according to needs and resources is the following step (chapter 4). So, in 

this step, the development of a bike-sharing optimization model of covered demand maximization 

that locates stations and dimensions them according to financial resources and can be used 

independently from the demand estimation process partially solves the problem. 

How to use bike-sharing systems to promote sustainable mobility? This promotion must be centered 

not only on adapting the bike-sharing system to the demand but most certainly to create substantial 

increases in the supply of bike-sharing. 

Moreover, these implementations cannot be done independently of other sustainable mobility 

policies. In the process of showing to politicians that a bike-sharing system can act as a trigger 

towards a modal transfer from car to bicycle, it is also fundamental to demonstrate that some traffic 

restrictions are essential. Therefore, an exercise shows the advantages in emission reduction by 

transferring some trips from car to the bike-sharing system, using the previous models for demand 

estimation and stations locations and dimensioning, and adding models for traffic emissions 

estimation (chapter 5). 

Not being enough to establish a precise methodology for bike-sharing systems implementation, this 

thesis aims to provide precious advice. Moreover, and as in the conclusions and future works 

chapter (chapter 6), bike-sharing implementations are efficient when the city infrastructures adapt 

to it (namely by limiting car traffic and its speed) and when bike-sharing connects with other 

transport modes. 

But these are not objectives of this thesis, hoping that future works can fulfill the gap.  

 

1.4 Thesis Structure and scientific production 

This thesis is divided into 5 chapters, beyond the introductory chapter, each one included an 

introduction and synthesis and the chapter body are following described. The scheme presented in 

Figure 4 summarizes the thesis structure.  
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Chapter 2 provides a literature review on worldwide bike-sharing systems, the planning policies 

and guidelines to their implementation, the operation design features, and the factors that influence 

their  success. 

The specific literature is presented in each chapter according to the organization of the different 

themes helping to understand the scope of the correspondent theme. 

Chapter 3 presents the study and analysis of demand on bike-sharing systems. The chapter has 3 

main parts that correspond to a literature review on bike-sharing demand (section 3.2) and two 

different approaches on the demand evaluation: the first approach presents a methodology to 

estimate the demand considering external characteristics that affect bicycle usage (section 3.3) and 

the second analyzes the bike-sharing system of Boston based on 2014 database (section 3.4). 

Section 3.4 includes a subsection of the literature review on a regression analysis that supports the 

analysis made, presented on 3.4.1. 

Chapter 4 presents the location model of stations, the chapter is divided into a literature review on 

location models (section 4.2) the detailed description of the location model and its application in 

Coimbra study case. 
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Figure 4 – Thesis work structure 
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The environmental impacts of bike-sharing usage are evaluated in chapter 5, and the chapter 

includes a literature review, the methodologic approach, and its application to the same case study 

on two specific scenarios.  

The last chapter (6) is the conclusion of the thesis, including synthesis of thesis objectives, the 

methodologies, the models used, and the results of this research. It also includes an overview of 

possible future work in this area. 

 

The work developed since the beginning of the research resulted in the following publications 

(ordered by latest publication date). 

 Inês Frade, Anabela Ribeiro, Daniela Dias and Oxana Tchepel (2021): Bike-sharing 

systems implementation impact on emissions, for cyclist preferred routes in urban areas, 

International Journal of Sustainable Transportation, DOI: 

10.1080/15568318.2021.1949076 

 Inês Frade and Anabela Ribeiro (2015): Bike-sharing stations: A maximal covering 

location approach, Transp. Res. Part A Policy Pract., vol. 82, 2015, doi: 

10.1016/j.tra.2015.09.014. 

 Inês Frade and Anabela Ribeiro (2014): Bicycle Sharing Systems Demand, Procedia - Soc. 

Behav. Sci., vol. 111, pp. 518–527, 2014, doi: 10.1016/j.sbspro.2014.01.085.  
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2 BIKE-SHARING SYSTEMS REVIEW 

2.1 Introduction 

A bike-sharing system is a public shared used set of bicycles normally available in urban areas, 

focused on short-term basis trips for free or with a low fee. The service includes picking up and 

dropping off bicycles at different stations in an urban area. 

The first bike-sharing system emerged in Amsterdam, the Netherlands, in 1965. Nowadays, several 

cities around the world have adopted public bicycle sharing systems as a transport option. 

According to the Bike-sharing World Map1, a total of 2003 bike-share programs are in operation 

worldwide, 300 being planned or under construction, and 809 were cancelled, suspended or closed. 

Globally there are almost 10 million bicycles (just in bike-sharing systems) available all over the 

world.  

 

Figure 5 - The Meddin Bike-sharing World Map. 

 

1 "The Meddin Bike-sharing World Map." Russell Meddin, Paul DeMaio, Oliver O’Brien, Renata Rabello, 

Chumin Yu, Jess Seamon, Thiago Benicchio, Deng Han (ITDP) and Jacob Mason (ITDP). Accessed March 

2021. http://bike-sharingworldmap.com/.   
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In this chapter,  the general aspects of bicycle sharing are presented. This chapter summarizes the 

history and the evolution overview of the worldwide state of the art of bike-sharing systems and 

technological trends of these systems, their framework on the global, European, and Portuguese 

strategic guidelines, their operational design features, and the main success factors. 

 

2.2 Bike-sharing systems – Historical background 

For giving an accurate overview on the history of these systems it is important to distinguish 

between four generations of services (CHEN et al., 2018; DeMaio, 2009; Moon-miklaucic et al., 

2019; S. a. Shaheen et al., 2010; Wang et al., 2010):  

• 1st generation: free bike system,  

• 2nd generation: coin-deposit systems,  

• 3rd generation: information technology-based systems,  

• 4th generation: the dock less and big data management possibilities. 

 

The free bike-sharing system comprehends a set of bicycles (with unusual colors or shapes) 

available without costs to the user. Typically, their stations are located near public facilities. The 

system includes staff responsible for users’ identification, reducing the needs of other human 

resources. The bicycles are free to be used by any user that needs them. 

The first bike-sharing system emerged in Amsterdam, the Netherlands, in 1965. A set of fifty free 

bicycles, considered as the solution for traffic problems, were made available. However, the Witte 

Fietsen (white bikes) plan failed after its launch due to bicycle damages and thefts (Figure 6).  

The same type of service happened in La Rochelle (France) in 1974. With support from the 

community, the bike-sharing service turned to be successful. Moreover,  the Vélos Jaunes (yellow 

bikes) system still operates. This bike-sharing system is composed by 54 stations, 300 bicycles 

available all over the day, and 160 kilometers of cyclable spaces; the usage of bicycles is free in 

the first half-hour (Midgley, 2009). 

In 1993, Cambridge (United Kingdom) implemented a free bike-sharing system called the Green 

Bike Scheme. However, as in the case of Amsterdam, the majority of the bicycles were stolen, and 

the program failed.  
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Figure 6 – Witte Fietsen (white bikes) in Amsterdam (Netherlands), 1965. 

Source: (International Institute of Social History, n.d.) 

 

In 1994 the first bike-sharing system in the United States was implemented in Portland (Oregon), 

called Yellow Bikes, and ended in 2001. In 1995 the Green Bike Program in Boulder (Colorado) 

operated with 130 bicycles but ended up closing as well. More recently, the city rethought the bike-

sharing city system, now called the Boulder B-cycle, with 250 bicycles and 10 stations. This new 

system works now as a service of the second generation. 

In Portugal, a free bike-sharing system in Aveiro, called Bugas, was launched in April 2000. It 

started with a stock of 350 bicycles spread over 33 parks all over the city. However, after the pilot 

period, some of the bicycles were vandalized or stolen. Currently, the system works as a less 

ambitious service with only one station and some bicycles. The difference between the previous 

type of service and the current coin-deposit systems is that there are some concerns about the 

location of the stations to ensure the efficiency of the operation, and the bicycles are not freely 

available.  

The first bike-sharing using a coin deposit system launched in 1995  in Copenhagen (Denmark), 

called the Bycyklen (City Bike) – Figure 7. The users have to use a coin to unlock the bicycle in 

the docking stations. Currently, the Bycyklen system works from April to September, and there are 

110 stations and about 2000 bicycles available.  

Similar to the Copenhagen case, other bike-sharing programs emerged in Bycykler in Sandnes 

(Norway) in 1996, City Bikes in Helsinki (Finland) in 2000, and Bycykel in Arhus (Denmark) in 
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2005. And also in United States: the Yellow Bike Project in Minneapolis and St. Paul in 1996, and 

Madison (Wisconsin), Olympia (Washington), Austin (Texas), Princeton (New Jersey), Durham 

(New Hampshire), and Decatur (Georgia) between 1996 and 2002. 

 

Figure 7 – Bycyklen (City Bike) in Copenhagen (Denmark), 1995. 

Source: (Svenningsen, 2009) 

 

Although some significant changes in the motorized transportation patterns in some cities, the coin-

deposit system did not solve the theft problem. To overcome this problem, the third generation of 

bike-sharing emerged based on automatic services.  

The automatic system uses 'smart' technology (mobile phones, mag-stripe cards, smartcards, or 

codes) to unlock the bicycles from the stations allowing the automatic identification of the users 

(for example, with a code). The casual users pay a security deposit to ensure the bicycle return, and 

its use is paid depending on the time interval of the usage. Typically this service is free in the first 

specified time interval, and the price gradually increases over time.  

This system is simpler to manage in terms of human resources, but require a higher investment in 

technology. Some of the advantages of the technology introduction are the possibility of 24h 
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service, the right displacement of stations in the city getting more evident, and the data collection 

about the usage of the service being easier (ConBici, 2007; S. a. Shaheen et al., 2010). 

Most systems offer a choice of subscriptions: short-term subscription (1-day, 3-day or 7-day ticket) 

or long-term subscription (monthly or annual). 

The Vélib’ in Paris (France) – Figure 8, implemented in 2008, is one of the most popular (and 

largest) bike-sharing systems in Europe. It consists of a network with 1400 stations and about 

19.000 bicycles (30% of them are electric) available. China is the country with the highest market 

for bike-sharing. In Hangzhou, in 2008, the local government launched a public bike-sharing 

system called Hangzhou Public Bicycle.  In 2011, 60.600 bicycles were operating with 2.416 fixed 

stations, every 200 meters, in eight core districts (S. Shaheen & Guzman, 2011). 

 

Figure 8 – Vélib’ in Paris (France), 2008. 

Source: Wikimedia Commons 

 

The Bixi public bike-sharing system is a service of the third generation, developed by a company 

called Public Bike System Company (PBSC). This system is now in several cities from the United 

States of America, Australia, and England. At each station, the user needs to introduce his credit 

card to unlock the bicycles. 
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Most of these programs evolved into systems connected with an integrated traffic management 

system (intelligent transportation technology). It provides real-time information facilitating the 

adjustments between demand and supply,  the need for electric bicycles, vehicle relocations, and 

the integration of several transport services in the same access subscription (public transportation 

or car-sharing). 

In 2017, in Lisbon, the Gira Bike System – Figure 9 – started with a pilot system on Parque das 

Nações with 10 stations and 100 bicycles and now is working with a fleet of 600 bicycles and 81 

stations. A system extension is planned in the forthcoming months for 1500 bicycles and 160 

stations. 

 

Figure 9 – Gira in Lisbon (Portugal), 2020. 

Source: (Transportes & Negócios, 2020b) 

 

The 4th generation of bike-sharing emerged with dock less bikes. The user can detect and unlock a 

bicycle using a mobile app, leaving the vehicle in a public place anywhere in a city or area where 

the system is working. 

Ofo and Mobike – Figure 10, two companies born in Beijing (China) in 2015, are pioneers in dock 

less systems implementation. The dock less systems provide high flexibility from the user 
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perspective since there is no need for stations with empty places at each moment. However, these 

characteristics also turn this possibility into a more challenging solution for public space use and 

vehicle relocation. It is also more demanding in terms of planning and regulations (CHEN et al., 

2018; Chen et al., 2020; Moon-miklaucic et al., 2019). 

 

Figure 10 – Mobike in  2020. 

Source: (Transportes & Negócios, 2020a) 

 

However, the parking of the bicycles is also a determinant issue. Parking bicycles in unauthorized 

spaces can endanger other users of public spaces and  expose these vehicles' vulnerability to thieves 

and damages. These are just some of the reasons why dockless systems ended up failing in many 

cities worldwide, despite of their initial attractiveness due to the apparent less investment (no formal 

stations). 

Besides that the system has some relocation issues when bicycles are left away from the city center, 

thus the relocation occurs on a larger geographic scale. 

In February 2018 two dockless systems were implemented in Lisbon, the oBike (with 350 bikes) 

and Jump from Uber (with 250 bikes).  Both systems worked for just one month. The problems 
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with irregular parking justified the withdrawal of all the bicycles, ordered by the city council 

(Pincha, 2018).  

The Figure 11 summarizes the four generations of bike-sharing according to Chen et al. (Chen et 

al., 2020). 

 

Figure 11 - Bike-sharing system generations (Chen et al., 2020) 

 

2.3 Planning Policies – general issues 

There is a growing interest in bike-sharing systems worldwide and a consequently growing concern 

about planning its implementation.  
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The planning process, driven by the combination of political decision-making and technical 

analysis, must consider all the stakeholders in the process and their interests, as in any other 

planning process. 

The transport plans develop strategies to shape the supply of the services, answering the expected 

demand, and, on the other hand, the spatial planning measures seek to influence travel behavior 

(Schwanen et al., 2004). 

The planning criteria used directly depend on different and varying decision-making approaches in 

each country's government or decision unit.  

Plans must support the economic viability of the systems and their efficiency, management and 

operation, increasing the safety and security of the users, improve the mobility and the accessibility 

of the people and goods, and improve the environmental conditions (Giuliano & Hanson, 2017). 

The planning processes must encompass the following steps (J. de D. Ortúzar & Willumsen, 2001): 

• formulation of the problem defining the objectives, standards, and constraints; 

• collection of data needed for the characterization of the environment;  

• construction of a model representing the data;  

• generation of problem solutions;  

• testing and identification of the possible solutions and 

• implementation of the solution.  

Another crucial step is to monitor the performance of the system and identify the strengths and 

weaknesses of the spatial planning policy. This strategy improves the planning process by 

identifying new solutions (Schwanen et al., 2004). 

Policymakers should be the ones to promote bicycles as a transportation mode (Rietveld, 2004), 

since the planning policies and the models for the implementation of bike-sharing systems and 

services need to adapt to different local conditions (Bachand-marleau & Larsen, 2011). 

As previously mentioned (section 1.1), the promotion of active transport modes, pedestrians and 

bicycles, needs to be strategically planned to reduce the environmental impact of transport sectors 

and improve the public space quality in urban areas. 

During this research period, the European Commission published strategic documents showing 

clearly the importance of bicycles and active modes on sustainability: 
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• Green Paper (2007): Towards a new culture for urban mobility (Comission of the European 

Communities, 2007), 

• White Paper (2011): Roadmap to a Single European Transport Area – Towards a 

competitive and resource efficient transport system (Comission of the European 

Communities, 2011),  

• The European Green Deal (2020) (European Commission, 2020); 

• Climate Law (2021) (European Commission, 2021b). 

The Green Paper (Comission of the European Communities, 2007) highlights the improvement of 

public transportation quality, the promotion of clean technologies and energy efficiency, 

encouragement of clean transportation alternatives such as cycling and pedestrian.  

The White Paper (Comission of the European Communities, 2011) reinforces the gradual phasing 

out of motorized vehicles from the cities – halve the use of fuel motorized cars as urban transport 

by 2030 – to improve environmental conditions by promoting alternatives such as public transport, 

walking, and cycling. It also reinforces the fact that by facilitating walking and cycling they become 

an integral part of urban mobility and infrastructure design. One of its recommendations is about 

the importance of promoting information about available alternatives to individual transport. These 

alternatives include walk and cycle, car-sharing, and park & drive, among others. 

Most recently, the European Green Deal (European Commission, 2020) focused on mobility 

transformation onto zero-emissions mobility scenario advice the technological improvement of 

vehicles, incentivizing the deployment of renewable and low-carbon fuels, and making sustainable 

alternatives widely available. These improvements will enable better modal choices.  

The 3rd flag of this document set up the guidelines on making interurban and urban mobility more 

sustainable and healthy, putting cities at the forefront of this transition.  

One of the main strategies is promoting the Mobility as a Service (MaaS) concept and globally the 

intermodality between transport modes. Moreover, acknowledging the importance of the shared 

services on this transformation, such as car sharing, bike-sharing, ride-hailing, and other forms of 

micro-mobility. Concerning cycling mobility, there is a growing awareness of the need to have safe 

bike lanes and that they should be double than they are now.  
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The global concern about soft modes promotion reflects in  European Guidelines and Portugal 

through strategic planning documents. 

The National Program of Spatial Planning Policy (Programa Nacional da Política de Ordenamento 

do Território – PNPOT) refers that it is crucial to improve the environmental performance of the 

transports sector and promote short distances transport alternatives and its coordination as public 

transport and shared services (as car and bike-sharing) mainly in urban areas (Direção-Geral do 

Território, 2019). 

The Strategic Transport Plan (MOPTC, 2009) outlined guidelines for investments in the Portuguese 

transport sector between 2008 and 2030, reinforcing land-use policies level of coordination with 

principles of sustainable mobility minimizing the need for motorized travel, and promoting the use 

of active modes.  

In 2010, Portuguese government created a working group to prepare the National Plan for the 

Promotion of Cycling and other Soft Modes (‘Plano Nacional de Promoção da Bicicleta e outros 

Modos de Transporte Suaves’) (Instituto da Mobilidade e dos Transportes, 2012).  

Its main objective was to study strategies to promote the modal shift to soft modes. This plan 

includes the promotion of bicycle use, promoting the improvement of public spaces and 

infrastructures. This articulation requires the update of national regulations of traffic, spatial 

planning, and street design. This plan includes bike-sharing systems implementation in cities with 

more than 10.000 inhabitants (action III align f) as municipalities' responsibility. Being a local 

(municipal) responsibility, the bike-sharing systems are potentially included on local mobility 

plans: Action plans for sustainable urban mobility (Planos de Ação de Mobilidade Urbana 

Sustentável – PAMUS) – regional areas and Strategic Plans of urban development (Planos 

Estratégicos de Desenvolvimento Urbano – PEDU) – for municipal areas. 

And finally, the Regulatory degree no. 131/2019 establishes the National Strategy for Cycle 

Mobility (Diário da República, 2019a). The plan is organized through six main elements of 

investment: 

• Legal framework 

• Research and development 

• Infrastructures and intramodality – that includes the promotion of public bike-sharing 

systems 

• Culture behaviors 
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• Monitoring and evaluation 

 

So far, the design of bike-sharing systems benefits from the guidance of international good practices 

manuals or handbooks, such as: 

• Bike-Sharing Guide (Gris Orange Consultant, 2009), 

• OBIS Guide – Optimizing Bike-sharing in European Cities (Büttner et al., 2011), 

• The Bike-Share Planning Guide (ITDP - Institute for Transporteation & Development 

Policy, 2013), 

These guides reflect the main concerns on planning, based on shared successful systems features. 

So far, Portugal does not have an official guide plan to implement Bike-Sharing systems. As 

referred, it is a municipality's responsibility, although none published so far any criteria for its 

implementation. 

 

2.4 Operational design 

Although the implementation of these systems results from political decisions, the bike-sharing 

systems is a transport business so far. This means that the decisions on their implementation result 

from enterprises' profit interests and do not exactly correspond to the potential demand, in most 

cases. 

The planning of bike-sharing lies on the definition of the following system's features:  

 

 

 

 

Table 1 – Features on the Bike-sharing planning 
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Feature Details 

Business Model Public/private/public-private partnership 

System type Classic bicycles/electric bicycles/ mix 

Station-based/dockless 

local/previous booking  

Technology & hardware 

Pricing Linear/progressive 

Design Location of stations(Station-based systems)/ 

Relocation/fleet size 

 

Different assumptions impact the initial investment and maintenance but also the attractivity and 

potential demand of the system.  

The implementation and operation of bike-sharing systems involve high costs. There are two types 

of costs associated with bicycle sharing services: startup (initial investment) and ongoing 

(maintenance) costs. The initial costs are associated with the system's implementation. They include 

planning and project, bicycle acquisition, stations, vehicles, and associated material for bicycle 

relocation. Including in these costs, there is also the staff to control and maintain the service, and 

communication and marketing. The ongoing costs are associated with the system maintenance. 

They include the relocation costs (vehicles and staff to operate it), control and management of the 

electronic system, equipment maintenance, and the replacement of the stolen and damaged bicycles 

(ConBici, 2007). 

Different bicycle-sharing systems have variant annual costs.  

In Table 2, it is possible to see that there are differences while comparing manual or automatic 

systems, considering the costs of staff, communication, and maintenance, according to Conbici 

(ConBici, 2007). 

 

Table 2 – Estimated cost of each type of the systems per year (ConBici, 2007) 

System type Estimated  Cost 

Manual 1300-2400 €/year.bicycle 

Automatic 1400-3900 €/year.bicycle 

 

Some specialized services are needed to operate these systems under a business model. There are 

different types of bike-sharing service providers: public, public-private partnerships, or private 

companies (S. a. Shaheen et al., 2010), (Midgley, 2011). 
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Public transport agencies invest in bicycle-sharing services to improve the general public 

transportation systems of the city. In this case, public funding and revenue depend on fees and 

memberships. The public entities have autonomous decisions about the system, usually with non-

profit motivations. Public transport agencies invest in bicycle-sharing services to improve the 

general public transportation systems of the city. In this case, public funding and revenue depend 

on fees and memberships. Many German, Chinese, and British bike-sharing programs are 

supporting by public agencies.  The global perspective is that local governments and public 

authorities design bike-sharing programs for the well-being of the cities. 

In Cambridge (United Kingdom), the bicycles of the 1st generation of bike-sharing (Green Bike 

Scheme) were abandoned on the streets. The government collected them and restored them, in order 

to put them again on the streets for public usage. 

Even if governments are inexperienced to operate this type of system, there are some advantages 

with this local business model by the government: greater control over the system and special 

knowledge about the city transport system coordination (Wang et al., 2010).  

Non-profit organizations provide bike-sharing services with the support of public agencies – public-

private partnerships. Their revenues derive from membership, usage fees and sponsorships. The 

public bicycle systems are generally not profitable, as in the BIXI system that works on a non-profit 

model (Gris Orange Consultant, 2009). The BIXI system works with a combination of user fees, 

corporate sponsorship, and advertising licenses, and it does not need public funding.  

The private sector offers bike-sharing services based on for-profit models with minimal government 

involvement. However, the private operators will need the locality’s support to use public spaces 

(DeMaio, 2009). Nextbike in Germany works on this type of model.  

The implementation of bike-sharing systems can result from an agreement between a private 

company and public authorities. As the Vélib’ system in Paris was financed by the JCDecaux Group 

and as return, it was allowed by the municipality the grant of a substantial part of the out-of-home 

advertising hoardings. The company has also member system fees. 

The business model of bike-sharing systems depends on business opportunities and policy 

framework. However, it impacts implementation decisions, such as the demand levels, station 

locations, or infrastructure adequacy. Public systems usually have smaller fleet sizes and a lower 

number of registered users when compared with other business model systems. However, this type 
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of business models tend to have a better performance in terms of average daily trips per user and 

bicycle than private companies  (S. a. Shaheen et al., 2010; Vassimon, 2016) 

The systems tend to evolve to more high-level technological solutions that make the system 

friendliness to the user and the operation.  

The bikes are robust to minimize wear and tear and facilitate maintenance, have a custom design to 

be easily identified and, the more recent versions, have a GPS to locate the stolen bicycles.  

The fleet might use electric bicycles, including the correspondent stations with the necessary 

electric infrastructure to charge the vehicles. 

The stations include docking points to park (and charge) the bicycles, as bicycles lock into the 

electronically controlled docking point.   

The user unlocks the bicycle with a key, a card, a mobile app or a combination of both. In the first 

case, the station includes a rental terminal on each station. In more recent systems (with the mobile 

app), all the control and renting is online, and the station provides physical information and wireless 

to the user.  

The system providers have to consider software to do the management of the system and the 

necessary interfaces.  

The software does the system management, including station monitoring, redistribution planning, 

user registration, customer data management, billing/payment, and all the necessary information. 

The pricing schemes include the registration and usage fees, some cases only charge usage fees. 

The registration fees allow for a short free period (abort 20 or 30 minutes) and growly increase in 

price after that period. 

Most systems ask for a personal credit card number, which is also a guarantee for non-returned 

bikes. 

