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Abstract

The main focus of this thesis are factorisation systems and their applications to categories of partial
maps. The original contribution of this work is the introduction of a new type of factorisation systems
developed in the context of categories enriched over the category of partial orders and a presentation
of various instances and constructions of such structures in the context of categories of partial maps.

The first part of the thesis constitutes a survey on the traditional literature about different types of
factorisation systems. These structures are presented starting from their definition together with their
main properties and some of the most known results on the subject.

The second is an introduction to categories of partial maps which is intended to be an helpful
source of tools for the reader that approaches the results in the following chapters.

Then we proceed to present the original contribution introducing the notion of lax weak orthogo-
nality, which involves the existence of diagonal morphisms for lax squares. Inspired by the traditional
theory of factorisation systems from the second chapter, we proceed to introduce the definitions of lax
weak factorisation systems, lax functorial factorisation systems and lax algebraic weak factorisation
systems. We focus on the study of their main features and properties, in particular we investigate the
links between these concepts. We conclude by observing that the arguments developed have a dual
formulation that concerns oplax squares.

The last part is dedicated to the application of the newly defined structures in the context of partial
maps. We consider categories of partial maps enriched over the category of partial orders. Then we
show that any category of partial maps comes equipped with a lax algebraic weak factorisation system,
which isolates the domain component from the total datum of a partial map.

Furthermore, we explore the close link between oplax weak factorisation systems on a category
of partial maps and the oplax weak factorisation systems on the base category which carry some
conditions of stability under pullbacks. In fact, we will succeed in establishing a bijection between
the two classes. Moreover, we will show that functoriality and monad structures are transferred from
orthogonal factorisation systems on the base category to those induced among partial maps when
considering the simplest notion of Ord-enrichment.

We conclude presenting some remarks on cofibrant generation of lax and oplax weak factorisation
systems for certain pointed categories.





Resumo

O foco principal desta tese são os sistemas de fatorização e as suas aplicações às categorias de
funções parciais. A contribuição original deste trabalho é a introdução de um novo tipo de sistemas de
factorização desenvolvidos no contexto de categorias enriquecidas na categoria dos espaços ordenados
e uma apresentação de várias instâncias e construções de tais estruturas no contexto das categorias de
funções parciais.

A primeira parte da tese consiste numa apresentação dos resultados clássicos sobre diferentes
tipos de sistemas de fatorização. Essas estruturas são apresentadas a partir das próprias definições
juntamente com as principais propriedades e alguns dos resultados mais conhecidos sobre o assunto.

A segunda é uma introdução às categorias de funções parciais que se destina a ser uma fonte útil
de ferramentas para o leitor na abordagem dos resultados nos capítulos seguintes.

Seguindo, passamos a apresentar a contribuição original introduzindo a nova noção de ortogonali-
dade fraca lassa, que envolve a existência de morfismos diagonais para quadrados lassos. Inspirado
pela teoria tradicional dos sistemas de fatorização do primeiro capítulo, apresentamos a definição de
sistemas de fatorização fracos lassos, sistemas de fatorização functorial lassos e sistemas de fatorização
fracos algébricos lassos. Concentramo-nos no estudo das principais características e propriedades, em
particular investigamos as ligações entre esses conceitos. Concluímos observando que os argumentos
desenvolvidos têm uma formulação dual ao considerar os quadrados oplassos que produz um conjunto
igualmente poderoso de resultados.

A última parte é dedicada à aplicação das novas estruturas definidas no contexto de funções parci-
ais. Consideramos categorias de funções parciais enriquecidas na categoria dos espaços ordenados.
Seguindo, mostramos que qualquer categoria de funções parciais vem equipada com um sistema
algébrico de fatorização lasso, que isola o componente do domínio do datum total de uma função
parcial.

Em seguida, exploramos a estreita ligação entre os sistemas de fatorização fracos oplassos de uma
categoria de funções parciais e os sistemas de fatorização fracos oplasso na categoria de base, que
apresentam algumas condições de estabilidade sob produtos fibrados. Na verdade, conseguiremos
estabelecer uma bijeção entre as duas classes de fatorizações. Além disso, mostraremos que a
functorialidade e as estruturas da monada são transferidas dos sistemas de fatorização ortogonais na
categoria de base para aqueles induzidos entre as funções parciais ao considerar a noção mais simples
de enriquecimento em Ord.

Concluímos apresentando algumas observações sobre a geração cofibrante de sistemas de fatoriza-
ção lassos e oplassos para certas categorias pontuadas.
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Chapter 1

Introduction

Factorisation systems are a categorical concept that have been around for quite some time among
the categorical structures. They have proved to be a handy tool to analyse the structure of a category,
entering with good reasons in the categorical benchmark of many category theorists.

The first introduction of factorisation systems was in [FK72] and these particular factorisations
were later called orthogonal factorisation systems, to distinguish them from the many other structures
that in time joined the rich folder of factorisations of morphisms in a category.

This is the topic from which this investigation started and in particular from the study of fac-
torisation systems that had an interplay with the higher structures of a category introduced in
[CLF16, LF19, CLF20]. In this research our objective has been to capture and describe the properties
of a new orthogonality relation that gives rise to lifting properties for a wider class of laxly commu-
tative squares and that was endowed with the structure of Ord-enrichment. This new orthogonality
relation, that we called lax weak orthogonality, allowed us to expand the theory of factorisation
systems in this sense introducing newer structures that mirror the classical theory for factorisation
systems. In particular we discuss a functorial approach to lax weak orthogonal factorisations and
explored its features and properties, then we present how these can be equipped with lax monad and
comonad structures as already happens for the classical algebraic weak factorisation systems.

Then our attention turned to categories of partial maps. These categories are an interesting
environment for Ord-categorical studies and, moreover, have a vast field of applications as witnessed
by the large number of studies that make use of this mathematical tool, ranging from analysis and
topology to semigroup theory and computer science.

During our study, categories of partial maps have proved to be quite a fruitful context to develop
lax and oplax factorisation systems and, as we will see, some of them are actually quite hardly encoded
in the structure of such categories.

We provide now a quick plan of the work. In Chapter 2 we discuss an overview on the literature
regarding factorisation systems. The structures are presented in order of generality and accompanied
by their properties and features. We go through the constructions that had a bigger correlation with the
original content of the thesis. We conclude the chapter discussing some other studies that, similarly to
our endeavour, investigated the interplay between factorisations and higher categorical structures.
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2 Introduction

In Chapter 3 we focus on the categorical approach to partial maps, providing a brief survey on
categories of partial maps, their study and application. Then we move on to discuss their formalisation
and some results that will come in handy for the purposes of our work.

In the next two chapters we present the original contribute of this thesis, which regards lax
factorisation systems and their applications; this material was developed in [Lar21].

In Chapter 4 we present lax weak orthogonality discussing its features and then we proceed to
introduce lax weak factorisation systems, lax functorial factorisation systems and lax algebraic weak
factorisation systems. In doing so, we discuss a small object argument for cofibrant generation of lax
weak factorisation systems and we study the correlation between lax weak factorisation systems and
lax functorial factorisation systems.

Finally, Chapter 5 is dedicated to the development of examples of lax factorisation systems in
the context of categories of partial maps. First we prove the existence, for each category of partial
maps, of a lax algebraic weak factorisation system that separates the domain component and the
total datum of a partial morphism. Then we discuss how oplax weak factorisation systems on the
base category, under some pullback stability conditions, give rise to oplax weak factorisations among
partial maps and vice versa. Moreover, we show that this gives rise to a bijection between the two
classes of factorisation systems. Furthermore, we prove that for particular Ord-enrichments the
functorial properties of an orthogonal factorisation system are transferred from the base category to
the category of partial maps. We conclude presenting some remarks on cofibrant constructions of lax
and oplax weak factorisation systems for certain pointed Ord-categories along to some applications
to categories of partial maps.



Chapter 2

Factorisation systems

The following chapter is intended as an overview on factorisation systems, providing the context and
framework of our study. The concepts, definitions and results presented along this chapter are already
part of an established scientific literature and we will provide references along the discussion.

It is worth to mention that historically the first notion of factorisation system was introduced by
Freyd and Kelly in [FK72]. We organized this chapter not by historical order of appearance, but in
order of generality, starting from the weaker notions, going on to refine them and describing stronger
structures through the discussion. For this reason the first structures mentioned will be the relatively
newer weak factorisation systems and orthogonal factorisation systems will be the penultimate.

We will present in the conclusion of the chapter the definition of lax orthogonal factorisation
systems, and enriched factorisation systems, which are other kinds of factorisation systems linked to
enrichments, as the ones that are the scope of this study.

2.1 Weak Factorisation Systems

This section is dedicated to present the most general notion of factorisation systems. We can trace
back the introduction of these factorisation systems to Quillen’s work in [Qui67]. Weak factorisation
systems are an important element in the theory of Quillen model categories, in fact each model
structure in Quillen’s definitions entails two weak factorisation systems, as denoted in Definition 2.13.
The results discussed in this section are known and they can be found in [AHRT02, RT02, Rie11].

We will denote commutative squares of morphisms in a given category C as

A

f

��

u
// C

g

��

B v
// D

by [u,v] ∶ f Ð→ g. This notation portrays commutative squares as morphisms in the arrow category
C 2.

Definition 2.1. A morphism l is left weakly orthogonal to a morphism r, denoted by l⧄r (sometimes in
literature also denoted by l ⋔ r), if for every commutative square [u,v] ∶ lÐ→ r there exists a morphism

3



4 Factorisation systems

δ as in the diagram
A

l

��

u
// B

r

��

C

δ

??

v
// D,

such that the two triangles commute. The morphism δ is said to be a diagonal morphism or diagonal
lifting of l against r for the square [u,v].

Given a class H of morphisms in C , we can define the weak orthogonal complements of H as
follows

⧄H = { f ∣ f ⧄h for every h ∈H} and H⧄ = { f ∣h⧄ f for every h ∈H} .

Proposition 2.2. The pair ⧄ (−) and (−)⧄ forms a Galois connection among the classes of morphisms
in C partially ordered by the inclusion.

Proof. LetA and B be two classes of morphisms in C . We prove first that ⧄ (−) and (−)⧄ are antitone
with respect to inclusion. Let A ⊆ B. If f ∈ ⧄B, then f ⧄b for every b ∈ B, then in particular f ⧄a for
every a ∈A, then f ∈ ⧄A. Therefore ⧄A ⊇ ⧄B. Similarly one proves that A⧄ ⊇ B⧄.

Moreover, A ⊆ ⧄B if and only if for every a ∈A and for every b ∈ B, a⧄b, which is equivalent to
B ⊆ ⧄A. Analogously A ⊆ B⧄ is equivalent to B ⊆A⧄.

Applying the previous results on inclusions of weak orthogonal complements we deduce the
following corollary.

Corollary 2.3. Let H be a class of morphisms in C . Then H ⊆ ⧄ (H⧄) and H ⊆ (⧄H)⧄. Moreover,
H⧄ = (⧄ (H⧄))⧄ and ⧄H = ⧄ ((⧄H)⧄).

We prove the following lemma.

Lemma 2.4. Let f be a morphism in C . Then the following are equivalent:

1. f ⧄g for every morphism g in C ;

2. g⧄ f for every morphism g in C ;

3. f ⧄ f ;

4. f is an isomorphism.

Proof. 1.∨2.⇒3. Straightforward.
3.⇒4. If f is weakly orthogonal to itself, then we have diagonal lifting for the square

A

f

��

idA
// A

f

��

B
idB

//

δ

??

B;



2.1 Weak Factorisation Systems 5

therefore the commutativity of the two triangles yields that f is an isomorphism.
3.⇒1. We consider a commutative square [u,v] ∶ f Ð→ g. Then it is trivial to check that u ⋅ f −1 is

a diagonal lifting for the square [u,v].
3.⇒2. Is analogous to the proof of the last implication.
4.⇒3. It holds trivially, since one can build diagonal liftings through f −1.

Proposition 2.5. LetH be a class of morphisms of C . Then the following assertions hold.

1. H⧄ and ⧄H contain all the isomorphisms of C ;

2. H⧄ and ⧄H are closed under composition.

Proof. 1. This is a consequence of Lemma 2.4.
2. We show this by building subsequent diagonal liftings. Let f ,g ∈H⧄ be two composable arrows.

Then for every commutative square [u,v] ∶ hÐ→ g ⋅ f , with h ∈H, we can build the following diagram

●

h

��

u
// ●

f

��●

g

��

● v
//

δg

??
δg⋅ f

GG

●;

where δg⋅ f is a diagonal lifting for the square [u,δg]. Then we have

g ⋅ f ⋅δg⋅ f = g ⋅δg = v

since the lower triangle is commutative by construction. We conclude that δg⋅ f is a diagonal lifting for
[u,v]. Then g ⋅ f ∈H⧄. The proof for ⧄H is similar.

We recall the definition of binary products in the category C 2.

Definition 2.6. Let C be a category with binary products. Let f ,g be two objects of C 2. Then f ×g is
the universal arrow related to the product B×B′ with respect to the span ( f ⋅πA;g ⋅πA′), as depicted
in the following diagram

A×A′
πA′

((

πA

vv

f×g

��

A

f

��

A′

g

��

B B′

B×B′.
πB

hh

πB′

66

Proposition 2.7. LetH be a class of morphisms of a category C with products and pullbacks. The
classH⧄ is closed under pullbacks and products in C 2. Moreover, if e is a retraction and f ⋅e ∈H⧄,
then f ∈H⧄.
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Proof. Let us consider f ∈H⧄ and g∗ ( f ) its pullback along any morphism g. For every commutative
square [u,v] ∶ hÐ→ g∗ ( f ), with h ∈H, we have the following diagram

●

h

��

u
// ●

g∗( f )
��

f ∗(g)
// ●

f

��●

δ

22

v
// ● g

// ●,

where δ is the diagonal morphism lifting h against f . Then there exists a universal morphism δ
′ for

the diagram
●

v

!!

δ

$$

δ
′
%% ●

g∗( f )

��

f ∗(g) // ●

f

��● g
// ●.

(2.i)

We have the following equalities

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f ∗ (g) ⋅δ ′ ⋅h = δ ⋅h = f ∗ (g) ⋅u
g∗ ( f ) ⋅δ ′ ⋅h = v ⋅h = g∗ ( f ) ⋅u,

and since pullback morphisms are jointly monomorphic, then δ
′ ⋅ h = u. By (2.i) we have that

g∗ ( f ) ⋅ δ ′ = v. This yields that δ
′ is a diagonal morphism lifting h against g∗ ( f ) and therefore

g∗ ( f ) ∈H⧄.

Then we prove thatH⧄ is closed under products in C 2. Let us consider a family of morphisms
( fi ∶ AiÐ→ Bi)i∈I inH⧄ and f =∏

i∈I
fi ∶∏

i∈I
AiÐ→∏

i∈I
Bi. We aim to prove that f ∈H⧄. Let [u,v] ∶ hÐ→

f be a commutative square. For every i ∈ I there exists δi lifting h against fi as in the diagram

H

h

��

u
// ∏i∈I Ai

f

��

πi
// Ai

fi

��

K
δi

::

v
//

⟨δi⟩

==

∏i∈I Bi
π
′
i

// Bi.

(2.ii)

Then there exists the universal arrow ⟨δi⟩ for the product∏
i∈I

Ai. Since (πi)i∈I and (π ′i )i∈I are jointly

monomorphic, we have that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

πi ⋅u = δi ⋅h = πi ⋅ ⟨δi⟩ ⋅h
π
′
i ⋅v = fi ⋅δi = fi ⋅πi ⋅ ⟨δi⟩ = π

′
i ⋅ f ⋅ ⟨δi⟩

⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u = ⟨δi⟩ ⋅h
v = f ⋅ ⟨δi⟩ .

This concludes that f ∈H⧄.
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Now let us consider f ⋅e ∈H⧄, with e ⋅m = id. If [u,v] ∶ hÐ→ f is any commutative square with
h ∈H, then there exists a diagonal morphism in the following commutative diagram

● u
//

h

��

● m
// ●

e
��●

f
��● v
//

d

>>

●.

We consider δ = e ⋅d. We deduce that δ is a diagonal lifting, since

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u = e ⋅m ⋅u = e ⋅d ⋅h = δ ⋅h
v = f ⋅e ⋅d = f ⋅δ .

We remark that the previous proposition induces the following dual result.

Proposition 2.8. Let H be a class of morphisms of a category C with coproducts and pushouts.
The class ⧄H is closed under pushouts and coproducts in C 2. Moreover, if m is a coretraction and
m ⋅ f ∈ ⧄H, then f ∈ ⧄H.

Definition 2.9. A weak prefactorisation system is a pair of classes of morphisms (L,R) such that
L⧄ =R and ⧄R =L. If every morphism f admits an (L,R)-factorisation

A
f

//

L∋l
  

B

M f ,

r∈R

>>

then (L,R) is called weak factorisation system (WFS).

There exists an equivalent definition of WFS. In the following proposition we will state it and
prove its equivalence to the previous definition.

Proposition 2.10. The pair (L,R) is a WFS if and only if the following conditions hold:

1. L⧄R, i.e. for every l ∈L and r ∈R, then l⧄ r;

2. every morphism f admits an (L,R)-factorisation;

3. if id = e ⋅m, then

(a) if m ⋅ f ∈L, then f ∈L;

(b) if g ⋅e ∈R, then g ∈R.

Proof. ⇒. It is straightforward that if (L,R) is a WFS, then 1. and 2. are true and 3. is a consequence
of Propositions 2.7 and 2.8.
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⇐. We aim to prove that L andR are weak orthogonal complements with respect to each other.
Condition 1. implies that L ⊆ ⧄R andR ⊆L⧄. Let f ∈ ⧄R. By condition 2. we have the factorisation
f = r f ⋅ l f . Hence the existence of a diagonal lifting in the following diagram

A
l f
//

f

��

M f

r f

��

B
idB

//

δ

??

B.

Then δ is a coretract by commutativity of the lower triangle and δ ⋅ f = l f ∈ L. Therefore f ∈ L by
3.(a). Hence L = ⧄R. The proof thatR =L⧄ is analogous.

Example 2.11. We provide a first example for Set, which is a sort of guiding example for WFSs. Let
us consider the class of epimorphisms Epi and the class of monomorphisms Mono. Then the pair
(Mono,Epi) is a WFS. Recalling Proposition 2.10, we notice that condition 3. is trivially satisfied
by the two classes. We consider a square [u,v] ∶mÐ→ e, where m ∈Mono and e ∈ Epi. Then we can
always build a diagonal morphism as

δ (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(m−1 (x)) if x ∈ Im(m)
y ∈ e−1 (v(x)) ≠Ø otherwise.

Thereafter we have that each morphism f ∶ AÐ→ B can be factorised as

A
⟨idA, f ⟩

// A×B
πB

// B if A ≠Ø

Ø // B
idB

// B otherwise.

Moreover, it admits also another distinct (Mono,Epi)-factorisation

A // A∐B // B.

Hence (Mono,Epi) is a WFS.

Example 2.12. As cited in [Rie14], we actually have that on Set there exist only the following WFSs:

●(All, Iso) ●(Epi,Mono) ●(All/N , Iso∪N )
●(Iso,All) ●(Mono,Epi) ●(Mono/N ,Epi∪N ) ,

where N = { f ∶ØÐ→ B∣B ≠Ø}.

In conclusion we report the definition of model structures, which highlights the link with WFSs.

Definition 2.13. A model structure on a category C is constituted by three classes of morphisms

• Cof the class of cofibrations;
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• Fib the class of fibrations;

• W the class of weak equivalences.

These classes must satisfy the following:

1. W contains all isomorphism;

2. considering f , g, g ⋅ f , then if two of them belong toW , the third one belongs toW as well
(referred to as the two out of three condition);

3. (Cof,Fib∩W) and (Cof ∩W,Fib) are both WFSs.

2.2 Small object argument

In this section we will describe a well known result that is usually referred to as Small Object Argument.
This result consists of a transfinite construction to build factorisations of morphisms starting from a
set of maps under some (co)completeness and smallness conditions. This result has been introduced
by Quillen in [Qui67], then extended by Bousfield in [Bou77] and then refined by Garner in [Gar09].
We also refer to the reader the work of Hirschhorn in [Hir03], which presents the subject thoroughly.

We start this section with the following proposition, which is actually a corollary of Proposition
2.2.

Proposition 2.14. Let H be a class of morphism in C . Then (⧄H,(⧄H)⧄) and (⧄ (H⧄) ,H⧄) are
weak prefactorisation systems.

Although this proposition enables us to build weak prefactorisations systems from any class
of morphisms, one must keep in mind that this construction might lead to trivial prefactorisation
systems such as (Iso,All) and (All, Iso). One further improvement is finding conditions under which
Proposition 2.14 allows us to build actual WFSs. In order to do that one needs a construction for
factorisations and this is the aim of the Small Object Argument.

We recall the definition of transfinite composition.

Definition 2.15. Let C be a category. By transfinite composition of a diagram

(e0
α ∶ X0Ð→ Xα)

α<λ

we mean the morphism e0
λ

of the colimit cocone (Xλ ,eα

λ
∶ Xα Ð→ Xλ)α<λ

of such diagram, whenever
such colimit exists.

Then we have the following result.

Proposition 2.16. Let C be a category that has transfinite compositions andH a class of morphisms
in C . Then ⧄H is closed under transfinite compositions.

Proof. We consider the following diagram

(e0
α ∶ X0Ð→ Xα)

α<λ
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where e0
α ∈ ⧄H for each α < λ . We consider the transfinite composition of such sequence e0

λ
and a

commutative square [u,v] ∶ e0
λ
Ð→ f , with f ∈H. We can write the following diagram

X0

e0
λ

��

u
//

e0
α
��

A

f

��

Xα

eα

λ
��

dα

::

Xλ v
//

d

II

B.

The morphisms (dα)α<λ
are the diagonal liftings of e0

α against f that arise since every morphism
e0

α in the diagram belongs to ⧄H and they satisfy the following identities u = dα ⋅ e0
α . In particular

(dα)α<λ
constitutes a cocone for the diagram (e0

α)α<λ
, hence there exists the universal morphism

d ∶ Xλ Ð→ A such that d ⋅eα

λ
= dα . In particular we have that d ⋅e0

λ
= u and

v ⋅eα

λ
= f ⋅dα = f ⋅d ⋅eα

λ
,

which yields that v = f ⋅d, since (eα

λ
)

α<λ
are jointly epic. We conclude that d is the diagonal lifting

sought and that e0
λ
∈ ⧄H.

Definition 2.17. Let λ be an ordinal. AnH-cell λ -complex is a diagram of the form

(eα

β
∶ Eα Ð→ Eβ)

α≤β<λ

such that e0
β
= eα

β
⋅e0

α for any α ≤β <λ and each e0
α is a transfinite compositions of morphisms obtained

from elements in H via pushouts, colimits and coproducts (in the dual sense of Definition 2.6). We
will refer to anH-cell λ -complex (eα

β
∶ Eα Ð→ Eβ)

α≤β≤λ
that extends to λ asH-cell λ -complex.

