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Abstract

Kinetic models provide fundamental information about chemical systems, playing a fun-
damental role in the development of chemical products, and in the diagnosis and opti-
mization of their respective processes. Despite their central role in Chemical Engineering,
these models are sometimes derived based on a postulated set of reactions that supposedly
explain observed transformations. One or more mechanistic models are usually suggested.
However, the procedures adopted in this task can be based on heuristic aspects and qual-
itative analysis of the experimental data, producing results that might not be completely
satisfactory (and questionable) from the points of view of the structural correctness (reac-
tion network and corresponding kinetic expressions) and the precise/accurate description
of the systems analyzed.

A systematic methodology is proposed in this thesis for the identi�cation of mathemat-
ical models that describe the kinetics of chemical reactions from chemical species con-
centration data collected in batch experiments. The methodology contemplates 7 steps
in which the construction of the model is carried out sequentially, allowing for greater
certainty and precision about the identi�ed model. The proposed methodology steps are:
(i) experimental data treatment incorporating time-invariant relationships for continu-
ous approximation of discrete data and accurate computation of species �uxes, (ii) data
dimension analysis for determining model dimension and thorough understanding of the
reaction system topology, (iii) determination of the reaction network superstructure incor-
porating time-invariant and energetic constraints, and factor analysis for structural model
identi�cation, (iv) enumeration of reaction networks using discrete optimization, (v) se-
lection/identi�cation of the network structure using experimental data, (vi) systematic
kinetic modeling of the several reaction steps, and (vii) proposal of additional experiment
tests based on the model information.

Through the incremental model development, the identi�cation of the model structure is
performed in an uncoupled manner, �rst elucidating the structure of the reaction network,
and then the structures of the reaction kinetic expressions. Both structure identi�cations
are supported by the di�erential method, in which linear optimization formulations are
used to evaluate the rate of species concentration changes and reaction extents, ensur-
ing the achievement of global optimal solutions. In the �rst case, from a superstructure
of reaction networks, all connections between species are explored, guaranteeing that the
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best reaction network (composed of an independent set of chemical reactions), describing
observed changes in the composition of several species, is found. Regarding chemical re-
action kinetics, the identi�cation of the kinetic expressions is performed individually for
each reaction step. From a superstructure of reaction kinetic expressions built based on
�rst-principles laws and qualitative analysis of the computed reaction rate pro�les, the
reaction kinetic expression is identi�ed taking into account the best compromise between
�t to experimental data quality and model complexity, according to the Bayesian informa-
tion criterion Once the structural parts of the model have been identi�ed, the nonlinear
�nal adjustment of model parameters, supported by the integral method, is performed at
the end of the methodology using nonlinear optimization, with the advantage of having
as initial values for the parameters the ones obtained in the previous step of the method-
ology (based on the di�erential method). Thus, in the �nal phase, the optimal model
parameters are obtained according to the maximum likelihood sense, in a simultaneous,
bias-free, nonlinear regression procedure. The success of the model structure identi�cation
is dependent on good estimates of species �uxes and, consequently, reaction �uxes. For
this, a robust data pre-processing method is proposed that incorporates time-invariant
relationships as inter-pro�le constraints, increasing the data accuracy and leading to good
�uxes estimates. However, when parts of the model are not satisfactorily identi�ed, addi-
tional experimental tests are proposed to elucidate the complete structure of the reaction
system under analysis.

The development of the proposed methodology is illustrated with the application to four
case studies from the literature: the thermal isomerization of U-pinene, the catalytic hy-
drogenation of succinic acid and maleic acid (two separated case studies), and the phar-
maceutical case study from P�zer company. On the basis of the results obtained, it can
be concluded that: (i) a systematic model development is required for obtaining models
with great con�dence that are highly process descriptive and of lower complexity (simpler
models) when compared to literature model proposals, (ii) experimental data with high
uncertainty may compromise the complete identi�cation of the model structure, requiring
additional experiments for allowing a better description of the network structure, (iii)
the use of energetic criteria to restrict the network superstructure enables a signi�cant
reduction in the number of generated networks, saving time and computational e�ort in
the network synthesis step, (iv) the use of precedence constraints is required for gen-
erating consistently connected nonlinear reaction networks, (v) systematic methods for
reaction kinetic modeling are essential for accurate model identi�cation, avoiding exces-
sive parameterization and obtaining narrow parameter con�dence intervals, (vi) the use
of time-invariant relationships in the data reconciliation procedure reduces the noise-to-
signal ratio, and consequently increases model identi�ability, and (vii) the incorporation
of experimental data in the network generation phase to identify plausible structures re-
duce the number of alternative model candidates to be further analyzed, but at the cost
of losing the incremental development of the model.

The main contributions of this thesis are: (i) a novel method of data reconciliation, where
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data approximation is achieved with great accuracy by the incorporation of time-invariant
relationships, (ii) mixed-integer linear programming formulations conceived to generate
connected linear and nonlinear reaction networks (using precedence constraints), which
can be applied to any process synthesis problem described by graphs, (iii) a systematic
method for individual reaction kinetic modeling that follows a superstructure-based strat-
egy, enabling the obtainment of parsimonious models, (iv) a methodology for validation
of reaction invariants and determination of the data invariant space dimension, and (v)
a method for building superstructures of reaction networks considering reaction invariant
relationships, energetic criteria, and the checking the consistency of the model with the
experimental data. In summary, the proposed methodology is able to identify robust
models taking full advantage of experimental data and various optimization techniques.
The obtained model increases process knowledge and facilitates process design, scale-up,
monitoring, control, and optimization, which, naturally, may be used for improving safety,
quality, productivity, and revenues of industrial processes.

Keywords: reaction networks, kinetic modeling, chemical reaction, network synthesis,
experimental data treatment.
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Resumo

Os modelos cinéticos fornecem informações fundamentais sobre os sistemas químicos, de-
sempenhando um papel essencial no desenvolvimento de produtos químicos, bem como
no diagnóstico e otimização dos respetivos processos. Apesar de seu papel central na
Engenharia Química, esses modelos às vezes são construídos com base num conjunto pos-
tulado de reações que supostamente explicam transformações observadas. Normalmente,
são sugeridos um ou mais modelos mecanísticos. No entanto, os procedimentos adotados
nesta tarefa podem ser baseados em aspectos heurísticos e análise qualitativa dos dados
experimentais, produzindo resultados que podem não ser completamente satisfatórios (e
questionáveis) do ponto de vista da estrutura do modelo (rede de reações e correspon-
dentes expressões cinéticas) e da descrição precisa/�ável dos sistemas analisados.

Um método sistemático é proposto nesta Tese para a identi�cação de modelos matemáti-
cos que descrevem a cinética das reacções químicas a partir de dados de concentração
recolhidos em experiências em regime descontínuo. A metodologia contempla 7 etapas
nas quais a construção do modelo é realizada de forma sequencial, permitindo maior
certeza e precisão sobre o modelo identi�cado. As etapas propostas da metodologia são:
(i) tratamento de dados experimentais incorporando relações invariantes no tempo para
aproximação contínua de dados discretos e computação precisa de �uxos de espécies,
(ii) análise de dimensão de dados para determinar a dimensão do modelo e obter uma
compreensão completa da topologia do sistema de reação, (iii) determinação da super-
estrutura da rede de reação incorporando restrições energéticas e invariantes no tempo
e análise fatorial para identi�cação do modelo estrutural, (iv) enumeração de redes de
reação usando otimização discreta, (v) seleção/identi�cação da estrutura da rede usando
dados experimentais, (vi) sistemática modelagem da cinética da reação, e (vii) propostas
de experimentos adicionais com base nas informações obtidas através do modelo identi�-
cado.

Através do desenvolvimento do modelo incremental, a identi�cação da estrutura do mod-
elo é realizada de forma desacoplada, sendo primeiramente elucidada a estrutura da rede
de reação e, a seguir, a estrutura da expressão cinética de cada passo reacional. Ambas
as identi�cações estruturais são suportadas pelo método diferencial, no qual abordagens
de otimização linear fazem parte do problema de avaliação de �uxos de espécies e reações,
assegurando a obtenção de soluções ótimas globais. No primeiro caso, a partir de uma
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superestrutura de redes de reação, todas as conexões entre as espécies são exploradas,
garantindo que a melhor rede de reação (composta por um conjunto linearmente inde-
pendente de reações químicas), que descreve as mudanças na composição de espécies
observadas, seja encontrada. Em relação à cinética da reacção química, a identi�cação
das expressões cinéticas é realizada individualmente para cada componente da rede. A
partir de uma superestrutura de expressões cinéticas, construída com base em leis de
primeiros princípios e análise qualitativa dos per�s de �uxo de reação observados, a ex-
pressão cinética é identi�cada apresentando o melhor compromisso entre qualidade de
ajuste aos dados e complexidade do modelo, de acordo com o critério de informação
Bayesiano. Uma vez identi�cadas as partes estruturais do modelo, o ajuste �nal não
linear dos parâmetros do modelo, suportado pelo método integral, é realizado no �nal
da metodologia utilizando otimização não linear, com a vantagem de usar como valores
iniciais para os parâmetros aqueles obtidos na etapa anterior da metodologia (com base no
método diferencial). O sucesso da identi�cação da estrutura do modelo depende de boas
estimativas dos �uxos de espécies e, consequentemente, dos �uxos de reação. Para isso, é
proposto um método robusto de aproximação de dados que incorpora relações invariantes
no tempo como restrições entre per�s, aumentando a precisão dos dados e levando a boas
estimativas de �uxos. No entanto, quando partes do modelo não são identi�cadas de
forma satisfatória, testes experimentais adicionais são propostos para elucidar a estrutura
completa do modelo em análise.

O desenvolvimento da metodologia proposta é ilustrado com a aplicação a quatro casos
de estudo a partir da literatura: a isomerização térmica de U-pineno, as hidrogenações
catalíticas de ácido succínico e ácido maleico (dois estudos de caso separados) e o estudo
de caso farmacêutico da empresa P�zer. Com base nos resultados obtidos, pode-se con-
cluir que: (i) é necessário o sistemático desenvolvimento de um modelo para a obtenção
de modelos com grande con�ança, altamente descritivos do processo e de menor com-
plexidade (modelos mais simples) quando comparados às propostas de modelos da liter-
atura, (ii) dados experimentais com elevada incerteza podem comprometer a identi�cação
completa da estrutura do modelo, exigindo experimentos adicionais para permitir uma
melhor descrição da estrutura da rede, (iii) o uso de critérios energéticos para restringir
a superestrutura da rede possibilita uma redução signi�cativa do número de redes ger-
adas, economizando tempo e esforço computacional na etapa de síntese da rede, (iv) o
uso de restrições de precedência é necessário para gerar redes de reação não lineares que
apresentam uma estrura conexa consistente, (v) métodos sistemáticos para modelagem da
cinética de reação são fundamentais para a identi�cação precisa do modelo, por forma a
evitar a parametrização excessiva e a obter intervalos de con�ança estreitos de parâmetros
do modelo, (vi) o uso de relações invariantes no tempo no procedimento de reconciliação
de dados reduz o rácio ruído-sinal e, consequentemente, aumenta a identi�cabilidade do
modelo, e (vii) a incorporação de dados experimentais na fase de geração da rede para
identi�car estruturas plausíveis reduz o número de candidatos a modelos alternativos a
serem analisados posteriormente, mas ao custo de perder o desenvolvimento incremental
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do modelo.

As principais contribuições desta tese são: (i) um novo método de reconciliação de dados,
onde a aproximação de dados é obtida com grande precisão pela incorporação de relações
invariantes no tempo, (ii) formulações de programação linear inteira mista concebidas
para gerar redes de reação lineares e não lineares (usando restrições de precedência), que
podem ser aplicadas a qualquer problema de síntese de processo descrito por grafos, (iii)
um método sistemático para modelagem individual da cinética da reação com base numa
superestrutura previamente de�nida, permitindo a obtenção de modelos parcimoniosos,
(iv) uma metodologia para validação de invariantes de reação e determinação da dimensão
do espaço das invariantes a partir de dados experimentais, e (v) um método para construir
superestruturas de redes de reação considerando relações invariantes de reação, critérios
energéticos e a veri�cação da consistência do modelo com os dados experimentais. Em
resumo, a metodologia proposta é capaz de identi�car modelos robustos aproveitando ao
máximo os dados experimentais e várias técnicas de otimização. O modelo obtido aumenta
o conhecimento do processo e facilita o projeto, dimensionamento, monitorização, controlo
e otimização do processo, o que, naturalmente, pode ser usado para melhorar a segurança,
a qualidade, a produtividade e as receitas de processos industriais.

Palavras-chave: redes reacionais, modelação cinética, reação química, síntese de redes,
tratamento de dados experimentais.
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Nomenclature

The matrices, vectors, scalars, and symbols de�nitions are generic to any chapter of the
thesis unless otherwise indicated. The units of variables and parameters are indicated in
the main text of the thesis.

Matrices

Matrices are denoted by capital boldface latin or greek letters.

Latin letters

Atomic matrix [=el × =st] (Section 2.3.1); matrix of invariant relationships [ninli ×
=sp] (Sections 2.3.2 to 2.3.6, 2.4, 2.5 and 5.3 and chapter 6).

A

Matrix of positive coordinates of the Horiuti matrix [=1 × =pa] (Section 2.1.3);
a design matrix [=to × =2] (Section 3.1.4); a non-singular matrix [< × =] (Ap-
pendix I.2)

B

Correlation matrix [= × =] (Appendix I.1)C

Data matrix in the reaction-variant form [=to × =st] (Section 2.3), [=to × =sp]
(Sections 2.5, 3.1.4 and 6.5), Matrix of experimental data [< × =] (Appendix I.3)

D

Matrix of cumulative changes of number of moles [=to × =sp] (Sections 2.5 and 7.3
and chapter 6)

DΞ

Matrix of concentration derivatives [=to × =sp] (Sections 2.5 and 7.3 and chapter 6)DR

Matrix of residues [=to × =sp] (Sections 3.1.4, 6.4 and 6.5.1), [< × =] (Appendix I.3);
Matrix of noise [225 × 10] (Section 6.3)

E

Identity matrixI

Matrix of kinetic parameters [=2 × =sp](Section 3.1.4); matrix obtained from Reinsch

format of S_ [= × =](Section 5.2)
K

Matrix of lengths of projection [< × =] (Appendix I.3)L

Projection matrix [=sp − 1 × '] (Section 6.5.2)M

Stoichiometric matrix [=rx × =st] or [=rx × =sp]; matrix of natural splines [= × =]
(Section 5.2)

N

Diagonal matrix of kinetic parameters [=? × =?] (Section 3.1.4)P
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Reaction rate matrix [=to × =rx] (Section 2.3 and chapter 6), [=to × nrxli]
(Section 7.3)

R

Positive semide�nite matrix [= × =] (Section 5.2.4)S_

Score matrix [=to
=:
× '] (Section 6.5.2)T

Orthonormal matrix from SVD [=st × =st] (Sections 2.2.3 and 2.4.2), [< × <]
(Appendices I.1 and I.3) or [< × '] (Appendix I.1), [=to − =to

=:
× =to − =to

=:
] or

[=to
=:
× '] (Section 6.5.2)

U

Orthonormal matrix from SVD (loading matrix) [=rx × =rx] (Sections 2.2.3 and 2.4.2),
[ninli × =] (Section 2.5), [= × =] (Appendices I.1 to I.3) or [= × '] (Appendix I.1),
[=sp × =sp] or [=sp × '] or [=sp − 1 × '] (Section 6.5.2), [=sp × =sp] (Sections 2.5
and 6.6.2)

V

Matrix that spans the null space of N [=st × =st − '] (Section 2.2.2); diagonal
matrix of weights [= × =] (Appendix I.3)

W

Matrix that spans the left null space of N [=rx × =rx − '] (Section 2.2); predic-
tor/design matrix [< × =] (Section 5.2); arbitrary matrix [< × =] (Appendix I.1)

X

Matrix of data/responses [< × =] (Appendix I.3); [=to × =sp] (Section 6.4)Y

Greek letters

Matrix of reaction extents [=to × =rx] (Section 2.5 and chapter 6)�

Matrix of Horiuti vectors [=rx × =pa] (Section 2.1.3); Matrix of singular values
[=st × =rx] or [' × '] (Section 2.2.3), [< × =] or [' × '] (Sections 2.4.2 and 5.2.2
and appendix I.1), [= × =], [< × =] or [' × '] (Appendix I.3), [' × '] or
[ninli × ninli] (Section 6.5.1), [=to − =to

=:
× =sp] or [' × '] (Section 6.5.2),

[=to × =sp] (Section 7.3)

�

Transposed basis for the null space of the stoichiometric matrix containing only
intermediate species [=rx × =1] (Section 2.1.3)




Matrix of integrated squares of second derivatives of natural splines [= × =] (Sec-
tion 5.2.4)


N

Vectors

Vectors are denoted by small boldface latin or greek letters or symbols.

Latin letters

Vector of invariant relationships (row vector of A)a

Column vectors of Bb

Positive vector of conserved (integer) amountsbin

Vector of species concentration [=sp × 1] or [=st × 1]c

Reference vector of species concentrationcref

xxvi



Column vector of Dd

Column vectors of E; error of prediction [=to
=:
× 1] (Section 6.5.2).e

Column vector of Kk

Vector of lengths of projection (column of L)l

Vector of species number of molesn

Vector of instantaneous reaction rates (row vector of R)r

Dynamic component vector of instantaneous reaction ratesrdyn

Steady-state component vector of instantaneous reaction ratesrss

Column vector of Uu

Column vector of V; any vector with real entriesv

Vector that lies to the null space of N; vector that lies to the left null space of Bw

Vector that lies to the left null space of N; any vector with real entriesx

Response vector (predicted function values)y

Greek letters

Vector of coordinates of the steady-state reaction rate component (Chapter 2)α

Vector of positive coordinates of the Horiuti vector (Section 2.1.3); vector of coordi-
nates of the dynamic reaction rate component (Section 2.2.2); vector of parameter
estimates

β

Vector of coordinates of the steady-state component of the concentration derivative
vector

γ

Vector of coordinates of the dynamic component of the concentration derivative
vector

δ

Vector of positive integer entries (Section 2.3); vector of parameters (Section 5.2)θ

Vector of means (Chapter 6); Vector of species chemical potentials`̀̀

Stoichiometric vector, row vector of Nν

Vector of chemical reaction extents, row vector of �ξ

Horiuti vector (Section 2.1.3); list of singular values (Chapter 6)σ

Transposed vector that represents the null space of the stoichiometric matrix con-
taining only intermediate species

ω

Symbols

Vector or matrix of appropriate dimension with all elements being 00

Vector or matrix of appropriate dimension with all elements being 11

xxvii



Scalars

Scalars are denoted by small or capital latin or greek letters or symbols.

Small latin letters

Number of atoms of a chemical element; species activity (Section 7.4); poly-
nomial coe�cient (Section 5.3)

0

Positive scalar1

Species concentration; cost parameter (Section 8.5.2)2

Scalar function5

Length of �nite elementℎ

Reaction kinetic constant:

Lagrange interpolating polynomial;

Vector or matrix dimension; Number of data points (Section 10.2)<

Vector or matrix dimension; Degrees of freedom (Section 10.2); Cardinal num-
ber of a given set (in subscript)

=

Number of paths of the route=1

Number of reactant complexes (possible reactant combinations)=2

Number of groups of data=:

Number of moles of species B=B

Number of kinetic parameters (diagonal terms of P)=?

Number of observations=to

Penalty term (smoothing factor)?

Scalar that belongs to R; binary variable@

Reaction rateA

Negative reaction rateAneg

Independent variable (time); position of node/species (Section 8.5.1)C

Time constantC2

Variance of the null space of data (variance of the pool of discarded compo-
nents)

E (0)

Variance of the null space of data regarding the population (hypothesis test)E (0)∗

Variance of the ' model componentE (')
Variance of the ' model component regarding the population (hypothesis test)E (')∗

Weight in the objective functionF

Independent variable; continuous variable respecting a conserved amountG

Input factor; function knotG8

Collocation point (normalized)G 9

Abscissa of the collocation pointGA

xxviii



Response variable (predicted fuction value); binary variable (Section 8.5)~

Scalar that belongs to RI

Capital latin letters

Pre-exponential factor in Arrhenius equation�0

Heat capacity of species�?

Reaction activation energy�0

� value (Fisher variance ratio)�

Critical � value�2

Gibbs free energy�

Enthalpy free energy�

Reaction adsorption constant 

Scalar (upper bound)"

Basis function (natural spline)#

Pressure; Interpolating polynomial%

Legendre polynomial%A

Universal gas constant; matrix rank number; model dimension'

Entropy; polynomial(

Temperature)

Variable upper bound*

Volume+

Greek letters

Kinetic parameter related to the reparametrization of Arrhenius equation (Chap-
ter 10); coordinates of the steady-state reaction rate component vector (Chapter 2);
surrogate variable in RLT-based formulation (Section 8.5.1)

U

Kinetic parameter related to the reparametrization of Arrhenius equation (Chap-
ter 10); coordinates of the dynamic reaction rate component vector (Chapter 2);
matrix dimension ratio (Section 6.5.3); surrogate variable in RLT-based formulation
(Section 8.5.1)

V

Parametric functionV@

Activity coe�cient (Chapter 7); coordinate of the steady-state component of the
concentration derivative vector (Chapter 2); collinearity index (Section 3.4); scale
factor (noise magnitude) (Section 6.5.3)

W

Polynomial coe�cientW@,A

Coordinate of the dynamic component of the concentration derivative vector (Chap-
ter 2); weights in the objective function (Section 5.2)

X

Threshold value (Sections 6.6.2 and 9.3); noise value (Section 6.3)n

xxix



Positive integer scalar (Section 2.3); parameter value; surrogate variable (Section 5.2.5);
variable related to the reparametrization of van't Ho� equation (Chapter 10)

\

Condition number of a matrix^

Penalization parameter / regularization factor; optimal hard threshold coe�cient
(Section 6.5.3)

_

Mean value (scalar) (Chapter 6); Species chemical potential`

Stoichiometric coe�cienta

Reaction rate of the pathwayr

Horiuti number (Section 2.1.3); singular value; standard deviation (Section 6.3)f

Independent variable related to time (Section 5.2.5); optimal hard thershold (Sec-
tion 6.5.3); continuos variable that establishes a linear transformation (Section 6.6.2)

g

Objective function value; variable related to the reparametrization of van't Ho�
equation (Chapter 10)

q

Relative error of projectioni

Reactant conversionj

Symbols in teletype font

The symbols in teletype font can be variables, parameters and sets used for chemical
reaction and network generation, and data treatment.

Coe�cient of product species (parameter to integer cut)ae

Coe�cient of product species (parameter to integer cut)ccpr

Coe�cient of reaction in the forward direction (parameter to integer cut)ccrd

Coe�cient of reactant species (parameter to integer cut)ccre

Coe�cient of reaction in the reverse direction (parameter to integer cut)ccri

Coe�cient of reaction in the solution (parameter to integer cut)ccrx

Network complexity indexCI

Maximum network complexity indexCImax

Set of collocation pointscp

Instantaneous chemical reaction ratecr

Network dependency indexDI

Maximum network dependency indexDImax

Minimum network dependency indexDImin

Set of datasetsds

Control set for mapping experimental temperature with datasetdts

Set of chemical elements (atoms)el

Set of states (levels of a tree)est

Auxiliary set respect to: reactant, product, reaction (forward direction)exd

xxx



Auxiliary set respect to: reactant, product, reaction (reverse direction)exi

Structural �ux among network nodesF

Set of invariant relationshipsin

Model parameter related to conserved quantitiesinA

Integral of the negative reaction rateirn

Set of solutionsit

Kinetic parameterk

Set of kinetic rate expressionskm

Set of measurement instantsme

Node incidence degreeniB

Number of linearly independent time-invariant relationshipsninli

Stoichiometric coe�cient of product speciesnpr

Stoichiometric coe�cient of reactant speciesnre

Number of initial reactant speciesnrp

Number of chemical reactionsnrx

Number of linearly independent chemical reactionsnrxli

Maximum number of linearly independent chemical reactions that a reaction
network can present

nrxli,max

Maximum number of chemical reactions in the reaction networknrxmax

Minimum number of chemical reactions in the reaction networknrxmin

Number of chemical reactions in the superstructurenrxsup

Matrix of stoichiometric coe�cients of product speciesnsp

Matrix of stoichiometric coe�cients of reactant speciesnsr

Ordering coe�cient for the generation of chemical reactionsordrx

Set of reaction pathwayspa

Set of representative product speciespp

Network redundancy indexRI

Set of representative initial reactantsrp

Set of chemical reactionsrx

Set of nonlinear chemical reactionsrxnl

Set of non-representative speciessd

Set of intermediate speciessi

Set of representative speciessp

Supersource �ux to the respective initial nodess

Set of chemical speciesst

Theoretical time of species productionT

Minimum theoretical time of species productionTmin

Set of observation times (sampling instants)to

xxxi



Sum of the integrals of the negative reaction ratestrn

Set of experimental temperaturests

Binary variable for reaction in the forward direction {0,1}yd

Binary variable for reaction in the reverse direction {0,1}yi

Binary variable for the presence of a reaction at a level of the state tree {0,1}yj

Assigns a kinetic expression to a chemical reaction {0,1}ym

Binary variable for the species that is a product in the reaction in a given
direction in the network {0,1}

yp

Binary variable for the presence of species as a product in the reaction {0,1}ypr

Binary variable for the species that is a reactant in the reaction in a given
direction in the network {0,1}

yr

Binary variable for the presence of species as a reactant in the reaction {0,1}yre

Binary variable for the presence of the reaction in the network {0,1}yrx

Binary variable for the presence of a species at a level of the state tree {0,1}ys

Binary variable for the minimum theoretical time of species production {0,1}yt

Abbreviations

Analysis of varianceANOVA

Allo-ocimeneAO

U-PineneAP

Succinic acidAS

Assignment problemASP

Asymetric travel salesman problemATSP

1,4-ButanediolBDO

Baysean information criterionBIC

V-PyroneneBP

n-ButanolBuOH

Cumulative distribution functionCDF

Con�dence intervalCI

Constrained-based reconstruction and analysisCOBRA

Critical path methodCPM

Central process unityCPU

Continuous stirred tank reactorCSTR

Cross-validationCV

DimerD

Di�erential methodDM

Design of experimentsDoE

xxxii



Data pre-processingDPP

Synamic response surface methodologyDRSM

Energetic balance analysisEBA

Empirical eigenvaluesEE

Elementary shortest path problemESPP

Formulation based on assignment problemFASP

Flux balance analysisFBA

Formulation based on Miller-Tucker-ZemlinFMTZ

Formulation based on reformulation linearization techniqueFRLT

Formulation based on structural �ux analysisFSFA

W-ButyrolactoneGBL

Integral methodIM

Incremental target factor analysisIncTFA

Integer programmingIP

Least absolute shrinkage and selection operatorLASSO

Linearly dependentLD

Langmuir-HinshelwoodLH

Linearly independentLI

LimoneneLIM

Locally estimated scatterplot smoothingLoESS

Lack-of-FitLoF

Leave-one-outLOO

Linear programmingLP

Maleic acidMAC

Multi-commodity �owMCF

Metabolic �ux analysisMFA

Mixed-integer linear programmingMILP

Mixed-integer programmingMIP

Mean square errorMSE

Miller-Tucker-ZemlinMTZ

Network-embedded thermodynamic analysisNET

Numerical matrix methodNMM

Non-deterministic polynomial-timeNP

Ordinary di�erential equationsODE

Principal componentPC

Probability density functionPDF

Predicted residual error sum of squares in cross validationPRESS-CV

n-PropanolPrOH

xxxiii



Relative error [%]RE

Relative frequencyRF

Reformulation linearization techniqueRLT

Root mean square errorRMSE

Reaction routes graphsRRG

Single-commodity �owSCF

Structural �ux analysisSFA

Sum of square errorSSE

State task networkSTN

Structured target factor analysisSTFA

Singular value decompositionSVD

Two-commodity �owTCF

Theoretical eigenvaluesTE

Target factor analysisTFA

TetrahydrofuranTHF

Thermodynamic-based metabolic �ux analysisTMFA

Travel salesman problemTSP

Unsteady-state �ux balance analysisuFBA

Operators, spaces, and special functions

Natural numbers spaceN

Integer numbers spaceZ

Real numbers spaceR

Column space of a matrixcol (·)
Row space of a matrixrow (·)
Left null space of a matrixleftNull (·)
Right null space of a matrixnull (·)
Covariance matrixcov (·)
Meanmean (·)
Matrix rank of a matrixrank (·)
Standard deviationstd (·)
Variancevar (·)
Di�erenceΔ

Di�erential operatord

Singular value decomposition of a matrixSVD (·)
Orthogonal projection of v in SprojSv

De�nition,≡

xxxiv



Equivalence⇔
Perpendicular, orthogonal complement⊥
Inner product〈·,·〉
p-norm of vectors and matrices‖·‖?
Euclidean norm of vectors and matrices‖·‖

Subscripts

Initial value; data from invariant space (Section 6.5.1)0

Adsorption03

Direct model component3

Chemical element index4

Final value; condition of formation of 1 mole of a substance (Section 7.4 and chap-
ter 10)

5

Global chemical reaction (Section 2.1.3); experimental temperature index (Sec-
tion 9.4.2)

6

Invariant relationship index; interval on time axis (approximating interval) index
(Sections 5.3 and 9.4); inverse (direction) model component (Chapter 10)

8

Chemical reaction index; column vector index (Chapter 2); collocation point index
(Sections 5.3 and 9.4)

9

Solution index; dataset index (Section 9.4):

Index of levels of the tree of states;

Measurement instant index (Section 5.3); kinetic rate expression index (Section 9.4.2)<

Reaction pathway index?

Matrices using rate-based method or the matrix rank'

Chemical species indexB

Time indexC

Reduced matrix or vector concerning to variant state variablesE

Matrix using extent-based methodΞ

Superscripts

A reduced matrix (Section 2.1.3); variable or parameter free of noise∗
Train dataset in cross validatory procedures−:
Positive numbers; the Moore-Penrose pseudoinverse of a matrix+
Data from invariant space (Section 6.5.1); standard condition0

Orthogonal complement⊥
Transpose of a vector or a matrixT

xxxv



Group of data (data subset); test dataset in cross validatory procedures:

Accents

Economy SVD format of a matrix (full rank matrix)Â
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Average variableā
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Chapter 1

Introduction

�You know that I write slowly. This is chie�y because I am never satis�ed until I

have said as much as possible in a few words, and writing brie�y takes far more

time than writing at length.�

� Carl Friedrich Gauss (1777�1855)
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1.1 Motivation

A chemical reaction network represents the inter-connections between species (or chemical
components) in a reaction mixture through a series of parallel and/or consecutive chem-
ical or biochemical reactions. These chemical components are products, or at least they
make part of products, that are present in our daily lives such as organic compounds (al-
cohol, fuel additives, cleaning products, solvents, soaps, etc.), polymers, cosmetics, drugs,
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2 Introduction

vaccines, vitamins, and others. They are produced in small to large scales, depending
on the case, involving chemical, pharmaceutical and biotechnological industries that can
operate at batch, semi-batch and continuous conditions. Currently, due to market com-
petition and high demand of chemical products, these industries need rapid and �exible
process development at the minimum cost ensuring product quality speci�cations, safe
manufacturing (production) processes, and ful�llment of rules for environment protection.
For this purpose, reliable chemical reaction models can be used for monitoring, control,
and optimization of industrial processes, allowing, for example, the maximization of the
production of a target valuable chemical product, minimization of the production of un-
desirable products and pollutants, increase of process e�ciency and/or improvement of
products quality. Moreover, in the �eld of process design, chemical reaction models are
used to determine optimal operating conditions and equipment dimensions that minimize
energy and resources consumption and investment costs subjected to the satisfaction of
product demand and other constraints of di�erent nature such as physical, chemical, and
environmental restrictions.

Modeling chemical reaction systems consists of the identi�cation of the reaction network
and the determination of its individual reaction kinetic expressions. Traditionally, the
modeling of chemical reaction systems is of highly experimental nature, involving the
qualitative and quantitative analysis of data collected essentially in the laboratory envi-
ronment, using specialized knowledge. These models can be built based on a mechanistic
and/or an empirical approach. In some cases, it is sought to obtain kinetic models of
an empirical or purely regressive nature, i.e., models with good ability to approximate
a set of experimental data, but without the ability to explain them properly based on a
reaction network (Côme, 1983; Nogueira et al., 2013). If industrial scale conditions are
similar to those of the acquired data then the design and optimization of industrial units
can be based on them. In this case, the risks inherent in forecasting by extrapolation
(when this occurs), and the limitations in the interpretation of the results produced can
be justi�ed, given the greater speed and ease of obtaining them, in relation to a model
with greater mechanistic support. However, in many other cases, it is preferable (or only
practicable) to develop models with a mechanistic basis, due to the advantages of using
these models, despite the e�ort associated with this task. Mechanistic models are based
on �rst-principles that describe the state variables dynamics, such as concentration, tem-
perature, and volume, through conservation and constitutive equations. The conservation
equations are of di�erential nature such as molar balances, heat balances and continu-
ity equation, while the constitutive equations are of algebraic nature such as equilibrium
relationships and rate expressions. These equations include information regarding the
reaction stoichiometry, enthalpy and rate, and system operating conditions such as initial
conditions, material exchange terms and operational constraints (Amrhein, 1998; Bhatt,
2011).

Figure 1.1 illustrates the most common procedure for developing models of reaction sys-
tems. Starting with the identi�cation of the species present in the reaction mixture, from a
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set of theoretical knowledge about possible reactions and hypotheses of reaction networks
that may explain the observed transformations, one or more mechanistic models of trans-
formation of the species involved are postulated. Katare et al. (2004) describe this process
as �an art practiced by chemists and chemical engineers�, given the use of heuristics and
�exible rules, essential for the generation of plausible solutions. The mechanisms (reac-
tion networks) produced are used to generate one (or more) compatible kinetic model(s),
with unknown parameters, using a statistical regression procedure to approximate the
predictions of the models to the available kinetic data. Depending on the quality of the
predictions obtained, and the number of kinetic models under consideration, this proce-
dure can be repeated and adapted, until a single satisfactory model is obtained, capable of
adequately describing the set of available experimental data. Obviously, when the number
of reactions and/or chemical species is not small, this procedure is impractical, and its
automation is highly desirable.

Reaction rules

Reaction mechanisms

Kinetic models

Parameter estimation

Model with
physical sense?

Optimal Model
YesNo

Figure 1.1 Traditional method �owchart for modeling chemical reaction systems
(Katare et al., 2004).

In addition to this need, postulated reaction steps often based on previous knowledge
can also limit the quality of the results obtained. For example, following the procedure
represented in Figure 1.1, and given the solutions found through this method, there may
be other models that are equally plausible (i.e., with equivalent quality of explanation
of the experimental data), which are not considered, due to the establishment (involun-
tary, sometimes) of analogies with other reaction systems previously analyzed. In other
situations, it is the high number of possible reaction combinations that makes it di�cult
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to suggest all viable alternatives. In any of these scenarios, it becomes quite di�cult to
guarantee that the kinetic model obtained at the end of this task corresponds e�ectively
to the best model. Considering the potential use of the kinetic models found, and their
pivotal role, for example, in improving the performance of the industrial processes in ques-
tion, the need to develop more systematic methodologies for the identi�cation of reaction
networks and obtaining the corresponding kinetic models is evident.

Despite the importance of this task, and some previous work carried out in this area, a
generic and well-structured approach to the development of kinetic models is not currently
available as an usual work tool in the �eld of industrial chemical kinetics. Chapter 3
presents a bibliographic review of several previous developments in this area, describing
some of the main current scienti�c and practical challenges. �More systematic� methods
of identifying chemical reaction models are discussed, however, with many limitations in
their applications.

Furthermore, data collected during laboratory batch experiments is often scarce due to
associated costs. In some cases, measuring speci�c chemical components is di�cult, pre-
senting a great uncertainty related to analytical techniques used and other sources of
uncertainty. As a result, modelers have to manage irregular (incomplete and sparse),
inaccurate and scarce sets of data, that can often compromise the modeling task.

Therefore, it is necessary to deal with the following problems to meet industrial goals based
on available experimental data and prior knowledge regarding similar reaction systems:

(P1) Use of e�cient data pre-processing methods,

(P2) Identify key directions of species compositional change,

(P3) Build �rst-principles models using systematic and incremental approaches,

(P4) Design experiments to discriminate between competitive models,

(P5) Monitor, control and optimize reaction systems.

Problem P1 concerns the use of data regularization and reconciliation methods for data
treatment, allowing the identi�cation of the reaction model with more con�dence. This
step may be crucial for the model identi�cation accomplishment by means of incremental
methodologies, where good estimates of rates of species concentration change are required.
Problems P2 and P3 are much more facilitated when handling good results from P1.

In the traditional approach of modeling chemical reaction systems, it is common to deal
with overparameterized models containing a model dimension greater than the necessary,
resulting in data over�tting. In other cases, additional model components may be lin-
early dependent chemical reactions that can be discarded, since, in general, they do not
signi�cantly contribute to the system dynamics. The model parameters are generally ad-
justed in a simultaneous and nonlinear regression procedure, consisting of a local optimal
solution that is very sensitive to initial parameter estimates. This procedure may lead to
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a mistaken interpretation of the reaction system using the probably incorrect obtained
model. In these cases, at least, the structure of the model is questionable since no sys-
tematic method is veri�ed for the network and kinetic expressions proposals and neither
for the parameters initial estimates. In order to avoid this situation, Problems P2 and P3
must be considered.

P2 consists of �nding the key directions of mass transformation that are observed from ex-
perimental data, corresponding to the number of linearly independent model components,
i.e., the required model dimension observed from data. P1 and P2 enable the segregated
identi�cation of the reaction network of the kinetic expressions in P3, ensuring optimal
global solutions and good parameter estimates.

Thus, in P3, the development of mathematical models that describe the dynamic behavior
of reaction systems is carried out through sequential steps where parts of the model are
gradually elucidated with increasing complexity based on results coming from the solution
of P1 and P2. Solutions of Problems P1 to P3 help to perform computer simulations under
di�erent scenarios and reduce costs and time in the laboratory, resulting in a faster process
development.

The P4 problem becomes increasingly important in the sense that one wants to avoid
costs, time and e�orts in experimental tests that do not bring e�ective information, and
therefore, more and more systematic and optimized methods of experiment proposals are
needed to bring light over indiscriminate model components by providing elucidating data.
The solutions to Problems P1 to P4 also help in the development of e�ective methods to
solve Problem P5. The solution for P5 is essential to improve quality, safety and e�ciency
of the production process and environmental protection.

Once the advantages of using systematic methods for kinetic models development are
evident, and in order to meet the previous described challenges, dealing with Problems
P1�P5, this dissertation presents an incremental and systematic methodology for model-
ing chemical reaction systems in which �rst-principles models are built in sequential steps,
based on a set of experimental data typically corresponding to concentration pro�les of
di�erent species, collected during experimental tests carried out in a transient state. Along
the proposed incremental steps, parts of the models are individually elucidated allowing
the decoupled identi�cation of the reaction network and the reaction kinetic expressions.
In this systematic approach, the complete space of reaction network structures composed
by linearly independent chemical reactions is explored, ensuring the selection of the most
plausible ones according to experimental data. The developed methodology leads to a
high certainty level in the reaction network identi�cation, in contrast with the traditional
method where the identi�cation of the best model structure is not guaranteed given avail-
able data.
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1.2 Objectives

This dissertation presents a systematic methodology that de�nes an integral approach
to the modeling of chemical reaction systems covering the Problems P1 to P4 described
above, leading to accurate models that can be successfully used in P5. The methodology
aims at an incremental model development and is organized in 7 steps. Each step has
its own characteristic problems and particular objectives often requiring a high level of
knowledge on speci�c topics. However, in this work, an attempt was made to delve into
the most relevant and descriptive aspects of each step without losing the global view of
the methodology, i.e., always seeking to assess the signi�cant in�uence related to the gain
in further deepening/detailing a speci�c aspect in relation to the methodology as a whole.

Many topics and tools of process system engineering and more generally of applied math-
ematics are handled, including data reconciliation, linear algebra, vectorial space analy-
sis, graph theory, network synthesis problems, operations research problems (scheduling,
assignment, shortest and longest paths, spanning trees, etc.), discrete and continuous
(global) optimization, combinatorial problems, systems of di�erential and algebraic equa-
tions, model identi�ability and parameter estimation, design of experiments for model
discrimination, data space characterization/mapping, optimal parameter �tting.

The main objectives of each methodology step are:

Step 1 Recreating continuous and smooth species concentration pro�les to produce good
estimates of their time derivatives is the main objective of the �rst methodology step.
To achieve this objective, the processing of experimental data is carried out simul-
taneously with the identi�cation and incorporation of time-invariant restrictions in
a data smoothing procedure that, due to the imposed conservation relationships,
guarantees more certainty in the reconciled data. In addition, the smoothness of
the obtained pro�les is ensured by shape restrictions that are observed from the pro-
�les trends. The continuous approximation of concentration data is critical for the
entire model development, since the structural parts of the model are identi�ed on
the basis of species concentration derivatives and/or cumulative changes of number
of moles.

Step 2 The identi�cation of the model dimension is the principal objective of the sec-
ond step of the methodology. To attend this goal, the identi�cation of the data
variant space, composed by key directions of species compositional changes, must
be performed through the use of data analysis techniques. The achievement of this
objective allows (i) saving time and e�ort in the generation of reaction network
structures, since the correct dimension of the network will be known, excluding the
need to generate structures of di�erent dimensions, (ii) the validation/assessment
of target stoichiometric vectors through the evaluation of projection errors in the
data variant space identi�ed using target factor analysis (TFA), and (iii) a complete
understanding of the reaction system, assisting in the task of identifying and validat-
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ing variants and invariants of the chemical system (Waller and Makila, 1981). The
terminology related to the variant and invariant data spaces is de�ned in Section 2.4.

Step 3 The main objective of this step is to generate the reaction network superstructure,
i.e., identify all possible chemical reactions that are plausible to occur between the
observed species in the chemical system. This network superstructure must contain
all the possibilities, but exclude the options that would not be plausible. Otherwise,
in the next step, in which a problem of a combinatorial nature is to be solved, the
number of solutions may explode with the number of chemical reactions consid-
ered. This step must be (i) systematic, ensuring a complete and unique description
of the reactions among chemical species, avoiding repeated solutions, (ii) generic,
i.e., it can be applied to any chemical system, and (iii) �exible, in the sense that
heuristic criteria and knowledge about the chemical system under analysis can also,
and should, be incorporated in this phase. To obtain the complete list of possible
chemical reactions, invariant constraints that obey stoichiometric criteria and other
restrictions (e.g., limits on the number of reactive molecules in an elementary reac-
tion) are included in a mixed-integer linear programming (MILP) formulation that
is solved iteratively by the addition of integer cuts in an optimization procedure.
The generated chemical reactions must be validated according to experimental data
by evaluating if they lie in the previously identi�ed linear space of key compositional
changes (data variant space) using TFA (Bonvin and Rippin, 1990; Amrhein et al.,
1999; Georgakis and Lin, 2005). Moreover, in order to limit the number of reactions
in the network superstructure (further decreasing the number of feasible reaction
networks), a thermodynamic analysis of the reaction system should be considered.
In this sense the identi�cation of the individual reaction direction, in which the net
reaction �ux is feasible to occur, is performed by computing the Gibbs free energy
change of the reaction (Fishtik et al., 1999; Fishtik and Datta, 2000).

Step 4 The main objective of the fourth step is to generate all consistent network struc-
tures that link all observed species with a �xed number of a linearly independent
set of chemical reactions from the reaction network superstructure. It consists of
a combinatorial discrete optimization problem in which chemical reactions are as-
signed, satisfying linear constraints that ensure the network connectivity with a
controlled number of chemical reactions. Transportation scheduling problems, the
concept of state task networks, and the classical assignment problems are reference
for the developed MILP formulations in this dissertation (Gavish and Graves, 1978;
Miller et al., 1960; Sherali and Adams, 1990; Kondili et al., 1993; Shah et al., 1993;
Maravelias and Grossmann, 2003; Floudas and Lin, 2005). Through the proposed
MILP formulations, the reaction networks can be generated with (i) di�erent com-
plexities, (ii) more than one initial reactant species, and (iii) parallel and series
reaction pathways. In order to enumerate all feasible structures composed by lin-
early independent chemical reactions, integer cut equations are considered. In this
task, it is not necessary to postulate the kinetic laws that describe the di�erent re-
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action steps. This fact greatly simpli�es the Step 3 implementation and the phased
organization of the model development methodology.

Step 5 The main objective of the �fth step is to select the most plausible reaction net-
works previously generated, according to experimental data. At the end of this
selection step, the reaction networks are ordered in decreasing order of plausibility,
eliminating most of the analyzed structures. This task is carried out using linear
optimization in a constrained data regression problem that consists of minimizing
the error in the species mass balances (linear system of algebraic equations) con-
strained to present non-negative reaction rates (positive variables). When the study
involves many species and the number of reactions generated is very high, it is pos-
sible to consider the combination of the steps of generating and selecting reaction
networks, by imposing acceptance limits on their plausibility; this corresponds to
the implicit generation of the reaction networks to be considered. At the end of
this stage, the number of reaction networks classi�ed as plausible can be further re-
duced by suggesting extra experimental tests, designed speci�cally to discriminate
the interpretive capabilities of the various candidate reaction networks.

Step 6 The main objectives of Step 6 of the methodology are to identify the best reaction
kinetic expression for each chemical reaction and determine the optimal parameter
estimates. To perform these tasks optimization tools are required to solve linear
and nonlinear regression problems with single and multi-responses. Moreover the
Bayesian information criterion (BIC) is used to identify the best compromise be-
tween data agreement and number of parameters of the model. Here the observation
of the reaction rate curves as a function of the concentrations of the reactant species
allows the suggestion of several qualitative aspects that should be incorporated in
these expressions, such as reversible kinetic laws, with monotonous behavior (or
not), and other limitations (e.g., limits adsorption, inhibition due to the presence
of other species, etc.). This phase is also considered as a re�nement of the selection
of reaction networks since the structures that do not show a good correlation of
reaction rates with respective reactant species may be eliminated.

Step 7 The proposals of additional experiments that can be able to elucidate identi�-
cation problems during Steps 1, 2, 5 and 6 of the developed methodology is the
main objective of Step 7. These experimental proposals are supported on the re-
sults obtained from the application of each step of the methodology, where speci�c
information may be required for elucidating certain aspects related to the step ob-
jective.

The objectives described above and the tools used to achieve them are summarized in
Table 1.1.
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Table 1.1 Steps of the methodology proposed in this dissertation for the development
of chemical reaction models with the corresponding objectives and tools. There is also an
indication of whether kinetic knowledge is necessary or not.

Objectives in this study Tools used

Step 1(a): Regularization of data. Orthogonal collocation on �nite
Data Increase data certainty. elements with shape and

processing Smooth pro�les: 2 (C) and d2 (C)/dC time-invariant constraints.

Step 2(a): Determination of data Singular Value Decomposition.
Data variant and invariant spaces. Parametric and non-parametric

analysis Identify the network dimension. tests (PRESS-CV, �−test, etc.).

Step 3(a): Generate stoichiometric MILP optimization.
Network balanced chemical reactions. Integer cuts.
super- Validate reaction vectors. Projection error (TFA).

structure Identify feasible net reaction �ux Gibbs free energy change of the
generation directions. chemical reaction.

Step 4(a): Generate feasible and MILP formulation.
Reaction consistent structures that Combinatorial optimization.
network link all observed species with Precedence constraints.
generation linearly independent reactions. Integer cuts.

Step 5(a): Selection of plausible Linear optimization.
Network network structures. Solve species mass balances with

identi�cation Identify the reaction network. positive reaction rates constraints.

Identify the kinetic expression Linear optimization.
Step 6: for each individual reaction. Di�erential method and BIC
Kinetic Good parameter estimates. (rate-based approach).
modeling Simultaneous �t (bias-free). Nonlinear optimization.

Tight parameter con�dence Integral method.
intervals.

Step 7: Additional experiments Candidate models results.
Design of proposals. Knowledge acquired during

experiments Elucidation of uncertain model Steps 1 to 5.
components.

(a) No knowledge of reaction kinetics.
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1.3 Thesis contributions

The next list of bullets presents the main aspects and contributions of the proposed
methodology:

� The processing of data until obtaining the reaction kinetic model is divided into in-
dividual tasks, which must be applied sequentially. Each step produces a component
of the model that is incrementally incorporated in the next step, or generates in-
formation that conditions the particular models considered in the subsequent steps.
This means that during the application of the proposed methodology, the next step
is only considered after elucidating a certain aspect regarding the description of the
reaction system. The successful completion of the last stage ensures that all plausible
models for the system in question have been considered and analyzed. In comparison
to the traditional and other incremental approaches, the proposed methodology con-
tains much more steps for model identi�cation and guarantees that the best model
has been identi�ed. In 2015, an initial proposal of the systematic methodology was
presented in an international conference of process system engineering (Vertis et al.,
2015b). In this paper, our �rst developed formulation to generate reaction networks
is also presented on the basis of graph-theoretical analysis, in which node balances
ensure the obtainment of connected networks using structural reaction �uxes.

� The identi�cation of the system's conserved amounts is performed based on system-
theoretical and data analyses. On the former, the molecular formulas of observed
species are evaluated in terms of conserved chemical elements and/or moieties in
stoichiometric balanced chemical reactions, while on the latter, the null space of
the species compositional changes is considered in order to �nd the time-invariant
relationships that are presented in data regarding the reaction chemical system in
question. The identi�cation and incorporation of these time-invariant constraints
during data processing is essential for a successful model development, since the
reconciled data have less uncertainty associated, allowing for a more reliable and
accurate elucidation of the structure of the reaction network. The identi�cation of
the data invariant space helps in identifying the data variant space, and therefore,
it has direct implication in (i) well-determining the number of chemical reactions
in the network (the data variant space dimension), and (ii) well-characterizing the
linear space of key compositional changes by �nding a plausible basis that spans
the data variant space (which is the same space that the stoichiometric matrix may
span). Therefore, time-invariant relationships are valuable information for model
development and their identi�cation is addressed in the methodology proposed in
this dissertation. In contrast, in the traditional method and several data processing
methods, no concern has been shown related to identifying time-invariant relation-
ships in the context of modeling reaction kinetic systems.

� The validation/assessment of the chemical reactions that compose the reaction net-
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work superstructure is performed after the obtainment of the entire list of stoio-
chiometrically balanced reaction vectors, and using the previously identi�ed data
variant space. However, one could consider to perform these sequential procedures
in a single simultaneous task when considering the incorporation of experimental
data in the formulation to enumerate chemical reactions, for example, by imposing
a threshold for the acceptance of target reaction vectors that show small errors of
projection in the data variant space. In this case, di�culties may arise in de�ning
the threshold value since it is hard to predict reliably how much of the original data
uncertainty propagates to the data variant space characterization. In addition, it
is not intended to exclude target vectors that present poor projections, but rather
to evaluate and identify them as potential components of the model that can be a
source of uncertainty in the adjustment of parameters, since they can be required
to explain the formation of, for example, residual species. Consequently, the re-
action vectors assessment according to data (using TFA) is separately carried out
from their generation in order to attend these needs. A major contribution to the
results arising from the application of TFA is achieved in this dissertation through
the use of time-invariant constraints in data reconciliation and in the enumeration
of reactions that satisfy these system invariants. The use of invariant constraints
allows to obtain reduced projection errors of target vectors in the variant space of
data, thus increasing the identi�ability of the reaction model on the basis of the
reconciled data. In Section 11.3.2, this is demonstrated through the application of
the developed methodology to a pharmaceutical case study. This same case study
was the subject of previous publications in which the intended objective was also to
increase the identi�ability of the model, measured by TFA results, using a di�erent
method of data processing that does not take into account the system's invariants
(Santos-Marques et al., 2019; Dong et al., 2019a,b). With the incorporation of in-
variants in the data processing phase, we were able to obtain better results than
those presented in the literature.

� Concerning the possibility of incorporating the identi�cation of the energetically
feasible reaction directions in the chemical reaction generation phase, the energetic
constraints, and the physical property data required for their implementation, must
be considered. This would result in a simultaneous approach that could present an
advantage in generating all stoichiometrically consistent solutions with the energet-
ically feasible direction by eliminating the subsequent �ltering step. However, it can
be negatively in�uenced by the uncertainty in the physical data used, which needs
to be frequently estimated from other properties. Moreover, the nonlinear nature
of the thermodynamic equations may require the use of nonlinear programming,
while the remaining constraints are usually linear balance equations. For these rea-
sons, the generation of chemical reactions is performed separately from the reaction
energetic analysis in sequential procedures of the Step 3. The developed method
for systematic generation of chemical reactions and reaction networks subject to
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energetic constraints was published and presented in an international conference of
process system engineering (Vertis et al., 2017). In addition, it should be noted that
the reaction energetic analysis is well known and is usually applied in the literature
in the context of the identi�cation of metabolic networks (Kau�man et al., 2003;
Qian et al., 2003; Beard et al., 2004; Qian and Beard, 2005; Orman et al., 2011;
Ataman and Hatzimanikatis, 2015; Bordbar et al., 2017; Portela et al., 2019). In
this dissertation, this analysis was used as an application tool, in which no addi-
tional contribution was developed in relation to what already exists in the literature.
In this sense, in Chapter 7, the thermodynamic concepts that are behind the set
of equations of the method are not deeply explored, presenting only its form of
implementation and results obtained.

� Through the incremental model development, the identi�cation of the reaction net-
work structure is decoupled from its reaction kinetic expressions ensuring more
certainty about the �nal model obtained. This segregated identi�cation is sup-
ported on the di�erential method, in which the species mass �uxes (and the linear
space that they span) are the basis for the structural model identi�cation1. The
reaction networks identi�ed are composed by linearly independent reactions whose
stoichiometric vectors represent the key directions of mass compositional changes.
Therefore, for the accomplishment of the identi�cation of the reaction network struc-
ture, it is crucial to have good estimates of concentration derivatives or cumulative
changes of number of moles (data in the variant format) from the data process-
ing step that incorporates time-invariant relationships. It will be shown, in this
dissertation, that the identi�ed plausible network de�nes a linear space in which
all compositional change vectors lie in its positive orthant, since they are built by
nonnegative coordinates that consist of positive net reaction �uxes. In 2016, the
developed method for experimental data processing was published in an interna-
tional conference, presenting a novel formulation of continuous approximation of
time-concentration data that incorporates qualitative and quantitative constraints
for the obtainment of smoothed and reconciled pro�les, namely the species time-
concentration and its �rst and second time-derivatives (Vertis et al., 2016a).

� The methodology guarantees that every plausible reaction network structure is an-
alyzed through the exhaustive generation of consistent combinations of reaction
vectors that link every observed species. This task consists of a constrained combi-
natorial optimization problem formulated as a MILP that incorporates assignment
and precedence constraints. Di�erently of the traditional and other methods of
modeling chemical reaction systems, in which no systematic tool is veri�ed in the
network structure proposals, the proposed methodology exhaustively explores the
space of possible reaction networks and makes the most of the experimental data to
select the most plausible structures.

1The terminology species and reaction �uxes is adopted in this thesis and its de�nition is presented
in the introduction of Section 2.2.
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� The implicit generation of reaction networks may be considered when the number
of structures explicitly generated explodes, i.e., in the presence of reaction net-
work superstructures composed by more than a hundred chemical reactions. In
this dissertation, one of the considered case studies exempli�es this situation in
Section 11.3.4. Moreover, in 2016, the explicit and implicit generation of reaction
networks was presented in an international conference of process system engineering
(Vertis et al., 2016b). In this paper, two MILP formulations to generate reaction
networks explicitly and implicitly are presented, with an illustrative case study of
reduced dimension.

� The identi�cation of the kinetic expression is performed individually for each chem-
ical reaction. This identi�cation is also supported on the di�erential method since
the instantaneous reaction rate (a linear combination of concentration derivatives)
regarding an individual chemical reaction de�nes the dependent variable that is
correlated with the time-concentration of the respective reactant species. At this
phase, the best tradeo� between quality of �t and model dimension is established by
means of the minimum BIC value. It is important to note that the identi�cation of
the model is carried out using linear optimization with a guaranteed global optimal
solution, albeit in a biased regression procedure.

� Simultaneous nonlinear regression is performed in the last phase of the methodology
using the integral method. At this stage, the parts of the structural model (reac-
tion network and kinetic expressions) are already identi�ed, with good parameter
estimates in hand. For the optimal adjustment of parameters, the original experi-
mental data (with the associated original uncertainty) are considered in a bias-free
approximation procedure in the sense of maximum likelihood, using the parameter
estimates obtained previously as initial estimates. In this phase, the con�dence
intervals of the parameters and other statistical metrics are calculated, which may
show satisfactory values/results, con�rming that a robust and reliable model is ob-
tained through the incremental and systematic methodology.

� Each task is entirely supported by the available experimental data, and if it can-
not be applied conclusively, additional experimental data may be recommend. For
example, more data can be required for help in (i) identifying the dimension of the
data in the variant form and/or establishing the number of invariant relationships
over time, (ii) discriminating plausible reaction network structures, thus elucidat-
ing the uncertain origin of residual species, and (iii) identifying the correct model
from candidate kinetic expressions that have shown equal data-�tting performance.
In this sense, the proposals of additional experiments are supported on the results
obtained from the application of each step of the methodology. This aspect is an
advantage over the usual methods of designing experiments that follow a data-based
approach, where experiments are proposed in the absence of structural information
of the system. Hence, through this model-based approach, it is expected that the
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identi�cation of the chemical reaction model is more e�ective and direct, requiring
fewer experiments to elucidate the model and, consequently, saving time and costs.
However, in this dissertation, no systematic method was developed for experiment
proposals, and the automation of this task, based on candidate models in an inte-
grated approach to systematic identi�cation of chemical reaction models, is one of
the suggestions for future work.

� In addition to the direct support of the various stages of this methodology in the
available experimental data, a fundamental advantage of this approach is the com-
pletely avoidance of solving nonlinear optimization problems during the �rst stages
of its application, where the fundamental knowledge about the structure of the
reaction network is systematized. Thus, the need to solve nonlinear problems is
postponed to the �nal stages of the methodology. This possibility contrasts sharply
with the classic method of developing kinetic models previously described in Fig-
ure 1.1, where nonlinear regression is commonly adopted from the beginning, as a
validation tool for the tested models against the basic experimental data. Given
the relative frequency of the occurrence of multiple optimal locations in solving
problems of estimation of kinetic parameters, this aspect of the methodology de-
veloped considerably facilitates the systematic development of mechanistic-based
kinetic models.

� Although this dissertation does not present methods that cover the P5 problem,
the optimal design of a reactor network was presented in an international chemical
engineering conference (Vertis et al., 2015a). The optimal synthesis of the reactor
network was based on a superstructure containing di�erent possibilities for individ-
ual reactor units and their interconnection, including arrangements of individual
units in series and/or parallel and di�erent alternatives for feed distribution and
stream mixing, division and re-circulation, see Figure 1.2. The design variables
such as volume, number and type of reactors, stream interconnections and operat-
ing conditions were determined for optimal performance of the overall system, such
as maximum selectivity and maximum revenues. The main reference works for this
study development were (Balakrishna and Biegler, 1992; Schweiger and Floudas,
1999).

The objective of this work was to illustrate the importance of the availability of
well-de�ned kinetic models, comprising the reaction network plus the kinetic de-
scription of each reaction component, in the optimal design of the corresponding
reactor network. In this sense, the in�uence of di�erent reaction models in the op-
timal reactor network design was studied, considering the chemical reaction model
resulting from the application of the proposed methodology and two models of the
same case study reported in the literature. In fact, for the considered case study, it
was demonstrated that a better reaction network (including its kinetic parameters)
could be found in relation to previous models proposed in the literature, and, as
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Figure 1.2 Superstructure of the reactor network (Vertis et al., 2015a).

expected, it was shown that the kinetic model structure has great in�uence on the
design of the corresponding optimal reactor network. The main novelty of this work
is to integrate the synthesis of reaction models in the optimal equipment design, by
combining (i) a systematic methodology for the development of kinetic models of
complex reaction systems with (ii) a superstructure-optimization-based approach in
the synthesis of reactor networks. Hence, a comprehensive method to model and
design complex reaction systems was proposed, covering the Problem P5.

1.4 Thesis organization

�The last thing one knows in constructing a work is what to put �rst.�

� Blaise Pascal

The organization of this dissertation follows the steps of the proposed methodology. Every
chapter concerning a given step contains (i) a brief introduction to the topic that will be
presented, including the main literature references that have contributed to the step devel-
opment, (ii) a systematization of the method that will be proposed, for a better guidance
of its sequential tasks/sub-steps, and (iii) an example illustrating the application of the
methodology step and also how its results contribute to the overall model development
process. The examples studied are introduced in the next section.

Chapter 2 presents the fundamental theoretical concepts on which some of the steps
of the methodology were based, including (i) base concepts and terminology related to
reaction network representation as a graph and the theory of steady-state reactions, (ii)
the analysis of the properties of the stoichiometric matrix in order to achieve a more
complete understanding of the reaction network on the basis of linear algebra concepts,
(iii) the meaning of time-invariant relationships in chemical reaction systems, addressing
issues such as what they represent and how they can be used in linear systems of equations,
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for example, for identifying subspace dimensions and reducing the model complexity, (iv)
species mass balances and related issues, and �nally, (v) data reconciliation in terms
of orthogonal projection of data in particular matrices. Moreover the �nal remarks are
presented at the end of this chapter.

Chapter 3 presents a bibliographic review embracing the various topics covered in this
dissertation, including general methods for modeling chemical reaction systems and re-
action network identi�cation, and the description of networks structures through graphs
and related problems.

Chapter 4 presents the methodology description including the schematic �owchart of the
entire proposed methodology. From this chapter, those that follow correspond to each
step of the methodology.

Chapter 5 considers the treatment/processing of experimental data. In this chapter, the
Step 1 motivation is presented with a brief comparison of the di�erential and the integral
methods of adjusting kinetic parameters, followed by the description of several data reg-
ularization methods for continuous (or quasi-continuous) approximation of concentration
data and estimation of species concentration derivatives. The proposed method of approx-
imating discrete data to continuous curves is also described, using orthogonal collocation
on �nite elements, with material conservation and qualitative shape constraints.

In Chapter 6 the data dimension analysis is addressed, containing the analysis of singular
values and the use of empirical and heuristic methods for determining data dimensionality.
A study of simulated noise in concentration data is considered to assess the behavior of
singular values and determine the number of replicated experiments that is required for
the identi�cation of the model dimension, even in the presence of reaction extents that
are comparable to the noise level. In addition, the application of several methods for
determining the characteristic space of data in the variant form is considered. At the
end of this chapter, a novel method for determining the data invariant space dimension is
presented. This approach is focused on the characterization of the null space of noisy data
through the use of linear optimization with binary variables to identify quantities with
physical meaning that are conserved during the mass transformation in chemical reaction
systems.

Chapter 7 describes the generation of the reaction network superstructure, including a
brief description of the most relevant topics from literature that have contributed to the de-
velopment of the Step 3. The description of the method for generating chemical reactions
is presented in Section 7.2, followed by TFA application and reaction thermodynamics
analysis, in Sections 7.3 and 7.4, respectively.

Chapter 8 presents the core of this dissertation: the generation of reaction networks (Step
4). In this chapter, the four MILP formulations developed in this work are presented and
compared in terms of their performance.
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In Chapter 9, the obtainment of reaction rate pro�les from species concentration deriva-
tives is described, presenting the metrics used to select/identify plausible reaction net-
works. Furthermore, the implicit generation of reaction networks is considered in Sec-
tion 9.4, presenting the formulations for the obtainment of plausible structures with (i)
positive reaction rates and (ii) established kinetic expressions.

In Chapter 10, the methodology proposed for reaction kinetic modeling is presented,
including the identi�cation of the structure of the kinetic expressions on the basis of the
di�erential method, and the �nal parameter tuning using the integral method.

The main results obtained with the application of the systematic methodology for mod-
eling chemical reaction systems to several case studies are presented in Chapter 11.

Finally, Chapter 12 presents concluding remarks and several future directions. For now,
I can only wish for a pleasant reading of this thesis in the chapters that follow.

1.5 Case studies considered

The various features of the methodology proposed in this thesis are illustrated by the
application to four case studies collected from the literature, with a moderate number of
species. The �rst case consists of a traditional example in the context of the adjustment
of kinetic parameters, the thermal isomerization of U-pinene (Fuguitt, 1943; Fuguitt and
Hawkins, 1945, 1947). The second case corresponds to a more recent example, involving
more components, and consequently a greater number of reactions. This consists of the
catalytic hydrogenation of succinic acid (Deshpande et al., 2002). The third case study
is related to the previous case, presenting chemical species in common, although starting
from another initial reactant. This consists of the catalytic hydrogenation of maleic acid
(Chaudhari et al., 2003). Finally, the fourth is a pharmaceutical case study from P�zer
(Santos-Marques et al., 2019; Dong et al., 2019a,b). This last case is more challenging, as
it contemplates greater (i) number of species with unknown molecular formula, (respecting
the company's con�dentiality agreements), and (ii) data base with 17 experiments varying
initial and operating conditions.

1.5.1 Thermal isomerization of U-pinene

Fuguitt (1943) studied the thermal isomerization of U-pinene in his doctoral thesis, later
publishing two articles, one on the thermal isomerization of U-pinene in liquid phase
(Fuguitt and Hawkins, 1945), and the other on the kinetic study of the reactions involved,
in two temperature ranges (Fuguitt and Hawkins, 1947).

This system comprises �ve chemical species: U-pinene (AP), limonene (LIM), allo-ocimene
(AO), U- and V-pyronene (BP) and a dimer (D). The authors have suggested a reaction
network, Figure 1.3, based on the interpretation of measured data in their experimental
study, proposing that LIM and AO are formed simultaneously in parallel reactions and
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that the component AO is decomposed into BP and D. Box et al. (1973) have also proposed
the same reaction network for this chemical system.

AP

AO D

LIM

BP

k1

k2

k6

k9

k−9

Figure 1.3 Reaction network proposed by Fuguitt and Hawkins (1945).

In the experiments carried out by Fuguitt and Hawkins (1945), the reactions occurred
very slowly (the total reaction time reported was approximately 25 days), and some dif-
�culties related to the species measurements were also identi�ed, especially for residual
species such as BP and D. Two years later, the same authors published more data related
to the previously reported experiments. These data refer to isothermal batch experi-
ments with temperature range 189.5 � 285 ◦C, with pure initial reactant in liquid phase.
They also considered the reaction kinetic modeling, presenting estimates for :1 and :2 at
temperatures of 189.5 ◦C and 204.5 ◦C (Fuguitt and Hawkins, 1947).

Since BP and D are residual species, their origin in the network structure is hard to
predict with great con�dence. The authors commented that an additional experiment
was carried out with the pure AO component, to identify the origins of BP and D formed,
con�rming the authors' initial hypothesis (Fuguitt and Hawkins, 1945). However, the
data measurements of this experiment were not shown. Nonetheless, even considering
these reactions as constituents of the network structure, there is still room to question
the e�ective reaction network intrinsic to this chemical system. In this regard, the work
developed will analyze the various possibilities of plausible reaction networks and identify
whether any other reaction structure (associated with a kinetic model) can represent
equally well (or even better) the available experimental data.

In addition to these initial kinetic studies, this reaction system has also been used in a
signi�cant number of studies to adjust kinetic parameters, considering concentration data
registered in experiments carried out at constant temperature (Box et al., 1973; Stewart
and Sørensen, 1981; Tjoa and Biegler, 1991). In this thesis the model is developed using a
systematic methodology, and it is compared with the ones proposed in literature. However,
for a well established comparison, the same data in each literature example is considered
for parameter tuning. Section 11.1 presents (i) how the model structure was found and (ii)
the parameter correlation with temperature. The identi�ed model is compared with the
models proposed by Stewart and Sørensen (1981) (and reviewed in Stewart et al. (1992)),
Box et al. (1973) and Tjoa and Biegler (1991).
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1.5.2 Catalytic hydrogenation of succinic acid

Deshpande et al. (2002) studied the hydrogenation reaction of succinic acid at the temper-
ature of 523 K and at the pressure of 100 bar, in the presence of Ru-Co bi-metallic catalyst
(1%), having proposed a reaction network with two alternative routes for the production
of n-butanol (Figure 1.4). Therefore, this is a more complex case study presenting a
greater number of chemical species and heterogeneous reaction kinetics.