The prices increase as shorter is the registration period and lower are the usage fees. The following 

table presents as an example the pricing scheme of two bike-sharing systems: Velib from Paris and 

GIRA from Lisbon. 

 

 

 

 



2 BIKE-SHARING SYSTEMS REVIEW Bike-Sharing Systems Design 

 

 

26 Inês Frade 

 

Table 3 –Bike-sharing systems examples for different subscriptions 

System Types of subscription 
Registration 

fee 

Trip fee 

and base 

time 

Additional fee by time 

period 

0-30 min 30-60 min +60 min 

Velib 

(Paris) 

Max 

Classic bike 

8,30 €/month 

0 € 0 € 1 €/30 min 

Electric 

bike 
0 € 1 € 

1 €/30 min 

Plus 

Classic bike 

3,10 €/month 

0 € 1 €  1 €/30 min 

Electric 

bike 
1 € 2 € 

2 €/30 min 

Libre 

Classic bike 

0 €/month 

1 € 1 €  1 €/30 min 

Electric 

bike 
2 € 2 € 

2 €/30 min 

Séjour 

Classic bike 

15 €/ week 

0 € 1 €  1 €/30 min 

Electric 

bike 
1 € 2 € 

2 €/30 min 

Découverte 

Classic bike 

5€ / 24 hours 

0 € 1 €  1 €/30 min 

Electric 

bike 
1 € 2 € 

2 €/30 min 

Gira 

(Lisbon) 

   0-45 min 45-90 min +90 min 

Annual 

Classic bike 

25€ / year 

0.10 € 1 € 2 €/ 45 min 

Electric 

bike 
0.20 € 1 € 

2 €/ 45 min 

Monthly 

Classic bike 

15€/month 

0.10 € 1 € 2 €/ 45 min 

Electric 

bike 
0.20 € 1 € 

2 €/ 45 min 

Daily 

Classic bike 

2€/ 24 hours 

0 € 2 € 2 €/ 45 min 

Electric 

bike 
0 € 2 € 

2 €/ 45 min 

 

Globally, the pricing schemes are also coordinated with the other public transport modes of the city, 

promoting their mutual links.  

Another common characteristic is that the potential demand of the system is estimated to define a 

sustainable planning project, namely its economic sustainability, through its design.  

Section 3.2. includes a literature review on this theme. For the station-based systems, the location 

of the stations is a complex problem that influences system use. Different objectives or focus groups 

can address different approaches and solutions.  

Section 4.2 is devoted to the deepening of this subject. Moreover, bike-sharing systems 

implementation should have a marketing plan. It will allow users attraction and will inform the 

population of this alternative. 

 



Bike-Sharing Systems Design 2 BIKE-SHARING SYSTEMS REVIEW 

 

Inês Frade 27 

 

2.5 Success factors 

Some external conditions restrict the success of bike-sharing systems and their potential demand: 

factors related to the system itself and characteristics of the surrounding environment (urban and 

cultural) that discourage the generalization of non-motorized transport modes.  

There are two main types of features. For the user, it is mandatory to feel a user-friendly 

environment, the permanent availability of vehicles (related to the scheme size, density, and 

working hours), the type of technology (it depends on the user preferences), and the price.  

It is also mandatory to ensure the ideal transport operators, the best contracts, the ownership and 

maintenance responsibilities, and the financing sources. As a result, the best solutions can also 

guarantee some employment opportunities (Büttner et al., 2011; Gris Orange Consultant, 2009; 

Hunt & Abraham, 2007; ITDP - Institute for Transporteation & Development Policy, 2013; Zhang 

et al., 2015). 

The spatial distribution of bicycles is crucial for the acceptance of bike-sharing systems. The user 

needs to feel that it is easy to find a vehicle on the trip origin and park space at the destination, to 

make bike-sharing a real transport alternative (Vogel et al., 2011). 

One of the most determinant elements in the implementation of these systems is the location of the 

stations since it can compromise the success of the system.  

Along the 24 hours, the demand tends to vary, typically decreasing during the night or in the winter 

season. Depending on the local the bike-sharing can close at night. These gaps in the night demand-

supply might act as a deterrent some users. 

Regarding pricing, it is possible to promote short trips with pricing structures that offer the first 

minutes of usage.  

As characteristics of the implementation area that influences the use of bike-sharing (or globally, 

the bicycle), it is possible to point out the main ones: the lack of vehicles and road infrastructures 

and the consequent sense of insecurity, the geographic and weather conditions, population density, 

and other demographic and economic factors (An & Chen, 2006; Baltes, 1996; Dill & Voros, 

2007; Duthie et al., 2010; S. L. Handy et al., 2010; Ozarks Transportation Organization, 2005; 

Schwartz et al., 1999). 

The Figure 12 summarizes the main barriers to choose a bicycle as a transport mode.   



2 BIKE-SHARING SYSTEMS REVIEW Bike-Sharing Systems Design 

 

 

28 Inês Frade 

 

 

Figure 12 - Barriers to cycling (Ozarks Transportation Organization, 2005) 

 

Bicycle users prefer to minimize the interaction with motorized traffic. Especially the inexperienced 

cyclists tend to prefer bicycle lanes instead of wide curb lanes. Another crucial characteristic of the 

bicycle infrastructure is the cycle path contiguity. There is a negative perception of a non-

contiguous network that is discouraging cycling (Bicycling and Transit - a Marriage Unrealized, 

2010; Stinson & Bhat, 2005; Taylor & Mahmassani, 1996).  

Therefore, to promote the bicycle as a truly transport alternative, cities must be served by the needed 

cycling-friendly paths, forming a consolidated, connected, and supported network attractive to 

cyclists. The network should make public space friendly for riding a bicycle and motivate safe 

behavior in cyclists and other users.  

The design of the best cycling infrastructure for each street will benefit from coordination between 

the road characteristics (average speed, traffic volume, and function), the network continuity, the 

appropriate pavement types, the signalization, and the crossings. 

In urban areas with low traffic volumes and slow speeds (residential or commercial zones), the best 

solution for cycling is the creation of shared traffic areas.  

For higher speeds and higher traffic volume urban zones, the recommended solutions include 

segregation from motor traffic for safety and comfort reasons. Between these two types of solutions, 

several others apply to other combinations of street/road characteristics. 

The main characteristics, implementation conditions, good practices and other technical details 

are described at (Inês Frade et al., 2011; A. Ribeiro et al., 2012; Anabela Ribeiro et al., 2011). 
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Besides road infrastructure, it is relevant to provide safe parking spaces and facilities as a self-

service repair station.  

Weather conditions are a permanent constraint, but only extreme conditions (pouring rain or 

blistering heat) discourage cycling. The seasonal weather variations induce consequent variations 

on bicycle demand, low demand during the winter in cold cities and the summer in hot cities 

(Büttner et al., 2011).  

However, Northern European countries such as Sweden - where bad weather is frequent - 

concentrate most urban cycling users.  

33% of all journeys in Västerås, Sweden (a cold country), are made by bicycle. In Cambridge, 

United Kingdom, a wet country, cycling accounts for 27% of journeys (European Commission, 

1999). 

Steep slopes can make climbing difficult for cyclists, but the way down can lead to fast speeds that 

might be unsafe for cyclists or other users. The slope issues can be minimized  if the right design 

recommendations are followed, establishing a maximum length according to the slope  (S. Handy 

& Xing, 2011; Parkin et al., 2007; Stinson & Bhat, 2005). 

As demographic factors the literature (Baltes, 1996; S. L. Handy et al., 2010) focus on gender and 

age. The female population and the older population are less willing to use the bicycle. On the other 

side, the student population in a city/area with universities or colleges tends to use the bike as the 

main transport mode. 

Moreover, car ownership, qualified professional occupations, and higher incomes contribute 

negatively to bicycle use. And finally, people integrated into a social environment, mainly in 

the workplace, that support cycling mobility is more likely to use a bicycle to commute (S. 

Handy & Xing, 2011). 

 

2.6 Synthesis and focus 

Providing safe and convenient bike-sharing to citizens is a mandatory element in mobility and 

transport planning. Furthermore, the implementation of bike-sharing schemes promotes private 

bike use itself and enhances the image of cycling (DeMaio, 2009; Fishman et al., 2014; Woodcock 

et al., 2014).  
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The decision-making process about a new transport system implementation, such as bike-sharing, 

demands new knowledge about the new system: its operational characteristics, impacts, and success 

factors.  

The new systems are of 3rd and 4th generations type: information in technology-based systems and 

dockless systems. Even though the dockless system seems to be more flexible, it introduces some 

challenges in regulatory standards, as referred on section 2.2. This research work focuses on bike-

sharing schemes with physical stations suited to Portuguese public spaces law. 

Bike-sharing systems are present in solutions for sustainable mobility and are a tool to address 

climate changes on the main Strategic Guidelines (Global, European and Portuguese strategies). 

Bike-sharing systems are tools to improve the quality of city life and the urban environment by 

making better use of urban spaces (European Commission, 1999). 

Section 2.4 summarizes the key features of the bike-sharing project divided into four groups: the 

business model, the system type, the pricing, and the design. But some features might determine its 

success beyond planning the system, ensuring a potential demand answer, technological 

attractiveness, and globally good conditions for cycling.
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3 DEMAND ANALYSIS ON BIKE-SHARING SYSTEMS 

3.1 Introduction 

The definition of the demand for bike-sharing systems is of crucial importance for bike-sharing 

systems design and consequent success. The demand must be estimated with the best accuracy 

possible in order to dimension the system. 

The demand was estimated using two different approaches, both designed to obtain the potential 

demand to these systems according for the characteristics of the studied zone.  

The first methodology (sub-chapter 3.2) – demand analysis for new systems implementation – 

relates the potential demand of bike-sharing systems with external characteristics that affect bicycle 

usage. The methodology was conceived during the years of 2012 and 2013 when bike-sharing 

become more significant as a transport alternative, as a research topic and due to the lack of 

literature (see Figure 3) and data on this subject driving the conception of a rough methodology that 

allows a quick assessment to the demand of these systems. This research work was published in the 

16th EURO Working Group on Transportation Conference proceedings (Inês Frade & Ribeiro, 

2014). 

The second approach (sub-chapter 3.4) – demand analysis on existing systems – presents a 

methodology based on spatial regression analysis to relate the generation/attraction of bike-sharing 

trips and the surrounding socio-economic characteristics. The method consists in the evaluation of 

a trips database of an implemented system and the local characteristics, considering socio-economic 

data, transportation data, employment information.  

In order to provide an overview of the spatial regression analysis techniques and the measures for 

the goodness-of-fit, this section includes a literature review concerning this topic (not restricted to 

bike-sharing applications). 

The methodology is applied to the Boston’ bike-sharing system – the Hubway system.  

The chapter is organized into four main sections, besides the introduction. Section 3.2 presents a 

literature review in bicycle sharing systems demand studies. Section 3.3 is presented the first bike-

sharing demand methodology and its application to a study case in Coimbra (Portugal). Section 3.4 

presents a literature review on spatial regression analysis, details the spatial regression 

methodology, and study of the Hubway bike-sharing system that evidenced some important clues 
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on how a bicycle sharing system demand is influenced. Finally, the main conclusions of the bike-

sharing demand evaluation studies are presented in section 3.5.  

 

3.2 Literature Review 

The demand of bike-sharing systems is a recent topic in the scientific community. When the 

presented research started (2011-2012) bike-sharing emerged as a trending topic. Bicycle as a 

transportation mode was, at that time, already seen as a transport alternative to promote in countries 

with reduced levels of bicycle use, and the scientific work published was scarce. The literature 

review presented in the following sections focused on the available literature on bike-sharing 

systems and bicycle demand.  

To plan the responses to the traveler’s needs and to estimate the transportation demand, and its 

variation over time is one of the biggest challenges of the urban transportation designers and general 

urban planners because the transportation system has a close interaction with the land use. 

The general approach to urban travel demand is the four step model. The Four Major Stages or Four 

Step Model has been used to predict the number of trips made within an urban area from the 

population and urban activities information. It is divided into four phases: trip generation, trip 

distribution, modal split, and traffic assignment. 

In short, the trip generation step estimates the total number of trips generated and attracted to each 

analysis zone; the trip distribution calculates the number of trips made between each pair origin-

destination; the modal split determines the volume of trips that will use each available 

transportation mode, and the traffic assignment step assigns the trips onto a network (Hensher & 

Button, 2000; J. Ortúzar, 2000). 

The demand for this type of service is not simple to characterize. The most common methods used 

in demand studies are, usually, made through stated or revealed preferences surveys (ConBici, 

2007; dell’Olio et al., 2011; Monzón et al., 2010; J. Ortúzar, 2000; Taylor & Mahmassani, 1996) 

or it is estimated based on successful systems worldwide (Daddio, 2012; Krykewycz et al., 2010; 

New York City Department of City Planning (NYCDCP), 2009) 

Dell’Olio et al. recommend that the determination of the potential demand of travellers using a 

stated preference household survey made by telephone, to find the personal profile of a potential 
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user of public bicycles as well as the origin and destination of the journeys, the purpose of trips and 

the users’ willingness to pay for the service (dell’Olio et al., 2011).  

Several studies for planning bicycle-sharing services provide surveys in a representative and 

random population sample in order to characterize the users and potential users of the bike-sharing 

services (ConBici, 2007; Monzón et al., 2010; J. Ortúzar, 2000). 

The Spanish Guide of Cyclist Mobility, Guía de la Movilidad Ciclista (Monzón et al., 2010), also 

presents two models to estimate the demand of potential users of the bicycle through discrete choice 

models. The first one is based on revealed choices surveys and the second one by stated preference 

choices surveys. Both models are developed from the surveys in Santander, Spain. According to 

the results of reveled choices surveys is defined the utility functions of each modal alternative. 

From the utility functions, it is possible to characterize the existent demand, which is very important 

to futures plans.  

In the case of Santander, the Mozón et al. study concludes for bicycle mode that: the probability of 

cycling is higher in men than in women (regardless of age and income); when the age is lesser than 

56 or income is lesser than 1200 € the possibility of bicycle choice is higher than the other cases; 

as in the other modes travel time affects the demand but the bicycle is the less influenced by this 

variable its choice probability decreases 0.58% when travel time increases 1% (Monzón et al., 

2010).  

From the results it is also calculated the demand elasticity for each one of the criteria: travel time, 

travel cost, access time, waiting time, and the time to destination. 

The second method determines the utility function using the results from stated preference choices 

surveys. The results show that the most influential variables for the potential users to use bicycle 

sharing systems are the cost of the service, the weather conditions (rain or cold), and the lack of 

adequate infrastructure for cycling safely. Persons with less than 24 years, with income less than 

1200 € or men are more willing to cycle than persons older than 24, with income higher than 1200 

€ or women. 

It was calculated the elasticity demand for the criteria: travel time and travel cost. It was also related 

to the influence of travel time depending on the socio-economic characteristics (income, age and 

gender).  

The traveler’s decisions depend on the travel time, route, mode, origin, destination, and frequency. 

The level of demand is directly affected by the travel costs, land use, demographic characteristics 
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of the population, household size, number of workers, income, transport mode ownership, and local 

culture (Bachand-marleau & Larsen, 2011), as referred in section 2.5. 

The revealed preference survey is used to understand the user’s choices from the available options. 

When it is introduced new conditions in the system, as a new transportation mode for instance, it is 

used the stated preference survey that evaluate people’s responses to a not available option and that 

predicts their behavior. 

As referred, the bike-sharing demand is also explained compering with other already implemented 

systems in other cities or in the same city in case of expansion, based on demographic, 

socioeconomic, and environment characteristics.  

The demand of New York City bike-sharing system was designed using the user group patterns of 

successful bike-share programs: Velib’in Paris, Velo’v in Lyon and Bicing in Barcelona; from 

which three typical user groups were identified: commuters, recreational/errand riders and tourists.  

The authors estimated the number of people in each potential user category in New York and 

applied to them different uptake rates (3%, 6% and 9%) to quantify the users of bike-share program. 

The uptake rates are defined based on London and Paris surveys (New York City Department of 

City Planning (NYCDCP), 2009). 

Krykewycz et al. use a methodology to estimate the demand for a new bicycle-sharing program in 

Philadelphia – Pennsylvania (Krykewycz et al., 2010).  

The authors’ defined two market areas using raster based in geographic information system analysis 

and applied in the calculation of the trip rates for three Bike-sharing Systems, determined through 

surveys in Lyon, Paris (France) and Barcelona (Spain) in order to estimate the shift from other 

transport modes to bike-sharing, establishing different demand scenarios (low, middle and high). 

In the case of Seattle, the study was based in the Philadelphia study.  

However, the market areas were defined considering a GIS dataset of weighted sum of indicators, 

that influenced the use of bike-sharing systems (population density, population density, job density, 

retail job density, commute trip reduction companies, tourist attractions, parks/recreation areas, 

topography, regional transit stations, bicycle friendly streets, streets with bicycle lanes and local 

transit stops). Rates observed in Lyon, Paris and Barcelona, to the defined market areas, were also 

applied (Gregerson et al., 2010). 

Krizek & Stonebraker presented a methodology - developed for Puget Sound Regional Council in 

Washington in 2002 - that determines the total number of potential users of a bicycle station (in 



Bike-Sharing Systems Design 3 DEMAND ANALYSIS ON BIKE-SHARING SYSTEMS 

 

Inês Frade 35 

 

different scenarios) depending of the respective user groups, defined as: bicycle commuters who 

work within a quarter mile of the bicycle station; bicycle users who park their bicycles at transit 

stations and bicycle users who travel with their bicycles. The methodology relates the number of 

the users with the employment data, the number of transit trips, the bicycle use share within three 

miles of a proposed bicycle station, and the number of bicycle commuters to within a quarter mile 

of the bicycle station. The validation of this method was done considering the data of two existing 

bicycle stations and the methodology was considered reasonably accurate (Bicycling and Transit - 

a Marriage Unrealized, 2010).  

In other studies, it is used revealed or stated preference surveys as methods for bike-sharing systems 

demand estimation (ConBici, 2007; dell’Olio et al., 2011; Monzón et al., 2010). In the cases of 

bike-sharing systems expansion, the revealed surveys can be very useful. However, in some cases 

the responses to the stated preference surveys can be strategic and may not reflect the real intentions 

of the interviewee. Surveys results must be used with care, mainly in the cases where similar 

services were not yet implemented.  

In order to avoid the constraints caused by the surveys, it is very important to evaluate different 

bike-sharing systems, defining the profile of the users and potential users and the factors that can 

influence the demand (as the geographical conditions, the variation of demand during the day or 

over the seasons, and other characteristics such as age, sex, and/or job, etc.). Actually, monitoring 

the performance of a system, in order to identify the strengths and weaknesses of spatial planning 

policy, is other important step to improve the planning process identifying new solutions strategies 

(Schwanen et al., 2004). 

The regression analysis is used to understand the relation between variables, as the characteristics 

of the environment and the use of bike-sharing. There are some studies of different bike-sharing 

systems that follow this approach, as Daddio, Rixey and Maurer & Maurer (Daddio, 2012; Maurer 

& Maurer, 2011; Rixey, 2012). 

Daddio presented a regression approach to explain the station demand based on the demographic, 

socioeconomic, and built environment characteristics around each existing station measured within 

400 meter walk distance from each station, using the data provided by Capital Bikeshare (bike-

sharing system of Washington Metropolitan Area) (Daddio, 2012). 

As result, the number of trips using bike-sharing system varies with the population between the 

ages of 20 and 39 (positive effect), the proportion of population that belongs to a race other than 

“white alone” (negative effect), the number of retail establishments selling alcohol (positive effect), 
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the number of metro stations (positive effect) and the distance from weighted mean (ridership) from 

the center of full DC and CA Capital Bikeshare system (negative effect). 

The trip generation includes information about the age and race of population, car ownership, the 

average income of the households, hotel rooms and workers who commuted by different modes; 

the trip attraction group considers the number of attractors (shopping centers, sports complexes, 

cultural/historic/civic sites, entertainment centers, museums, etc.), retails with alcohol licenses, 

colleges and parks in the surrounding areas, and transportation network characteristics include 

number of bus and subway stops, the length of bicycle infrastructure and the distance from system 

center.  

A similar analysis was made by Rixey to three different cases: Capital Bikeshare from Washington 

(DC), Nice Ride MN from Minneapolis/St. Paul (Minnesota); and Denver B-Cycle in Denver 

(Colorado) by (Rixey, 2012). 

The conclusions of this paper suggest that the station network effect is very important to explain 

the levels of usage of the system. The demand to the system (average monthly rentals by station) is 

also dependent on population density, retail job density, median income levels, share of alternative 

commuters and non-white population. However, the presence of bicycle in infrastructure seems to 

be less significant to the demand. 

Maurer & Maurer developed a regression model that details the demand to the bike-sharing system 

of Minneapolis and apply it to Sacramento (California). The authors conclude that the demand is 

influenced by the income, racial composition, job density, high-earnings job density, commute 

patterns, and proximity to rail stations and parks (Maurer & Maurer, 2011). 

 

As previously mentioned, when this research as initiated, the bike-sharing demand forecast was a 

topic under development and the approaches found in the literature also considered some research 

work that addressed strategies to estimate bicycle travel demand. These studies can be adapted into 

the demand of bicycle sharing systems or, at least, provide some guidelines in the determination of 

the number of users and their travel needs. 

Krizek & Stonebraker presented a methodology, developed for Puget Sound Regional Council in 

Washington in 2002, that determines the total number of potential users of a bicycle station (in 

different scenarios) depending of the respective user groups, defined as: bicycle commuters who 

work within a quarter mile of the bicycle station and bicycle users who park their bicycles at transit 
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stations and bicycle users who travel with their bicycles. The methodology relates the number of 

the users with employment data, number of transit trips, bicycle commuting mode share within 3 

miles of a proposed bicycle station, and number of bicycle commuters to within a quarter mile of 

the bicycle station. The validation of this method was done considering the data of two existing 

bicycle stations. Ultimately, the methodology was considered reasonably accurate (Bicycling and 

Transit - a Marriage Unrealized, 2010). 

The bicycle journeys to work as function of socio-economic, transport and physical variables is 

explored at (Parkin et al., 2007), considering an application in England and Wales to estimate the 

changes in levels of cycling use for 2012 London Olympic Games. It is based in a logistic regression 

model. As results, the authors had conclude that there are smaller proportions of bicycle in zones 

with more females and higher car ownership; the weather conditions, slopes and the physical 

conditions of the highway have impact of use of bicycle to work; the provision of infrastructure for 

cycle has a positive effect but only on zones with moderate slopes.  This model is useful when 

already exists a bike-sharing service implemented; its application in other cities has to be done very 

carefully because, as previously mentioned, cycling greatly depends on the local culture (Bachand-

marleau & Larsen, 2011). 

A simple regression model to estimate cycle trip rates is presented by Barnes & Krizek, allowing 

to estimate the percentage of cyclists in an area where its value is not known. As results the authors 

present different bicycle users’ rate for different geographic areas (metropolitan areas and over 

smaller areas such as specific parts of metropolitan areas) as consequence of formal policies and 

facilities. The model allows an analysis in different locations and geographic scales and provides a 

quick assessment of the solution to decision makers. Nevertheless, the model is too simplistic when 

it directly describes a relationship between the provision of bicycling facilities and the amount of 

bicycling that will take place, ignoring any other explanatory factors (Barnes & Krizek, 2005). 

An overview of different approaches to determine the bicycle travel demand is presented by Turner 

et al. at the most interesting ones are following exposed. The Rhode Island Pre-ISTEA Study 

assumes that bicycle trips are generated in an area of influence of bicycle facility (based on typical 

walking distances to transit service - 0.8 km of distance). The generated trips are estimated using 

trip generation coefficients based on the characteristics of the population and that had been 

developed in Harrisburg, Pennsylvania; it considers 3 types of purposes: utilitarian (to work, to 

school and to personal business), recreational with recreational facilities destination and  

recreational without destination (to visit friends, riding in neighborhood and long distance) (Turner 

et al., 1997).  
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Other method has emerged for a Bikes-on-Bus Program from Metro-Dade Transit Agency, 

implemented in Dade County, Miami – USA, that assumes three different predictors of bicycle 

demand: location of transportation disadvantaged persons considering that a large number of 

bicycle trips would be made by low income groups that are neither elderly nor disabled; locations 

of bicycle commuters using census data, and demographic characteristics since bicycle usage 

depends of gender, race, and age. These methods have some weaknesses because they do not 

consider several important influencing factors as the presence of bicycle lanes, the climate and 

geography local conditions, etc. 