Definition 2.18. Let C be a category that admits transfinite compositions ofH-cell λ -complexes. An
object W is small relative to H if there exists an ordinal κ such that for every λ ≥ κ and for every
H-cell λ -complex

(eα

β
∶ Eα Ð→ Eβ)

α≤β<λ

and any morphism u ∶W Ð→ Eλ there exists an ordinal γ < λ and a morphism u′ ∈C (W,Eγ) such that
u = eγ+1

λ
⋅eγ

γ+1 ⋅u′.

Theorem 2.19 (Small Object Argument). Let C be a cocomplete category. Let H be a set of
morphisms in C such that every domain of a morphism in H is small relative to H. Then every
morphism f in C factors as f = p ⋅e, where p is inH⧄ and e is in ⧄ (H⧄).

Proof. SinceH is a set, there exists an ordinal λ such that every domain of a morphism inH is small
relative toH with respect to some κ ≤ λ .
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Consider f ∶ AÐ→ B. We construct an H-cell λ -complex (eα

β
∶ Eα Ð→ Eβ)

α≤β<λ
and a cocone

(pα ∶ Eα Ð→ B)
α<λ

for the diagram (e0
α)α<λ

, i.e. such that

E0
e0

α
//

p0

��

Eα

pα

��

B

for any α < λ .

We start by setting p0 = f . Let us consider an ordinal γ . We build the γ +1 step as follows. We
consider the commutative squares of the form

A j

h j

��

u j
// Eγ

pγ

��

B j v j
// B

(2.iii)

such that h j ∈H and we index these squares by j ∈ I. We consider the coproduct ĥ=∐
i∈I

hi ∶∐
i∈I

AiÐ→∐
i∈I

Bi,

defined by the dual of Definition 2.6. Then we can build the following pushout diagram

∐i∈I Ai

ĥ

��

[ui]i∈I
// Eγ

pγ

��

eγ

γ+1

��

∐i∈I Bi

[vi]i∈I ..

qγ
// Eγ+1

pγ+1

!!

B.

(2.iv)

The morphisms [ui]i∈I and [vi]i∈I are the universal morphisms induced by the two coproducts in
C . The morphism eγ

γ+1 ∶ Eγ Ð→ Eγ+1 is a pushout of a coproduct of elements of H, hence eγ

γ+1 is
in ⧄ (H⧄), since H ⊆ ⧄ (H⧄) by Corollary 2.3 and weak orthogonal complements are closed under
coproducts and pushout by Proposition 2.8. We define eα

γ+1 = eγ

γ+1 ⋅eα
γ for any α ≤ γ . This yields that

e0
γ+1 = eγ

γ+1 ⋅e0
γ belongs to ⧄ (H⧄), since it is closed under composition. We remark that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p0 = pγ ⋅e0
γ = pγ+1 ⋅eγ

γ+1 ⋅e0
γ = pγ+1 ⋅e0

γ+1,

e0
γ+1 = eγ

γ+1 ⋅e0
γ = eγ

γ+1 ⋅eα
γ ⋅e0

α = eα

γ+1 ⋅e0
α

(2.v)

by inductive hypothesis.

Hence (eα

β
∶ Eα Ð→ Eβ)

α≤β<γ+1
is an H-cell (γ +1)-complex and (pα ∶ Eα Ð→ B)

α<γ+1 is a co-

cone for the diagram (e0
α)α<γ+1.
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Now for each limit ordinal κ ≤ λ we have a H-cell κ-complex (eα

β
∶ Eα Ð→ Eβ)

α≤β<κ
and a

cocone (pα ∶ Eα Ð→ B)
α<κ

such that p0 = pα ⋅e0
α by inductive hypothesis. Hence we may write the

following diagram

E0
e0

α
//

e0
κ   

p0

&&

Eα

eα
κ~~

pα

xx

Eκ

pκ

��

B,

(2.vi)

where (eα
κ )α≤κ

is a colimit cocone for the diagram (e0
α)α<κ

and pκ is the universal morphism for the
cocone (pα)

α<κ
. In particular we have for any α ≤ κ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pα = pκ ⋅eα
κ

e0
κ = eα

κ ⋅e0
α .

Moreover, the morphism e0
κ ∶ E0Ð→ Eκ is the transfinite composition of morphisms in ⧄ (H⧄) and

therefore it belongs to ⧄ (H⧄) by Proposition 2.16. Thus we have that (eα

β
∶ Eα Ð→ Eβ)

α≤β≤κ
is an

H-cell κ-complex and (pα ∶ Eα Ð→ B)
α≤κ

is a cocone for the diagram (e0
α)α≤κ

.

Then we have the factorisation

A
f

//

e0
λ
""

B

Eλ

pλ

<<

with e0
λ

belonging to ⧄ (H⧄). We prove that pλ ∶ Eλ Ð→ B is in H⧄. We consider a square [u,v] ∶
hÐ→ pλ with h ∶H Ð→H′ inH. By our smallness hypothesis, we know that there exists a morphism
u′ ∈C (H,Eγ) such that u = eγ+1

λ
⋅eγ

γ+1 ⋅u′, for some γ < λ . Thus we can write

H

u

##

h

��

u′ // Eγ

pγ

��

eγ

γ+1
// Eγ+1

pγ+1

}}

eγ+1
λ

// E f

pλ

vvH′ v
//

66

B.

(2.vii)

We remark that [u′,v] ∶ hÐ→ pγ is commutative, since pγ+1 = pλ ⋅eγ+1
λ

by (2.vi) and that pγ = pγ+1 ⋅eγ

γ+1

by construction in (2.iv). Therefore there exists j ∈ I such that [u′,v] ∶ hÐ→ pγ is a square of the form
described in diagram (2.iii) and it is part of the construction of ĥ in the γ +1 step. This amounts to
having that the following diagram is commutative
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H

h

��

σh
//

u′

%%

∐i∈I Ai

ĥ

��

[ui]i∈I
// Eγ

eγ

γ+1

��

pγ

  

H′
σ
′
h
//

v

::∐i∈I Bi
qγ

//

[vi]i∈I

::
Eγ+1

pγ+1
// B.

Hence qγ ⋅σ ′h is a possible dotted morphism in diagram (2.vii), therefore eγ+1
λ
⋅qγ ⋅σ ′h is the diagonal

lifting sought for the square [u,v]. We conclude that pλ is inH⧄.

Corollary 2.20. Let C be a cocomplete category. LetH be a set of morphisms in C such that every
domain of a morphism inH is small relative toH. Then (⧄ (H⧄) ,H⧄) is a WFS.

Example 2.21. We present now an application of this last constructive tool to build WFSs. Such
example is well-known and presented for instance in [Gar09, Rie14] among others.

Let us consider the category Set and the WFS (Mono,Epi) mentioned in Example 2.11. Such WFS

is generated through this process. Let us consider the set of maps O = {! ∶ØÐ→ ∗}, and a morphism
f ∶AÐ→B such that !⧄ f . Then every b ∈B defines a morphism vb ∶ ∗z→ b, which makes the following
diagram commute

Ø //

!

��

A

f

��

∗ vb
//

d

??

B,

where d exists by weak orthogonality. Then, d (∗) ∈ f −1 (B), which yields that f is epimorphic. Hence
by uniqueness of weak orthogonal complements the WFS generated is (Mono,Epi). Therefore, the
small object construction induces the coproduct factorisation in Example 2.11.

2.3 Functorial Factorisation Systems

Even if WFSs have proven to be quite rich and nuanced structures, one can wonder how to define
a more complex notion of factorisation systems and whether it may induce some categorical way
(read here functorial) to choose factorisations and diagonal liftings. The most general answer to such
a question is provided by functorial factorisation systems. Such factorisation systems will in fact
provide the components of factorisations functorially, which are still not unique. Since historically
the notion of WFS drew interest later than the stronger and more established notion of orthogonal
factorisation systems (for whose discussion we redirect the reader to the following Section 2.5), the
first definition of functorial factorisation systems, which were modeled to grasp facets of the latter
structure as for instance [KT93, JT99], were indeed stronger definitions than the one we present in
this chapter. The definition that we will present in this section is introduced in [RT02], and is present
in [Rie11] or [CLF16, CLF20].
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We begin this section recalling some useful notation. Let C be any category. Then C 2×C C 2 is
the category of pairs of composable morphisms, i.e. an object is a pair ( f ,g) such that domg = cod f .
Morphisms in C 2 ×C C 2 are triples of arrows [u,v,w] ∶ ( f ,g)Ð→ ( f ′,g′) such that the following
diagram commutes

A

f
��

u
// A′

f ′
��

B

g
��

v // B′

g′
��

C w
// C′.

Then we have the following functors

C 2×C C 2 π1 //

(−⋅−) //

π2 //
C 2 dom //

cod // C .

The two morphisms π1,π2 are projections on the first and second components and (−⋅−) is the
composition functor. Moreover, dom and cod are the functors that assign to each morphism its domain
and its codomain, respectively. They are all trivially well-defined as functors.

Definition 2.22. A functorial factorisation system (FFS) for a category C is a functor F ∶ C 2 Ð→
C 2×C C 2, which is a coretraction of (−⋅−), i.e. (−⋅−)○F = IdC 2 .

Any FFS F gives rise to the following components

L = π1 ○F R = π2 ○F K = cod○L = dom○R.

These functors assign to each morphism in C its left component, its right component and its middle
object respectively. If we consider a commutative square [u,v] ∶ f Ð→ g, then we have that the
following diagram commutes by functoriality

A

L f

��

u
// C

Lg

��

K f

R f

��

K(u,v)
// Kg

Rg

��

B v
// D.

(2.viii)
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Moreover, F gives rise to two transformations η ∶ IdC 2 Ô⇒ R and ε ∶ LÔ⇒ IdC 2 . For any morphism
f ∶ AÐ→ B these transformations are defined as follows

A

f

��

L f
//

η f

K f

R f

��

B
idB

// B,

A

L f

��

ε f

idA
// A

f

��

K f
R f

// B.

Through the factorisation in (2.viii), for any commutative square [u,v] ∶ f Ð→ g one has the following
commutative diagram

A

f

��

u
��

L f
// K f

R f
��

K(u,v)

!!

C

g

��

Lg // Kg

Rg

��

B idB //

v ��

B
v
""

D
idD

// D.

(2.ix)

This diagram, considered from different perspectives, yields that η and ε are natural transformations.
A functorial factorisation system can be described as well by a triple (K,λ ,ρ), where

• K ∶C 2Ð→C is functor;

• λ ∶ domÔ⇒ K and ρ ∶ K Ô⇒ cod are natural transformations such that for every f ∈ C 2,
ρ f ⋅λ f = f .

Another equivalent definition of a functorial factorisation system may be given by a pair of
functors L,R ∶C 2Ð→C 2 such that

dom ⋅L = dom cod ⋅R = cod cod ⋅L = dom ⋅R

and for every f ∈C 2, R f ⋅L f = f .
In general there is no embedding between the class of functorial factorisation systems and the

class of weak factorisation systems on a given category. We provide the following definition that links
the two concepts.

Definition 2.23. Let (L,R) be a WFS, and (L,R) a FFS on a category C . Then, if for every f ∈C 2,
L f ∈L and R f ∈R, we say that (L,R) is a functorial realisation of (L,R). Moreover, any WFS that
admits a functorial realisation is called a functorial weak factorisation system.

We recall the following definition introduced in [Kel80] that we will use in the next result.

Definition 2.24. A pointed endofunctor on a category C is a pair (T,η), with T an endofunctor of
C and η ∶ IdC Ô⇒ T a natural transformation. A T -algebra for such a pointed endofunctor is a pair
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(A,α ∶ TAÐ→ A) such that the following diagram commutes

A
ηA

//

idA
  

TA

α

��

A.

We will denote the class of all T -algebras by T -Alg to distinguish it from the class T-Alg of
algebras for a monad T in the sense of Eilenberg-Moore.

The dual notion of copointed endofunctor (S,ε ∶ SÔ⇒ IdC ), gives rise to a class of L−coalgebras,
that we will denote by L-Coalg.

Theorem 2.25. Let (L,R) be a WFS with functorial realisation (L,R). Then L = L-Coalg and
R = R-Alg.

Proof. First, we notice that, if f ∈L and g ∈R, we have the following diagonal morphisms for the
squares η f and εg

A
L f

//

f

��

K f

R f

��

B

ρ f

??

idB

// B,

C
idC

//

Lg

��

C

g

��

Kg

λg

>>

Rg
// D.

(2.x)

These diagonal morphisms yield respectively

A

f

��

A

L f

��

A

f

��

C

g

��

Lg //

idC
''Kg

Rg

��

λg // C

g

��

B ρ f //

idB

77K f R f // B, D D D.

Therefore ( f ,[idA,ρ f ]) is an L-coalgebra for the copointed endofunctor (L,ε) and (g,[λg, idD]) is
an R-algebra for the pointed endofunctor (R,η). Hence L ⊆ L-Coalg andR ⊆ R-Alg.

Now we consider an R-algebra (g,[α0,α1]). Then, considering the following diagram

C

g

��

Lg //

idC
''Kg

Rg

��

α0 // C

g

��

D
idD

77D α1 // D,

(2.xi)

we have that α1 is an identity. This yields that α0 is a diagonal morphism for εg. Let [u,v] ∶ lÐ→ g a
square with l ∈ L. As seen in the first part of the proof there exists a diagonal morphism ρl for the
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square ηl . We can write the following diagram

X

Ll

��

u
// C

Lg

��

Kl

Rl

��

K(u,v)
// Kg

Rg

��

α0

aa

Y v
//

ρl

==

D.

Then δ = α0 ⋅K (u,v) ⋅ρl is a diagonal morphism for [u,v]; in fact

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ ⋅ l = α0 ⋅K (u,v) ⋅ρl ⋅ l = α0 ⋅K (u,v) ⋅Ll = α0 ⋅Lg ⋅u = u

g ⋅δ = g ⋅α0 ⋅K (u,v) ⋅ρl = Rg ⋅K (u,v) ⋅ρl = v ⋅Rl ⋅ρl = v.

Thus l⧄g and therefore g ∈R. This proves that R = R-Alg. Similarly one proves that L-Coalg ⊆L.
This concludes the proof.

This theorem induces the following further result.

Theorem 2.26. Let (L,R) be a FFS. If for every morphism f , L f ∈ L-Coalg and R f ∈ R-Alg, then
(L-Coalg,R-Alg) is a WFS.

Proof. We consider (L-Coalg,R-Alg) and g ∈ R-Alg. For every commutative square [u,v] ∶ f Ð→ g,
with f ∈ L-Coalg, we have the commutative diagram

A

L f

��

u
// C

Lg

��

K f

R f

��

K(u,v)
// Kg

Rg

��

λg

aa

B v
//

ρ f

??

D.

We notice that δ = λg ⋅K (u,v) ⋅ρ f is a diagonal morphism for the square. Hence R-Alg ⊆ (L-Coalg)⧄.
On the other hand, if g⧄L-Coalg, then εg admits a diagonal lifting λg as in (2.x). This yields that
(g,[ρg, id]) is an R-algebra. Therefore R-Alg ⊇ (L-Coalg)⧄. This, together with the dual statement,
yields that R-Alg = (L-Coalg)⧄ and L-Coalg = ⧄ (R-Alg).

2.4 Algebraic Weak Factorisation Systems

In the previous section we have analysed the strengthening that functoriality brings to the table in the
matter of factorisations. But along with the functorial description of factorisations, we also have that
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FFS do not always induce an underlying WFS. Moreover, functoriality does not extend to the liftings
ρ− and λ−, which play an important role in the previous results.

To reinforce the definition along these two directions algebraizations of FFS were introduced. The
first introduced were natural weak factorisation systems, in [GT06]. Then the definition was refined
by Garner in [Gar09] and later studied in depth in [BG16a, BG16b], who named them algebraic weak
factorisation systems. We will focus in particular on this last formulation.

Definition 2.27. An algebraic weak factorisation system (AWFS) is a FFS (L,R) such that

• (R,η) extends to a monad R = (R,η ,π);

• (L,ε) extends to a comonad L = (L,ε,σ).

Moreover, ∆= (cod(σ),dom(π)) ∶LRÐ→RL is a natural transformation that constitutes a distributive
law of the comonad over the monad. This distributivity amounts to the commutativity of the following
diagram

LRR

Lπ

��

∆R
// RLR R∆

// RRL

πL

��

LR ∆
//

σR

��

RL

Rσ

��

LLR L∆
// LRL

∆L
// RLL.

(2.xii)

From here on we will denote an AWFS by (L,R).
We remark that natural weak factorisation systems, as introduced by Grandis and Tholen, already

entailed the idea of extending the (co)pointed endofunctor to (co)monads and the contribution of
Garner was the addition of the distributivity law in the definition.

Remark 2.28. Looking at the previous definition, we may write explicitly the natural transformation
∆ as follows

K f

LR f

��

cod(σ f )
// KL f

RL f

��

KR f
dom(π f )

// K f .

Commutativity of the two triangles is induced by the monad and the comonad axioms.

The first interesting property of AWFS is that by the monad and comonad axioms, for every
morphism f , L f ∈ L-Coalg and R f ∈R-Alg. Since L-Coalg ⊆ L-Coalg and R-Alg ⊆ R-Alg, then the
hypotheses of Theorem 2.26 are satisfied and it induces that (L-Coalg,R-Alg) is a WFS.

We may regard the two subcategories U ∶ L-CoalgÐ→ C 2 and V ∶R-AlgÐ→ C 2 as the left and
the right classes associated with the AWFS (L,R).

Analogously to what depicted in (2.xi), given any R-algebra ( f ,α), then codα = idB and dually
for any L-coalgebra (g,β) we have that domβ = id. Thus R-algebra and L-coalgebra structures
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are uniquely determined by morphisms r = α0 ∶ K f Ð→ dom f and s = β1 ∶ codgÐ→ Kg respectively.
Moreover, given a commutative square [h,k] ∶U f Ð→V g, we can write again the following diagram

A

LU f

��

h
// C

LV g

��

K f

RU f

��

K(h,k)
// Kg

RV g

��

r

aa

B
k

//

s

??

D.

(2.xiii)

and ϕ f ,g (h,k) = r ⋅K (h,k) ⋅ s is a diagonal lifting. Furthermore, such diagonal lifting is a canonical
choice, in the sense that it is compatible with morphisms of the categories L-Coalg and R-Alg. In fact,
given µ ∈L-Coalg( f ′, f ) and ν ∈R-Alg(g,g′), then considering the diagram

A′

U f ′

��

domUµ
// A

U f

��

h
// C

V b

��

domV ν
// C′

V g′

��

B′
codUµ

//

44

B
k
//

??

D
codV ν

// D′

the two dotted diagonal lifting, obtained as in (2.xiii), satisfy

ϕ f ′,g′ (dom(V ν) ⋅h ⋅dom(Uµ),cod(V ν) ⋅k ⋅cod(Uµ)) = dom(V ν) ⋅ϕ f ,g (h,k) ⋅cod(Uµ).

Hence ϕ is a lifting operator, whose formal definition is the following.

Definition 2.29. Let U ∶A Ð→C 2 and V ∶BÐ→C 2 be a pair of functors. Then a lifting operator of
U against V is a natural transformation

ϕ ∶C 2 (U●,V∎)Ô⇒C (codU●,domV∎) .

In particular the two classes L-Coalg and R-Alg are weakly orthogonal and each morphism of
C admits an (L-Coalg,R-Alg)-factorisation. Thus (L-Coalg,R-Alg) satisfies the first two axioms of
Proposition 2.10. We can consider the retract closure of the two classes and we obtain that the pair
(L-Coalg,R-Alg) is the WFS underlying the AWFS (L,R).

We remark that the two retract-closed classes do not admit anymore a lifting operator in general.

2.5 Orthogonal Factorisation Systems

In this section we analyse and present the last and strongest definition of factorisation systems.
Orthogonal Factorisation Systems were historically the first factorisation systems to appear and their
introduction is due to [FK72]. Since then, the topic generated an entire branch of studies that created
various sophisticated definitions and results and their theory entered with good reason the categorist’s
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toolkit, as one can see in [AHS90]. Even if, at first glance, their definition differs very little from WFS,
the bare addition of uniqueness makes them encompass and moreover surpass in strength all of the
definitions that we have given so far. In this section we will present the orthogonality relation among
maps, define orthogonal factorisation systems and describe some of their properties.

Definition 2.30. A morphism e is orthogonal to a morphism m, denoted by e ⊥ m, if for every
commutative square [u,v] ∶ eÐ→m there exists a unique morphism δ

A

e
��

u
// B

m
��

C

δ

??

v
// D,

such that the two triangles in the diagram commute. The morphism δ is said to be the unique diagonal
lifting of e against m for the square [u,v].

As we have discussed in 2.1, given a class of morphismsH in C , one can build orthogonal com-
plementsH⊥ and ⊥H. Uniqueness of diagonal liftings may be included in the proofs of Propositions
2.2 , 2.5 and Lemma 2.4, yielding the following results.

Proposition 2.31. The pair ⊥ (−) and (−)⊥ forms a Galois connection among the classes of morphisms
in C partially ordered by the inclusion.

Lemma 2.32. Let f be a morphism in C . Then the following conditions are equivalent:

1. f ⊥ g for every morphism g in C ;

2. g ⊥ f for every morphism g in C ;

3. f ⊥ f ;

4. f is an isomorphism.

Proposition 2.33. LetH be a class of morphisms of C . Then the following assertions hold

1. H⊥ and ⊥H contain all the isomorphisms of C ;

2. H⊥ is closed under composition;

3. ⊥H is closed under transfinite composition.

Then an orthogonal factorisation system is defined as follows.

Definition 2.34. An orthogonal prefactorisation system is a pair of classes of morphisms (E ,M)
such that E⊥ =M and ⊥M = E . If every morphism f admits an (E ,M)-factorisation

A
f

//

E∋e
  

B

K f ,

m∈M

>>

unique up to isomorphism, then (E ,M) is called orthogonal factorisation system (OFS).
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We notice that as for WFSs the intersection of the two classes is given exactly by the isomorphisms
of C .

Again uniqueness of diagonal morphisms may be plugged in the proofs of Propositions 2.10 and
2.14, yielding the following results.

Proposition 2.35. The pair (E ,M) is an OFS if and only if the following conditions hold:

1. E ⊥M, i.e. for every e ∈ E and m ∈M, then e ⊥m;

2. every morphism f admits a unique (E ,M)-factorisation;

3. if id = r ⋅ s, then

(a) if s ⋅ f ∈ E , then f ∈ E;

(b) if g ⋅ r ∈M, then g ∈M.

Proof. We just prove that if (E ,M) is an OFS, then 3.(a) is true. The proof of 3.(b) is carried out in a
similar fashion and the rest of the arguments can be easily adapted from the proof of Proposition 2.10.
We consider s ⋅ f ∈ E and r,s such that idB = r ⋅ s. In fact, since existence of diagonal morphisms is
already shown in Proposition 2.10, it remains to show that they are unique. Let d,d′ be two diagonal
liftings for a square [u,v] ∶ f Ð→ g, with g ∈M. Then we can write

A u
//

f
��

C

g

��

B

s
��

d′

77

d

77

X r
//

r

99

B v
// D.