Figure 1.4 Reaction network proposed by Deshpande et al. (2002) and respective
experimental study of the hydrogenation reaction of succinic acid. Copyright (2021) by
Elsevier.

In contrast to the AP case study, the AS case considers a system studied more recently in
several publications. Experimental results regarding hydrogenation of succinic acid with
di�erent catalysts have been reported in several reaction environments, giving rise to
products with high added value in the current market (Hong et al., 2011; Ly et al., 2012;
Hong et al., 2012a,b). These articles present di�erent hypotheses of reaction networks
that allow the interpretation of the collected experimental data; this diversity can be
attributed to the fact that di�erent catalysts have been tested, which allow to activate
di�erent reaction paths in this system, as well as to the di�erent operating conditions
considered in each study.

In this dissertation the AS case study is used as an illustrative example that follows
every methodology step, i.e., it is considered in the end of every chapter regarding the
methodology steps. In this example, hydrogenation chemical reactions are carried out
from the initial reactant AS originating the main products 1,4-butanediol (BDO), W-
butyrolactone (GBL) and tetrahydrofuran (THF), and the residual components =-butanol
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(BuOH) and =-propanol (PrOH).

1.5.3 Catalytic hydrogenation of maleic acid

Chaudhari et al. (2003) studied the hydrogenation of maleic acid (MAC) which is a pre-
cursor species that originates AS (the initial reactant of the previous case study). This
case study contemplates �ve observed species: maleic acid (MAC), succinic acid (AS),
W-butyrolactone (GBL), tetrahydrofuran (THF) and =-butanol (BuOH). The experiments
were carried out in a three phase, semi-batch slurry reactor at isobaric and isothermal
conditions, over bimetallic Ru�Re/C catalyst. Three datasets are available at distinct
temperatures: data T1 at 503 K, data T2 at 523 K, and T3 at 543 K; with the same exper-
imental conditions: MAC initial concentration 0.862 kmol m−3, catalyst loading 50 kg m−3

and total pressure 13.91 MPa. The aqueous phase is saturated with hydrogen, and Henry's
law was used to compute the hydrogen concentration.

Chaudhari et al. (2003) proposed a reaction network composed by four linearly inde-
pendent chemical reactions in series (Figure 1.5) with heterogeneous kinetic expressions
based on Langmuir-Hinshelwood (LH) law, equation (1.1), where F is the catalyst mass
concentration.

r1
r4

r2
r3

MAC

ASTHF
BuOH

GBL

Figure 1.5 Reaction network proposed by Chaudhari et al. (2003).

A 9 =
FH2: 92reac, 9

(1 +  H2
H2 +  MACMAC +  ASAS +  GBLGBL)2

, 9 = 1, . . . ,4. (1.1)

The presence of strong reaction inhibition is detected in this case study by the �rst two
reactant species adsorbed on the catalyst active sites. The reaction A4 only starts when
the concentration of MAC approaches a small value and AS a maximum, and, that the
subsequent hydrogenation reactions are initiated when AS reaches small concentration
values.

In this dissertation the model proposed by Chaudhari et al. (2003) is questioned, and it
is compared with other models obtained through the methodology application. This case
study illustrates well the systematic method of identi�cation of reaction kinetic expres-
sions, where several species are considered as potential candidates to participate in the
catalyst adsorption phenomenon. Furthermore, the correlation of kinetic parameters with
temperature is also considered. The hydrogenation of MAC is addressed in Section 11.2.



1.5 Case studies considered 21

1.5.4 P�zer case study

The pharmaceutical case study from P�zer company has been studied in the literature
in three recent publications (Santos-Marques et al., 2019; Dong et al., 2019a,b). The
chemical system involves 10 species, named as A, B,. . . , J, linked through a network
composed by 8 linearly independent chemical reactions, see Figure 1.6. No information
about the reaction kinetic expressions and the chemical species involved were provided.

r7

r3

A

r1

B

C

D

r2

E

r4

G

r5

H

r6

F

I

r8

J

A1: A + B C + D

A2: C D + E

A3: E F

A4: B + D G

A5: G D + H

A6: A + F I

A7: 2A J

A8: B + J 2E + I

Figure 1.6 P�zer reaction network and corresponding list of chemical reactions.

In these studies the main objective was to validate/identify the known reaction network
that describes the complex chemical system in a data-driven approach. For this purpose,
17 datasets were simulated considering several initial and experimental conditions deter-
mined by an optimal design of experiments approach. Posteriorly, Gaussian noise with
zero mean and 0.005 standard deviation was added to data. It was shown that through
the use of a data smoothing technique, namely dynamic response surface methodology
with shape constraints, an improvement is achieved in the reaction network identi�ca-
tion. In short, these authors presented a methodology for noisy data �ltering to better
elucidate the data variant space, discovering its dimension and an appropriate basis that
characterizes this space.

In this thesis, the 17 datasets were considered to model the reaction kinetics from the
known reaction network. In methodology Step 1, these data were reconciled regarding the
system invariants established through the null space of the stoichiometric matrix. These
invariants are essentials to well determine the data variant space since they support the
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elucidation of the data dimension and increase the con�dence in reconciled data, although
the previous authors did not take into account these equality constraints. Moreover, the
methods proposed for data dimensionality analyses in Step 2 are supported on this case
study.

In addition, the information related to the known stoichiometry shown in Figure 1.6
was the basis for many studies of this thesis. For example, the assessment on the use of
invariant constraints in the model identi�cation task and the elucidation of reaction kinetic
laws were performed considering the �true� (known) stoichiometry. However, an e�ort was
also made to identify the true reaction network from the reconciled experimental data
using implicit generation of reaction networks. In short, the P�zer case study illustrates
four main aspects of the proposed methodology: (i) the impact of the use of invariant
relationships in data regularization procedures for model identi�cation, (ii) a novel method
proposal for determining the number of time-invariant relationships from noisy data, (iii)
the implicit generation of reaction networks (including nonlinear networks), and (iv) the
systematic methodology for kinetic model development, including parameter correlation
with temperature. The P�zer case study is addressed in Section 11.3.
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Chapter 2

Theoretical Background & Terminology

�We are drowning in information and starving for knowledge.�

� Rutherford D. Roger

Contents
2.1 Introductory basic concepts . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Graph representation of reaction networks . . . . . . . . . . . 29

2.1.2 Linear and nonlinear reaction networks . . . . . . . . . . . . . 30

2.1.3 Theory of steady-state chemical reactions . . . . . . . . . . . . 31

2.2 The stoichiometric matrix properties . . . . . . . . . . . . . . . . . . . 39

2.2.1 The stoichiometric matrix . . . . . . . . . . . . . . . . . . . . 40

2.2.2 The fundamental subspaces of the stoichiometric matrix . . . 41

2.2.3 The Singular Value Decomposition of N . . . . . . . . . . . . 47

2.3 Reaction invariants and linear system of equations in chemical reaction

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Reaction invariants . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.2 The invariant relationships and the stoichiometric matrix . . . 54

2.3.3 Representative and non-representative species . . . . . . . . . 57

2.3.4 Species map and reaction-invariant relationships . . . . . . . . 59

2.3.5 Degrees of freedom and reaction-invariant relationships . . . . 60

2.3.6 Time-invariant relationships in experimental data . . . . . . . 64

2.4 Mass balances as linear systems of equations . . . . . . . . . . . . . . 65

2.4.1 Characterizing systems of linear equations . . . . . . . . . . . 66

2.4.2 SVD for solving linear system of equations . . . . . . . . . . . 67

2.5 Data reconciliation incorporating time invariants . . . . . . . . . . . . 68

27



28 Theoretical Background & Terminology

2.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

This chapter presents fundamental concepts that support the development of several steps
of the proposed methodology. The theoretical background is organized in four main sec-
tions. Section 2.1 presents introductory basic concepts and terminologies related to the
reaction network representation as a graph, including the theory of steady-state reactions
and the stoichiometric number. Section 2.2 consists of the analysis of the stoichiometric
matrix properties, presenting its fundamental topological properties and discussing how
these properties can be used to obtain a more thorough understanding of the reaction net-
work that it represents. These properties are contained in the four fundamental subspaces
associated with a matrix. Section 2.3 presents the meaning of time-invariant relationships
in chemical reaction systems, i.e., what they represent and how they can be used in linear
system of equations, for example, for identifying subspace dimensions and reducing the
model complexity, among other issues. In Section 2.4 the species mass balances are classi-
�ed as types of linear systems of equations, discussing methods to solve them. Section 2.5
presents how experimental data can be reconciled using time-invariant constraints. Fi-
nally, Section 2.6 presents �nal remarks of the thesis theoretical background.

2.1 Introductory basic concepts

�There is nothing more practical than a good theory.�

� Kurt Lewin

A reaction system is de�ned here as the environment comprising the reaction bulk and the
chemical species involved. It is considered that its complete description is made through
the listing of the species present, the set of chemical reactions that take place, and the
description of the kinetic laws corresponding to each chemical reaction.

The reaction system can be described through elementary and or complex chemical re-
actions. According to the de�nition given in the IUPAC Gold Book (McNaught and
Wilkinson, 1997) the elementary reactions are de�ned as:

�A reaction for which no reaction intermediates have been detected or need to

be postulated in order to describe the chemical reaction on a molecular scale.

An elementary reaction is assumed to occur in a single step and to pass through

a single transition state.�

On the other hand, complex chemical reactions involve the meeting of more than one
species, containing intermediates as participants, that in general can be observed in ex-
perimental tests. The complex reactions can be the sum of elementary steps, resulting in
chemical reactions where more than one products are formed from the same reactants or
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Figure 2.1 (a) Representation of a reaction network using the corresponding graph
(b). In (c) it is represented a reaction network with a redundant reaction pathway that
forms species E.

di�erent reactants produce the same products (Shahzad and Sultan, 2018). Hence, any
complex chemical reaction can be described by a set of elementary reactions.

According to Marin and Yablonsky (2011) an elementary reaction is classi�ed as unimolec-
ular when it involves only one reactant molecule (A B), in this case it is also named
as a �rst order reaction. In cases where two molecules make part of the reaction (e.g.,
A + B C or 2A B), the elementary reaction is classi�ed as bimolecular or sec-
ond order chemical reaction. If three molecules are involved (2A + B C or 3A
B), the reaction is named as trimolecular or of third order. This last case rarely occur
since it is improbable the simultaneous interaction of three (or more) reactant molecules
in a single step.

In this context, the concept of reaction mechanism is de�ned as the reaction structure that
contains only elementary steps, i.e., elementary reactions. Wrongly, reaction schemes, or
analogously reaction networks, are called mechanisms when those are formed not exclu-
sively by elementary reactions, but include also complex chemical reactions. Temkin et al.
(1996) de�nes the reaction network as a structure composed by several consecutive chem-
ical reactions (elementary or not). The representation of reaction networks can be chosen
for several reasons, for example in order to reduce the total number of reaction steps
required, or to simplify the structural representation thus excluding species components
that are not easily observed, such as radicals. Hence, reaction network is a more adequate
designation to the description of a reaction system with complex chemical reactions; it is
perhaps the representation most used in industrial chemical kinetics. Reaction network
is the designation adopted in this document.

2.1.1 Graph representation of reaction networks

According to Temkin et al. (1996) a reaction network can be naturally represented through
a graph, which elucidates several chemical species transformations from the initial re-
actant(s) to one or more desired �nal products, passing through di�erent intermediate
species (Figure 2.1).

In the area of Discrete Mathematics, a network (or graph) is composed of a set of nodes
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(vertices) interconnected by arcs (edges). Usually nodes represent states, and arcs corre-
spond to events. The arcs are classi�ed as directed and undirected ; a directed arc allows
only the path in a given direction, while in an undirected arc the two directions of route
are allowed. Hence, a reaction network can be represented through the respective graph,
where nodes correspond to chemical species and arcs to chemical reactions (Temkin et al.,
1996). The reaction network is always connected, i.e., it corresponds to a connected
graph. This connectivity characteristic is essential to the generation of alternative reac-
tion networks1. It is said that a reaction network contains a cyclic pathway when it is
possible to identify a �nite set of arcs containing the same start and �nish node. When
the arcs represent reactions of catalytic nature, this set is called a catalytic cycle (Marin
and Yablonsky, 2011).

Another extensively used terminology is the classi�cation of species according to the
location of the nodes in the corresponding network. The source node(s) as well as the
destination node(s) are classi�ed as terminal chemical species; an intermediate node in
the network corresponds to an intermediate species. According to Marin and Yablonsky
(2011) this division between species is clear, since intermediate species do not appear in the
global reaction. The global reaction is obtained from the sum of weighted stoichiometric
vectors in relation to the chemical reactions in the network. These weights are determined
so that the intermediate species are not part of the set of terminal species that make up
the overall reaction2.

2.1.2 Linear and nonlinear reaction networks

Although the previous representation in Figure 2.1 seems quite generic, it is not enough
to represent all common reaction networks. The reaction networks can also be classi�ed
according to the structural nature of the constituent chemical reactions, as linear and
nonlinear. In linear reaction networks each reaction has only one molecule of reactant
and one of product species (Temkin et al., 1996). More generally, linear reactions involve
the mass transformation between two species, while nonlinear reactions occur between
more than two species. Nonlinear reaction networks have at least one nonlinear chemical
reaction.

In linear networks, an arc connects two nodes only, i.e., an arc has a source node and
a destination node. This allows the representation of linear kinetic mechanisms such
as reactions catalyzed by enzymes, which may be reversible or not. Typical examples of
linear mechanisms are the Michaelis Menten mechanism, the water-gas shift reaction or the
Temkin-Boudart mechanism, some liquid-phase hydrogenation mechanisms, isomerization
reactions, and others (Marin and Yablonsky, 2011).

1This topic is considered in more detail in Section 3.3 and Chapter 8 regarding the generation of
graphs and reaction networks, respectively.

2The concept of global reaction is widely used in the literature by di�erent authors. It will be further
explored in Section 3.2, where the description of methods for generating reaction networks is addressed.
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More complex reaction networks that involve reactions combining two or more chemical
species (therefore nonlinear), e.g., A + B C or C D + E, cannot, in general, be
represented by linear networks. Instead, bipartite graphs are a possible representation tool.
In this type of graph, the nodes are divided into two non-equivalent subsets: one subset
regarding chemical species and the other corresponding to reaction events (Yablonsky
et al., 1991; Temkin et al., 1996).

Figure 2.2 illustrates two structures composed by 4 chemical species (circular nodes), in
which (a) represents a linear reaction network composed by 3 chemical reactions (arcs)
with a reversible one (A3), while in (b) a nonlinear reaction network with 2 chemical
reactions is shown. Here, the reaction network is represented by a bipartite graph where
the reaction event node (�) is used to linearize the representation of the nonlinear reaction
A1. Therefore, in a nonlinear reaction network represented by a bipartite graph, the
number of arcs does not anymore correspond to the number of chemical reactions, as it
happens in linear reaction networks. Also, for the representation of reversible nonlinear
reactions, a curved line segment is used to indicate the group of species belonging to the
same reaction side:
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Figure 2.2 Graph representations of (a) linear and (b) nonlinear reaction networks.

The same linear graph representation can be used to structurally describe pseudo-linear
reaction networks. These (pseudo)-linear networks contain at least one reaction where the
stoichiometric coe�cient of the single reactant species is greater than one. This means
that, in addition to unimolecular reactions, bi- or tri- molecular reactions make part of
this network, but with reactant molecules of the same component, e.g., 2 A B
is a bimolecular pseudo-linear chemical reaction which rate is probably described by a
second order kinetic law. For example, suppose that the linear network represented in
Figure 2.2(a) contains instead of A3: B D the pseudo-linear reaction A ′3: 2 B D.
The same linear graph representation is correct. In order to simplify the nomenclature,
we will refer to pseudo-linear reaction networks as linear reaction networks, making a
distinction among them when it is required.

2.1.3 Theory of steady-state chemical reactions

A chemical reaction is considered at steady state if the concentrations of every species in
that reaction do not change in time. Evidently, this is possible only in an open system
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such as a tubular reactor or a circulation �ow system (Temkin, 1979). In steady-state, the
concentration of an intermediate species does not change in time because the sum of rates
of formation of this species is equal to the sum of rates of its consumption. The theory
of steady-state chemical reactions can be very useful for model reduction. It involves a
linear transformation of the original system, resulting in a reduced system (with smaller
degrees of freedom) by eliminating intermediate species.

In this section the number of Horiuti is introduced (Horiuti and Nakamura, 1957). This is
related to the de�nition of global chemical reactions, as it will be presented below. In fact,
the theory of steady-state chemical reactions involves the concept of global reaction (and
thus the Horiuti numbers) for determining the number of linearly independent reaction
routes (or pathways) between terminal species (Horiuti, 1973; Temkin, 1979). In turn,
reaction pathways can be decomposed into extreme paths, (or more broadly into paths of
route (Yablonsky et al., 1991), or basic routes (Temkin, 1979)).

Furthermore, the concept of reaction pathways (which will be presented below) can be
very useful for network synthesis, and it does not di�er much from the concept used
for metabolic network synthesis, despite the fact that it has di�erent nomenclature and
application contexts. Moreover it also not di�ers from the idea behind graph synthesis
methods. These similarities between methods for generating network structures will be
discussed in the state-of-the-art chapter.

The next section links the concepts of (i) the number of linearly (in)dependent chemical
reactions, (ii) the number of reaction pathways, (iii) the number of Horiuti vectors, (iv) the
type of network structure (linear and nonlinear) and (iv) the number of Horiuti (scalar).

Horiuti number, stoichiometric vector, stoichiometric matrix, global reaction,

reaction pathways and network structure

In the 1950s, the japanese physical chemist Horiuti formulated a theory of steady-state
reactions, using concepts from graph theory. Horiuti introduced the concept of stoichio-
metric number. This is the number of times each reaction step in a reaction network must
be multiplied to cancel out the presence of intermediate species in the global reaction (Ho-
riuti and Nakamura, 1957). Yablonsky et al. (1991) preferred to call this stoichiometric
number as Horiuti number, since the original name can induce to mistake, confounding
with the number of reagent molecules taking part in the reaction3. The latter, in turn,
is the stoichiometric coe�cient aB, 9 of the species B ∈ st and reaction 9 ∈ rx, where st

and rx are, respectively, the sets of species and reactions that compose the network. Ev-
ery reaction 9 ∈ rx has its correspondent stoichiometric vector ν 9 ∈ Z=st , and the set of
stoichiometric vectors establishes the rows of the stoichiometric matrix N ∈ Z=rx × =st ,
where =rx and =st are the cardinals of the respective sets. Therefore, the sum of every
stoichiometric vector multiplied by its respective Horiuti number, the scalar f 9 , results in

3The nomenclature adopted for stoichiometric number, during this document, is also Horiuti number.
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the global reaction, free of intermediate species, such that:∑
9

f 9ν 9 = ν6 ⇔ NT · σ = ν6 (2.1)

where σ ∈ N=rx is the vector of Horiuti numbers, and ν6 ∈ Z=st is the stoichiometric vector
of the global chemical reaction. Hence the global reaction is a linear combination of the
basic column vectors of the transposed stoichiometric matrix, and the Horiuti numbers
are its positive coordinates in that basis.

A network without alternative reaction pathways, also known as a single route network,
has an unique scalar f 9 for every reaction 9 ∈ rx, i.e., it has a single vector σ. This
implies that this set rx is necessarily linearly independent, or in other words, the matrix
N has full (row) rank. When rx is a linearly dependent set, e.g., as in the example in
Figure 2.1c, more than one viable route between terminal species is possible. In this case,
it becomes necessary to de�ne more than one Horiuti number for every reaction present,
each referring to the reaction pathway ? ∈ pa chosen to obtain the terminal products:

NT · σ? = ν6, ? = 1, . . . ,=pa (2.2)

where =pa is the number of linearly independent pathways in the set pa. Hence every vector
σ?, ? = 1, . . . ,=pa, establishes a route of consecutive steps to form the global reaction.

The examples in Figures 2.3 and 2.4 represent two di�erent linear reaction networks, one
with two and the other with four chemical reactions, but both networks have the same
global reaction. The f 9,? is the Horiuti number of reaction 9 = 1, . . . ,=rx in the pathway
? = 1, . . . ,=pa.

Reaction A 9 f 9

A B C
A1 A2A B 1 1

B C 2 1

Global reaction: A C

Figure 2.3 Reaction Horiuti numbers in a linear network composed by a linearly
independent set of reactions.

Networks strictly composed by linear reactions, as in the examples above, present only 0
or 1 f values, resulting in global reactions with the same number of moles in both reactant
and product sides. In the case of networks with pseudo-linear reactions (as discussed in
Section 2.1.2), the Horiuti numbers can be greater than one. Figure 2.5 illustrates such a
case, namely of a reaction network with two pseudo-linear reactions (A2 and A4) that has
the same graph representation of Figure 2.4, but di�erent f values and global reaction.

For linear and pseudo-linear reaction networks presenting linear graphs with more than
one incident arc in a node, such as in Figures 2.4 and 2.5, the set of chemical reactions
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Reaction A 9 f 9,1 f 9,2

A

B

C

D

A1 A2

A3 A4

A B 1 1 0
B C 2 1 0
A D 3 0 1
D C 4 0 1

Global reaction: A C

Figure 2.4 Reaction Horiuti numbers in a linear network composed by a linearly
dependent set of reactions. In fact the global reaction can be described by two di�erent
pathways: A B C and A D C.

Reaction A 9 f 9,1 f 9,2

A

B

C

D

A1 A2

A3 A4

A B 1 2 0
2B C 2 1 0
A D 3 0 2
2D C 4 0 1

Global reaction: 2A C

Figure 2.5 Reaction Horiuti numbers in a pseudo-linear network composed by four
chemical reactions con�guring a linearly dependent set.

is always linearly dependent, (more than one pathway between terminal nodes exists).
On the other hand, for nonlinear reaction networks, it is possible to have more than
one incident arc in a given node with a linearly independent set of chemical reactions,
and thus, these networks are single route networks (or single pathways) having a single
Horiuti vector. Hence the number of incident arcs in a node does not establish the number
of existing pathways in a given network, however, the number of linear dependencies
in the stoichiometric matrix does. Figure 2.6 shows a nonlinear reaction network with
two incidences in node D through reactions A2 and A4, although presenting a linearly
independent set of chemical reactions.

A

B

C D

A2 E
A1

A3

A4

Reaction A 9 f 9

A B 1 2
2B D + E 2 1
A C 3 1
C D 4 1

Global reaction: 3A 2D + E

Figure 2.6 Reaction Horiuti numbers in a nonlinear reaction network with a single
pathway.
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Reaction rates based on the Horiuti numbers

When the formation of a molecule in one of the steps is compensated by its consumption in
the other step, the steady-state reaction process is realized. The complete compensation
for the formation and consumption of intermediates does signify the completion of a
pathway along some reaction network (Yablonsky et al., 1991). Considering that concept
of reaction pathway, the rate of a steady-state reaction is determined by the rates along
the routes, such that

r =

=pa∑
?=1

σ?r? (2.3)

where r ∈ R=rx+ is the vector of reaction rates and r? is the steady rate (scalar) of the
pathway ? = 1, . . . ,=pa. Hence the original rates are a linear combination of the rates of
the routes, at steady conditions.

The mass balance equations for only intermediate species are established by

N∗T · r =
N∗T · (� · %) = 0

(2.4)

where N∗ ∈ Z=rx × =si has the columns B = 1, . . . ,=si of the stoichiometric matrix N re-
specting to the intermediate species B ∈ si, si is the set of intermediate species, =si is
the cardinal of si (thus si ⊂ st and =si ≤ =st − 2), � ∈ N=rx × =pa is the matrix of Horiuti
vectors (or reaction pathways) with σ?, ? = 1, . . . ,=pa column vectors, and % ∈ R=pa is the
vector of the rates of the routes/pathways.

The last equation demonstrates in fact that in each route the intermediate species are
canceled since

N∗T · σ? = 0, ? = 1, . . . ,=pa (2.5)

Thus, every pathway (Horiuti vector) is the homogeneous solution of (2.5)4.

Hence every σ? for ? = 1, . . . ,=pa lies in the null space of N∗T, i.e., σ? ∈ null
(
N∗T

)
for

? = 1, . . . ,=pa. Therefore, determining the null
(
N∗T

)
is �nding a basis for this space,

where σ? , for ? = 1, . . . ,=pa, is obtained through a linear combination of that basis, such
that



T · β? = σ?, ? = 1, . . . ,=pa ⇔ 


T ·B = � (2.6)

where 

T ∈ Z=rx × =1 is the matrix that represents the null

(
N∗T

)
of dimension =1 , i.e.,

a basis for null
(
N∗T

)
formed by =1 linearly independent column vectors in Z=rx , and

β? ∈ R=1+ is the vector of positive coordinates of σ? in that basis, for ? = 1, . . . ,=pa. The
β?, ? = 1, . . . ,=pa vectors form the columns of B ∈ R=1 × =pa+ .

4Notice that the Horiuti vector is determined to cancel the intermediate species in the global reaction,
satisfying (2.2) and (2.5).
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Actually, =1 represents the number of linearly independent basic paths that constitute
sequences of arcs among terminal species, establishing fragments of the reaction net-
work. Hence, when all fragments are simultaneously considered the entire network is
established. Yablonsky et al. (1991) described the columns of 
T as paths of the route

(meaning fragments of the pathway). Therefore, the theory of steady-state reactions in-
volves determining fragments of the network that are represented through vectors that lie
in the null space of N∗T.

In Figure 2.7, there are four chemical reactions (reaction steps) that form a single pathway,
=pa = 1, indicated by the single Horiuti vector σ that results in the global reaction.

Reaction A 9 f 9

A B

C

D

E

A1

A2

A3

A4

A B 1 3
B C 2 1
B D 3 1
B E 4 1

Global reaction: 3A C + D + E

N
∗T =

r1 r2 r3 r4[ ]
1 −1 −1 −1 B ΩT =

(a) (b) (c)






1 1 1 r1

0 0 1 r2

0 1 0 r3

1 0 0 r4

β =






1 (a)

1 (b)

1 (c)

σ =






3 r1

1 r2

1 r3

1 r4

Figure 2.7 Reaction Horiuti numbers, and related matrices, in a linear network com-
posed by a linearly independent set of reactions, with only one intermediate species, B.

In fact, in Figure 2.7, the pathway is decomposed in three network fragments, (a) with A1
and A4, (b) with A1 and A3, and (c) A1 and A2, indicated by the basic column vectors of 
T.
These basic paths are represented through (a) A B E, (b) A B D, and
(c) A B C. In steady state, the original reaction rates are a linear combination of
the rates of the single route (left side of equation), as such as they are a linear combination
of the rate of basic paths (a), (b) and (c), (right side of equation):

A1

A2

A3

A4


= σr ⇔


A1

A2

A3

A4


= 


T · β · r = 

T ·


A0

A1

A2

 ,
where A0, A1 and A2 are the rates of the basic paths (a), (b) and (c), respectively. Thus,
establishing that: (i) A1 = 3r = A0 + A1 + A2 , (ii) A2 = r = A2 , (iii) A3 = r = A1 , and
(iv) A4 = r = A0. Therefore, A1 = A2 + A3 + A4 in steady conditions.

Consequently, the paths along the non-basic routes composing a reaction are substituted
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by equivalent paths along the basic routes. In fact, the pathway ? ∈ pa can be a non-basic
route, which is a linear combination of the basic paths, and, as shown in the previous
example, every reaction can be substituted by equivalent paths along the basic routes.

In order to study the cases where =pa > 1, consider an additional reaction in the network
of Figure 2.7, for example A5 : C D, that turns the system linearly dependent, as
shown in Figure 2.8.

Reaction A 9 f 9,1 f 9,2

A B

C

D

E

A1

A2

A3

A4

A5

A B 1 3 3
B C 2 1 2
B D 3 1 0
B E 4 1 1
C D 5 1 2

Global reaction: 3A 2D + E

Figure 2.8 Reaction Horiuti numbers in a linear network composed by a linearly
dependent set of reactions, with two intermediate species, B and C.

With the addition of A5 to this chemical system, the basic paths are now (a) A
B E , (b) A B D, and (c) A B C D. The reaction rates can
be written as

A1

A2

A3

A4

A5


=



3

1

1

1

1


r1 +



3

2

0

1

2


r2 =



1 1 1

0 0 1

0 1 0

1 0 0

0 0 1


·

1 1

1 0

1 2

 ·
[
r1

r2

]
=



1 1 1

0 0 1

0 1 0

1 0 0

0 0 1


·

A0

A1

A2


Thus, establishing that: (i) A1 = 3(r1 + r2) = A0 + A1 + A2 , (ii) A2 = r1 + 2r2 = A2 ,
(iii) A3 = r1 = A1 , (iv) A4 = r1+r2 = A0, and (v) A5 = r1+2r2 = A2 . Therefore, A1 = A2+A3+A4
and A2 = A5 in steady conditions.

For nonlinear networks, the previous analysis is not as simple as it is for linear networks
since more than one node is involved in a single (nonlinear) reaction step. However, if the
abstraction of the nodes is considered and the concept of path is performed by imagining
a sequence of events, it is possible to obtain an analogy with the analysis performed for
linear networks. Let us consider the previous example in Figure 2.6, in which species
B and C are intermediates, the matrices and vectors previously described assume these
values:
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N
∗T =

r1 r2 r3 r4[ ]
1 −2 0 0 B

0 0 1 −1 C
ΩT =

(a) (b)






0 2 r1

0 1 r2

1 0 r3

1 0 r4

β =

[ ]
1 (a)

1 (b)
σ =






2 r1

1 r2

1 r3

1 r4

Note that, di�erently of linear networks, the basis vectors of 
T present values superior
than unity. The �rst column basis vector of 
T, represented by (a), contains the reaction
A3 and A4, establishing the path A C D; and the column vector (b) establishes
2A 2B D + E, concerning 2A1 and A2. The single pathway is, thus, established
through the sum of both basic paths, resulting in the global reaction 3A 2D + E.

In the example of a nonlinear network shown in Figure 2.9, there is a single basic vector
that forms the single pathway, σ = ωT, where the symbol ω is used to indicate a row
vector of 
. Note that the �rst step of this pathway is related to A1 plus A2, and the second
to A3. Once A1 and A2 occur in parallel reactions, the joining of both reaction components
maintains the same rate of the slowest one, but, since there is steady condition, i.e., B and
C are intermediate species in which the rate of their production equals the consumption
rate, these invariants are established: A1 = A2 = A3 = r .

A

B

C

A3

D

E

A1

A2

Reaction A 9 f 9

A B 1 1
A C 2 1
B + C D + E 3 1

Global reaction: 2A D + E

N
∗T =

r1 r2 r3[ ]
1 0 −1 B

0 1 −1 C
ωT =

(a)





1 r1

1 r2

1 r3

β = 1 σ =





1 r1

1 r2

1 r3

Figure 2.9 Horiuti numbers and related matrices for a nonlinear network composed
by a linearly independent set of reactions, with two intermediate species, B and C.

Yablonsky et al. (1991) wrote: �The application of the concept of the rate along the

basic route provides a possibility of obtaining a new formulation for the quasi-stationary
conditions in terms of the Horiuti theory which is di�erent from the ordinary one, i.e.,
the formation of an intermediate is equal to that of its consumption. Temkin called the
equations obtained the conditions for the stationarity of steps.�.

Pantea et al. (2014) studied the use of quasi-steady-state assumption for model reduction
in chemical reaction systems operating at unsteady conditions. In this case the steady-
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state assumption is adopted to eliminate highly reactive intermediate species and remove
large rate constants that cannot be determined from concentration measurements. They
demonstrated with examples that the classical model reduction method has the advantages
of (i) allowing an easier model validation (since the reduced model covers species that are
observed to greater extents), (ii) facilitating the estimation of parameters (since slower
kinetics are presented in this reduced version of the model in contrast to the original model
in which in practice the origin of intermediate species cannot be accurately identi�ed),
and (iii) avoiding numerical problems.

Although the theory of steady-state reaction systems described in this section is di�erent
from what we are interested in performing � modeling the dynamics of reaction systems,
i.e., �nding networks that match unsteady-state conditions � the concepts covered by
this theory are very useful in the task of generating feasible networks (connected and
consistent structures) without the support of experimental data, but instead, considering
structural �uxes in steady conditions, as it will be shown in later sections. Therefore, the
identi�cation of alternative reaction paths existing in a given reaction network constitutes
a fundamental problem in the analysis of the corresponding kinetic models, which can be
carried out either through the study of the properties of the corresponding network, or
through the analysis of the algebraic properties of matrices that describe this network.
Another possibility consists, for example, in the analysis of the stoichiometric matrix of
the set of chemical reactions. This topic is considered in the next section.

2.2 The stoichiometric matrix properties

�The stoichiometric matrix is so informative about physiological states

that we must study its fundamental properties.�

� John Doyle

This section describes the meaning of the spatial relationships between vectors in a linear
system of equations, namely to understand the relationships between reaction �uxes and
species �uxes through the linear transformation that the stoichiometric matrix represents.
The concepts that emerge from this study are essential/fundamental for a complete un-
derstanding of the meaning of each component of a linear system of equations and how
they can be decomposed/visualized in fundamental subspaces of a matrix, always having
in view the interpretation of these properties to extract their physical meaning, allowing
a better identi�cation of chemical reaction systems.

Thus, these concepts will be necessary to understand: what (i) are invariant relationships
in reaction systems, (ii) the steady state means and how these two concepts are related to
network connectivity properties and representation of linear and nonlinear structures, (iii)
the dynamic state represents and how this is related to the dynamic reaction component,
as well as other concepts.



40 Theoretical Background & Terminology

The terminology ��ux� is widely used. Here, these quantities do not represent �ow of
species (per unit of area and time); instead they represent a rate of change, or simply
a change through a speci�c network of connections, and hence they are more similar to
�owrates. Species �uxes can be represented by cumulative changes of number of moles
or concentration changes, the rate of molar changes or the concentration derivatives.
They are response/dependent variables of the species mass balances, both in the rate-
or the extent-based approaches. Reaction �uxes can be reaction rates (moles per time
and per unit of volume or not) or reaction extents (moles). They are the unknown
vectors (variables) in the species mass balances. Rate- and extent-based approaches are
(approximately) equivalent, depending on the available data relating to a case study and
the choice of the type of methods one wants to work with. In fact we want to correlate
species �uxes with reaction �uxes in order to identify the reaction network.

2.2.1 The stoichiometric matrix

The stoichiometric matrix is the starting point for various mathematical analysis used to
determine the properties of chemical reaction networks (Palsson, 2006b). It contains chem-
ical and network (structural) information related to the rules of chemistry and reaction
interconnections. As presented in Section 2.1.3, the stoichiometric matrix N ∈ Z=rx × =st
is composed by integer coe�cients consisting of the number of molecules participating
in the reaction. This number is the stoichiometric coe�cient a 9,B that assumes negative
and positive values for reagent and product species B ∈ st, respectively, in the chemical
reaction 9 ∈ rx. We de�ne here st and rx as the sets of species and reactions, respec-
tively, that compose the network, and, =st and =rx as their cardinals. Therefore, the
stoichiometric matrix is composed by =rx rows and =st columns with =rx=st entries a 9,B .
Figure 2.10 presents an schematic representation of the transposed stoichiometric matrix.

NT [nst × nrx]

connectivity

st
o
ic
h
io
m
e
tr
y

S
p
ec
ie
s

Reaction

Figure 2.10 Schematic representation of NT. Notice that every column 9 = 1, . . . ,=rx
and every row B = 1, . . . ,=st contain, respectively, information related to the stoichiometry
of species and to the connectivity of reactions.

As represented by the green lines in Figure 2.10, each column 9 ∈ rx describes a reaction

that is constrained by the rules of chemistry, such as elemental balancing, thus establishing
the stoichiometric relationships. Each row B ∈ st describes the reactions in which the
species B participates and therefore how the reactions are interconnected, forming the
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reaction network (Palsson, 2006b).

In batch chemical reaction systems, assumed to be of constant volume, the stoichiomet-
ric matrix represents a linear transformation of the instantaneous reaction �ux vector
r(C) ∈ R=rx+ to a vector of time derivatives of the species concentration vector c(C) ∈ R=st+ ,
establishing the dynamic mass balances:

dc(C)
dC

= NT · r(C) ⇔ dc(C)
dC

=

=rx∑
9=1

ν 9A 9 (C) (2.7)

where ν 9 ≡ ν∗, 9 is the column 9 of the transposed stoichiometric matrix, and A 9 (C) the
instantaneous reaction �ux related to the reaction component 9 ∈ rx. In general r(C)
is a vector of variables of the previous function, thus, it belongs to the codomain while
dc(C)/dC to the domain of the linear transformation. Note that the stoichiometric matrix
is a mathematical mapping operation.

The next section presents the four fundamental subspaces associated with the stoichio-
metric matrix and how we can mathematically de�ne them and interpret their contents
in (bio)chemical terms.

2.2.2 The fundamental subspaces of the stoichiometric matrix

There are four fundamental subspaces associated with NT that assume important roles
in the chemical physical properties of the system, namely, the column and the row spaces,
and, the left and the right null spaces. The column and row spaces of NT are spanned
by the respective basic columns and basic rows of this matrix, i.e., the ones that present
pivot coe�cients after a Gauss-Jordan decomposition (Meyer, 2000). The left and right
null spaces are de�ned through any set of linearly independent vectors that satis�es,
respectively, the next homogeneous systems of equations, such that

N ·w: = 0, : = 1, . . . , =st − ' and NT · x: = 0, : = 1, . . . , =rx − ' (2.8)

where ' is the matrix rank of N, and, w: ∈ R=st and x: ∈ R=rx belong to the left and
right null spaces of NT, respectively. Therefore, the dimensions of the left and right null
spaces of NT are the di�erences among the number of rows (species) and ', and among
the number of columns (chemical reactions) and ', respectively. These di�erences, i.e.,
the left and the right null spaces dimensions, establish the number of linearly dependent
relationships among species and chemical reactions, respectively. On the other hand,
' represents the number of linearly independent relationships in both sets of chemical
reactions (columns) and chemical species (rows), which all of them compose the reaction
network.

The row and (right) null spaces are complementary and orthogonal with each other,
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supporting information related to the set of chemical reactions, such that5:

=rx = dim
(
null

(
NT

))
+ dim

(
row

(
NT

))
(2.9)

forming the place where r(C) ∈ R=rx+ belongs. In fact the reaction rate vector can be
decomposed in two components:

r(C) = rss(C) + rdyn(C) (2.10)

in which rss ∈ null
(
NT

)
is related to the steady-state component and rdyn ∈ row

(
NT

)
with the dynamic component. Hence, both reaction components can be written as linear
combinations of the respective basis vectors that form each space:

rss =
=rx−'∑
:=1

x:U: and rdyn =

'∑
B=1

νBVB (2.11)

where U: and VB are, respectively, the coordinates of the steady-state and dynamic reaction
components in the related bases x: , : = 1, . . . ,=rx − ' and νB ≡ νB,∗, B = 1, . . . ,', the basis
vectors that span, respectively, the null and the row spaces of NT.

Therefore null
(
NT

)
contains all steady-state reaction �ux components of interest for

homeostatic states that occurs in several (bio) living systems and chemical systems that

operates in steady conditions, while row
(
NT

)
embraces all dynamic reaction �ux distribu-

tions and thermodynamic driving forces responsible to reaction activity changes (Palsson,
2006b).

On the other hand, the column and left null spaces, also complementary and orthogonal
with each other, support information related to the set of species such that

=st = dim
(
leftNull

(
NT

))
+ dim

(
col

(
NT

))
(2.12)

forming the required dimension of the concentration derivative vector, dc(C)/dC ∈ R=st ,
that belongs to this place. Similarly with the reaction rate vector, the concentration
derivative vector can also be decomposed in two components

dc(C)
dC

=
dc(C)

dC ss
+ dc(C)

dC dyn
(2.13)

in which the steady-state component dc(C)/dC ss ∈ leftNull
(
NT

)
and the dynamic dc(C)/dC dyn ∈

col
(
NT

)
. Therefore, both components constitute linear combinations of their respective

5From the typical linear algebra naming convention, null space refers to the right null space of an
array. Therefore, the left null space always needs to be referred to as the left null space, while the right
one does not, by convention.
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bases:
dc(C)

dC ss
=

=st−'∑
:=1

w:W: and
dc(C)

dC dyn
=

'∑
9=1

ν 9X 9 (2.14)

where W: and X 9 are the coordinates of the corresponding dc(C)/dC component in the
related basis formed by w: , : = 1, . . . ,=st − ', and ν 9 , 9 = 1, . . . ,', the basis vectors that
span the left null and the column spaces of NT, respectively.

The leftNull
(
NT

)
addresses conservation relationships among chemical species during the

reaction event, establishing time or reaction invariants of the chemical reaction system.
This topic, invariants in chemical system, is discussed in more detail in the next section.

On the other hand, the col
(
NT

)
contains all time derivatives of the species concentrations,

presenting how the concentration states change in face of thermodynamic driving forces
(Palsson, 2006b).

Therefore (2.7) can be rewritten as

dc(C)
dC ss

+ dc(C)
dC dyn

= NT ·
(
rss(C) + rdyn(C)

)
⇔

=st−'∑
:=1

w:W: +
'∑
9=1

ν 9X 9 = NT ·
(
=rx−'∑
:=1

x:U: +
'∑
B=1

νBVB

)
⇔

W · γ +NT · δ = NT ·X · α +NT ·N · β

(2.15)

where W[=st × =st − '] is the matrix composed by column vectors w: that span the
left null space of NT, and γ and δ are the vectors of coordinates of the type W: and X 9 ,
respectively; and X[=rx × =rx−'] is the matrix composed by the column vectors x: that
span the null space of NT, and α and β are the vectors of coordinates of the type U: and
VB , respectively.

Notice that:

(i) W · γ = 0[=st × 1],

(ii) X 9 = 0 for every non basic column ν 9 of NT, i.e., 9 = ' + 1, . . . ,=rx,

(iii) NT ·X = 0[=rx × 1], and

(iv) VB = 0 for every non basic column νB of N, i.e., B = ' + 1, . . . ,=st.

Therefore, the relation in (2.15) can be simpli�ed to

NT · δ = NT ·N · β (2.16)

where, it can be observed that
δ = N · β (2.17)
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This last equation demonstrates that the vector of coordinates of the concentration deriva-
tive vector lie in the row space of the stoichiometric matrix. In fact, it is the rdyn in (2.11).

Thus, when considering the segregated analysis of the steady and the dynamic states,
both components obey their respective linear transformations, such that:

dc(C)
dC ss

= NT · rss(C) and
dc(C)

dC dyn
= NT · rdyn(C) (2.18)

where the component dc(C)/dC ss (the null vector with dimension =st) corresponds to the
image of rss(C) after the linear transformation in (2.18). Hence dc(C)/dC = dc(C)/dC dyn
and it is located in col

(
NT

)
. Although dc(C)/dC ss ∈ R=st living in leftNull

(
NT

)
, it also

belongs to col
(
NT

)
; one of the necessary conditions of a given space is to own the null

vector of its dimension (Meyer, 2000). Hence dc(C)/dC ss lives in the intersection of both
column and left null spaces of NT, representing the origin dot.

Another way to view the previous description is to note that the null inner product is
veri�ed through

〈w: , ν 9 〉 = 0, : = 1, . . . ,=st − ' and 9 = 1, . . . ,=rx (2.19)

demonstrating the orthogonality among leftNull
(
NT

)
and col

(
NT

)
.

Moreover, the subspace col
(
NT

)
is limited (or bounded), i.e., only a portion of this space

is explored since the reaction �uxes A 9 have a maximum value, i.e., A 9 ≤ A 9,max, thus
limiting the size of the time derivatives.

Pedagogical example

Consider the following example in Figure 2.11 to illustrate the concepts that were intro-
duced during this section. The system is composed by three species and three chemical
reactions:

A B CA1 A2

A3

NT =

A1 A2 A3


−1 0 −1 A

1 −1 0 B

0 1 1 C

Figure 2.11 Reaction network with a redundant pathway and corresponding stoichio-
metric matrix.

The three chemical reactions of Figure 2.11 form a linearly dependent set since one of
them can be written as a linear combination of the others (for example: A3 = A1 + A2).
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The vectors that satisfy the respective homogeneous system of equations in (2.8) are:

w = I


1

1

1

 : I ∈ R and x = @


1

1

−1

 : @ ∈ R

which span, respectively, the left and right null spaces of NT.

The �rst two columns and two rows span the column and the row spaces, respectively, of
NT. Hence the four subspaces are given by:

col
(
NT

)
=


−1 0

1 −1

0 1

 row
(
NT

)
=


−1 1

0 −1

−1 0

 leftNull
(
NT

)
=


1

1

1

 null
(
NT

)
=


1

1

−1


Assume, for example, that for a given instant C the concentration derivatives vector and
the reaction rates vector are, respectively:

dc(C)
dC

=


−4

−1

5

 and r(C) =

1

2

3


Thus one can verify that both equations in (2.11) hold:


U

U

−U

 =


1

1

−1

 · U, ∀U ∈ R and


1

2

3

 =


−1 1

0 −1

−1 0

 ·
[
4

5

]
and the same for both equations in (2.14):


W

W

W

 =


1

1

1

 · W, ∀W ∈ R and


−4

−1

5

 =


−1 0

1 −1

0 1

 ·
[
−3

−2

]
and (2.10) and (2.13) are, respectively, satis�ed with U = W = 0:


1

2

3

 = 0


1

1

−1

 +

1

2

3

 and


−4

−1

5

 = 0


1

1

1

 +

−4

−1

5


However, if we consider the reaction rate vector as any solution that satis�es the under-
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determined system of equations with this �xed dc(C)/dC , such that:
−4

−1

5

 =


−1 0 −1

1 −1 0

0 1 1

 ·

4 − I
5 − I
I

 with 0 ≤ I ≤ 4

and consider (2.10) such that


4 − I
5 − I
I

 = (3 − I)


1

1

−1

 +

−1 0

1 −1

0 1

 ·
[
−3

−2

]
it is notable that the degree of freedom I exists due to the existence of null

(
NT

)
.

Also, it is possible to verify from (2.15) that


−1 0

1 −1

0 1

 ·
[
X1

X2

]
=


−1 0 −1

1 −1 0

0 1 1

 ·

−1 1

0 −1

−1 0

 ·
[
V1

V2

]
where X1 = −2V1 + V2 and X2 = −V1 − V2, with 0 ≥ V2 ≥ V1. Note that this relationship

δ =

[
−2 1

−1 −1

]
· β

is valid only for these pair of basis that were chosen to represent col
(
NT

)
and row

(
NT

)
.

Hence, naturally, the correlation among coordinates in each basis depends on the basis
adopted.

Finally, notice that the left null space showed only a single conservation relationship
among species A, B, C, indicating that they present the same, for example, amounts
of carbon element, establishing an invariant among isomers molecules type. However,
this example is a simple illustration about the stoichiometric spaces, where no informa-
tion regarding the species molecular formula is provided. Notice that the orthogonality
properties among left null and column spaces hold:

[
1 1 1

]
·

−1

1

0

 = 0 and
[
1 1 1

]
·


0

−1

1

 = 0

as such as for null and row spaces:

[
1 1 −1

]
·

−1

0

−1

 = 0 and
[
1 1 −1

]
·


1

−1

0

 = 0
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which is an obvious consequence since both null spaces are determined by solving their
respective homogeneous system of equations, i.e., the inner product is equivalent to a
single equation of the homogeneous system of equations.

Although the complete description of the four subspaces of the stoichiometric matrix has
been considered in this section, an additional analysis can be made showing the intercon-
nection of the same subspaces using di�erent bases that have particular characteristics:
they are orthonormal, i.e., they constitute a rotation of the previous bases in such a way
that all vectors are orthogonal to each other, and also have the same unit length, (ℓ2−norm
equal to one, unit vectors). This is the topic that follows next. An introduction about
what is this technique and where it is used is presented in Appendix I.1.

2.2.3 The Singular Value Decomposition of N

Unlike matrices that comprise experimental data with uncertain, sparse and incomplete
measurements, the stoichiometric matrix N is a �perfect� matrix with integer coe�cients
describing the structure of a reaction network. The Singular Value Decomposition (SVD)
of NT is a particularly useful manner to obtain the basic information about the four
fundamental subspaces of NT de�ned in the previous section, and thus it can be used to
analyze network properties6.

The four fundamental spaces of NT are presented in Figure 2.12, where the columns of U

matrix represent col
(
NT

)
and leftNull

(
NT

)
through the purple and non colored areas,

respectively, and the columns of V matrix represent the row
(
NT

)
and null

(
NT

)
through

the purple and non colored areas, respectively.

NT [nst × nrx]

connectivity

st
o
ic
h
io
m
e
tr
y

S
p
ec
ie
s

Reaction

=

U [nst × nst]

col
(
NT

)

[nst ×R]
·

Σ [nst × nrx]

Σ′

[R×R]

0

0

0
[nst −R× nrx −R]

·

VT [nrx × nrx]

(
row

(
NT

))T

[R× nrx]

(
null

(
NT

))T

[nrx −R× nrx]

leftNull
(
NT

)

[nst × nst −R]

Figure 2.12 Schematic representation of the SVD of NT.

Once the matrices U and V from SVD are orthonormal, the physical and chemical prop-
erties such as number of moles involved in each chemical reaction, mass conservation
relationships, reaction rates, etc, are not easily (or directly) interpreted through the en-

6In the context of metabolic networks, they adopt the symbol S for representing the transposed
stoichiometric matrix (S ≡ NT). However, we follow the classic nomenclature using the symbol NT.
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tries of these matrices. Hence orthonormal basis vectors are mathematically convenient,
but not necessarily biologically or chemically meaningful (Palsson, 2015).

However, the �rst ' columns of U depict the stoichiometric relationships among species
in every chemical reaction, analogous to a single column of NT, representing a single
reaction. The corresponding column of V presents the combination of the reaction �uxes
that drive these stoichiometric relationships, thus, presenting the connectivity among
chemical reactions in the network. Therefore the column space contains the direction
of motion and the row space the drivers for motion. To compute the resulting dynamic
states, one needs kinetic constants (Palsson, 2015).

Similarly with (I.5), the SVD of N can be written as

N ·U = V · � (2.20)

where the interrelationships of subspaces can be seen more easily. When separating the
null spaces from columns and row spaces, it is clear to observe in Figure 2.13 that N maps

the col
(
NT

)
onto row

(
NT

)
scaled (stretched) by the corresponding f value. On the other

hand, the null spaces are also interconnected satisfying the same linear transformation in
(2.20), see Figure 2.14.

N

[nrx × nst]
· col

(
NT

)

[nst ×R]

=
row

(
NT

)

[nrx ×R]
·

Σ′

[R×R]

Figure 2.13 Schematic representation of SVD(N) with its characteristic subspaces.

N

[nrx × nst]
·

leftNull
(
NT

)

[nst × nst −R]

=
null

(
NT

)

[nrx × nrx −R]
· 0

[nrx −R× nst −R]

Figure 2.14 Schematic representation of SVD(N) with its null spaces.
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Similarly with (I.6), the next equation can be written as

NT ·V = U · � (2.21)

and not di�erently from previous observations, NT maps the row
(
NT

)
onto col

(
NT

)
stretched by the corresponding f value, as shown in Figure 2.15.

NT [nst × nrx] · row
(
NT

)

[nrx ×R]

=
col

(
NT

)

[nst ×R]
·

Σ′

[R×R]

Figure 2.15 Schematic representation of the SVD(NT) with its characteristics sub-
spaces interconnections.

Which can also be schematized with regard to the linear transformation in (2.21) for null
spaces, as presented in Figure 2.16.

NT [nst × nrx] · null
(
NT

)

[nrx × nrx −R]

=

leftNull
(
NT

)

[nst × nst −R]

· 0
[nst −R× nrx −R]

Figure 2.16 Null spaces interconnection of NT.

Note that eqs. (I.5) and (I.6) represent only the part related to linearly independent
sets of the column and row spaces of the stoichiometric matrix, i.e., the ones showed in
Figures 2.13 and 2.15, whereas eqs. (2.20) and (2.21) cover the four subspaces.

If we consider the �rst equation presented in this section, the dynamic balance in (2.7),
with additional matrices operations the equation still satis�ed as

UT · dc(C)
dC

= UT ·NT ·V ·VT · r(C) or
dUT · c(C)

dC
= � ·VT · r(C) (2.22)

Therefore, the left singular vectors in U form linear combinations of the concentration
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variables and the right singular vectors in V form linear combinations of the reaction

�uxes. In fact every inner product of the component u8 from col
(
NT

)
with the species

concentration vector, i.e.,

uT8 · c = D8,121 + D8,222 + . . . + D8,=st2=st (2.23)

is being uniquely moved by a linear combination of reaction �uxes in the row
(
NT

)
, such

as
vT8 · r = E8,1A1 + E8,2A2 + . . . + E8,=rxA=rx (2.24)

and the extent of this motion is given by f8 .

An important feature of SVD is that the singular vectors are orthonormal to each other,
and consequently each of the 8th motions in eqs. (2.23) and (2.24) are, at maximum,
structurally decoupled, i.e., there is no correlation among the linear combinations of
species concentration as such as among reaction �ux linear combinations (Palsson, 2006b).

This concept de�nes eigen-reactions or systemic reactions as

=st∑
B ∈ D8,B<0

D8,B2B

∑=rx
9 ∈ E8, 9>0

E8, 9A 9

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−∑=rx
9 ∈ E8, 9<0

E8, 9A 9

=st∑
B ∈ D8,B>0

D8,B2B, 8 = 1, . . . ,' (2.25)

where the elements of u8 are equivalent to systemic stoichiometric coe�cients analogous
to aB, 9 in vectors ν 9 that compose the columns of NT; and the elements of v8 are systemic
participation numbers. Hence reactions with positive �uxes correspond to reactions driv-
ing the systemic reaction forward, while those with negative �uxes drive it in the reverse
direction. The concept of systemic reactions has been used in the literature in the con-
text of metabolic network identi�cation for studying the systems biology of metabolism,
describing the function of the metabolic network as a whole (Famili and Palsson, 2003b).

Pedagogical example

Following the same pedagogical example previously presented in Figure 2.11, the SVD of
NT leads to the following matrices:

U =

√
3

3


−
√

2 0 1

1√
2
−
√

3
2 1

1√
2

√
3
2 1


� =

√
3

3


3 0 0

0 3 0

0 0 0

 VT =

√
3

3


√

3
2 0

√
3
2

− 1√
2

√
2 1√

2

−1 −1 1


Notice that both U and V have full rank, but � is singular (rank-de�cient) with only
two linearly independent vectors. Hence the rank of N is two. The four orthonormal
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subspaces are represented in U and V where

col
(
NT

)
=

√
3

3


−
√

2 0

1√
2
−
√

3
2

1√
2

√
3
2


leftNull

(
NT

)
=

√
3

3


1

1

1



row
(
NT

)
=

√
3

3


√

3
2 −

1√
2

0
√

2√
3
2

1√
2


null

(
NT

)
=

√
3

3


−1

−1

1


It is simple to verify that the same concentration derivative and reaction �ux vectors can
be written as a linear combination of the corresponding orthonormal basis:

−4

−1

5

 = col
(
NT

)
·
[
2
√

6

3
√

2

]
and


1

2

3

 = row
(
NT

)
·
[
2
√

2
√

6

]

The chemical reactions A1 and A2 of Figure 2.11 are written equivalently by the two columns
of U, such that

A ′1 :

√
2

3
A

1
√

6
B +

1
√

6
C

and
A ′2 :

1
√

2
B

1
√

2
C.

The reaction rates in this orthonormal basis are

A ′1 =
1
√

2
A1 +

1
√

2
A3

and

A ′2 = −
1
√

6
A1 +

√
2

3
A2 +

1
√

6
A3

using the �rst two columns of V.

Notice that the original stoichiometric proportions are maintained in this orthonormal
basis, although it is harder to interpret. Therefore, the choice of bases for the four
fundamental subspaces becomes important since it in�uences the phenomenological inter-
pretation.

Considering the relation in (2.22) and the orthonormal matrices of SVD(NT) the mass
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balance is written as
−
√

2 1√
2

1√
2

0 −
√

3
2

√
3
2

1 1 1


·

−4

−1

5

 =


√

3 0 0

0
√

3 0

0 0 0

 ·

√

3
2 0

√
3
2

− 1√
2

√
2 1√

2

−1 −1 1


·

1

2

3


where the scalar

√
3/3 is excluded. The components related to leftNull

(
NT

)
= (1,1,1) and

null
(
NT

)
= (−1, − 1,1) could be excluded satisfying equally the previous relationship in

an economy SVD format.

The SVD of the stoichiometric matrix is not only a useful tool to identify the four as-
sociated fundamental subspaces, but this technique is also widely used for data analysis.
When considering its application to the matrix of data, it enables the �nding of principal
features that contribute most to data variance, allowing thus, the model reduction when
identifying the its complexity (dimension) required to explain the observable data changes.
This is a fundamental problem of data-driven modeling techniques for the obtainment of
any empirical model in the �eld of machine learning and arti�cial intelligence. However,
the SVD (and the data analysis over its results) can also be used in the �eld of deter-
ministic modeling, taking the advantage of characterizing the data space and determining
the dimension of this space for building a model based on �rst principles. This is the
approach adopted in this thesis, where the SVD of data is considered in the methodology
Step 2, described in Chapter 6.

2.3 Reaction invariants and linear system of equations

in chemical reaction systems

This section presents several concepts and terminology related to reaction network syn-
thesis and analysis that are crucial for understanding structural characteristics of chemical
reaction systems. For this, several concepts of linear algebra introduced in Section 2.2 are
required. The catalytic hydrogenation of succinic acid is taken as an illustrative example
during this section.

2.3.1 Reaction invariants

The modeling task involves the quantitative description of the system under analysis,
requiring the establishment of system invariants. The invariants are conserved quan-
tities that can be observed in any closed system, they are mathematically represented
through equality equations that decrease the freedom degrees number (Flockerzi et al.,
2007; Gadewar et al., 2001, 2005; Madron and Veverka, 1991).

Consisting in an invariant phenomenon of closed reaction systems, the mass conserva-
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tion extends to conserve the number of atoms of each chemical element. Thus, a closed
chemical reaction system may be described through a set of equations of the form

=st∑
B=1

04,B=B = 14 ; 4 = 1, . . . , =el (2.26)

where 04,B is the number of atoms respected to the element 4 in the species molecule B, =B
is the number of moles of the species B, and, 14 , an invariant, is the �xed number of moles
respected to the element 4 in the system. The quantities =el and =st are, respectively,
the cardinal numbers of chemical elements 4 ∈ el and species B ∈ st sets. Alternatively,
(2.26) can be written in terms of the di�erential moles number

=st∑
B=1

04,Bd=B = 0; 4 = 1, . . . , =el (2.27)

where d=B is the variation (delta) of the number of moles respected to species B between
two chemical composition states (Smith and Missen, 1982). In matrix form the latter is

A · dn = 0 (2.28)

where A ∈ N=el × =st is the atomic matrix of chemical species and dn ∈ Z=st is the vector
of species stoichiometric coe�cients in a single chemical reaction, thus a column vector
of the transposed stoichiometric matrix.

From linear algebra, (2.28) consists of an homogeneous system of equations, and, determin-
ing its homogeneous space of solutions consists on �nding a set of linearly independent
vectors of dn type, that span the (right) null space of A, i.e., a basis with dimension
nrxli. In this case, the number of degrees of freedom (nrxli) is easily computed by the
di�erence between the variables number =st and the number of independent equations
(rank of A). This is the required number of additional relationships between the variables
to determine any state of chemical composition, with zero degrees of freedom. These
relationships can be derived from thermodynamic conditions, kinetic laws and analytical
determinations (Smith and Missen, 1982). On the other hand, the rank of A determines
the dimension of the left null space of the transposed stoichiometric matrix, and its rows
with pivot numbers constitute a basis for the invariant relationships in the chemical sys-
tem. Therefore, the dimension of the row/column space of A is the number of linearly
independent invariant relationships, ninli. Note that every row vector of A belongs to
the left null space of the transposed stoichiometric matrix, as it was previously presented
in (2.8), on the left side.

However, beyond the total mass and the number of atoms of each chemical element,
examples of additional invariants can be expressed through blocks of elements or molecular
subunits (e.g., carboxyl, hydroxyl, phosphate, benzyl groups, etc.), or chemical moieties
(e.g., pentose, purine, etc.) (Palsson, 2006b), kinetic parameters in reversible chemical
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reactions that yield the equilibrium constants in particular reaction systems (Yablonsky
et al., 2020), electric charge of ionic species, and additional relationships among chemical
species that can be observed either through experimental data or the structure of the
reaction network. Therefore, it makes more sense to refer A as the matrix of invariant

relationships, or simply invariant matrix, instead of atomic matrix, since it can present
rows referring to others conserved properties than the number of atoms regarding to
chemical elements among molecules, satisfying equally (2.28).

2.3.2 The invariant relationships and the stoichiometric matrix

In chemical reaction systems, since at least one conservative property must be veri�ed
(e.g., the total mass of the reacting system), the left null space of the transposed stoichio-

metric matrix will always exists (=st > rank
(
NT

)
), and as such, the (right) null space of

A will always exists (=st > rank (A)). The null space of the invariant matrix and the left
null space of the transposed stoichiometric matrix are related through

=st − dim
(
leftNull

(
NT

))
= dim (null (A)) ⇔

=st − ninli = nrxli.

(2.29)

Observe that the greater is rank
(
NT

)
or the smaller is dim

(
leftNull

(
NT

))
, the smaller

is rank (A) or the greater is dim (null (A)), for a �xed number of species.

This section is developed around this discussion: the relationship between the number of
linearly independent invariants and the number of linearly independent chemical reactions,
trying to express in various ways the meaning of this relationship in terms of (i) the graph
of the reaction network and (ii) the de�nition of species (groupings in subsets of species).

The next equations summarize previously presented concepts that will be needed to ana-
lyze the examples that will follow, making this discussion simpler:

� dim
(
leftNull

(
NT

))
= =st − rank

(
NT

)
,

� dim (null (A)) = =st − rank (A),

� rank (A) = ninli, and

� rank
(
NT

)
= nrxli.

For example, the catalytic hydrogenation of succinic acid involves nine chemical compo-
nents/species (with known molecular formula) in �ve chemical reactions. In Figure 2.17,
a matrix of invariants is presented, where the �rst three rows are respected to chemical
elements that make up the species molecules, formed namely by carbon, hydrogen and
oxygen, and, the fourth (last) row concerns to an extra invariant relationship. This last
invariant represents the conserved amount among molecules of the type �4 plus �3, which
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remains constant along the experiment, establishing that the number of moles given by
AS + GBL + BDO + THF + BuOH + PrOH is unchanged. Notice that this last invariant
relationship ensures that the presence of methane component is simultaneously veri�ed
with propanol, in the same rate of appearance.

r1 r2 r3 r4 r5
-1 0 0 0 0 AS
1 -1 -1 0 0 GBL
0 0 1 0 0 BDO
0 1 0 -1 0 THF
0 0 0 1 -1 BuOH
0 0 0 0 1 PrOH
0 0 0 0 1 CH4

-2 -2 -2 -1 -1 H2
2 1 0 0 0 H2O

A =

AS GBL BDO THF BuOH PrOH CH4 H2 H2O

C 4 4 4 4 4 3 1 0 0

H 6 6 10 8 10 8 4 2 2

O 4 2 2 1 1 1 0 0 1

inv1 1 1 1 1 1 1 0 0 0

NT =

A1 : AS + 2H2 GBL + 2H2O
A2 : GBL + 2H2 THF + H2O
A3 : GBL + 2H2 BDO =st = 9
A4 : THF + H2 BuOH nrxli = 5
A5 : BuOH + H2 PrOH + CH4 ninli = 4

Figure 2.17 On the upper left it is represented the invariant matrix, below it is located
the list of chemical reactions, followed by its concerning transposed stoichiometric matrix
and system characteristics.

Hence this system can be described through �ve linearly independent chemical reactions

(nrxli = 5) that form a basis for col
(
NT

)
and null (A) in R9 (=st = 9). Similarly, the

matrix of invariants is composed by four linearly independent rows (ninli = 4) that form

a basis for row (A) and leftNull
(
NT

)
in R9. Hence these space are complementary and

orthogonal with each other, such that every inner product among A rows andNT columns
equals zero, i.e.,

〈a8,∗, ν∗, 9 〉 = 0, 8 = 1, . . . ,ninli, 9 = 1, . . . ,=rx ⇔ row(A) ⊥ col
(
NT

)
(2.30)

and their dimensions add up to =st.

Observe that the matrix of invariants, namely its rows, span the left null space of NT, as
such as, the columns of NT span the (right) null space of A, or in another perspective,
observe that the null vector (with dimension nrxli) is being written as linear combinations
of the rows of NT through the coordinates vector a8,∗ such that

=st∑
B=1

08,Bν∗,B = 0, 8 = 1, . . . ,ninli ⇔ A ·NT = 0[ninli × nrxli] (2.31)

Thus, from another viewpoint, the invariant matrix can be described as a matrix of weights
in such a way that species stoichiometric coe�cients, multiplied by their respective weight,
adds up to zero for every chemical reaction, establishing reaction-invariant relationships.
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However, the �ve chemical reactions, in Figure 2.17, are structurally nonlinear involving
more than one species in the reactant and/or in the product sides. In simultaneous they
present a nonlinear reaction network which can be represented through a bipartite graph,
see Figure 2.18(a). In certain cases, it is possible to simplify the nonlinear reaction network
to linear by omitting some species (nodes) of the graph, like as shown in Figure 2.18(b).

AS

r1

H2

GBL

H2O

r2

THF

r3

BDO

r4

BuOH

r5

PrOH CH4

r1

r2 r3

r4

r5

AS

GBL

THF BDO

BuOH

PrOH

(a) (b)

Figure 2.18 Reaction network with �ve chemical reactions, described by (a) a nonlinear
graph where all chemical species are representative (circular nodes), and (b) a linear graph
with a smaller ser of representative species.

The criterion to suppress or add one or more species in the graph representation must
obey reaction-invariant relationships of the chemical system that are previously identi-
�ed/observed, or establish additional system invariants for modeling purposes. Certain
species can be omitted when the invariant relationships that they belong are excluded,
as one chemical reaction can be unconsidered when there is an additional invariant rela-
tionship established, containing at least one of the species involved in that reaction. The
next section presents several examples to clarify this topic.
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2.3.3 Representative and non-representative species

For the purpose of establishing which species may be represented in a graph structure (re-
action network graph), the set of species may be separated into two groups: (i) representa-
tive species, that are the ones represented by nodes in a graph, and (ii) non-representative
species, those omitted in the reaction network representation in order to obtain a more
straightforward graph eventually with a linear structure.

The non-representative species always constitute a set of linearly dependent species, i.e.,
they correspond to non-pivotal columns of N. On the other hand, the representative
species concerns to pivotal columns of N in addition to at least one linearly dependent
species. This linear dependence appears in the set of representative species due to a
fundamental network property: it must present a connected structure, and therefore, at
least one invariant relationship must be written. For example, from Figure 2.17, the
non-pivotal rows of NT concern to the last four rows (i.e., PrOH, CH4, H2 and H2O).
Excluding these rows turns N into a non-singular square matrix. This means that by
excluding the contribution of these species in the reaction system, the null space of N
is excluded, (the invariant relationships are excluded). In a graph representation, this
would result in a network with an open (free) arc where the arrow coming out of the
BuOH is free, not pointing to any node. Hence PrOH cannot be excluded in the graph
representation, and the system remains with one invariant quantity. On the other hand,
observe that all the other linearly dependent species can be excluded by simplifying the
nonlinear representation to a linear one, see Figure 2.18.