The bicycle needs index identifies traffic survey zones with high bicycle use, and therefore, a need 

for bicycle facilities. It is based in a regression analysis considering as independent factors: the 

percentage of residents less than sixteen years of age, the number of hours worked per week, the 

percentage of land devoted to employment uses, population density, employment density, 

population density of residential land uses, and the ratio of workers to population. However, this 

regression has a low value of determination coefficient (0.42). This can be explained by the 

correlation between the explainable variables and there are other important factors that are not 

considered and that may influence the bicycle mode share (climate, topography, trip length, bicycle 

facilities, income, etc.). 

The Latent Demand Score Method is a gravity model that provides a coefficient of potential demand 

for bicycle trips throughout a transportation network (in each arc of the network) based on the 

influence of generator/attractors points in the city on the number of bicycle trips in the surrounding 

roads segments. The coefficient of potential demand (called LDS) is calculated in function of the 

purpose of the trip, the number of generators or attractors in the city by trip purpose and their 

average trip (obtained by Trip Generation handbook), the effect of travel distance in on the number 

of trips (elasticity). One of the advantages of this model is that it resulted in geographic information 

system. This method was e developed for city of Decatur (Georgia) and it was already used in 

Baltimore (MD), Birmingham (AL), Philadelphia (PA), Tallahassee (FL), Tampa (FL), Phoenix 

(AZ), and Vero Beach, St. Lucie and Alachua (FL) and Westchester, Rockland and Putnam Cos. 

(NY).  

 

As referred, the following sub-chapters present two different approaches to estimate de potential 

demand for a bike-sharing system. 
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3.3 Demand Analysis for new systems implementation 

3.3.1 Global Methodology 

The presented methodology focuses on the relation between the target public of bike-sharing, trip 

characteristics, and the physical characteristics of the city paths. As previously mentioned, bicycle 

usage is mainly mostly affected by the distance of the trip, the slope inclination, the purpose of the 

trip, and the lack of bicycle paths.  

However, in an urban environment, all streets are adaptable for bicycle use, from minor to major 

improvements. Thus, the following methodology admits that the city where it will be implemented 

the bike-sharing is planning the streets adaptation to include bicycles with safety and comfort. 

Therefore, the main advantage of this methodology is not only the demand quantification (which 

usually is made by applying a bicycle sharing users proportion to all the city trips – to all Origin-

Destination pairs – only considering different purposes) but also modeling it according to the 

studied area. 

The demand definition is studied considering two parts:  

• quantifying demand based on other case studies – obtaining the proportion of bike-sharing 

users per trip purpose and  

• defining, sequentially, the effect on demand caused by the trip characteristics (travel time 

between traffic zones) and physical city characteristics (slopes). 

As the final result, it will be obtained an Origin-Destination matrix with bike-sharing proportions 

to the studied area. The main aspects of this methodology are presented in the next subsections and 

it will be applied to the case study of Coimbra. The methodology includes purpose, distance, and 

slopes as factors for bicycle use. 

 

Purpose 

The trip purpose influences the probability of using the bicycle (Marleau et al., 2011). For instance, 

the probability of using a bicycle for leisure trips is greater than for shopping purposes, because it 

can be difficult carrying shopping bags on a bicycle (Mcneil, 2011; PROBICI team, 2010). 

The bike-sharing demand is also affected by the trip purpose, there are three typical user groups: 

commuters, recreational/errand riders and tourists. Thus, to each one it must be considered different 

initial rates of bicycle trips (Rn) per purpose (n) based on other study cases.  
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Distance 

For short distances (between 2 and 8 minutes trips) in urban areas, the bicycle can be the most 

efficient transportation mode. However, while travel distance increases the competitiveness will be 

negatively affected, and consequently, the potential demand for this transport mode will decrease. 

In other words, the potential demand is affected by an elasticity which causes a fall in the percentage 

of bicycle trips when the distance travelled increases. 

The elasticity is the ratio between the variation in the proportion of bicycle trips and the rate 

variation in travel time, between a reference situation and the desired point.  

The elasticity varies with trip purpose too. The travel time has a different effect according to the 

travel purpose. For example, two extra minutes on a work journey travel time can significantly 

reduce the proportion of bicycle users, whereas in recreational travel it may be irrelevant (Heinen 

et al., 2011). 

Thus, the percentage of bicycle trips for purpose as a function of travel time, Rtn, is calculated by 

equation (1): very short trips (less than 2 minutes trips) are made on foot thus there is no demand 

for public bicycles, while there is a range in terms of travel time where the demand of bicycle is 

maximum however there is an instant time from which it decreases being affected by the elasticity.  
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Where t0n and t1n are the reference instants from each the proportion of bicycle trips starts increasing 

or decreasing, respectively, and they can vary by trip purpose, ti is the time travel from each origin 

to each destination point, Rn is the initial rate of bike-sharing and En is the elasticity. 

The initial values of E by purpose must be appropriate to each case study. They are strongly 

dependent on local conditions and personal behaviors to the use of bicycles. These behaviors should 

be estimated with field surveys or by benchmarking with other examples from around the world. 

One example is the elasticity values presented in Santander case (Monzón et al., 2010). 
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Slopes  

The bicycle-sharing systems are specially adapted in the case of cities with steep slopes because 

the cyclists can use the bicycle in one direction and use other transport modes (such as buses) for 

the opposite direction. In these cases, the main problem of the sponsors of the bikes-sharing system 

is the relocation of bicycles that must be carefully designed.   

The slopes contribute to the ability of a travel route for cycling, according to the American 

Association of State Highway and Transportation Officials (AASHTO Executive Committee, 

1999), since grades greater than 5% are uncomfortable for many cyclists (because the ascents are 

not easy to climb and the descents induce excessive speeds). However, it may be used in short 

sections, and as a rule of thumb, the authors suggested the reference values of maximum road length 

for grades greater than 5% presented in Table 4.  

The percentage of bicycle trips per purpose is affected by the differences of slopes between origin 

and destination mainly in cases of ascents.  

In order to incorporate the effect of the slope in this methodology, each traffic zone is characterized 

by its roads grades, which means that if the zone has a lot of ascendant streets that do not obey the 

characteristics in Table 4, the demand for bicycle trips tends to decrease in trips with an undesirable 

destination.  

 

Table 4 – Maximum extension to different slopes,  

adapted from (AASHTO Executive Committee, 1999) 

Grade Maximum extension 

5-6% 240 m 

7% 120 m 

8% 90 m 

9% 60 m 

10% 30 m 

>11% 15 m 

 

The percentage of bicycle trips for purpose, Rsn(si), is a function slope characteristic and it is 

calculated by equation (2). 

tnsisn RfsR =)(  (2) 

Where fs is a factor defined as a function of the undesirable routes proportion and Rtn is the 

percentage of bicycle trips for purpose as a function of travel time. 
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The study is applied to Coimbra city (Portugal). The city of Coimbra was chosen due to the 

availability of data, the Mobility Study of Coimbra had been published at 2009 (TIS.pt, 2009) and 

because its characteristics. It is a medium-size city with a large student population – the University 

of Coimbra has approximately 25 000 students. With a mixed geographic pattern – zones with high 

slopes like the university zone and flat zones like the Solum area and the river’s side.  

 

3.3.2 Case Study – Coimbra (Portugal) 

Coimbra is located in the center of Portugal (Figure 13) and it had a population of more than 140 

000 in 2011 Census.  

 

Figure 13 - Location of: (a) Portugal within Europe, (b) Coimbra district within Portugal, (c) 

Coimbra municipality within the district, and (d) Study area within Coimbra municipality 

 

Coimbra does not meet a set of good infrastructural conditions to make bicycle as an optional 

transport mode. The lack of bicycle paths, bicycle supporting facilities and streets in steep slopes 

suggests that Coimbra is not suitable for cyclists. However, there are a lot of paths with soft slopes 

that can be easily adapted to meet the needs of a growing cycling population.  

According the Coimbra’s mobility study (TIS.pt, 2009), 42% of households had by then one car 

and about 45% had two or more cars, emphasizing the high motorization rate in the city – 522 cars 

per 1000 inhabitants compared with 473 cars per 1000 inhabitants in Europe in 2009 (Figure 1). 

Most daily trips are made by car (69%), and the bicycle is of very low importance. Anyway, this 

study present the bicycle as a forthcoming option, since 57% of trips have less than 4 km. 

The municipal urban public transport services include buses, trolleybuses and one elevator. The 

mobility study say that 18% of daily trips in Coimbra are taken in public transport. The latest 

strategic plans for the city stress some points with implications for cycling (CIM Região de 

Coimbra, 2014, 2021; Deloitte, 2009; TRENMO, 2016, 2018). 

(a

) 
(b

) 

(c

) 

(d

) 
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3.3.3 Results 

The mobility study divided the municipality of Coimbra into 61 traffic zones, 29 of which 

correspond to the city area of Coimbra.  

The methodology is applied to this case study considering the origin-destination matrix for the 

traffic zones of the city of Coimbra, as well as the distances between each traffic zone and its 

physical characteristics, in a Geographical Information System built for this purpose. 

As mentioned, the typical users of the bike-sharing systems are commuters, recreational/errand 

riders and tourists. In the Coimbra case study, the following rates of bicycle sharing trips per 

purpose were considered: (Rn) equals 3%, 9%, and 6% for commuters, recreational riders and 

tourists, respectively. These values were assumed considering a reference study for the New York 

City study case (New York City Department of City Planning (NYCDCP), 2009). 

The influence of the distance between origin and destination is calculated by equation (1), and 

considering the values of Table 5. The values were based on the Santander (Spain) case – available 

information by the time. 

 

Table 5 – Admitted values of ton, t1n, Rn and En 

Purpose t0n t1n Rn En 

commuters 1 8 3.0% -0.08 

recreational  1 10 9.0% -0.01 

tourism 1 10 6.0% -0.01 

 

To understand the slope effect of the Coimbra´s irregular orography, the routes in the road network 

were classified as suitable and unsuitable for cycling according to the relation between grade and 

extension of the roads presented in Table 6. The length proportion of suitable roads in each traffic 

area is presented in Figure 14.  
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Figure 14 – Traffic zones of the study area classified l by the length proportion of suitable routes 

 

As shown in the previous figure, the orography of the city is very irregular and, consequently, there 

are zones where is more comfortable to bike (green zones - were near to 100% of road extension 

respect the relation in) in terms of slopes, on the other hand, there are also zones where the major 

part of the routes are uncomfortable for cyclists (red zones - where only 40 to 50% meet Table 4). 

The factor fs of equation (2) was determined empirically, it should be adjusted through surveys. 

And it is presented in Table 6. 

 

Table 6 – fs values in function of rate of suitable routes. 

Rate of suitable routes fs 

90% 100% 1 

80% 90% 0.9 

70% 80% 0.7 

60% 70% 0.5 

50% 60% 0.35 

40% 50% 0.2 
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Figure 15 (a) presents the total number of trips attracted and generated in each, by all transport 

modes in the study area and Figure 15 (b) presents the results of this methodology application: all 

the trips simultaneously generated an attracted in each traffic zone, all day, by bike-sharing. 

 

Figure 15 – (a) Total number of trips in traffic zones of study area by all modes; (b) The estimated 

number of trips in traffic zones of study area using bike-sharing. 

 

From Figure 15 (a) it is possible to identify two traffic zones with a high number of generated and 

attracted trips (Alta e Solum), where the Alta area includes the Coimbra University and has about 

30.000 daily trips.  

After the application of the proposed methodology, it was possible to observe some changes in trip 

patterns: the east traffic zones (as Quinta da Maia or Chão do Bispo zones) lose some importance 

and the Baixa (downtown) and Vale das Flores area gained relevance, Figure 15 (b). 

 

3.3.4 Synthesis 

This section sets out a method for estimating the bike-sharing demand. It can geo-reference the 

demand, considering the characteristics of the city and of the trips. In terms of application of the 

methodology developed we can state that the potential bike-sharing demand pattern is different 

from the motorized trip pattern. This approach was illustrated by an application to the Portuguese 

city of Coimbra.  

 

(a) (b) 
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The main advantages of this approach are that it provides a quick assessment, and it can be adapted 

to other towns and cities according to its characteristics. The method can help in decision-making 

for transportation planners, policymakers, and investors. The method is useful in the full design of 

the system, including the location of bike-sharing stations and in the dimension of the fleet, as well 

as in the scheduling of the investments.  

This approach uses estimations on potential bike-sharing use when bicycle use is still at low levels 

- and there is no bike-sharing system already implemented.  

In fact, at these low levels, there is no significant data available to extract trends and specific 

proportions. 

Instead, in cities with bike-sharing systems functioning, data availability can promote estimations 

for further extensions or implementations elsewhere. The following sub-chapter shows an approach 

considering this data availability. 

 

3.4 Demand Analysis on existing systems 

3.4.1 Literature Review on Regression Analysis 

A regression model is a statistical technique used to analyze the relationship between variables and 

it could be defined as a simplified representation of the real world. It relates a single dependent 

variable (criterion) with one or a set of independent, or explanatory, variables (predictors). The case 

of more than one independent variable is called ‘multiple linear regression’. 

The objective of a multiple linear regression is using the known values of the independent variables 

to predict the value of the dependent variable. It models the relationship between the variables by 

fitting an equation to the observed data (linear or nonlinear) 

In a multiple linear regression model, the relationship between the dependent variable (Yj) and the 

independent variables (Xij i=1,…,k) is assumed to be linear and is defined as: 

0 1 1, ... 1,...,j j k kj jY X X j n   = + + + + =  (3) 

In the previous expression: 

• the terms βj are called regression coefficients and it represents the extent to which the 

independent variable influences the dependent variable;  
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• εj is the disturbance (or error) term and represents the random error associated to the 

regression, it reads as identifying variables omitted from the model, measurement errors in 

the dependent variable, or random variation in the underlying data-generating process; 

• β0 is called the intercept and it represents the value of Yj when 0, 1,...,ij iX k=  = . 

The parameters and coefficients of the model can be estimated trough the Ordinary Least Squares 

(OLS) method. The OLS method minimizes the sum of the residuals given by the difference 

between the observed values and estimated values of Y. But some assumptions are required: 

1. There is a linear relationship between dependent variable and independent variables, as 

reflected in equation (3); 

2. No relationship exists between two or more of the independent variables, meaning that all the 

independent variables in the model provide sufficiently independent information; 

3. The error term: 

3.1.  It has an expected mean value equal to zero  

( ) 0nE  =  (4) 

3.2. The variance is constant across the observations– homoscedasticity 

2VAR( )n =  (5) 

3.3. There is independency across observations in the error term elements 

[ , ] 0n jCOV i j  =   (6) 

3.4. It is uncorrelated with the independent variables  

,[X , ] 0i j i jCOV  =   (7) 

3.5. It is normally distributed 

2(0, )j N   (8) 
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The goodness of fit of the resultant model is measured through a set of parameters: multiple 

coefficient of determination (R2) and its adjusted value (Adjusted R2), F statistic, and Akaike’s 

information criterion (AIC).  

The R2 measures the proportion of the dependent variable explained by multiple regression model. 

And it is defined by the ratio between regression sum of squares and the total sum of squares, 

equation (9). 
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The value of R2 varies between 0 and 1 and the model is better as the closer the value of the R2 is 

to 1. When R2=1 the variation of independent variables explained all the variation of the dependent 

variable, and when R2=0 the model does not explain any of the variation in dependent variable.  

However, this coefficient is sensitive to the number of independent variables, increasing with the 

number of independent variables. To solve this influence, it is usually considered the adjusted R2, 

which considers the number of degrees of freedom of the model.  

The adjusted R2 is calculated by the equation (10) where N is the number of records in the data 

sample and k is the number of independent variables.  
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−
= − −

−
 (10) 

Adjusted R2 is a better goodness of fit measure than R2 in models with numerous variables.  

The F statistic tests the hypothesis that no one of the explanatory variables explains the variation 

of the dependent variable (H0: β1=…= βk=0). And it is used to test the significance of R2. If the null 

hypothesis is accepted than it is expected that R2=0.    

 

In the context of multiple regression models, time and space may create correlated errors by 

revealing trends over time or over the territory that explain the DV variation. The presence of 

correlation, that is, error terms from different observations are correlated over time or space, will 

not affect the unbiased or consistency of the OLS regression estimators but it affects their 

efficiency. 
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The presence of multicollinearity (non-compliance of assumption 3.1), heteroscedasticity (non-

compliance of assumption 3.2) and autocorrelation (non-compliance of assumption 3.3) suggest 

time and/or territory disturbances. 

In these cases, it is possible to justify the definition of different types of regression: 

• Time Series – regression between a set of variables across time in a spatial unit; 

• Cross Section – regression between a set of variables in a moment in time, for a set of 

territorial units or individuals (spatial); 

• Panel data – regression that combines spatial data with time data. 

The following paragraphs summarize the methods to identify the non-compliance of the Classic 

Regression Model Assumptions concerning multicollinearity, autocorrelation and 

heteroscedasticity. 

The resources of information for this review were (Anselin, 1988b, 1988a; Gujarati, 1996; LeSage 

& Pace, 2009; Maroco, 2010; Paradis, 2011; Pindyck & Rudbinfeld, 1981; Anabela Ribeiro, 2008; 

Wooldridge, 2002). 

When the two or more independent variables (or combination of variables) are correlated with each 

other (non-compliance of assumption 3.1) there is a problem of multicollinearity.  

If the regression model reveals multicollinearity cannot be estimated precisely: if the 

multicollinearity is perfect between independent variables (i.e., correlation equal to 1) the 

regression coefficients of the dependent variables are indeterminate and their standard errors are 

infinite and, in cases of presence (and not perfect) multicollinearity the regression coefficients 

possess large standard errors (in relation to the coefficients themselves). 

The degree of collinearity can be detected through the pairwise correlation between variables, 

Variance Inflation Factor (VIF) and the Conditional multicollinearity Number, as explained below. 

The pairwise correlation between variables of the database may identify correlation problems, even 

though there is not a establish boundary to preview collinearity, as a rule of thumb, correlations 

higher than |0.75| between variables suggests multicollinearity problems. 

The Variance Inflation Factor (VIF) is defined as equation (11) where rj is obtained for the 

regression of each independent variables on the other independent variables on a regression that 

does not involve the dependent variable.  
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As reference, VIF values higher than 7.5 there could be redundancy among variables - presence of 

collinearity problems. 

The Condition Index, defined as the square root of relation between the maximum and the minimum 

eigenvalue of the IV’s correlation matrix, is also used to identify multicollinearity. As reference 

values, there is moderate to strong multicollinearity if Condition Index is between 10 and 30, and 

if it exceeds 30 there is severe multicollinearity. 

Depending on the nature of the data and the severity of the problem, in the presence of 

multicollinearity, Gujarati (Gujarati, 1996) proposes different types of actions in order to alleviate 

it: 

• Combining cross-sectional and time series data – as exposed forward; 

• Remove one of the collinear variable(s), realizing that this decision may lead specification 

bias or specification error; 

• Transforming variables; 

• Adding new data, in some cases increasing the size of the sample (if possible) may attenuate 

the problem; 

• Using extraneous or prior information that allows to relate the coefficients of correlated 

variables; 

• Use non-linear equations; 

• Finally, do nothing concluding that the regression model is statically insignificant and its 

not possible to explain the dependent variables with the set of considered variables.   

The heteroscedasticity refers to the variance of disturbances not being constant (assumption 3.2) 

and affects the regression parameters precision, the t and F tests based on ordinary least squares 

can be highly misleading, resulting in erroneous conclusions about the model. 

The detection of heteroscedasticity can be done using a graphical method doing scatterplots of 

model fitted values in function of residual squared; the identification of a pattern may indicate the 

presence of heteroscedasticity. 
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Figure 16 presents typical scatterplots of the estimated mean value of DV and residual squared. 

Figure 16.a suggests that no heteroscedasticity is present, in contrast with the other graphics, for 

instance, in the Figure 16.c it is possible to identify a linear relationship and in Figure 16.d and e 

suggest a quadratic relation.  

 

Figure 16 - Possible patterns of model fitted values vs. squared residuals (Gujarati, 1996) 

 

If heteroscedasticity is detected, the plots of the disturbances versus the independent variables or 

partial variate plots allows to identifying where the problem occurs. 

The Breuch–Pagan test is a Lagrange multiplier test is one of the tests used to identify for linear 

heteroscedasticity. This test considers as null hypothesis the variance of the residuals is constant 

(homoscedasticity), if the null hypothesis is rejected it is identified the heteroscedasticity. 

The White test is a generalization of the Breusch–Pagan test allowing that the independent variable 

to have a nonlinear error variance for this reason is a more robust test. However, it has some issues 

when the model has many regressors. As the Breusch–Pagan test, the null hypothesis of White Test 

evaluates the (null) hypothesis of the homoscedasticity of the residuals against the hypothesis of 

unrestricted heteroscedasticity of the residuals. 

The presence of heteroscedasticity might indicate the existence of spatial autocorrelation, which is 

confirmed (or not) in testing its presence. 
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When the variable is related by itself over time or space, there is autocorrelation and the assumption 

of uncorrelated regressors and disturbances (assumption 3.3) is violated. 

The correlation over time (serial correlation) happens when a variable is time dimension, and its 

observations vary over different periods. In addition, a correlation over space occurs when the value 

in a space unit is influenced by the value of the variable in the neighborhood.   

Autocorrelation measures the similarity, or correlation, between observations over time or over 

space. The plot of the residuals at time t against their value at time t-1 or the plot of spatial data 

against its spatially lagged values – Moran’s Scatter plot can provide useful information about 

autocorrelation and it identifies the type of correlation between the residuals.  

Serial correlation is detected through a time sequence plot or Durbin-Watson test, combined with 

Breusch–Godfrey test in some situations, in case of spatial autocorrelation it is detected with 

Moran's I value combined with Lagrange Multiplier Lag and Error tests. 

The Durbin-Watson statistic is defined by the ratio of the sum of squared differences in successive 

residuals to the residual sum of squares – equation (12). 
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The interpretation of Durbin-Watson statistic results depends on two variables defined in function 

of the number of observations n and the number of independent variables – the lower bound dL and 

the upper bound dU (from the Durbin- Watson tables presented in Appendix D of (Gujarati, 1996)).  

The following figure shows the decisions related with the d value.  

 

Figure 17 – Durbin-Watson statistic. Adapted from (Gujarati, 1996) 
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Considering as null hypothesis H0: No autocorrelation, it is accepted if d is in the range ]dU; 4-dU[ 

and rejected if d is in ]0; dL[ or ]dL; 4[. However, if d is in ]dL;dU[ or ]4-dU; 4-dL[ the test gives 

inclusive results. In fact, as mentioned by Pindyck & Rudbinfeld (Pindyck & Rudbinfeld, 1981), it 

is possible that the correlation of the errors is due to the autocorrelation of the independent variables 

and not to the serial correlation of the error terms.  

In these cases, it is proposed the Breusch–Godfrey test, also known as Lagrange Multiplier test, in 

order to test serial correlation in these cases.  

The null hypothesis of this test considers that the autocorrelation coefficients are equal to zero. The 

null hypothesis is H0: No autocorrelation, against the possibility of the presence of autocorrelation 

(H1). 

Moran’s scatter plot reveals the relation between the observations in the vector y and the average 

values of neighboring wy.  

It is necessary to define the neighborhood, it is logically expected that the closest observations are 

more likely to be similar than the distant ones. In order to quantify this relation, it is associated a 

weight to each territorial unit, in this context it is usual to define two types of matrices: rook and 

queen. Rook weight matrix uses only common borders to define neighbors and queen matrix 

includes all common points (boundaries and vertices) in the definition. 

Figure 18 presents a random example of Moran’s Scatter plot that articulates the values of a variable 

with spatial distribution (x ax) with the spatial lags of those values. To each value y in spatial unit 

i,  there is a weighted average of the values of the variable y in the neighbors of i. The weights are 

the values of the matrix that reflect the neighborhood relations.  