It induces that d ⋅ r and d′ ⋅ r are two diagonal liftings of s ⋅ f against g, therefore d ⋅ r = d′ ⋅ r and, since
r is a split epimorphism, d = d′.

Proposition 2.36. Let H be a class of morphisms in C . Then (⊥H,(⊥H)⊥) and (⊥ (H⊥) ,H⊥) are
orthogonal prefactorisation systems.

Proposition 2.37. Let (E ,M) be a OFS. Then it admits a functorial realisation which extends to an
AWFS.

Proof. We first prove that (E ,M) admits a lifting operator. Given e ∈ E and m ∈M, for each
[u,v] ∶ eÐ→m, there exists a unique choice for the map

[u,v]z→ ϕe,m (u,v) .



22 Factorisation systems

Furthermore, we consider the diagram

A′ a
//

e′

��

A u
//

e

��

C b
//

m

��

C′

m′

��

B′
a′

//

44

B

??

v
// D

b′
// D′

where e′ ∈ E and m′ ∈M. Then

ϕe′,m′ (b ⋅u ⋅a,b′ ⋅v ⋅a′) = b ⋅ϕe,m (u,v) ⋅a′

by uniqueness of diagonal morphisms lifting e′ against m′. Now let [u,v] ∶ f Ð→ g and [u′,v′] ∶ gÐ→ h.
Then we can write the diagram

A

e f

��

u
// C

eg

��

u′
// E

eh

��

K f

m f

��

k
//

k′′
))Kg

mg

��

k′
// Kh

mh

��

B v
// D

v′
// F

then k′′ = k′ ⋅k by uniqueness of diagonal morphisms lifting e f against mh. This allows us to conclude
that (E ,M) has a functorial realisation that we denote (E,M). We aim to prove that (M,η) extends
to a monad M. We are seeking a natural transformation µ ∶ MM Ô⇒ M. For any morphism f ,
µ f ∶MM f Ð→M f is a commutative square, which is trivially an identity on codomains. We consider
the following commutative diagram

A

E f ⋅EM f

��

E f
// K f

EM f

��

M f

��

KM f MM f
//

µ
1
f

DD

B
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where the two diagonal morphisms both exist since opposite sides of the diagram are orthogonal.
Considering the following diagrams

A

E f ⋅EM f

��

E f
!!

E f ⋅EM f
// KM f

MM f

��

K f

EM f

==

M f
!!

KM f

µ
1
f

==

MM f
// B,

A

E f

��

E f ⋅EM f
!!

E f
// K f

M f

��

KM f

µ
1
f

==

MM f
!!

K f

EM f

==

M f
// B,

we get that µ
1
f ⋅EM f = idK f and EM f ⋅µ1

f = idKM f by uniqueness of diagonal liftings. Hence the natural
transformation µ ∶MMÔ⇒M is a natural isomorphism, what we have proved yields trivially that
the unit monad axioms hold for M = (M,η ,µ), the associativity axiom is trivially proved by a direct
calculation. Likewise one can prove that E = (E,ε,σ) is a comonad and σ ∶ EÔ⇒ EE is a natural
isomorphism. Hence, since µ and σ are natural isomorphisms, then the distributivity law axiom in
(2.xii) is satisfied.

We have proved that OFSs on a given category are a subclass of its AWFSs. Moreover, we can
characterise OFSs among AWFSs by the structure of the (co)monads that constitute them. Before
stating this characterisation, which is due to [GT06], we recall the definition of idempotent monads.

Definition 2.38. A monad T = (T,η ,µ) is idempotent, if one of the following equivalent conditions
holds:

1. T η = ηT ;

2. µ ∶ T T Ô⇒ T is a natural isomorphism;

3. all components of µ are monomorphic;

4. T-Alg � � // C 2 is full and faithful.

Theorem 2.39. Let (E,M) be an AWFS on a category C . Then the following conditions are equivalent:

1. the underlying WFS (E ,M) is an OFS;

2. liftings of E-coalgebras against M-algebras are unique;

3. M is an idempotent monad;

4. E is an idempotent comonad.

Proof. 1.⇒ 2. This is trivially true since E-Coalg ⊆ E and M-Alg ⊆M.
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2.⇒ 3. We consider an E-coalgebra f . Then we can write for η f the following factorisation

A

f

��

E f
//

η f

K f

M f

��

B
idB

// B

z→

A

E f

��

E f
// K f

EM f

��

K f

M f

��

EM f
//

K(E f ,idB)

// KM f

MM f

��

B
idB

// B

Uniqueness of liftings of E f against M f , which is an M-algebra, induces that M (E f , idB) = EM f .
Hence

Mη f = (K (E f , idB) , idB) = (EM f , idB) = ηM f .

Therefore M is idempotent.

2.⇒ 4. This implication is proved similarly to the previous one.

4.⇒ 2. Idempotency of E yields in particular that V ∶ E-Coalg Ð→ C 2 is fully faithful, thus,
for every ( f ∶ A→ B,β) ∈ E-Coalg, the square [ f , idB] ∶ f Ð→ idB is an E-coalgebra morphism. Let
[u,v] ∶ f Ð→ g a commutative square with g coming from an M-algebra, then, for any diagonal
morphism j for [u,v], we have

A

f

��

u
// C

g

��

B v
// D

=

A

f

��

f
// B

idB

��

j
// C

g

��

B
idB

//

ϕ f ,g(u,v)

77

B v
//

ϕidB ,g( j,v)

??

D

and by naturality, we have that j = ϕidB,g ( j,v) = ϕ f ,g (u,v).
3.⇒ 2. The proof is analogous to the previous.

2.⇒ 1. By the previous arguments, we have that our hypothesis 2. yields that E and M are both
idempotent, which means that E-Coalg � � // C 2 and M-Alg � � // C 2 are fully faithful. Therefore
retracts of E-coalgebras are E-coalgebras and retracts of M-algebras are M-algebras. Then condition
2. yields that E-Coalg ⊥M-Alg, by Proposition 2.35, whose conditions are satisfied, we conclude that
(E-Coalg,M-Alg) is an OFS.

Example 2.40. We remark that, besides the trivial examples (All, Iso) and (Iso,All), also (Epi,Mono)
in Example 2.12 is an OFS. In fact, it is easy to notice that any pair of diagonal morphisms in

A u
//

Epi∋e

��

C

m∈Mono

��

B v
//

d

??

d′

??

D
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must actually coincide. Such OFS yields for any morphism the factorisation

A
f

//

f !!

B

Im f
iIm f

==

which is unique up to isomorphism. This is a particular case of the most general known fact that in
any regular category the pair (RegEpi,Mono) is an OFS.

2.6 Lax Orthogonal Factorisation Systems

In this section we consider a more recent structure introduced in [CLF16, CLF20]. The reason to
take some time to mention this work is twofold. The first reason is that this study, which is close to
the author’s working environment, has been the first and main inspiration that ignited the study and
research on the various topics contained in this work, original and known. The second reason is that
this work provides another significant interplay between higher structures, such as Ord-enrichments
or 2-categories, and factorisation systems, which is the perk of this present investigation as well. Our
goal in this section is to give an overview on the definition of a lax orthogonal factorisation system
and briefly describe the example that inspired their introduction.

We begin by recalling some definitions on 2-categories and enriched categories.

Definition 2.41. A 2-category is given by the following elements

• a class of objects, also called 0-cells;

• a class of morphisms between objects, also called 1-cells;

• a class of 2-morphisms, or 2-cells, between 1-cells;

and such that 0-cells and 1-cells constitute a category and 2-cells have two associative and unital
composition laws

• a vertical composition that operates as follows

●

f

���� α
>>

h
�� β

g
// ● = ●

f
''

h

77�� β○α ●

• a horizontal composition that operates as follows

●
f
&&

g
88�� α ●

f ′
&&

g′
88�� β ● = ●

f ′⋅ f
**

g′⋅g

44�� β∗α ●
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Moreover, horizontal composition must preserve unit 2-cells and satisfies, together with the vertical
composition, the following interchange law

(δ ○ γ)∗(β ○α) = (δ ∗β)○(γ ∗α)

for any diagram

●

f

""�� αg //
<<

h
�� β

●

f ′

""�� γ
g′ //

<<

h′
�� δ

●.

Definition 2.42. A 2-functor is a map between two 2-categories F ∶C Ð→D such that F is a functor
on 0-cells and 1-cells and it is also compatible with horizontal and vertical compositions of 2-cells.

Definition 2.43. A 2-natural transformation α ∶ F Ô⇒G, between the 2-functors F,G ∶ C Ð→D ,
is given by a natural family of morphisms (αX ∈D (FX ,GX))X∈Ob(C ) such that for each 1-cell
f ∶ AÐ→ B in C there exists the identity 2-cell α f as in the diagram

FA
F f

//

αA

��

FB

αB

��

GA
G f

// GB.

8Lα f

Moreover, the association f z→ α f must preserve compositions and identity.

Then we can define a 2-monad as follows.

Definition 2.44. A 2-monad is given by a monad T = (T,η ,µ) on a 2-category C such that T is a
2-functor, η ,µ are 2-natural transformations and the monad axioms are satisfied by the existence of
identity 2-cells.

We remark that the previous definitions are given in the sense of strict 2-categories, as they are
called in opposition to weak 2-categories that entail only 2-isomorphisms whereas we evoked the
existence of identity 2-cells in the definitions.

We can now provide the definition of lax idempotent monads for a 2-category, known also as
Koch-Zöberlein monads or doctrines recalling their introduction in [Zöb76, Koc95].

Definition 2.45. A 2-monad T = (T,η ,µ) is lax idempotent if any of the following conditions hold.

• T η ⊣ µ with identity unit;

• µ ⊣ ηT with identity counit;

• each a ∶ TAÐ→ A is a T-algebra structure if and only if a ⊣ ηA with identity counit;

• the forgetful functor Ulax ∶T-AlglaxÐ→C is fully faithful;
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• for any pair of T-algebras A,B, every morphism f ∶UAÐ→UB admits a unique structure of a
lax morphism of T-algebras.

The equivalence of such conditions may be found in [KL97]. Then we can provide the main
definition introduced in [CLF16].

Definition 2.46. A lax orthogonal factorisation system (LOFS) on a 2-category is an AWFS (L,R)
such that L is a lax idempotent 2-comonad and R a lax idempotent 2-monad.

The previous definitions may be presented in a sort of "skeletal" version. In fact, if a 2-category
may be seen as a category enriched over the cartesian monoidal category Cat, we can consider
categories enriched over the category of partial orders Ord (as we will from here on denote it). An
Ord-enriched category, or Ord-category, is a category C such that for every A,B ∈ Ob(C ), then
C (A,B) is an object on Ord. In particular Ord-functors are monotone functors, i.e. F ∶C Ð→D a
functor such that if f ≤ g, then F f ≤ Fg.

Then we may rewrite Definition 2.45 for Ord-categories.

Definition 2.47. A monad T = (T,η ,µ) on an Ord-category C is lax idempotent if it satisfies any of
the following equivalent conditions.

• T η ⋅µ ≤ Id;

• Id ≤ ηT ⋅µ;

• T η ≤ ηT ;

• for any T-algebra a ∶ TAÐ→ A, then idTA ≤ ηA ⋅a;

• for any T-algebras (A,a) and (B,b), and any morphism f ∈C (A,B), then b ⋅T f ≤ f ⋅a.

We cite this application on the Ord-enriched context for two reasons. The first is the relevance
with the setting of our study. The second is that the example that led to the introduction of LOFSs
rose in the Ord-enriched context in [CCM12]. The subject of the paper is the category Top0 of
T0-topological spaces and filter monads. Such spaces are considered equipped with the dual of the
specialisation order, a partial order defined for any space by x ≤ y if and only if y ∈ {x}. Then the
study proves that filter monads and their slicings are lax idempotent and concludes that they determine
a factorisation system.

The notable feature of LOFSs is that they are equipped with a particular type of lifting operators.

Definition 2.48. Let U ∶A Ð→ C 2 and V ∶B Ð→ C 2 be locally monotone functors. A KZ-lifting
operator is a lifting operator such that for any ϕa,b (h,k), if there exists another diagonal lifting d for
the square [h,k] ∶UaÐ→V b, then ϕa,b (h,k) ≤ d.

Therefore KZ-liftitng operators provide a natural choice of diagonal morphisms which are minimal
with respect to all other diagonal morphisms for any given square.

The importance of KZ-lifting operators is then illustrated by [CLF20, Theorem 8.3].

Theorem 2.49. Given an AWFS (L,R) for an Ord-category C , the following are equivalent
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1. (L,R) is a LOFS;

2. the lifting operator from the forgetful functor U ∶ L-Coalg Ð→ C 2 to V ∶ R-Alg Ð→ C 2 is a
KZ-lifting operator.

In particular we can conclude that in the enriched context OFSs are lax orthogonal, by uniqueness
of diagonal liftings.

2.7 Enriched factorisation systems

In conclusion of this chapter we would like to mention another type of factorisation systems that are
interlinked with higher structures on a category. This factorisation systems were introduced by Riehl
in [Rie14] as a generalisation of [Day74, LW14].

The setting here is given by a complete and cocomplete V -enriched category K , where V is
a complete and cocomplete symmetric monoidal closed category. Riehl introduces the following
definition.

Definition 2.50. Let f ∶ AÐ→ B and g ∶CÐ→ D be two morphisms of a V -category K . The two
morphisms are said to satisfy the V -enriched lifting property, denoted f⧄g, if the canonical map ω

admits a section δ

K (B,C)

g⋅−

''

−⋅ f

!!

ω

%%

C 2 ( f ,g)

��

//

δ

kk

K (A,C)

g⋅−

��

K (B,D)
−⋅ f

//K (A,D) .

(2.xiv)

This last definition is by all means an orthogonality-like property between morphisms. Again we
can build complements similarly to what was presented before and recall the following definition.

Definition 2.51. An enriched weak factorisation system is a pair of classes of morphisms (S,D)
such that S = ⧄D, D = S⧄ and every morphism in K admits an (S,D)-factorisation.

These definitions are therefore a generalisation of the following definition due to Day and
Lucyshyn-Wright.

Definition 2.52. Let f ∶ AÐ→ B and g ∶CÐ→ D be two morphisms of a V -category K . The two
morphisms are said to satisfy the V -enriched unique lifting property, denoted f⊥g, if the canonical
map ω in (2.xiv) is an isomorphism.

An enriched orthogonal factorisation system is a pair of classes of morphisms (S,D) such that
S = ⊥D, D = S⊥ and every morphism in K admits an (S,D)-factorisation, which is unique up to
isomorphism.



Chapter 3

Theory of partial maps

For the purposes of our work we will be interested in particular in categories of partial maps considered
as Ord-categories.

Along the chapter and later on we will also refer to discrete Ord-enrichments; by this we mean
those categories where the partial order relation among morphisms coincides with the identity. In
particular we observe that any category may be equipped with a discrete Ord-enrichment.

3.1 Interest in categories of partial maps

Partial maps are a very common object of study in mathematics and this is evident from the first steps
in undergraduate mathematics. In fact, we come across partial maps in many branches of mathematics
noticing that they provide a natural environment and a good behaved tool to develop mathematical
knowledge.

This emerges when one considers calculus, where the use of partial morphisms is ubiquitous and
has called many to a formalisation of partial maps as in [Men55]. However, partial maps are also
quite present in the study of topology, a field that has made a great use of the categorical benchmark
and this three-fold interest started to emerge already in [BB78].

This attention for partial morphisms is not limited to studies that deal with the most evidently
geometrical facets of mathematics, but it spreads to more combinatorical investigations as shown by the
quite prolific literature on partial functions and restrictions that was produced by semigroup theorists
in the years, see for instance [SS67, Man06]. In particular, as remarked in [CM09], categorists and
semigroup theorists have studied restriction semigroups, regrettably on parallel tracks for much of the
earlier stages, unknowing of the shared interest on the algebraic and categorical axiomatisation of
partiality.

Computer science is another field of investigation that has in time absorbed quite a good deal of
categorical formalisation and this community looks with great interest at partiality. Indeed, this is
witnessed by a remarkable number of publications on the subject [Plo85, Mog86, AL88, FP94, Fio04].
Computer science has fueled quite some discussion on a categorical approach to partial morphisms
and domain theory. The interest of computer scientists in partial maps stems from some very structural
topics of investigation, such as recursion theory. Partial maps provide again a suitable instrument to
give a more abstract and general interpretation of programs and the problems of termination.

29
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In this context it is worth to cite the work of Robinson and Rosolini [RR88], which provides a
rich survey on the rising interest in categorical study of partial morphisms. We remark in particular
their keen eye on both computer science community and the enriched categorical perspective.

Furthermore, we remark that an Ord-enrichment, as well as a 2-categorical approach, has always
accompanied the development of categories of partial maps, as we can see in [AL88, Car87, Fio95].
This points out to the fact that partial orders, besides being naturally built-in in the concept of domain
theory and partial morphisms, also provide a complementary and relevant perspective on the study
and use of categories of partial maps.

We shall not fail to report that the interest in partiality and partial maps among the categorical
community was not extinguished within these works, but has lived on and it is still active. To this
purpose we cite the work of Cockett and Lack, who introduced restriction categories in [CL02, CL03].
Restriction categories constitute a more general formulation of categories endowed with partiality,
which releases the definition from the use of pullbacks. Such structure substitute the use of spans and
pullbacks with the introduction of a restriction operator, satisfying a suitable set of axioms.

We conclude remarking that in the current work we will present and use the classical formulation
of categories of partial morphisms, in accordance with [Fio95, Fio04].

3.2 Definitions and properties

First we recall in this section the definitions and properties of categories of partial maps. Some of the
features that we present may be found in [RR88, Fio95, Fio04].

The categorical definition of partial maps is motivated by the well established theory of partial
functions, in particular between sets. A partial map between sets is generally given by a partial domain,
where the function is defined, and the function itself. For this reason the first step is to define a good
notion of subobjects. We consider a category C , then a subobject of an object A is an equivalence
class of monomorphisms m ∶ SÐ→A; two monomorphisms m ∶ SÐ→A and m′ ∶ S′Ð→A are equivalent
if there exists an isomorphism i such that m =m′ ⋅ i. In particular, to enable us to compose partial maps,
we require that subobjects are closed under composition, that pullbacks along subobjects exist and
that subobjects are preserved by pullbacks.

We consider C a category and S a good class of subobjects, i.e. closed under composition,
pullback stable, and that contains all sections. We require that pullbacks along morphisms in S exist
in C . We will refer to the class S as the class of admissible subobjects. Then a partial map is an
equivalence class of spans

D f
��

σ f

��

ϕ f

��

A �
f

// B

with σ f a subobject in S and ϕ f a generic morphism in C . Two spans (σ f ,ϕ f ) and (σ ′f ,ϕ ′f ) are
equivalent if there exists an isomorphism i such that σ

′
f = σ f ⋅ i and ϕ

′
f = ϕ f ⋅ i. We will often use from

here on the notation D-, σ- and ϕ- to refer to the partial domain and the partial components of a partial
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map respectively. Let f ∶ AÐ→ B and g ∶ BÐ→C be two partial morphisms. Then their composition is

Dg⋅ f
��

ϕ
∗
f (σg)

��

σ
∗
g (ϕ f )

  

D f
��

σ f

��

ϕ f

!!

Dg
��

σg

��

ϕg

��

A �
f

// B �
g

// C,

(3.i)

where the square is a pullback. Moreover, this composition law is trivially associative and for every
object A in C there exists an identity represented by the span (idA, idA). Hence we have that objects
of C and the partial maps that we have just described form a category that we will denote by PS (C )
or P (C ), where it cannot generate any ambiguity.

Furthermore, given a category of partial maps PS (C ) there exists an embedding

E ∶C Ð→PS (C )
AÐ→ A

f Ð→ (idA, f )

which is an identity on objects and faithful. The morphisms in the image of E, i.e. those partial
morphism of the form (idA, f ), are called total maps and form the class Tot.

Proposition 3.1. Let P (C ) be a category of partial maps. For any pair of composable morphisms f
and g, if g ⋅ f is total, then f is total.

Proof. We consider diagram (3.i). Since S is stable under pullbacks, we have that ϕ
∗
f (σg) belongs to

S. Hence Dg⋅ f is a subobject of D f , therefore if Dg⋅ f = A then D f = A.

Example 3.2. The first example that we can consider is Set. In fact Set is a complete category, thus
it has pullbacks, and monomorphisms are trivially stable under pullbacks. Hence, if we consider
S =Mono, then PMono (Set) is the category of sets and partial maps as usually intended.

Every category of partial maps comes equipped with a partial order between morphisms induced
by the partial order among subobjects. We write f ⪯ g in P (C ) if f is a domain restriction of g;
namely if there exists an admissible subobject s making the following diagram commute:

D f
��

s

��

σ f

��

ϕ f

��

Dg
��

σg

��

ϕg

  

A
�f //
�
g

// B.

(3.ii)
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Furthermore, if C is an Ord-category, then the partial order among its morphisms, that we denote by
⊑, gives rise to a partial order among partial maps. We will write f ≤ g if there exists an admissible
subobject morphism s, which allows us to write the following diagram

D f
��

s

��

σ f

��

ϕ f

��

⊒Dg
��

σg

��

ϕg

  

A
�f //
�
g

// B.

(3.iii)

It is clear that if we consider C with a discrete Ord-enrichment, namely all the 2-cells are equalities,
then the two partial orders coincide.

Now we are interested in analysing whether these partial orders among partial maps constitute
an Ord-enrichment. To do so we need to check that composition is monotone with respect to those
partial order relations. This proves to be true for the discrete Ord-enrichment, while, in the general
case, it requires some further assumptions on the admissible subobjects.

First we observe that in general the partial orders that we defined above respect compositions on
the right without any further assumption. We prove it in the following proposition for the partial order
≤, and this applies in particular to ⪯.

Proposition 3.3. Let C be an Ord-category and P (C ) a category of partial maps. If f ∶ A � // B

and g′ ≤ g ∶ B � // C , then g′ ⋅ f ≤ g ⋅ f .

Proof. We write explicitly the diagram that depicts the composition

Dg′⋅ f
yy

ϕ
∗
f (σg′)

%%

��

s′

��

σ
∗
g′(ϕ f )

$$

Dg⋅ f
��

ϕ
∗
f (σg)

��

σ
∗
g (ϕ f )

$$

Dg′
��

s

��

⊒

��

σg′

��

ϕg′

��

D f
��

σ f

��

ϕ f

%%

Dg
��

σg

��

ϕg

$$

A �
f

// B
�g′ //�
g

// C.

(3.iv)

The properties of pullbacks imply that

ϕ
∗
f (σg′) = ϕ

∗
f (σg ⋅ s) = ϕ

∗
f (σg) ⋅ s′,
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where s′ the pullback of s along σ
∗
g (ϕ f ). Moreover, the 2-cell ϕg′ ⊑ ϕg ⋅ s yields

ϕg′ ⋅σ∗g′ (ϕ f ) ⊑ ϕg ⋅ s ⋅σ∗g′ (ϕ f ) = ϕg ⋅σ∗g (ϕ f ) ⋅ s′.