For example, the hydrogenation reaction of AS resulting in GBL and water, A1: AS +
2H2 GBL + 2H2O, that is represented by a linear graph when omitting the species
H2 and H2O resulting in AS GBL. If the species H2 and H2O are excluded from the
set of representative species, the reaction-invariant relationships regarding these species
are lost, resulting in the system presented in Figure 2.19. Note that it is still possible to
observe the carbon conservation equation, since the CH4 remains a representative species
in this example.

However, there is no need to maintain both products of A5 since they present redundant
information. Hence the reaction network in Figure 2.19 can be further simpli�ed when ex-
cluding one of the A5 products, resulting in the linear network presented in Figure 2.18(b).
The corresponding stoichiometric and reaction-invariant matrices of the linear network
(Figure 2.18(b)) are presented in Figure 2.20, where only inv1 remains valid.

In summary, whenever there is a nonlinear reaction involving more than one terminal
species on either side of the reaction (independently if they are initial reactants or �nal
products) one of the species can be considered non-representative, excluding it from the
network (and from the stoichiometric and invariant matrices) and, consequently, vanish-
ing/excluding the invariant relationship(s) that this species is part of. In this sense we
are �nally able to better de�ne the representative species as the ones that are required to
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A =

AS GBL BDO THF BuOH PrOH CH4

C 4 4 4 4 4 3 1

inv1 1 1 1 1 1 1 0

r1

r2 r3

r4

BuOH

r5

PrOH CH4

AS

GBL

THF BDO

AS GBL BDO THF BuOH PrOH CH4

r1 -1 1 0 0 0 0 0

r2 0 -1 0 1 0 0 0

r3 0 -1 1 0 0 0 0

r4 0 0 0 -1 1 0 0

r5 0 0 0 0 -1 1 1

N =

A1 : AS GBL
A2 : GBL THF
A3 : GBL BDO
A4 : THF BuOH
A5 : BuOH PrOH + CH4

=st = 7 nrxli = 5 ninli = 2

Figure 2.19 Invariant and stoichiometric matrices and corresponding nonlinear reac-
tion network.

A =
AS GBL BDO THF BuOH PrOH

inv1 1 1 1 1 1 1 nrxli = 5 ninli = 1 =st = 6

r1 r2 r3 r4 r5
-1 0 0 0 0 AS
1 -1 -1 0 0 GBL
0 0 1 0 0 BDO
0 1 0 -1 0 THF
0 0 0 1 -1 BuOH
0 0 0 0 1 PrOH

A1 : AS GBL
NT = A2 : GBL THF

A3 : GBL BDO
A4 : THF BuOH
A5 : BuOH PrOH

Figure 2.20 Invariant and stoichiometric matrices regarding the linear reaction net-
work presented in Figure 2.18(b).

observe/determine invariant relationships in chemical reaction systems. This de�nition
is related with the graph representation of species networks, that is presented in the next
section.

Furthermore, the partition of species in groups of representative and non-representative
can be advantageous (i) when generating reaction networks, since less complex structures
may be generated demanding a lower computational e�ort, and (ii) in the practical mod-
eling task supported on experimental data, since, in general, not all species/components
are measured during the experiment, and thus, the invariant relationships respecting all
chemical elements cannot be veri�ed using experimental data. Therefore, a useful crite-
rion for establishing which species should be representative is: to select those that are
measured and/or can be estimated. For example, consider the comparison of the systems
in Figures 2.17 and 2.20, regarding the reaction networks (a) and (b) in Figure 2.18, re-
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spectively. For the reduced system, the conserved amounts of chemical elements between
molecules/species can no longer be veri�ed. These invariants can only be veri�ed when
the non-representative species are measured during the experiment. However, the same
invariant relationship related to the species carbon chain remains valid. The topic of
evaluating time-invariant relationships from experimental data will be discussed in more
detail in Section 2.3.6.

2.3.4 Species map and reaction-invariant relationships

The species map shows how chemical reactions are linked. It consists of an open graph

structure that represents the transposed matrix that translates the reaction map7. Thus,
the species map (or species network) is a transposition of the reaction map (or reaction
network)8. When considering the species map instead of the reaction map in a graph, it
can be observed how the �uxes of conserved entities travel in the network, see Figure 2.21.
In an equation format, the species network graph is represented as a linear system of
reaction mass balances, such that

dr

dC
= N · aT8 , 8 = 1, . . . ,ninli (2.32)

where no accumulation is veri�ed in nodes A 9 , 9 = 1, . . . ,nrxli, such that dr/dC = 0.

r1

r2

r3

r4 r5

AS GBL

BDO

THF BuOH PrOH

Figure 2.21 Species map (or species network) corresponding to the transposed graph
of Figure 2.18(b). In this case a1 = inv1 and N is the stoichiometric matrix presented in
Figure 2.20.

The reaction-invariant relationships can be represented by a convex basis that lies in the
positive orthant of the linear space de�ned by chemical species (Palsson, 2006a). This
basis is convex since any linear combination of its generation set of vectors is written with
positive coordinates. This concept presents an (direct) analogy with extreme pathways

in metabolic networks. This topic will be discussed in more detail in the state-of-the-art
chapter, namely in Section 3.2.1.

7Note that it consists in the graph that represents the stoichiometric matrix (without being trans-
posed); remember the concepts introduced in Figure 2.10.

8However, if the reaction network presents boundary �uxes (for example as is usual in metabolic
networks), the species network will present a closed structure (without free-ended arcs).
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Famili and Palsson (2003a) pioneered the concept of convex conservation pool maps,
where the �uxes of reaction invariants can be seen in the species map graph, presenting
fragments/piece-wises (or extreme pathways) of the species network. These fragmented
paths regard to column vectors of the generating set of convex conservation space. They
not necessarily form a linearly independent set of reaction-invariant relationships. In some
cases, in order to de�ne/verify the concept of convex basis, it is necessary to consider
redundant paths, establishing invariant relations that are linear combinations of others,
i.e., the generating set of this convex space can present a number of vectors greater than
ninvli,max.

The convex basis of reaction-invariant relationships concerning to the linear reaction sys-
tem of Figure 2.20 has dimension one, and it is represented by the inv1 column vector
itself. In the next section a better example is presented for illustration of the concepts
related to species map, extreme path of conserved relationships and convex space of con-
centration pools. This example is also related to the analysis of degrees of freedom, the
topic that follows next.

2.3.5 Degrees of freedom and reaction-invariant relationships

The number of linearly independent chemical reactions in a reaction system consists of
the number of degrees of freedom to solve the species mass balance as such in (2.7), or,
in other words, the number of degrees of freedom corresponds to the number of linearly
independent reaction vectors that solve the homogeneous system of equation

A ·NT = 0 (2.33)

as previously mentioned in the beginning of the section.

So far, in all the examples analyzed until now, the number of representative species
and the number of invariant relationships for a �xed number of chemical reactions have
been varied, within the scope of a greater understanding of (i) how the representative
species relate to the invariant relationships, and (ii) how the structure of the network
can be simpli�ed (removing nonlinearities) as a consequence of this relationship. Now
that we know how these concepts work, always attending the relations in (2.33) and
(2.29), let's consider varying the number of degrees of freedom to better understand the
concept behind the minimum and the maximum number of linearly independent chemical
reactions, nrxmin and nrxli,max, respectively9.

For the same example, let's decrease the number of degrees of freedom in (2.33), main-
taining a feasible reaction network structure. In Figure 2.22, the same reaction system is
described through four linearly independent chemical reactions, where one of them con-

9The concepts of nrxmin and nrxli,max that are introduced here are required during the thesis, specially
in Step 4 of the methodology where the generation of reaction networks is considered. However, they will
be re-called when necessary.
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stitutes the sum of A2 and A3 of the previous example (A6 = A2 + A3). In this case, beyond
the molar sum related to the representative species which remains veri�ed as constant, an
additional invariant relationship occurs, thus decreasing the degrees of freedom in (2.28).
The row indicated by inv2 establishes a nonlinear reaction structure; it sets that the
weighted molar sum of three representative species is maintained constant following the
proportion established.

r4r1

r5

GBL

r6

BDO

THF

AS BuOH

PrOH

NT =

r1 r6 r4 r5
-1 0 0 0 AS

1 -2 0 0 GBL

0 1 0 0 BDO

0 1 -1 0 THF

0 0 1 -1 BuOH

0 0 0 1 PrOH

A =

AS GBL BDO THF BuOH PrOH

inv1 1 1 1 1 1 1

inv2 1 1 2 0 0 0
ninli = 2 nrxli = 4 =st = 6

Figure 2.22 Reduced reaction system with a lower number of degrees of freedom. The
diamond node A6 in the bipartite graph corresponds to the sum of reactions A2 and A3.

In order to understand the reaction invariants of this system lets consider the species map
in Figure 2.23.

r1 r6

r4 r5

AS GBL

THF

BDO

BuOH PrOH

Figure 2.23 Species map (or species network) corresponding to the transposed graph
of Figure 2.22.

From the species map we can observe that there are two possible routes among chemical
reactions for traveling quantities that establish conserved concentration pools, namely the
routes represented by the red arcs in Figures 2.24 and 2.25. It can be observed that a
convex conservation basis for this species map is given by

A =

AS GBL BDO THF BuOH PrOH[ ]
1 1 2 0 0 0 inv2

1 1 0 2 2 2 inv3
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considering N of Figure 2.22. Note that the invariant matrix given by the convex basis
spans the same space of A in Figure 2.22, since 2inv1 = inv2 + inv3.

r1 r6

r4 r5

AS GBL
2BDO

2THF

2BuOH 2PrOH

Figure 2.24 Extreme path of conserved entities related to inv2, or convex conservation
pool map.

r1 r6

r4 r5

AS GBL
2BDO

2THF

2BuOH 2PrOH

Figure 2.25 Extreme path related to inv3 (convex conservation pool map).

Therefore, every nonlinear reaction in a reaction network increase the number of paths/routes
in a species map, presenting an associated convex conservation basis that can be inter-
preted in a convex conservation pool map. On the other hand, linear reaction networks
when transposed to species maps maintain the same linear route of convex conservation
pool map.

Moreover, note that one of the products of the nonlinear reaction A6 could be excluded in
Figure 2.22, since they present redundant information (as such as the products of A5 in the
example of Figure 2.19). This means that this system could be reduced to a linear format,
by considering for example the BDO species as non-representative. In such situation only
inv3 would be veri�able.

Considering the example that has been analyzed during this section, it is observed that
the maximum number of linearly independent chemical reactions that this system can
support is �ve (nrxli,max = 5), whether linear or not. However, attending (2.29), it is
possible to write lower and upper bounds above the variables for the example that has
been followed, such that

[2 − 9] = [1 − 5] + [1 − 5]
=st = nrxli + ninli

(2.34)

where we can play with the number of representative species =st and, consequently, with
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the number of invariants ninli, in simultaneous with varying the number of degrees of
freedom nrxli.

For the illustration of a concept, let us consider the hypothetical possibility in which
species are omitted from the network until reaching the lowest limit in a �ctitious situation
where only two representative species exists connected by a single �linear� reaction that
represents the weighted sum of all the others, with a single invariant relationship. In this
case, hypothetically, nrxmin = 1 and ninli = 1, requiring only two representative species.
Clearly, this is a �ctitious situation, as it has no physical meaning, i.e., it would involve
the meeting of too many molecules to get the �nal system maximally reduced, (reduced
to the minimum). Note that the �nal linear reaction would be a simpli�cation of the
nonlinear global reaction, that is, the global reaction without redundant species.

Therefore, determining nrxmin is concerned with establishing the maximum number of
molecules involved on each side of the reaction, thus establishing the maximum complex-
ity that is considered acceptable for nonlinear chemical reactions. In general, no more
than tri-molecular chemical reactions occurs in reaction systems, being the most common
situation the meeting of two reactant molecules in bio-chemical systems (Palsson, 2006c).
From a structural point of view, nrxmin is the minimum number of reactions that con-
nects every representative species. Hence the key parameter for establishing nrxmin is
determining which are the representative species.

However, for this system nrxmin = 4 due to the establishment of acceptable upper bounds
on the stoichiometric coe�cients. This topic is discussed in more detail in Chapter 7.
Hence the bounds presented in (2.33) can be updated to [5 − 9] = [4 − 5] + [1 − 5].

On the other hand, when considering nrxli = nrxli,max = 5, it has been shown that
1 ≤ ninli ≤ 4 from the analysis of the previous examples, and therefore, 6 ≤ =st ≤ 9.
Note that if we had considered the possibility of species�4 segregate in 4�1, by considering
methane as representative species with an independent production pathway, that is, the
methane formation is independent of the propanol formation, the maximum degrees of
freedom would be nrxli,max = 6 with 1 ≤ ninli ≤ 3, and therefore, 7 ≤ =st ≤ 9.

In general, the nrxli,max is given by the number of representative species minus one
(specially if the system is linear), or from the dimension of the null space of the reaction-
invariant matrix regarding all (representative and non-representative) chemical species.
Hence the nrxli,max comes from the number of species and the number of invariant rela-
tionships that can be written among them. In closed reaction networks (networks without
free-ended arcs) composed by nrxli,max, there is no manner to increase the degrees of free-

dom, since it would hypothetically eliminate the presence of the leftNull
(
NT

)
, or in other

words, it would ultimately violate the global mass conservation. Note that by adding lin-
early dependent chemical reactions (making NT rank-de�cient, or singular), although
increasing its number of columns, the number of degrees of freedom does not change in
(2.33).
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2.3.6 Time-invariant relationships in experimental data

Another perspective of conserved quantities in a closed system can be described by the
species mass balances presented in (2.7), that implicitly ensure the presence of invariants
since the following expression holds:

A · dc(C)
dC

= A ·NT · r(C) = 0 (2.35)

It is clear that dc(C)/dC and any column vector of the transposed stoichiometric matrix

belong to the null space of A. Hence col
(
NT

)
≡ null (A).

Similarly to the right side of (2.35) (where the conserved properties are established
through the species stoichiometric coe�cients multiplied by their respective weights,
adding up to zero in every chemical reaction), on the left side of (2.35), each entry of
the concentration derivatives vector multiplied by its respective (same) weight also adds
up to zero, meaning that

〈a8,∗,
dc(C)

dC
〉 = 0, 8 = 1, . . . ,ninli (2.36)

Since the previous equations are valid for every instant (or observation), they establish
time invariants of the reaction system. Notice that

A · dc(C)
dC
⇔ dA · c(C)

dC
(2.37)

where
A · c(C) = θ (2.38)

with θ representing a vector of conserved quantities, i.e., it de�nes the size of the pools es-
tablished through the sum of weighted species concentrations. Palsson (2006b) explained
the concept of concentration pools through invariant relationships saying that while there
can be dynamic motion taking place in the column space of the transposed stoichiometric
matrix along the stoichiometric (column) vectors, these motions do not change the total
amount of mass in the time invariant pools.

Therefore, (2.38) de�ne an a�ne hyperplane, that is, a plane that does not go through
the origin. This is the place where the concentration vector c(C) resides, named as the
concentration space. Since species concentrations are nonnegative, a convex representation
of the concentration space is useful through the establishment of a convex basis for the
left null space of the transposed stoichiometric matrix, or in other words, establishing a
convex basis for the row space of the invariant matrix, such as the one that we have been
discussed in the previous sections.

The rows of A have only zero or positive entries since it represents physical quantities of
properties that are conserved among chemical species. Any vector inside of this convex
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space (de�ned by the extreme vectors, edges of a cone with origin in the null dot) is a
nonnegative vector written with positive coordinates in the basic columns. Consequently,
and since θ is also nonnegative, every vector c(C) is also nonnegative satisfying (2.38).

In order to use the same basis for both concentration space and the column space of the
transposed stoichiometric matrix, the shifting of the concentration space to the origin is
required. It is achieved using a reference concentration vector, cref, that must veri�es the
next two constraints

〈cref, ν∗, 9 〉 = 0, 9 = 1, . . . ,=rx (2.39)

and
〈(c(C) − cref), a8,∗〉 = 0, 8 = 1, . . . ,ninli (2.40)

These constraints together give an unique solution for cref. Note that cref belongs to
the left null of NT since from (2.39) it is established that N · cref = 0. Similarly note
that (c(C) − cref) belongs to the null space of A, since from (2.40) it is established that
A · (c(C) − cref) = 0. In other words, cref is a linear combination of the rows of A, while
(c(C) − cref) can be written as a linear combination of the column space of the transposed
stoichiometric matrix. Therefore, the concept of invariants applied directly in deltas of
concentration data can be very useful for modeling chemical reaction systems, specially

for identifying the col
(
NT

)
since the shifted concentration space spans that space.

In this section the subspaces associated with the stoichiometric matrix, the invariant ma-
trix, and the experimental data matrix have been analyzed using mass balances. However,
in the next section, we will continue to analyze mass balances but from a more practical
perspective.

2.4 Mass balances as linear systems of equations

Considering the dynamics of an ideal chemical reaction system operating at batch con-
ditions and free of uncertainties in its measurements, the species mass balance can be
written as

DR = R ·N (2.41)

whereDR [=to × =sp] is the matrix of concentration derivatives, R[=to × =rx] the matrix of
reaction rates, and N[=rx × =sp]. Notice that (2.41) contains the same relation presented
in (2.7), but in a transposed format and written for =to observations. The subscript �R�
indicates the mass balance in the rate-based format, describing instantaneous rates of
species molar changes for a constant volume of mixture.

The previous equations can be written in terms of the di�erential number of moles, such
that

dn(C)
dC

= NT · r(C)+ (2.42)

where + is the reaction mixture volume, generally assumed constant in batch systems.
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Clearly, =(C) = 2 (C)+ . Hence dn(C)/dC ∈ R=sp is the instantaneous rate of molar changes
(e.g., in mol s−1), and r(C) ∈ R=rx+ is the vector of instantaneous reaction rates (e.g., in
mol m−3 s−1 with + in m3).

Instead of considering instantaneous rates, the mass balances can be written in cumulative
terms by considering the e�ective number of reacted and produced moles, such as:

Δn(C) = NT · ξ(C) (2.43)

where Δn(C) [=sp × 1] is the cumulative changes of number of moles and ξ(C) [=rx × 1]
the reaction extents. Notice that

Δn(C) = n(C) − n(0) (2.44)

where n(C) and n(0) are the vectors of species number of moles in a given instant C and
in the beginning of the experiment (C = 0), respectively.

The reaction extents are related to the reaction rates through

ξ(C) = +
∫ C

0
r(C) dC (2.45)

The mass balances in (2.43) can also be written in the matrix format, such as

DΞ = � ·N (2.46)

where DΞ [=to × =sp] is the matrix of cumulative molar changes and �[=to × =rx]
the matrix of reaction extents. The subscript �Ξ� indicates the mass balance in the
extent-based format, describing cumulative species molar changes for a constant volume
of mixture.

Hereafter, the subscripts �R� and �Ξ� of D, referring to mass balances in the rate- and
extent-based methods, are omitted in the matrices that follow since every analysis that
will be performed in D is common for both data matrices. The matrix D corresponds to
the data in the variant format. The row space of D is referred in the thesis as the data
variant space, as well as the the null space of D the data invariant space.

The selected =to observations that form the rows of D may be representative of the system
dynamics. This means that the set of data points should be considered in appropriate
time instants for increasing system identi�ability.

2.4.1 Characterizing systems of linear equations

Linear systems of equations are classi�ed primarily as possible or impossible. In possible
linear systems, the response vectors lie in the column space of the design matrix, while in
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impossible systems they do not.

The linear systems representing the species mass balances that have been analyzed until
this moment have rank (D) ≤ nrxli

10, meaning that they are all possible (there is no
error in the closure of mass balances), as shown in eqs. (2.41) to (2.43). Two situations
can be eligible in possible linear systems:

� NT has full rank (=rx = nrxli). This means that no linearly dependent column in

NT exists and thus null
(
NT

)
= ∅. Therefore, these systems are perfectly determined,

i.e., there exists an unique solution that satisfy the linear system.

� NT is singular (=rx > nrxli). In this case, =rx − nrxli linear dependencies in
the columns of NT exist and therefore an in�nite set of solutions satis�es these
equations, i.e., the system is under-determined.

On the other hand, impossible linear systems present rank (D) > nrxli, meaning that
it is impossible to write every response vector as a linear combination of the rows of N.
These systems are over-determined. In practice, dealing with data matrices corrupted
with noise such that row (D) ≠ row (N) is the most common situation. This means that
for at least a single instant C the response vector does not belong to row (N), although
probably it happens for all =to instants.

The solutions of under- and over-determined linear systems of equations are obtained
using additional criteria. An appropriate choice is minimization of the ℓ2-norm of (i) the
solution vector in under-determined systems and (ii) the di�erence between the response
vector and the model in over-determined systems, using the least-squares method.

However, =st − nrxli redundant equations can be discarded from all these categories of
linear systems without altering their solutions, since the invariant relationships presented

in leftNull
(
NT

)
can de decoupled of the dynamic components that belong to col

(
NT

)
11.

2.4.2 SVD for solving linear system of equations

The SVD can be used to solve over-determined systems of equations, similarly to the
least squares (without constraints) method, where the ℓ2-norm of the di�erence among
dc(C)/dC and NT · r(C) is minimized for every : observation, i.e.,

min

dc(C)
dC
−NT · r(C)


2

=

dc(C)
dC

T (
I=sp − Û · Û

T
)

2

∀C ∈ [C0,C 5 ] (2.47)

10Remember that nrxli = rank (N).
11In this case, (2.35) is no longer valid since the left null space of the transposed stoichiometric matrix

(or the invariant relationships) has been excluded.
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where I=sp is the identity matrix with dimension =sp and Û is the orthonormal basis of

col
(
NT

)
from the economy SVD of NT12. Hence, the row vector dc(C)/dC T ·Û ·ÛT

is the

best projection of the concentration derivative (row) vector in row (N), resulting in the
lowest norm in (2.47). Every optimal solution regarding the instant C is thus computed
through

r(C)T =
dc(C)

dC

T

· Û · �̂−1 ·VT, ∀C ∈ [C0,C 5 ] (2.48)

where Û · �̂−1 ·VT is the transposed Moore-Penrose inverse matrix of NT.

Observe that the solution obtained using SVD in (2.48), corresponds to the same solution
using the least-squares method, although the objective function value SSE in the least
squares is the square of the one in (2.47). However, these methods do not ensure positive
reaction rates (unconstrained regression problems).

Moreover, both methods for solving over-determined linear systems of equations tend to
over�t data, i.e., the greater nrxli is, the lower the value of objective function will be until
reach the dimension of the data variant space, turning the system perfectly determined
with a null value of objective function.

2.5 Data reconciliation incorporating time invariants

In order to reduce the measurement noise, the closure of invariant balances must be forced
when the species that respect the invariant relationships are measured, ensuring that

D̃
′ ·AT = 0 (2.49)

where D̃
′[=to × =sp] is the matrix of reconciled data in the variant format and and

A[ninli × =sp].

The reconciled data is obtained when considering the projection of the noisy data onto
the null space of A, such that

D̃
′
= D̃ · (I −A+ ·A) (2.50)

where D̃[=to × =sp] is the matrix of noisy data and A+ [=sp × ninli] is the Moore-Penrose
pseudoinverse of A that can be easily obtained when considering SVD(A).

Using the SVD (A) and after some mathematical manipulation of (2.50), it is obtained

D̃
′
= D̃ · (I − V̂ · V̂T) (2.51)

where V̂[=sp × ninli] is the orthonormal basis that describes the row space of A with

12The economy SVD operation (Brunton and Kutz, 2019) is presented in Appendix I.1.
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dimension ninli, i.e., it corresponds to the �rst ninli rows of VT. Notice that the error
of projection of the original data onto the row space of A gives the projection of data onto
the null space of A (the row space of N). This property is easy to verify when considering
the left multiplication of A in the transposed format of (2.50), resulting in

A · D̃′T = A · D̃T −A ·A+ ·A · D̃T
(2.52)

where A · A+ = I and A · D̃′T = 0 (as indicated by the transposed relation in (2.49)),
Q.E.D.

Thus, this means that D̃
′
is determined in the least squares sense, since it represents

the smallest error of projection of data onto the null space of A. However, notice that
the systems in (2.49) are underdetermined with =sp − ninli degrees of freedom for every
system of equations.

In this thesis we satisfy (2.49) during the proposed method of data reconciliation in Step 1,
but since we need the data to verify more criteria beyond its reconciliation, additional
constraints must be considered. The least squares solutions obtained in (2.51) give the
lowest euclidean norm of the trace of D̃

′
. However, an in�nite set of solutions with the

same objective function value can be written, although only a restricted set of them is
of interest. In the systematic methodology we are looking for D̃

′
that lie in the positive

orthant of row(N) (with positive coordinates in the basis null(A)), presenting physical
meaning. Moreover, we need D̃

′
to present monotonous behaviors in time, with smooth

and continuous temporal pro�les. Thus the number of data points can be greater than the
limited number of registers in experimental tests, resulting in a facilitated identi�cation
of the model.

Brendel et al. (2006) presented the data reconciliation procedure in (2.50), with A cor-
responding to the atomic matrix in which every row is respected to a chemical element
containing the corresponding number of atoms in each measured species. In this case, it
is only possible to ensure every elemental balance when all chemical species are measured
during the experiment.

2.6 Final remarks

In general, the stoichiometric matrix is unknown and, thus, the modeling task involves its
identi�cation from available data. The identi�cation of the stoichiometric matrix passes
through elucidating both row (D) and null (D), i.e., the identi�cation of the spaces where,
respectively, the dynamic components and the invariant relationships lie in. Identifying
such spaces is not an easy and straightforward task since data is typically noise-corrupted,
sparse, and/or presents irregular structure due to scarce and/or grouped species measure-
ments. All these di�culties can lead to a �nal model with high uncertainty associated
and, in extreme cases, the model cannot be identi�ed, requiring additional experimental
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data. Therefore, there is a need for data pre-processing methods to reduce data uncer-
tainty, incorporating time-invariant constraints and allowing greater modeling capability,
that is, making the model structure and, consequently, its parameters identi�able with
greater con�dence. This is the approach adopted in Step 1 of the methodology, described
in Chapter 5.

As target stoichiometric vectors can be validated by evaluating the projection error in the
data variant space through target vector analysis (Bonvin and Rippin, 1990), similarly,
target invariant vectors (i.e., candidate rows of matrix A), can be validated by evalu-
ating their projection in the data invariant space, when they present small projection
errors. This means that these target vectors can be written as linear combinations of the
respective spaces plus an epsilon (small error). However, the challenging tasks here are
(i) determining these spaces dimensions nrxli and ninli (and characterizing them) and
(ii) determining this epsilon threshold in order to de�ne the criterion to accept/neglect a
candidate vector.

Quantifying the noise level in data, i.e., determining the characteristic space of data
by segregating signal and noise contributions, is a challenging task in the modeling �eld.
Many methods that attend this problematic can be found in the literature, from more em-
pirical approaches until more deterministic ones, including non-parametric and parametric
tests (Wold, 1978; Malinowski, 1989; Gavish and Donoho, 2014). This thesis addresses a
selection of suitable methods in this context, to apply them to experimental data from
chemical reaction systems, leading to accurate results. These methods are described in
Chapter 6.

Moreover, notice that the more species that are measured, the easier the task of identifying
the model from the experimental data will be. This is because with, at the limit, all
measured species, the complete set of invariant relationships may be elucidated. Hence,
these time invariants must be imposed in the data reconciliation phase, thus reducing the
uncertainty of the experimental point (i.e., bringing the noisy point closer to the real/true
point) and, consequently, increasing the model's identi�ability (network structure and
kinetic laws).
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Chapter 3

State of the Art

�The man who does not read good books

has no advantage over the man who can't read them.�

� Mark Twain
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This chapter presents the review of the literature addressing the main problems related
to those considered in the various steps of the proposed methodology in this thesis, and
also discusses alternative strategies for reaction systems modeling. This review makes it
possible to highlight the innovative aspects of the new methodology, while providing a
natural comparison between alternative approaches, evidencing their potential advantages
and disadvantages.

Given the variety of topics covered, this literature review is divided into di�erent parts.
Section 3.1 introduces the main methods for modeling the dynamics of chemical reaction
systems using experimental data. In Section 3.2, the methods of generating chemical
reaction networks are presented, including metabolic networks and graph theoretical ap-
proaches. Once the structural description of reaction networks can be represented by
graphs, the methods related to the synthesis of these graphs are considered in Section 3.3.
In Section 3.4, some aspects of model parameter identi�ability from experimental data are
considered. Finally, Section 3.5 presents some additional notes on the approaches to iden-
tify reaction network models and a direct comparison between them and the methodology
developed in this dissertation.

3.1 Modeling the dynamics of chemical reaction sys-

tems using experimental data

The modeling of chemical reaction kinetics involves the use of classical methods that
support structural identi�cation and parameter adjustment, such as the di�erential and
the integral methods. Based on these fundamental methods several approaches can be
found in the literature presenting distinct strategies to identify the reaction network, such
as the adoption of an incremental development of the model where the di�erent parts
of the model are elucidated individually, or the use of simultaneous strategies where the
overall model is obtained in a single procedure. During this section the description of
model identi�cation approaches supported on experimental data is considered.

This section is organized as follows: Sections 3.1.1 and 3.1.2 summarize the simultaneous
and the incremental methods, respectively, presenting their main application advantages
and drawbacks. Then, Section 3.1.3 introduces a data-driven technique that is comple-
mentary to the incremental method, named as target factor analysis. Finally, Section 3.1.4
describes simultaneous methods for identifying the reaction network, the reaction kinetic
expressions and their parameters, using the di�erential method.

3.1.1 Simultaneous method

The simultaneous method is classi�ed as �simultaneous or global identi�cation� since all
model levels are treated at once and model parameters are simultaneously estimated
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via data regression (Brendel et al., 2006). Supported on the integral method, a system of
postulated di�erential equations (species mass balances in a transient regime) is integrated
to obtain a set of concentration expressions that are �tted to the experimental data by
�ne-tuning kinetic parameters. Parameters are optimized in the sense of the maximum
likelihood, or according to other useful optimization criteria such as weighted least squares
and Bayesian approaches (Bard et al., 1974).

The main advantage of this global method is its ability to handle complex structures with
an arbitrary number of chemical reactions. On the down side, the parameter estimation
is limited by eventual multiple local optima and the solution obtained may be sensitive to
the initialization of variables and their bounds, depending on the solver adopted. More-
over, it can be computationally costly if the procedure is applied to several candidate
reaction networks and kinetic expressions. Since every model component (and its param-
eters) is adjusted at once in this simultaneous procedure, it turns to be more di�cult to
identify the structural model mismatch of a speci�c model part, because residuals may
be optimally distributed across several model components. Moreover, there is no sys-
tematic manner to propose good model candidates for the reaction network and kinetic
expressions, and in this sense, the simultaneous method roughly approaches the tradi-
tional method, previously described in Figure 1.1, Section 1.1. Several integral methods
are presented by Himmelblau et al. (1967) for simultaneous kinetic parameter tuning.

3.1.2 Incremental method

Unlike the simultaneous identi�cation, the incremental method allows the decoupled iden-
ti�cation of the reaction network of the kinetic expressions, resulting in more con�dence
in the identi�ed model and its parameters. The identi�cation of each chemical reaction
model is performed individually, i.e., the regression procedure is individually performed
for every chemical reaction separately. Two distinct strategies can be found in the liter-
ature: one based on the di�erential method (Bardow and Marquardt, 2004; Marquardt,
2005; Brendel et al., 2006), and another based on the integral method (Bhatt et al., 2011,
2012; Srinivasan et al., 2012; Billeter et al., 2013; Rodrigues et al., 2018). The former
is also called as a rate-based approach since the �tting procedure is performed on terms
of reaction rates. Reaction rates are computed from the time-derivatives of the species
observed concentrations, while the reaction rates are predicted by the kinetic expres-
sions with their adjustable parameters. The approach based on the integral method is
also known as extent-based approach, since reaction extents are used (instead of reaction
rates) as a variable of the data regression optimization problem. In this case, reaction
extents are computed from the concentration measurements and predicted through the
integral of the reaction kinetic expressions.

Bhatt et al. (2012) concluded that the extent-based approach gives parameter estimates
with tighter con�dence intervals when compared to the rate-based. Although both ap-
proaches can lead to biased estimates, the bias may be reduced (i) by data regularization



76 State of the Art

in the rate-based approach, e.g., using smoothing techniques to increase the precision
on the numerical di�erentiation, and (ii) by e�cient interpolation in the extent-based
approach in order to have good numerical integration. In order to obtain statistically
optimal parameters, Bardow and Marquardt (2004) and Bhatt (2011) proposed the use
of simultaneous method in the last step of the incremental method.

A limitation of the incremental method, as it was proposed, is to solely handle systems
composed by linearly independent chemical reactions. In order to directly calculate instan-
taneous reaction rates or extents, the number of linearly independent equations (species
mass balances) must correspond to the number of variables (reaction rates or extents).
Therefore, only reaction networks composed by a set of linearly independent chemical
reactions can be identi�ed. Another limitation is that, typically, the reaction network
structure has to be postulated based on the modeler's expectation and know-how relative
to the particular chemical system under study.

This dissertation presents a systematic method for modeling chemical reaction systems
that approaches the original incremental method proposed by professor Marquardt and
his students (Marquardt, 2004; Bardow and Marquardt, 2004; Marquardt, 2005; Brendel
et al., 2006). A scheme of the original incremental method is presented in Figure 3.1,
where the circled numbers represent: (1) the calculation of combined reaction and mass-
transfer �uxes for each species, (2) the consideration of a reaction stoichiometry, (3) the
estimation of reaction and mass-transfer rates (without assuming any kinetic structure),
and �nally (4) the identi�cation of the kinetic law and parameter estimation, for each
reaction path individually. The main similarities that can be highlighted are related to
the incremental model identi�cation itself, where (i) the identi�cation task is split into a
sequence of subproblems, (ii) the information available at a given step is used to re�ne the
model in subsequent steps, and (iii) the entire structural model identi�cation is supported
on the di�erential method.

However, the methodology proposed in this thesis has several important distinctive fea-
tures: (i) the systematic generation of candidate chemical reactions obeying to observed
time invariants (that are previously detected through reaction data and system theoretical
analyses), (ii) the exhaustive generation of reaction network structures with the required
dimension to span the data variant space, ensuring that all feasible structures will be
analyzed, (iii) the selection of the most plausible structures according to experimental
data supported on the di�erential method, and (iv) a systematic identi�cation of the
reaction kinetic expressions using an inference criterion that establishes the best com-
promise between the model-data agreement and the number of parameters. At the end,
the �nal parameter adjustment is performed simultaneously as proposed by Bardow and
Marquardt (2004). Moreover, a special attention to the identi�cation of time invariants
and incorporation of them into the data reconciliation phase is carried out, allowing more
certainty in every identi�cation step.

The original incremental method schematized in Figure 3.1 does not present a systematic
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Figure 3.1 Schematic representation of the incremental identi�cation (rate-based ap-
proach) (Brendel et al., 2006). Here the authors use the term reaction �uxes to denote
species concentration derivatives. Copyright (2021) by Elsevier.

manner to propose candidates for (i) stoichiometry, even validating hypotheses through
the use of target factor analysis (TFA), and (ii) reaction kinetics, even considering individ-
ual reaction rate analyses. In this case, the validated stoichiometry may be questionable
regarding the structure of the reaction network, with no guarantees of being the most ap-
propriate. Consequently, the �nal model obtained can be, on the one hand, satisfactory
but without certainty that it is the most appropriate, or, on the other hand, unsatisfac-
tory, requiring more iterations of the method with other stoichiometry proposals. The
next section addresses the topic TFA in the context of modeling chemical reaction systems.

3.1.3 Target factor analysis

Bonvin and Rippin (1990); Amrhein et al. (1999); Brendel et al. (2006); Bhatt (2011);
Bhatt et al. (2012) proposed the use of a statistical technique, known as target factor

analysis (TFA), to verify whether a given reaction network is reasonable in face of the
available transient experimental data. The basic idea is to de�ne a stoichiometric space
given by measured data and then consecutively test if the stoichiometric vectors, corre-
sponding to a postulated reaction network, lie in that space until a complete description
of that space is obtained without linearly dependent vectors. The dimension of the data
space corresponds to the number of linearly independent chemical reactions that is re-
quired in the network to explain the observed data. Several reaction networks, composed
by the same number of linearly independent chemical reactions, constitute di�erent bases
that span the same system of coordinates, leading to the same description of the data
space. Hence, there may be cases where several alternative reaction networks pass the
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test. Therefore, to elucidate the reaction network one needs to consider in a subsequent
stage kinetic laws describing the rate of each reaction step as a function of species concen-
tration. Moreover, TFA cannot be directly applied to validate complex reaction networks
composed by linearly dependent chemical reactions.

Some drawbacks of the TFA method are related to its dependence on the quality of ex-
perimental data and the a priori knowledge regarding the chemical system under study.
In the case of data with noise, presenting high uncertainty related to concentration mea-
surements, there are di�culties in determining the data variant linear space dimension
and the projection error of stoichiometric vectors in that space (Prinz and Bonvin, 1994),
thus leading to unreliable TFA results. Moreover, before applying TFA, the modeler
must postulate a reaction network candidate (a target stoichiometry). In general, this
proposal is based on prior knowledge of the chemical system and tends to be biased with
the expectation of what is intended to happen, or typically is carried out on an ad hoc

basis (Fotopoulos et al., 1994). Consequently, there may be cases where the proposed
target vectors are far from being the intrinsic components of the system. In order to
overcome these problems, the use of (i) data treatment methods for reducing the associ-
ated uncertainty, and (ii) systematic approaches for postulating target stoichiometries, is
required. These are the approaches followed in this work, respectively in Steps 1 and 3
of the developed methodology. Thus, although there are some di�culties associated with
TFA application, it is a useful tool to verify whether an individual chemical reaction is a
potential candidate to explain the experimental data and it is therefore considered in this
work. TFA is addressed in more detail in Section 7.3, where a critical analysis about its
use is also presented.

Hamer (1989) pioneered the investigation of stoichiometries empirically derived from data
analysis. In his work, the observed stoichiometric space is obtained using SVD of the
matrix of data in the variant format, and, a rotation procedure of matrices is proposed
in order to �nd meaningful stoichiometries from the orthonormal basis. Hence, through
linear transformations of the abstract basis that approximately spans the data variant
space, the author showed that it is possible to �nd a plausible network having meaningful
reaction extents.

In the �eld of tendency modeling (Filippi-Bossy et al., 1989), a variation of TFA was
proposed (Fotopoulos et al., 1994), named as structured target factor analysis (STFA).
The main characteristics of tendency modeling is to develop low order, nonlinear and dy-
namic models that approximate the stoichiometric and kinetic models of a process using
available process data along with fundamental knowledge of the process characteristics.
In STFA, through the use of optimization, feasible stoichiometric vectors (targets) are
determined by minimizing the distance between the target and its projection onto the ob-
served stoichiometric space, considering speci�c elements of the target vector as variables
of the optimization problem. Notice that, in contrast with the original TFA, STFA does
not require any approximate a priori knowledge of the chemical reactions of the process.
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Prinz and Bonvin (1994) have proposed the use of TFA in a sequential fashion in order to
reduce the in�uence of measurement errors, named as incremental target factor analysis
(IncTFA). In every iteration the contribution of an accepted target factor is excluded of
the updated data projection matrix until complete identi�cation of the network. This
�exclusion� is performed by projecting experimental data onto the null space of the ac-
cepted target vector. This lower dimension matrix of experimental data is then used to
perform TFA for the next candidate stoichiometric vector. With IncTFA application,
a greater sensitivity for detecting small but relevant factors is achieved when compared
to the original TFA procedure. Moreover, the authors have shown that the information
extracted from singular value ratios helps in identifying the data dimension with more
con�dence. Singular values that respect to true model components (signal) increase with
data space reduction, while noise model components remain at the same value, thereby
allowing an improved estimate of the number of factors. However, there is no proposal
for the establishment of the critical value for accepting/neglecting a target vector/factor,
which must be empirically determined (Prinz and Bonvin, 1994).

Both Bonvin and Rippin (1990) and Prinz and Bonvin (1994) considered the use of TFA
when a priori information about stoichiometric vectors is available. This information may
be used to increase the identi�ability of the remaining model parts (that are unknown)
by excluding of the entire data space the contribution of the stoichiometric space formed
by those known reaction vectors. Consequently, the remaining data space corresponds to
unknown chemical reactions over which the TFA may be applied in order to completely
identify the system stoichiometry.

Amrhein et al. (1999) have studied TFA and presented conditions for its application using
experimental data in molar concentration units. The authors de�ne the constructed data
matrix for TFA application as the data pre-treated to reaction-variant form, since the
contributions of the material exchange terms and the initial conditions are subtracted
from the concentration terms, i.e., the data matrix in the reaction-variant form contains
the contributions of the maximum number of linearly independent chemical reactions
exclusively. Notice that this de�nition is written for homogeneous reaction systems with
inlet and outlet streams and varying density, since material exchange terms are presented
in the material balance, and thus it encompasses the cases of batch, semi-batch and CSTR
reactors. Necessary and su�cient conditions have been formulated for the acceptance of
stoichiometric targets using reaction-invariant relationships. In cases in which not all
chemical species are measured, a target vector can only be accepted if it lies in the
row space of the data matrix, and (necessarily) if it is stoichiometrically balanced in
the presence of the unmeasured species in the reaction vector. In this way, the following
statement can be derived: as many reaction-invariant relationships are needed as there are
unmeasured species, or in other words, the data (in the reaction-variant form) dimension
must have the same dimension of the reaction network. The authors call this a necessary
condition for accepting an uncompleted target that lies in the row space of data matrix
in the reaction-variant form as a tool to remove ambiguities.
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More recently, Santos-Marques et al. (2019) and Dong et al. (2019) have used TFA to
identify/validate reaction stoichiometries from pre-treated data. The authors propose the
use of dynamic response surface methodology (DRSM) for the obtainment of smoothed
species concentration pro�les from discrete and noisy data, and they conclude that this
method have improved the identi�cation of the true system stoichiometry from simulated
noisy data, via TFA and incremental/sequential TFA, respectively.

Since the modeling of chemical reaction systems involves the reaction network identi�-
cation, several methods to generate networks are described in the literature. The next
section addresses some of these methods.

3.1.4 Inverse problems for identifying reaction networks

The identi�cation of systems from observed data can be considered an inverse problem,
since the causal factors that produced the set of observations are sought, starting with
the observations (e�ects) and then identifying the model (causes). In the context of mod-
eling chemical reaction systems, inverse problems appear on the basis of the di�erential
method, where the species time concentration derivatives are used as reference data for
model/system identi�cation. In these cases, the established model is linear in its parame-
ters, where time concentration derivatives are correlated with instantaneous concentration
measurements of observed species that are consumed or produced over time. Hence, the
species mass balances that constitute a set of ordinary di�erential equations (ODEs) are
transformed into a set of algebraic equations when time concentration derivatives are
previously computed. In the case of a batch chemical reaction system modeled with
homogeneous reaction kinetics, the following set of linear systems of equations is obtained

D = B ·K + E ⇔ dcB
dC

= B · kB + eB, ∀B = 1, . . . ,=sp (3.1)

where D[=to × =sp] is the time concentration derivatives matrix with =to registers of
=sp chemical species, containing in its columns dcB/dC -type vectors, B[=to × =2] is the
design matrix composed by =2 reactant species (and/or complexes of reactant species) in
its columns, K[=2 × =sp] is the kinetic parameters matrix with kB, B = 1, . . . ,=sp, column
vectors that are variables of the problem, and E[=to × =sp] is the matrix of residuals
between the observed data D and the model BK, composed by eB, B = 1, . . . ,=sp, column
vectors.

Equation (3.1) can be written for any reaction kinetic expression for which the response
variable varies linearly with the dependent variable (reactant concentration), even for
approximation of nonlinear models that needs reparametrization to achieve a linear form.
Moreover, notice that the interdependencies of the ODEs may be removed using reference
concentration derivatives values, and thus enabling to estimate vectors kB separately for
each B = 1, . . . ,=sp.

The solution kB obtained identi�es the chemical reactions in which the species B is involved
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with their respective mass action law. Therefore, from the analysis of the obtained K

it is possible to infer the species connections through the negative and positive signs
of each kinetic parameter identifying the rates of species consumption and production,
respectively, that are function of the respective reactant complex column of B. In order
to establish the system stoichiometry, the matrix K can be decomposed in two matrices

K = P ·N (3.2)

where P is a diagonal matrix composed by =? kinetic parameters and N is the stoichio-
metric matrix composed by =? reaction components in its rows and =sp chemical species
in its columns.

Matrices K and N span the same row space with dimension inferior or equal to =sp, and
this subspace approaches the row space of D as E tends to zero. It is important to observe
that through the use of matrix B for kinetic parameters tuning, it is possible to adjust at
most =2 variables (model parameters) when B has full rank. When =? is greater than =sp,
or more speci�cally, when =? is greater than the matrix rank of D, the resulting reaction
network has redundant reaction pathways, whose instantaneous reaction �uxes can not be
determined without establishing its reaction kinetics, since an underdetermined system
of equations is in question. Therefore, (3.1) enables the adjustment of linearly dependent
reaction network structures.

For example, consider a small chemical system composed by 3 chemical species connected
by 3 chemical reactions with one reversible component:

A1 : A
k1d
k1i

B

A2 : 2B
k2 C

A3 : 2A
k3 C

(3.3)

The species mass balances are written as

�′ �′ �′
 =

� � �2 �2

 ·

−:13 :13 0

:18 −:18 0

0 −2:2 :2

−2:3 0 :3


(3.4)
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or equivalently

�′ �′ �′
 =

� � �2 �2

 ·

:13 0 0 0

0 :18 0 0

0 0 :2 0

0 0 0 :3


·

A B C


−1 1 0 A13

1 −1 0 A18

0 −2 1 A2

−2 0 1 A3

(3.5)

where the last matrix is the stoichiometric matrix N with matrix rank two, i.e., only two
linearly independent pathways can be seen in the network, as such as the the row space
of D has dimension two.

Hence, the general objective of these data approximation methods is to �nd the best
correlations of time concentration derivatives (one for each observed species) as a linear
function of reactant species concentration using experimental data and candidate reaction
kinetics that are linear in their parameters, therefore identifying the kinetic expressions
in simultaneous with the reaction network that is implicit in the set of the best correla-
tions found. This problem is considered ill-posed since the computation of concentration
derivatives amplify the uncertainty originally presented in concentration measurements,
leading to identi�cation problems. Therefore data regularization methods are required
for increasing data accuracy and obtaining good estimates of its slopes.

However, in contrast with system identi�cation approaches supported on the integral
method, the inverse problem can be less computationally intensive, presenting global op-
timal solutions accordingly to the adopted linear optimization method, although with
the presence of biased parameter estimates. As previously discussed in Section 3.1.1,
the simultaneous approach to model chemical reaction systems supported by the integral
method requires an intensive computational e�ort in the adjustment of kinetic parameters
concerning to a previously postulated reaction model, where the ODEs are numerically
solved as many times as necessary to �nd an optimal solution to the nonlinear regres-
sion problem, which in general is very sensitive to initial parameter estimates and often
converges to local solutions, although free of bias.

On the other hand, in comparison with the incremental method (Section 3.1.2), although
also supported on the species compositional changes information, the major di�erence
appears on the coupling of the identi�cation steps concerning to the reaction network
and its reaction kinetics, while the incremental method decouples these two identi�cation
steps.

In the following paragraphs, two di�erent approximation strategies for simultaneous iden-
ti�cation of the reaction network and of the reaction kinetic expressions from the compu-
tation of concentration derivatives are discussed. At the end of this section, critical points
are summarized pointing out some drawbacks and establishing a natural comparison with
the work proposed in this dissertation.
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Numerical matrix method

The numerical matrix method (NMM) was �rstly proposed by Karnaukhov and Kar-
naukhova (2003) for nonlinear dynamical system identi�cation on the basis of the di�er-
ential method. From the resolution of a set of linear systems of equations, the method
is able to identify (i) the kinetic parameters, (ii) the kinetic expressions that govern the
system dynamics, and (iii) the reaction network structure that links the chemical species
(when it is unknown), explaining the observed compositional changes. For this purpose,
it is assumed that no more than two molecules participate in a chemical reaction, estab-
lishing a superstructure of reaction kinetic expressions of homogeneous kinetic laws of
zero, �rst and second orders. Consequently, the considered design matrix is composed by
=2 = (=sp + 2) (=sp + 1)/2 reactant complexes in its columns, including an unitary vector in
order to cover reaction kinetics of zero order. For example, for a chemical system with two
chemical species (e.g., A and B), the design matrix would contain the following reactant
complexes in its columns: B = [1 �(C) �(C) �(C)2 �(C)�(C) �(C)2] with =2 = 6, and six
kinetic parameters would be adjusted for each chemical species mass balance.

The objective function is given by the minimization of the ;2-norm of eB in (3.1) for
species B = 1, . . . ,=sp. Therefore, every species mass balance is adjusted separately in
an independent/individual linear regression procedure, and the presence of redundant
chemical reactions can be veri�ed after the obtainment of the entire set of =sp optimal
solutions (the K matrix). Hence, NMM consists of least squares regression, where D is
orthogonally projected onto B in order to get the best set of solutions K in the least
squares sense (Karnaukhov and Karnaukhova, 2003; Karnaukhov et al., 2005, 2007), such
that

BT ·B ·K = BT ·D ⇔ BT ·B · kB = BT · dcB
dC
, ∀B = 1, . . . ,=sp (3.6)

Notice that the multiplication of BT in both equation sides consists of a linear transforma-
tion that turns the system (3.1) possible to be solved with null eB vector for B = 1, . . . ,=sp,
since BTD is a subset (it is contained) in BTB. Consequently, the =sp systems of equa-
tions in (3.6) are determined when B has full rank (non-singular), and, in the opposite
case, they are underdetermined when B is singular. In general, B is singular due to
time-invariant characteristics of chemical reaction systems (at least the total mass is con-
served). However, in order to turn the system completely identi�able, several datasets
with di�erent initial conditions must be considered for obtaining a global non-singular B
matrix in which holonomic constraints are broken (Karnaukhov et al., 2007).

Additionally, it may be observed that the matrix rank of B is greater than or equal to
the matrix rank of D, and consequently, the matrix rank of BTD is lower or equal to
the rank of D. When B has full rank, BTD and K have the same matrix rank of D,
and K corresponds to a basis rotation of BTD. Hence, both the matrices BTD and K
span the same row space with a dimension lower or equal to =sp, as well as the rows of K
approximately span (at most) the same row space of D (row (K) ≈ row (D)).
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As previously mentioned, the presence of a chemical reaction that links di�erent species
is identi�ed when approximately the same :8,B value (but with opposite sign) is obtained
for the related B species mass balances. The authors establish that due to the presence of
noise and numerical error approximations, the values of : that are lower than a threshold
are assumed zero. Karnaukhov et al. (2007) assume that this threshold value must be
empirically determined on the basis of noise level quanti�cation in data. After obtaining
K in a �rst iteration through the solution of (3.6), a reduced system must be solved
for increasing the precision of the method by considering only the columns of B that
are active, i.e., by excluding entire columns of B when the respective entire rows of K
converge to approximately zero. Moreover, when the stoichiometric matrix (or part of
it) is known, the precision of the method for identifying kinetic expressions is increased
presenting more accurate parameter estimates, since it e�ectively pairs up the reactant
and product species for each known reaction, and therefore, the number of parameters to
be estimated is much lower than that in the full superstructure of homogeneous kinetic
laws of unknown chemical reactions (Karnaukhov et al., 2005).

The results obtained with NMM are extremely dependent on the accuracy of the con-
centration derivatives estimates which are performed using �nite di�erences. Hence, a
signi�cant amount of data is needed to obtain (reasonably) reliable estimates of con-
centration derivatives, despite the presence of noise in the data. Furthermore, several
datasets with di�erent initial conditions are required to have a non-singular design ma-
trix, which is a necessary condition for the method applicability. These constraints may
be a limitation of the method applicability, specially for real case studies that present
scarce measurements. In addition, the method can face numerical problems and problems
related to aggregated parameters in the optimal solution that di�cult the system identi�-
cation. However, the major disadvantage of NMM is related to the presence of data noise
in which the uncertainty associated with the concentration measurements is dragged (and
in some cases it is ampli�ed from the computation of concentration derivatives) to the
model parameters, leading to an increased probability of overparameterization, and/or
with the presence of poor parameter estimates.

The NMM can support larger problem sizes than those associated with bimolecular com-
plexes, considering design matrices with larger reagent complexes, for example containing
the combination of three reagent molecules. However, for kinetics of, at most, second
order, the number of complexes increases with the square of the number of species, which
may be (already) a limitation of the method, resulting in a combinatorial explosion for
large case studies, such as for biochemical systems. Therefore, the presence of trimolec-
ular complexes can easily lead to the combinatorial explosion of the problem, especially
for large case studies.

Although the main characteristics of the method have been presented, an additional dis-
cussion is considered in Section 3.1.4 presenting a natural comparison with the work
developed in this thesis. However, for closing this section we want to point out some
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key issues that were not addressed by the authors of the NMM, thus, they still remain
open, namely: (i) How many di�erent initial conditions are needed in order to turn B

non-singular? (ii) Which initial concentration values should be chosen for decreasing the
condition number of B, i.e., in order to turn the problem of NMM better conditioned? As
suggestions for the NMM improvement, specially for problems that verify great amounts
of noise in data, we advice the use of (i) data treatment techniques for increasing data
precision and obtaining of good estimates of concentration derivatives before NMM ap-
plication, and (ii) further methods for determining the best compromise between data
agreement and model complexity (number of parameters) in order to avoid data over-
�tting, for example through the use of inference methods and/or cross validation. Next
section addresses the identi�cation of reaction networks using inference criterion.

Identi�cation of reaction networks using an inference criterion

Recently, on the basis of the di�erential method, an improved approach has been proposed
to identify the reaction network using integer programming and inference criterion (Willis
and von Stosch, 2016, 2017). These authors explored the use of MILP to perform linear
sparse regression (parameter regularization) where the reaction network can be identi�ed
from the interpretation of the optimal kinetic parameter estimates that represent the best
compromise between good approximation of the closure of every species mass balance in
the di�erential form and model complexity, leading to an improved predictive performance
when compared to ordinary least squares regression since overparameterization is avoided.

The objective function consists of the sum of two parcels concerning to the minimization
of (i) the total absolute error between model's instantaneous concentration derivatives
and the respective reference values (;1-norm of absolute response residuals) plus (ii) the
penalized ;0-norm of the kinetic parameters vector, i.e., the cardinal number of active pa-
rameters. This penalization is considered using binary variables that assume unity when
parameter estimates are di�erent of zero and zero otherwise, and a regularization fac-
tor/weight that is determined using Bayesian information criterion (BIC) in a postponed
phase. Hence, in sequential procedures, the parameter regularization is performed and
the BIC is computed for a range of regularization factors, and therefore, the best model
is identi�ed when the lowest BIC is found. For more details, see Section 5.2.3.

Similar to the NMM previously described in Section 3.1.4, �ne adjustment of parame-
ters is supported in the calculation of concentration derivatives and in the establishment
of a superstructure of the model that is linear in its parameters. This superstructure
is composed by (i) homogeneous kinetic expressions dictated by uni- and bi-molecular
chemical reactions (Willis and von Stosch, 2016), and (ii) empirical model components
that can approximate to Monod and Michaelis-Menten kinetics in biochemical systems
and heterogeneous kinetics in catalytic chemical system (Willis and von Stosch, 2017). In
this last case, prior mathematical manipulation of the species mass balances is required
for achieving substitute response variables that are written as a linear function of the
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manipulated design matrix through the kinetic parameters (model reparametrization).

In contrast to NMM, through the sparse approximation strategy proposed in this ap-
proach, the overparameterization is avoided by dropping o� irrelevant model components
of the superstructure when related parameters converge to zero, instead of considering the
best set of solutions in the least squares sense (with the presence of data over�tting and
model overparameterization, see (3.6)). Moreover, Willis and von Stosch (2016) ensure the
obtainment of balanced stoichiometries in the solution by pre-excluding infeasible species
complexes of the superstructure, i.e., combinations of reactant species that would lead to
unbalanced chemical reactions, using the atomic matrix for checking elemental balances.
In this way, they achieve a reduction in the number of complexes to be considered in the
model's superstructure, thus reducing the size of the problem.

However, as much as this approach tries to avoid overparameterization of the model, there
will always be a tendency towards over�tting of the data, especially in the presence of
greater noise content. This means that additional model parameters can be veri�ed in the
solution to explain data components that are essentially noise. In addition, the resulting
solution may present a network composed of a set linearly dependent on chemical reac-
tions, since the number of linearly independent columns (representing the combinations
of reactant species) in the design matrix is greater than the dimension of the variant space
of the data (this being at most =sp−1, the maximum number of independent components,
reaction �uxes, that conserve the total mass). Consequently, at most =2 model parameters
can be adjusted in this procedure for a full rank B matrix. However, this design matrix
will always be poorly conditioned, since great correlation is veri�ed between the species
concentration measurements, in addition to the presence of noise.

The use of parametric model forms, such as rational polynomials (Willis and von Stosch,
2016) and smoothing splines (Willis and von Stosch, 2016, 2017), were considered to
approximate data and extract the derivatives before applying the model identi�cation
method. Although the concentration derivatives are better estimated from approximated
polynomial functions than from simple computation of �nite di�erences, undesired os-
cillations in the smoothed pro�les are observed in both works, concerning to di�erent
simulated case studies. These oscillations may lead to erroneous reference data that will
interfere with the model identi�cation. In contrast, when the reference data have appre-
ciable bias (too much data regularization) or/and the measures are scarce, the optimal
model structure found may not necessarily be validated by the available (original) data
in a postponed model simulation. However, the smoothing splines method has its own
implementation characteristics, presenting challenging issues for data smoothing from dy-
namic multi-response systems, such as for chemical reaction systems in which a smoothing
factor must be determined for every individual species smoothing pro�le (establishing the
amount of data regularization), where these last are related to each other by invariant
relationships over time. This topic is addressed in Section 5.2.4. Although balanced
stoichiometries are considered in the superstructure and the dimension of the model is
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determined by the lowest BIC, no concern has been shown by the authors to identify
invariant relationships of the system from data, and then use them for a better treatment
of the data, or at least, to assess the dimension of the data space.

Willis and von Stosch (2016) were the pioneers in using MILP for reaction network and
kinetic expression identi�cation using experimental data, but, through this simultaneous
approach, the obtainment of consistently connected networks1 is not guaranteed2. For
example, Willis and von Stosch (2017) found a solution with an inconsistency in the net-
work in their case studies, and then, corrected it by imposing additional constraints in
the optimization problem (by �xing some binary variables). This inconsistency was easy
to identify and correct since there was no disturbance in the value of the BIC when the
change/correction was made, however, the case study in question is of low dimension (�ve
chemical species). For larger case studies presenting network inconsistencies, manual de-
tection and correction can be a di�cult problem to deal with, drastically interfering in the
optimal condition of the solution found and, therefore, systematic approaches are neces-
sary to avoid structural inconsistencies, especially in the presence of datasets with great
uncertainty and residual species. In this dissertation, the use of MILP is also considered
in the context of modeling reaction systems. In this case, the proposed computational ap-
proach concerns the generation of feasible structures for a �xed model dimension, without
using experimental data, but, nevertheless, incorporating precedence restrictions between
species that ensure the achievement of consistently connected networks, for more details
see Chapter 8. Hence, the approach followed here considers the generation of feasible
structures to then select the most plausible ones supported on experimental data, in
sequential phases.

Critical points

In summary, on the basis of the di�erential method (i) it is possible to convert the ODEs
(species mass balances in the di�erential form) into an equivalent set of algebraic equa-
tions that can be independently solved through the previous estimation of concentration
derivatives, and (ii) the set of solutions from every independent parameter estimation
problem is theoretically su�cient to deduce the structure of the underlying model (simul-
taneous identi�cation of the reaction network and kinetic expressions) through the use
of a superstructure of kinetic expressions that are linear in their parameters. The main
characteristics that are critical in both methods are summarized in Table 3.1.

As disadvantages, we must comment that, normally, this problem (i) is ill-posed (well
known in the literature as the inverse problem), since small errors in the concentration
measurements may be ampli�ed in the computation of concentration derivatives, and (ii)
presents a poorly conditioned design matrix that approaches the singularity. These facts

1A network/pathway in which the reaction �uxes consistently travel among species/nodes.
2The obtainment of connected structures is a concern addressed in the context of graph synthesis

using graph theory. For more details, see Section 3.3. The same concern, including connectivity as well
as consistency restrictions, is addressed in this thesis in the generation of reaction networks (Chapter 8).
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can limit the applicability and success of the method, leading to the identi�cation of
mismatched models and/or with great uncertainty in the model parameters. In order to
contour these problems, for item (i) data processing/regularization/treatment methods
may be considered a priori to increase data accuracy and to enable good estimates of
its derivatives (for more details see Chapter 5), and for item (ii) robust regression meth-
ods that are able to discard redundant information of the design matrix are required.
Moreover, the presence of uncertainty in the data increases the probability of overparam-
eterization, leading to the resultant model having components that essentially explain
the noise of the data. Additionally, especially in cases of greater data noise content, the
identi�ed network structure can show inconsistencies and/or disconnected paths. In this
sense, it is preferable a methodology that considers network properties as a restriction of
the modeling problem, independently of, or simultaneous with, the ability to approximate
the data.

The inference of network properties happens from the resulting model that is obtained
with the parameterization of an ODE model structure directly from observed data, and
therefore, this approach is highly dependent on the information contained in data, i.e.,
it approaches an empirical model development, purely data-driven. In this sense, during
this simultaneous identi�cation (reaction network and kinetic expressions) the mechanistic
support is diminished, it looses useful information that could be incrementally extracted
when adopting a step-wise model development in which system's knowledge may be ex-
tracted from both theoretical and data analyses in every step-by-step model identi�cation.
For example: (i) the model dimension can be determined a priori from data analysis using
parametric and non-parametric statistical tools/methods that enable the identi�cation of
the number of independent model components that is required to explain the observed
compositional changes, consequently, avoiding overparameterization in the following steps
of modeling, (ii) the presence of reaction inhibition can be observed from the analysis of
reaction �ux pro�les, and candidate reaction kinetics can be suitably proposed based on
qualitative analysis of pro�le shapes, mechanistic support and information related to the
knowledge of the system. Also, in contrast with the incremental approach, it is not di-
rect/easy to infer which reactions certainly belong to the network from the ones that are
uncertain, in this simultaneous identi�cation approach. These are examples of aspects
that are incorporated in the methodology for incremental model development, addressed
in this dissertation.

In this dissertation, we work analyzing the row space of D for identifying the reaction
network structure sinceD = R ·N+E, where both R andN are inferred/identi�ed fromD

without the need to establish reaction kinetic expressions. In this case, the identi�cation
of the reaction network structure is performed looking for linearly independent sets of
plausible reaction �uxes with unknown reaction kinetic expressions. Hence, the network
identi�cation is decoupled from the reaction kinetics elucidation, and its structure is rep-
resented by a full row rank stoichiometric matrix N. In contrast, the previously described
inverse problems identify the reaction network from the analysis of K (see (3.1)), simul-
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taneously with the elucidation of reaction kinetics, enabling the adjustment of redundant
reaction paths.

Moreover, when considering the kinetic modeling method presented in this dissertation,
additional di�erences arise. Despite the similarity in considering a superstructure of ki-
netic expressions, the number of combinations (reactant complexes) considered here is
much lower than in the proposed simultaneous approach since the reaction network is
known at this methodology step, enabling the direct correlation of the reaction �ux with
the reactant species concentration(s). Therefore, instead of considering the simultaneous
�t of several reaction �uxes for each species �ux for an unknown reaction network, the
kinetic expression identi�cation is individually done for each reaction �ux that represents
a linear combination of the species �uxes. However, both methods can incorporate het-
erogeneous kinetic expressions that have nonlinear dependence on parameters and still
remain a linear regression problem. This is possible through mathematical manipulation
and changing variables in the objective function. The same procedure is performed in Step
6 of the methodology, when considering superstructures with Langmuir-Hinshelwood ki-
netics. For more details see Section 10.2.

3.2 Systematic generation and selection of reaction net-

works

�Network reconstructions provide context for `content'.�

� Mick Savage

The generation of alternative reaction networks is addressed in the literature under di�er-
ent contexts, including analysis of biological (metabolic) networks and chemical systems
with catalytic and non-catalytic reactions. The generation of reaction networks based on
optimization tools, graph theory, on linear algebra, and also in some cases taking into
account the thermodynamic viability of the reactions in question, are considered here.
Moreover, the methods related to the synthesis of metabolic networks are covered in this
section, including the description of the concept of extreme pathways.

3.2.1 Metabolic reaction networks

The �eld of modeling biological reaction networks is challenging due to the complexity
of these systems, presenting networks that contain a large number of degrees of free-
dom (more chemical reactions than metabolites). For example, a genome-scale metabolic
network respected to an eukaryotic organism (yeast Saccharomyces cerevisiae), contain-
ing 1175 metabolic reactions and 584 metabolites, was reconstructed by (Förster et al.,
2003). Modeling methods for metabolism reconstruction are based on constraints that
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Table 3.1 Critical characteristics of inverse methods for identifying reaction networks.

Critical characteristics Commentary / Solution

Combinatorial problems(a).
Decoupling the structural model identi�ca-
tion for decreasing the number of potential
candidate models.

Dependent of a superstructure of kinetic
laws, which must be linear in its parame-
ters.

This fact does not avoid the use of nonlinear
kinetics such as heterogeneous ones, but this
implies the need of model reparametrization
which sometimes can lead to (more) poorly
conditioned systems.

The design matrix is badly conditioned,
approaching to the singularity.

Do not consider simultaneous identi�cation,
but instead, consider incremental identi�ca-
tion.

The problems are ill-posed. (Small errors
in concentration measurements represent
large errors in concentration derivatives
estimates).

Data regularization and data reconciliation
(with time-invariants constraints) for in-
crease data accuracy and compute good
concentration derivatives estimates.

The resulting models present overparam-
eterization, especially in the presence of
signi�cant data noise content.

Set the model dimension for a previously
identi�ed data variant space, and/or, con-
sider robust sparse approximation methods.

The models, in general, present redundant
reaction pathways.

Do not allow network redundancies.

It approaches a data-driven methodology,
with few or none mechanistic support un-
der consideration.

Incorporate mechanistic and empirical
knowledge.

Can present network inconsistencies
and/or disconnected paths.

Consider subtour elimination and prece-
dence constraints.

Needs of establishment of a threshold to
force the zero value of parameters.

It requires data analysis tools for noise
quanti�cation.

Present biased parameter estimates.

Requires a �nal iteration using the simulta-
neous/integral method with the identi�ed
model structure (reaction network and ki-
netic expressions) using the parameter esti-
mates and original experimental data. So-
lution obtained free from bias, in the sense
of maximum likelihood.

(a) It may face di�culties associated with the dimension of the case study, i.e., larger
case studies (greater number of species and candidate kinetic laws) lead to bigger
superstructures of reaction kinetics.



3.2 Systematic generation and selection of reaction networks 91

systematically translate biochemical, genetic and genomic knowledge into a mathemati-
cal framework, thus allowing a mechanistic description of metabolic physiology (Bordbar
et al., 2014a). It is assumed that living organisms operate with optimal functional states
under the conditions they have evolved, and therefore functional states of networks may
be predicted using constrained optimization (Palsson, 2015b). Most of related works in
this �eld do not adjust kinetic parameters, but instead determine optimal reaction �uxes
and feasible reaction networks that conduct to a maximum functional state (Jamshidi
and Palsson, 2011). Famili and Palsson (2003a,b) have presented studies related to the
metabolic networks using SVD and linear algebra for understanding physical meaningful
properties of biological systems.