The different quadrants reflect different types of relations:  

• the first sector (I) presents a positive relation, where high values of the variable are 

surrounded by high levels of the average of neighborhood; 

• the second sector (II) presents negative relation, where low values of the variable are 

surrounded by high levels of the average of neighborhood; 

• the third sector (III) presents a positive relation, where low values of the variable are 

surrounded by low levels of the average of neighborhood; 

• the fourth sector (IV) presents negative relation, where high values of the variable are 

surrounded by high levels of the average of neighborhood. 
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Figure 18 –Moran’s Scatter plot example (Gujarati, 1996) 

 

The slope of the trend line that adjusts the points of Moran’s Scatter plot define the Moran’s I 

coefficient, that is indicator of autocorrelation. The Moran’s I value is determined through the 

expression (13), where n is the number of territorial units at the database, wij is the weight between 

observation yi and yj, and y is the mean of the variable. 
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The value of I under the hypothesis of no autocorrelation is given by (14), Therefore, I  greater 

than I0 is positive autocorrelation, and lower than I0 is negative autocorrelation (Paradis, 2011). 
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The presence of heteroscedasticity and autocorrelation weakens the OLS’ efficiency in the 

estimation of regressions coefficients. In these cases, it is used the Generalized Least Squares – 

GLS to estimate the coefficients of the regression model.  
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GLS method transforms the regression variables in order to satisfy the standard least squares 

assumptions. The GLS estimator considers that each observation is weighted by a factor 

proportional to the error variance of the regression model. 

As referred by Verbeek, the transformed model does not contain an intercept term because all the 

variables, including the intercept term are transformed. Thus, the transformed regression is only 

employed to easily determine the GLS estimator and not necessarily has an interpretation of itself. 

That is, the parameter estimates are to be interpreted in the context of the original untransformed 

model (Verbeek, 2008). 

The dependent and independent variables of equation (3) are divided by the squared root of the 

error term variance – σ, transforming the equation (3) into the equation below where β*j are 

equivalent to the regression coefficients. 

* * * * * *

1 1, k,... 1,...,j j k j jY X X j n  = + + + =  (15) 

In GLS it is minimized the weighted sum of residual squares with the weight equal to 2
1


. 

The OLS estimator assumes that the explanatory variables are uncorrelated with error term, in other 

words, the error term has a random effect in the explanatory variables. GLS estimator, on the other 

hand, does not assume that the individual effects are uncorrelated with the regressors.  

The Hausman Test is used to evaluate if the fixed effects and random effects estimator are 

significantly different. The null hypothesis of this test considers that the explanatory variables are 

uncorrelated with error term (Assumption 3.4 of OLS estimator). Thus, the rejection of the null 

hypothesis suggests the possible inconsistency of the random effects model and the possible 

preference for a fixed-effects specification.  

This test evaluates the presence of omitted variables correlate with variable included in the model 

(LeSage & Pace, 2009).  

The accomplishment of 3.5 assumption (the error term is normally distributed) is tested trough the 

Jarque-Bera test (as alternative tests is mentioned Anderson-Darling Test, Shapiro-Wilk Test, 

Ryan-Joiner Test or Kolmogorov-Smirnov Test).  

Under the null hypothesis of Jarque-Bera test the residuals are normally distributed (H0: the 

residuals are normally distributed), thus the assumption 3.5 is respected when it is not rejected the 

null hypothesis (p value of the JB test is high). 

The following table summarizes of previous information. 
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Table 7 – OLS assumptions tests 

OLS assumptions Equation Test 

Rejection of the 

assumption indicates 

the presence of 

There is a linear relationship 

between DV and IVs 

 
- - 

The IV's are nonstochastic 

variables 
- 

Pairwise correlation 

Variance Inflation Factor 

(VIF) 

Condition Index 

Multicollinearity Condition 

Number 

Multicollinearity 

The mean value of the error 

term is zero  

 
- - 

The variance of error term is 

constant across the 

observations 

(homoscedasticity 

assumption) 

 

Graphical method  

Breusch–Pagan test 

White Test 

Heteroscedasticity  

The error term is independent 

across observations 

 Durbin-Watson test 

Breusch-Godfrey test - 

Lagrange multiplier test Serial correlation 

(autocorrelation)  Moran's I 

Lagrange multiplier lag 

Lagrange multiplier error 

The error term is uncorrelated 

with the IV 

 
 Hausman Test Heterogeneity  

The error term is normally 

distributed 

 
 Jarque-Bera test  - 

 

 

The analysis of Moran’s I indicates the presence of autocorrelation. The Lagrange Multipliers 

statistics identify the type of autocorrelation, divided into two different tests:  

• Lagrange Multiplier Lag (LML) to the model of spatial lag 

• Lagrange Multiplier Error (LME) to the model error territorial  

The null hypothesis evaluates the lack of autocorrelation at the dependent variable or at the error 

term, respectively. 
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There are robust versions of the previous statistics that tests the lag dependency in presence of 

missing error – Lagrange Multiplier Lag Robust (LMLR), and the tests for error dependence in 

presence of missing lag – Lagrange Multiplier Error Robust (LMER). 

 

3.4.2 Methodology 

Data availability from working bike-sharing systems allow the identification of the variables that 

influence the demand and how they influence it. The following methodology presented sets out a 

guideline to achieve this knowledge. 

The main objective of this analysis is to identify the variable that can explain the number of 

generated and attracted bike-sharing trips in the studied system. As referred on the 3.2 section, 

physical, social, and economic framework influences the willingness to choose bike-sharing or 

other transportation modes. 

Consequently, the identification of these variables, as well as their influence on the number of bike-

sharing trips, can potentiate the forecast of the bike-sharing demand. 

A spatial regression analysis is performed because the social and economic behavior has a territorial 

variability caused by the relation complexity between the variables all over the territory.  

The Boston bike-sharing system, with an extensive database available, was chosen for this approach 

(the case study is presented on section 3.4.3).  

This method can be used in different datasets, therefore enabling the utilization of this methodology 

for other study cases. 

The methodology analysis compromises the steps presented on Figure 19. This process used the 

programs ArcGis® and GeoDa®. 

It starts with the database construction, which must include all the essential information to the 

proper characterization of trips, such as:  

• bike-sharing system – trips by origin and destination and date-time, location of the stations, 

users characteristics; 

• socio-economic information – population by age, gender, education, job type, income, 

number of vehicles available, location of jobs and number of works; 

• Mobility patterns – mode choice, time to leave home to go to work/school, and  
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• Transport system – public transport available, demand to each transport, location of 

facilities (bus stations, subway stations, car parking). 

 

 

Figure 19 - Flowchart of regression analysis for demand estimation  

 

In order to avoid bias in the distribution of the residuals, all of the variables are linearized before 

the construction of models. 

The territorial distribution set is necessary to territorial uniformize the information. It can be tested 

different spatial approaches to find the most suitable to this problem analysis. 

On the case study and within the GIS environment, different territorial distributions were tested: 

stations (points), Census areas, and grid division.  

In order to find the best OLS model, given the available set of variables, it was performed the 

Explanatory Regression (ESRI, 2018a) tool from ArcGis ®.  

The objective of the tool is to provide an idea of how the exploratory variables may explain the 

dependent variable – data mining of available information. It evaluates all combinations of possible 

explanatory variables that may explain the dependent variable. 

The output of the exploratory regression tool is a report divided into three main sections: the global 

summary,  the highest adjusted R-squared results, and the summary of variable significance (ESRI, 

2020). 
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Figure 20 – Explanatory Regression tool of ArcGis® 10.3 

Source: (ESRI, 2018a) 

 

The Global Summary table lists the five diagnostic tests and the percentage of models that passed 

those tests assuming a cutoff (as a reference value) for each one. 

Figure 21 presents an example of a summary table where it is possible to identify the diagnostic 

tests (adjusted R2, explanatory variable coefficient p-value, VIF, Jarques Bera p-value, and the 

Spatial Autocorrelation p-value2) and the reference values of the cutoffs, the number of models 

tested (Trials) the number of models that passed the cutoff (#passed) and their corresponding 

proportion (% passed).  

The models tested for the Spatial autocorrelation has to pass all the previous criteria, thus the 

number of trials is (normally) lower than the number of trials in the others tests. 

 

 

2 The information about these diagnostic tests are presented on Spatial Regression analysis in section 3.4.1 
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Figure 21 – Explanatory Regression summary table example 

 

The highest adjusted R-squared results section presents three best models (with the best 

performance on adjusted R2 and VIF) for each possible combination number of exploratory 

variables, and, for each one, the results of statistic tests performed - adjusted R2, AIC, Jarque-Bera, 

Breusch-Pagan, VIF and the Global Moran’s I3. 

The summary of variable significance presents the behavior of each independent variable of the 

models tested - Variables influence analysis. In other words, it presents the significance of the 

variables with the correspondent proportion of models where it was considered significant and the 

proportion of models where they have a positive or negative influence on the dependent variable. 

It provides the proportion of times that each variable is statistically significant and how it relates 

with de dependent variable (proportion of models with positive or negative influence). The 

variables that are consistently significant in the tested models are strong predictors of the dependent 

variable. 

The report also presents a summary of variable significance that provides information about the 

consistency of the relationship between each independent variable with dependent variable - strong 

predictors will be consistently significant. 

Additionally, the report includes the summary of multicollinearity with information about the 

relations between independent variables, the summary of residual normality, and the summary of 

residual spatial autocorrelation.  

 

3 The default spatial weights matrix file used to run the Global Moran's I is based on a weighted nearest 

neighbor conceptualization of spatial relationships. 
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The model identified by the Exploratory Regression tool at the highest coefficient of determination 

(R2) is detailed analyzed with GeoDa® within the OLS framework and to identify possible spatial 

trends using Maximum Likelihood Approaches 

As referred, the analysis is performed considering three different spatial approaches: point data, 

census blocks, and a squared grid. It considers as dependent variables the total number of generated 

and attracted trips of each station or zone. Therefore, it is performed six analyses to the Boston’ 

case study using this methodology : 

• Generated trips through a points (stations) distribution; 

• Attracted trips through a points (stations) distribution; 

• Generated trips through a census areas distribution; 

• Attracted trips through a census areas distribution; 

• Generated trips through a grid distribution; 

• Attracted trips through a grid distribution. 

 

The territorial distribution selected entail necessary considerations in terms of territorial 

distribution of data that are following described. 

• Stations distribution 

The characteristics of the surrounding zones are picked from a buffer of 400 linear meters 

of radius from each station. 

It is considered that the data distributed into areas (census blocks) is uniformly distributed 

and the contribution to the buffer is proportional to the area that intersect the buffer zone.  

• Census areas distribution 

It aggregates the information attributed to points into areas, for instance the total number 

of trips an area is equal to the sum of trips from the stations within the area 

• Grid areas distribution 

The grid territorial distribution was defined through the Optimized Hot Spot Analysis  

(ESRI, 2018b) tool from ArcGis®. That creates a fishnet map of statistically significant 
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spatial clusters of high values (hot and cold spots) using the Getis-Ord Gi*4 statistic. It 

evaluates the characteristics of the input feature class to produce optimal results. 

The information is aggregated into the grid’s zones adding the contributions of cells that 

results from the crossing of zones and grid shapefiles, and the information allocated into 

points is merged into areas.  

 

3.4.3 Case Study – HUBWAY/Bluebikes System (and area) 

Bluebikes is the name of the bike-sharing system that operates in four cities of the Great Boston 

metropolitan area: Boston, Brookline, Cambridge, and Somerville, in the State of Massachusetts – 

United States, see Figure 22. The system was called Hubway from 2011 until 2018. 

 

Figure 22 - Location of Massachusetts State in United States of America and location of the study 

area in Massachusetts State. 

 

According to the United States Census Bureau these cities had 903.594 habitants in 2014. The study 

area is almost flat, it includes important universities and a big population of students, according to 

(Baltes, 1996; S. L. Handy et al., 2010) are great conditions to promote bicycle as a transportation 

mode. These characteristics can explain part of Hubway success.  

The bike-sharing system was launched in July 2011 in the city of Boston with 610 bicycles, 60 

stations and 3203 annual members (142289 trips). Currently it is operating with more than 3500 

 

4 Getis–Ord (Gi*) is a spatial statistic to identify hot spots. More information about this method at 

(Songchitruksa & Zeng, 2010) 
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bikes at over 325 stations through the Boston, Brookline, Cambridge, and Somerville (2020 data). 

According to Bluebikes’ website page, on September, 2020 Bluebikes passed 12 million total rides.  

The case study focusses on a database available online available under the Hubway Data 

Visualization Challenge, held in 2014. The database includes the records of every trips taken form 

July 28th 2011 until 1st December 2013, when the system was called Hubway. For that reason the 

bike-sharing systems is hereinafter referred as Hubway. 

The database contains the origin and destination stations, date and hour as well as some information 

about the user. During this period, it was recorded 1.579.025 trips, 30 daily trips in average per 

station considering their operation days: 

• The number of trips increases all over the years, as well as the number of stations, the 

following graphics presents the total number of trips per month (Figure 23) and the average 

of trips per operated station (Figure 24); 

 

Figure 23 – Trips per month (from July 28th 2011 until 1st December 2013) 

 

 

Figure 24 – Average BS trips per open station  
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• 70% of the trips are made by registered users and 30% by casual users;  

• From the trips of registered users 75% are male and 25% female users; 

• The trip takes in average 11 minutes on the system and the average daily distribution is 

presented in Figure 25, the yellow zones identify the peak hours (from 7:30am to 9:30 am 

and from 4:30 pm to 6:30 pm).   

 

Figure 25 – Hour distribution of the trips recorded – beginning of the trips 

 

• Until September 30th 2012 it was registered the age of the users, from the recorded data the 

age profile is presented in the Figure 26 

 

Figure 26 – Age profile of the trips recorded until September 30th 2012 
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The present analysis pretends to explain the trips generated and attracted to the bike-sharing system 

thought some variables. The available database includes:  

• socio-economic information (population, medium household income, enterprises and 

employees, the travel time to work and the proportion of people that commutes by public 

transport or by bicycle),  

• public transport data (bus stops and subways station and number of entrances on the 

subway), 

• bike-sharing system operational information (such as stations and docks, the number of 

trips started and ended and the time and travel time associated at each trip).  

The analysis is made considering the year of 2013, when a total of  904.675 trips were registered 

between April 2nd and November, 30th – when the system was operating. And the census data from 

U.S. Census Bureau (2009-2013). 

The available database has the georeferenced information distributed in two ways: areal data and 

point patterns. The data is adjusted in order to define the regression model, as explained below. 

To avoid scale problems in the interpretation of the results, the parameters are linearized using 

logarithmic (natural logarithm) transformations of the variables.  

The Table 8 present and describe each variable of the database as well as the territorial distribution 

of the variable. 

 

Table 8 – Database variables 

Variable Definition 
Territorial 

distribution 

O_TTRIP201 Total number of trips in 2013 – Origin at each station 

Point 

D_TTRIP201 Total number of trips in 2013 - Destination at each station 

OPDays2013 Number of operated days in 2013 at each station 

O_TTDay 
Average daily number of trips per operated day in 2013 – Origin at 

each station 

D_TTDay 
Average daily number of trips per operated day in 2013 - Destination 

at each station 

NEmployers Employers 

Nworkers Number of workers at each employer 
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Variable Definition 
Territorial 

distribution 

BusStops Bus stops 

MBTAs Massachusetts Bay Transportation Authority (MBTA) Subway stations 

MBTApaxE Average daily number of entrances at each the MBTA station 

Pop2013 Total population 

Census tract 

Male2013 Total of male population 

P15_24Y201 Total population aged between 15 to 24 years 

P25_59Y201 Total population aged between 25 to 59 years 

P60_74Y201 Total population aged between 60 to 74 years 

TTHSH2013 Total of households 

TFam2013 Total of families 

FH Total of family households 

NFH Total of nonfamily households 

Il49k2013 Number of households with an annual income lower than $49,999  

I50_149k20 
Number of households with an annual income between $50,000 and 

$149,999 

IM150k2013 Number of households with an annual income higher than $150,000 

TotEmploye Civilian employed population with 16 years and over 

MBusScArt 
Civilian employed population with management, business, science, and arts 

occupations 

Serv Civilian employed population with service occupations 

SaleOf Civilian employed population with sales and office occupations 

NConstMAin 
Civilian employed population with natural resources, construction, and 

maintenance occupations 

ProdTran 
Civilian employed population with production, transportation, and material 

moving occupations 

W16YM Workers5 with 16 years and over in households 

WatH Workers who work at home 

 

5 All the variables that mentions workers refers to “Workers with 16 years and over in households” and the information 

is based on the most often habits during a reference week of the survey. 

People who used different means of transportation on different day of the week were asked to specify the one they used 

most often and people that use more than one means of transportation to get to work each day were asked to report the 

one used for the longest distance during the work trip. 
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Variable Definition 
Territorial 

distribution 

WnatH Workers who do not work at home 

WIT 
Workers that use car, truck, or van as means of transportation to work 

(including company car but excluding taxicabs) 

WTP 
Workers that use public transportation (excluding taxicab) as means of 

transportation to work 

Wwalk Workers that walked as means of transportation to work 

  

Census tract 

Wbike Workers that use bicycle as means of transportation to work 

Woth 
Workers that use taxicab, motorcycle or others as means of transportation to 

work 

W0_459 Workers who leaves home to go to work between 12:00 a.m. and 4:59 a.m. 

W5_529 Workers who leaves home to go to work between 5:00 a.m. and 5:29 a.m. 

W530_559 Workers who leaves home to go to work between 5:30 a.m. and 5:59 a.m. 

W6_629 Workers who leaves home to go to work between 6:00 a.m. and 6:29 a.m. 

W630_659 Workers who leaves home to go to work between 6:30 a.m. and 6:59 a.m. 

W7_729 Workers who leaves home to go to work between 7:00 a.m. and 7:29 a.m. 

W730_759 Workers who leaves home to go to work between 7:30 a.m. and 7:59 a.m. 

W8_829 Workers who leaves home to go to work between 8:00 a.m. and 8:29 a.m. 

W830_859 Workers who leaves home to go to work between 8:30 a.m. and 8:59 a.m. 

W9_1159 Workers who leaves home to go to work between 9:00 a.m. and 11:59 p.m. 

TWl10 Workers that take less than 10 minutes to go to work 

TW10_14 Workers that take between 10 and 14 minutes to go to work 

TW15_19 Workers that take between 15 and 19 minutes to go to work 

TW20_24 Workers that take between 20 and 24 minutes to go to work 

TW25_29 Workers that take between 25 and 29 minutes to go to work 

TW30_34 Workers that take between 30 and 34 minutes to go to work 

TW35_44 Workers that take between 35 and 44 minutes to go to work 

TW45_59 Workers that take between 45 and 59 minutes to go to work 

TWM60 Workers that take more than 60 minutes to go to work 

VWnv Workers 16 years and over in households with no vehicle available 

VW1v Workers 16 years and over in households with 1 vehicle available 

VW2v Workers 16 years and over in households with 2 vehicles available 

VWM3v Workers 16 years and over in households with 3 or more vehicles available 

P18YHSh Population 18 years and over with high school graduate or higher 

P18YBDh Population 18 years and over with bachelor's degree or higher 
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The spatial analysis considers 158 census areas, selected considering that the distance to the bike-

sharing stations implemented is lower than 1 kilometer (0,62 miles). The study area is presented in 

the following map - Figure 27. 

 

Figure 27 – Study case area, census zones and the location of hubway stations 

 

The following sections presents the results obtained and the best models are analyzed.  

 

3.4.4 Analysis and results 

The Explanatory Regression tool from ArcGis® considered all the combinations from 1 to 5 

independent variables of the set of variables presented at Table 8 – 56 variables. Thus 4.216.4226 

models were tested for each data distribution evaluated. The models with more than five variables 

presented high values of multicollinearity (condition index >30).  

The same methodology is tested for the trips started and trips with destination in the stations of the 

Hubway stations for different spatial approaches. The results are present in the following 

subsections. 

 

6 Except the models that failed due to perfect multicollinearity. 
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Stations distribution 

As mentioned the first territorial distribution tests the number of trips generated/attracted related to 

the characteristics of the surrounding zones considering buffers with 400 meters of radius from 

each station. 

Figure 28 presents the distribution of the average number of trips per operated day started (Figure 

28a) and finished (Figure 28b) in each station. There is a concentration of generated and attracted 

trips on downtown area where there is a higher concentration of facilities. 

 

Figure 28 – Average number of daily trips by origin (a) and destination (b) -  Stations models 

territorial distribution 

 

The data from census zones are equally distributed throughout each zone to obtain the proportional 

(in area) characterization of each buffer, as explained on section 3.4.2. 

 

Generated trips  

The summary of the exploratory regression for the trips with origin in the stations (Table 9) presents 

five diagnostic tests, the cutoff considered in each diagnostic, and the number of models tried and 

models that passed each of those tests. Four (4)  million models were analyzed, corresponding to 
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all the combinations from 1 to 5 independent variables of the variables presented at Table 8 – 56 

variables. The output of the exploratory analysis is presented at attachment I.1.1. 

 

Table 9 – Exploratory regression global summary – stations model [origin] 

Search Criterion Cutoff Trials # Passed % Passed 

Min Adjusted R-Squared > 0.50 4160123 525631 12.63 

Max Coefficient p-value < 0.05 4160123 195033 4.69 

Max VIF Value < 7.50 4160123 1822730 43.81 

Min Jarque-Bera p-value > 0.10 4160123 216261 5.20 

Min Spatial Autocorrelation p-value > 0.10 18 0 0 

 

As the result of the ArcGis’ tool, 13% of the models tested has an adjusted R2 value higher than 

50%, but only 5% of the models contain explanatory variables whose coefficients are statistically 

at the 95% confidence level (p-values smaller than 0.05).  

44% of the models pass the multicollinearity criteria (VIF<7.5) and only 5% of them passes the 

Jarque-Bera criteria – an indication a normal distribution of the residuals. 

Only 18 models passes all the criteria and are tested to spatial autocorrelation, however because 

there is no a neighborhood structure none of the models passes the criteria.  

The results of exploratory regression identified the following variables as consistently significant 

in the models evaluated (Top five variables more significant). 

 

Table 10 – Summary of Variable Significance – stations model [origin] 

Variable % Significant % Negative % Positive 

WWALK 99.95 0.00 100.00 

NCONSTMAIN 98.74 100.00 0.00 

W830_859 97.73 0.18 99.82 

NWORKERS 93.00 0.00 100.00 

MDTAPAXE 88.11 0.17 99.83 
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Among the 4 million models analyzed, it is possible to conclude the isolated influence of these 

variables in the number of trips starting at each station. These variables were essentially the 

following: 

• variable that indicates the number of people that used to walk to work (WWALK) is 

positively significant, areas where people walk have low distance trips and potential use of 

bike-sharing (central areas); 

• the population with natural resources, construction, and maintenance occupations 

(NCONSTMAIN) is negatively significance, for this group travel distances tend to be 

longer to their working areas, and many times they have the transportation assured by the 

employer - they are not potential bike-sharing users; 

• the variable that refers to workers who leaves home to go to work between 8:30 a.m. and 

8:59 a.m. (W830_859) has positive sign, similarly as the people who walked to work, this 

group tends to work near home (since the working hour is at 9:00, usually), this means that 

in areas where people have low distance daily trips there is more tendency to potentially 

use the bike-sharing (central areas); 

• The number of works (NWORKERS) in each buffer has also a positive influence, meaning 

that in areas with a higher concentration of jobs there is a higher number of tall buildings 

and, again, we are talking about central areas and central business districts (CBD); 

• And the number of entrances on subway stations (MDTAPAXE) – reflects the global 

demand for a subway station and the existence of subway stations. Again, this is a 

characteristic of central areas. Bike-sharing station demand is higher at this type of POI 

(Point of Interest), showing its potential role as a solution to the first or last mile of a 

subway trip. 

 

From all the possible combinations for these models the one with a higher adjusted R2 (0.65) 

includes three of the above consistently significant variables (WWALK, W830_859, and 

MDTAPAXE) with a positive relation and an additional variable POP2013 with a negative relation. 

These are the main factors affecting the trips with origin at the stations. Although the spatial 

regression is not analyzed in this case, the Geode regression tool was used just for basic regression 

validations upon the models, as shown in Table 11. 

The model has a R2 equal to 0.65 that reflects a model that explain 65% of the of the Hubway 

system through the stations’ approach.  
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Table 11 – Summary of results for the best model – stations model [Origin] 

    Classical Model 

    z-value prob 

S
ta

ti
o
n

s 
m

o
d

el
 

Log likelihood -115 - 

Akaike info 240 - 

Schwarz criterion 255 - 

R2 0.65 - 

CONSTANT 5.955 - 

MBTApaxE 0.016 *** 

Pop2013 -1.449        ** 

Wwalk 0.848       *** 

W830_859 0.652        *** 

    

Normality of Errors 

Jarques-Bera 
17.861          0.00013 

Heterocedasticity 

Breuch-Pagan 
3.046          0.55024 

White test 11.7567           0.62584 

 

The Jarques-Bera test is significant, which means that the model is biased, and some explanatory 

variables might be missing (the null hypothesis is refused, which admits normal distribution of 

errors). The Breuch-Pagan test indicates the presence of Heteroscedasticity.  