We conclude that g′ ⋅ f ≤ g ⋅ f .

Before we proceed to discuss monotonicity of composition on the left we need to provide the
following definitions.

Definition 3.4. Let C be an Ord-category. A morphism m ∶ AÐ→ B is

• full if for every u,v ∶ X Ð→ A such that m ⋅u ⊑m ⋅v, then u ⊑ v;

• upper-closed if for every pair of morphisms u ∶ X Ð→ A and v ∶ X Ð→ B forming the 2-cell

X

u

��

v

��

⊑

A m
// B

(3.v)

then there exists z ∶ X Ð→ A such that v =m ⋅ z.

A map, which is both full and upper-closed, can be characterised as follows.

Lemma 3.5. A morphism m ∶ AÐ→ B is full and upper-closed if and only if it is monomorphic and,
for every pair of morphisms u ∶ X Ð→ A and v ∶ X Ð→ B such that we have the 2-cell m ⋅u ⊑ v, then
there exists a unique morphism z ∶ X Ð→ A in the diagram

X
u

��

z

��

v

��

⊑

↺

A m
// B.

Proof. ⇒ . It is trivial to notice that if m is full, then it is monomorphic. Moreover, for every pair of
morphisms u and v such that m ⋅u ⊑ v, then there exists z such that v =m ⋅ z, since m is upper-closed.
From the 2-cell m ⋅u ⊑ v =m ⋅ z follows that u ⊑ z, since m is full. Given another morphism z′ such that
v =m ⋅ z′ and u ⊑ z′, we have that m ⋅ z = v =m ⋅ z′ implies that z = z′, since m is monomorphic as proved
above.
⇐ . First we remark that the hypotheses trivially yield that m is upper-closed. Let us consider the

2-cell m ⋅u ⊑m ⋅u′, that compose the diagram

X

u

��

u′
��

⊑
A

m
��

A m
// B.
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Then there exists a unique morphism z ∶ X Ð→ A such that m ⋅ z =m ⋅u′ and u ⊑ z. Since m is monomor-
phic, then z = u′ and u ⊑ u′. Hence m is full.

Now we can state the following result.

Theorem 3.6. Let C be an Ord- category and S a class of admissible subobjects. If every morphism
in S is full and upper-closed and s′,s′ ⋅ s ∈ S implies that s ∈ S, then the partial order ≤ yields an
Ord-enrichment on PS (C ).

Proof. In general ≤ defines a partial order relation among partial morphisms with the same domain
and codomain. Such partial order relation respects composition on the right by Proposition 3.3. We
need to check that composition on the left is monotone as well. Let us consider f ′ ≤ f ∶Q � // B and

g ∶ B � // C . We can write the following diagram

Dg⋅ f ′
||

ϕ
∗
f ′(σg)

||

σ
∗
g (ϕ f ′)





D f ′

⊒

��

t

��

yy

σ f ′

��

ϕ f ′

��

Dg⋅ f
||

|| !!

D f
~~

σ f
~~

ϕ f
""

Dg
||

σg
||

ϕg

��

A �
f

//

�f ′ // B �
g

// C

In particular, the 2-cell ϕ f ′ ⊑ ϕ f ⋅ t yields

σg ⋅σ∗g (ϕ f ′) = ϕ f ′ ⋅ϕ∗f ′ (σg) ⊑ ϕ f ⋅ t ⋅ϕ∗f ′ (σg) . (3.vi)

Since σg is full and upper-closed, then (3.vi) yields that there exists the morphism z such that
σg ⋅z = ϕ f ⋅ t ⋅ϕ∗f ′ (σg) and σ

∗
g (ϕ f ′) ⊑ z, thus it gives rise to the universal morphism t′ as in the diagram

Dg⋅ f ′

⊒

��

t′

��

||
ϕ
∗
f ′(σg)

||
z

��

σ
∗
g (ϕ f ′)

��

D f ′
��

t

��

Dg⋅ f
||

ϕ
∗
f (σg)

||
σ
∗
g (ϕ f ) !!

D f

ϕ f
""

Dg
||

σg
||

B.

(3.vii)

Since ϕ
∗
f (σg) ⋅ t′ = t ⋅ϕ∗f ′ (σg) belongs to S, then t′ belongs to S as well. This allows us to conclude

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ f ⋅ϕ∗f (σg) ⋅ t′ = σ f ⋅ t ⋅ϕ∗f ′ (σg) = σ f ′ ⋅ϕ∗f ′ (σg)
ϕg ⋅σ∗g (ϕ f ′) ⊑ ϕg ⋅ z = ϕg ⋅σ∗g (ϕ f ) ⋅ t′,
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which yields that f ′ ⋅g ≤ f ⋅g.

Remark 3.7. The previous theorem may be applied in particular to the partial order ⪯ yielded by the
discrete Ord-enrichment on C . This is true since all admissible subobjects are monomorphic and
2-cells as (3.v) are equalities satisfying the equivalent condition of Lemma 3.5.

Notation 3.8. We have proved that composition to the left and to the right is monotone and thus ≤
gives rise to an Ord-enrichment on P (C ). Hence, given f ′ ≤ f and g′ ≤ g, then g′ ⋅ f ′ ≤ g ⋅ f . This is
true and can be observed by steps as

g′ ⋅ f ′ ≤ g′ ⋅ f ≤ g ⋅ f .

The admissible subobject morphism that witnesses the existence of the 2-cell g′ ⋅ f ′ ≤ g ⋅ f is defined
applying subsequently the constructions shown in the proofs of Proposition 3.3 and Theorem 3.6.
Hinting to the notation of Definition 2.41, we will denote such morphism by t ∗ s ∶ Dg′⋅ f ′ Ð→ Dg⋅ f ,
where t ∶D f ′ Ð→D f and s ∶Dg′ Ð→Dg are the morphisms that define f ′ ≤ f and g′ ≤ g. We will also
denote s′ as in (3.iv) by s∗ f and t′ as in (3.vii) by g∗ t.

Proposition 3.9. Let C be an Ord-category. Let P (C ) be a category of partial maps equipped with
the Ord-enrichment induced by the one on C . If f is total and f ≤ g, then g is total. Moreover, if the
partial order is induced by the discrete one, then f = g. Hence total maps are maximal elements in
their own Hom-Sets.

Proof. If f ≤ g is a 2-cell, then diagram (3.iii) shows that D f ≤Dg as subobject, by the existence of
the subobject morphism s ∶D f Ð→Dg. Therefore, if D f = A, then Dg = A as well. Furthermore, this
yields that s is an isomorphism, hence if the Ord-enrichment on C is discrete, then the two spans are
equivalent and f = g.

3.2.1 Adjunctions between partial maps

Since adjoint morphisms play an important role for lax factorisations, as we will see in the next chapter,
we focus now on describing adjoint morphisms for categories of partial maps. We will provide a result
that completely characterises adjoint pairs of morphisms for any Ord-enrichment on P (C ). Then we
discuss the link between adjunction in P (C ) and adjunction in C .

We briefly state some terminology that we will use along the thesis. In an Ord-enriched category,
given an adjunction f ⊣ g, we will refer to idA ≤ g ⋅ f as the unit 2-cell and to f ⋅g ≤ idB as the counit
2-cell.

Proposition 3.10. Let P (C ) be a category of partial maps with C an Ord-enriched category. A pair
of morphisms in P (C ) constitute an adjunction f ⊣ g if and only if f is total and ϕ f = σg ⋅γ , for a γ

such that γ ⊣ ϕg in C .
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Proof. First we consider the adjunction f ⊣ g in P (C ). By Proposition 3.9, the 2-cell idA ≤ g ⋅ f yields
that g ⋅ f is total and therefore f is total by Proposition 3.1. We write explicitly the 2-cells

A
��

��

idA

��

γ

��

idA

��

⊒

A
��

��

ϕ f

��

Dg
��

σg

��

ϕg

  

A �
f

// B �
g

// A.

B

idB

��

idB

""

⊑

Dg
bb

σg

bb

��

��

ϕg

""

Dg
��

σg

��

ϕg

""

A
��

��

ϕ f

""

B �
g

// A �
f

// B.

(3.viii)

The subobject morphism of the left diagram is idA due to the stated totality of f and g ⋅ f . We notice
immediately that ϕ f = σg ⋅ γ , where γ is the pullback of ϕ f along σg. We prove that γ is the morphism
sought. We have the 2-cells idA ⊑ ϕg ⋅γ and σg ⋅γ ⋅ϕg = ϕ f ⋅ϕg ⊑ σg. Since by assumption σg ∈ S is full,
we deduce that γ ⋅ϕg ⊑ idB. This yields the existence of the adjunction γ ⊣ ϕg in C .

The other direction is proved simply by calculation. In fact, since ϕ f = σg ⋅ γ , then the pullback
of ϕ f along σg is γ . This allows us to write the left diagram in (3.viii), where the 2-cell idA ⊑ ϕg ⋅ γ
is the unit 2-cell of the adjunction γ ⊣ ϕg. If we compose the counit 2-cell γ ⋅ϕg ⊑ idDg with σg, we
obtain ϕ f = σg ⋅ γ ⋅ϕg ⊑ σg, which allows us to write the right diagram. In conclusion this yields the
adjunction f ⊣ g in P (C ).

From here on, whenever we use this characterization, we denote the morphism γ in the statement
by ϕ̃ f .

If we consider an ordinary category C , we can state the following corollary.

Corollary 3.11. Let P (C ) be a category of partial morphisms equipped with the Ord-enrichment
induced by the ordinary category C . A pair of morphisms in P (C ) constitute an adjunction f ⊣ g if
and only if f = (id,σ) and g = (σ , id), for some σ ∈ S.

This is due to the fact that pairs of adjoint morphisms in a discrete category are pairs of inverse
morphisms.

We conclude this paragraph providing an overview on how the previous results link adjoint
morphisms between C and P (C ). Let C be an Ord-category and P (C ) equipped with the Ord-
enrichment inherited by C . We denote by Adj(C ) the class of adjoint pairs of morphisms in C and
by Adj(P (C )) the class of those in P (C ). Then Adj(P (C )) is equipped with a partial order. We
have that ( f ⊣ g) ≤ ( f ′ ⊣ g′) if and only if there exists s ∈ S such that ϕ f = s ⋅ϕ f ′ and σg = s ⋅σg′ . We
consider the following map

I ∶Adj(C )Ð→Adj(P (C ))
( f ⊣ g)Ð→ ((idA, f ) ⊣ (idB,g)) .
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If Adj(C ) is equipped with the discrete partial order, then I is an injective monotone map. Furthermore,
Proposition 3.10 allows us to build the following map

J ∶Adj(P (C ))Ð→Adj(C )
((idA,ϕ f ) ⊣ (σg,ϕg))Ð→ (ϕ̃ f ⊣ ϕg) .

If ( f ⊣ g)≤ ( f ′ ⊣ g′), then there exists s ∈S such that ( f ⊣ g)= ((idA,s ⋅σg′ ⋅ ϕ̃ f ) ⊣ (s ⋅σg′ ,ϕg)), hence
J ( f ⊣ g) = (ϕ̃ f ⊣ ϕg) = J ( f ′ ⊣ g′), hence J is monotone. Then it is straightforward that

JI (ϕ f ⊣ ϕg) = J ((idA,ϕ f ) ⊣ (idB,ϕg)) = (ϕ f ⊣ ϕg) ,

therefore JI = IdAdj(C ).
Moreover, we consider IJ ( f ⊣ g) = ((idA, ϕ̃ f ) ⊣ (idB,ϕB)), then σg yields

((idA,ϕ f ) ⊣ (σg,ϕg)) ≤ ((idA, ϕ̃ f ) ⊣ (idB,ϕg)) .

In conclusion we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩

IdAdj(P(C )) ≤ IJ

JI = IdAdj(C )

This yields an adjunction between the partially ordered sets Adj(P (C )) and Adj(C ).





Chapter 4

Lax factorisation systems

In this chapter we present the theoretical contribution of this work which was introduced in [Lar21]. We
introduce a new notion of orthogonality for Ord-enriched categories and investigate the factorisation
systems that arise as a consequence. We will propose definitions and properties on the blueprint of
traditional factorisation systems that we recalled in Chapter 2. In particular we will introduce and
analyse a lax version of WFS, FFS and AWFS.

The main setting of this chapter will be Ord-enriched categories. Before getting into the discussion
of lax factorisation systems, we recall some useful definitions and fix some notation that we will use
through this chapter.

Given an Ord-category C , we denote by C 2
lax the category whose objects are morphisms in C and

morphisms are squares (u,v) ∶ f Ð→ g of the type

A u
//

≥f

��

C

g

��

B v
// D.

(4.i)

We will refer to these squares as lax squares.

We would like to recall also the definition of comma objects.

Definition 4.1. Given a cospan ( f ,g) in an Ord-category C , a comma object, or lax pullback, is the
span (g← ( f ) , f ↓ (g)) forming the lax square

f ↓ g
¾

≥g←( f )

��

f ↓(g)
// A

f

��

C g
// B,

(4.ii)

39



40 Lax factorisation systems

such that for every other span (p,q) forming the 2-cell f ⋅q ≤ g ⋅ p, there exists a universal morphism
ω(p,q) as in the diagram

W
ω(p,q)

!!

p

!!

q

!!

f ↓ g f ↓(g) //

g←( f )

��

≥

¾

A

f

��

C g
// B,

where the two triangles are commutative. Moreover, for any pair of spans (p,q) and (p′,q′) such
that f ⋅q ≤ g ⋅ p, f ⋅q′ ≤ g ⋅ p′ and such that p ≤ p′ and q ≤ q′, then ω(p,q) ≤ω(p′,q′).

Cocomma objects are defined dually for spans and we denote them by

A

Æ

≥f

��

g
// C

g←( f )

��

B
f↓(g)

// f ↑ g.

(4.iii)

We stress that, unlike regular pullbacks and pushouts, (co)comma objects are directioned, thus
f ↓ g and g ↓ f are not isomorphic in general. For this reason we signal that, whenever we refer to
stability under (co)comma object of a class of morphisms H, we mean it in the horizontal sense,
i.e. considering diagram (4.ii) or diagram (4.iii) if f belongs to H, then g← ( f ) ∈H or g← ( f ) ∈H
respectively.

We also recall the definition of 2-dimensional coproducts.

Definition 4.2. Let C be an Ord-category. The coproduct of two objects (A∐B, iA, iB) is a 2-
dimensional coproduct if iA and iB are jointly full.

Moreover, if the 2-dimensional coproducts A∐A′ and B∐B′ exist, we can define 2-dimensional
coproducts of morphisms f and g as in the following diagram

A∐A′

f∐g

��

A

f

��

iA 66

A′

g

��

iA′hh

B

iB ((

B′

iB′vv

B∐B′,

where f ∐g is the universal morphism [iB ⋅ f , iB′ ⋅g] related to the 2-dimensional coproduct A∐A′.
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4.1 Lax weak factorisation systems

In this section we introduce a new notion of orthogonality which is the key ingredient of the following
sections. Such orthogonality relation gives rise to lax diagonal morphisms for lax squares. Then we
will analyse some of its properties and thereafter we will use this new definition to introduce a lax
version of WFS.

Definition 4.3. Let C be an Ord-enriched category. Two morphisms in C are said to be laxly weakly
orthogonal, denoted by f ∧∣ g, if, for every lax square (u,v) ∶ f Ð→ g, there exists a morphism d such
that

A u
//

≥

f

��

C

g

��

B

d

??

v
// D

≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u ≤ d ⋅ f
g ⋅d ≤ v.

(4.iv)

We refer to d as lax diagonal morphism or lax diagonal lifting.

We first observe that this constitutes a generalisation of weak orthogonality, as described in Section
2.1. Indeed, whenever the partial order in C is discrete, the two definitions coincide trivially.

Then, the first natural step is to identify those morphisms which are laxly weak orthogonal with
respect to any other morphism in the category. Before doing so, we recall that two morphisms f ∶A→B
and g ∶ B→ A in an Ord-category constitute an adjunction f ⊣ g if we have idA ≤ g ⋅ f and f ⋅g ≤ idB.

Proposition 4.4. Given a morphism f ∈C 2
lax, the following properties are equivalent:

1. f ∧∣ f ;

2. f is a left adjoint morphism to some f ∗;

3. f ∧∣ C 2
lax;

4. C 2
lax ∧∣ f .

Proof. 1.⇒2. Given a morphism f that is laxly weakly orthogonal to itself, we may consider the
identity lax square (idA, idB ∶ f Ð→ f ) (which is actually commutative). Then there exists the lax
diagonal lifting δ in the following diagram

A
idA

//

f

��

≥

A

f

��

B
idB

//

δ

??

B

≥

It follows that the diagonal morphism δ is the right adjoint and the two 2-cells in the two triangles
define the adjunction sought.
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2.⇒3. Let (u,v) ∶ f Ð→ g be a lax square. We consider δ = u ⋅ f ∗. Then the adjunction yields

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u ≤ u ⋅ f ∗ ⋅ f = δ ⋅ f
g ⋅δ = g ⋅u ⋅ f ∗ ≤ v ⋅ f ⋅ f ∗ ≤ v.

(4.v)

Thus δ is a lax diagonal morphism for the lax square (u,v).
2.⇒4. Analogously, given any lax square (u,v) ∶ gÐ→ f , we have that δ = f ∗ ⋅v is a lax diagonal

filler.

3.⇒1. and 4.⇒1. are straightforward.

For any class of morphismsH we can define its lax weak orthogonal complements as follows

∧∣H = { f ∣ f ∧∣ h for every h ∈H} and H∧∣ = { f ∣h ∧∣ f for every h ∈H} .

Then we have that lax orthogonal complements carry the following properties.

Proposition 4.5. Let C be an Ord-category. The pair ∧∣ (−) and (−)∧∣ forms a Galois connection
among the classes of morphisms in C partially ordered by the inclusion.

Proof. Let A and B be two classes of morphisms in C . We prove first that ∧∣ (−) and (−)∧∣ are
antitone with respect to inclusion. Let A ⊆ B. If f ∈ ∧∣ B, then f ∧∣ b for every b ∈ B, and in particular
f ∧∣ a for every a ∈A, thus f ∈ ∧∣A. Therefore ∧∣A ⊇ ∧∣ B. Similarly one proves that A∧∣ ⊇ B∧∣ .

Moreover, A ⊆ ∧∣ B if and only if for every a ∈A and for every b ∈ B, a ∧∣ b, which is equivalent to
B ⊆ ∧∣A. Analogously A ⊆ B∧∣ is equivalent to B ⊆A∧∣ .

In particular this proposition yields the following corollary.

Corollary 4.6. LetH be a class of morphisms in C . ThenH ⊆ ∧∣ (H∧∣ ) andH ⊆ (∧∣H)∧∣ . Moreover,

H∧∣ = (∧∣ (H∧∣ ))∧∣ and ∧∣H = ∧∣ ((∧∣H)∧∣ ).

We report that the proofs of the last two results are a direct translation of the proof of Proposi-
tion 2.2 and Corollary 2.3.

Proposition 4.7. LetH be a class of morphisms in an Ord-category C . Then the following assertions
hold.

1. H∧∣ and ∧∣H contain all the left adjoint morphisms of C ;

2. H∧∣ and ∧∣H are closed under composition.

Proof. 1. This is a consequence of Proposition 4.4.
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2. We show this by building subsequent diagonal liftings. Let f ,g ∈H∧∣ be two composable
arrows. Then for every lax square (u,v) ∶ hÐ→ g ⋅ f , with h ∈H, we can build the following diagram

H

h

��

u
//

≥

A

f

��

B

g

��

≥

H′ v
//

δg

>>
δg⋅ f

GG

C;

≥

where δg⋅ f is a lax diagonal lifting for the square (u,δg). Then we have

g ⋅ f ⋅δg⋅ f ≤ g ⋅δg ≤ v.

We conclude that δg⋅ f is a diagonal lifting for (u,v). Thus g ⋅ f ∈H∧∣ . The proof for ∧∣H is similar.

Proposition 4.8. Let H be a class of morphisms in an Ord-category C . Then H∧∣ is closed under
comma objects.

Proof. We consider f ∈H∧∣ and the comma object

f ↓ g
f ↓(g)

//

g←( f )

��

≥

¾

A

f

��

C g
// B.

(4.vi)

Let (u,v) ∶ hÐ→ g← ( f ) be a lax square with h ∈H. Then, there exists a lax diagonal morphism δ

lifting h against f , as shown in the following diagram

H u
//

h

��

≥

f ↓ g
f ↓(g)

//

g←( f )
��

≥

¾

A

f

��

H′
δ

66

v
// C g

// B.

(4.vii)
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Hence we have the 2-cell f ⋅δ ≤ g ⋅v, and therefore, by the properties of comma objects, there exists
the universal morphism δ

′ in the following diagram

H′

δ
′

!!

v

!!

δ

!!

f ↓ g f ↓(g) //

g←( f )

��

≥

¾

A

f

��

C g
// B.

In particular, we obtain g← ( f ) ⋅δ ′ = v. Furthermore, we can write the following diagram

H

u

!!
δ
′⋅h

!!

≥

v⋅h

((

g←( f )⋅u

((

≥

δ ⋅h

��

f ↓(g)⋅u

��

≥

f ↓ g f ↓(g) //

g←( f )

��

≥

¾

A

f

��

C g
// B,

where the 2-cell u ≤ δ
′ ⋅h exists by the properties of comma objects. Thus, we have checked that

u ≤ δ
′ ⋅h and g← ( f ) ⋅δ ′ = v. Hence δ

′ is a lax diagonal morphism for the lax square (u,v) and therefore
g← ( f ) ∈H∧∣ .

The last result yields the following dual proposition.

Proposition 4.9. Let H be a class of morphisms in an Ord-category C . Then ∧∣H is closed under
cocomma objects.

Proposition 4.10. Let H be a class of morphisms of a category C with 2-dimensional coproducts.
The class ∧∣H is closed under 2-dimensional coproducts.

Proof. We consider ĥ =∐i∈I hi ∶∐
i∈I
Ð→∐

i∈I
Bi, such that hi ∈ ∧∣H for every i ∈ I. For each lax square

(u,v) ∶ ĥÐ→ g, with g ∈H we have

Ai

hi

��

σi
//∐

i∈I
Ai

≥

u
//

ĥ

��

X

g

��

Bi
σ
′
i
//∐

i∈I
Bi

v
// B.
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Since hi ∈ ∧∣H for each i ∈ I, then we get a family (δi ∶ BiÐ→ X)i∈I of lax diagonal morphisms
lifting hi against g. By the definition of 2-dimensional coproduct, there exists the universal arrow
δ = [δi]i∈I ∶∐

i∈I
BiÐ→ X and since (σi)i∈I and (σ ′i )i∈I are jointly full, it implies that δ is a lax diagonal

morphism lifting ĥ against g. Therefore ĥ ∈ ∧∣H.

Again we may state the following dual result.

Proposition 4.11. LetH be a class of morphisms of a category C with 2-dimensional products. The
classH∧∣ is closed under 2-dimensional products.