Typically, a superstructure of intra-cellular mechanisms is considered based on theoreti-
cal and mechanistic knowledge, containing a very large number of candidate pathways in
which material �uxes can travel during intracellular processes. For modeling these com-
plex systems, in general, many assumptions are required, starting by de�ning the system
frontiers, and then assuming that this zone of the cell operates at steady or quasi-steady
conditions under feasible boundary constraints. The existence of rate-controlled and/or
equilibrium steps are other type of currently adopted assumptions. However, since many
metabolites are (micro)molecules that cannot be measured in experimental tests, and
the observed interactions between macromolecules often cannot be predicted through the
adopted reaction network, model validation is a hard task. In general, validation occurs
in terms of speci�c components productivity and feasible ranges for concentration ratios.
Thiele and Palsson (2010) presents a protocol containing each step necessary to build a
high-quality genome-scale metabolic reconstruction.

Two main constraint-based modeling approaches are distinguished in the literature: the
metabolic �ux analysis (MFA) and the �ux balance analysis (FBA). In both approaches in-
tracellular �uxes are constrained to operate at steady conditions, satisfying the stationary
metabolites mass balances for a very large stoichiometric matrix describing a superstruc-
ture of reaction networks. The di�erences between these two methods arise in how these
internal �uxes are determined. In MFA, �uxes are calculated by �tting extracellular rates
measured experimentally. In this case the model must be simpli�ed by excluding unob-
servable/residual or unidenti�able reaction components until a system with zero degrees
of freedom is obtained (Wiechert, 2001). In FBA, a linear space of allowable �ux distri-
butions is determined by solving a linear optimization problem constrained to observed
extracellular rates and upper and lower bounds on �uxes, for a given objective function,
making it possible to predict, for example, the growth rate of an organism or the rate of
production of a biotechnologically important metabolite (Orth et al., 2010). Therefore,
the goal is to quantify the best metabolite concentrations and the optimal mass �uxes
that travel in the metabolic network, thus determining the optimal mechanism that (i)
minimizes the prediction error of extracellular rates in the case of MFA method, or (ii)
maximizes the adopted objective function (e.g., biomass or ATP production), in the case
of FBA approach. Consequently, MFA is used for estimating reaction �uxes for biological
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systems that can be measured in laboratory (experimental tests), whereas FBA is used
for simulation studies (in silico predictions) for identifying genetic manipulations that can
improve cell metabolisms and formulating novel hypotheses (Gianchandani et al., 2010).

Many authors have proposed the use of FBA using di�erent formulations and strategies
(Savinell and Palsson, 1992; Schilling et al., 1999, 2000a; Ibarra et al., 2002; Beard et al.,
2002; Bordbar et al., 2014b). The formulation may be linear or not, depending on the
established constraints, and it can contain binary variables to decide whether the path is
present in the network. Kau�man et al. (2003) made an overview of the existent methods
that use FBA presenting their chronological contributions. A comparison of modeling
and analysis techniques for high-throughput data is found in the review by Bordbar et al.
(2014a) about constraint-based metabolic models. Moreover, there is a toolbox avail-
able in the MATLAB software named as COBRA (constrained-based reconstruction and
analysis) containing the main tools for biological networks reconstruction, including vi-
sualization of maps and data, FBA and related methods, and other reconstruction tools
(Palsson, 2015b). For more information, see Becker et al. (2007) and Schellenberger et al.
(2011).

To constrain even more the identi�cation problem of biological reaction networks, the
incorporation of thermodynamic restrictions is considered by several authors. In an opti-
mization procedure, the optimal �ux distributions are determined obeying simultaneously
to boundary constraints established in FBA and additional energetic constraints. The
main criterion consists of constraining the Gibbs free energy changes in all individual
paths to be negative. Therefore, the optimal solutions obtained present (i) the concentra-
tions of each metabolite at steady-state, and (ii) �ux distributions with established net
directions that are energetically feasible. The method of energetic balance analysis (EBA)
was initially proposed by Beard et al. (2002), where a nonlinear optimization procedure is
considered, with the imposition of negative free energy changes as nonlinear constraints
of the problem. Obtained solutions have no guarantees to be global optimal, but the au-
thors showed that the resulting feasible solution space is a subset of the space predicted
by a traditional FBA. Qian et al. (2003) proposed a stoichiometric network theory for
nonequilibrium biochemical systems based on EBA, establishing an analogy to Ohm's
law in electrical circuits. Lately, Beard et al. (2004) formalized the conditions in which
mass �uxes are energetically feasible to occur by means of linear algebra analysis. In this
last case, the thermodynamic feasibility condition is valid not only for steady-state �uxes
but also for transient ones. Moreover, the authors showed that �ux vectors that are linear
combinations of energetically feasible �uxes are not guaranteed to satisfy the thermo-
dynamic constraints. The enunciated condition enables to eliminate unfeasible reaction
cycles in metabolic reaction networks. Finally, Qian and Beard (2005) published a review
of the method of incorporating thermodynamic constraints for steady-state and dynamic
biochemical networks identi�cation. Besides the elucidation of the reaction direction, the
use of energetic criteria allows the estimation of how far from equilibrium the reactions
in the network operate. Henry et al. (2007) proposed the use of MILP for identifying
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biological networks using FBA and EBA, naming the method as thermodynamic-based
metabolic �ux analysis (TMFA). In this formulation (i) the nonlinear constraints of the
EBA problem are written in a linear format by adopting as variable of the problem the
logarithm of the metabolite concentrations (or activities); (ii) binary variables are used to
identify the positive signs of the reaction �uxes and the direction in which these �ux are
energetically feasible. Moreover, the concentration ranges in which the �uxes are energet-
ically feasible and the �ux ranges in which the reaction Gibbs free energy change remains
negative are also determined. Ataman and Hatzimanikatis (2015) made an overview
of the existing methods of thermodynamic-based network analysis, di�erentiating three
main approaches: the EBA, the TMFA and a third method named as network-embedded
thermodynamic analysis (NET).

Although most of the previously described methods to generate reaction networks are not
directly supported on experimental data, some of them use experimental data to evaluate
the quality of the proposed model, by verifying the model simulation agreement with the
data available (e.g., Henry et al. (2007); Edwards et al. (2001)).

In contrast, the group of Professor Marquardt (pioneer in the incremental modeling strat-
egy) adopted a step-wise method supported on experimental data to estimate kinetic
parameters in metabolic networks (Jia et al., 2012). The optimization procedure enables
the parameters adjustment for linearly independent and dependent chemical reactions in
sequential steps, thus reducing the associated computational e�ort, but it is assumed that
the reaction network is already identi�ed.

The research group of Professor Grossmann also considered the problem of identifying
metabolic networks using FBA, but in a more systematic approach in which all solutions
that constitute extreme points with identical objective values are obtained through a
recursive MILP formulation (Lee et al., 2000). This is achieved by reformulating the FBA
problem in a canonical LP formulation using slack variables. The re-formulated problem
presents only equality constraints and non-negative variables. In order to �nd multiple
solutions, after obtaining the �rst solution, integer cuts are added to the formulation in
every iteration, until all feasible solutions are found. With this approach, the authors have
shown that the algorithm provides directions to additional experimental tests through the
analysis of the multiple �ux distribution alternatives.

Recently, Portela et al. (2019) propose the use of sparse regression using MILP for identi-
fying metabolic reaction networks that balance sparseness of solutions (reduced number of
reaction �uxes) against the data agreement (�t of extracellular compounds feedings). For
this, the absolute error between molar quantities is considered, where the model coun-
terpart is given by the integral of extracellular material balance at steady conditions.
Therefore, the traditional MFA is transformed by using time-integrated reaction �uxes.
Hence, it does not provide the rate at which the material is transformed for every time
instance, but the (absolute) amount of material transformed by the pathways for a cer-
tain time span, identifying the relative use of pathways (or the total pathway usage for a
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speci�ed time interval).

Extreme pathways

The concept of extreme pathways is very useful for understanding how a metabolism
can work, since it enables the mathematical quanti�cation of every feasible steady-state
�ux distribution, identifying their spacial and structural representation in terms of linear
algebra and network topology, respectively. Any vector of steady-state reaction �uxes
lies in a convex region that is inserted in the (right) null space of the transposed stoi-
chiometric matrix (Schilling et al., 2000b). Remember from Section 2.2.2 that when the
stoichiometric matrix is rank-de�cient, it presents a (right) null space that corresponds
to a linear combination of the stoichiometric vectors that add up to zero, resulting in
a steady-state for the network (null response vector). The convex representation of the
null space consists of a delimited region of the reaction �ux space with a conical format,
where the upper �ux bounds establish hyperplanes that close the convex region and the
lower �ux bounds (�uxes are greater or equal to zero) establish the origin of the conical
representation. The edges of this cone are the set of vectors that spans the convex space in
a nonnegative fashion, and they correspond to extreme functions of the reaction network.
They are thus called extreme pathways (Palsson, 2015a).

The extreme pathways are uniquely determined for a given reaction network superstruc-
ture, but their number can be greater than the dimension of the null space, con�guring
a generating set of positive steady �uxes. Therefore, any positive steady �ux vector is
written as a linear combination of the extreme pathways, but this combination can be
not unique.

The problem of computing extreme pathways is of combinatorial nature, consisting of a
NP-hard problem that has been solved using an algorithm that involves matrix opera-
tions (Schilling et al., 2000b; Bell and Palsson, 2005) and integer (linear) programming
(Bordbar et al., 2014b). The number of extreme pathways grows faster than the number
of species/components in a network, consisting of a problem that leads to large numbers
of possible combinations. Bordbar et al. (2014b) proposed an algorithm (MINSPAN) to
compute the minimal set of pathways, where the sparsest representation of the convex
region is searched using a MILP formulation.

Famili and Palsson (2003a) made an analogy with extreme pathways, considering the
convex space of the left null space of the stoichiometric matrix, where time-invariant
relationships lie. These relationships establish metabolic pools (linear combination of
metabolites concentration) whose total concentration does not change over time. The
study of time invariants with physical meaning allows the identi�cation of achievable
states of the cell and their physiological interpretation.
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Dynamic metabolic �ux analysis

In order to model batch and semi-batch biological reaction systems (e.g., cell growth and
intracellular metabolism with dynamics), dynamic metabolic �ux analyses were proposed.
In these approaches, the key concept passes through assume that the cell still work in
steady-state conditions for intracellular processes, but these steady-states are function of
several external conditions that vary in time. In practice, this means that the time-scale
for process dynamics must be longer than the time-scale for intracellular metabolism to
equilibrate with the extracellular environment (Antoniewicz, 2013). Therefore, in order to
compute the intracellular �uxes that are dependent variables of time, whether using FBA
or MFA methods, the task of computing extracellular dynamics is required. In this sense,
it is assumed that every species/component that is measured during a batch (or semi-
batch) experiment represents an external component responsible to determine an exchange
�ux that cross the boundary of the cell, and, on the other hand, the species that are
unmeasured are part of the intracellular organism (inside of the boundaries) that operates
at pseudo steady-states. The �uxes that cross these boundaries are therefore the ones that
represent the process dynamics, and they must be computed using techniques that enables
the quanti�cation of the concentration slopes (time-concentration derivatives). Several
works are proposed in the literature using di�erent techniques for estimating the external
species concentration derivatives (the �uxes that cross the boundaries). Antoniewicz
(2013) and Vercammen et al. (2014) made a review of these works, presenting four main
classes of methods which are based on (i) average �uxes, where time-concentration pro�les
are divided into phases and the average rates are calculated using �nite di�erences, leading
to average intracellular �uxes (Lequeux et al., 2010), (ii) time-resolved �uxes, where data
smoothing or �ltering procedures are used in order to obtain continuous approximation of
data, and calculate instantaneous rates, leading to continuous intracellular �uxes over time
(Niklas et al., 2011), (iii) piecewise �ux dynamics, where the concentration of species are
approximated by piecewise linear functions composed of continuous segments in the time
domain, leading to segments of lines as �ux function (Leighty and Antoniewicz, 2011),
and �nally, (iv) simulated dynamics, where the concentration of species are approximated
by numerically integrated kinetic models that are previously proposed in a mechanistic
basis, and using MFA in a hybrid approach (both static and dynamic analyses for �ux
estimation in a data regression procedure), resulting in simulated �uxes over time (Yugi
et al., 2005). Notice that the last two classes of methods are derivative-free.

Vercammen et al. (2014) proposed the use of B-spline parameterization for dynamic
metabolic �ux modeling in a systematic methodology that establishes a sequence of non-
linear dynamic optimization problems (involving orthogonal collocation, interior-point op-
timizer, Akaike model discrimination criterion and automatic di�erentiation). Through
the use of B-splines of 2nd order, they ensure the obtainment of smooth intracellular
�uxes, and in a simultaneous regression problem where all experimental data concern-
ing to di�erent measured species are �t together, the measure of goodness-of-�t can be
assessed in a consistent way, di�erently of methods that use smoothing splines where in-
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dividual �ts are performed separately. Moreover, in simultaneous with the estimation of
the reaction �uxes, the optimal choice of the basis that spans the null space of the sto-
ichiometric matrix is considered during the sequential procedure, imposing that it must
be orthonormal.

Bordbar et al. (2017) proposed the use of unsteady-state �ux balance analysis (uFBA) for
metabolic network reconstruction using experimental data. The technique uFBA com-
bines (i) SVD of experimental data in a prior phase for identifying metabolic states that
assume linear behavior with time and the respective duration of them (or instant of transi-
tion between them), and (ii) simple linear regression for predicting slopes of concentration
pro�les that will be used as bounds with 95% of con�dence intervals for the estimation
of reaction �ux distributions for �dynamic systems�. It is assumed that in each state the
concentration derivatives are constant for every measured species, i.e., the instantaneous
concentration of species varies linearly with time. Thus, the optimal distribution of �uxes
can be determined for each identi�ed state using FBA constrained to the boundary con-
ditions de�ned by the concentration derivatives previously estimated. In ideal conditions
the unmeasured species should present zero rates of consumption/production. However,
when constraining these species to present null concentration derivatives, problems related
to the overdetermination of the species mass balances occurs, and therefore, a relaxation
of the problem is required by considering as variables the values of concentration deriva-
tives that were set zero respecting to unmeasured species, thus increasing the number of
degrees of freedom. The problem is solved as a MILP where the sparsest vector of con-
centration derivatives is searched subjected to attends the mass balance equations. The
optimal solution identi�es the network topology and the reaction �ux distributions that
best �t the measured data and most approximates to zero the species �ux of unmeasured
species, in a parsimonious criterion.

Critical analysis

This section emphasizes the main characteristics of methods of metabolic network re-
construction previously described, establishing a comparison with the work proposed in
this thesis for modeling chemical reaction systems. Next list of bullets summarizes this
information.

� Metabolic reaction networks assume (quasi) steady-state conditions.

Reaction networks at steady, or quasi steady, condition present internal reaction
�uxes that lead to zero rates of intermediate species consumption/production, i.e.,
these species compositions do not change over time (d2/dC = 0). In this thesis, the
reaction network is identi�ed using transient data for modeling chemical system dy-
namics, where species compositional changes are the basis for structural model iden-
ti�cation. Perhaps this is the major di�erence between the methods for metabolic
network reconstruction and the methodology proposed in this thesis for reaction
network identi�cation. Although, the reaction networks can be generated consid-
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ering only structural criteria (without considering the experimental data directly
in the formulation, i.e., considering the explicit generation of reaction networks),
their identi�cation is only possible when using experimental data. Therefore, sev-
eral steps of the methodology incorporate experimental data resulting in valuable
information that are crucial to identify the structural model correctly, such as: (i)
invariant relationships, (ii) network dimension, and (iii) determination of the data
variant space. Di�erently, in metabolic networks, the structural proposals are iden-
ti�ed when �nding reaction �ux distributions that lie in the invariant space of the
reaction stoichiometry (the right null space of the transposed stoichiometric matrix),
where positive �uxes build null vectors of concentration derivatives, and therefore,
the convex space analysis makes sense.

Hence, the analysis of convex linear spaces is meaningful for chemical reaction sys-
tems that operate at steady regimes, presenting networks with (right) null spaces
associated, i.e., networks presenting structural redundancies (composed by a lin-
early dependent set of chemical reactions). In this dissertation, we are looking for
reaction networks that describe the data variant space, i.e., bases that de�ne/span
the data variant space, and therefore, are composed by a linearly independent set
of chemical reactions.

In metabolic networks, the vector of reaction rates (the distribution of reaction
�uxes) de�nes which are the chemical reactions (stoichiometric vectors) that make
up the metabolic network, i.e., those that are active when transforming matter
among metabolites/species, at steady-state. Thus, the distribution of positive reac-
tion �uxes identi�es the metabolic network that operates in steady condition. The
resulting network can be composed by reaction �uxes that require (i) a full descrip-
tion, or (ii) a partial description of the right null space of the network superstructure.
On the former, the distribution of reaction �uxes is a linear combination of the en-
tire set of basis vectors of the null space of the network superstructure, presenting
certainly structural redundancies, while on the latter, it is a linear combination of
a partial set of these basis vectors that can result in network with redundancies or
not. On the other hand, in this work, we want to �nd the network that conduct
to instantaneous distribution of �uxes whose respective stoichiometric vectors form
a basis that span the row space of the compositional changes matrix, presenting
network structures without redundancies.

� Positive reaction �ux constraints are considered.

In this thesis, as such in methods for generating metabolic networks, the use of lower
bounds for reaction �ux computation (positive reaction rates) is considered. In this
case, it de�nes the criterion used to select plausible reaction networks (plausible
bases that de�ne/span the data variant space, i.e., the row space of D). On the
other hand, in metabolic networks, the lower bounds of �uxes establish the origin of
the conical representation of the convex space where every plausible �ux distribution
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lies.

� The theory of steady-state chemical reactions (Section 2.1.3) is present in metabolic
networks.

Metabolic pathways are determined based on the null space of the superstructure of
the stoichiometric matrix (containing boundary �uxes mapped in). The species that
are associated with these boundary �uxes are the ones that form the terminal species
in a global chemical reaction using the theory of steady-state in reaction mechanisms.
On the other hand, the remaining species (i.e., the intermediate species) are those
whose consumption and production rates must be the same to verify stationary
conditions and, therefore, to be canceled in the global reaction. Thus, the steady-
state theory is applied to metabolic networks, but using di�erent terminology, under
a di�erent context and with di�erent methods to generate steady-state networks.

� Energetic criterion is used for identifying the reaction model in both works.

The use of energetic constraints for identifying the net reaction �ux direction in
which it is energetically feasible to occur (negative Gibbs free energy changes) can
be considered in metabolic networks and it is considered in this dissertation. In the
case of metabolic networks, the use of energetic criterion allows reducing the number
of feasible solutions (steady �ux distributions). In this work, it allows reducing the
number of candidate chemical reactions that make up the network superstructure,
thus, decreasing the number of feasible reaction networks to be generated.

� Metabolic networks also contain conserved properties regarding total mass of groups
of species/metabolites.

As in this work, the identi�cation of conserved relationships3 brings to light the
physiological processes of the cell (or in this case, it helps in the identi�cation of
the network topology for a better description of the system dynamics).

However, the techniques used for their identi�cation are di�erent. In metabolic net-
works, the identi�cation of pools of species is carried out by left null space analysis of

the superstructure stoichiometry times -1 (i.e., leftNull
(
−NT

sup

)
) (Famili and Pals-

son, 2003a). This analysis establishes a direct analogy with extreme pathways since
the identi�ed relations that de�ne the concentration pools lie in a convex space in
which respective vectors are written as linear combinations of the basis vectors that
de�ne the convex space through positive coordinates. These positive coordinates
establish meaningful molar proportions between metabolites and moieties or groups
of molecules. In this dissertation, we work with both data- and theoretical-based

3In this work, the conserved relationships are called time invariants. However, this term adopts a
broad (comprehensive) sense in metabolic networks, since the system itself operates in a time-invariant
mode and, therefore, this term is not speci�cally designated to the conservation relations of mass and
moieties, such as it's here in this work.
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analyses for identifying concentration pools. On the one hand, through data anal-
ysis the conserved relationships are searched by assessing the left null space of the

data matrix (null
(
DT

)
). On the other hand, through stoichiometry (theoretical)

analysis the conserved relationships are searched by assessing the null space of the
atomic matrix (null (A)).

3.2.2 Generation of reaction mechanisms using a global reaction

A di�erent class of methods is based on the consideration of a known global (or overall)
reaction and the linear combination of elementary reaction steps to produce that global
reaction. As these methods manage elementary reactions, the resulting reaction network
may be called a mechanism since it is more speci�c, also describing the mass transfor-
mation between non-observable species such as radicals. Once the concentrations of all
intermediate species are assumed to be constant in steady-state mechanisms, the net rate
of production of each intermediate is zero (Bertók and Fan, 2013). Hence, the analysis
of steady-states of a chemical system can be aided by the identi�cation of mechanisms
responsible for overall reactions, from a set of elementary steps that involve the terminal
species as well as reaction intermediates (Mavrovouniotis and Stephanopoulos, 1992).

A recent review (Bertók and Fan, 2013) distinguished two major approaches to generate
reaction mechanisms subject to a global pre-speci�ed reaction: one based on linear alge-
braic analysis and the other rooted in graph theory. In the �rst case (Happel and Sellers,
1982; Happel et al., 1990; Mavrovouniotis and Stephanopoulos, 1992; Mavrovouniotis,
1992, 1995), the goal is to �nd a basis able to generate all feasible mechanisms, obey-
ing the global reaction, and in particular those with the maximum number of linearly
independent reactions, also called direct or cycle-free mechanisms. The graph theoretic
approach (Seo et al., 2001; Fan et al., 2002) is entirely di�erent, it is rooted on a set of
axioms of feasible mechanisms and combinatorially feasible mechanisms. It uses bipar-
tite graphs and a combinatorial algorithm that was originally developed for the synthesis
of process-networks using a network superstructure (Friedler et al., 1992). Moreover,
a third approach to generate mechanisms concerning to a global chemical reaction can
be found in the literature, where favorable catalytic reactions are identi�ed through the
energetic characteristics of surface reactions, i.e., enthalpies of reaction and activation
energies (Fishtik et al., 1999). The global mechanism has to be energetically favorable,
even if some individual steps are not. This condition can be used for selecting the most
energetically favorable mechanism.

The next sections address these three main methods of mechanisms generation supported
on a global chemical reaction. However, in advance, a disadvantage of these methods
of identi�cation of steady-state mechanisms is the obtainment of networks that may not
explain the formation of all species present in a transient regime. This happens due to the
criterion used, which is summed up in combining the elementary steps so that the global
reaction initially postulated is veri�ed, without the commitment to describe the formation
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and consumption of all intermediate species. Moreover, despite the potential advantages
in using graph theoretic approaches, these methods have as their main disadvantage the
di�culty in understanding the theory underlying this representation, which makes this
methodology relatively little used, compared to other alternative approaches.

Generation of reaction mechanisms via linear algebra

Since networks can be represented in matrix form under di�erent ways, the study of the
properties of these matrices can also provide alternative methods for the generation of
alternative reaction networks. In this sense, a group of authors in the decade of 80's
and beginnings of 90's have studied linear algebraic properties related to reaction system
stoichiometry for the generation of reaction mechanisms from a list of elementary reactions
(Happel and Sellers, 1982; Sellers, 1984; Happel et al., 1990; Otarod and Happel, 1992).

Happel and Sellers (1982) propose a combinatorial method of generating mechanisms
starting from all elementary reactions, which can be considered both in the forward and in
the reverse direction. Some proposed mechanisms are discarded based on thermodynamics
or kinetic considerations. The validation of the mechanism depends on experimental data,
but this step is not addressed by the authors. Each elementary reaction is written as a
linear combination of the chemical species involved, just as each mechanism is also a
linear combination of the elementary reactions involved. The set of all combinations of
elementary reactions is classi�ed as a linear space called a mechanism space; the set of all
reactions constitutes another linear space called the reaction space, in which the dimension
is de�ned by the maximum number of linearly independent elementary reactions4.

Happel et al. (1990) show that the matrix constituted by the stoichiometric coe�cients
provides a valid way to determine the overall number of linearly independent reactions
in a chemical system. Mechanisms classi�ed as cycle-free and/or direct, i.e., composed
by linearly independent set of chemical reactions/steps (and containing only elementary
reactions), are manipulated. The property of directness in mechanisms means that they
are irreducible in the sense that they cannot be separated into submechanisms, each of
which produces the same overall reaction. Otarod and Happel (1992) de�ne direct mech-
anisms as �the smallest possible physically distinct mechanisms for a chemical system.
They cannot be shortened through elimination of a step or reduced to a combination of
smaller submechanisms�. According to Mavrovouniotis and Stephanopoulos (1992), once
all direct mechanisms have been identi�ed, all other possible mechanisms must be seen as
a linear combination of these direct mechanisms; these authors de�ne a direct mechanism
as: �to state that they are cycle-free; i.e., the steps participating in a direct mechanism
cannot be combined into a loop or cycle accomplishing in net transformation�.

4On the other hand, the set of all linear combinations of chemical elements can be called the species
space; in turn the dimension of this space will be equal to the characteristic of the atomic matrix, i.e., it
corresponds to the number of independent species. The species space is contained in the reaction space,
which in turn is contained in the mechanism space.
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The problem of enumerating the direct mechanisms involves �rstly generating all possible
global reactions, and �nally combining the elementary steps to obtain mechanisms that
are free of cycles, composed of linearly independent reactions. For this purpose, an ad-
ditional caution has to be considered: the set of global reactions must also be linearly
independent; otherwise, the set of solutions obtained will not be unique, in addition to
being direct. Thus arises the concept of direct overall reaction, this is the one with the
characteristic that when removing some species from the initial overall reaction, the re-
maining overall reaction cannot be described by a new sub-network formed by linearly
independent reactions; in other words, when removing a species from the direct overall
reaction it becomes stoichiometrically inconsistent. The proposed algorithms are based
on this combinatorial principle, in which elementary chemical reactions are combined to
generate direct mechanisms, which are described by global/overall reactions that are also
direct. For this purpose, species are previously divided into terminals and intermediates,
linearly independent global reactions are determined based on reaction stoichiometry and
linear algebra; to �nally determine the sets of direct mechanisms that drive the respective
direct global reactions.

Sellers (1984) proposed a combinatorial method for identifying mechanisms using linear
algebraic analysis; the chemical reaction system is characterized by an integer matrix in
which the incidence relationships between all chemical species and elementary reactions
are expressed.

Mavrovouniotis and Stephanopoulos (1992) developed an algorithm, similar to the one
proposed by Happel and Sellers (1982), to generate mechanisms. These authors state
that this version of the algorithm corresponds to an elaboration of the original algorithm,
since the obtained mechanisms are unique and non-redundant, being classi�ed by these
authors as overall mechanisms. An overall mechanism is de�ned as one that is described
by a global reaction, i.e., one that involves only terminal species, which can be obtained
by the sum of all elementary reactions multiplied by their respective Horiuti numbers5.
Like Marin and Yablonsky (2011), these authors begin by dividing the species 0 9 ∈ � in
two subsets � = {01, . . . ,0� } referring to intermediate species and ) = {0�+1, . . . ,0�} referring
to terminal species, where � = � ∪) . Each reaction is called a step, and the set of all these
makes up the linear space (, such that ( = {B1, . . . ,B( }. So, each species 0 9 that is present
in reaction B8 has a stoichiometric coe�cient U8, 9 . The transformation that occurs through
each reaction is seen as a linear application ('), such that A8 = '(B8) =

∑�
9=1 U8, 90 9 obeying

the rules of stoichiometry. A mechanism <: ∈ ", where " is the space of mechanisms, is
de�ned by <: =

∑(
8=1 f:,8B8 . That is, the mechanism is also a linear combination of steps

B8 ∈ (, where f:,8 is the corresponding Horiuti number.

Once all these parameters are de�ned, the global reaction rate (A:) representing the global

5The Horiuti number is de�ned in Section 2.1.3
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mechanism (<:) can be written as

A: = '(<:) =
�∑
8=1

V:,90 9 =

�∑
9=1

(
(∑
8=1

f:,8U8, 9 )0 9

where V:,9 =
∑(
8=1 f:,8U8, 9 .

To obtain a global mechanism, the coe�cient V:,9 has to be zero for all intermediate
species

Global mechanism (<:) ⇔ V:,9 = 0, ∀9 = 1, . . . , �

An additional constraint can be established considering the number of Horiuti, for ob-
taining direct mechanisms:

Unidirectional mechanism (<:) ⇔ f:,8 > 0, ∀8 = 1, . . . , (

When for a given step B8 of <: the respective coe�cient f:,8 = 0, the mechanism is
redundant, being called by these authors as indirect mechanism. When there are two
pathways for the global reaction, i.e., two subsets of linearly independent reactions, it
de�nes the mechanism as bidirectional, yielding null coe�cients of some f:,8 on reaction
paths. So, according to the de�nition of Mavrovouniotis (1992):

(∀B8, ∃f:,8 = 0) ⇔ (<:) Bidirecional mechanism

The algorithm for generating mechanisms proposed by Happel and Sellers (1982) and
re�ned by Mavrovouniotis and Stephanopoulos (1992) starts with several reaction mech-
anisms, initially constituted by only one reaction, chosen from the list of elementary
reactions. As the iterative method is applied, new mechanisms subject to restrictions
are generated, which in this case re�ect the fact that unidirectional mechanisms are in-
tended for the examples presented. Thus, possible combinations between mechanisms for
the elimination of intermediate components in the global reaction (between the terminal
species) are identi�ed. The algorithm stops when there are no longer any intermediate
species in a global reaction, and therefore, the obtained mechanism can be classi�ed as
a direct mechanism that attends a global reaction. Once the set of all possible direct
mechanisms is obtained, those that are redundant and those that appear duplicated are
identi�ed and eliminated. Mavrovouniotis (1992) proposes that this phase of identi�ca-
tion and elimination of redundant mechanisms is carried out as they are generated in each
iteration, which allows considerable savings in computational e�ort, due to the smaller
number of reaction combinations considered in this case.
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Generation of reaction mechanisms via graph theory

Methods based on graph theory follow a very di�erent approach, considering a list of
axioms for the generation of combinatorially feasible reaction pathways (T1 � T7) and
feasible reaction pathways (R1 � R6), identifying steady-state mechanisms from a prede-
�ned/known global reaction. The mechanisms representation is in the form of bipartite
graphs that are composed of horizontal bars and solid circles, respecting to elementary
reactions and chemical species, respectively (Seo et al., 2001; Fan et al., 2002). These
generation methods were inspired in formulations conceived to the synthesis of chemical
processes, which were proposed by the same research group, same authors that follow the
work of Prof. Friedler.

Friedler et al. (1992) were the pioneers of the application of graph theory, establishing
algorithms for the synthesis of networks, applied to the synthesis of chemical processes.
Similarly a list of axioms concerning process speci�cations is postulated. These authors
considered operation units, raw materials, by-products, residues, and �nal products, using
transformation, accumulation, and separation of matter throughout the process. The
origin of the expression P-graph (process graph) has risen from this work, where the
process is graphically represented through bipartite graphs, that represents the structure
of the global process. Later, Friedler et al. (1993) proposed a method for generating
the maximum structure of the process, called superstructure of the process, in which all
possible structures are represented in the same graph.

Direct mechanisms are obtained by following the list below of 6 axioms regarding feasible
reaction pathways (Fan et al., 2001, 2002; Seo et al., 2001; Barany et al., 2012; Bertók
and Fan, 2013):

� R1: Each �nal product (target) species is fully produced by the reaction steps
represented in the network.

� R2: Each starting reagent species (precursor) is totally consumed by the reaction
steps represented in the network.

� R3: Each intermediate species produced by any reaction step is fully consumed by
one or more reaction steps, and each intermediate species consumed by any reaction
step is fully produced by one or more reaction steps.

� R4: All reaction steps are de�ned a priori.

� R5: The network representing the reaction pathway is acyclic.

� R6: At least one reaction step represented in the network activates a starting reagent
(precursor).

A reaction pathway is combinatorially feasible if it satis�es the following 7 axioms (Fan
et al., 2001, 2002, 2012; Seo et al., 2001; Barany et al., 2012; Bertók and Fan, 2013):

� T1: Each �nal product is represented in the network.
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� T2: Each starting reagent is represented in the network.

� T3: Each reaction step is de�ned a priori.

� T4: All intermediate species represented in the network have at least one pathway
leading to the �nal product of the global reaction.

� T5: All chemical species represented in the network must be a reactant or a product
of at least one reaction step represented in the network.

� T6: A reactant of any elementary reaction represented in the network is an initial
reactant if it is not produced by any reaction step represented in the network.

� T7: The network includes the reaction in only one direction (forward or reverse) of
each elementary step represented in the network.

Based on these axioms, three algorithms were developed for the generation of chemical
reaction networks. In published articles (Friedler et al., 1992, 1993; Fan et al., 2001, 2002),
these algorithms are described in pseudo codes, in which the formulation is not presented
explicitly, but the symbolic structure of the sequence of calculations is shown. The �rst
algorithm addresses the generation of the superstructure of reactional pathways, con-
taining exhaustively and exclusively combinatorially feasible structures; this algorithm
is called: RPIMSG � reaction pathway identi�cation maximum structure generation.
The others respect the generation of reactional pathways, namely to generate the set of
all combinatorially feasible reaction networks from the superstructure (RPISSG - reac-
tion pathway identi�cation solution structure generation), and, alternatively, to generate
feasible reaction networks using back tracking (RPIPBT � reaction pathway identi�ca-
tion pathway-back-tracking) (Fan et al., 2001, 2002; Seo et al., 2001; Barany et al., 2012;
Bertók and Fan, 2013).

According to Barany et al. (2012), a P-graph (or a reaction network) is called a structurally
minimal reaction pathway or an independent reaction pathway when it presents a feasible
reaction pathway, and no subgraph can represent a feasible reaction pathway in it. This
de�nition comes directly from the application of the axioms (R1)�(R6). Similarly, an
independent reaction pathway corresponds to a network formed by linearly independent
reactions (analogous concept of the method based on linear algebra referring to direct
mechanisms). Barany et al. (2012), have mathematically demonstrated that structurally
minimal reaction pathways are equivalent to direct mechanisms. In addition, Barany et al.
(2013) have also demonstrated that extreme pathways (in which the conversion of primary
inputs (substrates) into primary outputs (products) and thus contain exchange �uxes with
the environment) are equivalent to structurally minimal pathways, or direct mechanisms.

There are many variations of algorithms that use graph theory. One possibility uses Petri
nets (also known as P/T nets, or local nets (�places�)/transitions), a type of bipartite
graph where nodes represent either places or transitions. In these networks the arcs
describe the locations that are pre- and post-conditions for the various transitions. Other
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authors use the theory of P-graphs for generating reaction network superstructures, to
then consider FBA (Seo et al., 2001; Lee et al., 2005; Tick, 2007; Fan et al., 2012).

Seo et al. (2001) use a method based on the P-graph theory for the generation of complete
superstructures of reaction networks, i.e., maximum structures of minimum complexity,
from a list of candidate elementary reactions. This method is applied to a traditional case
study: the conversion of glucose to pyruvate, involving 14 elementary reactions. Later,
these same authors propose a complementary identi�cation of the multiple distribution
of �uxes and metabolic routes in biological systems (Lee et al., 2005). The proposed ap-
proach integrates FBA, based on linear programming, and the previous graph theoretical
method to determine alternative metabolic trajectories, some of which only manifest in
appropriate environmental conditions. This study was applied to the in silico Escherichia

coli model.

Fan et al. (2012) studied the catalytic hydrogenation of ethylene to produce ethane with
a platinum catalyst. Two mechanisms were proposed, one composed of 7 elementary reac-
tions involving competitive adsorption, and another composed of 8 elementary reactions
with competitive and non-competitive adsorption. The motivation of this work was to
demonstrate that, through exhaustive identi�cation of routes using a method based on
the P-graph theory, it is possible to model networks of complex reactions that involve
two or more catalytic active sites. According to these authors, the method involving the
P-graph theory is the most e�ective for exploring the structures of reaction networks,
because it explores the structural information, together with elementary balances and
reaction stoichiometry. The method also allows to obtain combinations of feasible routes,
which they classify as more realistic solutions than feasible routes without cycles.

Generation of reaction mechanisms considering energetic issues

In the context of catalytic reactions, Fishtik et al. (1999) generalize the approach of
enumerating all possible mechanisms composed by catalytic reactions, with a view to
their further discrimination, through an analysis of the energetic characteristics of the
corresponding surface reactions (enthalpies of reaction and activation energies). This
study is also based on the analysis of the properties of the corresponding stoichiometric
matrix, and the various possible mechanisms are obtained by selecting an appropriate set
of columns and rows that verify a particular algebraic criterion.

Later, in the �eld of microkinetics analysis, Fishtik et al. (2004a,b) proposed a systematic
method to generate mechanisms given a set of elementary reactions, considering exam-
ples of both chemical and biological catalytic kinetics. In this case, the authors have
combined methods to generate reaction networks that involve a global chemical reaction
and energetic constraints. The mechanisms are obtained by a linear combination of these
elementary reactions that satis�es a global reaction previously identi�ed. The topology
of the identi�ed mechanisms are represented by Reaction Routes Graphs (RRG). For the
discrimination of preferable routes in the complex mechanism, an analogy with electrical
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networks using Kirchho�'s law is considered, where each elementary reaction is associ-
ated with an electrical resistance, the reaction rates are considered as currents and the
a�nities as voltages. A voltage source is considered between the terminal species (those
involved in the global reaction) and the equivalent resistance o�ered by the global reaction
results in a linear combination of the resistances o�ered by each elementary step. With
this energetic analysis in the entire RRG, the redundant routes may be eliminated if they
present greater resistance than the other via to arrive in the same node.

3.2.3 Generation of reaction networks via optimization

One of the areas where the generation of reaction networks has proved to be more im-
portant is that of biore�neries and the development of biofuels, taking into account the
variety of possible routes and the large number of compounds that can be obtained. A
fundamental problem in this area is the generation of reaction networks so as to maximize
the use of raw materials and energy production, moving towards obtaining products that
meet market needs, simultaneously solving the various aspects of product and process
design (Pennaz, 2011; Voll and Marquardt, 2012; Marvin et al., 2013).

Pennaz (2011) makes use of a �ux analysis in reaction networks to synthesize the optimal
reaction network regarding a speci�c objective function. This method is �rst formulated
as a LP problem, and later converted into a MILP through integer cuts that allow the gen-
eration of alternative solutions. In this way, all feasible possibilities of reaction networks
from a reagent to a target product are listed. The optimal network is obtained based
on thermodynamic, economic, security and heuristic factors. This author also proposes
a graphical shortcut method based on chemical potentials for the formulation of reaction
networks. In this method, chemical potential changes along the reaction network are used
as a quick guide for the identi�cation of feasible paths, as an alternative to stoichiometric
enumeration of reactions and �ux analysis in reaction networks. Pennaz (2011) applied
the developed methodology to two case studies in the area of biore�neries. The �rst is
a hypothetical case based on the conversion of biomass into liquid fuels. The second is
a more elaborate case for obtaining the network of MTHF (2-methyl-tetrahydrofuran)
synthesis from glucose and xylose.

Voll and Marquardt (2012) proposed an optimization method for reaction network synthe-
sis concerning to biofuel production in biore�neries. This approach has similarities with
FBA in metabolic networks, since the goal is to synthesize a reaction pathway (actually
a plenty of them for further analysis) with an optimal �ux distribution in steady-state
conditions, considering several objective functions and subject to speci�c process con-
straints (the authors called this method as reaction network �ux analysis).The generation
of these pathways is done using a MILP formulation where the binary variables identify
the reactions that make part of the optimal solution. Every feasible solution (with the
same objective function, but with di�erent steady �ux distributions) is generated in a
recursive formulation where the extreme bases can be found (Lee et al., 2000). Hence,
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Voll and Marquardt (2012) proposed a systematic procedure where the objective function
is �rst established, then feasible structures are generated based on �ux analysis (linear
optimization approach), to then consider the evaluation of nonlinear constraints (such
as yields) and other network evaluation criteria for a �xed structure, to �nally identify
promising networks and tradeo�s between them.

Marvin et al. (2013) proposed a method of automated generation and optimal selection of
the mixture of biofuels with gasoline through the synthesis of the corresponding reaction
network. This approach allows the simultaneous identi�cation of the desired product and
of the corresponding synthesis route. Formulations of multi-objective optimization were
considered, including criteria for minimizing energy and reaction-related costs, including
catalyst-related costs.

In the literature, there are other optimization-based studies on the analysis of mass �uxes
and determination of reaction pathways, according to the intended target. Several ex-
amples concern to metabolic networks reconstruction, which were previously described in
Section 3.2.1, where the concept of mass �uxes is used to maximize, for example, the cell
growth rate (Murabito et al., 2009).

3.3 Synthesis of graphs

Graph synthesis can be applied in completely di�erent contexts, sharing a common feature:
dealing with processes that can be represented by a connected structure that shows the
relationships between nodes through their arcs. These nodes and arcs may represent
completely di�erent things, with di�erent meanings. Consequently, the synthesis of graphs
is largely used and there is a vast number of works in the literature. Some examples, apart
from reaction network synthesis, are process synthesis and scheduling, transportation
routes, computer networks and project scheduling.

Most of the problems of graph synthesis are related to the construction of linear graphs, in
which only one type of node exists and two nodes are connected by only one arc. However,
adaptation of the existing formulations can be done in order to enable generating more
complex structures, namely nonlinear reaction networks. The general concern common
to most methods for generating graphs is to ensure connectivity between all nodes, and
formulations di�er regarding this aspect.

A large number of methods for synthesis of graphs use integer programming, where binary
variables de�ne decisions such as selecting a path for the network from a previously de�ned
superstructure. For example, for process synthesis and scheduling, MILP formulations and
other variants (such as mixed-integer quadratic programming) has been used in the last
decades (Grossmann, 1985; Achenie and Biegler, 1990; Floudas and Lin, 2005). On the
other hand, other methods based on recursive algorithms can be found, where greedy
strategies can be adopted during loop iterations (Jones et al., 2004).
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However, for all of these graph synthesis methods, the problem starts by de�ning its
domain or the superstructure of the network. The use of a superstructure for process
synthesis and/or scheduling has been shown to be an e�ective tool in many applications
(Achenie and Biegler, 1990). The superstructure must contain all possible alternatives
of a potential topology of the process to which the optimal solution belongs. Adopting
this approach to generate reaction networks de�nes a global model structure (that can be
represented as a graph) containing all possible routes between chemical species and able
to describe the observed compositional changes, obeying to stoichiometry and energetic
criteria. This is the approach adopted in this work in Step 3, Chapter 7. In e�ect, it
enables to systematize the generation of feasible reaction networks (exhaustively, or not),
de�ning the space of optimal/feasible solutions.

In this section, the problems of generating graphs from a previously de�ned superstructure
are addressed, including a brief description about iterative methods in Section 3.3.1, and a
more detailed review about synthesis of graphs using discrete optimization in Section 3.3.2.
Some of the methods presented in this last section were the basis for the development of
three new formulations to generate reaction networks, in Chapter 8.

3.3.1 Spanning trees

A linear reaction network without redundant paths may be represented as a �spanning
tree� (Chen et al., 2010), as illustrated in Figure 3.2. Therefore, algorithms to generate
spanning trees can be directly applied to generate linear reaction networks only having
linearly independent reactions. Iterative algorithms to construct spanning trees in graphs
starting from a given node are known, with new visited nodes being done either in depth

or in width. The basic idea is to obtain a structure that connects all nodes only once.

Figure 3.2 Example of spanning tree (darker trace). The coe�cients shown are arc
lengths (weights) and the spanning tree is the one with the smallest total length �
minimum spanning tree (Wikipedia, 2021).

There are several algorithms to enumerate all feasible spanning trees, whose basic com-
ponents are: depth-�rst search, selective enumeration and testing, and arc exchanging
(Gabow and Myers, 1978; Gabow et al., 1986; Kapoor and Ramesh, 1991, 1995). When
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the �rst spanning tree is obtained, the next one will di�er from the previous one by ex-
changing one arc in the network. This procedure is required until all di�erent spanning
trees are obtained. The computational e�ort required to generate spanning trees di�ers
depending on the type of graph, which can be directed or undirected and/or weighted.

Given the importance of these representations in many applications, including discrete
optimization and computer networks, these algorithms are relatively well known and can
be adapted to exhaustively generate all possible spanning trees in a given graph. However,
the number of possibilities increases exponentially with the number of existing nodes. For
example, for a complete graph6 with = vertices, Cayley's formula indicates that there are
==−2 possible distinct spanning trees (Gross and Yellen, 2005).

3.3.2 Elementary shortest path and travel salesman problems

A well known network generation problem is the elementary shortest path problem (ESPP),
where a minimum-cost pathway between initial and terminal nodes is obtained, such that
each node of a the network can only be visited once (Haouari et al., 2013). The path
thus generated is classi�ed as �elementary� and: (i) is cycle-free, (ii) does not necessarily
contain all nodes of the network superstructure, and (iii) forms a sequence of nodes in
series.

The travel salesman problem (TSP) is a variant of the ESPP, designed to �nd a circular
pathway in which the salesman trajectory ends at the starting point, visiting every city
once, thus establishing an Hamiltonian and elementary circuit. The problem is stated as
a salesman that needs to visit a set of cities, each one once, and return to the starting city
by traveling at minimum cost pathway (Miller et al., 1960; Dantzig et al., 1954, 1959).
Note that it consists in determining a network where cities are represented by nodes and
arcs represent the optimal trajectory selected between them. The network superstructure
is represented by an undirected graph where the cost (or distance) is the same in both
path directions. In Asymmetric TSP (ATSP) the path cost (or distance) can be di�erent
to node entry and exit in the same path, although the same goal is established: �nd-
ing an Hamiltonian pathway with the lowest cost. The ATSP is represented by directed
graphs, where the network superstructure presents arcs with established directions (ar-
rows) between nodes. Notice that when a direction in the path is not allowed, its cost is
∞.

The main di�erences in TSP and ATSP when compared to ESPP are (i) all nodes in
the superstructure must be covered in the network, and (ii) terminal and initial nodes
are the same node. The network superstructure in ESPP can be directed or not, and
also, in contrast with TSP, it can present negative path costs, thus, instead of paying
cost for a path, some advantage may be got if the path is selected. Examples that can
be found in the literature of ESPP with negative costs are related to column generation

6Containing all possible arcs between each pair of nodes.
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algorithms, branch-and-price algorithms, currency exchange market, etc. (Ibrahim et al.,
2009; Haouari et al., 2013; Taccari, 2015).

However, we will focus in problems where there is no negative cost in order to establish a
parallelism between ESSP, TSP and ATSP formulations. All formulations look for cycle-
free pathways during the node series trajectory, controlling the node incidence and/or
the node outgoing through arcs. It is possible to easily transform one formulation into
another when altering (i) the assignment constraints, and (ii) the terminal node. In TSP
and ATSP the node incidence and outgoing, for every superstructure node, have to be
strictly one, thus: ∑

9≠8

~8, 9 =
∑
9≠8

~ 9,8 = 1, ∀8

where ~8, 9 is a binary variable that assumes the unity value when the path between nodes
8 and 9 is selected. Whereas in ESPP, only the node outgoing is restricted to be at most
one: ∑

9≠8

~8, 9 ≤ 1, ∀8

Therefore, when considering only positive costs, adapting these assignment constraints
adequately to the related problem, handling ESPP or TSP is the same.

In the last century, many authors have presented several ATSP, TSP and ESPP formula-
tions di�ering, basically, with regard to the restrictions of eliminating subtours. Network
subtours are disconnected paths (mostly circular isolated pathways) that still satisfy the
basic assignment constraints in the absence of subtour elimination restrictions. These
restrictions add complexity to the IP formulations increasing computational e�ort and
sometimes limiting their application to small case studies with a restricted number of
nodes. Basically these formulations can be divided (or grouped) according with the type
of subtour elimination constraints adopted. Öncan et al. (2009) have grouped these for-
mulations in �ve categories: (i) the exponential sized (ii) the sequential based, (iii) com-
modities �ow based, (iv) time dependent, and (v) precedence variable based. In Figure 3.3
several ATSP formulations are shown, with their relative strength indicated by arrows,
and group categories by colored circles. Öncan et al. (2009), in their review, have estab-
lished new formulations comparisons; the results of their comparative study are indicated
in the graph through dashed lines. The 24 formulations are represented through the
surname initials of their original authors.

A plenty of journal articles were published comparing these formulations in terms of
strength when considering (i) relaxation of binary variables facing LP problems, and
(ii) polyhedral information. Formulations with additional variables can be compared
considering their polyhedral projection into the original variables subspace without losing
any integer solution. One formulation is said to be better face another when providing the
larger relaxation value, i.e., higher lowest bound in polyhedral convex region (Pataki, 2003;
Öncan et al., 2009). Therefore, modelers seek to tighten the polyhedron representation of
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Figure 3.3 ATSP formulations and their relationships (Öncan et al., 2009). The
colors of the circles indicate the formulation category (group based). Copyright (2021) by
Elsevier.

the initial formulation in order to increase the bounds produced by the linear programming
relaxation that guides branching decisions. Commercial MIP solvers, such as CPLEX,
during branch-and-bound-and-cut process focus on identifying cutting planes constraints
after the �rst LP relaxation, to successively reduce the size of the feasible polyhedral
region, thus providing better lower bounds (Sherali and Driscoll, 2002). The cutting planes
are iteratively added until either an integral solution is found or it becomes impossible
or too expensive to �nd another cutting plane. In the latter case, a traditional branch
operation is performed and the search for cutting planes continues on the subproblems.
For reference literature in the context of ATSP formulations comparison, we recommend
the articles from Sherali and Adams (1990); Padberg and Sung (1991); Gouveia and Pires
(1999); Sherali and Driscoll (2002); Pataki (2003); Sarin et al. (2005); Orman andWilliams
(2006); Öncan et al. (2009); Bekta³ and Gouveia (2014).

Pataki (2003) emphasize the importance in handling strong IP formulations in the �eld of
combinatorial optimization in order to guarantee the achievement of optimal solutions in
reasonable time and computational e�ort. Many network formulations available are week,
and comparing formulations through the number of variables and constraints, assuming
that the one with lower number would be preferable is not an evidence of strength. A
good evidence, thus, pass through evaluating the number of branch-and-bound nodes and
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time required to solve them to optimality. This is the approach followed for the compar-
ison of the developed formulations in Chapter 8. However, MIP commercial solvers, such
as CPLEX, have the ability to reformulate weak formulations into strong ones by segregat-
ing the problem when considering additional inequalities constraints, thus assisting the
optimal model convergence.

In the context of ATSP, Pataki (2003) proposed a sequential method that combined two
formulation categories. In a �rst instance all possible subtours are encountered in a
directed graph using exponential sized formulation, to later apply ordering constraints
(using sequential based formulation) directly in these subtours, ensuring the nodes prece-
dence and therefore eliminating these undesired isolated cycles. Through this sequential
approach, it is signi�cantly reduced (i) the number of branch-and-bound nodes, (ii) the
relative gap of the objective function of the relaxed problem, thus assisting the solver to
�nd an optimal integer solution, and (iii) in some cases the CPU usage.

Taccari (2016) also recommended sequential strategies to consider dynamic separation
of subtour elimination constraints in order to decrease computational e�ort and allow
handling larger-sized problems. This author advises the use of good primal heuristics
and additional strong inequalities constraints in order to assist the solver convergence.
However, when this separation procedure is not possible, he recommended the formulation
category (iii), the commodity �ow based.

The commodities problems are based on balanced structural �ows that travel among
nodes ensuring a connected structure. The single-commodity �ow (SCF) formulation
was originally presented by Gavish and Graves (1978), in the context of ATSP. These
authors applied SCF for other related transportation problems, namely the Multi-TSP,
the Delivery Problem, Multi-Terminal Delivery Problem, School Bus Problem, etc. Wong
(1980) and Finke et al. (1984) presented, respectively, the multi- and two-commodity
�ow formulations, MCF and TCF. Few years later, Claus (1984) presented another MCF
formulation. Langevin et al. (1990) established a comparison among them, where it was
demonstrated that (i) TCF and SCF are equilavent, (ii) the latter MCF formulation is
covered in the original one when half of the �ow variables and their related constraints
are eliminated, and (iii) the �ow variables in SCF are an aggregation of the MCF.

The SCF formulation was adapted and applied to generate linear reaction networks with
a controlled number of chemical reactions and a desired number of initial reactant species,
i.e., for any reaction network complexity with one or more initial reactants (Vertis et al.,
2015). This formulation is presented in this dissertation in Section 8.4. Other new MILP
formulation proposals presented in this work were inspired in the classical MTZ con-
straints, and adapted to generate nonlinear reaction networks. In this case, additional
constraints are required in order to ensure precedence among nodes, avoiding network
inconsistencies. For more details, see Section 8.5.

The formulations classi�ed as precedence variable based could be potential candidates
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to generate nonlinear structures. However, infeasible solutions presenting inconsistent
network structures were allowed to be generated when testing these formulations (using
the same constraints as they were proposed). However, additional precedence constraints
can be considered to make them useful to our problem, at the price of weakening them
due to the nature of these constraints. As well as precedence variable based formulations,
many of the other formulations proposed in the literature were tested for the problem of
generating reaction networks, but with no application success.

However, all these formulations are related to the generation of network structures with-
out considering experimental data, this means that it concerns only about the feasible
structural model part ensuring network connectivity in a consistent form, verifying species
precedence. Clearly, after generating all feasible reaction networks they must be selected
using experimental data. For this purpose methods for data treatment are required in
order to increase data accuracy for structural model elucidation/identi�cation.

3.4 Data treatment and parameter identi�ability

The adjustment of kinetic parameters is a crucial step for the validation of kinetic models
(including the reaction network), in the classical methodology of modeling chemical re-
action systems. At this stage, statistical regression procedures are usually used, which in
some cases may involve the formulation of specialized mathematical optimization prob-
lems (Duarte et al., 2008). Typical examples of these approaches are linear or nonlinear
least squares and maximum likelihood formulations (Biegler, 2010). Before applying the
regression procedure, it may still be necessary to treat/regularize the raw experimental
data. The state of the art of the data treatment methods is presented in Section 5.2,
where the Step 1 (data reconciliation) of the methodology is also addressed. However, a
brief note on the identi�cation of parameters from experimental data is made in the next
section.

3.4.1 Parameter identi�ability

During the systematic methodology for modeling chemical reaction systems (proposed
in this thesis), the adjustment of reaction kinetic parameters is left to �nal step, after
the identi�cation of the reaction network structure. Therefore, the reaction rates can
be individually correlated to reactant species concentrations in order to elucidate their
respective kinetic expressions. This phase involves a series of linear regression procedures
for predicting responses that are written as a linear combination of the columns of the
design matrix through positive coordinates (kinetic parameters) in that basis. For more
information, see Section 10.2. Hence, the model diagnostics can be done by assessing some
properties of the design matrix regarding parameters identi�ability. In this case, the design
matrix corresponds to the Jacobian of the function to be �t in order to its parameters,
i.e., the sensitivity matrix. Thus, in order to ensure the identi�ability of the model
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parameters in relation to a set of experimental data, two aspects related to sensitivity
matrix full rankness must be analyzed: the condition number and the collinearity index.

The singular values allows the computation of these metrics related to the condition of
the problem in hands, such that

^ =
f1

f=
and W =

1

f=
(3.7)

where ^ is the matrix condition number and W the collinearity index.

While we look for well posed problems, in which ^ is near to one (observe that an or-
thogonal matrix leads to this unity index) and W ∼ 10 − 100 are expected. However, in
real systems, specially without previous data treatment, it is hard to �nd. In general, in
real systems, ill posed problems are faced due to the presence of nearly linear dependence
between columns of the sensitivity matrix, or in other words, due to the presence of small
singular values leading to an ill-conditioned system where the parameter vector is poorly
identi�able (López C. et al., 2015).

In general, chemical reaction systems presents high correlation among variables since the
reaction network links the species in a relation of dependence among them. Although
this correlation exists, the presence of noise in concentration measurements also hinders
the identi�cation of model parameters, blurring the linear independence (or dependence)
between the columns of the design matrix. Therefore, data treatment procedures, when
increase data accuracy (i.e., diminish the data noise content), increase the parameters
identi�ability, and consequently, the kinetic model elucidation, by improving the condition
of the regression problems, i.e., by decreasing ^ and W of the sensitivity matrix. This is
the approach followed in this work, in which a data reconciliation method is proposed
for increasing data accuracy in Step 1 (with subsequent data analysis in Step 2), thus
improving structural model identi�ability in both tasks: reaction network elucidation and
kinetic expressions identi�cation.

3.5 Discussion of existing reaction modeling approaches

A discussion of the reaction modeling approaches presented in this chapter is now con-
sidered and divided into three parts. The �rst part addresses how the reaction network
is identi�ed using experimental data. The second part is a critical comparison of the
existing methods of network synthesis. Finally, in the third part, the main aspects that
di�erentiate the proposed methodology from the approaches in the literature are pointed
out.
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3.5.1 Reaction network identi�cation

In the simultaneous method of modeling chemical reaction systems, the kinetic param-
eters are tuned by �tting the model (obtained by numerical integration of a system of
ODEs) to experimental concentration measurements, in a nonlinear regression procedure
free of bias but subject to local optimal solutions. Therefore, the reaction network is
identi�ed when a satisfactory data-model agreement is obtained. There are two levels of
concurrency in this approach: �rst, all kinetic parameters are simultaneously tuned in
an unique approximation method, and second, the reaction network is identi�ed simul-
taneously with the kinetic expressions that satisfactorily approximate the observed data.
However, the method requires a network proposal prior to its application. This fact may
result in the need to test di�erent network structures until a reasonable �t is obtained
(or not), resulting in a high computational e�ort. Moreover, tested networks are often
biased by the modeler's expectations regarding the system behavior. Furthermore, as the
method supports linear dependencies in the network structure, overparameterization may
be present in the optimal solutions found, or in other cases data over�tting can occur in
the presence of overdimensioned models.

On the other hand, the incremental method of modeling chemical reaction systems decou-
ples parameter adjustments for each component of the model since concentration deriva-
tives (or cumulative concentration changes) are previously calculated, enabling the inter-
connections between species to be broken in their respective mass balances. Therefore,
for a given reaction network structure composed by a linearly independent set of reaction
components, the kinetic parameters of each chemical reactions are estimated separately,
through a (in general) linear regression. This can be done calculating reaction rates or re-
action extents from observed data, depending on the incremental approach adopted (rate
or extent-based, respectively). These problems are considered ill-posed since small er-
rors in concentration measurements are ampli�ed, resulting in poor parameter estimates.
Prior data regularization may mitigate this problem.

Notice that there are two decoupling levels in the incremental method: �rst, the identi�-
cation of the reaction network is decoupled from the parameter estimation, and second,
the estimation of the kinetic parameters of each chemical reaction is carried out individ-
ually. However, the way in which the network identi�cation is done may be criticized.
This is due to the fact that when proposing the structure of the reaction network, either
by using the TFA technique or in an ad hoc manner, the remaining potential structures
are not systematically explored. Although the incremental method is more robust than
the simultaneous method � due to the decoupled identi�cation, resulting in greater con-
�dence in the estimated parameters � it loses validity if the proposed structure is not the
one that best describes the experimental data. As a result, and in both the simultaneous
and the incremental strategies, errors may be masked at two levels: (i) at the level of the
uncertain reaction network, and (ii) at the level of the established kinetic model.

In contrast, the third approach (presented in Section 3.1.4) is independent of reaction
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network proposals. In this case the reaction network is identi�ed simultaneously with the
kinetic expressions, without the need of establishing its structure a priori, but through de-
coupled approximation of species �uxes that are written as linear combination of reaction
�uxes whose parameters are tuned simultaneously. Therefore, each species compositional
changes are predicted by a linear combination of reaction �uxes, which in turn vary lin-
early with the reactant complex (product of reagent concentrations), in an individual
linear regression procedure. Based on the quality of these adjustments (and other crite-
rion such as model complexity), the reaction network is identi�ed. Thus, this approach
presents an advantage against the other network identi�cation methods since there is no
need to establish network proposals. On the down side, the method tends to present
overparameterization, with model components that explain essentially noise, which may
be attenuated through prior data regularization and/or incorporation of techniques that
balance model complexity against data �t agreement.

In short, the identi�cation of stoichiometry is a critical task in the modeling of reaction
systems, where the model that best describes the available experimental data must be
identi�ed, avoiding excessive parameterization. Despite previous contributions, there are
still several limitations and room for a more systematic and well-structured approach. In
particular, an approach that gradually incorporates the experimental data when evaluat-
ing and discriminating alternative reaction networks, and that goes through all possible
solutions regarding the structures of kinetic models, ensuring that all possibilities have
been analyzed and that the best model has been found. The methodology proposed in
this dissertation attends these needs.

3.5.2 Reaction network generation

Regarding the theory of steady-state presented in the theoretical background (Section 2.1.3),
parallelism can be established when considering the methods for the generation of reaction
networks presented in this chapter, as they all present the same perspective of identi�ca-
tion/modeling of the reaction network on the di�erent context of applications:

� In metabolic networks, the network identi�cation pass through the analysis of the
null space of the stoichiometric matrix of the superstructure, including boundary
reaction �uxes, in which a positive �ux distribution can be veri�ed in steady-state
inside of the boundaries. In this way, an identi�ed network presents terminal nodes
that correspond to metabolites that receive or exclude boundary �uxes, and interme-
diate nodes that correspond to metabolites with equal consumption and production
rates.

Moreover, the extreme pathways presenting external exchange �uxes with the en-
vironment can be directly compared to the extreme paths that compose the null
space of the reduced stoichiometric matrix concerning to the intermediate species
in the theory of steady-state chemical reactions.
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� In direct mechanisms with their global chemical reactions, the network synthesis
happens considering terminal species that are �xed (as such as the ones that re-
ceive/exclude boundary �uxes in metabolic networks) and intermediate species that
are imposed to be canceled (presenting the same rate of production and consump-
tion) to obtain the global mechanism, direct/free of cycles (verifying the steady
conditions).

� In ESPP, the �ux balance between intermediate nodes must verify null, while the
starting and the exiting nodes (terminal nodes) present rates of -1 and 1, respectively
(or vice-versa). In commodity formulations, the amount that is inserted in the
starting node must be recovered in the sink node(s), while the intermediate nodes
show a zero rate of accumulation.

Note that all these methods have the same principle: to obtain connected structures that
link �xed terminal nodes from a graph superstructure, however, subject to the ful�llment
of some speci�c restrictions for each case.

All these methods can be applied to generate linear reaction networks after some mod-
i�cations, such as (i) transforming the �nal terminal nodes as variables of the problem
(end product species are not previously determined) and (ii) imposing the production
and consumption of all intermediates, forcing the generation of all observed species. This
is the approach followed in this work for generating linear reaction networks. However,
the generation of more complex structures as nonlinear networks needs additional con-
straints to ensure structural consistency. This is one of the novelties that this dissertation
presents: MILP formulations capable of generating nonlinear network structures.

For a more detailed discussion of the main contributions of this thesis, see Section 1.3.
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Chapter 4

Methodology Description

�As for everything else, so for a mathematical theory:

beauty can be perceived but not explained.�

� Arthur Cayley (1821�1895)

Kinetic models of chemical reactions play an important role in the optimization, control
and design of chemical processes. In this context, systematic methodologies that incorpo-
rate experimental reaction data are sought in order to obtain robust and accurate models.
The proposed methodology follows a step-by-step approach, where parts of the model are
identi�ed incrementally, keeping the model uncertainty under control and avoiding ma-
nipulating nonlinear models in the initial phases. In this sense, the information obtained
in each stage is used in the subsequent ones, gradually increasing the complexity of the
model.

Three main aspects of the systematic methodology for the development of chemical reac-
tion models can be emphasized as signi�cant di�erences when compared to the existing
reaction systems modeling approaches:

� The methodology spans all feasible structural models in order to guarantee that the
best topology is identi�ed, including nonlinear reaction networks.

� The incorporation of invariant relationships in the data regularization procedure is
considered to increase data accuracy, allowing better performance in model identi-
�cation.

� A systematic method for identifying the kinetic expressions of every reaction compo-
nent that (i) is superstructure-based, (ii) incorporates qualitative and quantitative
analyses, (iii) uses information criteria, is proposed.

The methodology, see Figure 4.1, comprises seven steps and takes, as input, reaction
data consisting of measurements of chemical species obtained in a batch experiment. The
output of the methodology, obtained at the end of the sixth step, is an optimal model
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based on �rst principles laws. The methodology exhaustively explores the generation
of reaction networks and makes the most of the experimental data to select plausible
structures. The elucidation of the reaction network is decoupled from the kinetic laws
expressions, ensuring more certainty about the full model development, and guaranteeing
that all structures of reaction networks have been spanned. The methodology converges
to a full kinetic model: reaction network and kinetic laws for each chemical reaction.
If no unique solution is found, further experiments are proposed to complete the model
elucidation. Each methodology step is described next.

Step 1 This consists of a data reconciliation procedure regarding the mass conservation
phenomenon in closed systems and other time-invariant relationships previously
identi�ed. Smoothed and continuous concentration pro�les are obtained using or-
thogonal collocation on �nite elements. The �nite elements typically are cubic
polynomials of Lagrange with the roots of Legendre. In addition to conservation
relationships, several constraints are also imposed, namely continuity equations be-
tween elements in the function value, �rst and second derivatives. The reconciliation
procedure is iterative, where shape constraints are incrementally added in order to
avoid undesired pro�les oscillations. These shape constraints consist of inequalities
equations that establish monotonous behavior that can be observed through the
pro�les trends. The polynomials are simultaneously �tted minimizing the squared
di�erence between the predicted values and experimental data, subject to the in-
variant and shape constraints, in an optimal regression procedure. At the end of
Step 1, the reconciled data is obtained together with the concentration derivatives
continuous pro�les.

Step 2 In this phase, the data analysis is performed to characterize the subspace spanned
by the data vectors, and thus, to elucidate its dimension. First, a discrete set of the
previously reconciled data is collected in the variant form, i.e., time concentration
derivatives, or time cumulative concentration changes, of every observed species are
collected forming a data matrix in the variant form. The singular value decom-
position (SVD) of the data matrix provides decoupled information about dynamic
and structural characteristics of the reaction system, through abstract vectors that
form orthonormal bases for the four fundamental subspaces of the matrix. At this
phase, we are only interested in the structural information of data since the subspace
spanned by the row data vectors roughly corresponds to the subspace spanned by the
transposed stoichiometric vectors that compose the reaction network. In this sense,
through the singular values analysis and more sophisticated techniques applied to
them, the rank of the data matrix can be established (considering the model uncer-
tainty), elucidating the number of linearly independent vectors that are required to
explain the observed compositional changes in the reaction system, i.e., the network
dimension. At this phase the number of linearly independent invariant relationships
is also con�rmed by the identi�cation of the dimension of the data null space. Once
the data variant subspace is characterized, the superstructure of the reaction net-
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works can be constrained to belong to that space, allowing the generation of network
structures that are consistent with the observed compositional changes. When the
rank of the data is unidenti�able, i.e., it is not clear the linear independence among
the data matrix column vectors due to the presence of great collinearity among them
and/or the existence of a gray distribution of singular values with similar magni-
tudes, the design of additional experiments may be considered in order to clarify the
real dimension of the data characteristic subspaces, by (i) improving the data ma-
trix condition number and its collinearity index, and consequently, increasing model
identi�ability from data, and (ii) elucidating more invariant relationships in time
that could not be observed in the original dataset, assisting in the identi�cation of
the model structure. This can be achieved by assessing whether or not the magni-
tude of smaller singular values increases in the presence of additional datasets with
di�erent initial conditions. Moreover, additional data from experiments designed
for that purposes can turn the modeling task in a well-posed regression problem in
later steps of the methodology.