The factors influencing the trips are the number of resident people that walk to work (WWALK), 

the number of persons that leave the house to go to work between 8:30 and 9 am (W830_859), and 

subway stations entrances (MBTApaxE). These three variables are on the top five influencing 

variables in the previous explanatory analysis. 

The number of residents (Pop2013) is a variable with a negative impact on the number of bike-

sharing trips, it reflects that areas with fewer residents are the areas with more potential bike-sharing 

trips departing (again, central areas). 
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Attracted trips 

The exploratory regression for the trips with destination in the stations is presented in the Table 12 

(the detail is presented at attachment I.1.1). 

 

Table 12 – Exploratory regression global summary – stations model [destination] 

Search Criterion Cutoff Trials # Passed % Passed 

Min Adjusted R-Squared > 0.50 4160123    429181     10.32 

Max Coefficient p-value < 0.05 4160123    197412      4.75 

Max VIF Value < 7.50 4160123    1822730     43.81 

Min Jarque-Bera p-value > 0.10 4160123    205848      4.95 

Min Spatial Autocorrelation p-value > 0.10 18 1 5.56 

 

The obtained results are similar to the previous model in terms of volume of models that passes the 

referenced cutoffs. Most of the models represents less than 50% of the trips attracted and just 5% 

of the models has a normal distribution of the residuals. 

It has identified by the tool one model that passes the spatial autocorrelation criteria – the model 

correspondent model (identified on annex I.1.1 – Trips ended – Exploratory regression output ) 

does not commit the VIF cutoff (VIF=13.56). 

The results of exploratory regression identified the following variables as consistently significant 

in the models studied (Top five variables more significant). 

 

Table 13 – Summary of Variable Significance – stations model [destination] 

Variable % Significant % Negative % Positive 

WWALK 99.90 0.00 100.00 

W830_859 97.07 0.23 99.77 

NWORKERS 95.04 0.00 100.0 

MBTAPAXE 91.80 0.10 99.90 

MBTAS 89.37 6.45 93.55 

 

Among the exploratory regression approach models analyzed is possible to conclude that: 



3 DEMAND ANALYSIS ON BIKE-SHARING SYSTEMS Bike-Sharing Systems Design 

 

 

74 Inês Frade 

 

• Similarly to the results obtained on the origin model, the WWALK, W830_859, and 

NWORKERS variables contributes to the increase of the number of bike-sharing systems, 

which are variables related to the short distance trips, 

• The existence of a subway station (MBTAS) and the number of entrances in it 

(MBTAPAXE) contributes positively to the demand for bike-sharing. Therefore, the results 

indicate that bike-sharing systems' success is related to proximity to a subway station. 

 

Table 14 summarizes the best model achieved considering the trips finished at stations points.  

 

Table 14 – Summary of results for the best model – stations model [destination] 

    Classical Model 

    z-value prob 

S
ta

ti
o

n
s 

m
o
d

el
 

Log likelihood -115 - 

Akaike info 243 - 

Schwarz criterion 260 - 

R2 0.66 - 

CONSTANT 7.464 *** 

MBTApaxE       0.023      *** 

Pop2013       -1.640        *** 

Wwalk       0.921       *** 

Wbike       0.152       *** 

W830_859 0.468        *** 

    

Normality of Errors 

Jarques-Bera 
18.772           0.000 

Heterocedasticity 

Breuch-Pagan 
3.433           0.633 

White test 16.279           0.699 
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The results considering departure trips as the dependent variable are similar to the ones representing 

arrival trips.  

In the present case, the model represents about 66% of the trips.  However, the error distribution is 

not normal and is attached to an indication of heteroscedasticity. 

The number of residents that walk to work and that go to work between 8:30 and 9:00, along with 

the subway demand, are the main significant exploratory variables. 

The number of people that use the bike as a transport mode (Wbike) is also a significant exploratory 

variable. It indicates the bike-sharing trips arrival areas have more bike users. Again, we might be 

talking about central areas with shorter commuter distances and more bike commuters and that at 

the same time concentrate bike-sharing destinations. 

 

Census areas (irregular areas) 

A second approach is to estimate the influence of the total neighborhood characteristics (in which 

the station is) on the bike-sharing demand. And in this case, it will be possible to estimate a spatial 

regression:  the influence of the neighbors at each zone. The data were analyzed through a territorial 

distribution equal to census tracts division, considering 158 census tracts areas, selected with a 

distance to the bike-sharing stations implemented is lower than 1 kilometer (0,62 miles). The 

information allocated into points is merged into areas, as previously referred. 

  

Figure 29 – Trips density by origin (a) and destination (b) -  Census tracts models territorial 

distribution 
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As in the stations' case, the maps of generated and attracted trips are similar. It is possible to identify 

the Back Bay, the Downtown Crossing, the MIT zone and the Mid-Cambridge Area as the zones 

with more generated and attracted trips. And, on the other side, the North Cambridge and the south 

of Boston has a lower number of trips. 

On bike-sharing it is possible to have zones/stations that generate more trips than attracting (or 

vice-versa) that systems tend to have a difficult relocation process – for instance, in high sloped 

zones when a bicycle (from the system) is a good option to go down but a not option to go up. 

 

Generated trips  

The exploratory regression results, using as dependent variable the trips that started at the stations, 

are summarized in  Table 15.  

 

Table 15 – Exploratory regression global summary – Census areas model [origin] 

Search Criterion Cutoff Trials # Passed % Passed 

Min Adjusted R-Squared > 0.50 4163813 0 0.00 

Max Coefficient p-value < 0.05 4163813 7709 0.19 

Max VIF Value < 7.50 4163813 952563 22.88 

Min Jarque-Bera p-value > 0.10 4163813 2083 0.05 

Min Spatial Autocorrelation p-value > 0.10 18 9 50.00 

 

Through the analysis to the exploratory analysis, it is possible to conclude that there is no models 

with R2 higher than 0.5, among the 4 million trials tested. This means that with this data set does 

not explain the majority of the dependent variable variation. 

Moreover, 95% of the models analyzed have the Jarque-Bera test statistically significant (the data 

does not form a normal distribution).  

However, there is some heteroscedasticity probably related to the spatial distribution of data (spatial 

autocorrelation). 

So, even if the R2 is not significant at the required levels, there is an indication for some spatial 

autocorrelation.  
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Therefore, it is interesting to look at the variables consistently showing some significance, 

presented on next table. 

 

Table 16 – Summary of Variable Significance – census areas model  [origin] 

Variable % Significant % Negative % Positive 

MBTAPAXE 85.09 0.01 99.99 

MBTAS 80.73 7.06 92.94 

MWORKERS 77.54 0.00 100.00 

WWALK 67.93 0.95 99.05 

VWNV 62.93 0.36 99.64 

 

Between the models analyzed it is possible to conclude that: 

• Census zones where there are subway stations (MBTAS) and those ones that registered 

more entrances (MBTAPAXE) have more probability of higher number of bike-sharing 

trips, similarly to the study considering the points approach, as expected; 

• The number of workplaces (MWORKERS) seems to be also significant. There is a 

concentration of bike-sharing trips in areas where the workplaces are also more 

concentrated. 

• Again, the use of walking to work (WWALK) seems to be related to the departing trips, 

probably related to central areas where the number of shorter trips is higher. 

• A new variable that appears here is the non-availability of personal vehicles in the workers' 

household (VWNV). Car ownership tends to be a variable that negatively influences bike-

sharing use. 

 

The following table presents the model with highest adjustment identified by the exploratory 

ArcGis® tool to estimate the number of bike-sharing trips starting in the stations, estimated through 

the Geoda® software. 

The statistical test of Jarque-Bera indicates a residuals normal distribution, Breuch-Pagan and 

White tests reveal the residuals are heteroskedastic. But, as previously mentioned, the value of R2 

has a weak adjustment to the dependent variable variation.  
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From the tests for spatial dependence diagnostics, it is possible to conclude that there is no spatial 

correlation between variables since all the tests are non-significant (p-value > 0.05).  

 

Table 17 – Summary of results for the census areas model [origin] 

    Classical Model 

    z-value prob 

C
en

su
s 

a
re

a
s 

m
o

d
el

 

Log likelihood -401  - 

Akaike info 812  - 

Schwarz criterion 827  - 

R2 0.21  - 

Constant -7.503 *** 

W630_659 -0.826 *** 

W7_729 -1.023 *** 

VW1v 1.244 *** 

NEmployers 1.029 *** 

      

Normality of Errors 

Jarques-Bera 
4.216 0.12 

Heterocedasticity 

Breuch-Pagan 
10.207 0.04 

White test 108.631 0.00 

Spatial Dependence 

Moran’s I 
-1.450         0.14 

LML 1.839         0.18 

LME 2.448 0.12 

LMLR 0.043 0.83 

LMER 0.652      0.42 

 

However, they approach the level of significance of p=0.10, which shows some tendency for spatial 

dependence.  

Besides VWNV, the significant independent variables are the following: 
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• People leaving home in the early morning (W630_659 and W7_729) tend to use other 

modes of transportation than bike-sharing, probably meaning that they have longer trips; 

• The availability of just one vehicle in workers households (VW1v) increases the number 

of bike-sharing trips, meaning that some family members use other alternatives rather than 

the car; 

• The number of employers (NEmployers) in each zone has a positive effect on the number 

of bike-sharing trips, certainly related also to the number of workplaces and jobs. 

  

Attracted trips 

It was not possible to obtain the full output of the exploratory regression for the model that considers 

the trips with a destination in each zone. The high amount of degrees of freedom tested requires 

large amounts of RAM and a computer with only 16Gb of RAM was used. Unfortunately, despite 

being tested multiple times, the solver maxed out the available RAM and the computer crashed. 

This lead to a situation where the output file was only partially populated.  

The partial output is in annex I.1.2 and it presents the models with highest adjusted R-squared 

results. From this list it is possible to conclude that the value of R2-adjusted is always lower than 

0.3, which reveals a weak adjustment as in the previous model (with origin trips as dependent 

variable). 

The following table summarizes the GeoDa® output for the best model identified on Exploratory 

Regression partial output.  

As in the model using trips with origin in the stations, there is a normal distribution of the residuals 

at the same time they present a heteroscedastic behavior, according to the results of the Jarque-Bera 

and Breuch-Pagan tests. However, the adjustment of the model is not good explaining the number 

of trips starting in each zone.  

Also, there is no spatial dependence between variables since all the tests are non-significant (p-

value > 0.05). 

The impact of independent variables is similar to the previous model presented, with the same 

variables being the significant ones, thus: 

• People that early leave home to work (W630_659 and W7_729), contributes negatively to 

the number of bike-sharing trips; 
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• The availability of one vehicle in workers households (VW1v) and the number of 

employers in each zone is have a positive effect in the number of bike-sharing trips; 

• In addition, the number of stations (MBTAs) also has a positive effect on the number of 

bike-sharing trips arriving, as in the point-station data distribution approach. 

 

Table 18 – Summary of results for the best models – census areas model [destination] 

    Classical Model 

    z-value prob 

C
en

su
s 

a
re

a
s 

m
o

d
el

 

Log likelihood -457  - 

Akaike info 927  - 

Schwarz criterion 945 -  

R2 0.28  - 

Constant -6.627 *** 

      W630_659       -1.260        *** 

W7_729       -1.720        *** 

VW1v        1.994        *** 

MBTAs       0.250        ** 

NEmployers        1.546        *** 

      

Normality of Errors 

Jarques-Bera 
1.616 0.45 

Heterocedasticity 

Breuch-Pagan 
11.23 0.05 

Spatial Dependence 

Moran’s I 
-1.247         0.21 

LML 1.057 0.30 

LME 1.894         0.17 

LMLR 0.196         0.66 

LMER 1.034        0.31 

 



Bike-Sharing Systems Design 3 DEMAND ANALYSIS ON BIKE-SHARING SYSTEMS 

 

Inês Frade 81 

 

Grid division 

As referred, the grid is defined through Optimized Hot Spot Analysis tool from ArcGis®. It was 

considered the stations shapefile as input feature and the study area (Figure 27) as bound. The tool 

defined a fishnet with squares of 860 meters side, as presented at the Figure 30. 

The information is aggregated into the grid’s zones adding the contributions of cells that results 

from the crossing of zones and grid shapefiles, and the information allocated into points is merged 

into areas, as detailed on methodology (section 3.4.2). 

 

Figure 30 – Average number of trips per operated day by origin (a) and destination (b) – Grids’ 

models territorial distribution 

 

The pattern of generated trips and attracted trips is similar, as expected due to the previous analysis. 

There are small differences in the east zone of Boston Common and in the north of Cambridge. 

However, the differences are small in terms of trips and close to the scale threshold. 

 

Generated trips  

The Table 19 presents the summary of exploratory regression analysis considering as dependent 

variable the trips started in the grid cells.  
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The summary of the exploratory regression presents similar results to the census tract models 

analysis.  There are no models with Adjusted R2 higher than 0.50 – weak adjustment to the number 

of trips with origin in each station. 

A low number of models reject the Jarque-Bera test – the data does not follow a normal distribution. 

However, there is evidence of spatial dependence.  

 

Table 19 – Exploratory regression global summary – GRID model [origin] 

Search Criterion Cutoff Trials # Passed % Passed 

Min Adjusted R-Squared > 0.50 4148046 0 0.00 

Max Coefficient p-value < 0.05 4148046 128037 3.09 

Max VIF Value < 7.50 4148046 155027 3.74 

Min Jarque-Bera p-value > 0.10 4148046 170708 4.12 

Min Spatial Autocorrelation p-value > 0.10 18 15 83.33 

 

The following variables were identified as constantly significant in the models evaluated – the table 

presents the top five variables with more significance, contributing positively to the number of bike-

sharing trips - Table 20. 

 

Table 20 – Summary of Variable Significance  – GRID model [origin] 

Variable % Significant % Negative % Positive 

WWALK 99.91 0.00 100.00 

MBTAPAXE 98.20 0.00 100.00 

NWORKERS 95.25 0.00 100.00 

MBTAS 94.40 6.86 93.14 

VWNV 92.88 0.25 99.75 

 

From the Table 20 is possible to summary some points that are similar with previous models:  

• the number of resident people that walks to work (WWALK), meaning that bike-sharing 

trips are most likely to occur in areas where the trips have a short duration; 
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• the number of entrances on subway stations (MBTAPAXE and the number of subway 

stations (MBTAS)), meaning that bike-sharing trips are most likely to occur in areas where 

there is a subway and strong possibilities to intermodality; 

• the number of workers at each zone (NWORKERS), meaning that areas with a high 

concentration of activities and workplaces are more likely to have bike-sharing trips; 

• the number of  workers resident in each zone with no vehicle available (VWNV) meaning 

that areas with a higher concentration of activities and workplaces are more likely to have 

less car ownership and bike-sharing trips are an alternative. 

 

The Table 21 summarizes the comparison between one model achieved considering the analysis to 

the grid distribution data through a classic model, Spatial Lag model and Spatial Error model. 

Estimating first the Classic Regression Model for the best model identified, the significant variables 

appearing are W830_8_860 (with a positive relation) and P18YBDh and Serv (with a negative one), 

besides WWALK and MBTApaxE. 

In areas of higher literacy (P18YBDh - Population 18 years and over with bachelor's degree or 

higher), there are higher-income residents and higher car ownership (and fewer bike-sharing trips, 

as stated before). The same happens with the SERV variable analysis: people that work in service 

occupations tend to have higher incomes. 

The error term follows a normal distribution, and there is strong heteroscedasticity due to spatial 

dependence, as shown in Moran's I significance. 

The Classic Model presents an adjusted R2 equal to 0.51, explaining 50% of the trips generated in 

each cell. 

Considering Lagrange Multipliers (LML and LME) the significance appears only in the Lag model 

meaning that the spatial dependence is on the dependent variable.  

The comparison between the three models through Log-likelihood, Akaike info, and Schwarz 

criterion values shows that the Spatial Lag is the best - the higher Log-likelihood and the lower 

information criteria. 

It means that it is difficult to capture all the relations in only one model. The 50% explained is 

probably related to this dimension and heterogeneity. If from here, a reduced set of cells were 

considered, like the central ones, this proportion would increase, probably enormously. Even 

though, it is of outmost importance reflect on the variables influence on the number of trips. 
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Table 21 – Summary of results for the best models – GRID model [origin] 

    
Classical Model Spatial Lag Model 

Spatial Error 

Model 

    z-value prob z-value prob z-value prob 

G
R

ID
 m

o
d

el
 

Log likelihood -426 - -423 - -426 - 

Akaike info 865 - 861 - 864 - 

Schwarz criterion 883 - 882 - 883 - 

R2 0.511   - - - - - 

ρ - - 0.301          *** - - 

Λ - - - - 

0.13668

4        - 

Constant -1.261  -0.73535         -1.23718         

Serv     -1.129 * -0.89039        *** -1.16098        *** 

Wwalk        2.274 *** 1.6309        *** 2.1389        *** 

W830_8_860 1.746 *** 1.36425        *** 1.78195        *** 

P18YBDh        -2.157 *** -1.58139        *** -2.06303        *** 

MBTApaxE        0.132 *** 

0.11625

2       *** 

0.12975

9        *** 

  
  

        

Normality of Errors 

Jarques-Bera 
1.878 0.39     

Heterocedasticity 

Breuch-Pagan 
18.838 0.00 19.238     0.00 19.1414      0.00 

Spatial Dependence 

Moran’s I 
1.296 0.19 6.305 0.01 0.7126 0.40 

LML 5.806 0.02     

LME 0.549 0.46     

LMLR 11.004 0.00 - - - - 

LMER 5.747 0.02     
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Attracted trips 

Table 22 shows the results of the exploratory regression analysis considering as dependent variable 

the trips with the destination in the grid cells defined. As before there are no models with R2 higher 

than 0.5. 

 

Table 22 – Exploratory regression global summary – GRID model [destination] 

Search Criterion Cutoff Trials # Passed % Passed 

Min Adjusted R-Squared > 0.50 4148046 0 0 

Max Coefficient p-value < 0.05 4148046 128346      3.09 

Max VIF Value < 7.50 4148046 155027      3.74 

Min Jarque-Bera p-value > 0.10 4148046 180958 4.36 

Min Spatial Autocorrelation p-value > 0.10 18 15 83.33 

 

The same variables are the most significant on the tested models for attracted (Table 20) and 

generated trips (Table 23).  

 

Table 23 – Summary of Variable Significance – GRID model  [destination] 

Variable % Significant % Negative % Positive 

WWALK 99.91 0.00 100.00 

MBTAPAXE 98.28 0.00 100.00 

NWORKERS 95.77 0.00 100.00 

MBTAS 94.44 6.86 93.14 

VWNV 92.91 0.25 99.75 

 

It is summarized the model achieved considering the analysis to the grid distribution data through 

a Classic model, Spatial Lag model and Spatial Error model in the Table 24. 

The destination model performance and results are quite similar to the origin model results. Thus 

the model is adjusted to 51% of the cases (adjusted R2 = 0,51), there is a normal distribution in the 

residuals and the residuals are heteroskedastic and it is detected the presence of spatial dependence. 
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Table 24 – Summary of results for the best models – GRID model [destination] 

    
Classical Model Spatial Lag Model 

Spatial Error 

Model 

    z-value prob z-value prob z-value prob 

G
R

ID
 m

o
d

el
 

Log likelihood -426 - -423  -426  

Akaike info 865 - 861  864  

Schwarz criterion 883 - 882  883  

R2 0.512 -     

ρ - - 0.299 ***   

λ - -   0.134 0.32 

Constant -1.249 * -0.727 0.30 -1.226 0.10 

Serv -1.125 *** -0.887 *** -1.155 *** 

Wwalk 2.278 *** 1.636 *** 2.144 *** 

 W830_860  1.741 *** 1.361 *** 1.775 *** 

 P18YHSh -2.160 *** -1.587 *** -2.068 *** 

MBTApaxE 0.133 *** 0.117 *** 0.131 ** 

       

Normality of Errors 

Jarques-Bera 
1.756 0.41 18.77 *** 18.698 *** 

Heterocedasticity 

Breuch-Pagan 
18.399 0.00 6.241 **   

Spatial Dependence 

Moran’s I 
1.282 0.19 6.241 0.01248 0.688 0.41 

LML 5.751 0.01     

LME 0.530 0.46     

LMLR 10.982 0.00     

LMER 5.762 0.01     

 

As in the case of origin models studied, the Spatial lag model is the one that presents the best 

adjustment, with lower values Log likelihood, Akaike info criterion and Schwarz criterion.  

The influence of the variables are similar to the origin model in terms of variables and influence of 

them on the number of trips with destination in each zone. 
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3.4.5 Synthesis 

None of the models analysed explains more than 60% of the bike-sharing trips, using the database 

available. This database reveals the proprieties of multicollinearity, heteroscedasticity, and 

autocorrelation. Therefore, these models should be used with caution as a way to predict the number 

of bicycle trips to expect, both departing and arriving, at points (stations) or areas. 

Moreover, using the grid data distribution, it was possible to identify that part of this 

heteroscedasticity in the regression error term is due to clusters and outliers (Spatial 

Autocorrelation) in the variable’s distributions.  

 However, the combined Regression Analysis (Exploratory Tool and Spatial Regression) identified 

variables consistently significant through all the analyses as factors influencing bike-sharing trips.  

This consistency also seems to be relatively independent of the geographic distribution of the data 

or if it is an origin or destination bike-sharing trip, although there are some differences.  

Other approaches were tested, considering peak time hours and only working days’ trips, but the 

conclusions remained very similar to the presented ones, not adding value to the outcomes.  

Table 25 presents a synthesis of the results, where the main findings can be observed. The ‘+’ 

symbol indicates a positive correlation with the number of trips and the ‘-‘, a negative correlation. 

The database variables designation was substituted by their meaning, increasing the quick 

assessment of the findings. 

 



3 DEMAND ANALYSIS ON BIKE-SHARING SYSTEMS Bike-Sharing Systems Design 

 

 

88 Inês Frade 

 

Table 25 - Summary of Variable Significance  – Results synthesis 

Variable/Model 
Point 

Departures 

Point 

Arrivals 

Census 

Tracks 

Departures 

Census 

Tracks 

Arrivals 

Grid 

Departures 

Grid 

Arrivals 

People that walk to 

work 
+ + +  + + 

People that work in 

industry or resources 
+      

People that leave home 

between 8:30 and 8:59. 
+ +   + + 

Number of Workers + + +  + + 

Number of entrances in 

the subway stations 
+ + +  + + 

Population in 2013 - -  -   

Number of subway 

stations 
 + + + + + 

People that bike to 

work 
 +     

Households with no car 

available 
  +  + + 

Households with one car 

available 
   -   

People that leave home 

between 7:00 and 7:29. 
  - -   

People that leave home 

between 6:30 and 6:59. 
  - -   

Number of employers 

(companies or 

institutions) 

  + +   

Population 18 years and 

over with bachelor's 

degree or higher 

    - - 

Civilian employed 

population with service 

occupations 

    - - 
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Globally, city areas with high activity concentration, small commuting distances, and close to 

public transport facilities are the ones where one should expect higher bike-sharing trips demand. 

Focusing on the results it is possible to conclude that: 

• The number of people that used to walking or cycling to work is positively significant, it 

suggests that this group is potentially the group that is willing to use bike-sharing – short 

distance trips;  

• Workers who leave home to go to work between 8:30 a.m. and 8:59 a.m. have positive 

significance, similarly, as the people who used active modes to commute, this group tends 

to work nearly home and they have a short commute trip;  

• Zones with more employers or a higher number of workers has also a positive impact on 

the number of bike-sharing trips, these trips could be related to last-mile trips for the people 

that use other transport and complete the trip with bike-sharing; 

• The presence of subway stations and the demand for the subway have a positive effect on 

the bike-sharing trips validating that bike-sharing is a good option to last-mile for public 

transportation trips;  

•  The non-availability of a vehicle in the household has a positive influence on bike-sharing 

trips since people tend to use alternative transport modes. 

The conclusions obtained are in line with the published research. The bike-sharing system’s users 

most frequently used the stations closest to either home (40%) or work (40%) (S. A. Shaheen et al., 

2011).  

As referred by Dell’Olio et al, some points that are potentially optimal locations for the stations: 

near to public facilities in the city, near to the most used stations and car parks to promote 

intermodality, on the flattest areas of the city, it should not overlap stations of different companies 

in the same location, and only where bicycle paths exist (dell’Olio et al., 2011). 