We can now introduce the definition of lax weak factorisation system.

Definition 4.12. A lax weak prefactorisation system is a pair of classes of morphisms (L,R) such
thatR =L∧∣ and L = ∧∣R. Moreover, if any morphism f ∈C 2

lax has an (L,R)-factorisation

A
f

//

L∋l f
��

B

Wf

r f ∈R

??

(4.viii)

then (L,R) is said to be a lax weak factorisation system (WFSlax).

We remark that, given a (WFSlax) (L,R), for any lax square (u,v) ∶ f Ð→ g there exists a morphism
δ as in the diagram

A

≥

u
//

l f

��

C

lg

��

Wf

≥r f

��

δ
//Wg

rg

��

B v
// D.

(4.ix)

The morphism δ is obtained by the lax weak orthogonality relation l f ∧∣ rg.
Furthermore, as a consequence of Proposition 4.4, we have that left adjoint morphisms belong to

any lax weak orthogonal complement and they constitute the intersection between the two classes of
morphisms of any lax weak prefactorisation system.

We also point out that uniqueness of such lax diagonal liftings is not granted in general. In fact,
given a morphism f satisfying the conditions of Proposition 4.4, we have that in any lax square
(u,v) ∶ f Ð→ f both du = u ⋅ f ∗ and dv = f ∗ ⋅v are suitable lax diagonal morphisms.

As a consequence of Proposition 4.5 and Corollary 4.6, we have the following result which enables
us to build lax weak prefactorisation systems from any class of morphisms.

Proposition 4.13. Given a class of morphismsH ⊆C 2, then (∧∣ (H∧∣ ) ;H∧∣ ) and (∧∣H;(∧∣H)∧∣ ) are
lax prefactorisation systems.
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Remark 4.14. Before proceeding with the discussion of lax factorisation systems, we would like to
compare the definitions given in this section and the enriched factorisation systems that we have
mentioned in Section 2.7. Let us consider diagram (2.xiv) in Definition 2.50. Then one notices that

δ ∶C 2 ( f ,g)Ð→K (B,C)

maps each commutative square to a diagonal morphism, but does not take into consideration lax
squares. Another difference is that, as stated in [Rie14], δ constitutes a functorial association between
commutative squares and diagonal morphism. Instead, WFSslax admit a functorial realisation under
some conditions that we will explore in Section 4.3.

4.2 Small object argument for lax weak factorisation systems

In this section we aim to prove an analogous version for the lax context of the Small object argument
that we have presented in Subsection 2.2. This result is particularly useful since it gives a way to
build factorisation systems starting from a set of maps under some cocompleteness and smallness
conditions through a transfinite construction.

Before describing this result for WFSslax, we need to adapt the definitions we use to state our
smallness conditions.

Definition 4.15. Let C be an Ord-category and λ be an ordinal. By lax colimit cocone of a diagram

(e0
α ∶ X0Ð→ Xα)

α<λ

we mean a jointly full family of morphisms (eα

λ
∶ Xα Ð→ Xλ)α<λ

, such that e0
λ
≤ eα

λ
⋅e0

α and for every
family of morphisms (qα ∶ Xα Ð→Q)

α<λ
, such that q0 ≤ qα ⋅e0

α for every α <λ , there exists a morphism
q as in the diagram

X0

≤

e0
α

//

e0
λ   

q0

&&

Xα

eα

λ~~

qα

xx

Xλ

q
��

Q,

such that qα = q ⋅eα

λ
for each α < λ . Moreover, we will refer to the morphism e0

λ
as the transfinite lax

composition of (e0
α)α<λ

.

We proceed proving the following proposition.

Proposition 4.16. Let C be an Ord-category andH a class of morphism in C . Then ∧∣H is closed
under transfinite lax compositions.

Proof. We consider a diagram (e0
α ∶ X0Ð→ Xα)

α<λ
and the lax colimit cocone (eα

λ
∶ Xα Ð→ Xλ)α<λ

for such diagram. We aim to prove that e0
λ

belongs to ∧∣H. We consider any lax square (u,v) ∶ e0
λ
Ð→ f ,
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with f ∈H. We can write the following diagram

X0

≤

≤e0
λ

��

u
//

e0
α
��

A

f

��

Xα

eα

λ
��

dα

::

Xλ v
//

d

II

≤

B.

We know that f ⋅u ≤ v ⋅e0
λ
≤ (v ⋅eα

λ
) ⋅e0

α and every morphism e0
α belongs to ∧∣H, for any α < λ . Hence

we obtain the morphisms dα as lax diagonal liftings of e0
α against f . This gives rise to the family of

morphisms (dα ∶ Xα Ð→ A)
α<λ

such that u = d0 ≤ dα ⋅e0
α . This yields the universal morphism in the

diagram

X0

≤

e0
α

//

e0
λ   

d0

&&

Xα

eα

λ~~

dα

xx

Xλ

d
��

A.

This yields d ⋅e0
λ
= d0 = u. Moreover, we have that f ⋅d ⋅eα

λ
= f ⋅dα ≤ v ⋅eα

λ
and since (eα

λ
)

α<λ
are jointly

full, this allows us to conclude that f ⋅d ≤ v and therefore e0
λ
∈ ∧∣H.

Definition 4.17. Let λ be an ordinal. A laxH-cell λ -complex is a diagram (eα

β
∶ Eα Ð→ Eβ)

α≤β<λ

such that e0
β
≤ eα

β
⋅ e0

α for any α ≤ β < λ and each morphism e0
α is a transfinite composition of 2-

dimensional coproducts of morphisms in ∧∣ (H∧∣ ) and morphisms obtained from elements of H via

cocomma objects. We will refer to a laxH-cell λ -complex (eα

β
∶ Eα Ð→ Eβ)

α≤β≤λ
that extends to λ

as laxH-cell λ -complex.

Definition 4.18. Let C be an Ord-category,H a set of morphisms and C has transfinite lax composi-
tions of lax H-cell λ -complexes. An object W is laxly small relative to H if there exists an ordinal
κ such that for every λ > κ , any lax H-cell λ -complex (eα

β
∶ Eα Ð→ Eβ)

α≤β<λ
and any morphism

u ∶W Ð→ Eλ there exists a γ < λ and a morphism u′ ∶W Ð→ Eγ such that u = eγ+1
λ
⋅eγ

γ+1 ⋅u′.

We can provide now the main result of this section.

Theorem 4.19. Let C be an Ord-category andH a set of maps. Moreover, let C admit transfinite lax
compositions of laxH-cell ζ -complexes for every ordinal ζ , cocomma objects along morphisms in
∧∣ (H∧∣ ) and 2-dimensional coproducts of elements inH. If the domains of morphisms inH are all
laxly small relative toH, then every morphism admits an (∧∣ (H∧∣ ) ;H∧∣ )-factorisation.

Proof. SinceH is a set and domains of morphisms inH are laxly small relative toH, we have that
there exists λ such that each domain H is laxly small relative toH with respect to some κ ≤ λ .
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We consider f ∶ AÐ→ B. We construct a lax H-cell λ -complex (eα

β
∶ Eα Ð→ Eβ)

α≤β<λ
and a

cocone (pα ∶ Eα Ð→ B)
α<λ

for such diagram, i.e. such that

E0
e0

α
//

p0

��

Eα

pα

��

B

for any α < λ .

This laxH-cell λ -complex is inductively defined as follows. We set E0 = A and p0 = f .

Let γ be an ordinal. We consider the lax squares of the form

A j

≥h j

��

u j
// Eγ

pγ

��

B j v j
// B,

(4.x)

such that h j ∈ H and we index these lax squares by j ∈ I. We build through the 2-dimensional
coproducts the morphism

ĥ =∐
i∈I

hi ∶∐
i∈I

AiÐ→∐
i∈I

Bi. (4.xi)

as in Definition 4.2. We remark that ĥ ∈ ∧∣ (H∧∣ ) by Proposition 4.10, since hi ∈H ⊆ ∧∣ (H∧∣ ) for every
i ∈ I. Then we can build the following cocomma object

∐
i∈I

Ai

≥

[ui]i∈I
//

ĥ

��

Eγ

eγ

γ+1

��

pγ

��

∐
i∈I

Bi

[vi]i∈I //

qα

// Eγ+1

¼

pγ+1

��

B.

(4.xii)

In particular eγ

γ+1 is a morphism obtained from ĥ ∈ ∧∣ (H∧∣ ) via a cocomma object, therefore eγ

γ+1 ∈∧∣ (H∧∣ ) by Proposition 4.9. Then we define eα

γ+1 = eγ

γ+1 ⋅eα
γ , which yields that e0

γ+1 = eγ

γ+1 ⋅e0
γ is still a

morphism in ∧∣ (H∧∣ ), since it is closed under composition. Moreover, we have that pγ = pγ+1 ⋅eγ

γ+1,
hence we conclude that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p0 = pγ ⋅e0
γ = pγ+1 ⋅eγ

γ+1 ⋅e0
γ = pγ+1 ⋅e0

γ+1;

e0
γ+1 = eγ

γ+1 ⋅e0
γ = eγ

γ+1 ⋅eα
γ ⋅e0

α = eα

γ+1 ⋅e0
α .

(4.xiii)
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Hence (eα

β
∶ Eα Ð→ Eβ)

α≤β<γ+1
is a laxH-cell (γ +1)-complex and (pα ∶ Eα Ð→ B)

α<γ+1 is a cocone

for the diagram (e0
α)α<γ+1.

Now for each limit ordinal κ ≤ λ we have a laxH-cell κ-complex (eα

β
∶ Eα Ð→ Eβ)

α≤β<κ
and a

cocone (pα ∶ Eα Ð→ B)
α<κ

such that p0 = pα ⋅e0
α by inductive hypothesis. Hence we may write the

following diagram

E0

≤

e0
α

//

e0
κ   

p0

&&

Eα

eα
κ~~

pα

xx

Eκ

pκ

��

B,

(4.xiv)

where (eα
κ )α≤κ

is a lax colimit cocone for the diagram (e0
α)α<κ

and pκ is the universal morphism for
the cocone (pα)

α<κ
. In particular we have for any α ≤ κ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pα = pκ ⋅eα
κ

e0
κ ≤ eα

κ ⋅e0
α .

Furthermore, e0
κ is in ∧∣ (H∧∣ ) since it is a transfinite lax composition and e0

α belongs to ∧∣ (H∧∣ ) for
each α < κ .

Therefore, we have that (eα

β
∶ Eα Ð→ Eβ)

α≤β≤κ
is a laxH-cell κ-complex and (pα ∶ Eα Ð→ B)

α≤κ

is a cocone for the diagram (e0
α)α≤κ

.

Then we take the factorisation

A

e0
λ

  

f
// B,

Eλ .

pλ

>>

We remark that e0
λ

is a transfinite lax composition of morphisms in ∧∣ (H∧∣ ), hence it belongs to
∧∣ (H∧∣ ).

We need to prove that pλ ∈H∧∣ . Let us consider a lax square (u,v) ∶ hÐ→ pλ , with h ∈H. Thus
by our smallness hypothesis, we have that u = eγ+1

λ
⋅eγ

γ+1 ⋅u′ for some u′ ∶H Ð→ Eγ and for some γ < λ .
We write explicitly the diagram

H

≥

u

$$

h

��

u′
// Eγ

pγ

��

eγ

γ+1
// Eγ+1

pγ+1

}}

eγ+1
λ

// E f

pλ

vvH′ v
//

66

B.

(4.xv)
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We remark that pγ+1 = pλ ⋅eγ+1
λ

as shown in (4.xiv) and pγ = pγ+1 ⋅eγ+1
γ by construction, as presented

in (4.xii). Then we obtain the following 2-cell

pγ ⋅u′ = pγ+1 ⋅eγ

γ+1 ⋅u
′ = pλ ⋅eγ+1

λ
⋅eγ

γ+1 ⋅u
′ = pλ ⋅u ≤ v ⋅h.

In particular this yields that there exists a j ∈ I such that (u′,v) ∶ hÐ→ pγ is one of the lax squares
described in (4.x) and it is part of the construction of ĥ in (4.xi) used to build pγ+1. Thus, recalling the
diagram in (4.xii), we have the following diagram

H

h

��

σh
//

u′

%%

∐i∈I Ai

ĥ

��

≥

[ui]i∈I
// Eγ

eγ

γ+1

��

pγ

  

H′
σ
′
h
//

v

::∐i∈I Bi
qγ

//

[vi]i∈I

::
Eγ+1

pγ+1
//

¼

B.

Hence one possible dotted morphism in diagram (4.xv) is given by qγ ⋅σ ′h. Then we prove that

H′
σ
′
h
// ∐i∈I Bi

qγ
// Eγ+1

eγ+1
λ

// E f

is a diagonal lifting for (u,v). In fact we have that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pλ ⋅eγ+1
λ
⋅qγ ⋅σ ′h = pγ+1 ⋅qγ ⋅σ ′h = [vi]i∈I ⋅σ ′h = v

u = eγ+1
λ
⋅eγ

γ+1 ⋅u′ = eγ+1
λ
⋅eγ

γ+1 ⋅ [ui]i∈I ⋅σh ≤ eγ+1
λ
⋅qγ ⋅σ ′h ⋅h.

Hence pλ ∈H∧∣ .

This yields the following corollary

Corollary 4.20. Let C be an Ord-category andH a set of maps. Moreover, let C admit transfinite
lax compositions of laxH-cell λ -complexes for any ordinal λ , cocomma objects along morphisms in
∧∣ (H∧∣ ) and 2-dimensional coproducts of elements inH. If the domains of morphisms inH are all
laxly small relative toH, then (∧∣ (H∧∣ ) ;H∧∣ ) is a WFSlax.

Example 4.21. We consider the category Ord and the set O = {ι1 ∶ØÐ→ 1}. We consider a lax
square (u,v) ∶ ι1Ð→ f ,

Ø //

≥

ι1

��

X

f

��

1

d

??

v
// Y ;

≥
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the diagonal d exists if and only if for each y ∈Y there exists x ∈ X such that f (x) ≤ y. This is evident
remarking that the upper triangle is always commutative. Thus we can define

O∧∣ = { f ∶ X Ð→Y ∣∀y ∈Y (∃x ∈ X ( f (x) ≤ y))} .

We remark that the following map

f ∶ {a,b}Ð→ {0 ≤ 1}
az→ 0

bz→ 1

belongs to O∧∣ and it is not a left adjoint morphism, therefore we conclude that LA ⊊O∧∣ ⊊All. Hence
(∧∣ (O∧∣ ) ,O∧∣ ) is a non-trivial lax weak prefactorisation system. Furthermore, since the domain Ø of
ι1 is trivially laxly small relative toH, by the previous corollary (∧∣ (O∧∣ ) ,O∧∣ ) is a WFSlax.

4.3 Lax functorial factorisations

A natural step forward is to study factorisation systems for lax arrow categories that are functorial. To
do so, we consider the composition functor applied to lax arrow categories

C 2
lax×C C 2

lax
π1 //

(−⋅−) //

π2 //
C 2

lax. (4.xvi)

We point out that objects in C 2
lax×C C 2

lax are pairs of composable morphisms and the arrows are
triples of morphisms as

A

≥

a
//

f

��

A′

f ′

��

B

≥g

��

b
// B′

g′

��

C c
// C′.

Then the following definition becomes a natural translation from the ordinary factorisation systems.

Definition 4.22. A lax functorial factorisation system is an Ord-functor F ∶ C 2
lax Ð→ C 2

lax ×C C 2
lax

such that (- ⋅ -)F = IdC 2
lax

.

A lax functorial factorisation system is then determined by a section of the composition functor
applied to C 2

lax. We can determine its components through the following compositions

L = π1 ⋅F ∶C 2
laxÐ→C 2

lax R = π2 ⋅F ∶C 2
laxÐ→C 2

lax K = cod ⋅π1 ⋅F = dom ⋅π2 ⋅F ∶C 2
laxÐ→C .

(4.xvii)

A lax functorial factorisation system induces also the natural transformations η ∶ Id⇒R and ε ∶ L⇒ Id.
Unlike ordinary factorisation systems, these transformations are not strict in general, but only oplax.
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In fact, considering η , for any lax square (u,v) ∶ f Ð→ g we have that

A

≥

u
//

f

��

C

g

��

Lg
//

ηg

Kg

Rg

��

B v
// D

idD

// D

≤

A

f

��

L f
//

η f

K f

≥R f

��

K(u,v)
// Kg

Rg

��

B
idB

// B v
// D,

since Lg ⋅u ≤K (u,v) ⋅L f by definition of lax functorial factorisation. This amounts to having that ηg ⋅
(u,v) ≤R(u,v) ⋅η f . By analogous arguments, one can observe that ε is an oplax natural transformation
as well.

4.3.1 Lax functorial weak factorisation systems

Our goal now is to interlink the two concepts as we have already seen in 2.3. We say that an ordinary
weak factorisation system (L,R) underlies a lax functorial factorisation system (F,L,R,K) if for
every morphism f , R f ⋅L f is also an (L,R)-factorisation; then (F,L,R,K) is said to be the functorial
realisation of (L,R).

We already know that, if an ordinary WFS (L,R) admits a functorial realisation (F,L,R,K), then
(L,R) = (L-Coalg,R-Alg). This means that L contains those morphisms whose right component is a
split epimorphism and R those morphisms whose left component is a split monomorphism, as we
have presented in 2.25.

Following this idea we aim to investigate the conditions under which a lax functorial factorisation
system is the functorial realisation of a WFSlax and to give a description of the latter.

We fix a lax functorial factorisation system with components (F,L,R,K). We consider the two
classes

LF = { f ∣ f ∧∣ R f} RF = { f ∣L f ∧∣ f} . (4.xviii)

Similarly to ordinary functorial WFS, we consider a lax functorial factorisation system such that for
every f , L f ∈LF and R f ∈RF . More precisely, we are considering lax factorisation systems such that
L f ∧∣ RL f and LR f ∧∣ R f for every morphism f ; we will call such lax functorial factorisation systems
predistributive. The reason for this name is that the assumption amounts to a certain distributivity of
the lax functorial factorisation system as depicted in (4.xxvi).

Proposition 4.23. Let (F,L,R,K) be a lax functorial factorisation system and f any morphism. If
R f ∈RF , then f ∈LF if and only if there exists a lax diagonal lifting ρ f in the square η f . If L f ∈LF ,
then f ∈RF if and only if there exists a lax diagonal lifting λ f in the square ε f . For any f , we will
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denote such lax liftings by

A
L f

//

≥

f

��

K f

R f

��

B

ρ f

??

idB

// B,

≥

A
idA

//

≥

L f

��

A

f

��

K f

λ f

>>

R f
// B.

≥

(4.xix)

Proof. We prove only the first statement, since the second one follows by duality.

One direction is trivial as the existence of such a ρ f is a direct consequence of f ∧∣ R f .

For the non-trivial implication, we need to prove that f ∧∣ R f . We consider a lax square

A u
//

≥f

��

K f

R f

��

B v
// B

z→

A

≥

u
//

L f

��

K f

LR f

��

K f

≥R f

��

K(u,v)
// KR f

RR f

��

λR f

cc

B

ρ f

;;

v
// B,

(4.xx)

where ρ f is a diagonal morphism of η f existing by assumption and λR f is a diagonal morphism of
εR f existing since LR f ∧∣ R f .

We consider δ = λR f ⋅K (u,v) ⋅ρ f . Bearing in mind the definitions of ρ f and λR f as lax diagonal
morphisms for η f and εR f as shown in (4.xix), we have that

u ≤ λR f ⋅LR f ⋅u ≤ λR f ⋅K (u,v) ⋅L f ≤ λR f ⋅K (u,v) ⋅ρ f ⋅R f ⋅L f = δ ⋅ f (4.xxi)

and
R f ⋅δ = RR f ⋅LR f ⋅λR f ⋅K (u,v) ⋅ρ f ≤ RR f ⋅K (u,v) ⋅ρ f ≤ v ⋅R f ⋅ρ f ≤ v. (4.xxii)

This implies that δ is the diagonal morphism sought and f ∧∣ R f .

Corollary 4.24. Let (F,L,R,K) be a predistributive lax functorial factorisation system. Then

LF = { f ∣ η f has a lax diagonal morphism}
RF = { f ∣ ε f has a lax diagonal morphism} .

(4.xxiii)

We observe that, given a morphism f that lies in LF ∩RF , then the composition λ f ⋅ρ f is a right
adjoint to f .

Remark 4.25. We would like to remark some interesting consequences of Corollary 4.24. Let us
consider a lax predistributive FFSlax (F,L,R,K). Let f ∈RF . Then there exists the lax diagonal
morphism λ f for the square ε f , as depicted in diagram (4.xix). Thus we can write the following
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diagram

A

f

��

≥

L f
//

idA

""

η f

K f

≥R f

��

λ f
// A

f

��

B
idB

//

idB

<<
B

idB

// B.

(4.xxiv)

This yields that id f ≤ (λ f , idB) ⋅η f .

We consider the pair (R,η) and call it a lax pointed endofunctor, generalising Definition 2.24.
Then a lax R-algebra is a pair ( f ,α) such that

f
η f

//

id f
��

≤

R f

α

��

f .

The motivation for this 2-cell and its direction is that we are interested to approach the algebras for
lax monads, as we will see in Section 4.4. Then diagram (4.xxiv) yields that ( f ,(λ f , idB)) is a lax
R-algebra. Hence, if f ∈RF , then f is a lax R-algebra, furthermoreRF ⊆ R-Alglax.

On the other hand, let us consider a lax R-algebra ( f ,α). Then, we can write the following
diagram

A

f

��

≥

L f
//

idA

""

η f

K f

≥R f

��

α0
// A

f

��

B
idB

//

idB

<<

≤

B
α1

// B.

Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f ⋅α0 ≤ α1 ⋅R f

idB ≤ α1

idA ≤ α0 ⋅L f .

(4.xxv)

If we attempt to analyse whether α0 is a lax diagonal lifting for ε f , we only get

A

≥

L f

��

idA
// A

f

��

B
α1
��

K f

≤

α0

>>

R f

88

R f
// B.

≥
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So we observe that in general not all lax R-algebras belong toRF . Dual arguments can be carried
out to deduce that LF ⊆ L-Coalglax.

According to these remarks, the choice of the name predistributive points to the existence, for any
morphism f , of the following diagram

K f

≥

LR f

��

ρL f
// KL f

RL f

��

KR f
λR f

// K f

≥

(4.xxvi)

and it coincides with the assumption that for every morphism f , R f ∈RF and L f ∈LF .
This diagram resembles the distributivity transformation described in the next section, even if it

carries less structure. In fact, it is not in general a natural transformation and it does not satisfy any
distributivity law as we have described in Definition 2.27 and Remark 2.28.

Theorem 4.26. Let (F,L,R,K) be a predistributive FFSlax. Then (LF ,RF) is a WFSlax. Moreover, if
a WFSlax (L,R) admits a lax functorial realisation (F,L,R,K), then (L,R) = (LF ,RF).