Step 3 This addresses the reaction network superstructure generation. For this task,
several sub-steps are followed: (i) the generation of chemical reactions, or equiv-
alently, reaction vectors composed by species stoichiometric coe�cients; (ii) the
target vector/factor analysis, and; (iii) the reaction thermodynamic analysis. The
generation of chemical reactions in sub-step 3(i) is achieved using MILP, where the
number of participating species is minimized subjected to invariant constraints, such
as elemental conservation. The complete enumeration of feasible reaction vectors is
achieved using integer cut equations that forbid repeated and equivalent solutions.
After obtained the entire list of potential reaction vectors, ensuring the formation of
all observed species, the target reaction vector analysis is performed in sub-step 3(ii)
in order to verify whether that reaction vectors lie to the data variant subspace. This
is done by evaluating the error of projection of individual target vectors in the data
variant subspace identi�ed in the Step 2. The ideal situation is when all reaction
vectors completely span the data subspace. However, in the presence of data with
great uncertainty, the individual component vectors respected to reactions that pro-
duce residual species may be hard to be identi�ed in that data subspace, presenting
great projection errors. In those cases, the procedures of data reconciliation and
analysis (Steps 1 and 2) can be reconsidered in order to well characterize the data
subspace by �nding (and imposing) more time invariants and, therefore, decreas-
ing data uncertainty. Nevertheless, when the problem persists and no additional
experiments can be done, the next methodology steps must be followed with spe-
cial attention to those problematic/unidenti�ed reaction vectors. This means that
unidenti�ed reaction vectors are not excluded, they must continue as candidate re-
action vectors, since they can be required to explain the origin of residual species in
a consistent network structure. Once the reaction vectors that are consistent with
the data are identi�ed, the thermodynamic analysis is performed in sub-step 3(iii)
to elucidate the energetically feasible net �ux direction of every chemical reaction.
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The net �ux direction is energetically feasible when the Gibbs free energy change,
related to the respected reaction extent, is negative. Therefore, at the end of this
step, the data consistent and energetically feasible superstructure of the reaction
network is obtained.

Step 4 During this step, the generation of reaction networks is considered using MILP
formulations, where binary variables indicate whether a reaction vector (from the
superstructure) participates in the �nal reaction network. Although the number
of linearly independent chemical reactions is �xed (it is a constant value equal to
the rank of data previously elucidated), the arti�cial objective function consists of
minimizing the reaction network complexity, that is measured by the number of con-
stituent chemical reactions. Integer cut equations are used to enumerate all reaction
networks that are linear combinations of each other, i.e., several bases composed
by reaction vectors that (approximately) span the same data subspace. The for-
mulation is generic and can also be applied to chemical systems with more than
one initial reactant. Furthermore, the incorporation of precedence constraints is
needed for nonlinear chemical systems to avoid generating structurally inconsistent
nonlinear networks. The generation of networks can be expressed as a combinatorial
optimization problem, consisting a NP-complete problem inserted in the constraint
programming �eld.

Step 5 In this step the generated reaction networks are validated using the reconciled
data, according to a plausibility criterion. This criterion consists of selecting (mean-
ingful) networks that conduct to positive reaction rates as solutions of the linear
mass balance equations, where the species concentration derivatives vector is de-
scribed by a set of positive coordinates (reaction rates) in the row space de�ned by
the reaction vectors that make up the stoichiometric matrix. The structures that
pass this phase are classi�ed as plausible networks, or in a vectorial space perspec-
tive, they are plausible bases. Note that, the generated reaction networks already
were (i) set of bases that are consistent with data, (ii) linear combinations of each
other, and now, after passing the plausibility test, they are a special subset once
they conduct to positive coordinates that build the derivative vector. Thus, the
derivative vector lies to the positive orthant of the stoichiometric matrix row space,
it is a linearly dependent vector that is written by the sum of positive coe�cients
(reaction rates) times the respective reaction vectors that form the plausible basis.
If none plausible structure can be found, the expansion of the search domain is
considered by (i) generating more complex chemical reactions (reactions that con-
tain more participating species), thus going back to Step 3, and/or (ii) increasing
the number of chemical reactions in the networks in Step 4. When the number of
plausible reaction networks is signi�cant, (more than 5), the design of experiments
can be proposed to discriminate the true reaction structure of the chemical system
in Step 7.
Instead generating data consistent structures to later identify the ones that are
plausible, the implicit generation of reaction networks can be considered when in-
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corporating the mass balance equations in the MILP formulation to generate only
plausible reaction network structures. This consists of the union of Steps 4 and 5.
The implicit generation of reaction networks can be advantageous for large prob-
lem sizes, i.e., chemical systems with more than ten chemical species, since it can
avoid a lot of computational e�ort associated with the explicit generation of reaction
networks.

Step 6 This last step involves the kinetic modeling task. Individual reaction rate pro�les
are analyzed in order to elucidate the kinetic expressions (based on �rst principles),
e.g., power mass law, chemical adsorption, enzymatic, etc. The kinetic expressions
are proposed based on the correlation found between the reaction rate and the
reactant species concentration. At this phase, some important system phenomena
can be observed, for example, if there are (i) inhibition (observed through delay
in the rate pro�les) and (ii) reversible chemical reactions. The individual �t of the
kinetic models is performed minimizing the squared di�erence between the observed
reaction rates (calculated through the species �uxes) and the model counterpart
(given by the kinetic expression). At this phase, information criterion is used for
establishing a balance between model complexity (number of parameters) and �t
quality. If more than one candidate kinetic expression presents a good �t agreement,
additional experiments can be proposed to discriminate them.

For large problem sizes, the implicit generation of reaction networks can be even more
restrictive by considering the simultaneous identi�cation of plausible structures with es-
tablished kinetic expression for each reaction component. The basic idea here is to �nd a
good correlation of the every reaction rate with the species concentration of the respec-
tive reactant, starting from a pre-speci�ed superstructure of kinetic laws based on �rst
principles. This consists of the union of Steps 4, 5 and 6 (initial phase).

Although the reaction network and the kinetic expressions were elucidated using the pre-
viously described incremental approach based on the di�erential method, the validation of
the entire kinetic model is performed using the integral method. This latter consists in a
simultaneous �ne tuning of the model parameters when minimizing the squared di�erence
between concentration data and predicted (integrated) model values. On the downside,
this simultaneous approach con�gures a nonlinear optimization regression problem, where
the results obtained may be local optimal solutions, very sensitive to their initial guesses.
However, on the topside, this �nal tuning is free of bias allowing the achievement of
optimal parameters in the maximum likelihood sense. The solution (parameters values)
obtained by the incremental method is used as initial guess value for the regression vari-
ables. At the end of this phase, parameters con�dence intervals are computed con�rming
the robustness of the proposed methodology when tight intervals are obtained, even in
the presence of originally noisy datasets (data with great uncertainty). Finally, the best
reaction model (reaction network and kinetic expressions) that describes the experimental
data is developed.



Chapter 5

Step 1 � Data Pre-processing

�The journey of a thousand miles begins with one step.�

� Lao Tzu
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Data pre-processing (DPP) methods are used to treat and validate data in order to identify
and correct data mistakes, i.e., to correct measurements in industrial processes. Inaccu-
rate process data can easily lead to poor decisions, which may negatively in�uence many
parts of the process (Mah et al., 1976). Hence, the use of DPP techniques increases the
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overall accuracy of data, turning data more interpretable and leading to accurate insights
about the chemical system under analysis.

The available experimental data constitute the essential support for the development of
kinetic models that describe the dynamic behavior of the chemical system under study.
In this work it is assumed that the results of one or more experimental tests are available
for analysis, containing temporal concentration pro�les of the the various chemical species
present in the system (tests in transient state). Usually, these pro�les are characterized
by measurements of concentrations in a discrete set of points and contain errors inherent
to the analytical method used. In addition, the range of sampling intervals is high in
many cases, however, interpolation techniques can be used to estimate concentrations at
intermediate times.

Without a�ecting the scope of the developed methodology, it is assumed that all essential
variables are measured to determine the time-concentration pro�les of all species present
in the system and some of these species can be determined by di�erence in the closing of
the corresponding system mass balance. Additionally, mass balances (global or partial)
provide a good test for validating the quality of the data obtained.

Since the developed methodology to model chemical reaction systems presented in this
thesis is supported by the di�erential method, having good estimates of species �uxes
and reaction �uxes is crucial to the successful identi�cation of the model structure. Con-
sequently, the main e�ort of the �rst step of the methodology is associated with the
calculation of good estimates of concentration derivatives. In this chapter, a novel DPP
method is presented supported on orthogonal collocation on �nite elements, including the
use of material conservation and pro�le shape constraints, for the obtainment of smoothed
and reconciled time-concentration pro�les.

This chapter is organized as follows. Section 5.1 presents a contextualization of the theme,
framing where the pre-processing of data is applied for the identi�cation of chemical
reaction models. In Section 5.2 several data regularization methods are presented for
continuous (or quasi-continuous) approximation of concentration data and consequently
estimation of species concentration derivatives. This last section presents the state of the
art of Step 1, including a simpli�ed comparison of the previously exposed methods where
the aspects that are essential for the development of Step 1 are highlighted. In Section 5.3,
the proposed DPP method is described, presenting the theoretical concepts involved, the
developed formulation and an application example that considers the experimental data
related to the catalytic hydrogenation of succinic acid.

5.1 Step 1 motivation

In the application of incremental modeling strategies, the di�erential and the integral
methods have been considered for classical analysis of reaction data and kinetic model
identi�cation (Levenspiel, 1998), as it was previously presented in Section 3.1.2. The
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di�erential method o�ers the advantages of being able to (i) directly calculate the reaction
rates once the derivatives of the concentration (or number of moles) time pro�les are
di�erentiated and (ii) more easily identify the kinetic expression that best correlates each
individual reaction rate as a function of the respective reactant species. However, the
computation of concentration derivatives usually introduces errors in the estimates of the
reaction rates, which can be substantial if adequate procedures are not used (Varah, 1982;
Yeow et al., 2003). In contrast, the integral method can become less sensitive to errors in
speci�c concentration measurements, especially when the conversions become signi�cant,
but still may lead to biased concentration estimates.

Hence, the need of DPP methods is veri�ed in the context of reaction model identi�cation,
especially DPP methods in which time-invariant constraints are incorporated ensuring
conservative relationships among chemical species pro�les. These kind of pre-processing
data methods are called data reconciliation methods. The use of time-invariant rela-
tionships decreases the uncertainty originally present in the concentration measurements,
enabling the obtaining of reconciled smoothed (continuous) pro�les with more con�dence
on which the model structure identi�cation will be based. Hence, the use of data reconcil-
iation methods results in more accurate predictions, either for the calculation of reaction
rates or extents in the di�erential and integral methods, respectively, during incremental
kinetic model development.

5.2 Regularization methods

�In God we trust, all others bring data.�

� William Edwards Deming (1900-1993)

The estimation of the derivatives of the concentration pro�les from experimental data is
known to be an ill-posed problem, due to the sparsity and noise contamination of the
measurements (Michalik et al., 2009). Perhaps the di�erentiation of the noise-corrupted
concentration measurements is the major limitation in the application of the full incre-
mental approach, since small errors in concentration data might lead to large errors in its
derivatives estimates with respect to time, which can compromise the model identi�cation
task. Consequently, diverse regularization techniques have been tried to obtain solutions
to similar but related problems, which enforce additional smoothness assumptions on the
solutions obtained. A common goal of these techniques is to deal only with well-posed
problems, which provide solutions as close as possible to the solution of the original prob-
lem, but are less sensitive to small changes in the input data (Hansen, 1992). Methods
such as the use of �lter-based approaches (Section 5.2.1), Tikhonov regularization (Sec-
tion 5.2.2), sparse regression using MILP (Section 5.2.3), the continuous approximation of
the discrete points by smoothing splines (Section 5.2.4), and response surface methodolo-
gies with additional constraints to enforce smoothness of the obtained pro�les for model



136 Step 1 � Data Pre-processing

approximation of discrete data from optimal design of experiments (Section 5.2.5), fol-
lowed by di�erentiation of the resulting numerical solution, have been reported.

Although regularization techniques allow to obtain meaningful results even for ill-posed
problems, the estimated derivatives are always biased and the bias introduced propagates
to the following incremental steps of model identi�cation. Hence, a common tradeo�
in these approaches is the amount of bias introduced in the estimates of the deriva-
tives produced (which is dependent on the particular technique used), versus the amount
of regularization achieved. Di�erent methods for choosing the regularization parameter
are known, such as the discrepancy principle, the generalized discrepancy principle, the
quasi-optimality criterion, the generalized cross validation, the L-curve criterion and the
perturbation bound methods (Hansen, 1992).

5.2.1 Filter-based approaches

The �lter-based approaches consist of an alternative to continuous curve approximation in
order to smooth experimental data through its �ltering. This allows the regularization of
discrete pro�les, approximating them to �quasi-continuous� pro�les. This procedure can
be coupled with the detection and removal of outliers, which could signi�cantly in�uence
the shape of the obtained curves. Some of these �ltering methods can also be used to
solve problems of lack of information corresponding to unmeasured values. The Savitsky-
Golay methodology provides a �ltering approach that consists of using local least squares
regressions, considering a moving window that covers the entire horizon to be �ltered
(Savitzky and Golay, 1964). Similarly, the LoESS - Local Regression technique is a �ltering
method also based on a moving horizon, where it is possible to di�erentiate the weights of
the various experimental points in the regression window. An important and signi�cant
advantage of these two �ltering methods lies in the fact that these procedures allow not
only the calculation of the �smoothed� values of the function, but also the direct calculation
of their smoothed derivatives at the regression points.

Since these �ltering methods use a �xed length regression window, a compromise between
the �ltering capacity and the �delity to the original data appears in their application.
In general, with the order of the regressor polynomial being �xed, the larger the size of
the window used, i.e., the more points are included in each regression, the greater the
smoothness of the resulting curve, and the lesser the ability to approximate rapid varia-
tions in the model pro�le, which may result in loss of information relevant to the system
under study. This di�culty can be overcome by using adaptive windows or nonlinear
regressors, as is the case with SuperSmoother (Givens and Hoeting, 2012). The choice of
adjustable parameters in the �ltering methods (the degree of the regression polynomial
and the dimension of the moving window), as well as the estimation of the uncertainties of
the approximation is usually made through statistical methods of model validation such
as, for example, cross-validation, preventing also the over�tting of the optimal parame-
ters of the �ltering model. In this case, cross-validation methods can be used, such as
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leave-one-out, and :-fold, among others (Moore, 2006).

5.2.2 Tikhonov regularization

Alternatively to �lter-based approaches, the ridge regression has been used for data regu-
larization (Michalik et al., 2009). The ridge regression is a particular case of Tikhonov reg-
ularization method in which the regression coe�cients are shrunk by imposing a penalty
on their size (Hastie et al., 2013). The common objective function of that problem is

min
β

q (_) = (y −X · β)T(y −X · β) + _βT · β (5.1)

where y ∈ R< is the vector of target values that is written as a linear combination the
predictors x 9 ∈ R< for 9 = 1, . . . ,= that compose the columns of the predictor matrix
X ∈ R< × =, through the vector of coordinates β ∈ R=, i.e., X maps β to y. The model
parameters β, or the regression coe�cients, are tuned when minimizing q in (5.1), where
besides the least squares term (y−X ·β)T(y−X ·β) in the objective function, the ℓ2-norm
of β is minimized weighted by the positive regularization factor _. In that case, the ridge
regression solution is simply

β̂ =
(
XT ·X + _I

)−1 ·XT · y (5.2)

where I= is the identity matrix with squared dimension =. In (5.2), it is observed that
a positive constant _ is added to the diagonal of XT · X before inversion, turning the
problem nonsingular (even if XT ·X is singular). When considering the SVD of X1, it is
possible to write (after some simpli�cation) the response vector X · β̂ as

X · β̂ = U · � ·
(
�
2 + _I

)−1 · � ·UT · y

=

<∑
9=1

u 9
f29

f2
9
+ _

uT9 · y
(5.3)

where u 9 , 9 = 1, . . . ,< are the columns ofU. Notice that like in the least squares procedure,
the ridge regression computes the coordinates of the response variable ŷ with respect to
the complementary orthogonal subspaces concerning the column (u 9 , 9 = 1, . . . ,') and left
null (u 9 , 9 = ' + 1, . . . ,<) spaces of X in which ' is the matrix rank of X (' ≤ = < <),

and those coordinates
f29

f2
9
+_u

T
9 · y for 9 = 1, . . . ,< are being shrunk by the factor

f29

f2
9
+_ since

_ > 0 and, consequently,
f29

f2
9
+_ ≤ 1. This means that the coordinates respected to smaller

f 9 su�er a great amount of shrinkage, approximating the 9 model direction component to
the null point (origin) of the linear space R<.

1For more information about SVD and the use of SVD to solve linear systems of equations, see
Section 2.2.3 and Section 2.4.2, respectively.
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Yeow et al. (2003) have proposed a regularization method to smooth concentration data
supported on Tikhonov regularization. The proposed approach converts time-concentration
data, 2 (C) = 5 (C), into concentration-concentration change rate data, d2 (C)/dC = 5

(
2 (C)

)
,

in which the concentration change rate is given by the �rst derivative of species concen-
tration with respect to time. Using Tikhonov regularization, the minimization of both
components: (i) the squared residues in concentration data regarding the di�erence of
measured species and its model predicted counterpart and (ii) the second derivative es-
timate of the adjustable variable weighted by a regularization factor (_), is performed
depending on that _ value that is set before the adjustment. The authors cite the Mo-
rosov Principle to choose a suitable value for _ parameter, in which the average and the
maximum deviation among model prediction and experimental data must be compara-
ble to the magnitude of data uncertainty while ensuring that the resulting reaction rate
curve is su�ciently smooth, concluding that as long as _ is of the appropriate order of
magnitude, small changes in that parameter (within this range) do not greatly a�ect the
�nal results. The proposed method does not require information related to the kinetic ex-
pressions and the reaction network, i.e., no structural information regarding the species
interconnections must be known (or proposed) for the regularization procedure. After
obtained the regularized and smoothed data, a greater understanding of the dynamics
of the system could be acquired through the behavior of the concentration change rate
pro�les, thus allowing in a postpone phase a direct adjustment of kinetic parameters when
comparing candidate rate expressions with the smoothed concentration change rates.

Whether through Tikhonov regularization or ridge regression, a large _ will give a smooth
5 (C) but at the expense of the goodness of �t of the kinetic data and vice versa. Moreover,
as _ approximates zero,the problem becomes ill-conditioned, i.e., the determinant of the
design matrix tends to zero. Hence _ is responsible to introduce a su�cient amount that
makes the design matrix better conditioned, increasing its smaller singular values. On
the one hand, the Tikhonov regularization decreases the probability of modeling model
components that, previously, could be unidenti�able (perhaps, noise contributions) which

passed as insigni�cant when its coordinate is weighted by the
f29

f2
9
+_ constant (as shown in

(5.3)), but, from another point of view, this procedure increases the possibility of discard-
ing low reaction extents that in practice are of the same magnitude of the measurement
uncertainty, simultaneously ensuring enhanced numerical properties for the regression
procedure.

5.2.3 Sparse regression using MILP

Recently, Willis and von Stosch (2017) proposed the use of MILP for performing sparse
regression, where parameter regularization is considered using the entire set of candidate
model variables and controlling model complexity, leading to an improved predictive per-
formance since overparameterization is avoided. In this case the objective function is
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given by
min
β

q (_) = ‖y −X · β‖1 + _‖β‖0 (5.4)

where the ℓ1-norm of the residuals (model prediction error) plus the weighted/penalized
ℓ0-norm of the variables vector are minimized. The regularization parameter _ may be
determined using information criteria for model selection or cross-validation strategies.
The authors transform (5.4) in a MILP formulation using auxiliary (continuous positive)
variables to compute the absolute instantaneous residues and binary variables to compute
the carnality of the active parameters in β vector. These binary variables are correlated
with the respected V using Big-M constraints, such that they are set one when V is di�erent
of zero, and set zero otherwise, ensuring regression model sparsity.

Hence, this linear formulation considers the least absolute error as alternative to the least
square error as considered by ridge and least squares regression for data parameteriza-
tion, which is more robust towards outliers, i.e., the ℓ1-norm is insensitive to outliers in
the dataset. However, an improved MILP formulation is considered for increasing the
smoothness of the formulation, turning the problem easier to solve by considering a slack
variable I ∈ R+0 in the objective function. The ‖β‖0 (given by the sum of binary variables)
pass to be replaced by I, and an additional constraint

‖β‖0 − I ≤ 0 (5.5)

is imposed, enabling the MILP to violate the constraint, if no alternative solution can
be found thereby promoting a more e�cient search. Notice that I = ‖β‖0 when q is
minimum.

In addition, the authors have shown that when considering a relaxation of the binary
variables, enabling them to be continuous variables between [0,1] interval, the problem
approaches to the least absolute shrinkage and selection operator (LASSO) regression, that
is much easier to solve since it is solvable in polynomial time using linear programming
rather than NP-hard optimization problem with the MILP formulation. In this case the
LASSO is performed using ℓ1-norm regularization, where the parameter penalization term
is given by the sum of absolute parameter estimates times the regularization factor, and
the model approximation term is the total absolute model prediction error.

With the proposed computational approach, Willis and von Stosch (2017) showed that
sparse regression/regularization using MILP can be e�ciently and accurately solved for
problems with signi�cant input dimension (> 50), presenting parsimonious model struc-
tures.

5.2.4 Smoothing splines

One of the most common ways of approximating continuous functions is to use approxima-
tion polynomials called splines. These polynomials are de�ned in �nite subdomains of the



140 Step 1 � Data Pre-processing

approximation domain, having di�erent continuity properties at the ends of these intervals
(called knots, or nodes). Since each of these polynomials is continuous and has continuous
derivatives at all points in the subdomain where it is de�ned, and the continuity of these
approximating functions (and their derivatives) is also ensured at the transition points,
this approach seems to be naturally appropriate for the desired function.

In a generic scenario, the total time interval of a dataset is divided into = intervals
[C0,C1], [C1,C2], . . . , [C=−1,C=], in which (8 is the polynomial regarding the interval [C8,C8+1].
In this way, = polynomials will be obtained, from (0 to (=−1. The polynomial (8−1 and
(8 interpolate the same point C8 , so (8−1(C8) = (8 (C8), for every 8 = 1, . . . ,= − 1, making (
continuous across the domain. Considering the use of cubic polynomials, in total it will,
then, presents 4= coe�cients relative to each cubic element. In each sub-interval [C8,C8+1]
there are two interpolation conditions: (8−1(C8) = (8 (C8) and (8 (C8+1) = (8+1(C8+1), accounting
for a total of 2= restrictions. The continuity in the 1st derivative is given between each ex-
treme (′

8−1(C8) = (
′
8 (C8), accounting for =−1 conditions. The same occurs for the continuity

restrictions in the 2nd derivative, accounting for more = − 1 conditions. Therefore, there
are 4= − 2 conditions to determine 4= coe�cients, resulting in two degrees of freedom in
this interpolation approach of class �2 (with continuous derivatives up to the 2nd order)
(Kincaid and Cheney, 1991). Some variations in these cubic spline interpolation formu-
lations are also known. For example, the natural spline is characterized by �xing the 2nd
derivative of the start point (C0) and the end point (C=) equal to zero, which means that
the function becomes linear at the extremities of the considered horizon. Another vari-
ation consists of the use of B-splines (basis splines), where in each interval the resulting
polynomial is a linear combination of basis splines of the same degree and smoothness,
being stable numerically (de Boor, 2001).

Regardless of the chosen methodology, the approximation through the spline function
can result in oscillatory curves within the intervals, even obeying all previous continuity
restrictions. To solve this problem, it is usual to apply tension on the curves so that �the
curve stretches�, removing these oscillations. This technique is called in the literature as
spline under tension, in which it is intended to limit the variations of the 2nd derivative
of the function.

de Boor (2001) also proposes the use of smoothing splines. This formulation is widely
used in data processing, including statistical analysis, and can be found in data �ltering
formulations. Here a compromise is established between a very smooth curve, but even-
tually more distant from the experimental points, and a curve more faithful to the data,
but with greater oscillations, through the minimization of the objective function

min q (?) = ?
=∑
:=1

(
~: − 5 (G:)

X:

)2
+ (1 − ?)

∫ C=

0
5 ′′(G:) (C)2 dG , (5.6)

where ? ∈ [0,1] is a penalty term (smooth factor) that controls the amount of smoothing
introduced, X: , : = 1, . . . ,= are weights (X−2

:
) of each respective point ~: , 5 (G:) represents
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the model predicted (smoothed) value of ~: When ~: is a vector of concentrations (the
most common situation), problem (5.6) is usually solved separately for each component in
~, which means that the corresponding parameter ? can also be selected separately for each
concentration pro�le. When ? → 0 the function converges to a straight line (maximum
smoothing of the curve) at each interval, approaching a linear least squares formulation
since no second derivative can be tolerated. When ? → 1 the function converges to the
interpolating spline (de Boor, 2001).

de Boor (2001) describes an algorithm to determine a suitable value for the penalty value.
For this purpose a constant ( is considered as an upper bound for the sum of square
residues, such that

=∑
:=1

(
~: − 5 (G:)

X:

)2
≤ (. (5.7)

The algorithm starts with ? = 0 and increases ? until the previous condition is met. The
constant ( is recommended to be chosen in the interval [= −

√
2=,= +

√
2=] when X: is an

estimation of the standard deviation for ~: . When ( = 0 the function is the natural spline.
Increasing ( the interpolating function becomes smoother, distancing from the original
data. However, the choice of ? can be made by other techniques, such as the generalized
cross validation.

An important feature of this method is that if natural splines are considered, for ? < 1

an amount of bias is known to be present in the derivative estimates produced. This
error tends to be larger at the extremes of the interpolating interval, since the second
derivatives of the approximating functions are assumed to vanish there; consequently, the
use of boundary corrected smoothing splines is preferred (Huang, 2001). However, the
choice of ? still in�uences the presence of bias in the estimates produced by this method,
reviving the question of the choice of most appropriate regularization methods, among
alternative approaches.

Notice that (5.6) establishes a combined function that lies in the Sobolev space. This
space is de�ned for functions that present the computation of their ℓ2-norm (the least
squares term) simultaneously with their derivatives up to a given order. In this case, the
function (5.6) is de�ned on an in�nite-dimensional Sobolev space. However, it is known
that (5.6) has an explicit, �nite-dimensional, unique minimizer which is a natural cubic
spline with knots at the unique values of the G8, 8 = 1, . . . ,= (Hastie et al., 2013). Since the
solution is a natural spline, we can write it as

5 (G) =
=∑
9=1

# 9 (G)\ 9 (5.8)

where # 9 , 9 = 1, . . . ,= are basis functions that represent the piece-wise polynomials in the
=-dimensional linear space establishing the set of natural splines. Hence, (5.6) can be
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written as
min
θ

q (_) = (y −N · θ)T(y −N · θ) + _θT · 
N · θ (5.9)

where y ∈ R= is the response variable, N is a square matrix2 with {N}8, 9 = # 9 (G8) for 9 =
1, . . . ,= basis components and 8 = 1, . . . ,= spline knots, 
N is a square matrix of dimension
= with integrated squares of second derivatives, i.e., {
}8, 9 =

∫
# ′′8 (C)# ′′9 (C) dC , θ ∈ R=

is the vector of parameters (polynomial coe�cients) that are tuned in this minimization
procedure, and _ ∈ (0,∞) is a �xed smoothing parameter. Similarly as the ? parameter
in (5.6), the _ establishes a tradeo� between the closeness of the function to the data
and the function curvature. Hence, when _ = 0, ŷ is a function that interpolates data,
and, when _ = ∞, the problem consists of a simple least squares line �t. The optimal
parameters values are easily calculated through

θ̂ = (NT ·N + _
)−1 ·NT · y
= S_ · y

(5.10)

for which the predicted response
ŷ = N · θ̂ (5.11)

is obtained.

Like in the ridge regression data regularization method, the smoothing splines method
shrinks basis vectors in order to obtain more well-posed data behavior by the price of
introducing bias in the model. If we consider the eigen-decomposition of S_ (which is a
positive semide�nite matrix) such as

S_ =
=∑
9=1

f29 (_)u 9 · uT9 , (5.12)

where u 9 and f29 (_) for 9 = 1, . . . ,= are eigenvectors and eigenvalues of S_, and

f29 (_) =
1

1 + _f2
9

(5.13)

with f29 the corresponding eigenvalue of the K matrix obtained from the Reinsch format
of S_ such that

S_ = (I − _K)−1 (5.14)

where K does not depend on _ (but only of G data), it is possible to assess how the
smoothing procedure works.

Therefore the smoothing spline �tted values are a linear combination of the basis vectors

2We opted to maintain the literature nomenclature for that matrix, but please do not confound with
the stoichiometric matrix. In this chapter N is referred to a set of basis of natural splines.
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u 9 written with weighted coordinates, such that

ŷ =

=∑
9

uT9 · y
1 + _f2

9

u 9 =
uT1 · y
1 + _f21

u1 +
uT2 · y
1 + _f22

u2 + . . . +
uT= · y
1 + _f2=

u= . (5.15)

Notice that the coordinates of ŷ in the basis U are given by the the inner product of the
respective basis vector u 9 with the experimental data y vector weighted by f29 (_). Hence,
the higher the complexity of the basis component u 9 the more it is shrunk (Hastie et al.,
2013), i.e., for model components in which the variances (eigenvalues) are greater, after
the smoothing procedure their respective coordinates are approximated to the origin with
greater magnitude than for model components with lower variances, since the f29 (_) is
lower for 9 components with greater f29 .

Moreover, the sum of diagonal elements of S_

df_ = trace(S_) =
=∑
9

f29 (_) (5.16)

is de�ned as the e�ective degrees of freedom (Hastie et al., 2013). These authors propose
an inverse method for determining the smoothing parameter _ by �xing df_ and solving
numerically df_ = trace(S_). Consequently, several values of df_ can be tested and the
criterion established through the Fisher ratio of variances can be used (� -test) in order to
select a good value for lambda with greater con�dence. The � -test is presented in more
detail in the next chapter under a di�erent context: for determining the dimension of
the data space. However, since (in this work) the smoothing splines is not the adopted
data regularization technique, the methodologies for selecting a good _ value were not
explored, although cross-validation is one of them, which is also explored in the next
chapter under the context of determining the dimension of the data space, by evaluating
the cross validation prediction error for a set of excluded data (test dataset).

5.2.5 Dynamic Response Surface Methodology with additional

constraints

In the context of data-driven modeling methodologies, the Dynamic Response Surface
Methodology (DRSM) has been used as a regularization method for time-resolved mea-
surements from Design of Experiments (DoE) datasets (Santos-Marques et al., 2019; Dong
et al., 2019a,b). The original datasets consist of simulated species concentration measure-
ments (corrupted with noise) at three di�erent experimental temperature and several
initial conditions, concerning to a pharmaceutical case study. The objective of these
works is to, from DRSM data, increase the model identi�ability.

The approximating function (5.17) consists of a quadratic model (linear in their param-
eters), where the dependent (response) variable ~ (g) is estimated as a function of (i) the
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input factors G8, 8 = 1, . . . ,= in a DoE design, and (ii) parametric functions V@, @ = 8, 8 9, 88,
for 8 = 1, . . . ,= and 9 = 1, . . . ,8 − 1, described by a linear combination of shifted Legendre
polynomials %A−1 of several orders, i.e., A = 1, . . . ,', as shown in (5.18).

~ (g) = V0(g) +
=∑
8=1

V8 (g)G8 +
=∑
8=1

=∑
9=8+1

V8, 9 (g)G8G 9 +
=∑
8=1

V8,8 (g)G28 (5.17)

V@ (g) =
'∑
A=1

W@,A%A−1(g) (5.18)

In order to prevent overparametrization, the authors have determined the number of
polynomials (') using the Lack-of-Fit (LoF) statistic, where the model with lowest '
value is selected with acceptable LoF (Santos-Marques et al., 2019); or using the Bayesian
information criterion (BIC), where the model selected is the one that presents lowest BIC
value (Dong et al., 2019a,b). Also, in both works, the coe�cients W@,A that multiply
each Legendre polynomial were estimated (and analyzed) using stepwise regression and
ANOVA methods in order to assess their signi�cance, thus removing the ones that are
insigni�cant from the model.

Dong et al. (2019a) proposed an enhanced DRSM approach using an exponential transfor-
mation of time to a new independent variable \ , as shown in (5.19), where a time constant
C2 is determined (simultaneously with the ' value) using BIC, characterizing the slowest
dynamics of the process.

\ = 1 − exp(C/C2) (5.19)

The transformation of time in (5.19) enabled the obtainment of smoother pro�les, reduc-
ing the undesired oscillatory behaviors that the original DRSM (Santos-Marques et al.,
2019) presented in the concentration pro�les of many chemical species, in their �rst deriva-
tive pro�les, and, consequently, at the computed reaction rate pro�les after proposing a
reaction network. Moreover, simultaneously with (5.19), Dong et al. (2019a) proposed
the use of additional constraints to obtain physically meaningful results, concerning (i)
constraints at initial time, forcing the model species concentration to be exactly the same
value known from the DoE design, (ii) imposition of positiveness of the �rst derivative
for concentration pro�les that start at zero value, ensuring an increasing pro�le behavior,
and (iii) imposition of non-negative DRSM output, ensuring positive predicted species
concentration values.

During the application of DRSM, each species pro�le is adjusted individually and, there-
fore, the same procedures described above (parameter tuning, model analyzes and use
of additional constraints) must be repeated for every species, requiring, on the down
side, a high computational e�ort and time spent for the obtainment of regularized data,
especially if there are many chemical species in the reaction system. Also, no concern
related to the identi�cation of time-invariant characteristics of the reaction system and
their incorporation in the DPP method was presented in these works, in order to increase
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the accuracy of the model and, therefore, to enhance its identi�ability. Nevertheless, the
authors have shown that DRSM enhances the model identi�ability from regularized data,
even with noise measurements.

5.2.6 Comparative analysis of regularization methods

Table 5.1 presents a comparison of the previously discussed data regularization methods.
All these methods enable an easy calculation of time-derivatives of the approximated
function. The �ve methods consider the individual approximation of a single response
variable, although an adaptation of these methods can be considered for the simultaneous
adjustment of several response pro�les. In that case, time-invariant constraints should be
incorporated in the respected formulation, concerning simultaneous pro�le adjustments
to reconcile data, increasing the accuracy of obtained results.

Table 5.1 Comparison of previously discussed data regularization methods for incre-
mental identi�cation of chemical reaction models.

Method
Type of ap-
proximation

Outliers
sensitivity

Critical parameters and
key aspects that introduce
bias/smooth

Filter-based∗
Quasi-
continuous

High
Dimension of the moving window
and degree of the regression poly-
nomial.

Tikhonov Continuous Low
Regularization parameter that
penalizes the square ℓ2-norm of
parameters vector.

MILP sparse
regression

Continuous Insensitive

Regularization parameter that
penalizes the ℓ0-norm of active
parameters vector (sum of binary
variables).

Smoothing
splines

Continuous Medium

Regularization parameter that
penalizes the curvature of the ap-
proximating function (≈ the 2nd
time-derivative).

DRSM Continuous Medium
Degree of regression polynomial
and time constant.

∗Filter-based methods such as Savitzky-Golay and LoESS.

The next section addresses the data regularization method proposed in this work. This
approach considers

� continuous approximation of data through base cubic polynomials,
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� inclusion of qualitative constraints for modeling trends of pro�les (avoiding unde-
sired oscillatory behaviors, i.e., introducing bias to the solution),

� the use of time-invariant constraints for the obtainment of reconciled data with
greater accuracy.

The proposed method has proven to present (i) a stable formulation as orthogonal poly-
nomials are used, (ii) ease of implementation, without the need of cross-validatory pro-
cedures for determining regularization factors; in this case, the shape constraints are
iteratively and interactively inserted in the formulation (like in a �puzzle problem�) until
the pretended smooth degree is obtained, (iii) an increased ability to identify the model
structure from species �uxes estimated with high precision as time-invariant relationships
are imposed between species pro�les.

5.3 Continuous approximation of concentration data

�Never trust an experiment that is not supported by a good theory.�

� Jacques Monod

Besides the use of smoothing splines, alternative approximation techniques have also
been applied in the solution and optimization of di�erential-algebraic process models.
In particular, orthogonal collocation, has been widely used in the solution of reaction
models (Finlayson, 1975). Due to its e�ciency and versatility, orthogonal collocation
on �nite elements has also been proposed for the parametrization of general di�erential
algebraic optimization problems. An important advantage of this approximation method
is the existence of strategies for the adaptation of the lengths (and placement) of the
elements, resulting in a high-order approximation with relatively few elements (Biegler,
2010). Unseemly related applications, for the qualitative modeling of physical systems and
the description of the trends and main features of the process responses observed, have
also been developed in the literature (Cheung and Stephanopoulos, 1990; Schaich et al.,
2001). These techniques seek to extract a high-level description of the observed behavior,
translatable into a group of constraints that can be used to help the posterior identi�cation
of quantitative kinetic models (Madár et al., 2003; Villez et al., 2013). The selected
combination of features from both contributions, simultaneously with the incorporation
of time-invariant constraints, provide an alternative regularization methodology for the
estimation of the concentration derivatives, described in this section.

Alternatively, it was tested with the case studies considered the possibility of obtaining
concentration derivatives estimates by applying data regularization methods, such as the
�lter-based approaches described in Section 5.2.1 and smoothing splines in Section 5.2.4.
In particular, Savitzky-Golay �ltering approaches and the LoESS technique were tested
�rst. The results obtained showed that, although the quality of the estimates improved



5.3 Continuous approximation of concentration data 147

signi�cantly compared to the possible results through the application of �nite di�erences,
there was still some �noise� in the estimates produced, with a negative impact on the
possible conclusions. In view of the results of these tests, we opted instead to use a
technique of smooth continuous approximation of the experimental pro�les, which would
allow to obtain derivatives with less oscillations. In this case, an adaptation of the origi-
nal smoothing splines formulation was considered by imposing invariant constraints in the
simultaneous �t of every species pro�le, although each one with its regularization param-
eter. However, the results obtained by the use of smoothing splines were unsatisfactory
since the species pro�les presented undesired oscillations even with great penalization of
the curvature function.

5.3.1 Orthogonal Collocation on Finite Elements

Orthogonal collocation can be described as a variant of the weighted residual method,
where polynomials are used to approximate a continuous function, at particularly chosen
(collocation) data points (Finlayson, 1972). Besides the use of B-splines (Poyton et al.,
2006), other equivalent forms of representing the approximating polynomials are possible;
a typical choice is to apply the Lagrange polynomial interpolation method to each �nite
element (Finlayson, 1975; Biegler, 2010), and for convenience, the Lagrange interpolation
form is used here. The interpolating stability of the Lagrange form is known based on the
roots of Legendre's orthogonal polynomials (Trefethen, 2013). Considering the use of cubic
polynomials, approximations are formed by a linear combination of 4 cubic polynomials
orthogonal to each other, which constitute the generator set of the interpolator polynomial
in the P3(R) space, of dimension 4.

The chosen collocation points generally coincide with the location of the roots of orthogo-
nal polynomials. Using cubic polynomials, the number of collocation points totals 3= + 1,
where = is the number of �nite elements. In this case, there are 2 internal roots in each
interval (�nite element), and the remain ones coincide with the ends of these intervals.
The Figure 5.1 illustrates the location of the roots of orthogonal polynomials of Legendre,
used in this work, normalized to the G ∈ [0,1] interval. As it can be seen in this �gure, at
each collocation point, only one of the interpolating polynomials does not cancel out.

5.3.2 Step 1 formulation

For the considered case, it is necessary to construct interpolating polynomials %B,8 (C) to
describe the time pro�les of concentrations of the species, with the index B ∈ sp referring
to the chemical species considered (B = 1, . . . ,=sp) in the set sp, and 8 ∈ fe relative to
the approximating interval (8 = 1, . . . ,=fe) of the �nite elements set fe. Using Lagrange's
interpolating form, these approximations can be written as

%B,8 (G) =
∑
9∈cp

0B,8, 9; 9 (G), ∀B ∈ sp; ∀8 ∈ fe (5.20)
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Figure 5.1 Pro�les behavior of the orthogonal polynomials on the left-hand side, and
associated roots on the right-hand side.

where cp is the set of collocation points in each element, ( 9 = 0, 1, 2 and 3) including the
boundaries, G ∈ [0,1] is the normalized independent coordinate, 0B,8, 9 is the coe�cient to be
determined (variable of the problem) and ; 9 (G) is the Lagrange interpolating polynomial.
Notice that the polynomials %B,8 (G) are being constructed as linear combinations of the
respective ; 9 (G). The Lagrange polynomials can be written as

; 9 (G) =

∏=:
:=0
:≠ 9

(G − G:)∏=:
:=0
:≠ 9

(G 9 − G:)
, ∀9 ∈ cp (5.21)

with, in this case, =: = 3.

Therefore, cubic polynomials with two interior collocation points inside each element are
assumed. The normalized coordinate 0 ≤ G ≤ 1 is de�ned for each element to locate the
collocation points at speci�c values, corresponding to the normalized roots of orthogonal
Legendre polynomials, independently of the lengths of each element. With these de�-
nitions, we note that in this initial phase of the incremental model identi�cation where
the concentration derivatives are estimated, the model (2.7) is still not known, and only
constraints that concern about the system time-invariant relationships can be considered,
as shown in eqs. (2.36) and (2.38).

Using the approximation in (5.20) it is possible to consider the determination of the
necessary coe�cients 0B,8, 9 by solving an optimization problem

min
0B,8, 9

q =
∑
<∈me

∑
B∈sp

FB
(
2B,< − 2̂B,<

)2 (5.22)

where the quadratic objective function minimizes the total weighted square error in con-
centration data, where 2̂B,< represents the predicted response (concentration) of species
B ∈ sp at the sampling time C<, with < ∈ me, the set of measurement instants, 2B,<
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its experimentally observed counterpart, and FB the respective weight of that species in
the adjustment procedure. However, no preferences of adjustments among the measured
species were considered in the following case studies, i.e., FB = 1,∀B ∈ sp. In cases where
outliers are presented, at speci�c instants C< the model can not evaluate the function by
setting that FB,< to zero.

The concentrations predicted by the model for each species B ∈ sp use the set of approxi-
mations %B,8 (G) de�ned above, as interpolating functions (5int) in domain C :

2̂B,< = 5int
(
C<; {%B,8 (G)}

)
, ∀B ∈ sp; ∀< ∈ me (5.23)

In the internal collocation points, it is necessary to check exactly the time-invariant re-
strictions, which in the previous case can be written as

A · ĉ 9,8 = bin or A · ĉ′ 9,8 = 0, 9 = 1,2; ∀8 ∈ fe, (5.24)

where A ∈ Nninli × =sp is the matrix of invariant relationships, ĉ 9,8 ∈ R=sp is the predicted
concentration vector evaluated at the internal collocation points ( 9 = 1,2) of every �nite
element 8 ∈ fe and bin ∈ Nninli the vector of conserved amounts. Notice that this same
equation can be written in terms of compositional changes (right side of (5.24)), where ĉ′ 9,8
is the vector of instantaneous concentration derivatives of the corresponding ĉ 9,8 vector,
that lies in the null space of A.

At the ends of the intervals, continuity restrictions are imposed on the approximation
functions and their derivatives:

%B,8 (1) = %B,8+1(0), (5.25a)

% ′B,8 (1) = % ′B,8+1(0), (5.25b)

% ′′B,8 (1) = % ′′B,8+1(0), ∀B ∈ sp; 8 = 1, . . . , =fe − 1 (5.25c)

As in the case of splines, the approximation through orthogonal collocation on �nite
elements can produce solutions with more oscillation than desired. This behavior can
be avoided by converting the objective function (5.22) to the form (5.6), and setting the
parameter ? carefully. Alternatively, restrictions can be imposed directly on the signals
and relative magnitudes of the derivatives of the approximating functions3. For example,
the signs of variations in concentrations can be restricted to always be positive in certain
�nite elements (or collocation points) where a species is produced in net terms, and
negative when it is consumed in net terms:

% ′B,8 (GA ) ≤ 0 ∨ % ′B,8 (GA ) ≥ 0, ∀8 ∈ fe∗; A = 0, 1, 2; B ∈ c∗ (5.26)

In these equations the quantities GA correspond to the abscissa of the collocation points

3As it is more directly applicable, this was the approach used with the case studies considered.
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(normalized), and c∗ designates the group of species to which these restrictions are applied.
It is also useful to impose monotonicity restrictions on concentration changes along �nite
elements, ensuring that pro�les in certain areas have monotonous variations (increasing
or decreasing), depending on the (net) production or (net) consumption of this species:

% ′B,8 (GA ) ≤ % ′B,8 (GA+1) ∨ % ′B,8 (GA ) ≥ % ′B,8 (GA+1), ∀8 ∈ fe∗; A = 0,1,2; B ∈ c∗ (5.27)

Similarly for the 2nd and 3rd derivatives:

% ′′B,8 (GA ) ≤ % ′′B,8 (GA+1) ∨ % ′′B,8 (GA ) ≥ % ′′B,8 (GA+1), ∀8 ∈ fe∗; A = 0,1,2; B ∈ c∗ (5.28)

% ′′′B,8 ≤ % ′′′B,8+1 ∨ % ′′′B,8 ≥ % ′′′B,8+1, 8 = 1, . . . ,fe − 1 ∩ fe∗; B ∈ c∗ (5.29)

These constraints are also linear in the decision variables 0B,8, 9 , due to the form of the
interpolating polynomial (5.20), and can be enforced at all collocation points. Hence the
application of this methodology does not require the choice of a particular value of a
smoothing parameter and, because it is entirely based on the incorporation of additional
observed features in the solution, it has the potential to provide better estimates of its
derivatives.

The complete mathematical formulation for the continuous approximation of data by
orthogonal collocation can be written as:

min
0B,8, 9

q (5.30a)

s.t. Equations (5.20�5.29) (5.30b)

2̂B, 9,8 ≥ 0, ∀B ∈ sp, 9 ∈ cp, 8 ∈ fe. (5.30c)

This formulation corresponds to a quadratic optimization problem with linear constraints
(QP). It should be noted that in this formulation, the residuals of the objective func-
tion (5.22) are calculated at the experimental points, using the interpolating polynomials
(5.23), with the remaining restrictions being imposed on the considered collocation points.

Note that only one approximation problem is constructed to simultaneously approximate
the concentration of all species in the system. Also, and contrarily to the regularization
approaches previously described, the presence of the system of equations (5.24) in the
QP forces the estimates to be automatically reconciled with the conservation constraints
identi�ed a priori for the particular chemical system, such as the overall or the elemental
mass balances. These constitute signi�cant advantages over the use of other independent
and purely numeric smoothing techniques.

The restrictions corresponding to the eqs. (5.26) to (5.29) are incrementally added to the
adjustment problem by the modeler, through a qualitative analysis of the trends observed
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in the experimental data, and in the eventual need to eliminate oscillations in the pro�les,
which can vary from case by case, i.e., this procedure cannot be generalized. In gen-
eral, the �rst solution of the formulation (5.30) involves only the use of a reduced set of
equations of this type, due to its possible interaction with the usual procedures of length
adaptation of �nite elements for equidistribution of the approximation errors, which must
be avoided. Consequently, the continuous pro�les will tend to exhibit various oscillations,
and the solution will try to interpolate the available data. In a second iteration, after
the convergence of the location of the ends of the elements, it is possible to add addi-
tional restrictions of the type (5.26�5.29), to eliminate the existence of any oscillations
observed in the pro�les, although with a reduced impact on the quality of the adjustment
produced. These can be intuited from the simple inspection of the approximated pro�les,
and added interactively to the problem, which needs to be subsequently resolved. In al-
ternative, the qualitative modeling approaches described earlier can also be used to derive
the corresponding constraints (Schaich et al., 2001; Villez et al., 2013).

5.3.3 Step 1 �owchart

The �owchart of this �rst step of the proposed methodology is presented in Figure 5.2.
Next section addresses the application of the proposed method.

5.3.4 Application example

The catalytic hydrogenation of succinic acid (previously presented in Section 1.5), is taken
as an illustrative example. Prior assumptions relative to the nature of the reactions in this
system indicate that the sum of the concentrations of the C4 and C3 should be conserved,
establishing the invariant relationship discussed in Section 2.3, presented in Figure 2.20.

The application of the proposed data reconciliation method for this case study is chal-
lenging since there is appreciable error in the overall mass balance closure in the original
experimental concentration data. This fact may signi�cantly in�uence the conclusions
obtained, since in some regions the amplitude of this uncertainty overlaps with the con-
centrations registered for some species4. Also, the original dataset presents irregular
structure since not all species were measured at the same time instants, presenting some
species more data than others. In Figure 5.3 the experimental data reported by Deshpande
et al. (2002) is plotted in the discrete points, the dashed curves are linear interpolation
of the dots used to calculate the error of moles.

The time horizon was divided in ten �nite elements with several lengths. Shorter elements
are required when greater second derivatives of concentration pro�les are occurring, in
order to better describe the observed oscillations of the concentration pro�les. Since the

4For example, the THF species shows a slight decrease in the last 2 experimental points registered in
Figure 5.3. Given the enormous value of the error in closing the global mass balance in this region, there
may be a doubt about whether to classify this species as terminal (monotonously increasing concentration)
or not.
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Dataset

De�ning number of �nite elements
their lenght and

collocation points location

Establishment of equality constraints

� continuity in c(t), dc(t)
dt , d2c(t)

dt2 pro�les
(between elements of the same pro�le)

� invariant constraints at the collocation
points (inter-elements of di�erent pro�les)

Establishment of inequalities

� monotonicity (shape) constraints, e.g., dc(t)
dt ≤ 0

� c(t) ≥ 0

Model Fit

min
nme∑
m=1

nsp∑
s=1

(cexps,m−cs,m)2

2σ2

s.t. constraints

Is the model
enoughly
smoothed?

Reconciled data

Yes

No

Figure 5.2 Step 1 �owchart. Schematic overview of the proposed method for data
reconciliation supported on orthogonal collocation on �nite elements.
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Figure 5.3 Concentration data for the succinic acid system. The shadowed pro�le
represents the overall mass error.

size of each element is common for every species pro�le, this criterion must be established
accounting a kind of mean curvature. Moreover, the mass conservation relationship was
imposed at the collocation points in every �nite element, establishing that the amount of
moles given by AS + GBL + BDO + THF + BuOH + PrOH is unchanged.

In this example, each polynomial also has 4 coe�cients to be determined, using 10 �nite
elements; in this case, 240 optimization variables are required since 6 species pro�les
are adjusted. Equality restrictions total 191 equations (that is, there are a maximum of
49 degrees of freedom in the problem), 593 inequality restrictions were considered. The
problem was solved in the Mathematica® 12.0, using the function FindMinimum. Despite
the great uncertainty presented in the original data, the smoothing procedure produced
very reasonable results, as can be seen in Figure 5.4. Notice that great disagreements
among experimental data and model pro�les occur at the zones in which signi�cant mass
error are veri�ed. Therefore, due to the equal weighting factors used, in the regions
where there is more error, the larger errors observed tend to be equidistributed between
the present species, except when the qualitative constraints used in the respective or
contiguous elements disallow this behavior.

Additional constraints were required in order to avoid oscillatory pro�les behavior; these
constraints are related to the qualitative analysis of each individual pro�le. For example,
the �rst derivative of AS derivative is always negative and increases monotonically; the
�rst derivative of GBL is positive until the end of the third element and negative from the
�fth element; and the �rst derivative of BDO is positive until the end of the third element
and increases monotonically until the end of the fourth element, etc. Figure 5.5 presents
the individual species pro�les with their �rst and second concentration derivatives.

The same smoothing problem, but without imposing shape constraints, was considered
in order illustrate the need of those inequalities during data regularization. The obtained
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Figure 5.4 Concentration pro�les for the succinic acid system. Vertical lines present
the size of the �nite elements.
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Figure 5.5 Individual concentration pro�les, including their �rst (dashed pro�les) and
second (dotted pro�les) derivatives for the succinic acid system.

pro�les are presented in Figure 5.6. Observe that better agreement of data-model is
veri�ed, although presenting undesired oscillatory behaviors. However, the constraints
related to the non-negative responses were imposed at the collocation points (unless for
AS species after four hours of reaction), simultaneously with the invariant relationship.

The proposed data regularization method based on orthogonal collocation on �nite ele-
ments enabled the obtainment of smoothed reconciled 2 (C) pro�les, simultaneously with
the achievement of good estimates of smoothed concentration derivatives that will support
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Figure 5.6 Concentration pro�les for the succinic acid system without considering qual-
itative (shape) constraints.

all the model identi�cation tasks at the next phases. The species �rst derivative pro�les
are shown in Figure 5.7.
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Figure 5.7 First derivative of species concentration pro�les for the succinic acid system.
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Chapter 6

Step 2 � Data Dimensionality Analysis

�The universe may be a 4-dimensional soap bubble

in an 11-dimensional space. Who knows?�

� Christian Klixbull Jørgensen
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6.1 Introduction and chapter's organization

As previously discussed in the theoretical background in Section 2.4, the identi�cation of
the stoichiometry N[nrxli × =sp] and/or the invariants A[ninli × =sp] from data in
the variant form D[=to × =sp] is not an easy and simple task in the presence of noisy
data, namely concentration measurements with associated uncertainty. The real situation
presents mass balances of the type (2.41) with an additional matrix: the error matrix,
concerning to data components that the model cannot predict. Clearly, the objective is
to maintain that error as low as possible, but without introducing data over�t. Therefore,
great e�ort has been made for the identi�cation of N from D, presenting good agreement
between model and data, as well as accurate and reliable model parameters. Hence, one
of the key-problems of modeling chemical reaction systems is to identify the model

dimension, or in other words, what is the hidden dimension nrxli of the data variant
space, or even better, what is signal and what is noise in the data. This is the main
objective of this methodology step.

This chapter introduces several methods that address this issue. Three methods of the lit-
erature are described in more detail, namely the Malinowski test (Malinowski and Howery,
1980; Malinowski, 1989), cross-validation (Wold, 1978; Eastment and Krzanowski, 1982;
Krzanowski and Kline, 1995) and the hard-thresholding (Gavish and Donoho, 2014). The
comparison of these methods is supported by applying them to a challenging case study.
In addition, heuristic methods are also considered for the same purpose.

Since time-invariant vectors span a complementary space where the compositional changes
occur1, the use of time-invariant relationships can assist and support the identi�cation of
N from reconciled data D, by decreasing data uncertainty and consequently increasing
the modeling of real data signal (thus diminishing the likelihood of data over�tting).
Moreover, when elucidating ninli, the model dimension is consequently determined since
ninli = =sp − nrxli. Due to these facts, in this methodology step, a lot of e�ort is
associated with the identi�cation of time invariants, i.e., with the identi�cation of the
number of invariants ninli and the subspace spanned by them, so as to support the
modeling of the data variant space.

Two approaches can be considered for identifying time-invariant relationships. First,
through the trivial computation of the null space of N, when the system stoichiometry
is known. However, this approach is not practical since N is generally unknown. System
stoichiometry is often what modelers want to determine or identify. Second, through the
assessment of chemical species formula, i.e., from the analysis of the molecular structure
of the measured chemical species. In both cases, the aim is to �nd the least cluster (or

1A detailed discussion about this topic is addressed in Sections 2.2 and 2.3.
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block) of chemical elements that is common between the measured species, allowing the
establishment of meaningful (minimal and positive) conservation relationships. These
relationships a8 ∈ R=sp for 8 = 1, . . . ,=sp−nrxli must be validated using experimental data.
This means that it is expectable that the square euclidean norms

‖D · a8 ‖22 ≡ (D · a8)T ·D · a8, ∀8 ∈ in (6.1)

present lower amounts, approaching the magnitude of the original data uncertainty.

In this chapter, a new method for identifying the dimension of the invariant space, ninli,
from data with low noise content is proposed. In some cases, it is also possible to deter-
mine the appropriate invariant relationships that come closest to span the null space of
the noisy data with the identi�ed dimension. The method is based on discrete optimiza-
tion and singular value decomposition of the noisy data matrix, where from an abstract
(orthonormal) basis that spans the null space of noisy data, a plausible candidate basis is
obtained (formed by the sparsest vectors with positive and integer entries).

This chapter is organized as follows. In Section 6.2, the overall description of Step 2
is presented. In Section 6.3, a study on data with simulated noise is carried out to
evaluate the behavior of singular values in the presence of noise. The number of replicated
experiments is evaluated so as to determine with con�dence the e�ective model dimension.
In Section 6.4, heuristic methods are considered for determining the data variant space
dimension. In Section 6.5, the three literature methods (introduced above) for determining
the characteristic data variant space are addressed. In Section 6.6 the proposed new
methods for determining the invariant relationships are presented: a MILP formulation for
computing the sparsest positive null space of the stoichiometric matrix (Section 6.6.1) and
a novel method for determining the dimension of the data invariant space (Section 6.6.2).
All methods (from Section 6.3 to 6.6) are applied to the P�zer case study, in order to
illustrate all the features of the problem of �nding the data dimensionality. Finally, in
Section 6.7, the presented methods are compared with key observations presented.

Moreover, the decomposition of data matrix in singular values and vectors is revisited in
Appendix I.3.

6.2 Step 2 overview

�We share a philosophy about linear algebra: we think basis-free, but when the

chips are down we close the o�ce door and compute with matrices like fury.�

� Irving Kaplansky (1917�2006) speaking about Paul Halmos (1916�2006)

The Step 2 consists of identifying the data dimension for determining (i) the number
of chemical reactions that the model must present ' = nrxli, (ii) the number of time-
invariant relationships ninli = =sp −', and (iii) an orthonormal basis for the data variant
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space N0. Regarding the item (ii), this information may be previously known from the
data reconciliation step, and therefore, the analysis performed at this phase is used as a
validation tool of the previously imposed invariants during data reconciliation.

Figure 6.1 presents the diagram of this step, where �rstly the SVD of reconciled data is
considered for singular value analysis. At this phase several observations are made from
data analysis, such as the quanti�cation of the near linear dependence among its features,
the evaluation of how much ill-posed is the problem on hands and the prediction of iden-
ti�ability problems related to model components and their parameters. The application
of several methods for determining model dimension is considered and the comparison of
the results obtained is performed, deciding how much of data we expect that the model
to explain.

Also, at this phase the validation of ninli time-invariant relationships that is already
present at the reconciled data is performed when the model dimension identi�ed corre-
sponds to the di�erence ' = =sp − ninli. When these numbers do not match, i.e., when
the elucidated model dimension ' is lower than =sp−ninli, more time invariants should be
proposed until the numbers matching, implying the repetition of the data reconciliation
procedure with additional invariant constraints and the application of the methods for
determining model dimension again in iterative procedures.

When the case study under analysis reveals data identi�ability problems, presenting a
signi�cant amount of data uncertainty, the need of more experiments can be justi�ed in
order to clarify the data space dimension. On the other hand, when data is satisfactorily
characterized the model dimension is elucidated simultaneously with the time-invariant
relationships, allowing the computation of an orthonormal basis of the data variant space.

6.3 E�ect of noise in the singular values and replicated

experiments

�For even the most stupid of men, by some instinct of nature, by himself and

without any instruction (which is a remarkable thing), is convinced that the more

observations have been made, the less danger there is of wandering from one's

goal.�

� Jacob Bernoulli (1655-1705)

A study of the behavior of singular values in relation to adding random noise to data is
presented in this section. The objective is to evaluate the number of replicated experi-
ments that allows obtaining (i) certainty/con�dence about the expected mean value, and
consequently (ii) convergence towards the value of the pure signal without noise. Thus,
the model dimension (data variant space dimension) is precisely identi�ed, and conse-
quently also the invariant space dimension that the data would present in the absence of
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Figure 6.1 Step 2 �owchart.

noise.

The study is performed using experimental data from the P�zer case study. The dataset
consists of cumulative change in the number of moles of ten species registered in 15
experiments with three temperature values and several di�erent initial conditions. Data
was previously reconciled with two invariant relationships. The matrix DΞ of cumulative
changes of number of moles has dimension [225 × 10] and matrix rank eight. The singular
values (f∗) of DΞ are shown in Table 6.1. For the practice of this study, we assume that
DΞ is free of noise, which is a valid assumption in terms of comparison of noisy singular
values with the reference ones that have no noise. Gaussian noise with zero mean and
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0.005 standard deviation was systematically added to DΞ during = = 1000 iterations, such
that

D̃: = D + E: , ∀: = 1, . . . ,= (6.2)

where D̃: and E: are, respectively, the noisy data and the noise matrices with dimension
[225 × 10] at the replicated experiment : = 1, . . . ,=. The noise (each entry of E) is created
through a random function in every iteration. For the sake of simplicity, in (6.2), the
subscript � is omitted inD and D̃, and will also be omitted in the remaining of this section.
Then, the noisy data of each iteration was appended to a list, forming a list with dimension
[1000 × 225 × 10]. Therefore, for every entry 3G,B of D, where G = 1, . . . ,225 is the time
instant index of the cumulative change in the number of moles of species B = �,�, . . . ,� ,
a random noise n:,G,B is added, forming the noisy entry 3̃:,G,B of matrix D̃: . Consequently,
a distribution of a thousand values of 3̃∗,G,B is obtained for every G = 1, . . . ,225, and for
every B = �,�, . . . ,� , which assumes the format of normal (Gaussian) distributions since
Gaussian noise was considered (i.e., one obtains 2250 Gaussian distributions composed
by 1000 noised entries). Figure 6.2 shows the distribution of 3̃∗,G,B for B = � and G = 2

(i.e., C = 1.2 h).

-0.44 -0.43 -0.42 -0.41

0

20

40

60

80

0

0.2

0.4

0.6

0.8

1.0

d
˜
(k)

P
(d˜
(k
))

D
(d˜
(k
))

Species s = A | Observation x = 2 (t = 1.2h) | Signal d2,A = -0.42592

Average noisy signal d
˜
2,A = -0.42573 | μ = -0.42573 | σ = 0.005

Figure 6.2 Distribution of 3̃: values concerning species � at 1.2 h for a thousand repli-
cated experiments. The ` and f are the mean and the standard deviation, respectively,
concerning the PDF function (blue curve).

In Figure 6.2, the y-axis of the left side concerns to the probability density function (PDF,
blue curve) for the respective noisy data entry 3̃: (x-axis) obtained, and the y-axis of the
right side concerns to the cumulative distribution function (CDF, red curve), which gives
the probability that a variate will assume a value ≤ 3̃.

According to a famous citation of James Gleick: �Everything we care about lies somewhere
in the middle, where pattern and randomness interlace�, the expected value of a random

variable 3̃ is a function that turns the probabilities % (3) into a sure variable called the
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mean of 3̃, (mean
(
3̃

)
) (Lemons et al., 2002). When we consider 3̃:,G,B which is the random

signal value at experiment : = 1, . . . ,= for species B in observation G , the average amount
¯̃
3G,B is

¯̃
3G,B =

3̃1,G,B + 3̃2,G,B + 3̃3,G,B + . . . + 3̃=,G,B
=

, G = 1, . . . ,225; B = �, . . . ,� (6.3)

and the variance of the average is

var
(
¯̃
3G,B

)
=

∑=
:=1 var

(
3̃:,G,B

)
=2

, G = 1, . . . ,225; B = �, . . . ,� (6.4)

assuming that every 3̃∗,G,B for : = 1, . . . ,=, and the same B and same G , is statistically
independent. For the sake of simplicity, indexes G and B will be omitted in 3̃:,G,B since the
analysis for particular values of G and B is also valid for the remaining values, thus in the
following text only the experiment subscript will be used i.e., 3̃: .

Once it is desirable to decrease the variability in a random variable, considering its average
value is a very good reason that meets this need, since the variance of the average ¯̃

3

decreases with increasing = as 1/=, as it is shown in (6.4), i.e., the numerator increases
(roughly) with the number of the experiments (=) and the denominator increases with
the squared of this amount (=2). Since, we are handling replicas (i.e., every experiment
was made in the same way), the next equality holds

var
(
3̃1

)
= var

(
3̃2

)
= . . . = var

(
3̃=

)
(6.5)

and, therefore, the computation of var
(
¯̃
3

)
is simpli�ed to

var
(
¯̃
3

)
=

var
(
3̃1

)
=

(6.6)

Hence, averaging is always helpful if the experiments are replicas (Lemons et al., 2002).

In this case, the standard deviation of ¯̃
3 can be predicted using

std
(
¯̃
3

)
=

√
var

(
¯̃
3

)
=

std
(
3̃1

)
√
=

(6.7)

where it can be seen that the standard deviation of the average decreases with the number
of terms included in the average. Therefore the average ¯̃

3 approaches a random variable
whose variance disappears when = becomes inde�nitely large, that is, ¯̃

3 approaches the

sure value mean
(
¯̃
3

)
= 3, the pure signal (without the random component, noise).

Therefore, considering the distribution presented in Figure 6.2, it is possible to estimate

the standard deviation of ¯̃
3 using (6.7), which is std

(
¯̃
3

)
= 1.58 × 10−4. This indicates
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that the ¯̃
3 obtained is representative of the expected value since its standard deviation is

su�ciently small to infer its accuracy. However, if (instead one thousand) a reduced num-
ber of replicas were considered, for example three replicated experiments, the standard

deviation of the average value would increase to std
(
¯̃
3

)
≈ 0.003, which could maintain

uncertainty over small singular values. Hence, the number of experiments can be deter-
mined in order to increase the accuracy of ¯̃

3, that in turn is more representative than the
individual 3̃, since ¯̃

3 shows lower variance.

The comparison of noisy singular values with the true/reference ones was performed con-
sidering di�erent =, i.e., di�erent numbers of replicas. The results obtained are shown in
Table 6.1, where the real (pure signal) singular values are represented by f∗ computed
through the SVD of D, the noisy singular values corresponds to f̃ computed through the
SVD of the average of replicated experiments D̃: matrices ( ¯̃D), and the relative error
(RE) among f∗ and f̃ is computed using

RE =
|f∗ − f̃ |
f∗

× 100 (6.8)

Table 6.1 Results from the simulation of data with additive Gaussian noise considering
several numbers of replicated experiments.

9 f∗
3 replicas 10 replicas 100 replicas 1000 replicas

f̃ RE [%] f̃ RE [%] f̃ RE [%] f̃ RE [%]

1 22.273 22.272 0.003 22.272 0.004 22.273 0.001 22.272 0.002
2 2.719 2.720 0.033 2.719 0.005 2.719 0.014 2.719 0.003
3 1.969 1.966 0.121 1.967 0.062 1.969 0.007 1.969 0.008
4 0.372 0.378 1.452 0.375 0.689 0.373 0.075 0.372 0.046
5 0.283 0.286 0.928 0.284 0.437 0.283 0.100 0.283 0.042
6 0.242 0.240 0.684 0.242 0.049 0.242 0.295 0.242 0.056
7 0.126 0.130 2.911 0.126 0.489 0.126 0.260 0.126 0.039
8 0.075 0.090 19.386 0.079 5.069 0.075 0.291 0.075 0.216
9 0 0.040 ∞ 0.025 ∞ 0.008 ∞ 0.002 ∞
10 0 0.039 ∞ 0.022 ∞ 0.007 ∞ 0.002 ∞

As can be seen in Table 6.1, in most of the model components directions, the RE decreased
with the number of replicas since a better estimate of the ¯̃D is obtained, approaching to
the pure signal D matrix. Also, the lower model components ( 9 ≥ 6) present greater error
of convergence since they are more a�ected by the noise variability, even considering a
high number of replicas. The model components 9 = 9 and 9 = 10 are related to the
invariant relationships that were lost by data noise addition, showing errors in singular
values of the order of magnitude of noise and a mathematical indeterminacy in relation
to the RE. On the other hand, the singular values concerned to model directions of lower
data variability (6 ≤ 9 ≤ 8) have decreased with the =, indicating that these components
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have signal even highly contaminated with noise in individual experiments. However, the
results are globally pretty good for 10 replicas, since RE is lower than 1% for the �rst
seven model components, and ≈ 5% for the last one. Hence, the averaging of replicated
experiments is �ltering the noise, once the noisy singular values are converging to the
pure signal. Therefore, replicating experiments aids in determining the model dimension.
Figure 6.3 presents the RE for a number of replicas within the range = = [1,1000].
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Figure 6.3 Relative error (RE) of the singular values for a range of experiments between
one and a thousand. The top-right plot is zoomed in the x-axis. The bottom-centered
plot is zoomed in the y-axis.