Bicycles can work as a feeder and distributor service for public transport. Therefore, parks for 

bicycles and stations for bicycle sharing must be provided in public transportation terminals to 

complement the trips (Grava, 2003; Pucher & Buehler, 2008; Sörensen et al., 2012). 

For further studies approaches, we must consider that central to these finds there are at least three 

variables absent from the database analysed: 

• The distinction between a daily commuting trip (work or school) or a leisure trip;  

• The trip length; 
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• The existence of free or cheap car parking. 

This information would validate the results and must be included in future databases collections. In 

further studies and considering the variability of this database variables relations, other methods 

such as Instrumented Variables and Geographically Weighted Regressions approaches could be 

used. Even if this database was complete with all the variables needed, using a single regression 

for the entire Boston Bike-Sharing System cannot incorporate all the geographical variation in the 

relation between the variables. 

It is important to mention that the chapter summarizes the research work done on the Hubway 

system analysis. Other approaches were done considering peak time hours, working days trips, etc. 

however the conclusions remained very similar to the presented ones not adding value to the 

outcomes presented. 

There is always a little difference between the calculated R2 adjusted in ArcGis® and GeoDa®, the 

difference in the analyzed models was not significant and never changed the conclusions obtained. 

 

3.5 Conclusion 

The prediction of a new transportation mode is always a challenge to a transport engineer. It is hard 

to foresee human behavior, which is even harder when the data available does not fit the needs of 

the problem.   

This chapter presented two different approaches to address the demand estimation on bike-sharing 

systems, the first one, designed in a context of low published research on bike-sharing (Figure 3) 

and, specifically on bike-sharing demand, is a methodology focused on bike-sharing demand 

shaped by city characteristics that affect bicycle usage.  

It provides a quick assessment and it can be adjusted to other territories despite being based on a 

global proportion of users that need to be adapted to the socio-economic and cultural characteristics. 

The objective of the second present approach was the study of the Hubway system in order to 

understand the demand based on the socio-economic and cultural characteristics facing up the 

challenge of the first approach.  

Although the results achieved are not conclusive in the prediction of bike-sharing demand, the 

information allowed to identify some of the city characteristics to consider in bike-sharing system 

demand and some of the potential bike-sharing user's profiles.   
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Systems monitoring is a step to improve the planning process for bike-sharing systems. With this 

approach, it can be possible to identify the strengths and weaknesses of spatial planning policy and 

the main characteristics that affect the use of the system. 
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4 LOCATION OF BIKE-SHARING STATIONS 

4.1 Introduction 

Bike-sharing is getting increasingly popular as a sustainable transport system as the number of bike-

sharing systems grow significantly worldwide in recent years. One of the most relevant elements 

in the implementation of these systems is the location of the stations. As mentioned in chapter 2, 

the location of bike-sharing stations might compromise the success of the system.   

Municipalities or public-private partnerships are usually responsible for implementing bike-sharing 

systems. The public investment in bicycle mobility (particularly bike-sharing) is complex because 

it is always subject to a budget. The main concern for public investment is to maximize the benefits 

through the design and implementation of bike-sharing systems. This work lays out a methodology 

to help with the decision-making of bike-sharing systems. 

This work focus on bike-sharing systems with fixed stations. This chapter proposes an optimization 

model to design the bike-sharing system maximizing the demand covered with budgetary 

constraints.  

It combines strategic decisions for locating and dimensioning bike-sharing stations (stations and 

number of bicycles) with operational decisions (bicycles relocation). 

The model determines the optimal location of the bicycle stations, the fleet size, the capacity of the 

stations, and the number of bicycles in each station, considering an initial investment lower than 

the given budget. Moreover, it balances the annual cost of the system and the revenue assuming a 

possible supplementary budget from the system provider to cover any loss resulting from the 

shortfall between its operating cost and the revenue from the subscription charges. 

The research work present in this chapter was published in Transportation Research Part A: Policy 

and Practice (I. Frade & Ribeiro, 2015). 

The chapter is organized into four sections, besides the introduction. Section 4.2 presents a literature 

review on location models including general optimization models and location models applied on 

bike-sharing systems. Section 4.3 details the proposed optimization model for the design of a new 

bike-sharing network, as well as the assumptions upon which it is based. The model is then applied 

to the city of Coimbra (Portugal), and the data and results are presented in section 4.4. The last 

section 4.5 discusses the model formulation.  
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4.2 Literature Review – Location Models 

Facility location is a strategic decision that depends on its initial goals. Locations are usually 

selected efficiently with the support of a particular type of optimization model, called facility 

location models, whose decision variables represent the location, the capacity, the coverage area of 

facilities considered, and, in this case, the relocation of bicycle stations (Daskin, 1995, 2008; 

ReVelle & Eiselt, 2005). 

A facility location model can include different objectives, such as minimizing overall cost, 

minimizing transport cost, or maximizing demand coverage.  These objectives correspond to 

solutions found through fixed-charge models,  p-median models, and maximal covering models. 

Depending on whether capacity constraints apply to the facilities, the models classify them as 

capacitated or incapacitated. In bike-sharing stations, the literature reports different approaches to 

tackle station location with facility location models.  

An optimization model is described by Lin and Yang which proposes an integer nonlinear program 

that determines the optimal location of docking stations, the bicycle lanes needed and what routes 

should be taken from each origin to each destination. It is based on cost minimization and assumes 

a penalty for uncovered demand. This model does not consider the relocation of bicycles; it assumes 

that bicycles and free spaces are always available in the stations, but this oversimplifies the problem 

(Lin & Yang, 2011). 

The model presented by Lin et al. incorporates bicycle stock considerations as a hub location 

inventory model. Since the formulation presented is not computationally tractable, the authors 

proposed a greedy heuristic method to find efficient near-optimal solutions (Lin et al., 2011).    

A mixed-integer linear program performed through a heuristic that optimizes the location of shared 

bike stations is presented by Martinez et al., assuming a fleet size and bicycle relocation calculation 

for a regular operating day. The focus of the method is to maximize revenue (Martinez et al., 2012).  

Besides facility location models, the literature contains other methodologies to define the location 

of the stations.  

Romero et al. consider a simulation-optimization method that relates public bicycles to private cars. 

The methodology is essentially a bi-level mathematical programming model that optimizes the 

location of public bicycle stations (Romero et al., 2012).  

The García-Palomares et al. work proposes a GIS-based methodology to estimate the potential trip 

demand and its spatial distribution, the location of the stations (using location-allocation models), 

the station capacity and demand profiling for stations (García-Palomares et al., 2012). The balance 
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of the bike-sharing systems problem, which considers the number of bicycles in each station and 

the optimal relocation routes, is discussed in (Lu, 2013; Raviv & Kolka, 2013; Sayarshad et al., 

2012) stressing the importance of considering both the location problem and the relocation problem. 

The first sets out a robust fleet allocation model that generates the optimal daily allocation of 

bicycles to the stations and the redistribution flows of an implemented bike-sharing system, while 

minimizing the total cost (Lu, 2013). Raviv & Kolka present an inventory model to define the 

management of bike-sharing under the introduction of a user dissatisfaction function to assess the 

relocation service quality. The methodology focus is to find the initial inventory of the station that 

minimizes the dissatisfaction function (Raviv & Kolka, 2013). Finally Sayarshad et al., provides an 

optimization model to plan the relocation of bicycles in bike-sharing systems in small communities, 

assuming the maximization of the total benefit to the company (function of revenue and costs) 

(Sayarshad et al., 2012).  

These works provide a good background for our study, but they miss some relevant points related 

to real-world implementations of these systems.   As we know, public investment requires the 

maximization of the benefit, and in the case of bike-sharing, it also involves maximizing the number 

of users.  

The maximization of demand coverage can be solved using maximal covering models, which are 

especially well suited to bike-sharing stations. These models were introduced by Church & ReVelle  

and their application makes it possible to determine the locations that maximize the covered 

demand, for a given number of facilities (Church & ReVelle, 1974). 

The presented model for the location of bike-sharing combines strategic decisions with the system’s 

size (stations and number of bicycles) establishment and with operational decisions (bicycles 

relocation).   The model defines the optimal location of the bicycle stations, fleet size, station 

capacity, and bicycle quantities in each station.  Moreover, using an initial investment achieves a 

balance between the annual cost of the system and the revenue. It also considers a possible 

supplementary budget given by the provider of the system to cover losses resulting from the 

shortfall between its operating costs and revenue from the subscription fees. 

 

4.3 Modeling Approach 

The optimization model presented below addresses some of the issues presented earlier in this 

thesis. The model is the backbone of the proposed approach as it defines the optimal design of a 

bike-sharing station network to maximize the demand covered while taking into account restrictions 

on the cost and level of service. It simultaneously determines the location of the stations, the number 
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of bicycles that should be available in each station to maximize the demand (by defining the 

relocation operations across the zones), and the fleet size for each time period.   

This optimization model articulates a demand study for the different zones in a city or urban area. 

The demand corresponds to the number of trips generated and attracted in each zone, being the 

zones small enough to guarantee walking distances inside each one.  

The zones must be as small as possible for the solution to have the highest accuracy. The analysis 

to identify the most suitable distances is performed for each case in order to define it according to 

the locality and the available data.  

Nevertheless, no zone should exceed 500 meters as the maximum distance between any two points 

regardless of its shape. In smaller zones, it is unlikely that someone will use the bike-sharing system 

to travel within a zone. The minimum length of the zone is defined through the possible dimension 

for the correct understanding of Origin-Destination (OD) trips matrix.  

The models requires also a time-period OD matrix. The day is divided into periods which should 

match the same timeframe of the available data in each case study and articulated with the frequency 

of relocation activities. Specific periods may be very demanding both in terms of cost and human 

resources.    

The objective of the model is to maximize the covered demand and the return on investment. On 

the revenue side, it considers a possible public investment contribution to the system and the 

revenue from the subscriptions. On the expenses side, it considers the relocation and maintenance 

costs (bicycles and stations).  

The model is subject to capacity constraints to secure the coverage of demand, cost constraints 

based on net present value to satisfy the available budget, and domain constraints to ensure the 

viability of the variables.  

The inputs of the model are: the demand for the system, maximum and minimum capacity of the 

stations, the price of the stations and bicycles and the relocations and maintenance costs, the total 

investment budget and the annual supplementary budget, as well as the discount and growth rate 

and the project's horizon years.  

The model outputs include the number of stations in each zone and their capacity. The number of 

bicycles to locate and to relocate at each station and each time step, the total fleet size, the annual 

revenue, and the annual expenses are also outputs in this model. 

The notation used to represent the sets, decision variables, and parameters used in the model is 

given below, in order of appearance. The available software programs, such as XPRESS®, can be 

used to solve the model. 
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Sets: 

J: set of demand zones, indexed by i and j 

T: set of time periods, indexed by t 

 

Decision variables: 

ijtx : proportion of covered demand from zone i to zone j in time step t  

iy : is 1 if the bike station in zone i is opened and 0 otherwise 

ijtr : number of bicycles relocated from i to j at time step t 

itv : number of bicycles in zone i at the beginning of period t (needed to meet the demand in that 

zone) 

iz : number of docks in zone i 

 

Parameters: 

uijt: demand from i to j in time step t   

ib: initial budget 

sb: supplementary budget to cover loss resulting from the shortfall between operating costs and 

revenue from charges 

i: investment needed to the implementation of the system 

zmin: minimum station capacity 

zmax: maximum station capacity 

Tv: total fleet size of the system 

cb: unit price of a bicycle 

csf: fixed cost of a station 

csv: variable cost of a station 

crf: fixed unit relocation trip cost 

crv: variable unit relocation trip cost 

cms: maintenance cost of the bicycle station, including depreciation per year 

cmb: maintenance cost of each bicycle, including depreciation per year 

fa: annual user subscription 

fm: monthly user subscription 

fd: daily user subscription 
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dr: discount rate 

gr: growth rate 

n: project horizon (years) 

f: income from the subscriptions 

c: costs of the project in the project horizon (n) 

b: benefits of the project in the project horizon (n) 

 

The problem of determining the maximum coverage solution for locating bike-sharing stations is 

represented by the following model: 


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TtJjJiyx iijt  ,,  (33) 

 

TtJjJiyx jijt  ,,  (34) 

 

TtJjirijt = ,0  (35) 
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  Jiyi  1,0  (37) 
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The objective function (16) of this linear program maximizes the demand covered by the bike-

sharing system.  

Constraint (17) defines the number of bicycles available at a station in zone i in time step t. This is 

the balance of the bicycles available in the previous time step: difference between the bicycles 

leaving station i and arriving at station i, as well as the bicycles relocated from or to station i, 

assuming that the number of bicycles at the beginning and the end of the day is the same, constraint 

(18).  

The capacity of any station is always the same as (or lower) than an established maximum capacity 

of the stations, constraint (19), and higher than a minimum, constraint (20). The number of bicycles 

available in station i in time step t has to be enough to meet the demand, constraint (21).   
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The stations should always have free parking places to ensure movement between stations and 

bicycles to cover the demand. Experience shows that free spaces must always be 25% of the station 

capacity. Thus at the beginning of t the number of bicycles in station i must be 75% of the capacity 

of that station, constraint (22), while there must be more than 25% of bicycles, constraint (23). But 

during each time period the model considers the possibility of fluctuations in the number of 

bicycles/parking spaces available. 

The number of bicycles to be relocated from station i is lower than the number of bicycles in the 

station, constraint (24). Equation (25) determines the total fleet of the system.  

The investment is the sum of the cost of the bike-sharing stations (defined as a function of the 

number of docks) and the cost of the bicycles (assuming that the implementation costs are 

included), equation (26), and the investment must be lower than the initial budget available ib, 

constraint (27). 

The annual cost of the system includes the relocation cost, the maintenance cost and the vehicle 

depreciation cost, equation (28).  

The income from subscriptions is determined from the annual and daily subscriptions, equation 

(29); it is estimated that daily 50% of the users have annual, 20% monthly and 30% daily 

subscriptions7.  

The benefits consider the supplementary budget (from public or other bodies) to cover any loss 

resulting from the shortfall between operating costs and the revenue from the daily charge, equation 

(30). The net present value for this problem must be greater than 0 to ensure a good investment, 

constraint (31).  

The proportion of the demand from i to j that can be covered is no more than 1, constraint (32). 

Constraints (33) and (34) state that demand can only be served by installed bike stations. 

Finally, equations (35) to (37) specify the domain of the decision variables.  

Where it is possible to have smaller zones (census block size for instance) and thus meet the 

requirements presented above, the model locates none or one station per zone, thereby enabling the 

decision maker to choose easily where to locate the station in the zone.   

However, special care should be taken where the zones defined by the demand study are not small 

enough to be considered in the terms specified; in other words they are big enough to have more 

than one station and the need to ride a bicycle within the zones is accepted, using the bike-sharing 

system. In these cases, the model must not consider iy ℕ Ji  and equation (38) because it 

 

7 According to the manufacturers in this sector. 
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limits the number of bicycle stations to one per zone. Therefore, we did not consider this restriction 

in the case study presented in the next section. 

 

4.4 Case study 

The city of Coimbra, Portugal was chosen as a case study for this application. The case study and 

its demand forecast is presented on chapter 3.3.  

It is concluded that 2291 of the daily trips (from a total of 122 253 trips) can be done using bicycles 

from the bike-sharing system, which is 2% of the trips. 

In the application presented below, we assume a more optimistic scenario and demand is 2.5 times 

the demand defined in this study, thus 5728 of the daily trips can be done using bicycles from the 

bike-sharing system, which represents 5% of the total of trips. 

The traffic zones considered are too large to satisfy the assumption that there are no bike-sharing 

trips inside the zone. Thus, as stated above, constraint (38) is not considered in this application. 

Five-time steps are considered in order to adjust to the available data.   

The maximum bike capacity of the stations is assumed to be 20 and the minimum 10, because it is 

usually quite hard for bike-sharing systems to acquire land for stations with a capacity over 25 

bicycles. 

The cost of a station will depend on the number of docks. The fixed cost is taken to be €3000 with 

the price increasing by €500 per slot. The unit price of a bicycle considered in our study is €3008 

and other costs assumed were: the fixed relocation cost of €0.1, the variable relocation cost of €0.01 

(per bicycle to be relocated), the annual maintenance costs of €100 per station and €50 per bicycle. 

A discount rate of 5% per year, a growth rate of 2% and a 15-year project horizon were assumed. 

In scenario 1, the initial budget is €200 000 and there is no annual supplementary budget. The 

annual subscription is €40, the monthly subscription €10 and the daily subscription €3. 

The optimal solution given by the model is presented in Figure 3. It covers 545 daily trips and 

locates 12 stations in the blue traffic zones. The zones have between 15 and 40 docks (227 in total) 

and the fleet has 168 bicycles in the system. The total investment is €199 900 (less than the available 

budget), the annual expenses are €183 656 and the annual revenue from the fares is €202 874 (more 

 

8 According to a Portuguese manufacturer (Órbitra), bicycles cost between €250 and €600. 
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than the annual expenses). Figure 31 shows the location of the stations, the number of docks in each 

zone and the number of bicycles in the first time step. 

 

Figure 31 – Solution of scenario 1 (number of docks/number of bicycles in time step 1): (a) time steps 

1,2,3 and 5 (b) time step 4 

 

In scenario 2, the previous assumptions are the same but an annual supplementary budget of €50 

000 is considered. The best solution, presented in Figure 4, covers 547 daily trips and locates 12 

stations in the blue traffic zones, with only one station per zone. The zones have between 15 and 

40 docks (227 in total) and there are 168 bicycles in the system, as before. The initial investment is 

€199 900, the annual expenses amount to €234 667 and the annual revenue from the charges is 

€203 686. In terms of station location, the solution is the same as for scenario 1. 

(a) (b) 
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Figure 32 – Solution of scenario 2 (number of docks/number of bicycles in time step 1): (a) time steps 

1,2,3 and 5; (b) time step 4 

 

In scenario 3, the initial budget is increased to €300 000, there is no annual supplementary budget 

and all the other inputs are to the same as for scenario 1. The optimal solution covers 750 daily 

trips, locates 20 stations, the zones have between 14 and 52 docks (334 in total), and the fleet 

contains 243 bicycles. The initial investment is €299 900 and the annual expenses are €251 085 

with annual revenue from the charges being €279 534. The location of the stations is presented in 

Figure 33. 

(a) (b) 
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Figure 33 – Solution of scenario 3 (number of docks/number of bicycles in time step 1): (a) time steps 

1,2,3 and 5; (b) time step 4 

 

The last scenario (scenario 4) is similar to scenario 3 but the annual supplementary budget is €50 

000.  The optimal solution shown in Figure 6 covers 757 trips, locates 20 stations and the zones 

have between 14 and 52 docks with a fleet size of 336 bicycles. The initial investment is equal to 

the budget (€50 000), the annual expenses are €303 820 and the annual revenue from the charges 

is €282 160. 

 

(a) (b) 
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Figure 34 – Solution of scenario 4 (number of docks/number of bicycles in time step 1): (a) time steps 

1,2 and 5; (b) time step 3; b) time step 4. 

 

Table 26 summarizes the results obtained for the probed scenarios. We can conclude that by 

increasing the annual supplementary budget, the covered demand also increases as expected. 

Moreover, if the initial investment increases the solution covers more trips. 

 

 

 

 

(a) 
(b) 

(c) 
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Table 26 - Comparison between scenarios 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Initial investment €200 000  €200 000  €300 000  €300 000  

Annual supplementary 

budget 

€0  €50 000  €0  €50 000  

O
p

ti
m

a
l 

so
lu

ti
o

n
 

Daily trips 

covered 

545 547 750 757 

Stations located 12 12 20 20 

Total of docks 227 227 334 336 

Total of bicycles 168 168 243 240 

Total investment €199 900  €199 900 €299 900 € 300 000 

Annual expenses €183 956  €234 667 €251 085 € 303 820 

Annual revenue €202 874  €203 686  €279 534 €282 160 

 

The relation between the initial budget and the covered demand is explored by solving several 

scenarios, with higher initial investment and not considering an annual supplementary budget. The 

variation results are in Figure 35. As expected, the amount of covered demand increases with an 

increase in the initial investment. 

 

Figure 35 – Relation between the initial investment and the covered demand 
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Most bike-sharing systems are funded by the government or supported by advertising and 

sponsorship contracts. A more precise idea of the relations between investment and demand 

covered can help the decision makers.  

 

4.5 Conclusion 

The methodology described in this chapter allows determining the location of bike-sharing stations 

within an urban area. It takes into consideration the demand estimated using a maximum coverage 

model that also reflects constraints related to the budget and the level of service. The methodology 

can provide urban managers with good insights on how to design a bike-sharing system. The 

possibility to probe different scenarios can help decision-makers to choose the most suitable 

solution for their town or city. Additionally, no substantial initial investments in these systems 

should be made if there is no budget is available to sustain them in the long term. Therefore,  the 

balance between initial investment and maintenance costs is included in a bike-sharing system 

optimization model.  

The results of the Coimbra case study demonstrated that the model performs well. It indicates the 

best zones to locate the bike-sharing stations according to the selected criteria.  

The model locates the stations per zone without providing the exact location of the station. For the 

accuracy in station location, the model admits coordination with a model minimizing the distance 

between people and stations.  

Demand data used was defined based on the methodology presented in chapter 3.3, considering 

layers of city characteristics that affect the demand. Nevertheless, the location model presented is 

flexible for other demand studies.  

In future research, the demand estimation can use the level of service. This level of service should 

be a dynamic component of the model estimated by the proximity of the stations, the number of 

available bicycles, and the cost to the user.  

The demand should also have a scalable projection considering the variation of demand of the 

system, in light of the project horizon. It will also consider the need for inter-modality services, like 

the demand for bike-sharing services resulting from interaction with public transport services 

(considering public transport users who could potentially use public bicycles).   

Other technological improvements such as electric bicycles and Internet of Things (IoT) 

frameworks can also represent changes in this base model.  
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The methodology outlined here can provide urban managers good insight into bike-sharing stations' 

location within demand and budget initial conditions. Therefore, it contributes significantly to the 

planning of future bike-sharing systems. 

The implementation of these systems may also have other impacts such as the environmental impact 

on the city. The next chapter presents a methodology to measure the reduction of pollutants in cities 

considering the traffic reduction consequent of modal shift from motorized vehicles to bike-sharing.  
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5 BIKE-SHARING ENVIRONMENTAL IMPACTS  

5.1 Introduction 

Sustainable mobility has become a dominant theme nowadays, due, among other concerns, to the 

urgency in reducing emissions from transport. As referred, transportation is one of the greatest 

sources of air pollution in urban areas.  Although CO2 emissions are one of the main transport-

related environmental problems due to global warming, non-CO2 pollutants must be highlighted 

due to their harmful effects on human health.  

This chapter analyses the implementation of a bike-sharing system (BSS) and its expected 

implications in emission reductions from road traffic. It focuses on Fine Particulate Matter (PM2.5) 

due to its harmful effects on human health. 

The methodology considers an integrated set of models: a) Potential demand estimation models for 

the use of bike-sharing; b) Mobility studies for the identification of the present travel behavior; c) 

Optimization models for the location of the bike-sharing stations and d) Traffic emission models, 

to estimate the reduction in emission due to an expected change in the modal share towards a car 

to bike-sharing modal shift, considering the present travel behavior.  

The work produced intended to support and add value to the design of bike-sharing complementing 

the demand analysis and location of stations chapters. It was published in the International Journal 

of Sustainable Transportation (Inês Frade et al., 2021). 

On exposure to pollutants subject, it was also made participation on Soft Modes Modeling in Urban 

Trips project funded by the Portuguese Foundation for Science and Technology (PTDC/ECM-

URB/1407/2012). 

That resulted in a collaboration on a published paper on Transportation Research Part D: Transport 

and Environment (Giménez-Gaydou et al., 2019), where is developed a tool that estimates the effort 

required and the exposure to pollutants on routes.  

The chapter is organized into four sections, besides the introduction: section 5.2 presents a literature 

review on the transport emissions, Section 5.3 details the methodology applied on the evaluation 

of environmental impacts, the methodology is applied to the city of Coimbra (Portugal) and the 

results are presented on Section 5.4. and the main conclusions are presented in Section 5.6. 
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5.2 Literature Review 

As referred on Chapter 1, air pollution problems are particularly evident in urban areas. More than 

70% of European citizens living in cities in 2018 were exposed to PM2.5 annual mean concentrations 

above the levels recommended by the World Health Organization (EEA, 2020b). Therefore, the 

definition and evaluation of emission reduction measures are of prime concern.  