Proof. We start by proving that (LF ,RF) is a WFSlax. First we show that LF ∧∣ RF . Let f ∈LF and
g ∈RF . Thus, we have that f ∧∣ R f and Lg ∧∣ g, by the existence of the two morphisms ρ f and λg.
Given a lax square (u,v) ∶ f Ð→ g, we can factorise it as follows

A u
//

≥f

��

C

g

��

B v
// D

z→

A

≥

u
//

L f

��

C

Lg

��

K f

≥R f

��

K(u,v)
// Kg

Rg

��

λg

dd

B

ρ f

;;

v
// D.

(4.xxvii)

Then, we notice that the morphism δ = λg ⋅K (u,v) ⋅ρ f constitutes a lax diagonal morphism for the lax
square taken into account. Therefore we have that LF ∧∣ RF .

Moreover, for any f ∧∣ RF , it follows that f ∧∣ R f , since R f ∈RF by lax predistributivity, which
yields that f ∈LF , namelyR∧∣F ⊆LF . By an analogous argument L∧∣F ⊆RF holds.

We focus now on the second claim. Let (L,R) be a WFSlax admitting a lax functorial realisation
(F,L,R,K). We have have that

f ∈L ⇔ f ∈∧∣ R ⇒ f ∧∣ R f ⇔ f ∈LF ;

f ∈R ⇔ f ∈L∧∣ ⇒ L f ∧∣ f ⇔ f ∈RF ;

so we have that L ⊆LF andR ⊆RF . Furthermore, we know that orthogonal complements are antitone
with respect to inclusion by Proposition 4.5, hence these two inclusions yield RF ⊆R and LF ⊆ L
respectively. In conclusion, we have that (L,R) = (LF ,RF).
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The last theorem gives us a description of those WFSlax that admit a lax functorial realisation.
Moreover, for any FFSlax it states that, if every L-component and every R-component bear particular
lax weak orthogonality relations, then they form the unique underlying WFSlax.

4.4 Lax Algebraic Factorisation Systems

In this section we present a class of functorial factorisation systems which are in general predistributive
and come equipped with a richer structure close to the one of a monad. This construction mirrors in
this lax context that of algebraic weak factorisation systems, which we encountered in Section 2.4.

We recall the definition of lax monad that we reprise from [Bun74]. We define here an Ord
version of this definition and, although this work refers to lax natural transformations, we remark that
it is actually the same type of transformation we call oplax according to what appears to be the most
used choice in literature. The only difference is that we will use a definition involving usual functors
and not lax functors, since it is the particularisation that best fits our purposes.

Definition 4.27. For an Ord-enriched category C , a lax monad is a triple (T,η ,µ) such that

• T ∶C Ð→C is a functor;

• η ∶ IdÔ⇒ T is an oplax natural transformation;

• µ ∶ T T Ô⇒ T is an oplax natural transformation;

and such that the following lax monads laws are satisfied

T

idT
  

T η
//

≥

T T

µ

��

T

idT
~~

ηT
oo

≥

T

T T T

µT

��

T µ
//

≤

T T

µ

��

T T
µ

// T.

(4.xxviii)

We now define the factorisation systems we are interested in.

Definition 4.28. A lax algebraic weak factorisation system (AWFSlax) is a lax functorial factorisation
system (F,L,R,K) such that (R,η) is part of a lax monad (R,η ,Θ), (L,ε) is part of a lax comonad
(L,ε,Ω), and there is a natural transformation ∆ = (cod(σ),dom(π)) ∶ LRÔ⇒ RL which constitues
a distributive law of the comonad over the monad in the sense that the following diagram commutes

LRR

LΘ

��

∆R
// RLR R∆

// RRL

ΘL

��

LR ∆
//

ΩR

��

RL

RΩ

��

LLR L∆
// LRL

∆L
// RLL.

(4.xxix)
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As said before, these factorisation systems constitute a subclass of lax functorial weak factorisation
systems as we prove in the following proposition.

Proposition 4.29. A AWFSlax (F,L,R,K) is the functorial realisation of a WFSlax.

Proof. We can prove the statement by showing that (F,L,R,K) is lax predistributive. Let f be any
morphism. We consider the lax square given by Θ f ,

KR f

≥

θ f
//

RR f

��

K f

R f

��

B
idB

// B.

We remark that the lax monad axioms in (4.xxviii), in particular the left diagram, yield that the
codomain component of Θ is an identity since the codomain component of η is an identity. Then, by
the lax monad law idR ≤Θ ⋅ηR, we can deduce, restricting it to the domains, that idK f ≤ θ f ⋅LR f . Thus
we have that θ f is a lax diagonal morphism for εR f , i.e.

K f
idK f

//

≥

LR f

��

K f

R f

��

KR f

θ f

==

RR f
// B.

≥

The same argument on the comonad yields that ω f , the codomain morphism of the comultiplication
Ω of the comonad, is the lax diagonal morphism for ηL f . Now we want to check that L f ∧∣ RL f and
LR f ∧∣ R f . We prove only the first one, since the arguments for the second are similar. We consider
any lax square (u,v) ∶ L f Ð→ RL f and its factorisation

A

≥

u
//

LL f

��

KL f

LRL f

��

KL f

≥RL f

��

K(u,v)
// KRL f

RRL f

��

θL f

bb

K f

ω f

<<

v
// K f .

Then θL f ⋅K (u,v) ⋅ω f is a lax diagonal morphism. In fact, due to the rules of the monad, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u ≤ θL f ⋅LRL f ⋅u ≤ θL f ⋅K (u,v) ⋅LL f ≤ θL f ⋅K (u,v) ⋅ω f ⋅RL f ⋅LL f

RRL f ⋅LRL f ⋅θL f ⋅K (u,v) ⋅ω f ≤ RRL f ⋅K (u,v) ⋅ω f ≤ v ⋅RL f ⋅ω f ≤ v.
(4.xxx)
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This implies that, for every f , we have that L f ∧∣ RL f , and similarly LR f ∧∣ R f . Therefore (F,L,R,K)
is lax predistributive and hence it is the functorial realisation of the WFSlax (LF ,RF).

We remark that in general a lax predistributive functorial factorisation system does not yield a
complete distributivity law, since it is not even true that the square (4.xxvi) is a natural transformation,
and moreover we do not have the existence of the 2-cells in the distributivity law (4.xxix).

4.5 Oplax morphism categories

The arguments developed in the previous sections of this chapter are presented in the context of C 2
lax.

We remark that this constitutes a choice on the directions of 2-cells within squares and that such a
choice is not unique. In fact, any Ord-category C gives rise to another category denoted by C 2

oplax,
whose objects are arrows in C and whose morphisms are oplax squares (u,v) ∶ f Ð→ g of the type

A u
//

≤f

��

C

g

��

B v
// D.

We observe that what we have described for C 2
lax can be expressed in a dual fashion for C 2

oplax and it
yields an equally powerful dual set of results that can be used for C 2

oplax.

Notation 4.30. We provide the notation that we will use to refer to opcomma and opcocomma objects;

f ↓ g
Ä

≤g→( f )

��

f ↑(g)
// A

f

��

C g
// B,

A′

¼

≤f ′

��

g′
// C′

g′→( f ′)

��

B′
f ′↑(g′)

// f ↑ g.

Since it will be useful in the following chapters, we will briefly go through some of the dual results
pointing out the most important differences. First of all we define the orthogonality relation that we
will use in this context.

Definition 4.31. Let C be an Ord-enriched category. Two morphisms in C 2 are said to be oplaxly
weakly orthogonal, denoted by f ∨∣ g, if, for every oplax square (u,v) ∶ f Ð→ g, there exists a morphism
d such that

A u
//

≤

f

��

C

g

��

B

d

??

v
// D

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d ⋅ f ≤ u

v ≤ g ⋅d.
(4.xxxi)

We will refer to d as oplax diagonal morphism or oplax diagonal lifting.
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Then we have the following characterisation of self orthogonal morphisms.

Proposition 4.32. Given a morphism f ∈C 2
oplax, the following properties are equivalent:

1. f ∨∣ f ;

2. f is a right adjoint morphism to some f∗;

3. f ∨∣ C 2
oplax;

4. C 2
oplax ∨∣ f .

For any class of morphismsH we can define its oplax weak orthogonal complements as follows

∨∣H = { f ∣ f ∨∣ h for every h ∈H} and H∨∣ = { f ∣h ∨∣ f for every h ∈H} .

Then we have that oplax orthogonal complements bear the following properties.

Proposition 4.33. Let C be an Ord-category. The pair ∨∣ (−) and (−)∨∣ forms a Galois connection
among the classes of morphisms in C partially ordered by the inclusion.

Corollary 4.34. LetH be a class of morphisms in C . ThenH ⊆ ∨∣ (H∨∣ ) andH ⊆ (∨∣H)∨∣ . Moreover,

H∨∣ = (∨∣ (H∨∣ ))∨∣ and ∨∣H = ∨∣ ((∨∣H)∨∣ ).

Proposition 4.35. LetH be a class of morphisms in an Ord-category C . Then the following assertions
hold.

1. H∨∣ and ∨∣H contain all the right adjoint morphisms of C ;

2. H∨∣ and ∨∣H are closed under composition;

3. H∨∣ is closed under opcomma objects and ∨∣H is closed under opcocomma objects;

We introduce the definition of oplax weak factorisation system.

Definition 4.36. An oplax weak prefactorisation system is a pair of classes of morphisms (L,R)
such thatR =L∨∣ and L = ∨∣R. Moreover, if any morphism f ∈C 2

oplax has an (L,R)-factorisation

A
f

//

L∋l f
��

B

Wf

r f ∈R

??

(4.xxxii)

then (L,R) is said to be an oplax weak factorisation system (WFSoplax).

Proposition 4.37. Given a class of morphismsH ⊆C 2, then (∨∣ (H∨∣ ) ;H∨∣ ) and (∨∣H;(∨∣H)∨∣ ) are
oplax prefactorisation systems.

Moreover, we have again the following method to generate oplax factorisations from a class of
morphisms.
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Theorem 4.38. If C is an Ord-category with enough oplax colimits and H a set of maps whose
domains are all oplaxly relatively small with respect to H, then then every morphism admits a
(∨∣ (H∨∣ ) ;H∨∣ )-factorisation.

Then there exists also the composition functor in

C 2
oplax×C C 2

oplax
π1 //

(−⋅−) //

π2 //
C 2

oplax, (4.xxxiii)

and hence we can provide the following definition.

Definition 4.39. An oplax functorial factorisation system is a functor F ∶C 2
oplaxÐ→C 2

oplax×C C 2
oplax

such that (- ⋅ -)F = IdC 2
oplax

.

We can determine again the components of an FFSoplax through the following compositions

L = π1 ⋅F ∶C 2
oplaxÐ→C 2

oplax R = π2 ⋅F ∶C 2
oplaxÐ→C 2

oplax K = cod ⋅π1 ⋅F = dom ⋅π2 ⋅F ∶C 2
oplaxÐ→C .

(4.xxxiv)

We remark that an FFSoplax induces also the natural transformations η ∶ Id⇒ R and ε ∶ L⇒ Id.
Unlike the lax case, these are not oplax transformations anymore, but lax natural transformations.

Now we consider an FFSoplax with components (F,L,R,K). We have again the following two
classes

LF = { f ∣ f ∨∣ R f} RF = { f ∣L f ∨∣ f} . (4.xxxv)

We will consider again an oplax functorial factorisation system such that, for every f , L f ∈LF

and R f ∈RF . We will call such FFSoplax predistributive.

Lemma 4.40. Let (F,L,R,K) be a predistributive FFSoplax. Then

LF = { f ∣ η f has an oplax diagonal morphism}
RF = { f ∣ ε f has an oplax diagonal morphism} .

(4.xxxvi)

If we consider an oplax pointed endofunctor (R,η), whose definition is the dual of a lax pointed
endofunctor, namely we are assuming that η is a lax natural transformation. Then, an oplax R-algebra
is a pair ( f ,α) such that

f
η f

//

id f
��

≥

R f

α

��

f .

We notice that, again, all elements in RF are oplax R-algebras and all elements in LF are oplax
L-coalgebras. Hence we haveRF ⊆ R-Algoplax and LF ⊆ L-Coalgoplax.

Then we have again the following theorem

Theorem 4.41. Let (F,L,R,K) be a predistributive FFSoplax. Then (LF ,RF) is an WFSoplax. Moreover,
if an WFSoplax (L,R) admits oplax functorial realisation (F,L,R,K), then (L,R) = (LF ,RF).
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We recall that oplax monads are defined by the dual of Definition 4.27. Then we may provide the
following definition.

Definition 4.42. An oplax algebraic weak factorisation system (AWFSoplax) is a functorial factori-
sation system (F,L,R,K) such that (R,η) is part of an oplax monad (R,η ,Θ), (L,ε) is part of an
oplax comonad (L,ε,Ω), and there exists a distributivity law ∆ ∶ LRÔ⇒ RL of the comonad over the
monad in the sense that the following diagram commutes

LRR

LΘ

��

∆R
// RLR R∆

// RRL

ΘL

��

LR ∆
//

ΩR

��

RL

RΩ

��

LLR L∆
// LRL

∆L
// RLL.

(4.xxxvii)

We also have the following dual result.

Proposition 4.43. An AWFSoplax (F,L,R,K) is an oplax functorial weak factorisation system.





Chapter 5

Lax Factorisation systems among partial
maps

In this chapter we present an application of the definitions and results provided in Chapter 4. The
contents of this chapter were introduced in [Lar21]. The arguments are set in the context of categories
of partial maps, that we have described in Chapter 3.

In the first section we discuss the existence of a AWFSlax for a general category of partial maps.
The idea of this factorisation is to separate the domain and the function components of any morphism.

Thereafter we show that any stable WFSoplax on an Ord-category C gives rise to an WFSoplax on
P (C ), whenever it can be constructed. Moreover, if P (C ) is equipped with the Ord-enrichment
induced by the discrete one on C , then the WFSoplax onP (C ) inherits the properties of being functorial
or algebraically weak from the base factorisation system.

Then we discuss the restriction of WFSoplax from a category of partial maps to its base category,
and we finally show a correspondence between the two classes of WFSoplax for the two categories.

We conclude the chapter discussing some remarks on fibrant and cofibrant constructions of lax
factorisation systems for some pointed Ord-categories applying these remarks to categories of partial
maps.

Along the chapter we include examples of the constructions that we will present in particular for
the category of Set and P (Set).

5.1 Lax factorisations and total maps

We consider an Ord-category C and a class of admissible subobjects S such that any morphism in S
is full and upper-closed and s′,s′ ⋅s ∈ S implies that s ∈ S . Then, by Theorem 3.6, we get that ⊑ induces
an Ord-enrichment on PS (C ).

63
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Given any partial map f in P (C ), it can be factorised as

D f
��

σ f

��

ϕ f

��

A �
f

// B

=

D f
��

σ f

��

idD f

  

D f
��

idD f

��

ϕ f

��

A �
L f

// D f
�

R f
// B,

(5.i)

as observed in [Fio95, Chapter 2].

Proposition 5.1. Let C be an Ord-category that allows the construction of P (C ) for a class of
admissible subobjects S such that any morphism in S is full and upper-closed and s′,s′ ⋅ s ∈ S implies
that s ∈ S. Then the factorisation in (5.i) constitutes a FFSlax

F ∶P (C )2laxÐ→P (C )
2
lax×P(C )P (C )

2
lax .

Proof. Our goal now will be to prove that such factorisation is functorial in the sense of Definition
4.22. Therefore we aim to prove that L f and R f are indeed functors. We consider a lax square
(u,v) ∶ f Ð→ g and its factorisation

A �u //

≥_f

��

C

_g

��

B �
v
// D

z→

A

1

u
//

L f

��

C

Lg

��

D f

2R f

��

K(u,v)
// Dg

Rg

��

B v
// D.

(5.ii)

In particular K (u,v) is defined as

Dg⋅u
��

s
��

σg
∗(ϕu)

��

Dv⋅ f
��

ϕ f
∗(σv)

��

D f
� // Dg,

(5.iii)

where s is the morphism in S yielded by the 2-cell g ⋅u ≤ v ⋅ f . Moreover, s ∈ S makes the following
diagram commute

Dg⋅u //
s

//

��

ϕu
∗(σg)

��

Dv⋅ f
��

ϕ f
∗(σv)

��

Du
!!

σu !!

D f
}}

σ f}}

A.
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Consequently, we have that the compositions

Dg⋅u
��

s
�� idDg⋅u

��

Dv⋅ f
��

ϕ f
∗(σv)

��

D f
��

σ f

��

idD f

��

Dg⋅u
��

s
�� σg

∗(ϕu)

��

Dv⋅ f
��

ϕ f
∗(σg)

��

A �
L f

// D f
�

K(u,v)
// Dg

Dg⋅u
��

ϕu
∗(σg)

��

σg
∗(ϕu)

  

Du
��

σu

��

ϕu

  

Dg
��

σg

��

idDg

  

A �
u

// C �
Lg

// Dg

are equal, thus the upper square 1 in the second diagram of (5.ii) is actually commutative. Moreover,
we have that the morphism s yields the 2-cell Rg ⋅K (u,v) ≤ v ⋅R f and this is shown by writing explicitly
the diagram

Dg⋅u
��

idDg⋅u

��

σg
∗(ϕu)

  

//
s

// Dv⋅ f

σv
∗(ϕ f )

  

��

ϕ f
∗(σv)

��

Dg⋅u
��

ϕ f
∗(σv)⋅s

��

σg
∗(ϕu)

  

Dg
��

idDg

��

ϕg

��

D f
��

idD f

��

ϕ f

  

Dv
��

σv

��

ϕv

��

D f
�

K(u,v)
// Dg

�
Rg

// C D f
�

R f
// B �

v
// C.

We conclude that 2 is a lax square.

It remains to check that K is a functor. We consider two composable lax squares (u,v) ∶ f Ð→ g
and (u′,v′) ∶ gÐ→ h. We have to prove that K (u′ ⋅u,v′ ⋅v) =K (u′,v′) ⋅K (u,v). Recalling the definition
of K given in (5.iii) we have the following diagrams

P
��

��

a

$$

Dg⋅u
��

s

��

σg
∗(ϕu)

��

Dh⋅u′
��

s′

��
σh
∗(ϕu′)

��

Dv⋅ f
��

ϕ f
∗(σv)

��

Dv′⋅g
��

ϕg
∗(σv′)

��

D f
�

K(u,v)
// Dg

�
K(u′,v′)

// Dh

and

Dh⋅u′⋅u
��

s′′
��

σh
∗(ϕu′⋅u)

��

Dv′⋅v⋅ f
��

��

{{

ϕ f
∗(σv′⋅v)

%%

Dv⋅ f
��

ϕ f
∗(σv)

��

D f
�

K(u′⋅u,v′⋅v)
// Dh,

(5.iv)

where s and s′ are the admissible monomorphisms that yield the 2-cells in (u,v) and (u′,v′) respec-
tively and s′′ is the admissible monomorphism that yields the 2-cell h ⋅u′ ⋅u ≤ v′ ⋅v ⋅ f . First of all we
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observe that
σh
∗ (ϕu′⋅u) = σh

∗ (ϕu′) ⋅b,

where b is obtained by the following pullback

Dh⋅u′⋅u
��

��

b
// Dh⋅u′
��

ϕu′ ∗(σh)

��

σh
∗(ϕu′)

// Dh
��

σh

��

Du′⋅u
��

��

ϕu′⋅u

66

σu′ ∗(ϕu)
// Du′
��

σu′

��

ϕu′
// A′′

Du ϕu
// A′,

where A′ is the codomain of g and A′′ is the codomain of h. Furthermore, we remark that

Dh⋅u′ //
s′

//

��

ϕu′ ∗(σh)
��

Dv′⋅g
��

ϕg
∗(σv)

��

Du′
!!

σu′ !!

Dg
}}

σg}}

A′

depict the same equivalence class of Dh⋅u′ as subobjects of A′, and therefore pullbacks of ϕu along
these arrows are equal. More explicitly we have that

a = (σg ⋅ϕg
∗ (σv) ⋅ s′)∗ (ϕu) = (σu′ ⋅ϕu′

∗ (σh))∗ (ϕu) = b.

Therefore we have σh
∗ (ϕu′) ⋅a = σh

∗ (ϕu′⋅u) in (5.iv). Then writing explicitly the domain components
of (5.iv), we need to check commutativity of

ϕ f
∗ (σv) ⋅ϕv⋅ f

∗ (σv′) ⋅ s′′ = ϕ f
∗ (σv) ⋅ s ⋅ϕg⋅u

∗ (σv′) ⋅(s′ ∗u) . (5.v)

We recall that s′′ is defined as

Dh⋅u′⋅u // s′∗u
//

88

s′′

&&

Dv′⋅g⋅u // v′∗s
// Dv′⋅v⋅ f
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following the notation of §3.8. Hence, the equality in (5.v) is represented by the following diagram

Dg⋅u
##

s

##

Dh⋅u′⋅u //
s′∗u

// Dv′⋅g⋅u
::

ϕg⋅u∗(σv′)
::

$$

v′∗s $$

Dv⋅ f //
ϕ f
∗(σv)

// D f .

Dv′⋅v⋅ f
;; ϕv⋅ f ∗(σv′)

;;

We remark that the central rhombus appears in the definition of v′ ∗ s and corresponds to the square in
(3.vii), hence it is commutative. We conclude that K (u′ ⋅u,v′ ⋅v) =K (u′,v′) ⋅K (u,v), and thus L and
R constitute a lax functorial factorisation system.

Next we discuss lax predistributivity of (F,L,R,K). In order to do so we recall that Tot denotes
the class of total maps in P (C ). Moreover, we say that a partial morphism f is a partial left adjoint
if ϕ f = σ ⋅ ϕ̃ f sor some σ ∈ S and some morphism ϕ̃ f that is a left adjoint in C . We denote by PLA the
class of partial left adjoints of P (C ).

Proposition 5.2. The FFSlax described in the previous proposition is predistributive and the underlying
WFSlax is (PLA,Tot).

Proof. We consider the two classes LF and RF defined in (4.xviii). Let us consider LF . It is
immediate to notice that if f is a partial left adjoint, then R f = (idD f ,ϕ f ) is a left adjoint in P (C ), by
Proposition 3.10. Hence, by Proposition 4.4 we get that R f is laxly weakly orthogonal to any other
morphism in P (C ), and in particular this yields f ∧∣ R f , therefore PLA ⊆LF .

On the other hand, if we consider f ∈L f , we have that f ∧∣ R f . In particular we have a lax diagonal
morphism δ for the square η f

A
L f

//

≥

f

��

D f

R f

��

B

δ

??

idB

// B.

≥

Then we look at the explicit diagrams defining the two 2-cells

D f $$ s
$$

idD f

��

σ f

##

⊒

Dδ ⋅ f
��

�� ##

D f
��

σ f

��

ϕ f

##

Dδ
��

σδ

��

ϕδ

##

A �
f

// B �
δ

// D f .

B
idB

��

idB

##

⊑

DR f ⋅δ

dd

s′
dd

��

��

ϕδ

$$

Dδ
��

σδ

��

ϕδ

$$

D f
��

idD f

��

ϕ f

""

B �
δ

// D f
�

R f
// B.