As can be seen in Figure 6.3, the RE shows an accentuated drop for few replicated
experiments, and tends to stabilize with =. However, the RE presents �uctuations (it is
not monotonous) specially for magnitudes inferior than 1%. This oscillatory behavior is
due to the random noise added to original data.

Figures 6.4 and 6.5 present the dataset that composes D and ¯̃D for one thousand of
experiments, where on the former individual species plots are presented (i.e., individual
columns of D and ¯̃D) and on the latter the entire data is shown in a single plot. In these
�gures at every multiple of 15, a grid line is drawn indicating a new (sub) dataset that
concerns to di�erent experimental conditions, for the same reaction system.
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Figure 6.4 Individual species pro�les. Non-black points: true signal of data. Black
points: average of noisy data for one thousand of experiments.
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6.4 Determining the model dimension using singular

value analysis with empirical and heuristic approaches

As previously discussed in the introduction of this chapter, experimental data has uncer-
tainty associated, i.e., it includes noise. A common concern of modelers is to maximize
the extent of data explained by the model and at the same time avoid the addition of
model components that mainly result from noisy data, and thus avoid over�tting. Since
SVD decomposes data in directions that can be ordered by decreasing variance, the in-
formation it provides can be very useful in determining an adequate model dimension,
taking into account that data directions corresponding to the smallest singular values are
the most a�ected by noise.

Hence, one of the most important questions for modeling dynamic systems how many
eigenvectors should be considered when projecting data, or where SVD(D) should be
truncated. The economy SVD format (discussed in detail in Appendix I.1) consists of
eliminating the columns of U and V corresponding to the left and right null spaces of
D, respectively. However, in this case, the SVD truncation is about �leaving behind� a
residual component of the data matrix that we cannot (or don't want to) explain, such
that

D = U · � ·VT = U' · �' ·VT
' + E (6.9)

where ' is the model dimension, i.e., the number of principal components selected as
model constituent, and E[=to × =sp] is the matrix of data residuals to be left behind.
The matricesU', �' and V' contains the �rst ' columns of the original ones, i.e., U' and

V' contain ' eigenvectors of cov
(
DT

)
and cov (D), respectively, hierarchically ordered

by the greatest variance.

This section presents three empirical (ad hoc) methods, available in the literature, for
determining ', namely the scree test, the analysis of fractional variances, and the Kaiser
test. The application of these methods is considered using the P�zer case study, using the
same noisy dataset studied in the previous section. This dataset concerns to cumulative
values of numbers of moles variation with added Gaussian noise (zero mean and 0.005
standard deviation), respecting to batch experiments with ten observed species. The true
data dimension, without noise, is known a priori to be eight. The singular value list is
shown in (6.10). Figure 6.6 presents the singular values in several scree plots.

σ = {22.271, 2.720, 1.964, 0.374, 0.293, 0.251, 0.158, 0.102, 0.083, 0.073} (6.10)

After the application of each method, a short discussion of the obtained results is made,
and at the end of this section an overall conclusion is provided.
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6.4.1 Scree test

The scree test assumes that the relevant information can be distinguished from random
noise in terms of singular values and that the magnitude of the random noise variation
seems to stabilize linearly with the number of components (Cattell, 1966). The common
graphical analysis based on heuristic principles is to plot the log

(
f 9

)
= 5 ( 9) and look for

the elbow of the pro�le, that separates the singular values with greater variance from those
with lower variance. However, these heuristic methods can fail if the pro�le behavior is
not su�ciently sharp, or if the data has a similar distribution of singular values to the
assumed noise distribution.
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Figure 6.6 The singular values are plotted in (a), with zoom-in in (b), and with the
logarithm of their values in (c). The variances are plotted in (d), with zoom-in in (e), and
with the logarithm of their values in (f).

From the visual analysis of the singular values and variances curves in Figure 6.6, it would
be not uncommon to decide to truncate the data matrix at the fourth position, i.e., ' = 4,
since an elbow can be seen at the fourth component. Nonetheless this result is highly
restrictive, leading to the exclusion of true model components. Therefore, it is hard to
distinguish between real and noise singular values using only heuristic methods that are
supported on visual graphical analysis.

6.4.2 Fractional variances test

Another rule of thumb is to choose the �rst ' eigenvectors such that the sum of their
variances (eigenvalues) is up to an amount of the total (a kind of parsimonious criterion),
such as 95% or 99%. This high fraction of variation covered by the model must be set



172 Step 2 � Data Dimensionality Analysis

according to the percentage of noise in data (percentage of the noise variance), for example
if it is known that data measured has 1% of noise, it is expected that the model describes
the entire variation up to about 99% (Bro and Smilde, 2014). However, in many cases
this percentage of noise is unknown or imprecise, which hampers the use of this criterion.
Also, the uncertainty can be di�erent for each measured variable.

Figure 6.7 presents the fractional variances (variance and total variance ratio) and the
respective cumulative curve. The zoom-in plots located at the bottom of this �gure show
the thresholds (red lines) for two percentages of variation: 99% and 99.9975%, on the left
and on the right sides, respectively.
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Figure 6.7 The variances over total variance ratio and its cumulative values are plot-
ted considering a threshold for the retention of 99% of variability on the left �gure and
99.9975% on the right �gure, indicated by the red lines. The bottom plots are zoomed-in.

On the left-hand-side plot, this heuristic criterion indicates that only a single component
should be considered for data with 1% of noise, covering ≈ 97.7% of the data variation.
In this case, the cumulative variance covered by models with more than one eigenvector is
greater than 99%, presenting data over�t (explaining noisy components). Therefore, even
considering a high limit for explaining the data variability (99% of the total data variance),
this amount would be unsatisfactory (not enough) since 7 real components were excluded
for this noise level. On the other hand, on the plot at the right-hand side, the red line
indicates that seven components (eigenvectors) should be selected as model constituent,
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covering 99.9956% of the data variation. The cumulative variance covered by more than
seven components is greater than 99.9975%, (which indicates the incorporation of noisy
components for data with 0.0025% of noise). The obtained result (' = 7) is very close to
the real dimension of the 8-component model. This happens due to the consideration of
the real noise standard deviation (0.005) for this last threshold establishment, although,
even so, the eighth component of the model is left out.

6.4.3 Kaiser test and auto-scaling operation

The Kaiser's rule is based on the assumption that if a component has an eigenvalue greater
than one, it explains the variation of more than one original variable (Cli�, 1988). This
assumption is supported on the fact that autoscaled data presents a variance of one for
each variable, and if all variables are orthogonal to each other, then every component
in a SVD model would present unitary eigenvalues. This led to the rule of selecting all
components with eigenvalues (or singular values) greater than one. However, it has been
shown that it is perfectly possible that even components with eigenvalues far below one
can be real and signi�cant for data with low noise content. Hence real phenomena can be
small in variation, yet accurate (Bro and Smilde, 2014).

For the illustration of this criterion, the autoscaling of data was performed, i.e., the
subtraction of the mean of every column and the division of the respective standard
deviation was considered for each column concerning original data in two separated steps,
such that

Y = D − 1 · µT and Y′ = Y ·W (6.11)

where in the �rst operation (mean-centering) Y[=to × =sp] is the matrix of mean-centered
data with the same dimension ofD, 1[=to × 1] is a column vector with unitary entries and
µ[=sp × 1] is a vector with entries equal to the mean `B = 1, . . . , =sp of each column B of D,
and, in the second operation (scaling) Y′ is the autoscaled matrix, andW[=sp × =sp] is a
square diagonal matrix with entries corresponding to the inverse of the standard deviation
of the respective column of D (or Y since it presents zero mean in every column).

Notice that the autoscaling operation is a data transformation that does not change the
structural information contained in the original matrix D (Bro and Smilde, 2003). On
the one hand, the mean centering works by removing o�sets from data regression models,
avoiding numerical problems. However, this operation interferes with the signal of each
data input and, therefore, no further positive restrictions can be applied. Mathematically,
centering is a projection of data onto the null space of 1T (for more details, see Bro and
Smilde (2003)). On the other hand, the operation of scaling data is usually considered
for matrices composed by variables that measure quantities of di�erent nature (i.e., with
di�erent physical units), and therefore, when weighting each variable by the inverse of
its standard deviation, a normalization is being performed. Consequently, in scaled data,
no variable has more variability than the other, i.e., all present the same unity variance,
and therefore, variables that before scaling have presented little variation, after scaling,
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are modeled with the same signi�cant degree. Scaling can be advantageous for parameter
estimate procedures since numerical problems can be avoided, decreasing sti�ness and
improving solver convergence.

Figure 6.8 shows the Kaiser's criterion, where it can be observed that the exact model
dimension is selected for a variance over than unity.
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Figure 6.8 The singular values of autoscaled data are plotted in (a) where the blue
line indicates the threshold according to Kaisers' rule, and in (b) with zoom-in. The
eigenvalues (variances) of autoscaled data are plotted in (c) and in (d) with zoom-in.

However, this result (' = 8) cannot be used for non-autoscaled data. The elucidation of the
model dimension must be performed using original data (and not autoscaled data), since
it is over the original data that the model identi�cation (network and kinetic parameters)
is performed. For modeling chemical reaction systems, it is out of interest eliminating
the o�set, since the mass balances in (2.41) do not present o�sets, i.e., we are modeling
Euclidean subspaces with Cartesian coordinates that have their origin in the null dot
(these subspaces contain the null vector of the respective dimension, as according to the
linear space de�nition), they are not a�ne hyperplanes. Moreover, scaling variables is
also out of interest since every variable has the same unity, and it is not desirable to level
every species variation to the same importance, which is a situation far from the reality of
batch chemical systems. In real chemical systems, some species are �more important� than
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others when they present greater variation, i.e., when they appear in a more expressive
way. Therefore, since there is no need to remove data o�sets, and it is not desirable
to change the importance of variables in the original data, the data autoscaling is not
considered in this work.

Note that when performing mean-centering operations, the originally known percentage
(or ratio) of the noise variance in D is changed. This can be a problem when the goal is to
study the e�ect of (known) noise on the singular values of the data (including its average
information). For example, in Figure 6.7, the �rst model direction (�rst eigenvector)
contains ≈ 97.7% of the data variability, including the known Gaussian noise with 0.005
standard deviation (25 × 10−6 variance). This great amount of data variance captured in
this model direction concerns to the mean of the data, since data was not mean-centered
in that example. Once the �rst component (related to the mean) covers 97.7% of the
data variation, excluding it by mean-centering would lead to the analysis of the remain
2.3% of the data variability in which the percentage of noise content in unknown, i.e.,
this 2.3% of data variability would be analyzed as the entire problem in which the noise
variance is not anymore 25 × 10−4%, but much more higher.

However, mean-centering operation does not change (or a�ects) the structural information
of data since the row space of D (or of VT) is the same with or without mean-centering.
This operation only changes the coordinates of each data point (now centered in its mean),
i.e., it only interferes in the projection length of every data point in the respective axis of
the basis, given by U · �.

6.4.4 Conclusion on the basis of the results obtained

For this case study, from the analysis of singular values, it can be seen that most chem-
ical reactions present low extent, with model components that present variance values
comparable to the noise variance, making it di�cult to identify the real dimension of the
model. Since the singular values most a�ected by noise are di�cult to distinguish, that is,
they all have the same range of values, the use of non-heuristic methods is preferable to
de�ne ' by adopting a theoretical approach. In this sense, parametric and non-parametric
methods are considered in the next section.

6.5 Determining the variant space of data by theoreti-

cal approaches

In this section three di�erent methods for determining the characteristic space of data in
the variant form (dimension and respective linear basis) are presented. These methods
include parametric and non-parametric tests, and optimization, namely, the Malinowski
test that is supported on the � -distribution of variance ratios (Malinowski, 1989), the
cross-validation method that is based on the evaluation of prediction errors considering
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di�erent test sets of data for several candidate model dimensions (Wold, 1978; Eastment
and Krzanowski, 1982; Krzanowski and Kline, 1995; Bro et al., 2008), and �nally, the
hard-threshold method which is based on optimization techniques and noise assumptions
(Gavish and Donoho, 2014). The application of these methods is considered using the
same case study of P�zer company.

6.5.1 Malinowski test

Malinowski (1989) proposed a parametric test to determine ' within some speci�ed sig-
ni�cance level, based on the Fisher variance ratio respected to pools of samples that have
normal distributions and are statistically independent. The objective of the � -test is to
test if the variances of two populations are equal, and therefore, the test of hypothesis
is performed over samples of these populations. In the context of this section, the main
idea of the application of � -test is to identify the number of real eigenvectors that have
eigenvalues that are statistically greater than the pooled variance of the noise/random
eigenvalues, since the former contain both structural and experimental error contribu-
tions and the latter only experimental error (or noise).

As previously discussed in Appendix I.3, (i) each eigenvalue represents the variance in the
data accounted for by the associated singular vector/eigenvector, (ii) in the presence of
noisy data, only the �rst ' singular values contain meaningful information in which the
signal is greater than the noise contribution, and (iii) therefore, it is over these respective
singular vectors that the data variant space must be de�ned. On the other hand, the
remaining =sp − ' squared singular values are considered purely noise variances, whose
respective singular vectors may de�ne the null space of data, or in other words, the time-
invariant relationships.

Malinowski (1989) de�ned the last =sp − ' squared singular values and their respective
singular vectors as the error eigenvalues and error eigenvectors, considering that they
do not contain useful information. In particular, the term �error� for the eigenvalues
that are relative to noise variances can be misleading since it is over those respective
model directions that the invariant relationships may be identi�ed, aiding the complete
identi�cation of the structure of chemical reaction models. Based on the assumption that
the last =sp − ' right singular vectors are referred to time-invariant relationships and not
model components with low data variance, the respective last =sp − ' singular values
would had shown zero values if noise was not presented in experimental data. Therefore,
it is important to emphasize that in this work, the information contained in the �error�
singular vectors is useful. However, it is understandable that the �error� terminology is
adopted due to its relation with the error associated with the model responses compared
to original noisy data, i.e., the residual terms (as it was presented by the matrix E in
(6.9)).

Hence, according to the fact that experimental data can be separated in two parcels, (6.9)
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can be rewritten as

D = D' +D0

= U' · �' ·VT
' +U0 · �0 ·VT

0

(6.12)

where the subscripts �'� and �0� are referred to the data variant space of dimension ' and
to the data null space of dimension ninli = =sp − ', respectively. Therefore, the squares
of the data points can also be divided in the same way, such that

=to∑
C=1

=sp∑
B=1

32C,B =

=to∑
C=1

=sp∑
B=1

3' 2
C,B +

=to∑
C=1

=sp∑
B=1

30 2
C,B (6.13)

where the superscripts �'� and �0� are referred to data from matrices D' and D0, respec-
tively.

The same relationship in (6.13) is valid to the eigenvalues, such that

=sp∑
B=1

f2B =

A∑
B=1

f2B +
=sp∑

B='+1
f2B (6.14)

since the sum of eigenvalues is equal to the the sum of squares of the data points 3C,B in
the respective matrix, i.e.,

=to∑
C=1

=sp∑
B=1

32C,B =

=sp∑
B=1

f2B ,

=to∑
C=1

=sp∑
B=1

3' 2
C,B =

A∑
B=1

f2B and
=to∑
C=1

=sp∑
B=1

30 2
C,B =

=sp∑
B='+1

f2B (6.15)

Malinowski (1989) proposed a correction (weighting) factor for computing the variance of
the ' model component, such that

E (') =
f2
'

(=sp − ' + 1) (=to − ' + 1) (6.16)

where each eigenvalue is being weighted in proportion to the amount of information ac-
counted for by it.

The variance of the pool respected to the last =sp − ' singular vectors, E (0), can be
calculated from the weighted average of their eigenvalues, such that

E (0) =
∑=sp

B='+1 f
2
B

(=sp − ')
∑=sp

B='+1(=sp − B + 1) (=to − B + 1)
(6.17)

In this case, the improved statistic test consists of evaluating whether the variance of the
component ' is greater than the variance of the pool formed by the last =sp − ' singular
vectors, in order to infer that the model dimension ' is signal, and not noise. For this
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purpose the � value, which is the ratio of these two samples variances, is computed as

� (1,=sp − ') =
E (')
E (0) =

∑=sp

B='+1(=sp − B + 1) (=to − B + 1)
(=sp − ' + 1) (=to − ' + 1)

f2
'∑=sp

B='+1 f
2
B

=sp − ' (6.18)

designed to test the null hypothesis

�0 : E (')∗ = E (0)∗ (6.19)

against the alternative hypothesis

�0 : E (')∗ > E (0)∗ (6.20)

where the superscript �∗� indicates the variance of the population. Notice that the pro-
posed � -test is designed to evaluate one individual model component at a time against
the remain components that form the pool. Hence, the � value has only one degree of
freedom in its numerator concerning the ' model component against =sp − ' degrees of
freedom in its denominator concerning the discarded pool.

The procedure starts considering the last singular vector as the unique constituent of
the pool, and, therefore, the model dimension that is tested in this �rst iteration is the
dimension (=sp − 1)th and � (1,1) is computed using (6.18). The obtained value must be
compared to a critical � value (�2) that is established within some speci�ed signi�cance
level, for example U = 0.05. If the calculated � is lower than the critical value (� < �2),
the null hypothesis in (6.19) is failed to be rejected, and therefore, the (=sp − 1)th model
component does not present (statistically inferred) variance greater than the (statistically
inferred) variance of the =spth component, (i.e., E (=sp − 1)∗ is not greater than E (0)∗).
Consequently, the (=sp−1)th dimension is added to the pool of discarded singular vectors,
passing now to have a 2-dimensional space, and the procedure starts again for testing the
(=sp − 2)th model component. This process of testing and adding to the invariant pool is
repeated until the variance ratio of the 'th eigenvalue exceeds the tabulated �2 , marking
the division between the vectors that are signal from the vectors that are noise. The
� -test procedure is presented in the diagram of blocks in Figure 6.9.

Application of the Malinowski test and discussion of the results obtained

The same list of singular values in (6.10) is considered:

σ = {22.271, 2.720, 1.964, 0.374, 0.293, 0.251, 0.158, 0.102, 0.083, 0.073}

The obtained results of � -test are shown in Table 6.2, where the model dimension is
identi�ed for ' = 6.

Figure 6.10 presents the � -distributions for several dimensions of invariant pools, i.e.,
for di�erent dimensions of deleted singular vectors from the candidate variant data space,
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i=1

� ∗2 (1,8)
' = =sp − 8

Compute E (')
eq. (6.16)

Compute E (0)
eq. (6.17)

Compute � (1,8)
eq. (6.18)

� (1,8) < �2 (1,8)?Failed to reject �0 �0 is rejected

Model dimension
'

identi�ed

Yes

8 = 8 + 1

No

Figure 6.9 � -test diagram.

Table 6.2 F-test results. �2 : critical � value for U = 5%. U‡ indicates the percentage
of the remain CDF function for each � observed (cuto� value if that � was considered
critical).

' =sp − ' E (') × 105 E (0) × 105 � (1,=sp − ') �2 (1,=sp − ') U‡ [%] �0

9 1 1.580 2.461 0.642 161.448 56.996 Failed to reject
8 2 1.590 0.936 1.699 18.513 32.227 Failed to reject
7 3 2.854 0.577 4.947 10.128 11.260 Failed to reject
6 4 5.717 0.546 10.478 7.709 3.176 Rejected
5 5 6.493 0.674 9.640 6.608 2.671 Rejected
4 6 8.986 0.711 12.635 5.987 1.200 Rejected
3 7 216.277 0.780 277.389 5.591 0.000 Rejected
2 8 367.114 6.600 55.621 5.318 0.007 Rejected
1 9 22044.500 12.936 1704.150 5.117 0.000 Rejected
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indicating the respective PDF (probability density function) and CDF (cumulative density
function) values. These pro�les, in accordance with the results shown in Table 6.2, present
� < �2 until the 3-dimensional pool size (the vertical dashed line is located to the right of
the vertical black dotdashed line, as such as the horizontal dashed line is located above of
the horizontal black dotdashed line). When the fourth lowest component is scrutinized,
the opposite behavior is observed, i.e., � > �2 . Therefore, this last result indicates that
the sixth model component (concerning the sixth greater singular value) is signal (and
not noise), i.e., it contains structural information related to the data variability that is
greater then the noise variability, and hence, it must not be discarded to the pool of the
null space of data.
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Figure 6.10 � -distributions for several dimensions of invariant pools. The blue and
green curves indicate the PDF and CDF values for the respective � (variances ratio). The
red dashed lines indicate �2 (x-axis) concerning an U = 5% (y-axis). The black dotdashed
lines indicate the observed � (x-axis) and the respective U‡ (y-axis).

The result obtained ' = 6 does not correspond to the real dimension of the model ' = 8.
This indicates that the last two real variant data dimensions are of the same magnitude
of the noise variance, and therefore, they cannot be identi�ed using the criterion estab-
lished by the � -test. Moreover, considering ' = 6 as the dimension of the data variant
space would lead to the assumption that the data invariant space is 4-dimensional. This
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assumption is wrong since no more than two time-invariant relationships exists. Conse-
quently, it is a good idea to look for the establishment of meaningful time invariants in
simultaneous with the identi�cation of ' in order to well elucidate the data variant and
invariant spaces dimensions. In accordance with this idea, the method proposed in this
work looks for the establishment of meaningful time-invariant relationships in the right
singular vectors of the experimental data matrix using optimization tools (Section 6.6.2).
Next section presents a non-parametric test for the identi�cation of the variant data space
dimension.

6.5.2 Cross-validation

In this section the cross-validation method is used to identify the data dimension by
estimating how much is signal and how much is noise in a dataset. Noise in this case refers
to uncontrolled experimental and instrumental variations arising from random processes
(Wise and Ricker, 1991). The k-fold cross-validation is considered. The procedure starts
by splitting data in : groups of randomized data, and one of these groups (at a time)
must be removed from the original set of data. The removed dataset is called the test or
validation set with size =/:, where = is the number of observations. The remain data is
called the train set of data that, after removing the test set, presents =−=/: observations.
It is over the train set that the SVD is performed in order to build a principal component
(PC) model, in which the number of signi�cant components (') is what we desire to
determine. Hence, the PC model is built considering several candidate dimensions. On
the other hand, it is over the test set that the prediction error is evaluated using the
obtained PC model that was trained without this test set. The procedure of evaluating
the prediction error must be repeated for all : groups of test, and the decision of the
model dimension is based on the lowest total prediction error found. Therefore, the goal
is to �nd the number of components for which adding more components does not provide
a better description (in an overall least squares sense) of the data not previously included
(Bro et al., 2008). The prediction error of the test set in this cross-validation procedure is
called PRESS-CV (predicted residual error sum of squares evaluated in a cross-validating
approach).

The evaluation of the PRESS-CV, i.e., the identi�cation of the model dimension for which
PRESS-CV is minimum, presents a meaningful criterion (with very good performance) for
linear models of the type y = Xb in which the residues are computed by the di�erences
y−ŷ, i.e., the prediction ŷ is computed using the predictor variablesX. On the other hand,
the evaluation of PRESS-CV in PC models, as it was originally proposed, does not result
in a good criterion, since there are no dependent and independent variables (all variables
are treated together), i.e., the error is evaluated by computing the di�erence X − X̂,
where the variables X are used to predict X̂, and consequently, the residuals from the
model of X are not independent of X i.e., the left-out elements and their predicted values
are not independent, and therefore, the PRESS-CV decreases with increasing number of
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components and never reaches a minimum (Bro et al., 2008). This result leads to the
mistaken conclusion that all components are signi�cant. Or in rare cases the PRESS-
CV does reach a minimum, but still tends to over�t and overestimate the optimal model
dimensionality (Amoeba, 2014).

In this work two evaluations of PRESS-CV were considered following the CV methods
proposed by Wold (1978) and Eastment and Krzanowski (1982); Krzanowski and Kline
(1995), respectively. However, both approaches showed an unsatisfactory monotonous
decreasing PRESS-CV behavior due to the above presented reason (error dependence on
X̂) once the proposed CV methods were applied to PC models. Bro et al. (2008) made
a comparison of several CV methods of evaluating PRESS-CV, where two additional
methods were presented for PC models in which the described dependence of the error in
X̂ is avoided, namely the cross-validation by eigenvector and the expectation maximization

cross-validation. In this work, the cross-validation by eigenvector is presented.

Cross-validation by eigenvector

The algorithm is described as follows:

Divide the randomized =to rows of D in =: groups.

(i) For every group : = 1, . . . ,=: , remove from D the =to
=:

rows respected to the group :,

forming two matrices: D−: [=to− =to
=:
× =sp] and D: [=to

=:
× =sp] that concerns to the train

data and test data matrices, respectively, such that D−: ∪D: = D2.

(ii) Compute the SVD model for D−: , resulting in the U, � and V matrices of dimensions
[=to − =to

=:
× =to − =to

=:
], [=to − =to

=:
× =sp] and [=sp × =sp], respectively.

(iii) For every variable B = 1, . . . ,=sp, update the D: by removing the entire column
concerning the variable B resulting in a matrix D:

∗ [=to=: × =sp − 1], and the respective

removed column vector d:B [=to=: × 1].

(iii-a) For every candidate model dimension ' = 1, . . . ,=sp, compute the projection matrix
without considering the variable component B that was excluded in (iii).

For this purpose, �rst select column 1 to ' of V from (ii) forming a matrix V' [=sp × '],
then update V' by excluding the entire row B respected to the B variable excluded in D:

∗,
resulting in a V'∗ [=sp − 1 × '], and in an excluded vector v',B [' × 1] (notice that when
' = 1, v',B is a scalar). The projection matrix M [=sp − 1 × '] is computed through

M = V'∗ · (VT
'∗ ·V'∗)−1 (6.21)

(iii-b) Predict the score T [=to
=:
× '] of the excluded variable B of the test set : (that we

2Notice that the superscripts �:� and �−:� indicate the data matrices referred to the test and train
data, respectively, and not to powers of D.
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want to predict, d̂:B ) by projecting D:
∗ onto M:

T = D:
∗ ·M (6.22)

Notice that T is a reconstruction of theU: ·�: withU: [=to
=:
× '] and �

: [' × '] concerning
to the B variable that was excluded of the : test set that is going to be predicted.

(iii-c) Compute the prediction of the excluded variable of the test set d̂:B [=to=: × 1] by

d̂:B = T · v',B (6.23)

(iii-d) Compute the error of prediction of the excluded variable component eB [=to=: × 1]

eB = d
:
B − d̂:B (6.24)

(iii-e) Store the sum of squares of the eB entries, i.e., store in a list the scalar eTB · eB .

At the end of the loop de�ned by (iii-a) to (iii-e), the list of eTB · eB values with dimension
[1 × =sp] concerns to the sum of square errors in each ' = 1, . . . ,=sp candidate model
dimension for a single variable B removed. Repeating the procedure for every variable
B = 1, . . . ,=sp from item (iii) to (iii-e), a list of errors is obtained with dimension [=sp × =sp]
where every row concerns to a di�erent excluded variable. Thus, the sum of rows of this
error matrix can be performed indicating the total error for predicting the test set : for
every candidate model dimension ' = 1, . . . ,=sp in the new list [1 × =sp]. Finally, the
entire procedure (i) to (iii-e) must be repeated for every : test set, and, at the end of this
sequence of repeated procedures, it is expected to obtain a list of [=: × =sp] containing
in its rows the previous results (the total error for predicting the test set : for every
candidate model dimension ' = 1, . . . ,=sp). Again, regarding this �nal matrix, the sum
of the rows must be computed in order to obtain, �nally, the PRESS-CV value for every
candidate model dimension ' = 1, . . . ,=sp.

Wise and Ricker (1991) and Bro et al. (2008) describe this problem as: �In essence, this
is a missing data problem where the missing variable is predicted from the model and the
sample observation excluding the one variable.�.

Application of cross-validation by eigenvector and discussion of the results

obtained

The same dataset that has been analyzed in this chapter is considered for the application
of cross-validation by eigenvector method. The entire dataset without noise was presented
in Figure 6.5. Gaussian noise was added to this data with zero mean and 0.005 standard
deviation.
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The singular value list of noisy data is

σ̃ = {22.271, 2.720, 1.964, 0.374, 0.293, 0.251, 0.158, 0.102, 0.083, 0.073}

while without noise added is

σ∗ = {22.273, 2.719, 1.969, 0.372, 0.283, 0.242, 0.126, 0.075, 0.000, 0.000}

Hence the true data dimension is eight, and the objective of the application of this method
is to identify the true data dimension even in the presence of noise.

The leave-one-out (LOO) and the :-fold CV methods were considered, (actually LOO
is a particular case of :-fold, i.e., LOO happens when : equals the number of data ob-
servations). However, since in practice the matrix D is composed by 15 batches when
performing the traditional LOO (i.e., taking one-to-one row among 225 rows), no dis-
turbance is expected to be observed since the model will be able to predict the data
removed very well. The reason for this expected result is because D presents a system-
atic behavior over time (in the matrix lines) for all chemical species, in which repeated
patterns can be seen in every 15 rows of the matrix (i.e., an approximately periodic be-
havior of data can be observed in the rows of D, see Figure 6.5). Therefore, in order
to turn e�ective the CV procedure, for both LOO and :-fold methods, the test samples
were collected following the adopted criterion: when taking one row of the �rst exper-
iment (line 1 to 15) the same row in the second, and the third, and so on, until the
15th experiment are also collected for test. For example, in the LOO approach, the lines
{1, 16, 31, 46, 61, 76, 91, 106, 121, 136, 151, 166, 181, 196, 211} were taken for test in the �rst
procedure iteration, i.e., in every iteration 15-stepped lines are taken for the test dataset.
Therefore, in LOO the test set has always dimension [15 × 10]. The same approach
was adopted for :-fold. In this case the randomization of the �rst 15 rows of D was
considered �rst, and then, the division in 5 groups (: = 5) of dimension 3 was considered.
Therefore, the same 15-stepped lines were taken for the test set, resulting in a test set of
dimension [45 × 10] for every : group. This decision of selecting the same lines in every
batch experiment was made intuitively in order to turn e�ective the CV procedure, since,
contrarily, the trained model would still predict very well the test datasets for irregularly
spaced (unordered) 45 selected rows of the matrix.

Figure 6.11 presents the PRESS-CV for the adopted approaches of sampling test datasets
concerning to LOO and :-fold approaches. In these plots, a �at behavior of the PRESS-
CV curve is observed between the components of the model 3 to 8, indicating that the
prediction ability of the model remains approximately indi�erent for models with these
dimensions. This is an unexpected result, since we would like to see sharp PRESS-CV
pro�les. If we were taking a more data-driven approach, the choice of the optimal model
size would be, probably, 3 components. However, in a more conservative approach, it
is preferable to remain with eight dimensions in the model since only from the ninth
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dimension that PRESS-CV is sharply increased, showing, clearly, the presence of noise in
this dimension.
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Figure 6.11 PRESS-CV for LOO and :-fold cross-validation. Plots zoomed-in on the
right-hand side.

Moreover, when looking for the zoomed-in plots of both sampling approaches (specially
in the :-fold approach) slight �uctuations can be observed in the PRESS-CV pro�les,
decreasing, increasing and decreasing again. This behavior can be explained by the error
associated with the sampling method since only one global procedure was performed. If
the same global procedure of sampling (for randomized samples of the same size) is re-
peated many times, a distribution of PRESS-CVs is obtained for every model dimension,
and the mean value of these distributions approaches the expected value PRESS-CV, i.e.,
the real one, if an enough number of repeated procedures is considered. In this case,
it is expected that the mean PRESS-CV would not oscillate among model components.
However, once the magnitude of the oscillation observed is pretty low, we accept this
result as su�ciently signi�cant or representative of the study performed, concluding this
analysis. Therefore, from this perspective the PRESS-CV using di�erent sampling tech-
niques for test data did not change much, i.e., the results obtained for LOO and :-fold,
are practically the same, and, adopting a conservative approach the model follows with
eight dimensions.
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6.5.3 Hard-thresholding

Truncation may be seen as a hard threshold on singular values, where values greater
than a threshold g are selected, while remaining singular values are truncated (Brunton
and Kutz, 2019). Gavish and Donoho (2014) proposed an optimal way to truncate the
singular values under the assumption that data is contaminated with Gaussian white noise,
providing a principled approach to obtaining low-rank matrix approximations using the
SVD. The noisy data D[= × <] can be divided in two matrices

D = Dtrue + WDnoise (6.25)

where Dnoise presents Gaussian properties, i.e., zero mean, unity variance and normal
distribution, and W is a scale factor of that noise that can amplify or decrease it. When
the noise magnitude W is known, there are closed-form solutions for the optimal hard
threshold g

g = _(V)
√
=W (6.26)

_(V) =
(
2(V + 1) + 8V

(V + 1) + (V2 + 14V + 1)1/2

)1/2
(6.27)

where V = </=, if < ≤ =. Therefore, the g value is only a function of the data matrix
aspect ratio V and the noise magnitude W . To understand how these formulas are derived
see (Gavish and Donoho, 2014).

Application of hard-thresholding

For the same case study that has been analyzed during this chapter in which the data
matrix has dimension [225 × 10] and the noise added has magnitude equal to its standard
deviation 0.005, the parameters are

V = 0.044, W = 0.005, _(V) = 1.497 and g = 0.112.

Figure 6.12 presents the logarithm of the singular values and the hard threshold, indicating
that the optimal truncation found is at the seventh dimension.
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Figure 6.12 Singular values f 9 and optimal hard threshold g (red dashed line).
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6.6 Determining the invariant data space using opti-

mization

In this section two MILP formulations for determining invariant relationships are pre-
sented. The �rst concerns to the determination of reaction invariants since the conserved
relations are obtained using system stoichiometry. The second is related to the identi�-
cation of time invariants since the conserved relations are elucidated from experimental
data. However, both reaction and time invariants should span the same space, and ideally
they should coincide. Thus, we chose not to distinguish the terms reaction- and time-
invariant relationships in the thesis, but in the next sections we separate the two terms
to make the description of the formulation under analysis easier to locate.

6.6.1 Methodology for evaluating reaction-invariant relationships

As previously discussed in the chapter's introduction, one basic way of computing invari-
ant relationships is by solving the homogeneous equations N ·AT = 0. However, in order
to obtain physically meaningful conservation amounts this solution must attends addi-
tional constraints: it must present integer and positive entries. The next section presents
a MILP formulation for the obtainment of the sparsest positive solutions that span the
null space of the stoichiometric matrix.

MILP formulation

The conserved amount of a given invariant relationship, de�ned as GB , is a variable of the
problem that we want to determine. It must be an integer number assuming an amount
as lowest as possible (i.e., with physical meaning), subjected to be part of a vector that
lies in the null space of the stoichiometric matrix. Hence, the objective function (6.28a)
represents the minimum sum of conserved amounts in species, while the constraint (6.28b)
establishes the time invariant relationship, where aB, 9 is the stoichiometric coe�cient of
species B ∈ sp in reaction 9 ∈ rx.

The complete mathematical formulation for the generation of candidate invariant rela-
tionships can be written as an integer programming:

min
GB

q =
∑
B∈sp

GB (6.28a)

s.t.
∑
B∈sp

GBaB, 9 = 0, ∀9 ∈ rx (6.28b)∑
B∈sp

GB ≥ 1 (6.28c)

GB ∈ N, ∀B ∈ sp (6.28d)
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In order to enumerate viable solutions and, as far as possible, to obtain linearly indepen-
dent solutions, integer cuts are added to the formulation in every solver iteration until
no other solution can be generated satisfying the imposed constraints. For this purpose,
the use of an additional binary variable ~B , that indicates that species B is participating
in the conserved relationship, is required. For formulating this last condition, BigM-type
constraints (Raman and Grossmann, 1991) are considered, as shown in (6.29). The op-
timal values of ~B for every feasible solution : ∈  are stored in the parameter ccy(B,:)
after the �rst iteration (6.30), to then impose the integer-cut equations (6.31), prohibiting
solutions with the same species group from participating in an invariant relationship.

~B" ≥ GB ≥ ~B, ∀B ∈ sp (6.29)

~B,: = ccyB,:−1, ∀B ∈ sp, : = 2, . . . ,  (6.30)

∑
B∈sp

ccyB,:~B −
∑
B∈sp
(1 − ccyB,:)~B ≤

∑
B∈sp

ccyB,: − 1, : = 2, . . . , (6.31)

6.6.2 Methodology for evaluating time-invariant relationships

The objective of this method is to determine the number of time invariant relationships
ninli = =sp − nrxli, or in other words, the data invariant space dimension, and conse-
quently, identify the number of chemical reactions nrxli that the reaction network must
present in order to span the data variant space. Supported on the SVD of data, the anal-
ysis of candidate time-invariant relationships is performed over the right singular vectors
respecting data/model component directions with lower variances. Time invariants are
quantities that have physical signi�cance, i.e., present positive, integer and (preferably)
low magnitude values. On the other hand, the the right singular vectors present rational,
positive and negative numbers. Using optimization tools, meaningful time-invariant rela-
tionships are searched from the abstract (orthonormal) vectors by linear transformation
of bases.

A MILP formulation was developed, where a linear transformation of the abstract matrix
that spans the null space of noisy data is performed in order to obtain a new basis
composed by sparsest vectors with non-negative numbers between 0 and 1. Each conserved
amount in the invariant relationship is associated with a binary variable, through big-M
type constraints. Once the most sparse feasible invariant relationships are searched, the
objective function consists of the minimization of the total amount given by the sum of
the binary variables subjected to few linear constraints. Several null space dimensions
are considered with 1, 2, . . . and - basis vectors, where - is the number of singular values
that presents a magnitude equal of or lower than the data noise variance. Thus, the
matrix of invariant relationships with physical meaning is established by interpreting the
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obtained results in two procedures: �rst by transforming the conserved quantities (non-
negative numbers between 0 and 1) into fractions, second by �nding the least common
multiple of these fractions. The program is run for all dimensions of bases, and those that
present very high invariant amounts are classi�ed as not plausible to describe the left null
space of the stoichiometric matrix. Hence the criterion to identify ninli is established
by comparison of the solutions obtained, i.e., by exclusion of the results that present no
physical meaning.

Notice that this formulation is based on the assumption that the space spanned by the
the abstract basis (the noisy data null space) approaches the left null space of the stoi-
chiometric matrix, since the noise is captured by the singular values, and therefore, their
component directions (right singular vectors) still at most close to the the real time-
invariant relationships.

MILP formulation

The orthonormal matrix VT [=sp × =sp] (full rank) that spans row (D) is considered from
the SVD (D). The formulation starts by considering only the last row of VT (a single
transposed vector of dimension [1 × =sp]) with ninli = 1 in the �rst iteration, to then
increase ninli in one unity by selecting the ninli last rows of VT (obtaining a matrix of
dimension [ninli × =sp]) in consecutive problem iterations. The criterion established is
that: if the required dimension of the null space is not reached, no meaningful solution
can be obtained. On the other hand, if more component vectors are considered than
the actual required dimension of the invariant space, no improvement is achieved in the
results.

The parameter inA8,B is formed through the last ninli rows of the matrix VT, with 8 ∈ in
(8 = 1, . . . ,ninli) respected to the candidate abstract invariant relationship and B ∈ sp

(B = 1, . . . ,=sp) to the chemical species. Hence, inA8,B is the amount conserved concerning
the invariant 8 and species B. These values are rational numbers in which every row vector
inA8,∗, 8 = 1, . . . ,ninli has unitary length and is orthogonal with the other ones.

The continuous variable g8, 8 = 1, . . . ,ninli, establishes the linear transformation of inA8,B ,
such that ∑

8∈in
inA8,Bg8 = GB, ∀B ∈ sp (6.32)

where GB ∈ [0,1], for every B = 1, . . . ,=sp, is a continuous variable of the problem that
represents the transformed conserved amount regarding the species B. The entire vector
x[=sp × 1] is a linear combination of the abstract invariant basis. In each solver iteration
only a single transformed invariant is obtained, i.e., a single vector x. Using integer
cuts, in every solver iteration a new vector x, that is linearly independent of the previous
generated ones, is obtained. The loop of integer cuts stops when ninli vectors x are
obtained. Those vectors span the same space of the abstract invariant basis.
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Big-M type equations are required in order to, on the one hand, set GB = 0 when the
species B does not contribute to the transformed invariant relationship (~B = 0), and, on
the other hand, set lower and upper bounds to GB when this species does contribute to
the transformed invariant relationship (~B = 1), such as

GB ≤ ~B, ∀B ∈ sp (6.33)

GB ≥ ~Bn, ∀B ∈ sp (6.34)

where ~B ∈ {0,1} is a binary variable that indicates the species B as contributor to the in-
variant phenomenon, and n is a small value of the same magnitude of the data uncertainty
(noise standard deviation).

Another binary variable @B ∈ {0,1} is required in order to ensure the normalization of GB .
This variable @B is set one when GB = 1, and is set zero when GB < 1:

GB ≥ @B, ∀B ∈ sp (6.35)

However, it is needed to enforce at least one GB = 1:∑
B∈sp

@B ≥ 1 (6.36)

We are looking for sparse invariant vectors. For this purpose the objective function
consists of the minimization of the number of species contributing to the invariant rela-
tionship:

I =
∑
B∈sp

~B (6.37)

The complete mathematical formulation for the approximation of transformed invariant
relationships from abstract null space of noisy data is written as:

min
g, G, ~, @

I (6.38a)

s.t. Equations (6.32�6.37) (6.38b)

0 ≤ GB ≤ 1, ∀B ∈ sp. (6.38c)

@B and ~B ∈ {0,1}, ∀B ∈ sp. (6.38d)

6.6.3 Application example, discussion of the results obtained and

conclusion about the proposed method

The same case study under analysis in this chapter is considered here.

The solution of the problem (6.28) in Section 6.6.1 is presented during the case study
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exposure in Section 11.3.2.

In order to test the formulation in (6.38), �rst we considered the VT from the SVD of the
data matrix without added noise, to then consider noisy data. The results were obtained
using GAMS® software with the solver CPLEX.

Data without noise

The matrix inA is shown below

inA =

s=A s=B s=C s=D s=E s=F s=G s=H s=I s=J


−0.075 0.346 0.213 0.256 −0.005 0.211 0.058 −0.785 0.194 −0.249 i=4

−0.072 0.257 0.482 −0.398 0.468 0.143 −0.399 −0.002 −0.347 0.138 i=3

0.120 −0.482 −0.241 −0.120 −0.120 −0.120 −0.602 −0.482 0.000 0.241 i=2

0.356 0.021 0.251 0.126 0.126 0.126 0.147 0.021 0.482 0.713 i=1

Considering in the �rst run only the 8 = 1 abstract row vector of inA, the vector x obtained
was

x =
[
0.500 0.029 0.353 0.176 0.176 0.176 0.206 0.029 0.676 1.000

]
which in fractional numbers (with a rest of inferior than 0.005) is

x
′ =

[
1/2 1/34 5/14 3/17 3/17 3/17 4/19 1/34 17/25 1

]
showing an unsatisfactory time-invariant relationship once very high values are presented.

In the second iteration the abstract vectors 8 = 1 and 8 = 2 were considered, obtaining the
resulting x matrix

x =

[
0.000 0.750 0.500 0.250 0.250 0.250 1.000 0.750 0.250 0.000

0.500 0.625 0.750 0.375 0.375 0.375 1.000 0.625 0.875 1.

]
which in fractional numbers is

x
′ =

[
0 3/4 1/2 1/4 1/4 1/4 1 3/4 1/4 0

1/2 5/8 3/4 3/8 3/8 3/8 1 5/8 7/8 1

]
showing a very good and satisfactory time-invariant relationships, with physical signi�-
cance.

In the third iteration the abstract vectors 8 = 1, 8 = 2 and 8 = 3 were considered, obtaining
the resulting x matrix

x =

[
0.000 0.750 0.500 0.250 0.250 0.250 1.000 0.750 0.250 0.000

0.500 0.000 0.333 0.167 0.167 0.167 0.167 0.000 0.667 1.000

0.566 0.000 0.211 0.402 0.000 0.151 0.522 0.120 0.911 1.000

]
which in fractional numbers is

x
′ =

[
0 3/4 1/2 1/4 1/4 1/4 1 3/4 1/4 0

1/2 0 1/3 1/6 1/6 1/6 1/6 0 2/3 1

9/16 0 3/14 2/5 0 2/13 10/19 1/8 10/11 1

]
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showing satisfactory time-invariant relationships only for the �rst two lines, The last line
of x′ presents high values that are improbable to describe conserved amounts during the
chemical reaction experiment. Therefore, there is no need to continue to the fourth null
space dimension since the third dimension is signal, and consequently the fourth is signal
too. Thus, without noise in the data, it was possible to correctly identify the invariant
relationships.

Data with noise

The matrix inA is shown below

inA =

s=A s=B s=C s=D s=E s=F s=G s=H s=I s=J


0.196 0.080 0.006 0.262 −0.208 −0.262 0.384 −0.181 0.556 −0.534 i=4

−0.271 0.404 0.039 0.096 −0.058 −0.051 0.493 0.444 −0.493 −0.252 i=3

0.121 −0.151 −0.244 0.238 −0.537 −0.495 0.090 −0.220 −0.346 0.369 i=2

0.277 0.198 0.269 0.191 0.107 0.091 0.390 0.244 0.315 0.667 i=1

Considering in the �rst run only the 8 = 1 abstract row vector of inA, the vector x obtained
was

x =
[
0.416 0.296 0.403 0.287 0.160 0.137 0.585 0.366 0.473 1.000

]
which in fractional numbers (with a rest of inferior than 0.005) is

x
′ =

[
5/12 3/10 2/5 2/7 3/19 2/15 7/12 4/11 8/17 1

]
showing an unsatisfactory time-invariant relationship once very high values are presented.

In the second iteration the abstract vectors 8 = 1 and 8 = 2 were considered, obtaining the
resulting x matrix

x =

[
0.304 0.538 0.783 0.000 0.907 0.824 0.536 0.710 1.000 0.626

0.449 0.561 0.800 0.152 0.764 0.690 0.712 0.726 1.000 1.000

]
which in fractional numbers is (with rest lower than 0.005)

x
′ =

[
3/10 7/13 11/14 0 10/11 14/17 7/13 5/7 1 5/8
4/9 9/16 4/5 2/13 13/17 9/13 5/7 8/11 1 1

]
showing unsatisfactory time-invariant relationships.

In the third iteration the abstract vectors 8 = 1, 8 = 2 and 8 = 3 were considered, obtaining
the resulting x matrix

x =

[
0.486 0.000 0.232 0.242 0.011 0.000 0.248 0.017 0.512 1.000

0.569 0.000 0.444 0.090 0.419 0.374 0.097 0.060 1.000 1.000

0.263 0.666 0.864 0.000 1.000 0.910 0.662 0.862 1.000 0.591

]
which in fractional numbers is (with lower than rest 0.005)

x
′ =

[
13/27 0 3/13 5/21 1/90 0 1/4 1/57 15/29 1

4/7 0 4/9 1/11 5/12 3/8 1/10 1/16 1 1

4/15 2/3 13/15 0 1 10/11 2/3 13/15 1 10/17

]
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showing unsatisfactory time-invariant relationships. However, if we compare this result
with the previous solution, it can be observed that a worse result is obtained in this
iteration, suggesting that the null space dimension is two.

In the third iteration the abstract vectors 8 = 1, 8 = 2 and 8 = 3 were considered, obtaining
the resulting x matrix

x =


0.252 0.000 0.133 0.118 0.000 0.024 0.103 0.122 0.000 1.000

0.000 0.660 0.312 0.330 0.035 0.000 1.000 0.646 0.023 0.000

0.315 0.061 0.341 0.000 0.426 0.354 0.083 0.000 1.000 0.000

0.410 0.000 0.376 0.000 0.451 0.391 0.014 0.000 1.000 0.414


which in fractional numbers is (with lower than rest 0.005)

x
′ =


1/4 0 2/15 2/17 0 1/41 1/10 1/8 0 1

0 21/32 4/13 1/3 1/28 0 1 9/14 1/43 0

5/16 1/16 10/29 0 3/7 5/14 1/12 0 1 0

7/17 0 3/8 0 5/11 7/18 1/72 0 1 5/12


showing unsatisfactory time-invariant relationships. The same analysis performed in the
previous solution can be made here, if we compare this result with the second iteration it
can be observed that a worse result is obtained in this iteration, suggesting that the null
space dimension is two. Therefore, with noise in the data, it was not possible to identify
the invariant relationships.

Discussion of the results obtained and conclusion about the proposed method

Unfortunately, the invariant relationships obtained are still contaminated with noise, and
thus, the real conserved amounts are di�cult to infer, therefore, noise is a problem.
However, the dimension of the null space ninli may be elucidated by comparison of
the results obtained. This is valuable information not only because nrxli is consequently
identi�ed as well, but also (i) to force the identi�cation of ninli time invariants by another
via, for example, through the assessment of the atomic matrix or structural analysis of
molecules, and (ii) to request more elucidative experiments, registering (for example)
additional species that could not be measured, and thus assist the process of identifying
time invariants.

6.7 Comparative analysis of the applied methods

Table 6.3 presents a comparison of the data dimension identi�cation methods discussed
above, presenting the type of method, the information needed to carry out the method,
the associated computational e�ort, and a critical observation.

It is di�cult to say which will be the best method to identify the model dimension as this
result depends a lot on the data itself (of the case study under analysis). However, in the
presence of large datasets, the PRESS-CV will be a method that will always perform well
with a high probability of being able to elucidate the model dimension correctly. In the
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Table 6.3 Comparison of previously discussed data dimension identi�cation methods.

Method Type Requires
CPU
e�ort

Critical observation

Scree-test Heuristic
SVD (loga-
rithm)

Low
Very dependent on the quality of
the data and the system under
study.

Fractional
variances

Heuristic
SVD and
noise level

Low
Need a threshold for the noise
level in data.

Kaiser test Heuristic
SVD and
auto-scaling

Low
It has been shown in the litera-
ture to be a fallible criterion for
several systems.

Replicated
experiments

Theoretical/
statistics

Repetition
of experi-
ences

Medium∗
Critical method at the cost of
real-life experiences.

Malinowski-
test

Parametric

SVD, � -
statistics,
hypothesis
test

Low
Good method, reliable as it is
supported by theoretical statisti-
cal concepts.

PRESS-CV
Non-
parametric

Large
datasets

High
Good method, but it needs a lot
of data for the result to be repre-
sentative of reality.

Hard-
thresholding

Theoretical
Matrices
dimension,
noise level

Low
Method supported by determinis-
tic theory and optimization

Reaction in-
variants

MILP
System stoi-
chiometry

Low
Requires prior knowledge of the
system under study.

Time invari-
ants

MILP SVD of data Medium
Results lose reliability in the pres-
ence of high noise level.

∗Medium for in silico experiments and not applicable for real tests.

presence of a lot of data, this method becomes reliable since the chance of sampling bias
is small in this case. Furthermore, there is the advantage of constituting a non-parametric
method, free from initial assumptions regarding the population. In second place I would
recommend the Malinowski test (or � -test). Certainly, the � -test is preferable in face of
heuristic methods for determining model dimension. The reason for that is the presence
of theoretical support given by the parametric method, instead of making decisions on
the basis of heuristic and empirical rules.

Furthermore, with the results obtained through the application of the methods to de-
termine nrxli, the message of this chapter is clear: for the identi�cation of the model
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dimension, a combined approach of methods to elucidate nrxli and ninli should be con-
sidered, given that both types of data analyzes are complementary and when carried out
together they increase the degree of con�dence in the obtained results.
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Chapter 7

Step 3 � Superstructure of the Reaction

Network

�What I cannot create, I do not understand.�

� Richard Feynman
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Step 3 consists of building the superstructure of the reaction network from a set of observed
chemical species. For this purpose, the knowledge acquired from system-theoretical and
data analyses in Steps 1 and 2 is required, regarding the properties of linear subspaces
observed in experimental data in the variant form and the molecular formula and/or
electrical charge of the chemical species, (when these last are available). In other words,
the observed variant and invariant relationships are required in this step in order to build
candidate reaction vectors for system's stoichiometry that (i) may span the data variant
space, and (ii) respect the observed invariant relationships.
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Therefore, the construction of the reaction network superstructure consists of the elucida-
tion of individual chemical reactions that are potential candidates to describe the observed
compositional changes occurring in the reaction system. This step must be (i) system-
atic, ensuring a complete and unique description of the reactions among chemical species,
avoiding repeated solutions, (ii) generic, i.e., it can be applied to any chemical system,
and (iii) �exible, in the sense that heuristic criteria and knowledge about the chemical
system under analysis can also, and should, be incorporated in the formulation.

The next section describes the tasks carried out in this phase. A brief description of
the methods to generate chemical reactions found in the literature is also presented,
establishing a natural comparison between them and the proposed methodology of Step 3.

7.1 Step 3 overview

Smith and Missen (1982); Missen and Smith (1998, 2003) used Gauss-Jordan decompo-
sition of the atomic matrix to �nd the homogeneous set of solutions that corresponds
to stoichiometric balanced chemical reactions, i.e., reactions among chemical species that
verify conserved elemental amounts and other invariants such as electric charge, depending
on the case study under analysis. An alternative method to generate balanced chemical
reactions, also based on the atomic matrix, was developed by Pethö (1990, 1994) and
Szalkai (1991, 2000). In this method a simplex is used, represented by a set of linearly
dependent vectors which becomes linearly independent when a single vector is omitted.
The objective is to �nd a basis that spans the null space of the unknown stoichiometric
matrix. The main limitation of this approach is the di�culty in �nding all possible sim-
plexes, which may not be a simple task, requiring additional methods to enumerate all of
them and avoid repeated solutions.

In the context of a systematic approach to identify reaction kinetic models, Tsu et al.
(2019) have used MILP to obtain a set of stoichiometric balanced chemical reactions from
observed species (with known molecular formula). The proposed MILP formulation is
very similar to the one previously proposed by Vertis et al. (2017), in which the reaction
stoichiometry is considered using (i) elemental mass balances, (ii) bounds on the stoi-
chiometric coe�cients, and (iii) restrictions on the number of species as reactants and
products involved in the chemical reaction.

Other criteria, beyond stoichiometric constraints, may also be considered in the optimiza-
tion procedure for chemical reaction generation, such as the thermodynamic viability of
the chemical reaction. The energetic constraints, and the physical property data required
for their implementation, can be considered in the reaction generation step either simul-
taneously with the reaction-invariant restrictions (Beard et al., 2004), or in a posteriori

phase (Vertis et al., 2017), where these thermodynamic constraints are used to �lter the
solutions enumerated. Although the simultaneous approach could present an advantage
in generating all the solutions that are stoichiometrically consistent with the energetically
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feasible direction, it can be negatively in�uenced by the uncertainty in the physical data
used (which needs to be frequently estimated from other properties), i.e., the uncertainty
of physical data could lead to the obtainment of solutions that present directions that
in the practice could not be identi�ed using that data, leading to the exclusion of the
opposite direction that could be also a plausible candidate. However, this solution would
need more data to con�rm the right direction. Moreover, the nonlinear nature of the ther-
modynamic equations may require the use of nonlinear programming, while the remaining
constraints are usually linear balance equations. For these reasons, the veri�cation of the
thermodynamic constraints can be postponed to a later phase, after the enumeration of
solutions that satisfy the chemical system's invariants. This is the approach followed in
this work.

The Step 3 is composed by three sequential sub-steps (see Figure 7.1) in which (i) a
list of chemical reactions is obtained using a MILP to enumerate (through integer cut
equations) feasible stoichiometric vectors that verify the identi�ed invariant relationships,
to then consider (ii) the assessment of individual reaction vectors from that list using TFA
for evaluating whether they lie in the previously characterized data variant space, and,
�nally, (iii) the energetic analysis of the reaction net �ux is performed for each individual
stoichiometric vector in order to elucidate the respective thermodynamic feasible direction,
based on the negative sign of the Gibbs free energy change.

The formulation (that will be presented in the next section) to generate chemical reactions
concerns the same variables and type of constraints as the one proposed in Vertis et al.
(2017), although it additionally incorporates structural invariant relationships that are
previously identi�ed during Steps 1 and 2 of the methodology. These invariant properties
do not necessarily match elemental conservation since there may be cases in which not all
chemical elements can be veri�ed as constant among the registered species, especially in
the absence of species measurements, and therefore, not all of them can be restricted to
being preserved.

This chapter presents the description of the method for generating chemical reactions in
Section 7.2, followed by the TFA technique presentation in Section 7.3, to then consider,
�nally, the reaction thermodynamics analysis in Section 7.4. Every sub-step is applied to
the succinic acid case study.

7.2 Generation of chemical reactions

�Nature did not invent the wheel.

No, but nature did invent the catalytic cycle.�

� Anónimo

Regardless the linear and nonlinear characteristics of the chemical reaction, the adopted
reaction generation method is based on integer linear programming, where binary variables
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Figure 7.1 Step 3 �owchart.

are used to decide whether a species is participating in a reaction and integer variables are
used to de�ne the species stoichiometric coe�cients. The resulting formulation is solved
through the enumeration of all feasible solutions using integer cuts. In each iteration
of the optimization procedure a feasible reaction is generated, completing the enumer-
ation when there is no additional feasible solution in accordance with the formulation
constraints. Constraints of several nature can be considered to generate chemical reac-
tions: (i) stoichiometry, the mass (elemental) is conserved in a closed system consisting
of a reaction-invariant characteristic; (ii) thermodynamics, chemical reactions far from
equilibrium occur in an energetic favorable direction where a negative variation of the
Gibbs free energy is veri�ed; (iii) reactivity, chemical physical properties of the molecules
involved may be considered, e.g., the collision of more than three molecules is improbable,
certain ions must stay in the aqueous phase, etc; and (iv) kinetics.
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7.2.1 MILP formulation

The observed species B ∈ st are identi�ed and separated into two sets: the representative
and non-representative species sets, denoted by sp and sd, respectively, such that sp∪sd ≡
st1. Positive integer variables nreB and nprB are used to represent the stoichiometric
coe�cient of species B in the reactant and product sides respectively. (7.1) expresses
the set of invariants equations considered, where 0B,8 is the conserved amount 8 ∈ in in
species B ∈ sp. These invariants, described over the set in, always include elemental mass
conservation equations, in which the chemical elements 4 ∈ el, that make up the various
species, are a subset of the invariants set (el ⊂ in).∑

B∈st
0B,8 (nreB − nprB) = 0, ∀8 ∈ in (7.1)

Binary variables yreB and yprB are used to denote the existence of the species B as reactant
and as product (respectively) in the reaction. A species cannot simultaneously be reactant
and product in the same reaction, (7.2) expresses their exclusive disjunction.

yreB + yprB ≤ 1, ∀B ∈ st (7.2)

The stoichiometric coe�cients are linked to these binary variables through logic con-
straints, where *B represents an upper bound to the stoichiometric coe�cient, (7.3) right
side. Also, when species B is selected as reactant or as product, its respective stoichio-
metric coe�cient has to be greater or equal to one, (7.3) left side. The form of these
constraints are well known in the literature as big-M. Big-M constraints are frequently
used in the development of MILP models (Griva et al., 2009).

yreB ≤ nreB ≤ yreB*B, ∀B ∈ st
yprB ≤ nprB ≤ yprB*B, ∀B ∈ st

(7.3)

In order to control the desired linear or nonlinear structure of the chemical reaction, in
(7.4), the parameter * ′ is set.∑

B∈sp
yreB ≤ * ′,

∑
B∈sp

yprB ≤ * ′ (7.4)

Note that linear chemical reactions, * ′ = 1, can occur between (i) two representative
species B ∈ sp such as isomerization reaction type, and (ii) two representative species
B ∈ sp involving also dependent species B ∈ sd. While nonlinear chemical reactions,
* ′ > 1, occur between more than two species B ∈ sp, involving or not dependent species
B ∈ sd. There is a particular linear case, the pseudo-linear chemical reactions. In pseudo-
linear reactions, although the stoichiometric coe�cients of the representative reactant and

1The partition of species is considered according to the criterion chosen for representing linear graphs,
as previously discussed in Section 2.3.
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product species are not the same, their graph representation remain linear, for example
the reaction 2A B. Thusly, the bound *B in (7.3) has to be tunned depending on the
linear reaction type under analysis.

The equation (7.5) ensures the startup of the optimization problem, guaranteeing the
achievement of one non null solution. ∑

B∈st
yreB ≥ 1 (7.5)

By solving this problem, the chemical reactions can be enumerated establishing any cri-
teria of sorting. In this case, the objective function (7.6) minimizes the variable ordrx,
establishing a canonical order to sequentially generate chemical reactions with the lowest
total mole number �rst.

ordrx =
∑
B∈sp

nreB + nprB (7.6)

Alternative solutions are enumerated through the incremental inclusion of integer cuts in
the binary variables that respect the presence of species in the optimal solution. Once
obtained the �rst solution, : = 1 (index of the corresponding solution), the counter it is
activated, and, the integer cuts are successively added in every : iteration. The obtained
solutions : ∈ it are stored in the parameters ccreB,: and ccprB,: for the use of the next
integer cuts. Note that it is a dynamic set, with increasing size in every iteration. The
program stops when there are not any more solutions that satisfy the imposed constraints.
The integer cuts equations ensure, by (7.7), the uniqueness of the generated reactions,
and also identify, by (7.8), the reaction in only one aleatory direction. For example, when
the reaction A B is identi�ed, the (i) same reaction, (ii) equivalent reactions (e.g.,
2A 2B), and also, (iii) the reverse one B A are forbidden to be generated.∑

B

ccreB,: yreB +
∑
B

ccprB,: yprB −
∑
B

(1 − ccreB,:)yreB−∑
B

(1 − ccprB,:)yprB ≤
∑
B

ccreB,: +
∑
B

ccprB,: − 1, ∀: ∈ it (7.7)

∑
B

ccreB,:yprB +
∑
B

ccprB,: yreB −
∑
B

(1 − ccreB,:)yprB−∑
B

(1 − ccprB,:)yreB ≤
∑
B

ccreB,: +
∑
B

ccprB,: − 1, ∀: ∈ it (7.8)

However, in the next step: generation of reaction networks, each generated reaction must
be considered in both individual directions, describing two potential di�erent reactions:
one in the forward and another in the reverse directions; unless when the reaction direc-
tion, which is energetically feasible, had been previously elucidated based on thermody-
namic analysis (Vertis et al., 2017).
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The complete formulation for generating both linear and nonlinear chemical reactions can
be written as shown in (7.9).

min
nre, npr,
yre, ypr

ordrx (7.9a)

s.t. eqs. (7.1�7.8) (7.9b)

nreB, nprB ∈ N, ∀B ∈ st (7.9c)

yreB, yprB ∈ {0,1}, ∀B ∈ st (7.9d)

7.2.2 Application example � chemical reaction generation

The catalytic hydrogenation of succinic acid, previously presented in Section 1.5, is taken
as an illustrative example for both linear and nonlinear chemical reaction generation. The
nine chemical species were divided into representative (sp) and non-representative (sd)
species

� sp = {AS,GBL,BDO,THF,BuOH,PrOH}, and
� sd = {CH4,H2O,H2},

respecting the species that were measured and were not measured in the experiment,
respectively, allowing a linear graph representation of chemical reactions between repre-
sentative species.

Considering �rstly the enumeration of linear chemical reactions, the reaction invariant that
can be established between the representative species concerns the relation C4 + C3 1 ,
for both sides of every reaction. Moreover, in order to avoid the generation of chemical
reactions that are physically improbable to occur, the stoichiometric coe�cients of the
species B ∈ sd were limited to be lower or equal to 4.

In this case, it was generated 13 linear reactions among the observed species, listed in Ta-
ble 7.1. The chemical reactions were generated using GAMS® software with the commercial
solver CPLEX, considering the formulation (7.9) with integer-cut equations to enumerate
all feasible solutions. The total CPU usage was 1.04 s. The graph representation of the
reactions obtained is shown in Figure 7.2.

The criterion to generate nonlinear chemical reactions is not unique. The maximum
reaction complexity to be considered should be intended as a tradeo� between the richness
of representation (variety) and the number of combined elementary paths (threshold for
the sum of consecutive smaller chemical reactions) required to the description of the
chemical system. For example, notice that nonlinear reactions like AS + GBL 2BDO
correspond to the sum of linear reactions identi�ed previously, in this case A2 +A4 with the
resulting balanced equation: AS + GBL + 6H2 2 BDO + 2H2O. Once these type
of reactions involve the meeting of many molecules, they are not probable to physically
occur, and therefore they may be prohibited by controlling the magnitude of stoichiometric
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Table 7.1 Listing of the obtained linear reactions.

9 Reaction

1 AS + 2H2 GBL + 2H2O
2 AS + 4H2 BDO + 2H2O
3 AS + 4H2 THF + 3H2O
4 GBL + 2H2 BDO
5 GBL + 2H2 THF + H2O
6 GBL + 3H2 BuOH + H2O
7 GBL + 4H2 PrOH + CH4 + H2O
8 BDO THF + H2O
9 BDO + H2 BuOH + H2O
10 BDO + 2H2 PrOH + CH4 + H2O
11 THF + H2 BuOH
12 THF + 2H2 PrOH + CH4

13 BuOH + H2 PrOH + CH4

PrOH

AS

GBL

BDO

THF

BuOH

r1

r2

r3

r7

r13

r4

r11

r8

r5

r6

r9 r12

r10

Figure 7.2 Linear superstructure of reaction networks. The non-representative species
are not drawn in the graph.

coe�cients and/or the total number of moles in reactant and product reaction sides.

Regarding the generation of nonlinear chemical reactions, the same species division is
maintained, although the established invariant is changed to C4 + C3 2 . Hence, the
presence of up to two species B ∈ sp were allowed in both reaction sides. The stoichiometric
coe�cients of the species B ∈ sd and B ∈ sp were limited to be lower or equal to 4 and 2,
respectively. In this case, it was generated 8 nonlinear reactions among the observed
species, listed in Table 7.2. The chemical reactions were generated using GAMS® software
with the commercial solver CPLEX, considering the formulation (7.9). The total CPU
usage was 0.64 s. The superstructure of the nonlinear reaction network is presented in
Figure 7.3.
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Table 7.2 Listing of the obtained nonlinear reactions.

9 Reaction

14 AS + THF 2GBL + H2O
15 BDO + THF BuOH + GBL + H2

16 BDO + THF CH4 + GBL + PrOH
17 2BuOH THF + CH4 + PrOH
18 BDO + BuOH GBL + CH4 + PrOH + H2

19 AS + BDO 2GBL + 2H2O
20 2BDO GBL + PrOH + CH4 + H2O
21 BDO + BuOH GBL + THF + 3H2

PrOH

AS

GBL

BDO

THF

BuOH

r1

r2

r3

r7

r13

r4

r11

r8

r5

r6

r9 r12

r10

r19

r16

r14

r15
r21

r17

r18

r20

Figure 7.3 Nonlinear reaction network superstructure.

7.3 Target factor analysis (TFA)

Supported on linear algebra, the TFA technique has been used by statisticians and math-
ematicians in order to evaluate the proximity of a target vector to a linear subspace with
established dimension in the context of the identi�cation of dynamic models from exper-
imental data using a data-driven approach (Malinowski and Howery, 1980; Malinowski,
1989). The aim is to elucidate whether that vector is a candidate for model constituent
when it lies (su�ciently close) in that subspace that is previously characterized using the
SVD of data in variant form.

A common metric used in TFA is the relative error of projection, i, which is computed
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through ratio of euclidean norms of v − projSv and v, as shown in (7.10).

i =
‖v − projSv‖
‖v‖ (7.10)

where v−projSv is the error of projection of vector v ∈ R< into the characteristic subspace
of S[< × =] of dimension =, with < > =. This error vector (its norm) is the lowest error
in the least squares sense. The error vector gives the projection of v into the left null
space of S of dimension < − =. The orthogonal projection of vectors in linear subspaces
is discussed in more detail in Appendix I.2.