Transport (the single-use, motorized, internal combustion vehicle) is responsible not only for 

emissions but also for consuming urban space. This consumption leads to fewer conditions for a 

good urban life, seen to a broader extent. Therefore, there is an increasing importance given to the 

promotion of active modes of transportation (walking and cycling).  

In European countries in the last two decades, several documents and directives point to the urgent 

need to promote sustainable transportation as part of the global policy to reduce emissions (as 

detailed on section 2.3). This urgency resulted in measures such as the implementation of traffic 

restrictions and the promotion of the modal transfer to more sustainable and active modes: 

extension of pedestrian areas, an increase of parking fees, cycling initiatives, and the creation of 

low emission zones, among others.  

A cost-benefit analysis on active modes of transport, concerning health benefits and emissions 

reduction, located in two cities in New Zealand, stated that, following an investment in 

infrastructures related to pedestrian and cycling modes, the impacts fully justify the investment. 

Moreover, the benefit/cost ratio (over 10:1) is well in the range to justify the investment involved 

(Chapman et al., 2018). In a paper by Al-Rijleh et al., using 2012 emissions as a baseline, and by 

analyzing the traveling behavior of the existing traffic studies, as well as an analysis of the 

consumption per dwelling, it was possible to establish a set of scenarios of the hypothetical modal 

transfer. This analysis suggest that an 80% reduction in emissions is technically feasible through a 

combination of active transportation, cleaner fuels for public transit vehicles, and a significant 

market penetration of electric vehicles. Walking and cycling modes represent 20% in this 80% 

reduction (Al-Rijleh et al., 2018).  

Moreover, transport policies that potentially lead to emission reductions should consider the 

combined use of transport and land-use policies. In these impact analyses, it is relevant to include 

the impact of changes in land-use or the implementation of new transport infrastructures. In this 

respect, some conclusions taken from a study carried out in New Zealand by Macmillan et al. 

(Macmillan et al., 2018). In this study, called Te Ara Mua - Future Streets study design, there was 

an evaluation of walking and cycling increase, searching for dynamic causal linkages between the 

built environment, local walking and cycling, and wellbeing.  
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These linkages highlight how policies might help in changing our common healthier future into 

environmental sustainability. It is fundamental to develop accurate modeling of these policies' 

benefits (health and environment). Works like the one by Hatfield et al. about non-recreational 

cycling affects the use of other transport modes or the one by Heine et al. about how travel behavior 

patterns capture policies' impacts are some of the examples. The health impacts of transportation 

are becoming a central issue on transportation policies(Hatfield & Boufous, 2016; Heinen et al., 

2017)  

Raza et al. analyze the health benefits and losses of a modal shift from cars to bicycles. The study 

quantifies the exposure to pollutants during the cycling trip, using ventilation rate, pollutant 

concentration, and trip duration data depending on the type of pollutant: particles, black carbon, or 

nitrogen oxides. In other words, there is a health risk associated with riding a bicycle, but it is 

essential to understand how exposure to different types of pollutants affects health. Sharply, it is 

necessary to recalibrate the positive health effects of modal shift with the impacts of inhalation of 

emissions. Thus, the authors consider an integrated approach in terms of health to properly assess 

the positive and negative aspects of the modal shift in question (Raza et al., 2018). 

Bike-sharing systems have been implemented, fostering the objective of promoting cycling 

mobility and traffic and emissions reduction. However, there are just a few studies about the 

impacts of bike-sharing systems on emissions reduction.  

The PM2.5 impact on health appears in the study by Qiu and He (Qiu & He, 2018). After bike-

sharing systems implementation in China, there was a decrease in PM2.5 pollutants: 10,35 tons in 

the total emission amount and 2,5 μg/m3 in concentration (between 2015 and 2017). Furthermore, 

this paper demonstrates that PM2.5 presents the highest impact on health. The reductions in 

mortalities and hospital admissions induced by PM2.5 and PM10 are more significant than those from 

SO2 and NO2, confirming the great severity of particulate matter on public health. For example, in 

the case of mortality, SO2, NO2, PM2.5, PM10 have, respectively, a reduction of health outcomes 

(number of cases) of less than 25, 59, 116, 87 (Qiu & He, 2018).  

Zavala et al. suggest that fewer old cars imply the reduction of PM2.5. However, there is no evidence 

that this impact is higher than the one resulting from the modal shift. In fact, and according to these 

authors, the effect resulting from the fleet renewal is always smaller than other policies because the 

congestion levels tend to keep the same (the number of vehicles stays the same). One way to go 

forward in PM2.5 reduction is the modal shift from car to active transportation.  

According to these findings, there is evidence that the PM2.5 decrease between the existing situation 

and the situation after implementing a sustainable transport alternative (like a bike-sharing system) 

is a way to measure these systems' impacts on the environment and health.  
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It is acceptable to expect a shift between the car and the bicycle for short-distance trips if a bike-

sharing system is available. However, it is fundamental to test for the effectiveness of bike-sharing 

implementations designed to stimulate a shift from car use to cycling. With a growing number of 

policy tools, projects and investments, its impacts must be verified (Zavala et al., 2013). 

The main objective of this study is to estimate pollutants (PM2.5) reduction after bike-sharing system 

implementation. That reduction estimation considers demand, station location, and urban road 

varying characteristics.  

The estimation of a modal transfer impact on transport emissions is a complex process. The transfer 

from car to bicycle does not imply a straight change leaving aside other network effects like street 

infrastructure quality, intermodality possibilities, or the influence of possible future bicycle 

networks or infrastructures. However, a small change can affect air quality and health, and it is 

relevant to study those impacts alone. Considering that there is potential demand for this mode of 

transport for the next few years in countries with a small cycling mode share (like Portugal), the 

impacts on the environment and health also have a great potential to be considered a promotion 

tool. In other words, although the expected changes in modal shift and emission reduction are still 

small, they might increase exponentially if measures like bike-sharing systems complement other 

changes. In any case, a method developed to evaluate emissions reduction can address all 

magnitudes of changes.  

Emission modeling is an alternative method to direct measurements. Different emission models for 

road traffic are currently available and have two crucial elements: emission factors and activity 

data, considering different levels of details and complexity (Smit et al., 2010). Those models 

depend on a large amount of data, and good results depend on their availability and quality (Grote 

et al., 2016).  

Average-speed emission models are an alternative for urban scale studies. In these models, 

emissions are a function of average speed considering different vehicle technologies and allowing 

characterization of emissions for each road link within large networks. So, it counts not only with 

traffic flows but also with street specific characteristics. These models can relate traffic with 

emissions accounting for non-homogeneity.  

Each street segment has its performance in terms of design and average speed, and non-

homogeneity results in varying impacts across different streets, even if the traffic reduction is the 

same (Dias et al., 2018). The next section emphasis the methods used in the estimation of the PM2.5 

decrease that follows the implementation of a bike-sharing system, associated not with city areas 

but with streets. 
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5.3 Method 

The emissions reduction is estimated by the traffic reduction caused by the modal shift that happens 

after a bike-sharing system implementation. Considering that the emissions depends on road 

characteristics, it is necessary to combine the demand model and a location model for bike-sharing 

stations according to traffic area characteristics and applying emission models to calculate before 

and after PM2.5 emissions in each street.  

The methodology considers an integration between models estimating the potential impact of a 

bike-sharing system on PM2.5 emissions reduction. These models are:  

a) Potential Demand Estimation Model for the use of bike-sharing, presented on sub-chapter 

3.3;  

b) Optimization Model for the Location of the bike-sharing stations, presented on chapter 4, 

and  

c) Traffic Emission Model, to estimate the reduction in emissions due to an expected change 

in the modal share towards a car to bike-sharing' modal shift, considering the present travel 

behavior (Tchepel et al., 2012). 

The Figure 36 summarizes the methodology applied in this study. Briefly, we follow a set of 

calculation steps:  

• The potential for bike-sharing and the locations of the stations;  

• The modal shift expected between car and bike-sharing system and following, the 

definition of different implementation scenarios;  

• The allocation of the new traffic volumes to the road network;  

• The emissions balance between the actual situation (with no system implemented) and with 

a bike-sharing system implemented accordingly with the different scenarios.  

The bike-sharing system dimension and its stations’ location are crucial aspects in the modal shift 

to be expected. City councils have reduced budgets and sometimes only a limited number of stations 

to be placed, and need to use location criteria.  

The demand model, presented on section 3.3, estimates the bike-sharing demand in a city divided 

into small areas (as traffic zones) considering the trip pattern of the population and city 

characteristics. This pattern appears in an Origin-Destination (OD) matrix (it contains the number 

of trips between traffic zones).  
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Figure 36 - Process of estimating emissions reduction resulting from the implementation of a Bike-

Sharing System 

 

The calculation of the traffic volumes and emission reduction in each road segment, before and 

after the bike-sharing system, comprehend the following steps:  

1. definition of the OD matrix with the individual mode of motorized transport (IT) trips 

between the traffic zones and allocate the traffic volumes to the road network, relating the 

number of trips with occupation rate [as is characterization] 

2. estimation of the OD matrix for the potential demand for the bike-sharing system, 

3. definition of covered demand - through the location of the stations [different scenario 

building], 

4. actualization of the initial OD matrix for individual transport, assuming that all the demand 

for the bike-sharing system comes from IT trips, 

5. actualization of the allocation of IT traffic to the road network considering that the impact 

of the traffic reduction affects the shortest paths between the centroids of traffic zones [to 

be situation], 

6. The emissions model considers the before and after traffic volumes, analyzing the 

difference between as-is and to-be scenarios. 

 

Emissions reduction is related to modal shift, street characteristics, and driving conditions. It 

includes average vehicle speed, as in the Traffic Emission and Energy Consumption Model – 

Qtraffic (Tchepel et al., 2012). QTraffic is a mesoscopic model based on an average-speed approach 

following the updated European guidelines for emission factors (Dias et al., 2018). The QTraffic 

model considers a QGIS environment, a previously developed algorithm for line emission sources, 

and updated emission factors (Ole Kenneth, 2019). The model estimates emissions and energy 

consumption at the road segment level and includes detailed information about transport activity.  
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To estimate atmospheric emissions induced by road traffic, QTraffic requires information on three 

main sets of input data:  

1. The road network of the study area (type, length, and gradient of each road);  

2. The vehicle fleet composition (emission reduction technology, engine capacity, engine age, 

and fuel type – information extracted from national databases on the fleets - ACAP) and  

3. Transport activity for each road (traffic volume and average vehicle speed).  

 

This emission model structure is in Figure 37. 

 

Figure 37 - Transport and emission modelling with QTraffic 

 

The estimation of the traffic-related emissions for each road segment by the model follows the 

equation:  

 

𝐸𝑖 =∑ (𝐸𝐹𝑖𝑘 ×𝑁𝑘). 𝐿
𝑘

 (39) 

 

Where:  

Ei: emissions of the pollutant i [g/km];  

EFik: emission factor [g/km.veh] for pollutant i and vehicle technology k;  

Nk : number of vehicles [veh] of technology k; 

L:  the road segment length [km] 

 

The model provides quantitative information on traffic emissions for different pollutants, and the 

outputs for the study area directly compatible with GIS allowing spatial data analysis. In this 

analysis, only the PM2.5 is calculated for the network and the correspondent before and after traffic 

volume. 
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5.4 Case study and results 

As in Chapter 4, the methodology presented is applied to the city of Coimbra, in Portugal.  

The initial the OD matrix with the individual mode of transport considered is the OD matrix that 

resulted from the mobility survey that occurred in Coimbra in 2008 (TIS.pt, 2009). 

The OD matrix of potential demand to the bike-sharing system is calculated through the 

methodology presented on section 3.3. Likely the scenario used on location model (section 4.4) 

were it was assumed a optimistic scenario and where the initial demand estimated is 2 times the 

demand defined in the study presented on section 3.3.2, thus 5728 of the daily trips can be done 

using bicycles from the bike-sharing system, which represents 4% of the total of trips. 

The result match related to the recent Portuguese government goals for 2025 (Diário da República, 

2019b) that indicates 4% for bicycle modal share in urban areas. 

Shortly, the 4% modal share of bicycle travel in cities seems feasible for Coimbra. It is also 

acceptable to consider that these trips will substitute car trips or IT (individual transportation trips 

in motorized vehicles) trips and imply emission reduction. Even when other effects are not included 

- like the net effect created by a network of new infrastructures or the possibilities for intermodality 

– it is possible to expect a certain number of trips transferred from the car into the bicycle. This 

modal shift affects the potential emission reduction at the street level, and it is possible to estimate 

this reduction by calculating the before and after level of emissions. Moreover, without emissions 

information for every street, we need models to estimate the current level of emissions and their 

reduction resulting from modal shift.  

Assuming an average vehicle occupancy rate 0f 1.42 passengers/vehicle (data from the Coimbra 

Mobility Survey (TIS.pt, 2009)) it is possible to  transform trips into traffic for emission 

calculations purposes, Figure 38. 

Two different scenarios are established for the location of the bike-sharing stations consider the 

following criteria:  

• Scenario 1: Locate stations to cover the zones with three (3) or more OD pairs, with 15 or 

more potential bike-sharing trips (observation of the number of trips in each OD pair).  

• Scenario 2: Locate stations using the maximum covering approach developed in chapter 4 
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Figure 38 - Daily traffic volume in current situation 

 

The resulting characteristics on the potential bike-sharing trips are as follows:  

• Scenario 1:  

o Zones with bike-sharing stations (some zones can have more than one station 

depending on the level of demand): 10;  

o Potential bike-sharing trips covered: 816;  

o 1.6% of modal shift from car to bike-sharing resulting in minus 1.5% of IT traffic 

for the identified paths between served zones. 

• Scenario 2:  

o Zones with bike-sharing stations (some zones can have more than one station 

depending on the level of demand): 10;  

o Potential bike-sharing trips covered: 907; 

o 1.8% of modal shift from car to bike-sharing resulting in minus 1.6% in IT traffic 

for the identified paths between served zones. 

 

The IT traffic reductions obtained in each scenario and each road are presented in the following 

figure. 
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(Scenario 1) (Scenario 2) 
•  

Figure 39 - Traffic reduction obtained for different scenarios of BS systems’ location  

– scenarios 1 and 2. 

 

By the comparison between Figure 39 and Figure 40, it is possible to observe small differences in 

the modal shift between the two scenarios. The bicycle modal share assumed is also weak 

(considering the expectations for Portugal 2025 - only 4%). Therefore the impacts are small. 

However, there are observable differences in the levels of IT reductions in each road, comparing 

the two scenarios: in scenario 2, there are more streets covered, and Scenario 1 has a higher impact 

in the north area of the city, whereas Scenario 2 has a higher impact in the south. It demonstrates 

that demand estimation is a determinant step in this modeling procedure. 

Both scenarios imply a reduction in car trips transferred to the bike-sharing system, consequently 

reducing emissions. However, these reductions are for the full extension of the paths or roads 

between the traffic areas. The emissions model considers that these differences impact differently 

along these paths because it is based on varying street characteristics and expected driving speed. 

Therefore, the traffic reduction on each road between traffic areas has a varying impact on 

emissions in a segmented way.  

 

For the emission estimation model, the assumptions and criteria considered are the following.  

• The car fleet composition for the study area available in the Portuguese Car Association 

(Associação Automóvel de Portugal, 2016) and  
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• The traffic volume and the vehicle speed for each road segment obtained by VISUM (upon 

information on the road network in the study area and data from a Mobility Study in 

Coimbra). 

The next step is the emissions estimation. This estimation includes traffic levels, street 

characteristics, and driving conditions (Dias et al., 2018). The results for daily PM2.5 emissions in 

the two scenarios compare with the reference situation (Figure 40). 

  

(Scenario 1) (Scenario 2) 

Figure 40 - Reduction of daily emissions for scenario 1 (a) and scenario 2 (b) in comparison with the 

reference situation 

 

The emissions reductions obtained for Scenario 1 and Scenario 2 are, respectively, 3,6 g/km and 

4,2 g/km. It corresponds to about 12,5% of daily PM2.5 emissions at the road segment. Globally, the 

daily PM2.5 emissions estimated for the Coimbra study area are about 1.7 kg and implementation of 

the bike-sharing system will contribute to a decrease of about 1,5% of these emissions. 

 

5.5 Synthesis 

A non-homogenous emission reduction obtained for the road network is evident in Figure 40, 

suggesting the importance of the characterization of transport activity data at the road segment level 

for emission quantification. This characterization includes street design and vehicle speed, rather 

than considering the modal shift between car and bike-sharing system and the consequent individual 

transport volume reduction homogeneous in each street or zone. Moreover, the bike-sharing 
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implementation considered in Scenario 2 uses demand and location models specific for bike-

sharing systems dimensioning. It implies a different demand and a minimum number of stations to 

cover that demand in each zone, responding to budget limitations.  

This approach demonstrates that the impact of bike-sharing in emissions varies in each road 

segment considering both local variations on bike-sharing demand and location, and variations in 

emissions. Therefore, to increase and optimize this impact, the reinforcement of policies based on 

studies for the best locations for formal bike-sharing infrastructures and other road adaptations is 

an essential step.  

The modest modal shifts considered and the assumptions (4% of all car trips will become bicycle 

trips in the bike-sharing systems) imply a modest impact on emissions, as expected. However, in a 

city where the current use of the bicycle share is 1% as in Coimbra, and almost no data on the use 

of the bicycle is available, these types of prospective studies are of utmost importance. The 

application shows the potentialities of the combination between:  

• A potential demand model can help to adjust a global modal shift to the characteristics of 

the OD matrix and the characteristics of each street - and the resulting modal shift between 

car and bicycle appears in the shortest path that connects the traffic areas;  

• An optimization model (and other criteria) that can help to locate the stations where the 

demand is higher, giving an accurate estimated number of trips covered considering the 

maximum coverage algorithm and reducing the number of IT trips in each street and  

• An emission model that is not only based on traffic volume but also street characteristics 

and vehicle speed, giving a reduction in emissions with an indirect and more accurate 

distribution.  

 

This approach and methods can help local authorities deciding which urban roads have a higher 

potential for the use of a bike-sharing system and therefore need to adapt in terms of infrastructure. 

It also identifies which urban roads benefit from higher PM2.5 reduction, one of the hazard 

pollutants.  

Finally, the obtained results through the combination of modeling tools, say much more than ‘fewer 

cars mean fewer emissions’ and thus highlighting the importance of modeling analysis.  

These models count on trip information from some local mobility studies (from the city of 

Coimbra). However, this methodology can be applied and implemented anywhere, supporting the 

decision-makers on where to build the cycling infrastructures if they want to have substantial 
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environmental impacts. This support is relevant in countries where the bicycle modal share is still 

too low (1%).  

After the bike-sharing system implementation, one can expect that there will be trip transferability 

from car to bicycle. The method can account for this transferability despite the number of trips. 

This straight transferability from car to bicycle in a bike-sharing system considers that the urban 

roads can adapt with minor changes, including lower speeds (20 to 30 km per hour). However, the 

study does not include the impacts on the remaining cycling network or in the intermodality 

behaviors because it does not exist a formal cycling network in Coimbra.  

For later stages of cycling implementation in Portugal, this method must consider the network 

impact at city-wide mobility and air quality levels.  

 

5.6 Conclusion 

This study's main objective is to estimate pollutants (PM2.5) reduction after bike-sharing system 

implementation. That reduction estimation considers demand, station location, and urban road 

varying characteristics using a combination of modeling approaches from demand estimation to 

emissions reduction. The case study used was Coimbra in Portugal with modal transfers at still low 

levels according to Portugal's current stage in bicycle use.  

The daily PM2.5 emissions estimated for the Coimbra study area are about 1,7 kg. A bike-sharing 

system will contribute to a decrease of about 1.5% of these emissions, considering wide-central 

area impacts. However, the spatial distribution of the emissions reductions within the study area is 

not homogeneous. At the road segment level, it may achieve 12.5% (demonstrating the importance 

of the modal shift to reduce pollution). Moreover, it shows that new goals and policies, like bike-

sharing in articulation with other policy measures, can contribute to these reduction levels increase. 

One can expect that with higher modal shift ratios, higher reductions will occur.  

The link between these models, demand estimation and optimal location on one hand and traffic 

emission estimation on the other, can be an ally in the decision-making process for local authorities. 

This approach can support the implementation and articulation of policies, fostering together 

environmental quality and sustainable mobility. Bike-sharing systems implementation is an 

example of this articulation.  
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6 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Global warming impacts are forcing a change in the way countries are developing worldwide. The 

need for changes in mobility patterns, particularly on fossil fuels' dependence, is irrefutable.  

The planning and implementation of sustainable alternatives to individual motorized mobility are 

central in reducing negative externalities related to the transportation sector, mainly in urban areas. 

The international and national guidelines include these environmental concerns, focusing policies 

and investments on the needed modal shift to more sustainable transport modes (including active 

modes) to have a measurable impact on pollutant emissions.  

Therefore, urban mobility plans and implementations must prioritize transport systems and modes 

that minimize global emissions. Moreover, ensuring the safety of users and the quality of city life. 

The challenge of public decision-makers and transport engineers is the implementation of new 

efficient alternatives and also the change of habits and mobility culture by making this alternatives 

more attractive, safer and easier to use.  

This work is focused, since its beginning, on the planning and design of bike-sharing systems as 

one of the main tools to operate those changes, namely in cities with low levels of active modes 

usage. 

At a later stage, there was the opportunity to apply the methodologies developed into bike-sharing 

environmental impacts. 

The objectives of this work were accomplished, namely through the publication of some of its 

results. 

The potential bike-sharing demand research results on a methodology that provides a quick 

assessment of its forecast.  

Additionally, the work developed on this subject using the case study of Boston (the HUB bike-

sharing system) was an iterative process seeking the most significant local and systems use 

characteristics influencing the number of bike-sharing trips. Although no unique model justifies all 

the systems' demand variations, it was possible to find variables that consistently influenced 

demand. Nevertheless, the process of trying to find a unique model that could include all the 

significant predictors into one expression was not successful at high levels. Moreover, it shows that 

some variables are missing from this database and its weakness as a research tool. 
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The location model proposed uses an optimization method to design the bike-sharing system such 

that it maximizes the demand covered and takes the available budget as a constraint. It combines 

strategic decisions for locating bike-sharing stations and defines the dimension of the system 

(stations and number of bicycles) with operational decisions (bicycles relocation). 

The model defines the location of stations bike-sharing stations, the system fleet size, capacity of 

the stations, and the number of bicycles in each station per period, with economic sustainability 

concerning since it considers an initial investment lower than the given budget. Additionally, it 

balances the annual cost of the system and the revenue. It assumes an additional budget from the 

system provider to cover any loss resulting from the shortfall between its operating cost (and the 

revenue from the subscription charges). The model is also adaptable to any systems expansion, 

since it may consider zones already served. 

The last chapter complements the research work produced by laying out a methodology to measure 

the impacts of bike-sharing implementation on PM2.5 emissions. The methodology articulates the 

research work developed in previous chapters and a traffic emissions model. It shows that the 

impacts are proportional to the modal share but not the same in all urban streets according to the 

local variations that these models' variables include. 

Globally, the research work produced and presented in this thesis is a valuable tool on bike-sharing 

systems design, addressing the demand, location, and dimension estimation of stations and fleet, as 

well as measuring its environmental impacts. 

 

6.2 Future work 

Considering the conclusions outlined above and the evolution of the bike-sharing system during 

the last years, one can envisage the following topics as future work for global implementation or 

each research topic. 

 

1- Integrated transport systems 

Besides optimizing the planning and implementation of each transport mode, we need to focus on 

transport modes integration into optimized intermodal approaches. It is expected some alterations 

in the mobility patterns caused by the implementation of bike-sharing systems. These services 

capture users from others transport services such as bus transit, walking, autos, and taxis. 
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Furthermore, Shaheen et al. (S. A. Shaheen et al., 2011) suggest that bike-sharing acts both as a 

competitor and intermodal chain element, considering the available modal options. 

For this purpose, the design of a bike-sharing system should consider its coordination with the 

available complementary public transportation services, providing attractive systems for other 

modes users, as last-mile solutions. Therefore, future demand and location estimation models must 

include public transport hubs as a predictor, even though it needs further validation through other 

bike-sharing systems operating. 