(5.vi)
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Looking at the left hand diagram we notice that σ f ⋅ϕ f
∗ (σδ ) ⋅ s = σ f yields that ϕ f

∗ (σδ ) and s
are isomorphisms and therefore ϕ f = σδ ⋅σδ

∗ (ϕ f ). We denote by ϕ̃ f the morphism σδ
∗ (ϕ f ). In

particular we have in C the following 2-cells

⎧⎪⎪⎪⎨⎪⎪⎪⎩

idD f ⊑ ϕδ ⋅ ϕ̃ f

ϕ̃ f ⋅ϕδ ⊑ idDδ
.

The first 2-cell follows from the left diagram in (5.vi) remarking that s is an isomorphism. The second
2-cell is obtained from the 2-cell ϕ f ⋅ϕδ = σδ ⋅ ϕ̃ f ⋅ϕδ ⊑ s′ = σδ in the right hand diagram, recalling
that σδ belongs to S , and is thus full. This implies that f is a partial left adjoint and thus LF = PLA.

As for RF we remark that it contains all total maps. In fact, if f ∶ AÐ→ B is total, then L f =
(idA, idA) is an isomorphism, so L f ∧∣ f . On the other hand, given f ∈RF , we have that there exists a
lax diagonal morphism δ

′ for ε f

A
idA

//

≥

L f

��

A

f

��

K f

δ
′

>>

R f
// B.

≥

In particular idA ≤ δ
′ ⋅L f yields that δ

′ ⋅L f is total by Proposition 3.9 and thus L f is total by Proposition
3.1 and σ f = idA. ThereforeRF =Tot.

Using the new characterizations of LF and RF given above, to prove lax predistributivity it is
enough to notice that, for every partial morphism f , L f = (σ f , idD f ) ∈ PLA and R f = (idD f ,ϕ f ) ∈Tot.
We conclude that (PLA,Tot) is the lax weak factorisation system underlying the lax functorial
factorisation system above.

Then we have that Corollary 3.11 allows us to state the following consequence of the previous
proposition.

Corollary 5.3. If the Ord-enrichment on C is discrete, then the WFSlax underlying the FFSlax in (5.i)
is (S,Tot), where S = { f ∣ϕ f ∈ S}.

This is due to the fact that if C is a discrete category, then the only adjoint pairs are isomorphisms
and thus PLA contains those morphisms such that ϕ f ∈ S.

5.2 Oplax WFS among partial maps and S-stable WFS

This section is dedicated to describe the close interplay between factorisation systems on a category
C and oplax factorisation systems on the category of partial maps P (C ). In the first subsection we
present a procedure that extends a stable WFSoplax on C to an WFSoplax on P (C ). Then we show
that, if the Ord-enrichment comes from a discrete partial order on C , functoriality is transferred to
the factorisation system among partial maps. Thereafter we proceed to analyse how WFSsoplax on
partial maps may be restricted to WFSs among total maps. We will conclude observing that these two
processes yield a bijective correspondence between oplax weak factorisation systems on P (C ) and
stable WFSs on C .
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5.2.1 Oplax WFSs from total maps to partial maps

Let C be an Ord-category and (E ,M) an WFSoplax such that E is S-stable, namely it is stable under
pullbacks along morphisms in S . Considering P (C ), each partial map f can be factorised as

D f
��

σ f

��

ϕ f

  

eϕ f
// M f

mϕ f

��

A �
f

// B

=

D f
��

σ f

��

eϕ f

  

M f
��

idMf

��

mϕ f

��

A �
e f

// M f
�

m f
// B.

(5.vii)

We consider the following classes of partial morphisms

E = { f ∣ϕ f ∈ E} M = { f ∣ϕ f ∈M} . (5.viii)

Our goal is to prove that such factorisation constitutes an WFSoplax. We start by checking that E ∨∣ M.
We consider f ∈ E , g ∈M and the oplax square (u,v) ∶ f Ð→ g. Writing explicitly the oplax square,
one remarks that, since E is stable under pullbacks along morphisms in S, then σv

∗ (ϕ f ) belongs
to E . Since (E ,M) is an WFSoplax, then E ∨∣ M. Thus there exists an oplax diagonal filler d for the
following oplax square in C 2

oplax

Dv⋅ f

⊑

E∋σv
∗(ϕ f )

��

//
s
// Dg⋅u

σg
∗(ϕu)

// Dg
��

ϕg∈M

��

Dv

∃d

66

ϕv
// D,

⊑

(5.ix)

where s is the morphism in S that yields the 2-cell v ⋅ f ≤ g ⋅u. Then it is easy to check that

Dv
��

σv

��

σg⋅d

��

B �
δ

// C

(5.x)

is an oplax diagonal morphism for the oplax square

A u
//

⊑

f

��

C

g

��

B

δ

??

v
// D

⊑
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In fact, the existence of the 2-cells in the upper diagram is deduced by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ f ⋅ϕ f
∗ (σv) = σu ⋅ϕu

∗ (σg) ⋅ s;

σg ⋅d ⋅σv
∗ (ϕ f ) ⊑ σg ⋅σg

∗ (ϕu) ⋅ s = ϕu ⋅ϕu
∗ (σg) ⋅ s

⇒

Du

ϕu

��

σu

  

⊑

Dv⋅ f
bb

ϕu
∗(σg)⋅s
bb

��

ϕ f
∗(σv)

��

σv
∗(ϕ f )

  

D f
��

σ f

��

ϕ f

!!

Dv
��

σv

��

σg⋅d

  

A �
f

// B �
δ

// C.

On the other hand, the existence of the 2-cell in the lower triangle is clearly shown in the following
diagram

Dv
��

idDv

��

��

σv

  

d
  

ϕv

��

⊒

Dg
idDg

  

idDg

��

Dv
��

σv

��

d
  

Dg
��

σg

��

ϕg

��

Dg
σg

!!

B �
δ

// C �
g

// D.

Since the morphism that yields the 2-cell v ≤ g ⋅δ is an isomorphism, we remark that if the Ord-
enrichment ⊑ is discrete, then v = g ⋅δ . This allows us to conclude that E ∨∣ M. Furthermore, let us
consider a morphism f ∶ AÐ→ B belonging to ∨∣M. In particular this implies that f ∨∣ m f , and thus
the (commutative) square (e f , idB) ∶ f Ð→m f admits an oplax diagonal morphism δ . We observe that,
by Proposition 3.9 and Proposition 3.1, idB ≤m f ⋅δ yields that δ is a total morphism. We consider the
oplax square in C (eϕ f , idB) ∶ ϕ f Ð→mϕ f and we have the following 2-cells

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ ⋅ f ≤ e f

idB ≤m f ⋅δ ,
⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕδ ⋅ϕ f ⊑ eϕ f

idB ⊑mϕ f ⋅ϕδ .

Hence ϕδ is an oplax diagonal lifting for the oplax square

D f
eϕ f

//

⊑

ϕ f

��

M f

mϕ f

��

B

ϕδ

>>

idB

// B.

⊑
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Then we consider an oplax square (u,v) ∶ ϕ f Ð→ g in C 2
oplax with g ∈M. Hence, by dual arguments to

those already discussed in the proof of Theorem 4.26, we adapt diagram (4.xxvii) and we obtain

D f

⊑

u
//

eϕ f

��

C

eg

��

M f

⊑
mϕ f

��

K(u,v)
// Mg

mg

��

λg

dd

B

ϕδ

;;

v
// D.

and, always by arguments analogous to those in such proof, we get that λg ⋅K (u,v) ⋅ϕδ is an oplax
diagonal morphism for the oplax square (u,v). This allows us to conclude that ϕ f ∨∣ M, and therefore
f ∈ E .

In a similar fashion one can prove that if g ∈ ∨∣ E , then the square (idA,mg) ∶ eg Ð→ g admits an
oplax diagonal lifting δ

′. Again, since mg is total, the 2-cell mg ≤ g ⋅δ ′ yields that δ
′ is total. Writing

explicitly such 2-cell we obtain the following diagram

Mg
��

idMg

��

}}

idMg

!!

mϕg

��

ϕ̃δ ′

  
⊒

Mg
��

idMg

��

ϕδ ′

  

Dg
��

σg

��

ϕg

��

Mg
�

δ
′
// A �

g
// B.

In particular, we observe that ϕδ ′ = σg ⋅ ϕ̃δ ′ and mϕg ⊑ ϕg ⋅ ϕ̃δ ′ . Then δ
′ ⋅eg ≤ idA yields σg ⋅ ϕ̃δ ′ ⋅eϕδ ′ =

ϕδ ′ ⋅eϕδ ′ ⊑ σg, and thus ϕ̃δ ′ ⋅eϕδ ′ ⊑ idDg , since morphisms in S are full. This yields that ϕ̃δ ′ is an oplax
diagonal lifting for the square (idA,mϕg) ∶ eϕg Ð→ g. Hence, we conclude by similar arguments as
before that ϕg ∈ E∨∣ =M, thus g ∈M.

The construction that we have presented in this section can be resumed in the following result.

Proposition 5.4. Let C be an Ord-category, S a class of admissible morphisms full and upper-closed
and (E ,M) an S-stable WFSoplax. Then (E ,M) is an WFSoplax on P (C ).

Example 5.5. Let us consider P (Set). We know that in Set the two classes Epi and Mono are stable
under pullbacks. Moreover, (Mono,Epi) is a stable WFS, as presented in Example 2.11. Then by the
arguments discussed above, we deduce that (Mono,Epi) is an WFSoplax for P (Set). Furthermore, we
have that (Epi,Mono) is a stable OFS. This yields that (Epi,Mono) is an WFSoplax.

Remark 5.6. As for Set, we pointing out that (Mono,Epi)-factorisations are not unique. In fact,
we know that every non-empty morphism in Set has multiple (Mono,Epi)-factorisations (actually
infinite), as already remarked in Example 2.11. Thus, we observe that from the construction (5.vii)
each of these factorisations gives rise to a different factorisation on a partial map.
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5.2.2 Functoriality from total factorisation systems to oplax WFS

In this section we discuss how the structure on a WFS on C is transferred to the WFSoplax on P (C )
yielded by the construction in the previous section.

We assume along this section that the Ord-enrichment ⊑ on C is discrete, which implies that
being an OFSoplax is equivalent to being a WFS. Under this assumption we will show that, if the WFS

is orthogonal, then the induced WFSoplax on P (C ) admits an oplax functorial realisation.

Proposition 5.7. Let C be an ordinary category and (E ,M) a stable WFS on C that admits the func-
torial realisation (F,L,R,K). Then the WFSoplax admits an oplax functorial realisation (F ,L,R,K).

Proof. We observe that any morphism f ∶AÐ→B in P (C ) admits the (E ,M)-factorisation described
in diagram (5.vii). Our goal is to prove that such factorisation is functorial. We adopt the following
notation

L f = (σ f ,Lϕ f ) R f = (idKϕ f ,Rϕ f ) K f =Kϕ f

We consider two composable oplax squares

A �u //

⪯
_f

��

C

_g

��

�u′ //

⪯

E

_h

��

B �
v
// D �

v′
// G.

We aim to define K and to prove that K (u′ ⋅u,v′ ⋅v) =K (u′,v′) ⋅K (u,v).
We consider the following oplax square

A

⪯L f

��

u
// C

Lg
// Kg

Rg

��

K f
R f

// B v
// D.

We apply to this diagram the construction in diagram (5.ix), which, in this case, is commutative, since
the Ord-enrichment on C is discrete. This yields the following diagram

Dv⋅ f //
s

//

σv⋅R f
∗(ϕL f )

��

Dg⋅u
ϕLg⋅u

// Kg

Rϕg

��

Dv⋅R f

k

66

ϕv⋅R f

// D,

(5.xi)

where we choose k, among the possible diagonal lifting of such square, as

k =K (ϕLg⋅u ⋅ s,ϕv⋅R f ) =K (Lϕg ⋅σg
∗ (ϕu) ⋅ s,ϕv ⋅σv

∗ (Rϕ f )) . (5.xii)
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The morphism k constitute a diagonal lifting for (5.xi) since (E ,M) is an OFS. In fact this yields
that for any f ∈ E and g ∈M, then R f and Lg are isomorphism. Then K (u,v) = ((Rϕ f )

∗ (σv) ,k), as

defined in (5.x). Similarly we have K (u′,v′) = ((Rϕg)∗ (σv′) ,k′), where

k′ =K (ϕLh⋅u′ ⋅ s
′,ϕv′⋅Rg) =K (Lϕh ⋅σh

∗ (ϕu′) ⋅ s′,ϕv′ ⋅σv′
∗ (Rϕg)) . (5.xiii)

Finally we define analogously K (u′ ⋅u,v′ ⋅v) = (σv′⋅v⋅R f ,k
′′). We remark that

σv′⋅v⋅R f = (Rϕ f )∗ (σv) ⋅[(σ∗v (Rϕ f ))
∗ (ϕv

∗ (σv′))] = (Rϕ f )
∗ (σv) ⋅[(ϕv ⋅σv

∗ (Rϕ f ))
∗ (σv′)] ,

which we deduce from the following diagram, recalling that R f is total by definition,

Dv′⋅v⋅ f //

��

��

Dv′⋅v
σv′ ∗(ϕv)

//

��

ϕv
∗(σv′)

��

Dv′
��

σv′

��

Dv⋅ f
σv
∗(Rϕ f )

//

��

Rϕ f
∗(σv)

��

Dv ϕv
//

��

σv

��

D

Kϕ f Rϕ f

// B.

Again we point out that k′′ is the diagonal morphism chosen through K for the commutative square

Dv′⋅v⋅ f //
s∗s′

//

(σv′⋅v⋅R f )
∗
(ϕL f )

��

Dh⋅u′⋅u
ϕLh⋅u′⋅u

// Kh

Rϕh

��

Dv′⋅v⋅R f

k′′

66

ϕv′⋅v⋅R f

// F.

(5.xiv)

We write explicitly the composition K (u′,v′) ⋅K (u,v)

P
��

k∗(Rϕg
∗(σv′))

��

(Rϕg
∗(σv′))

∗
(k)

##

Dv⋅R f
��

Rϕ f
∗(σv)

��

k

""

Dv′⋅Rg
��

Rϕg
∗(σv′)

��

k′

!!

K f �
K(u,v)

// Kg �
K(u′,v′)

// Kh.

(5.xv)
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From (5.xi) we know that ϕv⋅R f = ϕv ⋅σv
∗ (Rϕ f ) = Rϕg ⋅ k. Hence we have the equality of the two

domains

Rϕ f
∗ (σv) ⋅k∗ (Rϕg

∗ (σv′)) = Rϕ f
∗ (σv) ⋅ [(Rϕg ⋅k)∗ (σv′)]

= Rϕ f
∗ (σv) ⋅[(ϕv ⋅σv

∗ (Rϕ f ))
∗ (σv′)]

= Rϕ f
∗ (σv) ⋅ϕ∗v⋅R f (σv′) .

Thus we can write P =Dv′⋅v⋅R f , since it is the domain of ϕ
∗

v⋅R f
(σv′).

Now we turn our attention to the function component of the partial maps. We consider the
following diagram

Dv′⋅v⋅ f

1

//
v′∗s

//

(σv′⋅v⋅R f )
∗
(Lϕ f )

��

Dv′⋅g⋅u
σv′⋅g∗(ϕu)

// Dv′⋅g

2

//
s′

//

(Rϕg
∗(σv′))

∗
(Lϕg)

��

Dh⋅u′
ϕLh⋅u′

// Kh

Rϕh

��

Dv′⋅v⋅R f
(Rϕg

∗(σv′))
∗
(k)

// Dv′⋅Rg σv′ ∗(Rϕg)

// Dv′ ϕv′
// F.

We highlight that the diagram and its subsquares are commutative due to the properties of pullbacks and
the definition of each morphism. In particular we notice that 2 is the square that yields the definition

of k′ in (5.xiii). We also remark that (σv′⋅v⋅R f )
∗

(Lϕ f ) and (Rϕg
∗ (σv′))∗ (Lϕg) are morphisms in E ,

hence the factorisation of the square 1 yields that

K (σv′⋅g
∗ (ϕu) ⋅(v′ ∗ s) ,(Rϕg

∗ (σv′))∗ (k)) = (Rϕg
∗ (σv′))∗ (k) .

We focus on the outer square and we claim that it is exactly the square in (5.xiv), which is used to
define k′′ as a diagonal filler obtained through the functor K. This claim is trivially satisfied by the
vertical edges. Recalling that ϕLh⋅u′⋅u = ϕLh⋅u′ ⋅σu′

∗ (ϕh⋅u), we point out that the equality of the top
edges is yielded by the composition of 2-cells in P (C ). Furthermore, looking at the bottom edges,
we point out that

ϕv′ ⋅σv′
∗ (Rϕg) ⋅(Rϕg

∗ (σv′))∗ (k) = ϕv′ ⋅σv′
∗ (Rϕg ⋅k) = ϕv′ ⋅σv′

∗(ϕv⋅R f ) = ϕv′⋅v⋅R f ,

where the first equality follows from the properties of pullbacks, the second by the definition of k
given in (5.xii) and the last follows from the definition of composition of partial maps.

Thus, since k′′ is chosen through K, by functoriality we can conclude that

k′′ = k′ ⋅(Rϕg
∗ (σv′))∗ (k) ,

which is equal to the function component of K (u′,v′) ⋅K (u,v), as shown in (5.xv). This was the last
piece needed to conclude that (F ,L,R,K) is an oplax functorial factorisation system.

We remark that the properties that are transferred from (E ,M) to (E ,M) go beyond extending
its functorial realisation.
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Theorem 5.8. If (E ,M) is an S-stable OFS, then (L,R,K) extends to an AWFSoplax on P (C ).

Proof. By the previous proposition, we have that (L,R,K) gives rise to the oplax copointed endofunc-
tor (L,ε) and the oplax pointed endofunctor (R,η) on P (C ). Considering the comonad L = (L,ε,Ω)
and the monad R = (R,η ,Θ), our goal is to extend the two natural transformations Θ and Ω.

We focus on L. We notice that (L,ε) already has the structure of a lax copointed endofunctor, so
we aim to extend Ω. Given a partial morphism f ∶ AÐ→ B, we define Ω f as

A
idA

//

L f

��

Ω f

A

LL f

��

K f
ω f

// KL f

Kϕ f ωϕ f

// KLϕ f ,

where ω f is a partial morphism defined by the span (idKϕ f ,ωϕ f ) and ωϕ f is the codomain component
of Ωϕ f . We remark that Ω f is trivially a commutative square. We aim to prove that, for any oplax
square (u,v) ∶ f Ð→ g

L f

≥

L(u,v)
//

Ω f

��

Lg

Ωg

��

LL f
LL(u,v)

// LLg,

in order to prove that Ω is a lax natural transformation. We consider the following diagram

A

L f

��

idA

$$

u
// C

Lg
��

idC

$$

A

LL f

��

u
// C

LLg

��

Kϕ f K(u,v) //

ω f ##

Kϕg
ωg

##

KLϕ f K(u,K(u,v))
// KLϕg.

(5.xvi)

Trivially the top square is commutative. We focus on

Kϕ f

ω f

��

K(u,v)
// Kϕg

ωg

��

KLϕ f K(u,K(u,v))
// KLϕg.
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Since (E ,M) is orthogonal, then ωϕ f and ωϕg are isomorphisms. Hence ωϕ f and ωϕg are isomorphism
as well. Thus the square is trivially commutative.

Moreover, we have the following diagram

A

Ω f

idA
//

L f

��

A

εL f

idA
//

LL f

��

A

L f

��

Kϕ f ωϕ f

// KLϕ f RLϕ f

// Kϕ f

and again, by the comonad axioms, RLϕ f ⋅ωϕ f = idKϕ f , thus εL ⋅Ω = idL. On the other hand we observe
the following diagram

A

Ω f

idA
//

L f

��

A

Lε f

idA
//

LL f

��

A

L f

��

D f
bb

bb

��

// // D f
cc

cc

��

// // D f
cc

cc

��

Kϕ f ωϕ f

// KLϕ f Kεϕ f

// Kϕ f ,

and we remark that Kεϕ f ⋅ωϕ f = idKϕ f , which yields Lε ⋅Ω = idL.

Then we point out that Ω ⋅LΩ =Ω ⋅ΩL follows easily since Ω f is always a commutative square
and its components are total.

The same arguments may be carried out for R = (R,η ,Θ) and a similar proof that R is an oplax
monad follows in a simpler fashion, since R f is a total map by construction for every f . We just show
the definition of Θ, which is

KRϕ f
θϕ f

// Kϕ f

K f R

RR f

��

Θ f

θ f
// K f

R f

��

B
idB

// B.

Finally, since the components of Ω and Θ are the same as the transformations for C , then it is
easy to check that ∆ extends to a distributivity law on P (C ) of L over R and all of the morphisms of
the distributivity axioms in (4.xxxvii) are total, then its commutativity follows from the commutativity
of the distributive law in C .

Remark 5.9. We remark that the previous proof actually uses the fact the the functor K is a functorial
lifting operator for an OFS. Therefore this proof can actually be extended to any functorial factorisation
that admits a lifting operator, as for instance LOFSs.
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In conclusion, under the hypothesis that E is stable under pullbacks along morphisms in S, an
OFS (E ,M) on C induces an AWFSoplax (L,R) on P (C ). Furthermore, we remark from the proof
that the transformations Θ and Ω are indeed strict natural transformations.

Example 5.10. We consider again the stable OFS (Epi,Mono) for Set. In Example 5.5, we have
already remarked that it gives rise to the WFSoplax (Epi,Mono) on P (Set). Hence, the arguments
presented in this section allow us to conclude that (Epi,Mono) admits a functorial realisation that
constitutes an AWFSoplax.

5.2.3 From oplax WFS on partial maps to WFS on total maps

In this section we go back to consider an Ord-enriched category C and a category of partial maps
P (C ). Let (L,R) be an WFSoplax. We intend to analyse what type of structure it generates on the
category of total maps C . We start this section by proving a useful result that will help us to describe
WFSsoplax for categories of partial maps. Then we move on to study whether the orthogonality relations
are preserved when restricted to total maps. Namely, our goal is to prove that any two total maps that
are oplax weakly orthogonal ( f ∨∣ g) in P (C ), are oplax weakly orthogonal in C . In particular, if the
Ord-enrichment on C is discrete, this means that they are weakly orthogonal ( f ⧄g) in the ordinary
sense.

Proposition 5.11. Let (L,R) be an WFSoplax on P (C ). If l ∈ L and r ∈R, then (id,ϕl) ∈ L and
(id,ϕr) ∈R.

Proof. Let f be any morphism in R. We consider an oplax square (u,v) ∶ (id,ϕl)Ð→ f . Then the
factorisation in (5.i) yields that l = (idDl ,ϕl) ⋅(σl, idDl). Therefore we have that the outer rectangle in
the following diagram constitute an oplax square

A

l

��

(σl ,idDl )
// Dl

(idDl ,ϕl )

��

u
// X

f

��

B
idB

//

δ

77

B v
// Y.