In the context of modeling chemical reaction systems, as previously introduced in the
state of the art (Section 3.1.3), TFA (and similar/related techniques) has been used to
propose/identify (and/or validate) a reaction network using experimental data (Hamer,
1989; Bonvin and Rippin, 1990; Rastogi et al., 1990, 1992; Fotopoulos et al., 1994; Amrhein
et al., 1999; Georgakis and Lin, 2005; Brendel et al., 2006; Bhatt et al., 2012; Santos-
Marques et al., 2019; Dong et al., 2019). Hence, in this context, the reaction network
is the model to be built, the target vectors are chemical reaction vectors composed by
stoichiometric coe�cients, and, data is, in general, concentration measurements during
batch experiments.

The i can be easily computed using the SVD of data in the variant format. Remember
from (6.9) that the �rst ' = nrxli columns of U and V are orthonormal bases for
the column and row subspaces of D[=to × =sp], respectively. Thus considering that
v = νT [1 × =sp] is the transposed stoichiometric vector and S = N0 [' × =sp] is the
abstract basis that spans row(D)2, the equation in (7.10) can be rewritten as

i =
‖νT − νT ·NT

0 ·N0‖
‖ν‖ (7.11)

According to TFA, one target vector is accepted as model constituent if its error of
projection is small. Thus, a threshold related to the truncation error of the data matrix
(i.e., to the amount of noise present in the data) must be established to accept or deny a
candidate vector. Hence the test of a true stoichiometry is not that it lies exactly on the
observed data space from SVD but that it lies �su�ciently close� to it (Fotopoulos et al.,
1994). The computation of i in (7.11) should be repeated until a complete basis that
(approximately) spans row (N0) is obtained, thus validating the obtained network since
the stoichiometry and data variant spaces are (approximately) matched.

2Since the data space dimension ' was identi�ed in Step 2, the abstract basis N0 can be computed as
the �rst ' row vectors of VT.
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7.3.1 TFA critical analysis

Despite its usefulness, several model identi�cation problems can emerge during the ap-
plication of TFA. These problems are related to the presence of residual species in the
reaction mixture. When d2B/dC and/or Δ=B are small quantities regarding the species
B ∈ sp, i.e., the respective entire columns of the matrices DR and/or DΞ present small
values, one must observe that

� this B ∈ sp species does not signi�cantly contribute to the disagreement of model-
data �t, i.e., it hardly in�uences the data adjustment, since the sum of its squared
residuals is marginal.

� two exclusive situations may explain this occurrence, namely when that species B

� is an intermediate component in which the rate of its production is (practically)
the same of its consumption in consecutive chemical reactions, thus, hiding or
canceling the observation of the species compositional changes, or

� is a terminal product species that is produced in a very slow reaction rate,
con�guring a residual species, generally a side-product.

� this B ∈ sp species is greatly in�uenced by noise, that is, it presents a great un-
certainty related to its measurements, depending on the precision of the analytical
techniques used to measure this species and, therefore, all calculations that are
function of this species are compromised, e.g., the calculations of reaction rates and
extents, kinetic parameters, etc.

� this B ∈ sp species is barely identi�able, this means that it is hard to predict its
origin, leading to meaningless con�dence intervals of kinetic parameters.

In those situations the need of more data is a fact, opening a window of opportunity to
design of experiments practices in order to provide speci�c data that turns the system
completely identi�able. Common practices in these problematic situations are (i) the
performance of replicated experiments, in which the number of repeated experiments
should be calculated in order to eliminate the uncertainty associated with that model
component, and (ii) considering the addition of di�erent initial species in new experiments
in order to disturb the dynamics of the reaction system, enabling an increase in residual
product concentrations and the appearance of decoupled reaction extents.

Notice that small reaction rates and/or extents almost cancel the contribution of a chem-
ical reaction, i.e., of a basic stoichiometric vector that make up the system of coordinates
in the data space, meaning that the component B of the response vector is almost at the
origin dot in the row space of the stoichiometric matrix. In that situation, data analysis
and statistical tests would lead to the decision of exclusion of this vector component of
the model since it is unidenti�able, otherwise, the model parameter that concerns this
vector component would present in�nite con�dence intervals. In this case, the identi-
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�cation of the model dimension from data analysis using SVD does identify the model
dimension that is required to explain the observed data purely supported on a data-driven
approach, but it does not necessarily indicate the real model dimension that would be re-
quired to describe a mechanistic phenomenon supported on deterministic criteria. When
manipulating data with great uncertainty, it is certainly a di�cult task to de�ne/elucidate
the real model dimension from data analysis, and there is a strong probability that the
characteristic data space is being characterized for an incomplete reaction network.

Once we are concerned about developing models in which a feasible reaction network
structure is contemplated, more issues must be accounted than data �t quality related
topics, such as the need to construct a network in which every species is produced in
a consistent sequential fashion, like building a puzzle in which no piece can be left out.
Thus, data analysis is elucidative and important in the identi�cation of reaction network
models, but it cannot be performed in isolation; the structural information of the network
must be also taken into account. This is the approach followed in this work, in which a
hybrid methodology is proposed taking as advantage the knowledge acquired from data
analysis and, simultaneously taking into account the structural model part supported on
deterministic modeling strategies.

In summary, the TFA performs an individual analysis of the stoichiometric target vectors
in which it seeks to identify whether these vectors belong to the observed space of the data
in order to validate them as a possible model constituent. However, network validation
can only be performed when we have the entire set of stoichiometric vectors that forms
the stoichiometric matrix. This validation implies the calculation of the coordinates of
the vector dc/dC or Δn on a basis of the row subspace of the stoichiometric matrix, and
later, the identi�cation of kinetic expressions that correlate the rate with the species con-
centrations. These coordinates are, respectively, reaction rates or reaction extents, whose
values must be positive (and growing monotonous in the latter case). The coordinates
close to the origin (practically null) make the contribution of a stoichiometric vector in the
model residual in terms of objective function when adjusting data, but in some cases this
stoichiometric vector is essential for obtaining a consistent network, even if it is outside
the observed data space. Purely data-driven methods do not cover other aspects that
play an important role in the task of modeling reaction networks, namely the aspects that
guarantee

� the formation of all observed species, networks structurally feasible;

� the presence of positive net reaction �uxes, i.e., of reaction extents that increase
monotonically, handling plausible reaction networks;

� coherent feasible structures where a precedence can be established among species;

� reaction thermodynamic viability, i.e., determining the reaction direction in which
its reaction �ux is energetically feasible.
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We propose a methodology that takes the most of information from data analysis using
SVD, but also attends to the previous issues list, where the model is incrementally iden-
ti�ed from the combination of data-driven and �rst-principle-based methods, in a hybrid
modeling approach. In this sense, TFA is used during this methodology as a tool for
evaluating stoichiometric vectors, in order to allow the anticipation of the diagnosis of
identi�cation problems that will be faced in the later steps of the methodology. It means
that no candidate vector is discarded at this phase, i.e., they are scrutinized and cata-
loged as, on the one hand, potential problems for parts of the model identi�cation when
they present bad projection on data space, and, on the other hand, good candidates for
network constituent when they lie in the data variant space.

Finally, it should be noted that time-invariant relationships were identi�ed and incorpo-
rated at the data smoothing procedure in the previous methodology steps concerning the
data treatment and analysis (i.e., Steps 1 and 2), resulting in the acquirement of reconciled
data with minimized noise content. This procedure reduces the chance of facing model
identi�ability problems from reconciled data since it clari�es the dimension of variant
data space, and, consequently, assists the identi�cation of a basis for that space in which
compositional changes occur. This means that when facing small singular values from
the SVD of reconciled data, they probably are related to model components that should
not be discarded. In the Chapter 11, we present a complex case study that addresses
this problematic, revealing the impact of the use of invariants during data treatment for
model identi�cation.

7.3.2 Application example

Following the AS case study, the 21 generated chemical reactions were tested as data
consistent.

The dimension of the data variant space is equal to 5, i.e., only one time-invariant is
veri�ed in this system concerning to the carbon chain conservation between species �4

and �3 type. For more details about this result, see Chapter 6.

The list of singular values of the data matrix is:
{1.07997 × 10−3, 4.19297 × 10−4, 1.65647 × 10−4, 1.21314 × 10−5, 2.96714 × 10−6, 1.23347 ×
10−12}.

A basis that represents an orthogonal row space of the data matrix of cumulative species
molar changes obtained from its SVD in Step 2 is presented in (7.12).

N0 =



−0.857515 0.468762 0.119974 0.151325 0.077955 0.039498

−0.272265 −0.747007 0.101838 0.519320 0.264403 0.133711

0.0643277 0.189261 −0.886636 0.368726 0.171065 0.093256

−0.133728 −0.134091 −0.138332 −0.463859 0.015854 0.854157

0.0430356 0.0421365 0.0575293 0.435449 −0.853131 0.274980


(7.12)
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The 21 reaction stoichiometric vectors were individually projected onto the row space of
the data matrix and their relative projection errors were calculated using (7.11). Table 7.3
presents the results obtained.

Table 7.3 List of chemical reactions and respective stoichiometric vectors (ν) and
relative projection errors (i). The stoichiometric vectors follow the species order AS,
GBL, BDO, THF, BuOH and PrOH.

9 A 9 νT i × 109

1 AS GBL [-1 1 0 0 0 0] 3.148
2 AS BDO [-1 0 1 0 0 0] 1.169
3 AS THF [-1 0 0 1 0 0] 9.084
4 GBL BDO [0 -1 1 0 0 0] 4.318
5 GBL THF [0 -1 0 1 0 0] 5.936
6 GBL BuOH [0 -1 0 0 1 0] 2.888
7 GBL PrOH [0 -1 0 0 0 1] 3.030
8 BDO THF [0 0 -1 1 0 0] 1.025
9 BDO BuOH [0 0 -1 0 1 0] 2.457
10 BDO PrOH [0 0 -1 0 0 1] 3.462
11 THF BuOH [0 0 0 -1 1 0] 3.482
12 THF PrOH [0 0 0 -1 0 1] 2.437
13 BuOH PrOH [0 0 0 0 -1 1] 5.919
14 AS + THF 2GBL [-1 2 0 -1 0 0] 1.609
15 BDO + THF BuOH + GBL [0 1 -1 -1 1 0] 2.157
16 BDO + THF GBL + PrOH [0 1 -1 -1 0 1] 2.028
17 2BuOH PrOH + THF [0 0 0 1 -2 1] 5.427
18 BDO + BuOH GBL + PrOH [0 1 -1 0 -1 1] 4.490
19 AS + BDO 2GBL [-1 2 -1 0 0 0] 4.311
20 2BDO GBL + PrOH [0 1 -2 0 0 1] 2.248
21 BDO + BuOH GBL + THF [0 1 -1 1 -1 0] 2.767

From the results obtained, it is possible to observe that every stoichiometric vector lies
in the row space of the data, and, hence, they are good candidates for composing the
reaction network. This is not an unexpected result since (i) the data matrix concerns the
reconciled data in which the previously identi�ed invariant relationship was imposed as a
constraint of the smoothing procedure, and (ii) the stoichiometric vectors also obey that
invariant.

7.4 Incorporation of thermodynamic feasibility criteria

�Every good scienti�c theory is a prohibition:

it forbids certain things to happen.

The more a theory forbids, the better it is.�

� Karl Popper
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The analysis of the Gibbs free energy of the system is used as the main criterion to assess
the energetic feasibility of the reaction network superstructure. The di�erential Gibbs
free energy variation in a closed system with multiple reactions is

d� = −( d) ++ d% + `̀̀T · dn (7.13)

where � is the Gibbs free energy, ( is the entropy, ) the temperature, + the volume, %
the pressure, `̀̀ is the vector of chemical potentials of the species and dn is the di�erential
increment in the species number of moles. Considering the molar balances for a system
with multiple chemical, dn can be related to the variation in the reaction extents by
dn = NT dbbb . At constant ) and % , the equation above can be simpli�ed to

d� |),% = (N · `̀̀)T · dbbb (7.14)

Although N appears in this last equation, the Gibbs free energy is a state property,
only dependent on the mole number variation, and it does not depend on the structural
characteristic of the reaction network (represented by the stoichiometric matrix). At
constant pressure and temperature, d� < 0 is a necessary condition for the spontaneity
of processes in closed systems.

The contribute for the Gibbs free energy change related to a given reaction extent b 9 ,
9 ∈ rx, corresponding to one entry of the vector N · `̀̀ , can be expressed through (Demirel,
2014)

d�

db 9

����
),%,b 9 ′

=
∑
B∈st
(nprB, 9 − nreB, 9 )`B

=
∑
B∈st
(nprB, 9 − nreB, 9 )`0B + ')

∑
B∈st
(nprB, 9 − nreB, 9 ) ln0B, ∀9 ∈ rx, 9 ′ ≠ 9 (7.15)

where the species chemical potential `B is expressed in terms of the species activity 0B and
the standard chemical potential `0B . The activity can also be computed as 0B = WB2B , where
WB is the respective activity coe�cient. For systems with close to ideal behavior, WB can
be approximated by unity, and the chemical potential becomes solely a function of the
concentration. The standard chemical potential of each species can be calculated at the
temperature of the experiment by (Walas, 2013)

`0B

)
=
Δ�0

5 ,B,)ref

)ref
−

∫ )

)ref

1
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Δ�0
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�?,B (\ ) d\
]

d) , ∀B ∈ st (7.16)

where Δ�0
5 ,B,)ref

and Δ�0
5 ,B,)ref

are the Gibbs energy and enthalpy changes of formation at
the reference temperature, and �?,B is the heat capacity of species B, respectively. When

Δ�0
5 ,)ref

�
∫ )
)ref

�?,B (\ ) d\ , the equation above can be further simpli�ed to a Vant'Ho�
form.
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For systems that are not in equilibrium, the second law of Thermodynamics implies that
isolated reactions with a non-zero �ux must dissipate energy (Beard et al., 2004). Conse-
quently, the energetically feasible direction of the net �ux for a single chemical reaction
must occur from the higher to the lower chemical potentials of the species weighted by
their respective stoichiometric coe�cients (7.15), i.e., the reaction net �ux 9 is energeti-
cally feasible in the direction where d�

/
db 9 < 0, at isothermal and isobaric conditions.

To model chemical reactions that occur between observable species in batch experiments,
generally far from global equilibrium, this criterion may be used to identify the feasible
�ux direction of the individual reactions, thus decreasing the number of networks to be
further analyzed.

Given a list of structurally feasible chemical reactions, the evaluation of the energetically
feasible directions of their net �uxes can be performed using the global condition d� < 0

and (7.13 � 7.16). At constant % and ) , and for individual reactions to be included in a
reaction network involving only observable species, this condition generally requires that
d�

/
db 9 < 0 for each reaction 9 , within the reaction extents b 9 observed in the system.

This requirement might be relaxed if the reactions considered correspond to elementary
steps, in a reaction mechanism, where only the global condition d� < 0 needs to be
enforced, provided that the steps with positive Δ� can be justi�ed within the energy level
distributions in the system, in the physical conditions considered.

7.4.1 Application example � elucidating the energetically feasi-

ble reaction direction

Consider the same case study, the catalytic hydrogenation of Succinic acid, and the lin-
ear chemical reaction generated in Substep 3.1 (Table 7.1). The thermodynamic model
parameters, required to calculate the Gibbs free energy changes associated with the indi-
vidual reactions, are shown in Table 7.4. These values, together with polynomial forms
for �?,B were retrieved from Aspen Properties®.

Table 7.4 Thermodynamic data - Aspen Properties®. Δ�0
5
and Δ�0

5
at )ref = 298 K,

and `0 at ) = 250 ◦C. Units in kJ mol−1.

B Δ�0
5 ,298

Δ�0
5 ,298

`0

AS -697.3 -822.9 -1222.4
GBL -285.3 -379.0 -500.3
BDO -278.0 -426.7 -487.7
THF -79.7 -184.2 -139.5
BuOH -150.7 -275.1 -280.5
PrOH -159.9 -254.6 -88.7
CH4 -50.5 -74.5 -264.6
H2O -228.6 -241.8 -400.8
H2 0 0 -0.1



Bibliography 213

Figure 7.4 presents the d�
/

db 9 pro�les. As can be observed on �rst plot, the chemi-
cal reactions A4: GBL + 2H2 BDO and A5: GBL + 2H2 THF + H2O do not
achieve a value higher than | d�

/
db 9 | ≤50 kJ mol−1, indicating that a unique energeti-

cally feasible direction cannot be assertively identi�ed. All the others are feasible in the
forward direction. Hence reactions A4 and A5 and their reverse counterparts are included
as candidates in the linear reaction network superstructure (Figure 7.5) together with the
remain reactions in the energetically feasible direction. Globally, instead of the original
26 distinct reaction �uxes (Figure 7.2), only 15 were considered as energetically feasible.
The generation of reaction networks with this superstructure is considered in the next
chapter.
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Chapter 8

Step 4 � Generation of Reaction Net-

works

�Topology is the property of something that doesn't change when

you bend it or stretch it as long as you don't break anything�

� Edward Witten
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The generation of reaction networks can be approached in several ways. A reaction
network must fully explain the production/consumption of each observed species. There
are usually many ways to equate the formation of each species in a network, and therefore a
systematic approach is needed to enumerate them all. Given this requirement, four MILP
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formulations were developed to generate reaction networks using optimization tools that
will be presented in this chapter.

Regarding the generation of linear reaction networks, the formulation developed is similar
to the one used in single-commodity �ow problems, where the mass �ow balances of the
nodes guarantee the achievement of connected structures using structural �ux analysis. On
the other hand, the remain three formulations conceived to generate nonlinear reaction
networks di�er with regard to the type of restrictions used for species ordering; they
were inspired by attribution (or assignment) problems based on (i) ordering and disjoint
constraints, and (ii) state task network. Also, a recursive algorithm is proposed in order
to obtain the entire feasible solution set of reaction networks. This algorithm is used as a
veri�cation tool, thus, validating the solutions obtained using integer programming (IP).
The recursive algorithm is presented in Appendix II.

All formulations can be used to explicitly or implicitly generate networks. The explicit
generation of reaction networks ensures the achievement of consistently connected struc-
tures, linking every observed chemical species. On the other hand, the implicit generation
regards to structural constraints simultaneously with experimental data in order to ob-
tain plausible networks that match these data (subjected to positive reaction �uxes), thus
constraining even more the generation problem.

The complete enumeration of all possible reaction networks can be achieved either through
incremental addition of integer cuts to the formulation (and resolving it) or, more e�-
ciently, through the use of MILP solvers that allow the complete enumeration of all feasible
solutions at once. The key idea is to begin from a starting set of nodes (or only one node,
depending on the case) and to arrive in the remain nodes contemplated in the superstruc-
ture. It is preferable to start with the lowest model complexity that is required to explain
the observed data, although in some cases this amount may not be enough, and then,
the generation of more complex structures can be considered in an iterative procedure.
Moreover, the need of additional experimental data can be observed/identi�ed when the
model is unsatisfactory, and, in these cases, optimal experiments can be designed to direct
elucidate unclear parts of the structural model.

8.1 Step 4 contextualization

In the last decades, many authors have developed formulations based on IP in the context
of operational research for several application purposes, involving process (Floudas and
Lin, 2005), project (Levy et al., 1963) and transportation (Gavish and Graves, 1978)
scheduling problems.

In the context of process scheduling problems, the concept of state task network (STN)
was developed. The STN representation of a chemical process consists in a directed graph
with (i) circles, called state nodes, that represent raw materials, intermediates and/or �nal
products, and (ii) rectangle boxes, called task nodes, representing unitary operations such
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as reaction, separation (distillation, �ltering, extracting, drying, etc.), heating, blending,
etc. The directed graph indicates their connection and the scheduled sequence of materials
in a chemical process (Floudas and Lin, 2005). The process scheduling problems, from the
simplest single-stage single-unit multiproduct processes to the most general multipurpose
processes, are inherently combinatorial in nature because of the many discrete decisions
involved, such as equipment assignment and task allocation over time. They belong to
the set of NP-complete problems.

In project scheduling problems, generally, the time component is the most important
factor in which a set of activities must be scheduled in the shortest period of time available.
It can involve team decision, i.e., human resource and task allocation, economic problems,
etc. Typically, Gantt charts are established showing dependencies and time periods among
activities. One of the classical examples that involves ordering constraints is the Critical
Path Method (CPM). CPM is a simple technique used to analyze, plan and schedule
projects. In its essence CPM is used to determine which activities are critical on the
total project time, and how best to schedule all activities in order to meet a deadline
at minimum cost (Levy et al., 1963). The problem begins with a list of activities, their
respective time duration, and immediate predecessors. Using inequality constraints the
time of the project is determined, establishing an ordered sequence of activities subject
to their interrelations. These problems can involve decision variables or not, depending
on the need to choose a task among those available. In these cases, binary variables are
needed, transforming the linear programming (LP) optimization problem into a mixed-
integer linear programming (MILP) problem.

The transportation scheduling problems are also inserted in the �eld of combinatorial inte-
ger optimization problems due to many discrete decisions involved such as paths selection
de�ning routes for an speci�c purpose, e.g., minimize the route taken to delivery orders.
Several examples of transportation scheduling problems were pointed out in Section 3.3.2,
including TSP and ESPP.

All these assignment problems are related to �nding an optimal graph in which nodes and
arcs have di�erent meanings presenting sequences of tasks, activities, operations, cities,
etc. Therefore, these scheduling problems can be viewed as a network generation prob-
lem. Since the problem of generating reaction networks involves the assignment of chem-
ical reactions that consistently link chemical species in a feasible structure, this problem
can be handled as an optimization scheduling problem. In this work four assignment-
based formulations to generate reaction networks are presented. One is related to process
scheduling problems using the STN concept, where every state is characterized through
a set of chemical reactions and a set of chemical species. The goal is to build a sequence
of states until a complete and feasible reaction network is reached. The remain three for-
mulations are related to transportation scheduling problems, where reaction networks are
described as graphs in which chemical species and reactions are represented by nodes and
arcs, respectively. In this case, generating a reaction network may pass through determin-
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ing a feasible pathway of mass �uxes among species, de�ning a route in this graph with
controlled complexity in a consistently connected structure. The next section presents
several parameter de�nitions that are related to the network complexity and that will be
needed in the linear and nonlinear network generation formulations.

8.2 Network complexity and related terminology

The problem of generating reaction networks in general starts with the decision of the
number of constituent reactions that the network should present, establishing the network
complexity. This decision can be supported on data analysis and/or through stoichiomet-
ric relationships among observed chemical species. Identifying the model complexity from
data analysis consists of determining the linear space dimension of data in the variant
form. This data can be formed by time-concentration derivative vectors or cumulative mo-
lar changes vectors depending on the method chosen to balance the species mass in batch
reaction systems. The singular value analysis can help in elucidating the data dimension
by identifying variant and invariant relationships presented during mass transformation
(Bonvin and Rippin, 1990; Amrhein et al., 1999; Rodrigues et al., 2015). In other cases
parametric and non-parametric statistical methods may be more convenient for determin-
ing data dimensionality, such as the � -test (Malinowski, 1989) and the cross-validation
(Wold, 1978; Bro et al., 2008), respectively. On the other hand, when considering the con-
served relationships between the chemical species measured, the dimension of the model
can be elucidated by evaluating the dimension of the null space of the matrix of reaction
invariants, guaranteeing a feasible number of chemical reactions that connect the known
species and preserve the closure of elemental balances and/or other conserved properties
(Gadewar et al., 2001; Missen and Smith, 1998, 2003). These topics were considered in
methodology Step 2, Chapter 6.

However, identifying the model complexity from data analysis is not an easy task, spe-
cially in the presence of noisy, scarce and incomplete datasets. On the other hand, the
establishment of stoichiometric relationships requires knowledge about species chemical
formula, which can also present some di�culties when unknown (or unobserved) species
are present and/or when not all the invariant relationships are known. Consequently, a
method capable of generating reaction networks with any complexity is necessary, spe-
cially when the dimension of the network cannot be identi�ed in advance. This means
that networks of several dimensions can be generated to later identify which one is more
adequate to �t the data available, presenting a structure with physical meaning that leads
to, for example, positive net reaction rates. Nonetheless, even in the presence of unclear
results from previous evaluations of experimental data and system stoichiometry, the ap-
plication of methods to determine the complexity of the network can be useful when it
allows to identify a range of candidate dimensions of the model that must be considered
in the network generation step, thus reducing the number of solutions to be generated.
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Furthermore, the identi�cation of the model can become uncertain when the data present
high uncertainty. Thus, it is advantageous to have a range of possibilities to test and
funnel these models based on the available data. These candidate networks can be used
for planning additional experiments speci�cally designed to elucidate uncertain paths that
produce residual species. This opens a window of opportunity for the practice of optimal
design of experiments.

In the description list below, terminology related to model complexity is introduced; this
will be necessary for the developed methods of generating reaction networks.

nrx Number of chemical reactions that make up the reaction network and re�ects the
complexity of the model.

nrxmin Minimum number of chemical reactions that explains the production and con-
sumption of every chemical species in the system.

nrxmax Maximum number of chemical reactions in the network. This parameter traduces
the maximum complexity that the network can present.

nrxsup Number of chemical reactions in the reaction network superstructure.

nrxli,max Maximum number of linearly independent chemical reactions that a reaction
network can present. This parameter is given by the matrix rank of the network
superstructure stoichiometry. Actually, nrxli,max is related to the number of in-
dependent reaction-invariant relations of the chemical system, where the di�erence
between the number of observed species and the independent conserved relations be-
tween them gives the number of linearly independent network model components.
When these conserved relations are unknown, nrxli,max can assume at most the
number of species minus one, since at least the global mass is conserved during the
occurrence of chemical reactions among the observed species. For more details see
Section 2.3.

nrxli Number of linearly independent chemical reactions in the network; it is computed
through the stoichiometric matrix rank.

DI Dependence index. This index indicates the number of linearly dependent chemical
reactions in the network. It can be computed through DI = nrx − nrxli. The DI is
minimum (DImin) when nrx = nrxli, and, it is maximum (DImax) when nrx = nrxmax

and nrxli = nrxmin.

RI Redundancy index. This index indicates the number of redundant chemical reactions
in the network. Redundant chemical reactions describe the species formation that
were already produced through other pathway. Nonlinear chemical reactions that
simultaneously produce two species in which (i) one already exists and (ii) other is
the �rst appearance in the chemical system, are classi�ed as non-redundant since
they bring new information concerning the production of new species in the system.



222 Step 4 � Generation of Reaction Networks

CI Complexity index. It indicates the model complexity in a integer scale, varying
between [0,CImax]. It can be computed through CI = nrx − nrxmin. The CI is
maximum when nrx = nrxmax.

nrp Number of initial representative reactants in the chemical mixture.

The nrxmin value can be elucidated using reaction stoichiometrics � through a MILP
formulation where nrx is minimized in the entire reaction network superstructure, sub-
jected to linear constraints that imply a sequential order of species production through
their respective reaction paths. In this formulation binary (decision) variables are used to
decide whether chemical reactions are present in the network. The key idea is to obtain
the minimum number of chemical reactions that can consistently explain the production
of all observed species, starting from nrp reactants.

Networks with dimension nrxmin (CI = 0) are composed by linearly independent sets of
chemical reactions, DI = 0, and no redundant paths, RI = 0. It means that none chemical
reaction can de discarded without turning the network infeasible.

When considering the generation of networks with nrx > nrxmin (CI > 0), these structures
can present:

� DI = 0: the set of reactions is linearly independent (LI), until reaches nrxli,max.
Networks with DI = 0 can present:

� non-redundant chemical reactions, RI = 0. Non-redundant LI reactions bring
new information to the network, presenting paths that link (at least one) species
that were not produced before.

� redundant chemical reactions, RI > 0. Redundant LI reactions are the ones
that do not constitute a linear combination of the reactions that form a network
with a lower CI, but they explain the formation of species that were already
produced.

� DI > 0: when at least one chemical reaction is described as a linear combination of
the remain network reactions. Thus, the set of chemical reactions in this network
is linearly dependent (LD). These networks always present redundancies (RI > 0),
containing reactions that produce the same species through di�erent pathways.

Thus, from another point of view, a network that presents RI = 0, necessarily has DI = 0.

Reaction networks with nrp = 1 composed by nrxmin chemical reactions (CI = RI = 0)
present all species linked, and therefore, when any reaction is added to these minimal
structures, it will con�gure a redundancy in the respective structure, making this new
network with RI = 1, whether linear or not. This redundant chemical reaction added (i)
turns the entire set of reactions LD in linear networks (DI = 1), and (ii) can maintain (or
not) a LI set of reactions in nonlinear networks, i.e., the network dependency index can
remain zero (DI = 0) or it will increase to DI = 1 with a LD set. Notice that networks
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with RI > 0 present reaction components that could be discarded without breaking the
structure with nrxmin, whether it is linear or not. On the other hand, in most of nonlinear
cases, it is possible to generate structures with CI > 0 and RI = 0, where no chemical
reaction can be discarded without resulting in disconnected and infeasible structures.
Figures 8.1 and 8.2 present reaction networks with DI = 0 and DI = 1, respectively,
exemplifying di�erent cases of network redundancy.
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Figure 8.1 Nonlinear reaction networks with DI = 0. Networks with (a) nrx = nrxmin =

4, CI = RI = 0, (b) nrx = nrxli,max = 5, RI = CI = 1 and (c) nrx = nrxli,max = 5, CI = 1
and RI = 0.

In Figure 8.1, when comparing the networks in (a) and (b), it is observed that the network
in (b) contains an additional chemical reaction (A18) which is linearly independent from
the remain reactions but it is redundant since the species BDO and BuOH were previously
produced in A2 and −A17, respectively. In (b) A18 can be discarded resulting in the same
structure presented in (a). In (c) no chemical reaction can be discarded from this structure
without turning the network infeasible. Although THF presents more than one origin,
the reactions that form it are non-redundant since other (new) species are simultaneously
produced.

In Figure 8.2, networks composed by a LD set are presented. When analyzing these
networks, it is observed that in (a) there is a redundancy in THF formation through A3
and A8 turning the set of chemical reactions linearly dependent, (when removing A8 the
same structure presented in Figure 8.1(a) is obtained), while in (b) the chemical reaction
A15 turns the set of chemical reactions LD, (when removing this reaction the same structure
presented in Figure 8.1(c) is obtained).

In networks with nrp > 1, the scenario changes once structures with nrxmin (CI = 0) can
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Figure 8.2 Nonlinear reaction networks with DI = 1. The network parameters in (a)
are nrx = 5, CI = 1, RI = 1, nrxli = 4. The network parameters in (b) are nrx = 6, CI = 2,
RI = 1, nrxli = nrxli,max = 5.

present particular sub-networks, i.e., partitioned graphs, with feasible structures that may
be plausible to explain experimental data, whether linear or not. In these cases, networks
with CI > 0 can present RI = 0 (hence DI = 0) in the presence of initial reactant(s)
regeneration. See examples in Figure 8.3.
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Figure 8.3 Linear reaction networks with nrp = 2, DI = 0 and CI = 1. Species A and B
are initially present in the mixture. Although both structures have the same dimension,
they present di�erent redundant index: in (a) RI = 0 and in (b) RI = 1.

Every network complexity that a reaction network can present is illustrated in Figure 8.4.
The inner circle represents the set of all networks composed of LI sets of chemical reactions.
In this inner circle, networks with RI = 0 belong to the left half, while networks with RI > 0

belong to the right half. In the complementary set of the outer circle are all networks
composed of LD sets of chemical reactions.
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Figure 8.4 Non-scaled graph illustrating the set of nonlinear reaction networks that
can be divided into redundant (RI > 0) and non-redundant (RI = 0) linearly independent
(DI = 0), and, redundant linearly dependent networks (RI > 0, DI > 0).

In a perspective of facing easier problems to then consider more complicated ones, �rst
we are interested in analyzing the structures composed by LI non-redundant pathways
(RI = DI = 0), to then consider LI redundant (DI = 0, RI > 0) and, then, if needed consider
LD structures (DI > 0). With the formulations presented in the next sections, linear and
nonlinear networks with any nrp can be generated with the desired CI, presenting DI and
RI controlled through (i) constraints that control the incidence of arcs in nodes in linear
structures, and (ii) integer-cut equations in nonlinear structures.

The next section presents the de�nitions of sets that are needed in the following formula-
tions to generate reaction networks as well as the constraints that are common in linear
and nonlinear network generation problems.

8.3 Sets and common constraints in network generation

problems

The generation of linear reaction networks is much simpler and easier to perform, having a
direct relationship with the representation of the network in directed graphs where the arcs
(which represent the reactions) that connect the nodes (the species) are associated with
structural �ows that close the mass balances at the nodes. On the other hand, generating
nonlinear networks requires much more care, as there is no direct correspondence between
chemical reactions and arcs. Thus, there is a need to treat the generation of linear and
nonlinear networks separately, and this is the approach adopted in this chapter.

However, in linear and nonlinear network generation problems, some common sets and
general constraints compose each formulation, these common aspects are presented in this
section.
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8.3.1 De�ning sets

The species stoichiometric coe�cients of every chemical reaction, generated in the Step 3,
are used in the following routines to generate reaction networks, and auxiliaries sets are
de�ned to map the reactant with product species. The species stoichiometric coe�cients
are stored in the parameters nsrB, 9 and nspB, 9 , for B ∈ sp, 9 ∈ rx. sp and rx are the sets
of representative species and chemical reactions, respectively.

Additional sets are de�ned to establish the application domain of several formulation
constraints: rp ⊂ sp and pp ⊂ sp are the subsets of the initial reactants and reaction
products, respectively, such that rp ∪ pp ≡ sp. The subset of nonlinear reactions is
denoted as rxnl ⊂ rx. Auxiliary sets exd ≡ {exdB,B ′, 9 } and exi ≡ {exiB,B ′, 9 } are also
convenient to denote equations domains. With (B,B′) ∈ sp, these control sets can be used
to identify �ows between two species (reactant and product), concerning to reaction 9 ∈ rx.
These describe the reactions with net mass �ows occurring either in the direct or reverse
direction (respectively) of the representation used in a particular network. Additionally,
for nonlinear reactions the mapping is also done considering the pair reactant/product

species, e.g., in the nonlinear reaction 2A rxnl B + C the mapped pairs are (�,�,rxnl)
and (�,�,rxnl).

8.3.2 Common constraints

In most of the formulations that will be described in this chapter there are common
restrictions related to the assignment of chemical reactions in the network. These restric-
tions are described in this section so as not to repeat them during descriptions of speci�c
formulations.

Binary variables are used to set the direction of a chemical reaction 9 ∈ rx in the net-
work: yd 9 and yi 9 represent the direct and reverse directions, respectively. Each chemical
reaction (associated with its net reaction �ux) is considered in a given direction for the
purpose of the reaction network generation, as presented in (8.1):

yd 9 + yi 9 ≤ 1, ∀9 ∈ rx (8.1)

Chemical reactions that present reversible components are identi�ed later by crossing the
network obtained with experimental data in order to validate the structure of the network
with viable net �ow directions.

Binary variables ypB, 9 indicate whether the chemical species B ∈ sp is a product in the
reaction 9 ∈ rx. The parameters nsrB, 9 and nspB, 9 are used to de�ne eqs. (8.2) and (8.3),
linking variables ypB, 9 , yd 9 and yi 9 , and thus, establishing the right direction of the reaction
9 in which the species B is a product:

yd 9 = ypB, 9 , ∀B, 9 ∈ nsp (8.2)
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yi 9 = ypB, 9 , ∀B, 9 ∈ nsr (8.3)

When the node B is not a product of the reaction 9 , i.e., the species does not participate
in this reaction, the variable ypB, 9 is set null, as shown in (8.4):

ypB, 9 = 0, ∀B, 9 ∉ nsr ∪ nsp (8.4)

Enforcing the presence of all species in the network, all products have to be generated at
least once as given by (8.5): ∑

9∈rx
ypB, 9 ≥ 1, ∀B ∈ pp (8.5)

The number of chemical reactions in the network, nrx, is calculated using binary variables,
as in (8.6):

nrx =
∑
9∈rx

yd 9 + yi 9 (8.6)

8.4 Linear reaction networks

The method proposed to generate linear reaction networks (networks composed solely by
linear chemical reactions) is supported on structural �ux analysis (SFA) over a reaction
network superstructure. It consists in a combinatorial discrete optimization problem
in which chemical reactions are assigned satisfying linear constraints that ensure the
network connectivity with a controlled number of chemical reactions. Through this MILP
formulation, linear reaction networks can be generated with (i) di�erent complexities,
(ii) more than one initial reactant species, and (iii) parallel and series reaction pathways.
If nonlinear reactions are present, additional di�culties associated with the generation of
circular networks arise, and other constraints are necessary to ensure consistency on the
production of species in a sequential fashion.

In the context of graph theory, as previously discussed in Chapter 3, linear reaction net-
works can be straightforwardly represented by graphs, where arcs and nodes correspond to
chemical reactions and species, respectively (Figure 2.2(a)). Algorithms and formulations
that respect to the synthesis of these graphs could be applied to generate linear reaction
networks with RI = 0. Examples of these algorithms and formulations were presented in
Section 3.3. In single- and multi-commodity �ow formulations, closing �ow balances at
each node in the network prevents subtours from being obtained. The same technique is
used during SFA. The developed formulation was inspired in the single-commodity �ow
(SCF) formulation presented by Gavish and Graves (1978) in the context of transporta-
tion scheduling problems. Unlike the original SCF, in the proposed SFA formulation (i) it
is allowed to leave more than one or no paths from each node and it is not mandatory to
return to the initial node, and (ii) the incidence of the node by arcs is controlled through
the complexity of the network that we want to obtain and, therefore, cycles are allowed
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when desired.

In linear superstructures in which all nodes are connected with each other, i.e., complete
graphs, the number of undirected arcs is computed using the binomial theorem, where the
number of nodes = choose two, i.e., (

=

2

)
=

=!

2! (= − 2)!

Since every undirected arc can represent a reaction in both directions, i.e., the direct
and the reverse reactions, the number of reactions in the complete linear superstructure
corresponds to the double of how many ways it can be chosen two nodes out of =sp:

nrxsup = 2

(
=sp

2

)
From these complete linear superstructures, the minimum number of arcs that connects
every node is given by the total number of nodes minus one (Meyer, 2000; Marin and
Yablonsky, 2011). Each additional arc added to this minimal structure will present a
redundancy in this network, making the set of arcs linearly dependent. In other words,
linear connected graphs composed by = nodes and =−1 arcs present the maximum number
of linearly independent interconnections among their nodes, without redundant pathways.
However, linear reaction networks can present sub-graphs, i.e., disconnected structures,
in the presence of more than one (representative) initial reactant, and therefore, the min-
imal number of chemical reactions (nrxmin) that can be required to explain the observed
compositional changes can be inferior to the maximum number of linearly independent
chemical reactions in a connected structure. Thus, nrxmin must be computed as a function
of the number of representative species and initial reactants:

nrxmin = =sp − nrp (8.7)

The number of chemical reactions (nrx) is related to nrxmin by the network complexity
index (CI) through:

nrx = nrxmin + CI = =sp − nrp + CI (8.8)

For linear reaction networks with nrp > 1, the minimal structures with CI = 0 can present
sub-graphs with (at most) nrp disconnected paths that are allowed to be veri�ed. Some
examples of these structures are given in the next section.

The number of linear dependencies in a network can also be controlled through the com-
plexity index for any linear network with nrp initial reactant(s) through

DI = 1 − nrp + CI (8.9)
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The DI parameter varies between [0,DImax]. In cases where nrp > 1 + CI, the DI is
considered zero.

Also, the number of redundant chemical reactions in a linear network has bounds given
by CI in which

1 − nrp + CI ≤ RI ≤ CI (8.10)

the lowest value of parameters RI and DI is zero. Thus, networks with CI = 0, also present
RI = 0. In the example shown in Figure 8.3, two linear reaction networks with CI = 1 and
nrp = 2 are presented with di�erent values of RI. In (a) there is no redundancy, unlike
in (b), where two incident arcs on species C are observed, although both (a) and (b) are
composed of linearly independent sets of chemical reactions, DI = 0.

In the generation of linear reaction networks, the number of redundant chemical reactions
can be controlled constraining the number of incident arcs in a node. Incorporating a

priori information related to RI can be an advantage when avoiding the generation of
undesired solutions, saving time and computational e�ort. For example, when generating
networks with CI > 2, it may be desirable to generate only structures with products formed
by at most two chemical reactions. Thus, linear reaction networks can be generated with
the desired CI and RI, using SFA, this is the next topic.

8.4.1 Structural �ux analysis (SFA)

Given the graph representation of a linear reaction network superstructure composed
by nrxsup chemical reactions (directed arcs) and =sp representative species (nodes), two
additional (�ctitious) nodes are considered, the supersource and supersink nodes, in order
to establish SFA, see Figure 8.5. These dummy nodes are responsible for closing the global
�ow balance, so that the amount injected into the network, through the supersource node,
is recovered in the supersink node. This amount is determined through the desired number
of chemical reactions that the network should present. In fact, this quantity is related to
the number of incident arcs in each node in the �nal structure.

SuperSource

A B

C

D

SuperSink

X

Y Z

V

W

r1

r2

r3

r4

r5
r6

Figure 8.5 SFA in the superstructure of a linear reaction network. The supersource
node injects - units (structural �ux) into the superstructure, and the supersink node
receives . , / , + and, units from each node.
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In Figure 8.5, the supersource node is only connected to components initially present
in the reacting mixture, and it injects - units in the superstructure, an integer positive
amount that equals nrx, such that

=sp∑
B=1

ssB = CI + =sp − nrp (8.11)

where ssB is the �ux that entry in node B ∈ sp from the supersource node, a variable of
the problem when nrp > 1. Notice that for non-initially present species, this variable is
�xed null:

ssB = 0, ∀B ∈ pp (8.12)

and, greater than zero for initial reactant species:

ssB ≥ 1, ∀B ∈ sp\pp (8.13)

The supersink node is connected with all species nodes, receiving the amount niB of node
B ∈ sp. The niB is the node incidence degree, representing the number of incident arcs
in the node B, i.e., the number of reactions in which this species is a product. Binary
variables ypB, 9 indicate whether the chemical species B ∈ sp is a product in the reaction
9 ∈ rx (or not). This variable is related with niB through:

niB =
∑
9∈rx

ypB, 9 , ∀B ∈ sp (8.14)

Hence the global �ux balance is veri�ed as∑
B∈sp

ssB =
∑
B∈sp

niB =
∑
B∈sp

∑
9∈rx

ypB, 9 (8.15)

like shown in Figure 8.5, where - = . + / +, ++ .

Three examples of linear networks with di�erent complexities are shown in Figure 8.6,
where the structural �uxes are indicated above the arcs.

In Figure 8.7 there are three examples of SFA in linear systems with nrp = 2, where a
system with CI = 0 presents a single graph partition (two isolated graphs).

The data dimension analysis can always be considered apart from the network generation
step, elucidating (when it is possible) the required dimension of the network to explain
the observed data. While it is not necessary to determine the network complexity before
generating networks, the obtainment of a reduced number of networks with nrxli that are
enough to explain the available data may be an advantage, saving time and computational
e�ort during the methodology Steps 4 and 5.
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Figure 8.6 SFA in linear reaction networks with nrp = 1 and nrxmin = nrxli,max = 3.
The corresponding graph presents (a) RI = CI = 0, nrx = 3, (b) RI = CI = 1, nrx = 4
containing a redundant reaction pathway, and (c) RI = CI = 2, nrx = 5, containing two
redundant reaction pathways with regeneration of the initial reactant.
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Figure 8.7 SFA in linear reaction networks with nrp = 2 (species A and B are initial
reactant), nrxmin = 2 and nrxli,max = 3. The corresponding graph presents (a) RI = 0,
CI = 0, nrx = 2, with two sub-networks, (b) RI = 1, CI = 1, nrx = 3, and (c) RI = 2,
CI = 2, nrx = 4.

SFA formulation (FSFA)

The �ux balance for every node is given by (8.16), where FB,B ′ corresponds to the structural
�ux from node B to B′.

ssB +
∑
B ′∈sp

FB ′,B −
∑
B ′∈sp

FB,B ′ −
∑
9∈rx

ypB, 9 = 0, ∀B ∈ sp (8.16)

Additional constraints (big-M type) ensure that if a reaction is assigned to the network,
the associated structural �ux is greater than zero and inferior or equal to # (right- and
left-hand sides of equations 8.17 and 8.18, respectively). On the other hand, when the
reaction is not selected as solution constituent, the associated �ux must be zero.

yd 9# ≥ FB,B ′ ≥ yd 9 , ∀(B,B′, 9) ∈ exd (8.17)

yi 9# ≥ FB,B ′ ≥ yi 9 , ∀(B,B′, 9) ∈ exi (8.18)

Regarding the previous restriction in (8.5), all products must be produced at least once,
although this production is restricted by an upper limit that is related to the network
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redundancy index, as given by (8.19).∑
9∈rx

ypB, 9 ≤ RI + 1, ∀B ∈ sp (8.19)

The objective function consists of the minimization of nrx in (8.6). However, this is an
arti�cial goal since nrx is a �xed variable depending on the input parameter CI, which
must be set before the network generation.

Formulation (8.20) constitutes a MILP problem with binary and integer variables and
linear constraints that can be solved for a global optimal solution.

min
F,yd,
yi, yp

nrx (8.20a)

s.t. eqs. (8.1�8.6, 8.11�8.13, 8.16�8.21) (8.20b)

FB,B ′, ssB ∈ N+, ∀B, B′ ∈ sp (8.20c)

yd 9 , yi 9 , ypB, 9 ∈ {0,1}, ∀B ∈ sp, 9 ∈ rx (8.20d)

Alternative networks with the same complexity can be enumerated using integer cut equa-
tions, (8.21). For this purpose, the previous solutions 8 ∈ it (described by the binary
variables yd 9 and yi 9) are stored in the parameters ccrd 9,8 and ccri 9,8 . Through the
following inequality constraint, the generation of repeated networks is forbidden.∑

9∈rx
ccrd 9,8 yd 9 +

∑
9∈rx

ccri 9,8 yi 9 −
∑
9∈rx
(1 − ccrd 9,8) yd 9−∑

9∈rx
(1 − ccri 9,8) yi 9 ≤

∑
9∈rx

ccrd 9,8 +
∑
9∈rx

ccri 9,8 − 1, ∀8 ∈ it (8.21)

FSFA - Example 1

In this example, the analysis of the size of the linear network generation problem is
performed, evaluating the number of viable solutions. For this purpose, complete graphs

were considered with a number of nodes varying between three and nine, spanning all
networks complexities for linear systems with a single initial reactant.

In Table 8.1 the number of reaction networks obtained is indicated, spanning several RIs.
The RI is equivalent to the CI and DI parameters, since the considered examples are linear
reaction networks with nrp = 1. For networks with RI = 0, the Cayley formula indicates
that there are ==sp−2sp di�erent possible structures (Gross and Yellen, 2005).

Analyzing the results obtained, the number of reaction networks can explode when the
number of species is high. To get around this, when many species are present, the follow
items can be considered:
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Table 8.1 Problem dimension analysis for linear reaction networks with one initial
reactant species. The starting reaction network superstructures are complete graphs with
=sp nodes. The number of reaction networks grows exponentially with the number of
species in the system for the same RI.

nsp RI nrx
number of

nsp RI nrx
number of

reaction networks reaction networks

3
0 2 3

6

0 5 1 296
1 3 4 1 6 16 620

4

0 3 16 2 7 96 960
1 4 63 3 8 339 045
2 5 84 4 9 787 300
3 6 38 5 10 1 269 084

5

0 4 125 6 11 1 438 620
1 5 972 7 12 1 132 720
2 6 3 190 8 13 592 950
3 7 5 660 9 14 186 360
4 8 5 730 10 15 26 704
5 9 3 140

7
0 6 16 807

6 10 728 1 7 320 400

8
0 7 262 144 2 8 1 700 937
1 8 4 155 143 9 0 8 4 782 969

� the implicit generation of structures, coupling the Steps 4 and 5 of the proposed
methodology, by incorporating experimental data in the formulation to generate
only plausible reaction networks (Vertis et al., 2016).

� the incorporation of additional linear constraints, reducing the space of solutions
(the most constrained problem). Knowledge about a particular reaction system
may be used as constraints for the network generation, e.g., a reaction is known to
happen in the system, thus, it can be �xed in the structure.

� the use of additional criteria to limit the reaction network superstructure, e.g., be-
sides stoichiometric constraints, energetic characteristics can be considered to gener-
ate chemical reactions stoichiometrically consistent and also energetically favorable.
In this case, the net reaction directionality can be elucidated, thus reducing the
nrxsup and, consequently, the number of reaction networks (Vertis et al., 2017).

FSFA - Example 2

Regarding the AS case study, the superstructure of linear reaction networks (obtained in
the previous methodology step) contemplates 15 chemical reactions among 6 represen-
tative species, as it was shown in Figure 7.5. From this set of reactions, in the system
experimental conditions, 11 mass �ux directions were identi�ed as energetically feasible.
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AS linear case study characteristics: (i) nrp = 1, (ii) nrxsup = 15 and nrxmin = 5.

The generation of reaction networks was performed in GAMS® with the CPLEX solver,
where 144 energetically feasible reaction networks were obtained with RI = 0. Examples
of these minimal structures are shown in Figure 8.8.

r1 r4

r5

r6

r10AS GBL BDO

THF

BuOH

PrOH r1

r4

r5

r6

r7

AS

GBL

BDO

THF

BuOH

PrOH

r1 r2r6 r8r13

AS
GBL BDO

BuOH
THF

PrOH

Figure 8.8 Representation of the 3 �rst reaction networks generated for AS case study.

However, if the generation of linear structures with RI = 0 from the network superstructure
with 26 chemical reactions (without energetic analysis of net �ux directions) would be
considered, the number of generated reaction networks increases to 540. Therefore, the
number of solutions decreased in 73% when considering the energetic �ux analysis for this
case study.

8.5 Nonlinear reaction networks

Previously, the generation of linear reaction networks1 was proposed using SFA. SFA
guarantees network connectivity by checking the balances of �ctitious units that travel
through the network, necessarily passing through each node, where the total number
of units that enter the network corresponds to the sum of units that leave each visited
node (Vertis et al., 2015). However, in general reaction networks may involve chemical
reactions with more than one species as reactant and/or as product, namely nonlinear
chemical reactions, that can be represented through bipartite graphs (Temkin et al.,
1996). The generation of nonlinear networks is more challenging since the presence of

1Linear reaction networks are represented by linear graphs where arcs and nodes correspond to chem-
ical reactions and species, respectively. Thus they contain chemical reactions that involve the mass
transformation between two representative species.
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inconsistencies can appear in nonlinear circular networks when considering only the node
balances of structural �uxes as a criterion to generate connected structures, as shown
in Figure 8.9. Therefore, the establishment of an order of precedence between nodes
is necessary to guarantee the production of species in a sequential way, resulting in a
consistently connected network.
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Figure 8.9 Graph representation of an inconsistent nonlinear reaction network: the
THF species is participating as reactant in both A16 and A15 without had been generated
before. (a) Inconsistent reaction network. (b) Structural �uxes that satisfy the node
balance equations ensuring a connected structure, although allowing nonlinear network
inconsistencies.

The precedence among nodes can be imposed through the use of (i) ordering constraints
such as MTZ-based constraints in which a position is assigned to each visited node in
the network, imposing a sequence of visited nodes in an increasing fashion (Miller et al.,
1960; Taccari, 2016), and/or (ii) the concept of a tree of states where binary variables
are assigned to several states of the tree that describes a consistently connected network
(Kondili et al., 1993; Shah et al., 1993; Maravelias and Grossmann, 2003). Both strategies
were studied and adopted to generate nonlinear reaction networks, culminating in the de-
velopment of three MILP formulations. These formulations are presented in the following
sections.

8.5.1 Enumeration of reaction networks using ordering constraints

Ordering constraints establish a position (or a theoretical time) of the node along the
path, ensuring an increasing order of nodes during the nodes appearance. Miller et al.
(1960) were the pioneers in the use of ordering constraints, proposing the most com-
pact formulation in the context of TSP, where the distance traveled by the salesman is
minimized subjected to visit a set of cities only once. The development of ordering con-
straints was motivated in order to avoid undesired subtours in the optimal solutions. They
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named these constraints with their surname initials, MTZ, Miller-Tucker-Zemlin. Hence,
the MTZ constraints ensure a salesman route that increases his position when visiting
next cities, thus establishing a sequential and connected pathway among visited cities
using auxiliary variables beyond assignment constraints. The MTZ constraints assume
the following format:

C1 = 1,

2 ≤ C8 ≤ =, ∀8 ≠ 1,

C8 − C 9 + 1 ≤ (= − 1) (1 − ~8, 9 ), ∀8 ≠ 1, 9 ≠ 1

(8.22)

where C is the position of nodes 8 and 9 (node alias), = the number of nodes, and ~8, 9 the
binary variable that assumes one when the path that links nodes 8 to 9 is assigned to
the route. The initial node has the position one. These constraints do not apply to the
�rst node, since in the TSP the salesman route starts and ends at the initial node, and
therefore it would be infeasible with (8.22) to assign a directed arc from the last node =
to the �rst node, closing the circuit. However, as the assignment constraints state that
at each node there is a single output arc and a single input arc, the Hamiltonian circuit
is perfectly established avoiding subtours by the MTZ constraints.

When ~8, 9 is equal to one in (8.22), i.e., C 9 ≥ C8 + 1, this constraint assumes the same
structure as the one proposed in CPM scheduling problems. In CPM there is no deci-
sion variables since every activity is already assigned, although their time duration can
di�er of the unity and thus, the objective here is to schedule these activities without the
need to choose one face another. Hence, the CPM scheduling problem is in the �eld of
linear programming, in which ordering constraints without binary variables make up the
formulation.

However, MTZ constraints are known to present weak LP relaxations. Langevin et al.
(1990); Padberg and Sung (1991); Gouveia and Pires (1999); Bekta³ and Gouveia (2014)
and other authors have demonstrated a lower polytope projection of the feasible convex
hull of solutions from the relaxed LP problem regarding other formulations in the con-
text of TSP. For example, the commodities-based formulations (that uses structural �ux
analysis) showed larger relaxation value. For more details see Section 3.3.2 in the state
of the art of this thesis.

Haouari et al. (2013) presented a stronger formulation than MTZ for ordering constraints,
which was obtained using the reformulation linearization technique (RLT), as originally
proposed by Sherali and Adams (1990). The RLT is applied in the nonlinear version of
MTZ contraints,

C 9~8, 9 = (C8 + 1)~8, 9 , ∀8, 9

C 9~1, 9 = ~1, 9 , ∀9
(8.23)
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in which these equations are linearized using auxiliary variables U8, 9 and V8, 9 , such that

U8, 9 = C 9~8, 9 and V8, 9 = C8~8, 9 (8.24)

Then the following equations establish a sequence of nodes through:

U8, 9 = V8, 9 + ~8, 9 , ∀8, 9,∑
8≠1

U8, 9 −
∑
8≠1

V 9,8 = 0 ∀9 ≠ =,

~1, 9 +
∑
8≠1

U8, 9 −
∑
8

V 9,8 = 0 ∀9 .
(8.25)

However, with the exception of the arc that closes the circuit from the = visited node
to the starting node, as originally proposed, both eqs. (8.22) and (8.25) do not allow
circular structures during the pathway, since it is forbidden the assignment of paths in
which arcs go back to any node 8 > 1 previously visited. In contrast, nonlinear reaction
networks can present many cycles. For example, in Figure 8.9 if THF had been produced
by BDO or AS, making a consistent network, this reaction network would present a
feasible cycle among THF and BuOH species. Therefore, to generate nonlinear networks
it is required a formulation that simultaneously allows cycles in its structure and veri�es
species precedence, ensuring a feasible and consistent network that translates the species
consumption and production observed in the chemical reacting system. Attending these
needs, two formulations were developed based on MTZ and RLT, respectively. Basically,
the key idea of these two formulations is to ensure that every species must be produced
before be consumed in a posteriori chemical reaction, unless it is an initially present
species in the mixture. For this purpose, the time/position in which each species is �rstly
produced must be speci�ed, verifying that (i) it can only be a reactant if this speci�c time
is reached, (ii) it can be produced again later through other chemical reaction presenting a
superior time than that of the �rst production. In order to implement these requirements,
disjoint constraints were used (Grossmann and Ruiz, 2012) identifying when the time of
species appearance is minimum. The next sections present the both ordering constrained
formulations based on MTZ and RLT (FMTZ and FRLT, respectively) with supporting
examples.

MTZ-based formulation (FMTZ)

The key constraint in this formulation, as shown in (8.26), establishes an order for gradual
species production, preventing the cases where a species is a reactant without it had been
a product before, unless this species is initial reactant species.

TminB − TB ′, 9 + 1 ≤ " (1 − ypB ′, 9 ), ∀ B,B′, 9 ∈ exd ∪ exi (8.26)
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where TminB is the minimum theoretical time required to the species B ∈ sp production,
TB ′, 9 is the theoretical time that species B′ ∈ sp is produced through the reaction 9 ∈ rx.
Notice that (i) the chemical reaction 9 occurs among species B to B′ as mapped on the
controlled sets exd and exi (these sets de�nitions were presented in Section 8.3.1), (ii)
every assigned chemical reaction present, at least, a duration of one unity, and (iii) the
Tmin of the initial reactant species is set one. Thus, according to (8.26), when the species
B′ is produced in the reaction 9 , ypB ′, 9 = 1, its production theoretical time TB ′, 9 has to be
greater (at least in one unity) than the minimum theoretical time TminB required for the
production of the reactant species B , i.e., TB ′, 9 ≥ TminB + 1.

Otherwise, when the species B′ is not produced by the reaction 9 , ypB ′, 9 = 0, the TB, 9 has
to be equal to the superior bound " imposed, as shown in (8.27).

TB, 9 ≥ " (1 − ypB, 9 ), ∀ B, 9 ∈ nsrB, 9 ∪ nspB, 9 (8.27)

Both the TminB and TB, 9 can vary between [1,"], they are declared as positive variables,
although they assume only integer amount since the integrality property holds. The upper
bound " = =sp + 1 is enough to cover the generation of networks with all complexities
between [nrxmin,nrxmax]. However, as we are interested in generating networks with
DI = 0, the superior bound will never cross nrxli,max + 1, and thus, it can be updated to
" = nrxli,max + 1.

The variable TB, 9 is �xed null for the pairs species/reaction that do not belong to the
previously identi�ed parameters nsrB, 9 and nspB, 9 , as presented in (8.28).

TB, 9 = 0, ∀ B, 9 ∉ nsrB, 9 ∪ nspB, 9 (8.28)

The minimum theoretical time TminB required to the production of species B is constrained
to be equal to the lowest production theoretical time TB, 9 of the same species B as a product
in reaction 9 . This statement is achieved considering disjunctive constraints, as shown in
eqs. (8.29) and (8.30):

TminB ≤ TB, 9 , ∀ B, 9 ∈ nsrB, 9 ∪ nspB, 9 (8.29)

TminB ≥ TB, 9 −" (1 − ytB, 9 ), ∀ B, 9 ∈ nsrB, 9 ∪ nspB, 9 (8.30)

where the binary variable ytB, 9 is used to identify which reaction 9 that produces species
B leads to the minimal TB, 9 value. Hence, when ytB, 9 = 1, necessarily TB, 9 = TminB . On the
other hand, when ytB, 9 = 0, both eqs. (8.29) and (8.30) are inactive during optimization,
i.e., they are always veri�ed in the optimal solution.

At least one chemical reaction 9 ∈ rx has to verify TB, 9 = TminB for every product species
B ∈ pp. This is achieved imposing that at least an unique ytB, 9 presents the unity value
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for every product species B ∈ pp, as shown in (8.31):∑
9∈rx

ytB, 9 ≥ 1, ∀ B ∈ pp (8.31)

Notice that this equation dispenses the need to impose the constraint in (8.5), since every
product species generation is implicitly ensured through eq. (8.31).

The ytB, 9 is forced to be null when the species B is not produced via reaction 9 , and in
simultaneous, it forces ypB, 9 to assume the unity value when ytB, 9 = 1, as shown in (8.32).

ytB, 9 ≤ ypB, 9 , ∀ B, 9 ∈ nsrB, 9 ∪ nspB, 9 (8.32)

Also, ytB, 9 is �xed null when the pair (B, 9) is not mapped in the controlling sets, as
presented in (8.33).

ytB, 9 = 0, ∀ B, 9 ∉ nsrB, 9 ∪ nspB, 9 (8.33)

The formulation (8.34) constitutes a MILP with binary and integer variables and linear
constraints that can be solved to global optimal solution, generating linear and nonlinear
reaction networks with nrp = 1.

min
yd, yi, yp, yt,

Tmin, T

nrx (8.34a)

s.t. eqs. (8.1�8.4, 8.6, 8.26�8.33) (8.34b)

yd 9 , yi 9 , ypB, 9 , ytB, 9 ∈ {0,1}, ∀B ∈ sp, 9 ∈ rx (8.34c)

TminB, TB, 9 ∈ R+, ∀B ∈ sp, 9 ∈ rx (8.34d)

When nrp > 1, new controlling sets must be established mapping the species B ∈ pp that
are produced in speci�c reaction 9 ∈ rx from each initial reactant species. For example,
if species A and B are initially present in the reacting mixture, nsprAB, 9 and nsprBB, 9 are
parameters that maps every reaction 9 that produces species B from reactants A and B,
respectively. These parameters are required to impose that every initial reactant must
react in the network, through the equations∑

(B, 9)∈nsprA
ypB, 9 ≥ 1 and

∑
(B, 9)∈nsprA

ypB, 9 ≥ 1 (8.35)

However when nrp = 1, these constraints are not required since the restrictions related to
(i) the precedence among species appearance and (ii) the production of every product in
the network, eqs. (8.26) and (8.31), respectively, simultaneously ensure that the unique
initial reactant is reagent in some assigned reaction(s) in the optimal solution.

In order to enumerate all reaction networks that are LI non-redundant, with complexities
between [nrxmin,nrxli,max], the integer cut equations from (8.21) were manipulated to
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forbid not only the solutions found in earlier iterations, but also the ones that contain the
same basis of chemical reactions. This means that all feasible networks with nrxmin are
generated �rst, since nrx is being minimized, when passing to the generation of structures
with nrx > nrxmin, only the ones with RI = 0 will be feasible. This is achieved by
imposing that at least two chemical reactions are di�erent from the previous solutions.
This means that no chemical reactions can be added to previously found solutions, the new
solution must contain a di�erent scheme linking each node. For example, if nrxmin = 3,
when enumerating all feasible networks with 3 reaction components the criterion is always
checked since all networks with nrxmin are non-redundant LI. However, when considering
generating LI networks with nrx > nrxmin, the problem is more restrictive as it does not
allow the same combination (observed in previous solutions) of nrx − 1 binary variables
to equal unity. Thus, when nrx = 4, the same sets of 3 reactions generated previously
cannot be observed as a constituent of the new four-component basis, and so on.

The enumeration of all LI non-redundant networks (DI = RI = 0) is obtained adding
eq. (8.36) to the formulation (8.34).∑

9∈rx
ccrd 9,8 yd 9 +

∑
9∈rx

ccri 9,8 yi 9 ≤
∑
9∈rx

ccrd 9,8 +
∑
9∈rx

ccri 9,8 − 1 ∀8 ∈ it (8.36)

This constraint is active after the obtainment of the �rst solution in which the parameters
ccrd 9,8 and ccri 9,8 store the optimal values of the binary variables related to the chemical
reactions in the direct and reverse direction, respectively, for every 8 ∈ it solver iteration,
i.e.,

ccrd 9,8 = yd 9 and ccri 9,8 = yi 9 , ∀9 ∈ rx

The enumeration of feasible solutions stops when there is no more structures LI non-
redundant to be generated.

FMTZ example

Consider the circular nonlinear reaction network presented on the left side in Figure 8.10.
The temporal scale of species production is outlined on the right-hand side of the same
�gure, where the nodes AS and AS' represent the same species, but with di�erent theoret-
ical production time. In fact the nonlinear chemical reaction −A14: 2GBL THF + AS
has an arrow coming back to the initial reactant AS. The arrow that close the cycle con-
cerning the −A14 is allowed since the theoretical time of production of the species AS in
reaction −A14, T�(,−A14 = 3, is greater than the theoretical production time of the reactant
species GBL, Tmin��! = 2, thus ensuring the obtainment of a consistent reaction network.

RLT-based formulation (FRLT)

In the RLT-based formulation, variable substitutions similar to (8.24) were performed in
order to turn the MTZ-based formulation (8.34) stronger. For this purpose, the surrogate
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Figure 8.10 Nonlinear reaction network with a feasible cycle and its respective
temporal scale of species production. Notice that this reaction network has CI = 1,
nrx = nrxli,max = 5 and RI = 0; no chemical reaction can be discarded of this structure
without turning it infeasible.

variables UB, 9 and VB were considered to substitute TB, 9 and TminB , respectively, as shown in
(8.37):

UB, 9 = TB, 9ypB, 9 and VB = TminBypB, 9 (8.37)

Therefore, similarly with (8.26), the precedence among nodes is veri�ed through

VB + ypB ′, 9 ≤ UB ′, 9 , ∀ B,B′, 9 ∈ exd ∪ exi (8.38)

where VB is the minimum position/time of production os species B ∈ sp and UB ′, 9 the
position/time of species B′ ∈ sp originated through the chemical reaction 9 ∈ rx. Thus,
when ypB ′, 9 = 1, indicating that the product B′ ∈ sp is produced in reaction 9 ∈ rx, the
position of B′ has to be greater (at least in one unity) than the �rst position of its reactant
species B. On the other hand, when ypB ′, 9 = 0, UB ′, 9 assumes the value of the upper bound
":

UB, 9 ≥ " (1 − ypB, 9 ), ∀ B, 9 ∈ nsrB, 9 ∪ nspB, 9 (8.39)

where " = nrxli,max + 1.

Similarly with the previous formulation (8.34), the binary variable ytB, 9 is used to identify
the reaction 9 which produces species B with the minimal UB, 9 . This is achieved using
disjunctive constraints, as shown in eqs. (8.40) and (8.41):

VB ≥ UB, 9 −" (1 − ytB, 9 ), ∀ B, 9 ∈ nsrB, 9 ∪ nspB, 9 (8.40)

UB, 9 ≥ VB, ∀ B, 9 ∈ nsrB, 9 ∪ nspB, 9 (8.41)

Thus, when ytB, 9 = 1, UB, 9 = VB The restrictions related to ytB, 9 in the previous formulation,
eqs. (8.31) to (8.33), are also part of this formulation.
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For the purpose of reaction network generation, each chemical reaction can only be con-
sidered in a unique direction (direct or reverse), as such it was imposed in (8.1). In this
formulation it is established through the following constraints:

yrB, 9 = ypB ′, 9 , ∀ B,B′, 9 ∈ exd ∪ exi (8.42)

yrB, 9 + ypB, 9 = yrx 9 , ∀ B, 9 ∈ nspB, 9 (8.43)

where the binary variable yrB, 9 indicates that the species B is a reactant in reaction 9 ,
as such as ypB, 9 indicates the species B is a product in reaction 9 , and yrx 9 indicates the
chemical reaction 9 ∈ rx assignment in the optimal solution.

The variables yrB, 9 and UB, 9 are �xed null for the pairs species/reaction that do not belong
to the parameters nsrB, 9 and nspB, 9 , as presented in eqs. (8.44) and (8.45).

yrB, 9 = 0, ∀ B, 9 ∉ nsrB, 9 ∪ nspB, 9 (8.44)

UB, 9 = 0, ∀ B, 9 ∉ nsrB, 9 ∪ nspB, 9 (8.45)

The number of chemical reactions in the network is computed through:

nrx =
∑
9∈rx

yrx 9 (8.46)

The formulation (8.47) constitutes a MILP with binary and integer variables and linear
constraints that can be solved to the global optimal solution.

min
yrx, yr, yp, yt,

U, V

nrx (8.47a)

s.t. eqs. (8.4, 8.31�8.33, 8.38�8.46) (8.47b)

yrx 9 , yrB, 9 , ypB, 9 , ytB, 9 ∈ {0,1}, ∀B ∈ sp, 9 ∈ rx (8.47c)

UB, 9 , VB, ∈ R+, ∀B ∈ sp, 9 ∈ rx (8.47d)

When nrp > 1, the constraint in (8.48) must be added to (8.47), ensuring that every
initial reactant species participates in the reaction network.∑

9∈rx
yrB, 9 ≥ 1, ∀ B ∈ sp\pp (8.48)

Thus, at least a single chemical reaction 9 with the respective initial reactants as reagent
must be veri�ed in the solution when nrp > 1.