 

2- Electric bicycles  

Consider a fleet that integrates electric bicycles, as it is increasingly common on implemented 

systems. This consideration impacts the demand modeling since the negative impact of the slopes 

is lower, but the system implementation and maintenance costs will increase. The location modeling 

can also include electric bicycles, lowering some between-stations distances. 

 

3- Environmental impact 

The location models can include specific objectives or constraints related to the level of 

environmental impacts to achieve.  

Thus, the location of stations can consider the maximization of demand covered and the 

environmental impact (through the reduction of emissions). 

Moreover, the environmental impacts may constitute a constraint for the implementation and design 

of bike-sharing. A specific model constraint can help locate where mobility patterns changes are 

faster to obtain the desirable impacts. 

 

4- Demand studies 

Further demand studies on bike-sharing may include a global analysis of different bike-sharing 

systems databases. It may consider the characterization of different types of trips: commuted, 

leisure, or utility trips.  

Moreover, these studies may include other socio-economic characteristics such as: population 

density, job density, and retail job density seem to relate more directly with bike-sharing trips. And, 

certain specific facilities such as tourist attractions, parks, recreational areas, regional transit 

stations, bicycle-friendly streets, streets with bicycle lanes, and public transit stations are more 

likely to consider the usefulness of a bike-sharing station nearby.  
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Finally, topography as a determinant factor must be included (Gregerson et al., 2010), as well as, 

the combination of trips purpose and its more likely duration. 

The deep knowledge about the influent variables on bike-sharing systems demand can support an 

empirical methodology such as the method presented on section 3.3 that provides a quick and 

effective assessment of the demand.  

 

5- Global impact of bike-sharing systems  

Within a strategic city planning broad approach, bike-sharing systems implementation represents 

other benefits for the city, not measured by this study. Besides decreasing car trips and emissions, 

these beneficial impacts are, for example, health benefits to the population, urban space 

optimization, and, consequently, a general improvement in the quality of city life. 

It would be interesting to evaluate the impacts of the systems on other areas that change from the 

implementation. 
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I. Attachments 

 

------------------------------------------------------------------------------ 

 

Table Abbreviations 

AdjR2 Adjusted R-Squared                                      

AICc  Akaike's Information Criterion                          

JB    Jarque-Bera p-value                                     

K(BP) Koenker (BP) Statistic p-value                          

VIF   Max Variance Inflation Factor                           

SA    Global Moran's I p-value                                

Model Variable sign (+/-)                                     

Model Variable significance (* = 0.10; ** = 0.05; *** = 0.01) 

 

------------------------------------------------------------------------------ 
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I.1. Models Outputs 

I.1.1.  Stations 

Trips started – Exploratory regression output 
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Trips started – OLS regression GeoDa output 

 

---------- 

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION 

Data set            :  StationDataBase_LN 

Dependent Variable  :    O_TTD_LN  Number of Observations:  131 

Mean dependent var  :     3.00127  Number of Variables   :    5 

S.D. dependent var  :    0.991276  Degrees of Freedom    :  126  

 

R-squared           :    0.653066  F-statistic           :     59.2954 

Adjusted R-squared  :    0.642052  Prob(F-statistic)     :4.57374e-028 

Sum squared residual:     44.6589  Log likelihood        :    -115.393 

Sigma-square        :    0.354435  Akaike info criterion :     240.787 

S.E. of regression  :    0.595345  Schwarz criterion     :     255.163 

Sigma-square ML     :    0.340907 

S.E of regression ML:    0.583873 

 

----------------------------------------------------------------------------- 

       Variable      Coefficient      Std.Error    t-Statistic   Probability 

----------------------------------------------------------------------------- 

          CONSTANT        5.9554       0.884232        6.73511     0.00000 

          MBTApaxE     0.0167674     0.00730834        2.29428     0.02343 

           Pop2013      -1.44982       0.168862       -8.58585     0.00000 

             Wwalk      0.848112      0.0946916        8.95656     0.00000 

          W830_859      0.652311       0.141148        4.62147     0.00001 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS   

MULTICOLLINEARITY CONDITION NUMBER   65.123493 

TEST ON NORMALITY OF ERRORS 

TEST                  DF           VALUE             PROB 

Jarque-Bera            2            17.8610          0.00013 

 

DIAGNOSTICS FOR HETEROSKEDASTICITY   

RANDOM COEFFICIENTS 

TEST                  DF           VALUE             PROB 

Breusch-Pagan test     4             3.0455          0.55024 

Koenker-Bassett test   4             1.9009          0.75397 

SPECIFICATION ROBUST TEST 

TEST                  DF           VALUE             PROB 

White                 14            11.7567          0.62584 

============================== END OF REPORT ================================ 
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Trips ended – Exploratory regression output 
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Trips ended – OLS regression GeoDa output 

>>05/23/21 22:30:36 

REGRESSION 

---------- 

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION 

Data set            :  StationDataBase_LN 

Dependent Variable  :  D_TTDay_LN  Number of Observations:  131 

Mean dependent var  :     2.99562  Number of Variables   :    6 

S.D. dependent var  :     1.00354  Degrees of Freedom    :  125  

 

R-squared           :    0.660847  F-statistic           :      48.713 

Adjusted R-squared  :    0.647281  Prob(F-statistic)     :9.29464e-028 

Sum squared residual:     44.7446  Log likelihood        :    -115.519 

Sigma-square        :    0.357957  Akaike info criterion :     243.038 

S.E. of regression  :    0.598295  Schwarz criterion     :     260.289 

Sigma-square ML     :    0.341562 

S.E of regression ML:    0.584433 

 

----------------------------------------------------------------------------- 

       Variable      Coefficient      Std.Error    t-Statistic   Probability 

----------------------------------------------------------------------------- 

          CONSTANT       7.46267       0.989481          7.542     0.00000 

          MBTApaxE      0.023273     0.00742059        3.13627     0.00213 

           Pop2013      -1.64093       0.179914       -9.12061     0.00000 

             Wwalk      0.921901      0.0996639         9.2501     0.00000 

             Wbike      0.152269      0.0552088        2.75806     0.00669 

          W830_859      0.468953       0.155161        3.02236     0.00304 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS   

MULTICOLLINEARITY CONDITION NUMBER   76.134122 

TEST ON NORMALITY OF ERRORS 

TEST                  DF           VALUE             PROB 

Jarque-Bera            2            18.7728          0.00008 

 

DIAGNOSTICS FOR HETEROSKEDASTICITY   

RANDOM COEFFICIENTS 

TEST                  DF           VALUE             PROB 

Breusch-Pagan test     5             3.4333          0.63350 

Koenker-Bassett test   5             2.1463          0.82855 

SPECIFICATION ROBUST TEST 

TEST                  DF           VALUE             PROB 

White                 20            16.2791          0.69916 

============================== END OF REPORT ================================ 
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I.1.2. Census Tracts 

Trips started – Exploratory regression output 
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Trips started – OLS regression GeoDa output 

Classic model 

---------- 

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION 

Data set            :  BGRIDataBaseDAY_LN2 

Dependent Variable  :   O_TTDayLN  Number of Observations:  158 

Mean dependent var  :    -3.44864  Number of Variables   :    5 

S.D. dependent var  :     3.45972  Degrees of Freedom    :  153  

 

R-squared           :    0.214393  F-statistic           :     10.4385 

Adjusted R-squared  :    0.193854  Prob(F-statistic)     :1.67414e-007 

Sum squared residual:     1485.75  Log likelihood        :    -401.237 

Sigma-square        :     9.71075  Akaike info criterion :     812.475 

S.E. of regression  :     3.11621  Schwarz criterion     :     827.788 

Sigma-square ML     :     9.40345 

S.E of regression ML:      3.0665 

 

----------------------------------------------------------------------------- 

       Variable      Coefficient      Std.Error    t-Statistic   Probability 

----------------------------------------------------------------------------- 

          CONSTANT      -7.50278       0.895757       -8.37591     0.00000 

          W630_659     -0.826008       0.224132       -3.68537     0.00032 

            W7_729       -1.0253       0.283284       -3.61934     0.00040 

              VW1v       1.24392       0.276864        4.49288     0.00001 

        NEmployers       1.02944       0.216502        4.75487     0.00000 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS   

MULTICOLLINEARITY CONDITION NUMBER   20.482184 

TEST ON NORMALITY OF ERRORS 

TEST                  DF           VALUE             PROB 

Jarque-Bera            2             4.2160          0.12148 

 

DIAGNOSTICS FOR HETEROSKEDASTICITY   

RANDOM COEFFICIENTS 

TEST                  DF           VALUE             PROB 

Breusch-Pagan test     4            10.2070          0.03708 

Koenker-Bassett test   4            16.3774          0.00255 

SPECIFICATION ROBUST TEST 

TEST                  DF           VALUE             PROB 

White                 14           108.6314          0.00000 

 

DIAGNOSTICS FOR SPATIAL DEPENDENCE    

FOR WEIGHT MATRIX : BGRI_QueenMatrix 

   (row-standardized weights) 

TEST                          MI/DF        VALUE          PROB 

Moran's I (error)            -0.0787       -1.4501        0.14702 

Lagrange Multiplier (lag)       1           1.8395        0.17501 

Robust LM (lag)                 1           0.0431        0.83549 

Lagrange Multiplier (error)     1           2.4480        0.11768 

Robust LM (error)               1           0.6516        0.41956 

Lagrange Multiplier (SARMA)     2           2.4911        0.28779 

============================== END OF REPORT ================================ 
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Trips ended – Exploratory regression output  

 

 

Trips ended – OLS regression GeoDa output 

Classic model 

---------- 

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION 

Data set            :  BGRIDataBaseDAY_LN2 

Dependent Variable  :   D_TTDayLN  Number of Observations:  158 

Mean dependent var  :    -1.81121  Number of Variables   :    6 

S.D. dependent var  :     5.17343  Degrees of Freedom    :  152  
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R-squared           :    0.282350  F-statistic           :     11.9605 

Adjusted R-squared  :    0.258743  Prob(F-statistic)     :9.01745e-010 

Sum squared residual:     3034.78  Log likelihood        :    -457.661 

Sigma-square        :     19.9657  Akaike info criterion :     927.322 

S.E. of regression  :     4.46829  Schwarz criterion     :     945.697 

Sigma-square ML     :     19.2075 

S.E of regression ML:     4.38263 

 

----------------------------------------------------------------------------- 

       Variable      Coefficient      Std.Error    t-Statistic   Probability 

----------------------------------------------------------------------------- 

          CONSTANT      -6.62748         1.4676       -4.51586     0.00001 

          W630_659      -1.25987       0.324021       -3.88824     0.00015 

            W7_729      -1.71965       0.406557       -4.22979     0.00004 

              VW1v       1.99436       0.397102        5.02228     0.00000 

             MBTAs      0.249601       0.106016        2.35437     0.01983 

        NEmployers       1.54645       0.321416        4.81136     0.00000 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS   

MULTICOLLINEARITY CONDITION NUMBER   21.737891 

TEST ON NORMALITY OF ERRORS 

TEST                  DF           VALUE             PROB 

Jarque-Bera            2             1.6157          0.44582 

 

DIAGNOSTICS FOR HETEROSKEDASTICITY   

RANDOM COEFFICIENTS 

TEST                  DF           VALUE             PROB 

Breusch-Pagan test     5            11.2329          0.04695 

Koenker-Bassett test   5            14.9284          0.01067 

SPECIFICATION ROBUST TEST 

TEST                  DF           VALUE             PROB 

White                 20           113.0756          0.00000 

 

DIAGNOSTICS FOR SPATIAL DEPENDENCE    

FOR WEIGHT MATRIX : BGRI_QueenMatrix 

   (row-standardized weights) 

TEST                          MI/DF        VALUE          PROB 

Moran's I (error)            -0.0693       -1.2465        0.21259 

Lagrange Multiplier (lag)       1           1.0567        0.30397 

Robust LM (lag)                 1           0.1962        0.65783 

Lagrange Multiplier (error)     1           1.8941        0.16874 

Robust LM (error)               1           1.0335        0.30933 

Lagrange Multiplier (SARMA)     2           2.0902        0.35165 

============================== END OF REPORT ================================ 
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I.1.3. GRID  

Trips started – Exploratory regression output 
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Trips started – OLS regression GeoDa output 

Classic model 

---------- 

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION 

Data set            :  GRIDDataBaseLN 

Dependent Variable  :  O_TTripD_1  Number of Observations:  161 

Mean dependent var  :    -2.42506  Number of Variables   :    6 

S.D. dependent var  :     4.90278  Degrees of Freedom    :  155  

 

R-squared           :    0.511411  F-statistic           :      32.448 

Adjusted R-squared  :    0.495650  Prob(F-statistic)     :1.53082e-022 

Sum squared residual:     1890.84  Log likelihood        :    -426.751 

Sigma-square        :      12.199  Akaike info criterion :     865.501 

S.E. of regression  :      3.4927  Schwarz criterion     :      883.99 

Sigma-square ML     :     11.7444 

S.E of regression ML:       3.427 

 

----------------------------------------------------------------------------- 

       Variable      Coefficient      Std.Error    t-Statistic   Probability 

----------------------------------------------------------------------------- 

          CONSTANT      -1.26144       0.721238         -1.749     0.08227 

            Serv_1      -1.12915       0.303036       -3.72611     0.00027 

           Wwalk_1       2.27498       0.323275        7.03727     0.00000 

        W830_8_860       1.74613       0.350903        4.97609     0.00000 

         P18YBDh_1       -2.1573       0.353786       -6.09776     0.00000 

        MBTApaxE_1       0.13196      0.0415349        3.17707     0.00180 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS   

MULTICOLLINEARITY CONDITION NUMBER   23.232463 

TEST ON NORMALITY OF ERRORS 

TEST                  DF           VALUE             PROB 

Jarque-Bera            2             1.8784          0.39094 

 

DIAGNOSTICS FOR HETEROSKEDASTICITY   

RANDOM COEFFICIENTS 

TEST                  DF           VALUE             PROB 

Breusch-Pagan test     5            18.8382          0.00206 

Koenker-Bassett test   5            23.9654          0.00022 

 

DIAGNOSTICS FOR SPATIAL DEPENDENCE    

FOR WEIGHT MATRIX : GRID_QueenMatrix 

   (row-standardized weights) 

TEST                          MI/DF        VALUE          PROB 

Moran's I (error)             0.0324        1.2958        0.19503 

Lagrange Multiplier (lag)       1           5.8063        0.01597 

Robust LM (lag)                 1          11.0044        0.00091 

Lagrange Multiplier (error)     1           0.5486        0.45889 

Robust LM (error)               1           5.7467        0.01652 

Lagrange Multiplier (SARMA)     2          11.5530        0.00310 

============================== END OF REPORT ================================ 

 

Spatial Lag model 

---------- 

SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 

Data set            : GRIDDataBaseLN 

Spatial Weight      : GRID_QueenMatrix 

Dependent Variable  :  O_TTripD_1  Number of Observations:  161 

Mean dependent var  :    -2.42506  Number of Variables   :    7 

S.D. dependent var  :     4.90278  Degrees of Freedom    :  154 

Lag coeff.   (Rho)  :    0.301342 

 

R-squared           :    0.537161  Log likelihood        :    -423.598 

Sq. Correlation     : -            Akaike info criterion :     861.196 

Sigma-square        :     11.1254  Schwarz criterion     :     882.766 
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S.E of regression   :     3.33548 

 

----------------------------------------------------------------------------- 

       Variable       Coefficient     Std.Error       z-value    Probability 

----------------------------------------------------------------------------- 

      W_O_TTripD_1      0.301342         0.1052        2.86447     0.00418 

          CONSTANT     -0.735355       0.709189       -1.03689     0.29978 

            Serv_1     -0.890396       0.306222       -2.90768     0.00364 

           Wwalk_1        1.6309       0.354178        4.60476     0.00000 

        W830_8_860       1.36425       0.368187         3.7053     0.00021 

         P18YBDh_1      -1.58139       0.376687       -4.19817     0.00003 

        MBTApaxE_1      0.116252      0.0400269        2.90435     0.00368 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS 

DIAGNOSTICS FOR HETEROSKEDASTICITY  

RANDOM COEFFICIENTS 

TEST                                     DF      VALUE        PROB 

Breusch-Pagan test                       5        19.2377     0.00174 

 

DIAGNOSTICS FOR SPATIAL DEPENDENCE 

SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : GRID_QueenMatrix 

TEST                                     DF      VALUE        PROB 

Likelihood Ratio Test                    1         6.3050     0.01204 

============================== END OF REPORT ================================ 

 

Spatial Error model 

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION  

Data set            : GRIDDataBaseLN 

Spatial Weight      : GRID_QueenMatrix 

Dependent Variable  :  O_TTripD_1  Number of Observations:  161 

Mean dependent var  :   -2.425055  Number of Variables   :    6 

S.D. dependent var  :    4.902785  Degrees of Freedom    :  155 

Lag coeff. (Lambda) :    0.136684 

 

R-squared           :    0.514980  R-squared (BUSE)      : -  

Sq. Correlation     : -            Log likelihood        : -426.394313 

Sigma-square        :     11.6586  Akaike info criterion :     864.789 

S.E of regression   :     3.41447  Schwarz criterion     :     883.277 

 

----------------------------------------------------------------------------- 

       Variable       Coefficient     Std.Error       z-value    Probability 

----------------------------------------------------------------------------- 

          CONSTANT      -1.23718       0.752708       -1.64364     0.10025 

            Serv_1      -1.16098       0.319625       -3.63232     0.00028 

           Wwalk_1        2.1389       0.338523        6.31835     0.00000 

        W830_8_860       1.78195       0.371085        4.80198     0.00000 

         P18YBDh_1      -2.06303       0.368774       -5.59429     0.00000 

        MBTApaxE_1      0.129759       0.041464        3.12944     0.00175 

            LAMBDA      0.136684       0.133578        1.02325     0.30619 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS 

DIAGNOSTICS FOR HETEROSKEDASTICITY  

RANDOM COEFFICIENTS 

TEST                                     DF      VALUE        PROB 

Breusch-Pagan test                       5        19.1414     0.00181 

 

DIAGNOSTICS FOR SPATIAL DEPENDENCE  

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : GRID_QueenMatrix 

TEST                                     DF      VALUE        PROB 

Likelihood Ratio Test                    1         0.7126     0.39858 

============================== END OF REPORT =============================== 
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Trips ended – Exploratory regression output 
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Trips ended – OLS regression GeoDa output 

Classic model 

---------- 

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION 

Data set            :  GRIDDataBaseLN 

Dependent Variable  :  D_TTripD_1  Number of Observations:  161 

Mean dependent var  :    -2.42724  Number of Variables   :    6 

S.D. dependent var  :     4.90234  Degrees of Freedom    :  155  

 

R-squared           :    0.511648  F-statistic           :     32.4788 

Adjusted R-squared  :    0.495894  Prob(F-statistic)     : 1.4754e-022 

Sum squared residual:     1889.58  Log likelihood        :    -426.697 

Sigma-square        :     12.1909  Akaike info criterion :     865.394 

S.E. of regression  :     3.49154  Schwarz criterion     :     883.883 

Sigma-square ML     :     11.7365 

S.E of regression ML:     3.42586 

 

----------------------------------------------------------------------------- 

       Variable      Coefficient      Std.Error    t-Statistic   Probability 

----------------------------------------------------------------------------- 

          CONSTANT      -1.24998       0.720998       -1.73369     0.08496 

            Serv_1       -1.1253       0.302936       -3.71464     0.00028 

           Wwalk_1       2.27767       0.323168        7.04796     0.00000 

        W830_8_860       1.74156       0.350786        4.96474     0.00000 

         P18YBDh_1      -2.16082       0.353668       -6.10974     0.00000 

        MBTApaxE_1      0.133281      0.0415211        3.20996     0.00161 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS   

MULTICOLLINEARITY CONDITION NUMBER   23.232463 

TEST ON NORMALITY OF ERRORS 

TEST                  DF           VALUE             PROB 

Jarque-Bera            2             1.7560          0.41562 

 

DIAGNOSTICS FOR HETEROSKEDASTICITY   

RANDOM COEFFICIENTS 

TEST                  DF           VALUE             PROB 

Breusch-Pagan test     5            18.3998          0.00248 

Koenker-Bassett test   5            23.2445          0.00030 

 

DIAGNOSTICS FOR SPATIAL DEPENDENCE    

FOR WEIGHT MATRIX : GRID_QueenMatrix 

   (row-standardized weights) 

TEST                          MI/DF        VALUE          PROB 

Moran's I (error)             0.0318        1.2828        0.19957 

Lagrange Multiplier (lag)       1           5.7508        0.01648 

Robust LM (lag)                 1          10.9819        0.00092 

Lagrange Multiplier (error)     1           0.5305        0.46639 

Robust LM (error)               1           5.7616        0.01638 

Lagrange Multiplier (SARMA)     2          11.5124        0.00316 

============================== END OF REPORT ================================ 

 

Spatial Lag model 

---------- 

SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 

Data set            : GRIDDataBaseLN 

Spatial Weight      : GRID_QueenMatrix 

Dependent Variable  :  D_TTripD_1  Number of Observations:  161 

Mean dependent var  :    -2.42724  Number of Variables   :    7 

S.D. dependent var  :     4.90234  Degrees of Freedom    :  154 

Lag coeff.   (Rho)  :    0.299788 

 

R-squared           :    0.537126  Log likelihood        :    -423.576 

Sq. Correlation     : -            Akaike info criterion :     861.153 

Sigma-square        :     11.1242  Schwarz criterion     :     882.723 
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S.E of regression   :      3.3353 

 

----------------------------------------------------------------------------- 

       Variable       Coefficient     Std.Error       z-value    Probability 

----------------------------------------------------------------------------- 

      W_D_TTripD_1      0.299788       0.105283        2.84745     0.00441 

          CONSTANT     -0.727083       0.709148       -1.02529     0.30523 

            Serv_1     -0.887424       0.306145        -2.8987     0.00375 

           Wwalk_1       1.63674        0.35435        4.61897     0.00000 

        W830_8_860       1.36134        0.36807        3.69859     0.00022 

         P18YBDh_1      -1.58758       0.376812        -4.2132     0.00003 

        MBTApaxE_1      0.117721      0.0400304        2.94078     0.00327 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS 

DIAGNOSTICS FOR HETEROSKEDASTICITY  

RANDOM COEFFICIENTS 

TEST                                     DF      VALUE        PROB 

Breusch-Pagan test                       5        18.7777     0.00211 

 

DIAGNOSTICS FOR SPATIAL DEPENDENCE 

SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : GRID_QueenMatrix 

TEST                                     DF      VALUE        PROB 

Likelihood Ratio Test                    1         6.2413     0.01248 

============================== END OF REPORT ================================ 

Spatial Error model 

---------- 

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION  

Data set            : GRIDDataBaseLN 

Spatial Weight      : GRID_QueenMatrix 

Dependent Variable  :  D_TTripD_1  Number of Observations:  161 

Mean dependent var  :   -2.427238  Number of Variables   :    6 

S.D. dependent var  :    4.902341  Degrees of Freedom    :  155 

Lag coeff. (Lambda) :    0.134238 

 

R-squared           :    0.515090  R-squared (BUSE)      : -  

Sq. Correlation     : -            Log likelihood        : -426.352895 

Sigma-square        :     11.6538  Akaike info criterion :     864.706 

S.E of regression   :     3.41377  Schwarz criterion     :     883.194 

 

----------------------------------------------------------------------------- 

       Variable       Coefficient     Std.Error       z-value    Probability 

----------------------------------------------------------------------------- 

          CONSTANT      -1.22631        0.75164       -1.63151     0.10278 

            Serv_1       -1.1557       0.319119       -3.62154     0.00029 

           Wwalk_1       2.14461       0.338027         6.3445     0.00000 

        W830_8_860       1.77577       0.370479        4.79318     0.00000 

         P18YBDh_1      -2.06856       0.368268       -5.61699     0.00000 

        MBTApaxE_1      0.131246      0.0414412        3.16703     0.00154 

            LAMBDA      0.134238       0.133751        1.00364     0.31555 

----------------------------------------------------------------------------- 

 

REGRESSION DIAGNOSTICS 

DIAGNOSTICS FOR HETEROSKEDASTICITY  

RANDOM COEFFICIENTS 

TEST                                     DF      VALUE        PROB 

Breusch-Pagan test                       5        18.6982     0.00219 

 

DIAGNOSTICS FOR SPATIAL DEPENDENCE  

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : GRID_QueenMatrix 

TEST                                     DF      VALUE        PROB 

Likelihood Ratio Test                    1         0.6883     0.40675 

============================== END OF REPORT ================================ 