The morphism δ is the oplax diagonal lifting of l against f . This yields the following 2-cells

⎧⎪⎪⎪⎨⎪⎪⎪⎩

v ≤ f ⋅δ
δ ⋅(idDl ,ϕl) ⋅(σl, idDl) ≤ u ⋅(σl, idDl) .

(5.xvii)

We point out that (σl, idDl) is trivially a faithful morphism in P (C ), hence (5.xvii) yields that δ is an
oplax diagonal morphism lifting of (idDl ,ϕl) against f . Thus we have that (idDl ,ϕl) ∈L.
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Let g be any morphism inL and (u,v) ∶ gÐ→ (idDr ,ϕr) an oplax square. We consider the following
diagram

X

≤

u
//

g

��

u′

��

Dr

(idDr ,ϕr)

��

A

≤ r

��

(σr,idDr )

??

Y

δ

??

v
// B

idB

// B

where u′ = (idDr ,σr) ⋅u. We recall that (σr, idDr) ⋅(idDr ,σr) = idDr trivially. Therefore it is straightfor-
ward that the upper triangle and the right hand square are commutative. Then it is easy to conclude
from the diagram that d = (σr, idDr) ⋅δ is an oplax diagonal morphism which lifts g against (idDr ,ϕr).
Thus (idDr ,ϕr) ∈R.

Lemma 5.12. Let (L,R) be an oplax weak factorisation system for a category of partial maps P (C ).
Then (L∩Tot) ∨∣ (R∩Tot) in C .

Proof. Let (u,v) ∶ lÐ→ r be an oplax square formed by total maps and such that l ∈L and r ∈R. Then
there exists a partial map δ that is an oplax diagonal morphism lifting l against r as in the following
diagram

A u
//

≤

l

��

C

r

��

B

δ

??

v
// D

≤

(5.xviii)

In particular the 2-cell v ≤ r ⋅δ yields that r ⋅δ is total by Proposition 3.1 and thus, by Proposition 3.9,
δ is total as well. Therefore δ is an oplax diagonal morphism in C lifting l against r.

From here on we will denote L∩Tot by LTot andR∩Tot byRTot.

Remark 5.13. In the previous lemma, if we consider the Ord-enrichment ⪯, we have that v ⪯ r ⋅δ
is an equality, since v is a total map. Similarly the upper triangle must be commutative as well
and therefore the oplax weak orthogonality relation restricts to a weak orthogonality relation for
commutative squares among total maps.

Proposition 5.14. Let (L,R) be an oplax weak factorisation system for a category of partial maps
P (C ). Then any total morphism admits an (L,R)-factorisation consisting of total morphisms.

Proof. Let us consider a partial map f and an (L,R)-factorisation r f ⋅ l f = f . Our goal is to construct
another (L,R)-factorisation with a total right component. In fact, if f is total, then its L-component
has to be total by the composition rules.
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If f is any partial map (not total), then we consider the following factorisation

D f
��

σ f

��

ϕ f

��

A �
f
// B

z→

D f
��

ϕl
∗(σr)

��

ϕ̃l

  

��

σ f

��

ϕ f

��

Dl
��

σl

��

ϕl

  

Dr
��

σr

��

ϕr

  

A �
l f

// M f
�

r f
// B.

We first remark the following helpful fact. We consider the adjoint morphisms µ = (idDr ,σr) ⊣
(σr, idDr) = ν . We define l f = ν ⋅ l f and r f = r f ⋅µ and by the counit 2-cells we obtain that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

µ ⋅ l f = µ ⋅ν ⋅ l f ≤ l f

r f ⋅ν = r f ⋅µ ⋅ν ≤ r f .

By directly computing we get that r f = r f ⋅ν . Furthermore, we have that Dl = D f if and only if
l f = µ ⋅ l f . This is easy to prove by explicitly computing the composition µ ⋅ν ⋅ l f and remarking that
both conditions are equivalent to have that ϕl

∗ (σr) is an isomorphism.

Then we obtain the following factorisation

D f
��

σ f

��

ϕ f

��

A �
f
// B

z→

D f
��

idD f

��

ϕl

  

��

σ f

��

ϕ f

��

D f
��

σ f

��

ϕl

  

Dr
��

idDr

��

ϕr

��

A �

l f

// Dr
�

r f

// B.

(5.xix)

Let us consider now a total morphism f . We proceed to study whether l f ∈L and r f ∈R. Let us
consider r f and an oplax square (u,v) ∶ lÐ→ r f , with l ∈L. We can write the following diagram

C

≤l

��

u
//

µ ⋅u
&&

Dr

r f

��

µ
~~

M f

≤ r f

��

D v
//

δ

>>

B
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where the upper and right triangles are commutative and δ is an oplax diagonal morphism lifting l ∈L
against r f ∈R. We consider a diagonal ν ⋅δ . Then considering the outer square we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ν ⋅δ ⋅ l ≤ ν ⋅µ ⋅u = u;

v ≤ r f ⋅δ = r f ⋅ν ⋅δ .

Hence ν ⋅δ is an oplax diagonal morphism for l against r f and in conclusion r f ∈R.
Let us consider l f . For any r ∈R and any oplax square (u,v) ∶ l f Ð→ r, then we have the following

diagram
A

l f

��

u
//

l f

��
≤

C

r

��

≤

M f

δ
′

>>

v⋅ν

&&

ν

~~

Dr v
// D,

and again the lower and the left triangles are commutative and δ
′ is an oplax diagonal morphism

lifting l f ∈L against r ∈R. Now the diagonal morphism for the outer diagram is δ
′ ⋅µ and the proof

proceeds analogously by recalling that if f is total, then Dl = D f . Indeed, we have the following
2-cells ⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ
′ ⋅µ ⋅ l f = δ

′ ⋅ l f ≤ u;

v = v ⋅ν ⋅µ ≤ r ⋅δ ′ ⋅µ.

Therefore we have that l f ∈L.

Remark 5.15. We point out that the process presented above is not successful in general for the
lax case. In fact, considering diagram (5.xviii), it yields u ≤ δ ⋅ l and r ⋅δ ≤ v, which do not imply in
general that δ is total. Moreover, we cannot deduce the commutativity of any triangle in the diagram,
when the Ord-enrichment is ⪯. Nonetheless one can reproduce the same process of extracting a total
factorisation from any lax factorisation of total maps. This process in the lax case is in fact successful,
under the necessary condition that Dl =D f , which is trivially satisfied by total maps.

We conclude this section by proving the following proposition.

Proposition 5.16. Let PS (C ) be a category of partial maps and (L,R) be an WFSoplax. Then
(LTot,RTot) is an S-stable WFSoplax for C .

Proof. We have proved before that the oplax weak orthogonality relation restricts to an oplax weak
orthogonality relation among total maps, hence LTot ∨∣ RTot, and any morphism f has a (LTot,RTot)-
factorisation as shown in (5.xix). We denote such factorisation by f = r f ⋅ l f . Let f be a map in C such
that f ∈ ∨∣RTot. The commutative square (l f , idB) ∶ f Ð→ r f admits an oplax diagonal morphism ρ f ,
which must be total as well, and it yields the following 2-cells

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ f ⋅ f ≤ l f ;

idB ≤ r f ⋅ρ f .
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We consider g ∈R and an oplax square (u,v) ∶ f Ð→ g in PS (C )2oplax. Then we have the following
diagram

A

≤

u
//

l f

��

C

≤ g

��

D f

r f

��

δ

??

B

ρ f

AA

v
// D

where δ is the oplax diagonal morphism that lifts l f against g for the oplax square (u,v ⋅ r f ). Then we
obtain ⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ ⋅ρ f ⋅ f ≤ δ ⋅ l f ≤ u;

v ≤ v ⋅ r f ⋅ρ f ≤ g ⋅δ ⋅ρ f .

We conclude that f ∈LTot. Hence ∨∣RTot =LTot. A dual argument yields that L∨∣Tot =RTot.

We conclude the proof by checking that (LTot,RTot) is S-stable. We consider ϕ f ∈ LTot and
σ ∈ S . Then we recall that in PS (C ), (σ , id) forms the adjunction (id,σ) ⊣ (σ , id). Moreover, L is
closed under composition with right adjoint morphisms. We remark that the pullback σ

∗ (ϕl) is the
function component of the composition (σ , id) ⋅(id,ϕl), which belongs to L. Hence σ

∗ (ϕl) ∈LTot

by Proposition 5.11, which yields the thesis.

5.2.4 The bijection

We conclude illustrating the existence of a bijection between these two classes of factorisation systems.
Let C be an Ord-category andPS (C ) the category of partial maps for a class of admissible subobjects
S such that any morphism in S is full and upper-closed. We denote by S-WFSoplax (C ) the class
of S-stable WFSsoplax on C . Furthermore, we denote by WFSoplax (P (C )) the class of WFSsoplax on
P (C ). Then we introduce the following two maps

WFSoplax (P (C ))

Φ

++

S-WFSoplax (C )

Ψ

ll

defined as follows

Φ(L,R) = (L,R) ;
Ψ(E ,M) = (ETot,MTot) .

(5.xx)

The first is obtained as defined in (5.viii) and the second as presented in Proposition 5.16. We proceed
to show that the two functions are inverse.



82 Lax Factorisation systems among partial maps

Proposition 5.17. Let C be an Ord-category and PS (C ) the category of partial maps for a class of
admissible subobjects S such that any morphism in S is full and upper-closed. Then there exists an
isomorphism of partially ordered sets between WFSoplax (P (C )) and S-WFSoplax (C ).

Proof. First we consider Ψ(Φ(E ,M)) = (ETot,MTot). By construction we have that e ∈ E if and
only if (id,e) ∈ E , which is equivalent to have that e ∈ ETot. Hence E = ETot and similarlyM =MTot.

Then we consider Φ(Ψ(L,R)) = (LTot,RTot). Let l be a morphism in L. By Proposition 5.11,
we have that (id,ϕl) ∈L, hence ϕl ∈LTot and therefore l ∈LTot by construction. On the other hand, if
l ∈LTot, then ϕl ∈LTot and hence (id,ϕl) ∈L. We consider the partial map (σl, id), which is a right
adjoint morphism in PS (C ). Then we have trivially that l = (id,ϕl) ⋅(σl, id) belongs to LTot, since it
is closed under composition with right adjoint morphisms. Hence L =LTot, and by similar arguments,
R =RTot. This yields that Φ and Ψ are inverse functions. It is trivial to observe that inclusions are
preserved by the Φ and Ψ.

More explicitly this classifies every WFSoplax on PS (C ) as a factorisation system of the form
(L,R) for some S-stable WFSoplax (L,R) in C .

5.3 Factorisations for pointed categories of partial maps

Our goal for the following section is to discuss a process that gives rise to lax and oplax weak
factorisation systems for certain pointed categories. The idea is to consider an Ord-enriched category
such that every Hom-set has a least element morphism and such morphisms are absorbent, in the
sense that whenever these morphisms are composed with any other morphism, the composition ends
up being a least element map for the appropriate Hom-set. Indeed, one example of such maps is the
class of zero-morphisms in a pointed category.

First we will discuss the general conditions for this construction, then we will apply this construc-
tion to categories of partial maps. We conclude the section showing that this construction is successful
and has a complete description for P (Set).

5.3.1 Pointed categories

The setting for this subsection are pointed Ord-categories, i.e. Ord-categories with a zero-object
which is both initial and final, and such that zero-maps are least elements with respect to their
Hom-sets.

We consider the following class

O = {0A,B ∣ A,B ∈Ob(C )} .

We recall that maps in O are left absorbent and right absorbent, in the sense that for every morphism
f ∶ AÐ→ B in C we have that f ⋅0X ,A ∈O and 0B,Y ⋅ f ∈O, for any X ,Y ∈Ob(C ). Then we intend to
study the lax and oplax weak orthogonal complements of O.

First we consider O∧∣ . Let f ∶ AÐ→ B be a morphism in O∧∣ and (u,v) ∶ 0X ,Y Ð→ f . Then, by
minimality of zero-maps, we have that the 2-cell f ⋅u ≤ v ⋅0X ,Y yields that f ⋅u = 0X ,B. From lax weak
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orthogonality follows that there exists a lax diagonal morphism δ in the diagram

X u
//

≥

0

��

A

f

��

Y

δ

??

v
// B.

≥

From the 2-cell u ≤ δ ⋅0X ,Y = 0X ,A, follows again that u = 0X ,A. Hence f ∈O∧∣ implies that for any u
such that f ⋅u = 0X ,B, then u = 0X ,A, since the lax square (u, idB) ∶ 0X ,B Ð→ f admits a lax diagonal
morphism.

On the other hand, if we consider f such that f ⋅u = 0X ,B yields u = 0X ,A for any morphism u, then
we show that f ∈O∧∣ . Let us consider any lax square (u,v) ∶ 0X ,Y Ð→ f . The equality f ⋅u = 0X ,B

implies that u = 0X ,A. We remark that 0Y,A trivially constitute a lax diagonal morphism for the lax
square.

We conclude that
O∧∣ = { f ∣ f ⋅u = 0 ⇒ u = 0} . (5.xxi)

We consider ∧∣O. Let f ∶ AÐ→ B be a morphism in ∧∣O. Then, in particular, there exists a lax
diagonal f ∗ for the lax square (idA, idB) ∶ f Ð→ 0.

A
idA

//

≥

f

��

A

0A,B

��

B

f ∗

??

idB

// B.

≥

We point out that the 2-cell 0A,B ⋅ f ∗ = 0B,B ≤ idB trivially exists by minimality of zero-maps. On the
other hand, the 2-cell idA ≤ f ∗ ⋅ f does not exist in general. We remark that the existence of a morphism
f ∗ such that idA ≤ f ∗ ⋅ f , is also a sufficient condition for f to be in ∧∣O. In fact, if we consider such a
morphism f and a lax square (u,v) ∶ f Ð→ 0X ,Y , then we have the following diagram

A

≥

u
//

f

��

X

0X ,Y

��

A

u
??

B
f ∗
??

v
// Y

≥

and u ≤ u ⋅ f ∗ ⋅ f follows from the assumption on f , and 0X ,Y ⋅u ⋅ f ∗ = 0B,Y ≤ v follows from minimality
of zero-maps. In conclusion we have that

U = ∧∣O = { f ∣ idA ≤ f ∗ ⋅ f for some f} . (5.xxii)

Although we were not able to describe in general its complement we state a conjecture that points
to the best candidate.
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Conjecture 5.18. The complement U∧∣ = { f ∣ f ⋅ f ∗ ≤ idB for some f ∗}, the intersection U∧∣ ∩U being
exactly the left adjoint morphisms.

We briefly state the two counterparts for C 2
oplax that arise in a similar fashion.

1. Considering ∨∣O one can prove that

V =O∨∣ = { f ∣ idB ≤ f ⋅ f∗ for some f∗} (5.xxiii)

and again we state the following conjecture.

Conjecture 5.19. The complement V∨∣ = { f ∣ f ⋅ f∗ ≤ idA for some f∗}, the intersection being exactly
the right adjoint morphisms.

2. Then the left oplax complement is

∨∣O = { f ∣ v ⋅ f = 0A,Y ⇒ v = 0B,Y} . (5.xxiv)

Unfortunately, we were not able to describe in general the complements for these four instances
of prefactorisation systems, but we point out that the four classes described are in general not trivial,
therefore they generate a non-trivial lax or oplax weak prefactorisation system.

5.3.2 Factorisations for pointed categories of partial maps

In the following subsection, we apply the process described above on categories of partial maps.
Along this section we will consider an Ord-category C with an initial object I and we assume that
all initial morphisms iX are admissible subobject morphisms, implying in particular that they are full
and upper-closed. We notice that I is still an initial object in P (C ) and that for any A,B the partial
morphism 0A,B = (iA, iB) is a least element in C (A,B). In fact for any partial map f , the arrow iD f

shows that 0A,B ≤ f . On the other hand if f ≤ 0A,B, then there exists an admissible subobject s ∶D f Ð→ I,
which yields that f = 0A,B. We can consider now the class of minimal maps

O = {0A,B = (iA, iB) ∶ AÐ→ B ∣ A;B ∈Ob(C )} .

Remark 5.20. We observe that in P (C ) the initial object I of C is a zero-object whenever I is either
a zero-object or a strict initial object. We recall that an initial object I is strict if every morphism
f ∶ AÐ→ I is an isomorphism.

This is true since the choice for the component ϕ- becomes unique when the codomain is I under
the said assumptions. We recall that cartesian closed categories, such as Set, Cat, any topos, and
distributive categories, have strict initial objects.

Moreover, we remark that the property described in Remark 5.20 is not always needed. In fact,
we are interested in the property of least elements being left or right absorbent, in the sense described
above.

Lemma 5.21. For any P (C ), a minimal map f such that D f = I is right absorbent. Whenever I is
actually a zero-object, then it is both left and right absorbent.
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This is trivial considering that the partial domain of the composition is a subobject of the partial
domain of the first morphism and I admits only itself as a subobject. Therefore the hypothesis that I is
a zero-object in P (C ) is relevant only while discussing the left complements ∧∣O and ∨∣O.

Hence the arguments of the previous paragraph can be adapted to P (C ) under the assumptions
above. We proceed making some remarks on the structures that arise in this context.

We consider ∧∣O. By (5.xxii), we have that f belongs to ∧∣O if and only if there exists a partial
map f ∗ such that idA ≤ f ∗ ⋅ f . We remark that if the Ord-enrichment on C is discrete, then this is
equivalent to have idA = f ∗ ⋅ f . We first remark that this yields that f is a total map. We write explicitly
the equality

A
��

��

ϕ̃ f

  

idA

��

A
��

idA

��

ϕ f

  

D f ∗
��

σ f∗

��

ϕ f∗

  

A �
f

// B �
f ∗

// A,

this shows that ϕ f = σ f ∗ ⋅ ϕ̃ f is an admissible subobject morphism, since ϕ̃ f is a section and S contains
all sections and is closed under composition. By Corollary 3.11, we conclude that f is a left adjoint
morphism in P (C ) and thus the lax prefactorisation system is the trivial (LA,All).

On the other hand, we look at O∧∣ as defined in (5.xxi). We remark that it is composed of those
morphisms whose partial domain is maximal as a proper S-subobject. Inspired by the example of
partial maps, we chose to call such morphisms dense domain partial maps and we denote O∧∣ by DD.
In general we have that DD ⊇Tot. In fact, if f is total and f ⋅u = 0X ,B, then Du =D f ⋅u = I, by the rules
of composition. Therefore we have that u = 0X ,A. However, we observe that the other inclusion is not
always true. In fact, we have the following counterexamples of partial morphisms which are not total,
but have a dense domain:

• in Ab maps such as

Z
��

2

�� ��

Z � // Z

Z
��

i

�� ��

Q � // Z

are not total, but it is easily proved that they have dense domains;

• for the category of topological spaces equipped with open maps, we have that a domain is dense
exactly when the domain is a topologically dense subobject of the domain, so any morphism f
such that σ f = j ∶ [0,1[Ð→ [0,1] is not total and yet it has a dense domain.

Since total maps have always a dense domain and since (S,Tot) is a WFSlax, as shown in Section
5.1, we have that (S,Tot) ≤ (∧∣ DD,DD).
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Analogously, we introduce the notation DI for the class ∨∣O, and we call such maps dense image
maps.

Finally we consider ∨∣O and the Ord-enrichment defined by the partial order ⪯. If f ∶ AÐ→ B is
a morphism in O∨∣ , then there exists an oplax diagonal morphism δ for the oplax square (idA, idB) ∶
0A,BÐ→ f . Thus we have the two 2-cells

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ ⋅0A,B ⪯ idA

idB ⪯ f ⋅δ .

Since the identity is total, the second 2-cell is indeed an equality, therefore f is a split epimorphism.
Conversely, if f has a right inverse f ′, then, in any oplax square (u,v) ∶ 0X ,Y Ð→ f , the morphism f ′ ⋅v
yields

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f ′ ⋅v ⋅0X ,Y = 0X ,A ⪯ u

f ⋅ f ′ ⋅v = v.

Therefore f ′ ⋅v is an oplax diagonal morphism. Hence O∨∣ is the class of left inverse morphisms LI.
We remark that, if f is a split epimorphism in the category of partial maps P (C ), then ϕ f is a

split epimorphism in C . This follows from the composition rules in P (C ). Conversely, if f is such
that ϕ f admits a right inverse ϕ

∗
f , then we easily see that the span (idB,σ f ⋅ϕ∗f ) is a right inverse of f .

Hence we conclude that split epimorphisms in P (C ) are

LI = { f ∣ ϕ f is a split epimorphism in C } .

Even if it has been difficult to give a better description for such complements, we remark that in
general these classes appear to be non-trivial.

5.3.3 Set with partial maps

We apply now the arguments discussed above to the category P (Set) and we show that the structures
that arise from the previous construction have a complete description in this particular setting.

We recall that in this context the empty set Ø is a zero-object, since it is a strict initial object in Set.
In fact, for every object A, we have the unique initial and terminal morphisms defined as ιA = (idØ, iA)
and τA = (iA, idØ), where iA is the initial morphism associated to A in Set. Furthermore, zero-maps are
defined as

Ø
��

iA

��

iB

��

A �
ØA,B

// B.

We consider the class of morphisms

O = {ØA,B ∣ A,B ∈ Set} .

Then we study the complements of O.
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• We consider DD. We have shown that Tot ⊆DD in the previous subsection. Conversely, in
P (Set) if f ∶ AÐ→ B is not total, then there exists an element a ∈ A such that a ∉ D f . If we
consider the morphism

u ∶ X Ð→ A

xz→ a,

then f ⋅u = ØX ,B, but u is not a zero-map. Thus DD = Tot. Since lax weak orthogonal com-
plement are unique and we have shown that ∧∣ Tot = S in Section 5.1. then we conclude that
(∧∣ DD,DD) = (S,Tot).

• Regarding U , since the Ord-enrichment considered on Set is discrete we have that (U ,U∧∣ ) =
(LA,All), as discussed in the previous subsection.

• We turn our attention to DI. We remark that, if f is a surjective map in P (Set), then it is a
dense image map. Indeed, we point out that, for any v ∶ BÐ→Y , the partial domain Dv⋅ f is the
preimage ϕ

−1
f (Dv). If v ⋅ f =ØA,Y , then ϕ

−1
f (Dv) =Ø, but since ϕ f is surjective, this implies

that Dv =Ø. On the other hand, given a map f which is not surjective, then we have that the
composition

D f
��

σ f

��

ϕ f

$$

B∖ Im(F)
��

i
��

i

$$

A �
f

// B �
v

// B,

is the zero-map ØA,B, but v is not a zero-map. We conclude that DI = Epi. However we
know by Example 5.5 that the oplax weak orthogonal complement of Epi is Mono, thus
(DI,DI∨∣ ) = (Epi,Mono).

• Finally we consider V , which is the class of split epimorphisms under this Ord-enrichment, as
proved in the previous subsection. In particular, since in Set split epimorphisms are exactly
surjective maps, we conclude that V = Epi. Again by Example 5.5, we conclude that (∨∣ V,V) =
(Mono,Epi).





References
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