The enumeration of all LI non-redundant networks (DI = RI = 0) is obtained adding (8.49)
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to the formulation (8.47).∑
9∈rx

(
ccrd 9,8 + ccri 9,8

)
yrx 9 ≤

∑
9∈rx

ccrd 9,8 + ccri 9,8 − 1 ∀8 ∈ it (8.49)

This constraint is active after the obtainment of the �rst solution in which the parameters
ccrd 9,8 and ccri 9,8 store the optimal values of the binary variables related to the the
chemical reactions in the direct and reverse direction, respectively, for every 8 ∈ it solver
iteration, i.e.,

ccrd 9,8 = ypB, 9 and ccri 9,8 = yrB, 9 , ∀B, 9 ∈ nspB, 9
The enumeration of feasible solutions stops when there is no more structures LI non-
redundant.

8.5.2 Enumeration of reaction networks using a tree of states

The concept of a tree of states is inspired on the classical scheduling optimization problems
involving similar constraints of assignment and state task network problems. In this case
the tree contains several states that are organized in sequential levels that grow in depth.
Each state is represented by a list of chemical species and a list chemical reactions, that
increase in size with the tree level. Every reaction network is sequentially built through
the addition of chemical reactions in consecutive states of every tree level. Therefore, as
the network of reactions increases in size, the number of states also increases, thus growing
the tree in depth. In every solver iteration an unique reaction network (optimal solution)
is obtained at the bottom level of the tree forming a linear sequence of states (a single
tree branch). When all feasible networks are enumerated, the simultaneous representation
of every explored state to obtain the set of feasible solutions forms a tree. For example,
consider the linear superstructure presented in Figure 8.11 where 4 chemical species and
12 chemical reactions (direct and reverse components) compose the network domain. The
corresponding tree of states for these sets of chemical species and reactions is shown in
Figure 8.12.

A1: A B A4: B C

A B

C

D

r1

r2

r3

r4

r5
r6

A2: A C A5: B D

A3: A D A6: C D

Figure 8.11 Superstructure of a linear reaction network with 4 representative species
and 6 reversible chemical reactions.

Simultaneously with the addition of a single reaction in every state, the assignment of
chemical species is also carried on, corresponding to the species produced in that reaction.
The avoidance of inconsistent networks is achieved imposing preconditions for every state,
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Figure 8.12 Tree of states respected to the linear network superstructure presented
in Figure 8.11. 16 complete states are at the bottom level of the tree, presenting linear
reaction networks without redundant pathways.

e.g., to add a chemical reaction in a current state of the tree, the respective reactant species
must be available in the previous state.

During the network construction every state is characterized by two lists: (i) the available
species, and (ii) the selected chemical reactions. The �rst tree level, i.e., the initial state,
contains only the initial reactant and none chemical reactions. A chemical reaction that
veri�es the preconditions is added to every consecutive tree level until reach a complete

reaction network de�ned as a consistently connected structure where all species have been
produced. The objective function consists of the minimization of the chemical reactions
in the network, thus networks composed by the minimum number of chemical reactions
are the �rst to be obtained, and then, more complex structures in an increasing sequential
order are obtained. The enumeration of them is achieved using integer cut equations that
avoid the generation of networks composed by redundant pathways. Next section presents
the proposed formulation on the basis of assignment problems (ASP).

ASP formulation (FASP)

Every state of the tree is disposed in vertical levels ; ∈ est, in which est constitutes the
set of states that are required to obtain a reaction network composed with up to nrxli,max
chemical reactions. On the �rst state, ; = 0, (i) no chemical reaction is allowed to be
present, and (ii) only the initial reactant(s) B ∈ rp is/are veri�ed. Thus, the set est

contemplates the levels ; = 0,1, . . . ,nrxli,max. Two binary variables describe each state:
the yj;, 9 and the ys;,B that indicate the presence of the reaction 9 ∈ rx and the species
B ∈ sp, respectively, in the level ; ∈ est of the tree. The set of chemical reactions rx

is adapted in this formulation, containing =rx reactions in the forward direction plus the
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same =rx reactions in the opposite direction, totaling 2=rx = nrxsup chemical reactions.

To ensure that there are no empty states of chemical reactions, except for the initial state,
at least one chemical reaction has to be assigned to every state, as shown by (8.50):∑

9∈rx
yj;, 9 ≥ 1, ; = 1, . . . ,nrxli,max (8.50)

Chemical reactions can only be present in the forward or reverse direction (exclusively)
when considered in the solution, as imposed in (8.51):

yj;, 9 + yj;, 9+=rx ≤ 1, ∀; ∈ est, 9 = 1, . . . , =rx (8.51)

Five constraints (8.52 � 8.56) are related to the precondition imposed to avoid generating
inconsistent nonlinear networks. First, the information contained in a certain state must
remain in the next ones, that is, the sets of chemical reactions and of species in a certain
state must be veri�ed in the next ones. This is achieved through the inequality constraints
presented in (8.52) and (8.53), respectively:

yj;, 9 ≤ yj;+1, 9 , ; = 0, . . . , nrxli,max − 1, ∀9 ∈ rx (8.52)

ys;,B ≤ ys;+1,B, ; = 0, . . . , nrxli,max − 1, ∀B ∈ sp (8.53)

Second, the controlling sets nsr and nsp are used in the remain three constraints (8.54
� 8.56) to ensure network consistency. These equations state that: (i) when the reaction
is assigned to the current state, the respective reactant species has to be present in the
previous state:

yj;+1, 9 ≤ ys;,B, ∀; = 0, . . . , nrxli,max − 1, B, 9 ∈ nsr (8.54)

(ii) when the reaction is assigned in a current state, the product species has to be present
in this same state:

yj;, 9 ≤ ys;,B, ∀; ∈ est, B, 9 ∈ nsp (8.55)

and (iii) when the species is present at the current state, at least one chemical reaction
which produces this species has also to be there:∑

9∈rx
yj;, 9 ≥ ys;,B, ∀; ∈ est, B, 9 ∈ nsp\rp (8.56)

Ensuring the achievement of a complete reaction networks, every species has to be present
in the tree: ∑

;∈est
ys;,B ≥ 1, ∀B ∈ sp (8.57)
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In order to guarantee the assignment of a new chemical reaction to every state until it
reaches nrxmin, the number of chemical reactions has to increase in one unity when the
number of states increases:∑

9∈rx
yj;, 9 + 1 =

∑
9∈rx

yj;+1, 9 , ; = 0, . . . , nrxmin − 1 (8.58)

In cases where nrxmin < nrxli,max, networks composed by nrxmin are �rstly generated,
and the last nrxli,max−nrxmin states are identical, presenting exactly the same variables of
the state where nrxmin was reached. When solutions with nrx > nrxmin are enumerated,
no complete networks can be found at the stage ; = nrxmin due to integer cut equations
that forbid network redundancies, and thus, in order to obtain a complete network it is
necessary to add more chemical reactions until obtain the production of every chemical
species in the network.

The objective function is given by the sum of number of chemical reactions selected in
every tree level

I =
∑
;∈est

∑
9∈rx

yj;, 9 (8.59)

The formulation (8.60) constitutes an integer problem with binary variables and linear
constraints that can be solved to global optimum.

min
yj, ys

I (8.60a)

s.t. eqs. (8.50�8.59) (8.60b)

yj;, 9 = 0,∀9 ∈ rx, ; = 0 (8.60c)

ys;,B = 0,∀B ∈ pp, ; = 0 (8.60d)

ys;,B = 1,∀B ∈ rp, ; = 0 (8.60e)

yj;, 9 , ys;,B ∈ {0,1}, ∀B ∈ sp, 9 ∈ rx, ; ∈ est (8.60f)

In order to enumerate all reaction networks composed by linearly independent and non-
redundant chemical reactions, an integer cut equation (8.61) is iteratively added to the
formulation (8.60) after the �rst solution is obtained until no feasible solution can be
generated. For this, the parameter ccrx 9,8 stores the selected reactions 9 ∈ rx in the
current solution iteration 8 ∈ it. Thus, after the �rst solution is obtained, this parameter
assumes the optimal value of the yj binary variable at the bottom level of the tree:

ccrx 9,8 = yj;, 9 , ; = nrxli,max, ∀9 ∈ rx

Equation (8.61) is active in the formulation after the obtainment of the �rst solution
avoiding the generation of solutions that contains the same group of chemical reactions,
i.e., at least one chemical reaction must be di�erent of the set of the reactions that
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compose the networks previously generated.∑
9∈rx

ccrx 9,8yj;, 9 ≤
∑
9∈rx

ccrx 9,8 − 1, ∀8 ∈ it, ; = nrxli,max (8.61)

FASP example

The reaction networks presented in Figure 8.1 (a) and (c), are taken as an illustrative
example of the tree of states. The AS nonlinear case study has nrxmin = 4 and nrxli,max =

5. See in Table 8.2 the corresponding distributions of species and chemical reactions in
every state of the tree. The objective function for these solutions assume I = 14 and
I = 15, respectively; every reaction network composed by nrxmin has I = 14, while the
ones composed by nrxli,max have I = 15.

Table 8.2 Two branches of the tree concerning to the reaction networks (a) and (c) of
Figure 8.1.

Tree Network (a)
level ys;,B yj;, 9

l=0 {AS} {∅}
l=1 {AS, BDO} {A2}
l=2 {AS, BDO, THF} {A2, A3}
l=3 {AS, BDO, THF, GBL, PrOH} {A2, A3, A16}
l=4 {AS, BDO, THF, GBL, PrOH, BuOH} {A2, A3, A16,−A17}
l=5 {AS, BDO, THF, GBL, PrOH, BuOH} {A2, A3, A16,−A17}
Tree Network (c)
level ys;,B yj;, 9

l=0 {AS} {∅}
l=1 {AS, THF} {A3}
l=2 {AS, THF, GBL} {A3, A−5}
l=3 {AS, THF, GBL, BuOH} {A3, A−5, A6}
l=4 {AS, THF, GBL, BuOH, PrOH} {A3, A−5, A6, A17}
l=5 {AS, THF, GBL, BuOH, PrOH, BDO} {A3, A−5, A6, A17, A−16}

8.6 MILP formulations comparison

In Table 8.3 the presented formulations are compared in terms of the number of variables
and equations. Notice that the FSFA can only be used to generate linear reaction net-
works, whereas the remain three formulations (FMTZ, FRLT and FASP) can be used to
generate both linear and nonlinear reaction networks. The number of constraints indi-
cated in Table 8.3 does not include integer cut equations.

The four formulations are very similar in terms of the number of binary variables, since
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Table 8.3 Formulations comparison in terms of number of variables and constraints.

MILP Binary Continuous
Constraints

formulation variables variables

FSFA (8.20) 2=rx + =rx=sp =sp + =2sp =rx + 3=sp + 2=rx=sp + 4=2sp=rx + 1

FMTZ (8.34) 2=rx + 2=rx=sp =sp + =sp=rx =rx + =sp + 6=rx=sp + =2sp=rx

FRLT (8.47) =rx + 3=rx=sp =sp + =sp=rx =sp + 5=rx=sp + 2=2sp=rx

FASP (8.60)
nrxli,maxnrxsup+

�
nrxli,max + nrxli,max=rx+

nrxli,max=sp nrxli,maxnrxsup + nrxli,max=sp+
3nrxli,max=sp=rx + =sp + nrxmin

nrxli,max ≤ =sp−1 and nrxsup = 2=rx. However, in terms of number of continuous variables
FMTZ and FRLT present a greater amount than FSFA since =rx > =sp. Regarding
the number of constraints, the expression presented in FASP can be approximated to
3=sp + 3=sp=rx + =2sp + =2sp=rx, and therefore, it assumes a greater value when compared to
FSFA, FMTZ and FRLT. However, the number of constraints in both FMTZ and FRLT
formulations are practically the same.

The IP and MILP formulations presented in this chapter are compared in terms of compu-
tational e�ort considering the number of branch-and-bound nodes, the solver iterations,
and the CPU usage to obtain a single and entire set of solutions. The succinic acid
case study is taken as an application example to demonstrate both network generation
problems: the linear and the nonlinear cases. All results were obtained in Debian Linux
operating system, dual processor Intel® Xeon, hexa-core, using the software GAMS® ver-
sion 31.1.1 with the commercial solver CPLEX.

Regarding the explicit enumeration of reaction networks with RI = 0 from the nonlinear
network superstructure presented earlier in Figure 7.3, it was generated a total of 2921
solutions which correspond to 241 nonlinear reaction networks with nrxmin = 4, 540 linear
networks with nrxmin = nrxli,max = 5, and 2140 nonlinear networks with nrxli,max = 5.
Table 8.4 presents the solver performance for the �rst and last solution obtained, also
showing the total CPU usage to obtain the entire set of solutions.

After the �rst solution obtainment, the integer cut equations are added to the respective
formulation, increasing the number of constraints sequentially during the enumeration
of alternative solutions. Thus, the last solution is the one with the greatest number
of restrictions in the respective formulation, but it does not necessarily represent the
most expensive solution in terms of computational e�ort. In order to assess the solver
performance in terms of computational e�ort the three evaluated parameters were plotted
for every obtained solution, as shown in Figure 8.13.

Comparing the results obtained for FMTZ and FRLT, it is possible to observe that both
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Table 8.4 Complete enumeration of linear and nonlinear reaction networks with RI = 0
from the superstructure presented in Figure 7.3 for the AS case study.

FMTZ FRLT FASP
First solution

8 = 1

Variables 210 243 241
Equations 371 397 927
CPU [s] 0.094 0.081 0.117

Iterations 1389 1011 364
Nodes 108 67 0

Last solution

8 = 2921

Variables 210 243 241
Equations 3291 3317 3847
CPU [s] 9.529 11.012 1.860

Iterations 45684 62282 9660
Nodes 4005 3630 800

Complete enumeration
CPU [min] 48.841 57.399 22.058

presented similar performance regarding the generation of a single solution. This result
is not unexpected, as both formulations are quite similar in terms of variable types and
equations. However, when considering the enumeration of all solutions, FRLT performed
worse than FMTZ with a greater computational e�ort to obtain the same set of optimal
solutions. Furthermore, although the number of equations in FASP is higher than in other
formulations, FASP showed better solver performance in terms of number of nodes for
branch-and-bounding, number of solver iterations, and time taken to reach an optimal
solution. Therefore, the FASP is preferable over the FMTZ and FRLT to enumerate
nonlinear and linear reaction networks explicitly. This result shows that the comparison
of IP and MILP formulations should not be made solely in terms of the number of variables
and restrictions, as these indices can lead to misinterpretations and, consequently, to poor
choices regarding the most advantageous formulation to be used.

In order to compare the performance of the four formulations presented in this chapter
for the explicit generation of linear networks with RI = 0, the �rst 13 linear reactions
shown in Table 7.1 (and their reverse components) are considered as the superstructure
of reaction networks (Figure 7.2). The results obtained are presented in Table 8.5 and
Figure 8.14. It was generated 540 linear networks with nrxmin = nrxli,max = 5.

Analyzing the results obtained in the explicit generation of linear networks, it can be
observed that FMTZ and FRLT presented similar and slightly superior performance to
FASP in terms of number of nodes and iterations. However, FSFA presented the lowest
computational e�ort in terms of number of nodes and iterations, despite having the highest
CPU usage for the complete enumeration, as can be seen in the three plots shown in Fig-
ure 8.14 (orange pro�le). Nonetheless, regarding the complete enumeration of solutions,
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(a) (b)

(c)

Figure 8.13 Comparison of formulations performance in the explicit enumeration of
linear and nonlinear reaction networks in terms of (a) number of solver iterations, (b)
number of branch-and-bound nodes, and (c) CPU usage.

based on the comparison of the four formulations, the di�erence in terms of CPU usage
is in practice negligible and, since FSFA presented better results in solver performance,
this is the best formulation indicated to generate linear reaction networks explicitly.

Furthermore, the computational e�ort to generate linear reaction networks is signi�cantly
less than that to generate nonlinear networks (here we speak in seconds, instead of minutes
or hours), presenting, as a whole, fewer iterations, branch-and-bound nodes, and CPU
usage to achieve a single solution. Therefore, the problem of generating linear networks
is much simpler than generating nonlinear structures. This is due to the fact that there
is no need to check the precedence in the production of species in linear networks even if
cycles were allowed in their structures. In this case, the linear solutions obtained do not
present cycles since the generation of networks composed of linearly independent sets of
chemical reactions was imposed. In contrast, in nonlinear networks some cases of cycles are
allowed while maintaining a non-redundant, linearly independent set of chemical reactions.
Thus, in this case, there is a need to impose precedence between species, increasing the
complexity of the formulation.
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Table 8.5 Complete enumeration of linear reaction networks with RI = 0 from the
superstructure presented in Figure 7.2 for the AS case study.

FMTZ FRLT FASP FSFA
First solution

8 = 1

Variables 110 123 161 170
Equations 175 175 527 201
CPU [s] 0.036 0.038 0.045 0.033

Iterations 103 100 145 0
Nodes 0 0 0 0

Last solution

8 = 540

Variables 110 123 161 170
Equations 714 714 1066 740
CPU [s] 0.207 0.239 0.358 0.252

Iterations 2118 2926 5212 1223
Nodes 541 505 830 471

Complete enumeration
CPU [s] 36.513 40.158 35.954 41.502

(a) (b)

(c)

Figure 8.14 Comparison of formulations performance in the explicit enumeration of
linear reaction networks in terms of (a) number of solver iterations, (b) number of branch-
and-bound nodes, and (c) CPU usage.
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Chapter 9

Step 5 � Plausible Reaction Networks

�Pathways are concepts, networks are reality.�

� Uwe Sauer
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After the treatment of experimental data, the obtained smoothed pro�les of chemical
species concentration along time can then be combined with the previously generated
list of possible reaction networks. Those that are clearly incompatible with the observed
pro�les must be discarded, while reaction networks considered plausible, according to a
well-established criterion, should be selected and analysed in more detail. In this chapter,
a methodology to perform this selection is presented, with the criterion of plausibility
being that a reaction network must present positive net reaction rates for all chemical
reactions and during the entire experiment. Reaction rates are obtained solving the mass
balance equations in the rate-based method, as shown in (2.41), with the concentration
derivatives calculated from the smoothed concentration pro�les.

However, instead of generating network structures to later identify the ones that are
plausible, the implicit generation of reaction networks can also be considered when incor-
porating the mass balance equations constrained to present positive net reaction �uxes in
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the formulation to generate reaction networks. Consequently, in that case, only plausible
reaction networks structures may be generated. This consists into the union of Steps 4 and
5 of the proposed methodology. Considering the implicit generation of networks can be
an advantage for large problem sizes, (i.e., problems that present network superstructures
with more than a hundred reaction components), once it can avoid the combinatorial ex-
plosion of alternative networks when generating them explicitly, thus, saving computation
e�ort in the generation task and eliminating the �ltering step.

Alternatively, if there are �too many� possible reaction networks, the possibility of suggest-
ing to the user to obtain new experimental datasets should be considered, thus allowing a
reduction of the size of this set of plausible networks and increasing the ability to discrim-
inate competitive models. However, in another perspective, when further experimental
tests cannot be carried out, the modeling of kinetic expressions can help to discriminate
the many plausible candidate solutions. In this case, since there are too many networks
structures to be considered, the generation step can be repeated but at this time in a
more restrictive formulation, where the network is identi�ed simultaneously with the best
kinetic model expression for each chemical reaction component with adjusted parameters.
This consists of the union of Steps 4, 5 and 6 (initial phase), where the main goal is to
�nd a positive correlation of the reaction rate with its reactant species in simultaneous
with the network synthesis, assisting the model structural identi�cation.

This chapter is organized as follows. In Section 9.1, as overview of Step 5 is presented.
Then, in Section 9.2, the computation of reaction rate pro�les based on the di�erential
method is addressed. Next, in Section 9.3, the metrics used to select plausible reaction
networks are presented. Finally, in Section 9.4, the implicit generation of reaction net-
works is considered, presenting the formulations for the obtainment of plausible structures
(i) with positive reaction rates and (ii) with established kinetic models.

9.1 Step 5 overview

In Step 5 the generated reaction networks are validated using the pre-treated data, ac-
cording to the plausibility criterion. The Step 5 �owchart is presented in Figure 9.1.
The models that pass this phase are classi�ed as plausible network structures, that may
be analyzed in more detail in Step 6. It is preferable that only a small set of network
structures pass this phase.

If none plausible structures can be found, the expansion of the search domain is con-
sidered by (i) generating more complex chemical reactions (reactions that contain more
participating species), thus going back to Step 3, and/or (ii) increasing the number of
chemical reactions in the networks in Step 4.

When the number of plausible reaction networks structures is signi�cant, (more than 5),
the design of experiments can be proposed to discriminate the true schema of the reaction
system in Step 7. This can be done, for example, by carrying out new experiments under
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Figure 9.1 Step 5 �owchart.

di�erent operation conditions, or by including other species in the initial reagent mixture,
in order to elucidate separately some components of the overall reaction network structure.

9.2 Reaction rate estimation

�It is all about the �uxes.�

� Jens Nielsen

Consider the species mass balances in a homogeneous batch reactor previously presented
in (2.7) and the ninli time-invariant relationships imposed at data reconciliation phase,
such that the left side of (2.35) is veri�ed. Thus (2.7) can be replaced by a smaller number
of independent mass balances su�cient to fully describe the evolution of the system. These
can be written as

dcE (C)
dC

= NT
E · r(C) (9.1)

where the subscript �E� indicates the reduced form of the concentration vector and the
stoichiometric matrix, presenting cE (C) [=sp − ninli × 1] and NE [=rx × =sp − ninli],
respectively. We also denote by sv the set of variant species considered in (9.1), such
that =sv = =sp − ninli. Each entry A 9 (C) of r(C) represents the net �ux of reaction 9 in
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the reaction network, i.e., the rate of the direct component minus the rate of the reverse
component of the reaction.

Since (i) the chemical reactions generated in Step 3 verify the time-invariant relationships
that were also imposed during data reconciliation (Step 1), and (ii) the reaction networks
generated in Step 4 that form each N are composed by a subset of these reactions, where
N has full row rank with dimension nrxli, row(N) corresponds to row(D) as such as
row(NE ) to row(DE )1. Thus the reduced system in (9.1) presents a square non-singular
matrix NE with dimension =rx = nrxli = =sv that can be solved as a linear systems of
algebraic equations.

When it is not possible to determine all time-invariant relationships of the system in ques-
tion and/or impose them during data reconciliation procedure, the linear spaces row(NE )
and row(DE ) may not coincide, resulting in the need of the use of optimization techniques
to solve the system in (9.1).

However, it was only necessary to consider a particular reaction network to determine the
A 9 (C) for every 9 ∈ rx reaction rate pro�le. The analysis of these rate pro�les allows the
posterior discrimination of the generated reaction networks according to their plausibility.
This is the topic of the next section.

9.3 Selection of plausible reaction networks

Considering a set of net reaction rates {A 9 (C)} with 9 ∈ rx, a necessary condition for its
plausibility is that

A 9 (C) ≥ 0, ∀9 ∈ rx, C ∈ [C0,C 5 ] (9.2)

where [C0,C 5 ] represents the time interval that contains the various available experimen-
tal points. However, admitting limited experimental errors (i.e., quanti�able data un-
certainty), the previous condition is not always strictly obeyed, and consequently the
respective reaction networks should not be abandoned.

A simple possibility of eliminating non-plausible reaction networks is to specify a max-
imum error threshold for checking the inequality in (9.2). In this approach, reaction
networks with at least one case A 9 (C) ≤ −n, with n representing the chosen cutting level,
would be excluded. However, this methodology has the disadvantage of being very sen-
sitive to the choice of the threshold used. Alternatively, this work sought to follow an
approach of maximum likelihood, where the analyzed reaction networks are ordered ac-
cording to a growing criterion of violation of the restriction in (9.2) that they present.
In this logic, the reaction networks with the least violation of this restriction are located
at the top of the list, receiving the most analytical attention. This approach integrates
the expectation that, throughout the various experiments carried out, only the reaction

1Here, D is the matrix of time concentration derivatives evaluated at the collocation points in the
data reconciliation procedure (the abscissas in which the time invariants were imposed).



9.3 Selection of plausible reaction networks 259

networks that can explain all the observed data survive this processing step.

Two metrics are considered respecting di�erent approaches established for the same pur-
pose: to select plausible reaction networks. One is to consider the amount

Aneg, 9 (C) = min{A 9 (C),0}, ∀9 ∈ rx, C ∈ [C0,C 5 ] (9.3)

considering the integral

irn 9 =

∫ C5

C0

Aneg, 9 (C) dC , ∀9 ∈ rx (9.4)

given the need to check the previous inequality over a period of time. This makes it
possible to de�ne scalar quantities

trn: =
∑
9∈rx

irn 9,: (9.5)

for each reaction network : considered. Thus, the lower the trn value obtained, the better
the classi�cation of the corresponding reaction network.

The other metric is to directly consider optimization tools, even for perfectly determined
systems, solving the following constrained optimization problem

min
r(C)

q =

∫ C5

C0

e(C)T ·F (C) · e(C)

s.t. e(C) = dcE (C)
dC

−NT
E · r(C)

r(C) ≥ 0

(9.6)

for each reaction network considered. Thus, the lower the q value obtained, the better
the classi�cation of the corresponding reaction network.

In some cases several plausible reaction networks can be found, constituting all of them
bases rotations of each other, leading to the same description of the data variant space
in di�erent systems of coordinates. Notice that the concentration derivatives vectors lie
in the positive orthant of the row space of the stoichiometric matrix. For more detailed
discussions about linear spaces and linear system of equations see Sections 2.2 to 2.4.

9.3.1 Application example

From the list of 540 linear reaction networks generated concerning the AS case study,
28 reaction networks were identi�ed, selected using the plausibility criterion for a more
rigorous analysis. Figure 9.2 shows the trn value of all 540 reaction networks, sorted in
ascending order. By observing this �gure, a cuto� value of 0.033 mol L−1 was considered.
The reactions participating in these 28 best reaction networks are shown in Table 9.1,
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with their respective relative frequency.
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Figure 9.2 Reaction networks ordered by the plausibility criterion for AS case study.

Table 9.1 Relative frequency (RF) of reactions in the 28 most plausible reaction net-
works - case study AS.

A 9 RF [%] A 9 RF [%] A 9 RF [%]

A1 100 A7 21.43 −A11 21.43
A4 78.57 A6 21.43 A13 14.28
A8 57.14 A12 21.43 −A13 14.28
A10 42.86 -A12 21.43 −A10 10.71
A9 42.86 A11 21.43 −A9 10.71

When analyzing the most plausible networks, it appears that the reactions A1, A4 and A8
appear quite frequently in the most plausible reaction networks. A qualitative analysis
of the temporal pro�les of the concentrations of the species involved allows us to con�rm
that these reactions should be included in the �nal reaction network.

When considering the reduced list of generated reaction networks with feasible energetic
directions previously identi�ed, a reduction of the number of plausible networks was ob-
tained: 12 candidate structures composed by �ve (non-redundant) chemical reactions
pass the plausibility test with zero q value from the 144 generated networks. In all of
them the series of three consecutive chemical reactions (A1, A4 and A8) is veri�ed, i.e.,
AS GBL BDO THF, and no de�nition about the origins of BuOH and
PrOH species could be established. Notice that BuOH and PrOH are residual species in
this chemical system with great uncertainty related to their measurements. Figure 9.3
presents the limited superstructure of reaction networks indicating the identi�ed chemical
reaction occurring in that system (through full arrows) and the plausible ones to be fur-
ther identi�ed. In this �gure the blue colored arrow indicates that the reaction direction
was identi�ed as energetically feasible.
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AS GBL BDO THF

BuOH PrOH

r1 r4 r8

r6

r7
r9 r10

r11
r12

r13

Figure 9.3 Limited reaction network superstructure. Full arrows: identi�ed chemical
reactions. Dashed arrows: still uncertain pathways.

In this case, it is advisable to carry out additional experiments to completely elucidate
the reaction network, taking into account the error in closing the total mass balance in
this system, described previously. It is recommended to carry out at least 4 additional
experiments, starting with the �nal products until the intermediates, i.e., using a reverse
order to that of the reaction network. Experiments can be started, for example, with
the BuOH compound, to verify the formation of PrOH and to quantify it. Then the
experiment with THF can be carried out, to check if BuOH and PrOH are formed, and
if that PrOH formed also comes from THF or not. The next experiment would be to
try to hydrogenate BDO; depending on the results obtained, and comparing these results
with previous experiences, it will be possible to draw conclusions regarding the origin of
the terminal components. Finally, an isolated hydrogenation reaction of GBL may be
suggested, to con�rm that this compound only gives rise to BDO.

9.4 Implicit generation of reaction networks

The implicit generation of reaction networks is a more restrictive problem that attends
to the identi�cation of structures subjected to satisfy an additional criterion simultane-
ously with the original structural constraints. In this section two MILP formulations are
presented to generate reaction networks implicitly supported on experimental data infor-
mation: one considers the plausibility criterion, thus generating structures that present
positive reaction rates, and the other addresses the simultaneous identi�cation of the
reaction network structure and of the best kinetic expressions concerning each reaction
component.

The implicit generation of networks can be an advantage for large problem sizes, i.e., prob-
lems that present network superstructures with more than a hundred reaction components,
once it can avoid the combinatorial explosion of alternative networks when generating
them explicitly, thus, saving computation e�ort in the generation task and eliminating
the �ltering step. Notice that in the explicit generation of networks, the feasible solutions
are only structurally constrained to be consistent, without the need of using experimental
data.
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Next sections concern the implicit generation of (i) plausible reaction networks and (ii)
plausible networks with simultaneous kinetic model identi�cation. In Chapter 11, the
respective formulations are illustrated using the AP and P�zer case studies.

9.4.1 Implicit generation of plausible reaction networks

The implicit generation of reaction networks consists of the identi�cation of plausible net-
work structures that satisfy the mass balance closure subjected to positive reaction rates.
This approach di�ers from the one proposed in the original methodology diagram (Fig-
ure 4.1) in which the network identi�cation is performed in two decoupled steps, namely,
the generation of reaction networks (explicitly) regarding the structural modeling part in
Step 4, followed by the �ltering of these feasible structures supported on experimental data
using the plausibility criterion in Step 5. In the implicit network generation, these steps
are simultaneously performed, thus generating only plausible reaction network structures.

The formulation can be divided into two parts: one involving experimental data and
species mass balances, and other containing structural constraints for network building,
where continuous and discrete variables, respectively, make up the optimization problem.
On the data related part, a linear system of equations with positive (real) constrained
variables (plausible reaction rates) is optimally solved using the species concentration
derivatives calculated in Step 1. Regarding the structural modeling part, binary variables
are used to select chemical reactions from the superstructure of the network using com-
mon constraints of explicit generation, ensuring the obtainment of structurally consistent
networks. Previously, in Sections 8.5.1 and 8.5.2 two di�erent MILP formulations to ex-
plicitly generate networks were described, namely, the MTZ- and the Assignment-based
formulations, respectively. Although both can be used in the latter part of the implicit
generation, in the next section the MILP formulation based on assignment problem is
explained.

Assignment-based formulation

This formulation is inspired on the classical scheduling optimization problems involving
similar concepts of the assignment problem and state task network, where chemical reac-
tions can be compared to tasks and states to agents. The goal is to propose a schedule of a
total �xed amount of tasks (reaction network with �xed dimension equal to =), involving
every agent, constrained to be structurally feasible and with no task repetition. Since
some chemical reactions involve more than one species, precedence constraints among
those chemical reactions are required in order to guarantee consistency during the sched-
ule. This is achieved when considering a linear sequence of states that grows in depth,
in which every state ; ∈ est is characterized by the presence of chemical species B ∈ sp

and chemical reaction 9 ∈ rx through the binary variables ys;,B and yj;, 9 , respectively. In
every state of the tree branch, the number of chemical reactions is increased in one unity
when going depth, from the top to the bottom, until reach ; = =. Once in the �rst state,
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; = 0, there is no chemical reactions and only initial reactant species, the total number of
tree states is = + 1.

The objective function in (9.7), minimization of q , consists of minimizing the integral
of the absolute error (aeB,C,8,:) pro�le using Gauss quadrature rule, where ℎ is the length
of �nite element 8 ∈ fe, F is the collocation point weight at C ∈ cp and : ∈ ds the
dataset index. The absolute error is computed through eqs. (9.8) and (9.9), where its ar-
ti�cial module is estimated from inequalities constraints considering the di�erence among
species concentration derivatives 3B,C,8,: and its predicted values (model parameter and
model variable, respectively). The vector of predicted concentration derivatives (i.e., the
instantaneous rate of species change vector) is computed through the product stoichiomet-
ric matrix times reaction rate vector, which is represented in the algebraic equation format
in eqs. (9.8) and (9.9), where aB, 9 is the stoichiometric coe�cient of species B in reaction 9
and cr 9,C,8,: the respective instantaneous reaction rate. Since binary variables are used to
select chemical reactions as network components from the network superstructure, they
must be correlated with the continuous positive variable cr, as shown in (9.10), imposing,
on the one hand, null reaction rate values when the chemical reaction is discarded, and
on the other hand, an upper bound for the reaction rate when it is selected.

q =
∑
:∈ds

∑
8∈fe

ℎ8

2

∑
C∈cp

FC

∑
B∈sp

aeB,C,8,: (9.7)

aeB,C,8,: ≥ 3B,C,8,: −
∑
9∈rx

aB, 9cr 9,C,8,: , ∀B ∈ sp, C ∈ cp, 8 ∈ fe, : ∈ ds (9.8)

aeB,C,8,: ≥
∑
9∈rx

aB, 9cr 9,C,8,: − 3B,C,8,: , ∀B ∈ sp, C ∈ cp, 8 ∈ fe, : ∈ ds (9.9)

yj;, 9" ≥ cr 9,C,8,: , ; = =, ∀9 ∈ rx, C ∈ cp, 8 ∈ fe, : ∈ ds (9.10)

Equation (9.11) constraints the number of chemical reactions in the network to be equal
to =, at the bottom level (state) of the tree. At least one chemical reaction has to be
assigned to every state (unless the initial state, ; = 0), according to (9.12). The number
of chemical reactions has to increase in one unity when the number of states increases, as
shown in (9.13). When the chemical reaction is present in a state, it has to be also present
in the next state, according to (9.14). The chemical reactions can only, exclusively, be
present in the forward or the reverse direction, as de�ned by (9.15).
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= =
∑
9∈rx

yj;, 9 , ; = = (9.11)∑
9∈rx

yj;, 9 ≥ 1, ; = 1, . . . ,= (9.12)∑
9∈rx

yj;, 9 + 1 =
∑
9∈rx

yj;+1, 9 , ; = 0, . . . , = − 1 (9.13)

yj;, 9 ≤ yj;+1, 9 , ; = 0, . . . , = − 1, ∀9 ∈ rx (9.14)

yj;, 9 + yj;, 9+=rx ≤ 1, ∀; ∈ st, 9 = 1, . . . , =rx (9.15)

Three constraints are associated with the avoidance of inconsistent nonlinear networks.
The �rst one establishes that when the reaction is selected to the current state, the
respective reactant species have to be present in the previous state, eq. (9.16). The
second constraint establishes that when the reaction is selected, the product species have
to be present in the same state, according to (9.17). The last one establishes that when
the species are present at the current state, there has to be at least one chemical reaction
that produces these species, eq. (9.18).

yj;+1, 9 ≤ ys;,B, ; = 0, . . . , = − 1, ∀B, 9 ∈ nsr (9.16)

yj;, 9 ≤ ys;,B, ∀; ∈ st, B, 9 ∈ nsp (9.17)∑
9∈rx

yj;, 9 ≥ ys;,B, ∀; ∈ st, B, 9 ∈ nsp (9.18)

Equations (9.19) and (9.20) are related to species constraints, establishing, respectively,
that every species has to be veri�ed in the tree, and when the species is present in the
current state, it also has to be present in the next ones.

∑
;∈st

ys;,B ≥ 1, ∀B ∈ sp (9.19)

ys;,B ≤ ys;+1,B, ∀B ∈ sp, ; = 0, . . . , = − 1 (9.20)

Equations (9.7�9.10) concern the former formulation part related to data, equations
(9.11�9.20) concern the latter part related to network structure, and, equations (9.21�
9.25) are refereed to �xed variables in the initial tree state, variable lower bounds and
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domains. The entire MILP formulation to generate plausible reaction networks is given
by:

min
ys,yj,cr,ae

q

s.t. eqs. (9.7�9.20)

yj;, 9 = 0, ; = 0, ∀9 ∈ rx (9.21)

ys;,B = 0, ; = 0,∀B ∈ sp\rp, ys;,B = 1, ; = 0, ∀B ∈ rp (9.22)

yj;, 9 , ys;,B ∈ {0,1}, ∀B ∈ sp, 9 ∈ rx, ; ∈ st (9.23)

cr 9,C,8,: ∈ R+0, cr 9,C,8,: ≥ 0, ∀9 ∈ rx, C ∈ cp, 8 ∈ fe, : ∈ ds (9.24)

aeB,C,8,: ∈ R, ∀B ∈ sp, C ∈ cp, 8 ∈ fe, : ∈ ds (9.25)

The network dimension, the scalar =, is previously elucidated in the data dimension
analysis (Step 2), where the variant and invariant relationships are studied assisting the
data reconciliation task (Step 1), iteratively.

In order to enumerate the most plausible reaction networks, integer cut equations are
added to this formulation forbidding previous solutions to be conceived. For this purpose,
the parameter ccrx 9,8 stores the selected reactions 9 ∈ rx in the current solution iteration
8 ∈ it. Thus, after the �rst solution be obtained, this parameter assumes the optimal
value of the yj binary variable at the bottom level of the tree:

ccrx 9,8 = yj;, 9 , ∀9 ∈ rx, ; = =

After the �rst iteration, the integer cut equation turns active imposing that the combi-
nation of binary variables that assume unity values must be di�erent from the previously
formed combinations:∑

9∈rx
ccrx 9,8yj;, 9 ≤

∑
9∈rx

ccrx 9,8 − 1, ∀8 ∈ it, ; = = (9.26)

The number of enumerated solutions (sorted by the increasing q value) can be controlled
(i) when establishing a tolerance for the objective function value, i.e., a threshold for q ,
terminating the solve loop when there is no more solutions that satis�es this constraint,
or (ii) when limiting the desired number of solutions to be listed according to the cardinal
of the iteration set it.
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9.4.2 Implicit generation of plausible reaction networks with si-

multaneous kinetic model identi�cation

The implicit generation of plausible reaction networks can also involve the reaction kinetic
model identi�cation. In this case the network is obtained simultaneously with the best
kinetic expression for each chemical reaction (with adjusted parameters) that �ts (at most)
experimental data. Hence, the model (reaction network and kinetic expressions) that most
closely matches experimental data is obtained. This consists of a �ner �ltering of reaction
networks structures, joining the Steps 4, 5 and the initial phase of Step 6 (supported on
di�erential method) of the incremental methodology to develop chemical reaction models.
Incorporating reaction kinetic expressions in the reaction network identi�cation can be an
advantage for high dimension case studies, since it allows the reduction of computational
e�ort when decreasing (signi�cantly) the number of models to be generated.

The developed formulation is designed for identifying homogeneous reaction kinetics,
maintaining the network generation problem as a MILP. However, networks presenting
heterogeneous (nonlinear) kinetics can also be identi�ed, since they can be forced to be
adjusted through a combination of straight lines. Actually, the goal is to �nd a positive
correlation of the reaction rate with its reactant species, assisting the network identi�ca-
tion task. In cases described by nonlinear kinetics, the resulting linear correlation found
will present unreliable kinetic parameters, requiring the application of the entire Step 6
to better identi�cation of the kinetic expression of each model component, regarding the
network structure found. On the other hand, in cases described by linear kinetics, one
can directly proceed to the �nal phase of Step 6 for �nal parameter tuning using as initial
guesses the optimal values obtained, regarding the model structure identi�ed.

Constructing the superstructure of reaction kinetics

In order to identify the best kinetic expression, ensuring the spanning of all candidate
reaction rates that can be described by linear correlations with its parameters, the super-
structure of kinetic model expressions must be considered. For this purpose, the possible
homogeneous kinetic laws are automatically built based on reactant stoichiometric coe�-
cients. For the most general case where at most two reactant species and tree-molecular
reactions make up the reaction network superstructure, several kinetic expressions are
considered. For example, for the nonlinear chemical reaction 2A + B A1 C, �ve rate
expressions can be eligible:

A10 = :10�
2,

A11 = :11�
2�,

A12 = :12��,

A13 = :13�,

A14 = :14�,
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while for the linear reaction C A2 D, it is considered only one possible rate expression:

A2 = :2�.

Next section presents the formulation to generate reaction networks with identi�ed kinetic
expressions.

Formulation

When there is available more than one dataset with di�erent experimental temperature,
beyond establishing the dataset index : ∈ ds and the set of temperatures ts indexed by
6, it is also required to establish a controlling set that links these both sets, named as
dts6,: , which is only active for the pair temperature 6 and data set : in agreement with
data speci�cation.

The objective function has the same equation format used to generate plausible reaction
networks, where the integral of the absolute error (aeB,C,8,6,:) pro�le is minimized using
Gauss quadrature rule, as shown in (9.27), where the temperature index is also considered.
Note that the number of times that this equation is written still the same as in (9.7), since
the controlling set is only active for the matched pairs (6,:) ∈ dts.

q =
∑

6,:∈dts

∑
8∈fe

ℎ8

2

∑
C∈cp

FC

∑
B∈sp

aeB,C,8,6,: (9.27)

The absolute error calculation is performed through an arti�cial module of aeB,C,8,6,: , as
shown in eqs. (9.28) and (9.29), where from inequalities constraints, the absolute di�er-
ence among species concentration derivatives, 3B,C,8,6,: and its predicted values 3̂B,C,8,6,: , is
established.

aeB,C,8,6,: ≥ 3B,C,8,6,: − 3̂B,C,8,6,: , ∀B ∈ sp, C ∈ cp, 8 ∈ fe, 6,: ∈ dts (9.28)

aeB,C,8,6,: ≥ 3̂B,C,8,6,: − 3B,C,8,6,: , ∀B ∈ sp, C ∈ cp, 8 ∈ fe, 6,: ∈ dts (9.29)

The predicted concentration derivatives involve the computation of reaction kinetic laws
instead reaction �uxes (di�ering from the previous formulation), as shown in (9.30), where
aB, 9 is the species B stoichiometric coe�cient in reaction 9 , k 9,<,6 the kinetic parameter
(model variable) of reaction 9 ∈ rx, concerning the rate expression < ∈ km and temper-
ature 6 ∈ ts, and, 2 9,<,C,8,6,: the respective species concentration value. This last model
parameter is previously computed according to the reactant species involved in reaction 9 ,
which establishes the kinetic expression <. For example, the reaction A + B C has
three eligible homogeneous kinetic expressions, where this parameter assumes the species
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concentration of (i) A, (ii) B and (iii) the product AB.

3̂B,C,8,6,: =
∑
9∈rx

aB, 9

∑
<∈km

k 9,<,62 9,<,C,8,6,: ∀B ∈ sp, C ∈ cp, 8 ∈ fe, 6,: ∈ dts (9.30)

The chemical reactions that were selected as solution must present one (and only one)
kinetic rate expression, as shown in (9.31), where ym 9,< is used to select the kinetic model
< ∈ km for reaction 9 ∈ rx. Also, when the chemical reaction is unconsidered, no kinetic
model should be selected, equaling to zero both variables yj and ym.

yj;, 9 =
∑
<∈km

ym 9,<, ; = =,∀9 ∈ rx (9.31)

Since binary variables are used to select reaction kinetic models, they must be correlated
with the continuous positive variable k, as shown in (9.32), imposing, on the one hand,
null kinetic parameter values when the reaction model is discarded, and on the other
hand, an upper bound for this parameter when it is selected.

ym 9,<" ≥ k 9,<,6, ∀9 ∈ rx, < ∈ km, 6 ∈ ts (9.32)

The entire MILP formulation to generate reaction networks simultaneously identifying the
reaction kinetic expressions is given by the following equations, where equations (9.27�
9.30) concern the related data part, eqs. (9.31) and (9.32) are associated to the kinetic
model expression selection, equations (9.11�9.22) concern the formulation part related
to network structure, and, eqs. (9.33) and (9.35) are referred to variable lower bounds
and domains.

min
ys, yj, ym, k, ae

q

s.t. eqs. (9.11�9.22, 9.27�9.32)

yj;, 9 , ys;,B, ym 9,< ∈ {0,1}, ∀B ∈ sp, 9 ∈ rx, ; ∈ st, < ∈ km (9.33)

k 9,<,6 ∈ R+0, k 9,<,6 ≥ 0, ∀9 ∈ rx, < ∈ km, 6 ∈ ts (9.34)

aeB,C,8,6,: ∈ R, ∀B ∈ sp, C ∈ cp, 8 ∈ fe, 6,: ∈ dts (9.35)



Chapter 10

Step 6 � Reaction Kinetic Modeling

�A model that proves very inadequate will be quickly rejected, without contributing

much to the genesis and progression of knowledge, while a succession of adjust-

ments to a model that is useful, though not perfect, will lead to an increasingly

detailed representation of the phenomenon.�

� Antoine Danchin
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Posterior to the identi�cation of the plausible reaction networks, and their restriction
to a limited set of alternatives, the last step in a methodology for developing kinetic
models consists of the identi�cation of the appropriate models for the description of the
individual reactions considered, and in the numerical quanti�cation of the corresponding
parameters. Since the proposed reaction networks were obtained in a systematic approach,
it is expected that, in this �nal phase, models with a familiar physical-chemical structure
can be used. In addition to the correlation between variables, the proposed models must
also obey the usual criteria of causality and the law of mass action, in its non-equilibrium
form.

In addition to the new information produced, this step should also aid to reduce the
number of reaction networks that remain plausible with the available experimental data,
ultimately reducing the number of candidates essentially for a single network that can be
considered de�nitive. For this purpose, the need to obtain additional experiments, which
allow discriminating between the remaining model structures, can also be considered. In

269
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this sense, the design of new experiments with the aim to the optimal discrimination of

models (Seber and Wild, 2005) is one of the techniques that can be used to progressively
reduce the number of candidates. Similarly, the introduction of appropriate disturbances

during the experimental tests, (e.g., pulse change of a species concentration) is another
way of evaluating the model structure of the system in question. This technique has been
used to elucidate the type of causal connectivity, including the local species connection,
and the global structure of the reaction network (Vance et al., 2002). Finally, to determine
correlations among the identi�ed net reaction rates and the species concentrations, the
usual tools of exploratory data analysis can be used (Tukey, 1977).

This chapter is organized as follows: in Sections 10.1 and 10.2 a brief introduction and a
detailed description of the Step 6 are presented, respectively, and in Section 10.3 the AS
case study is considered to illustrate the proposed method.

10.1 Step 6 overview

Step 6 comprises two major sequential phases that are supported by di�erent approaches:
the di�erential method and the integral method (DM and IM, respectively). In general,
the �rst phase consists of linear regression procedures, with guaranteed global optima,
where the best model structure can be elucidated based on the reaction �uxes calculated
from the species concentration derivatives. If no kinetic structures can be found at the
end of this step, or even if more than one (or many of them) are viable, additional ex-
periments are needed to elucidate (or discriminate) the model(s). On the other hand,
when the kinetic model of the reaction is identi�ed, the true parameters are obtained in
a simultaneous nonlinear regression procedure in the last phase, using available concen-
tration data and initial estimates of parameters of the optimal DM solution. This �nal
optimization is susceptible to local optima, although bias-free. The condensed diagram
of Step 6 is presented in Figure 10.1.

When more than one dataset with distinct operating conditions is available, the optimal
parameters values may be correlated with the experimental temperature through suitable
relationships. To this end, two additional sequential approaches are proposed, where the
structure of the model with parameters as a function of temperature is elucidated in a �rst
phase and the �ne tuning of its energy parameters in a nonlinear regression free of bias is
considered in the �nal phase. During the model structure elucidation, it is identi�ed which
and how the parameters (or chemical reactions) are a�ected by temperature changes,
thus, indicating, for example, endo- and exothermic reactions, spontaneous or not. When
the results are analyzed, the model that does not present physical-chemical meaning
can be discarded, that is, the presence of physically meaningless temperature-parameter
correlations can evidence erroneous model structures. Thus, this criterion can be used
as an auxiliary tool to discriminate competitive models. In the last phase, nonlinear
regressions are part of the problem using the entire concentration data referring to all
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Figure 10.1 Condensed Step 6 �owchart.

experimental conditions. The �nal parameters are tuned in an optimization procedure in
the maximum likelihood sense, and their statistical metrics are evaluated.

10.2 Methodology description

The Step 6 comprises seven sequential sub-steps as shown by the rectangular boxes in Fig-
ure 10.2. The description of this step is presented next simultaneously with an illustrative
example.

6.1 Elucidation of potential kinetic expressions The reaction kinetic laws present
particular function shapes that can be observed when correlating the reaction rate
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Figure 10.2 Detailed Step 6 �owchart.

with the respective reactant species concentration. Therefore, after having selected
plausible reaction networks (with positive reaction rates), the rate pro�les are plot-
ted as a function of their reactant species to elucidate potential kinetic expressions
In this phase, in addition to elucidating the characteristic mathematical expression,
one can observe the presence of (i) inhibition (veri�ed when there is a delay in the
reaction rate pro�le), and/or (ii) a reversible component of the reaction.

Consider a chemical reaction, A 2B, with reversible component between two
observed species, as an example to be followed throughout this section. The net
reaction rate pro�le as a function of the normalized concentration of A species is
plotted in Figure 10.3. Several mathematical expressions of kinetic models can be
proposed to identify which one best describes the behavior of this pro�le.

6.2 Algebraic superstructure of kinetic expressions More than one type of kinetic
expression can be eligible to make part of the superstructure. A potential algebraic
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Figure 10.3 Net reaction rate plotted as a function of 2�. The concentration is di-
mensionless (molar ratio) and the reaction rate presents units of molar ratio per time.
Chemical reaction: A 2B.

superstructure of kinetic expressions could be

A =
:32� − :822� + :′32

0.5
�
− :′82�

1 +  �2� +  �2�

to allow the presence of (i) homogeneous and (ii) heterogeneous kinetics, both with
reversible components.

Rearranging the previous equation in a matrix format, a linear system of equations
is obtained:

r =
[
cA | − c2B |c0.5A | − cB | − rcA | − rcB

]
.



:3

:8

:′
3

:′8
 �

 �


The rate of change of A (C) with respect to its parameters corresponds to the design
matrix entries, forming the columns

[
cA | −c2

B
|c0.5
A
| −cB | −rcA | −rcB

]
.

Although several kinetic expressions are eligible to be part of the algebraic super-
structure, the resulting system must present a design matrix composed of linearly
independent column vectors, ensuring that the matrix is non-singular, or in other
words, guaranteeing that the model structure can be identi�ed.

6.3 Identi�cation of plausible kinetic expressions The individual adjustment of each
superstructure of kinetic expressions (one for each chemical reaction of the reac-
tion network) is performed by minimizing the squared error between the model
response values and the corresponding reaction rates calculated from the concentra-
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tion derivatives and the stoichiometry of the system. This adjustment is restricted
to present positive parameters. When the model parameters converge to insignif-
icant values in this procedure (: ≈ 0 or  ≈ 0), the previous structure assumes
di�erent forms of kinetic laws. In cases where heterogeneous laws are considered,
the adjustment must be performed simultaneously for all reaction components since
the adsorption term is common in all reactions. In these multiple response regres-
sion problems, the kinetic parameters concerning reversible reaction components can
become unidenti�able in some cases. Therefore, the design matrix must be carefully
constructed to ensure that it has full rank and that the problem is at most well-
posed. Thus, this �rst constrained regression elucidates the kinetic laws that are
plausible solutions when their parameters assume positive values, discarding those
that converge to extremely insigni�cant values (: ∼ 10−8).

Following the example, a new structure was found indicating that this chemical
reaction system is described by a heterogeneous kinetic law with an irreversible
chemical reaction, where both species A and B are adsorbed on the catalyst:

A =
:32�

1 +  �2� +  �2�

6.4 Best kinetic expression Once the plausible terms that remain in the full kinetic
expression are elucidated, two questions arise at this stage: could this resulting
model be over�tting the data? In the presence of a combination of kinetic models as
a plausible solution, which will be the best? Through the use of information criteria,
such as the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), the model
identi�cation is performed parsimoniously by considering a new constraint-free �t
for each parcel of the model and computing the corresponding BIC values, through

BIC =< ln(SSE/<) + ln(<)= (10.1)

where < is the number of data points and = is the number of degrees of freedom
(kinetic parameters). Therefore, the best tradeo� between the goodness of �t and
the number of parameters is established by the model with the lowest BIC.

In the example, three additional model parcels are considered:

A = :32�, A =
:32�

1 +  �2�
and A =

:32�

1 +  �2�

in addition to the complete structure identi�ed earlier. The best kinetic expression
with the lowest BIC value is in this case A = :32�/1+ �2�.

Thus, after the best (parsimonious) structure of the model has been incrementally
identi�ed, the di�erential approach ends here, as shown by the green area of the
block diagram in Figure 10.2. Still in Step 6, in the next phase the adjustment of
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the kinetic parameters of the model found is considered, adopting procedures based
on the IM indicated by the purple area in the diagram. Otherwise, if no structure
can be identi�ed, additional experiments are needed to provide more and better
data, aiding in the modeling identi�cation task in Step 7 (petrol blue box).

6.5 Optimal kinetic parameters The best kinetic expressions established for all chem-
ical reactions in the reaction network are taken to this step, where, �nally, the
global �t is performed minimizing the squared error between the experimental data
(measurements of concentration) and the response variables of the system of ODEs
integrated. This step is supported in IM, where parameter adjustment is performed
simultaneously for all chemical reactions present in the network in a nonlinear re-
gression procedure. Although this nonlinear regression may face local optima, the
procedure is bias-free, and the solution of the di�erential approach is used as an
initial estimate of the parameters to assist the optimization in �nding the global
optimum. Con�dence intervals for each kinetic parameter are also calculated, and
the optimal result obtained is the best identi�ed model.

6.6 Parameters with temperature dependence When there is more than one dataset
with di�erent temperatures, the kinetic parameters can be correlated with the tem-
perature using suitable equations, such as the Arrhenius equations (10.2) and van't
Ho� (10.3). In (10.2), �0 is the pre-exponential factor, a constant for each chemical
reaction, �0 is the reaction activation energy, ' is the universal gas constant and )
the experimental temperature:

: = �0 exp(−�0/') ) (10.2)

Considering heterogeneous reaction kinetics, at equilibrium, the adsorption parame-
ter  can be related to the Gibbs free energy change, Δ� , through Δ�03 = −') ln .
Also, under constant pressure and temperature conditions Δ�03 = Δ�03 − )Δ(03 ,
where Δ�03 and Δ(03 are the enthalpy and entropy changes, respectively, in the ad-
sorption reaction. Hence, when considering these both relationships, the following
expression arises in a van't Ho� equation form, where the natural logarithm of  
varies linearly with the inverse of temperature:

 = exp(−Δ�03/') + Δ(03/') (10.3)

Again, two sequential approaches can be considered to estimate the energy param-
eters: (i) an approximate method based on linear regression and (ii) a simultaneous
(and more rigorous) method where the parameters are �tted in a nonlinear regres-
sion procedure (and bias-free), supported by IM, using the previous solution as an
initial estimate.

In (i), the energy relationships are linearized by taking the natural logarithm of the
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optimal parameters correlated with the inverse of temperature. Thus, the activation
energy and the enthalpy of the adsorption reaction can be estimated through the
slope of the straight line for the Arrhenius and van't Ho� equations, respectively.
Procedure (ii) is covered in the next stage.

Considering the previous example, where the best structure achieved was A = :32�
1+ �2� ,

the both : and  will be correlated with experimental temperatures through:

ln(:3) = ln(�0) −
�0

')
, and ln( �) = −

Δ�0
03

')
+
Δ(0

03

'

The results of this approximate method can elucidate what are (and how) the kinetic
parameters sensitive to temperature changes in the system. For example, the hori-
zontal lines indicate that there is no temperature dependence, while the sign of the
slope (positive or negative) can indicate endo or exothermic reactions, spontaneous
or not, etc. Furthermore, the magnitudes of the values of the adsorption parameters
obtained can elucidate the type of adsorption of the reaction when coinciding with
pre-established characteristic intervals (from the literature).

6.7 Parameters with nonlinear temperature dependence Once the reactions in the
system that are sensitive to temperature changes are elucidated, a more rigorous
approach can be considered based on the IM. The same integration procedure con-
sidered in 6.5 is performed, but instead of adjusting the kinetic parameters (one for
each temperature), the energy parameters are adjusted by replacing the respective
model expressions that correlate the kinetic constant with the temperature in the
mass balance. Thus, through the minimization of squared error between measured
concentration data at several temperatures and predicted model species concentra-
tions, the energetic parameters are tuned in the maximum likelihood sense.

Continuing the previous example, considering three datasets ; = 1,2,3 with di�erent
temperatures, the optimization problem can be summarized as shown below. Note
that for this simple example, the mass balance is performed for both species B = 1,2 ≡
�,�, and with a single chemical reaction A 2B, where UB is the stoichiometric
coe�cient of the species B with U� = −1 and U� = +2.

min
�0,�0,

Δ�0
03
,Δ(0

03

3∑
;=1

2∑
B=1

=to∑
C=1

42
B,C,;

s.t. 4B,C,; = 2B,C,; − 2̂B,C,;
d2̂B,C,;

dC
= UB

�0 exp(−�0/'); )2�,C,;
1 + exp

(
−Δ�0

03
/'); + Δ(003/'

)
2�,C,;
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In this formulation, 2̂ is the model concentration calculated by solving the ODEs,
and 2 is the measurement of the experimental concentration.

However, these parameter-temperature correlations, (10.2) and (10.3), have some
drawbacks when considering their parameter estimates in a nonlinear multiresponse
regression. The format of these equations, as they were originally proposed, gen-
erally presents parameters with high correlation, translated by the almost linear
dependence between them (high collinearity index), and also, the optimization of
the resulting model can present di�cult convergence to the optimal solution due
to numerical problems, instabilities, and error propagation, consisting of an ill-
conditioned nonlinear problem. This kind of disadvantage can be mitigated when
considering an adequate reparametrization of the model, thus making the design ma-
trix well conditioned with a lower correlation between the model parameters. Some
reparametrizations of the Arrhenius equation have been proposed in the literature,
involving the use of scale factors, reference temperatures, and exponential operations
(Himmelblau, 1970; Schwaab and Pinto, 2007; Schwaab et al., 2008; Buzzi-Ferraris
and Manenti, 2010; Quaglio et al., 2019).

In the next chapter where the case studies are presented, the equations adopted for
the reparametrization of (10.2) were:

: = exp

(
U − V104

'

(
1

)
− 1

)ref

))
(10.4)

where U = ln: ()ref), ln: ()ref) = ln�0 − V104

')ref
and V = �010−4. And,

: = exp

(
�0 −

�0104

')

)
(10.5)

While the reparametrization adopted for (10.3) was

 = exp

(
q102

'
− \105

'

(
1

)
− 1

)ref

))
(10.6)

where q102 = Δ(0
03
− \105

)ref
, and, \ = Δ�0

03
10−5, which is similar to (10.4).

Equations (10.4) and (10.6) suggest almost an autoscaling format of the kinetic
parameters, since the inverse of experimental temperature is subtracted from the
inverse of reference temperature (like a mean centering), and then, weighted by a
factor (scaling operation). Therefore, the advantage of considering this equation
format is that from a good initial estimate for U (: ()ref) logarithm), it is possible to
better estimate the parameter V.
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10.3 Application example

The complete analysis of the AS case study is quite limited by the presence of signi�-
cant errors identi�ed previously in the closing of the total mass balance to the system.
Therefore, the uncertainty in the determination of the concentration pro�les is high, and,
consequently, it is very di�cult to propose a complete reaction network for this case.
Due to this fact, only a partial determination of the corresponding kinetic model will be
analyzed in this section, considering the sub-steps related to the di�erential method in
which the reaction rates can be individually analyzed.

In Section 9.3.1, the reactions that necessarily integrate the de�nitive reaction networks
were characterized:

A1 : AS GBL A4 : GBL BDO A8 : BDO THF

However, taking into account the superstructure of the candidate reaction networks for
this system (Figure 9.3), the determination of both A4 and A8 rates are dependent on the
reaction network considered, since the GBL and the BDO reagents can simultaneously
participate as reagents in other parallel reactions, depending on the particular network
considered. Consequently, in this case study, only a single kinetic model will be obtained
for the �rst reaction.

Figure 10.4 presents the rate pro�le of A1 as a function of reagent concentration obtained
using the continuous approximation of the concentration pro�les made in Step 1. The
behavior shown indicates an approximately linear reaction rate in the intermediate con-
centration zone, which rapidly tends to a constant value as the reactant concentration
increases. This behavior (pro�le shape) is compatible with an essentially irreversible
Langmuir-Hinshelwood kinetic response, given that it is a heterogeneous system with
the presence of a solid catalyst. As an alternative, the approximation of these data to
�rst-order kinetics was also studied for comparison purposes.

Figure 10.4 Reaction rate A1 as a function of AS concentration.
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Considering the Langmuir-Hinshelwood kinetics in its simplest form, this model assumes
the adsorption of the reactant on the surface of the catalyst, corresponding to the limiting
reaction step:

AS + X
:a,AS

:d,AS
ASX

ASX
:rs GBL + X

In this equation the constants are relative to adsorption (:a) and desorption (:d) of the
reagent AS, and X represents the active sites of the catalyst. The corresponding reaction
kinetic model may be written as:

A1 = :rs
 ASAS

(1 +  ASAS)
(10.7)

where  AS = :a,AS/:d,AS is the equilibrium constant.

Since the values of A1 were previously determined, by applying the di�erential method,
the two parameters of this model (:rs and  AS) can be determined by linear regression,
transforming the previous equation into the form

1

A1
= �

1

AS
+ � (10.8)

where:
� =

1

:rs AS
and � =

1

:rs

Figure 10.5(a) shows the transformed experimental data, and the adjustment obtained.
In this case, the kinetic parameters :rs = 1.83 M h−1 and  AS = 8.81 M−1, were obtained
using an objective function corresponding to the square residues of the model (10.8). The
residual value of the objective function was 15.97, in the units considered. Figure 10.5(b)
compares the experimental reaction rates produced by the previous model. As can be seen
through these last �gures, the adjustment achieved can only be considered reasonable, and
other forms of catalytic kinetic models more complex than (10.7) should be investigated.
However, this issue was not analyzed in this thesis, once again taking into account the
uncertainty in the original experimental data.

Considering the �rst order kinetics, the reaction rate as a function of AS reagent con-
centration was approximated to a straight line, as shown in Figure 10.6(a). Through the
linear regression between the A1 data and the AS concentration, considering the linear
model A1 = :1AS, it was obtained :1 = 2.82 h−1. The estimate of the total squared error
of the regression was in this case 19.72 M2 h−2. Figure 10.6(b) compares the experimental
reaction rate with that predicted by the linear model. In this case, despite the reaction
taking place in a catalytic medium, the 1st order kinetics presents results with similar
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(a) (b)

Figure 10.5 Chemical adsorption kinetics of A1. In (a) adjustment of the kinetic model
to A1 (continuous curve), and experimental data considered. In (b) comparison between
the model (green curve) and the experimental data (red curve).

quality to the previously considered Langmuir-Hinshelwood kinetic model.

(a) (b)

Figure 10.6 Homogeneous kinetics. In (a) linear approximation of reaction rate A1. In
(b) comparison between the model (green curve) and the experimental data (red curve).
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Chapter 11

Case Studies

�Out of intense complexities, intense simplicities emerge.�

� Winston Churchill
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This chapter presents the main results obtained from the application of the systematic
methodology for modeling chemical reaction systems to several case studies, namely, the
thermal isomerization of U-pinene in Section 11.1, the catalytic hydrogenation of maleic
acid in Section 11.2, and the pharmaceutical case study, P�zer, in Section 11.3. An
introduction to these case studies was presented in Section 1.5.

11.1 Isothermal isomerization of U-pinene

The thermal isomerization of U-pinene has been studied for several authors in the �eld of
kinetic modeling. Several datasets were found in the literature, respecting to isothermal
batch experiments in the temperature range 189.5�285 ◦C and with pure initial reactant
in liquid phase. In the original articles, the registered experiments consists of ten datasets
with di�erent initial and experimental conditions (Fuguitt and Hawkins, 1945, 1947). The
entire data shows an irregular structure, presenting in some experiments the absence of
particular species measurements, as well as few registers (only one measurement sample
and one replica). The pioneer authors commented about the di�culties in measuring
some of the residual species, namely the pyronenes1. Consequently, they considered the
isomers U- and V-pyronene as a single species in their registers (BP) and an estimate of
this species concentration, assuming a linear increase of BP produced with respect to the
amount of AP consumed (Fuguitt and Hawkins, 1947).

Fuguitt and Hawkins (1945) have suggested a reaction network, Figure 11.1(a), based on
their interpretation from data recovered. The reaction network (a) was used for parameter
�tting with di�erent optimization approaches by Box et al. (1973) and Tjoa and Biegler
(1991), both considering the same dataset concerning to the isothermal experiment at
204.5 ◦C with AP initial reactant. In 1981, Stewart & Sørensen proposed another reaction
network, Figure 11.1(b), based on the ten datasets and other considerations that allow for
a bias-free modeling approach for �tting kinetic parameters correlated with experimental
temperature (Stewart and Sørensen, 1981; Stewart et al., 1992). In this work we propose
a di�erent reaction network, Figure 11.1(c), that was identi�ed using the systematic
methodology to model chemical reaction systems.

The reaction network in (c) di�ers of (a) and (b) in the BP species origin, once it is pro-
duced from AP instead of from AO in a secondary step. Moreover, the identi�ed structure
presents a lower number of kinetic parameters than (b), once there is no redundant path-
way concerned to the origin of D species.

This case study is presented in separate parts. Section 11.1.1 presents how the model
structure was identi�ed. Section 11.1.2 addresses the parameters correlation with tem-
perature. In Section 11.1.3 the model proposed in this work is compared with the proposal

1The pyronenes presented boiling point between AP and LIM, and refractive index similar with LIM.
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Figure 11.1 Reaction network proposed by (a) Fuguitt and Hawkins (1945), (b) Stew-
art and Sørensen (1981) and (c) this work. The red arrows in (a) and (b) indicate chemical
reactions that are not present in (c).

by Stewart and Sørensen (1981), while in Section 11.1.4 it is compared with the model
proposed by Box et al. (1973) and Tjoa and Biegler (1991).

11.1.1 Finding the model structure

From Step 1 to Step 5 of the proposed methodology, the U-pinene case study was modeled
on the basis of two datasets with )1 = 189.5 ◦C and )2 = 204.5 ◦C (datasets #1 and #2),
both with AP initial reactant (Fuguitt and Hawkins, 1947). These datasets are the only
ones that contain all species registered, with an enough amount of measurements that
enabled the data reconciliation procedure to be well applied resulting in good estimates
of species concentration derivatives (Vertis et al., 2016).

The generation of chemical reactions resulted in 10 linear chemical reactions, listed in
Table 11.1. The results were obtained using GAMS® software with the commercial solver
CPLEX. The total CPU usage was 0.75 s using the formulation containing integer cut equa-
tions to enumerate alternative feasible solutions.

Table 11.1 Stoichiometric coe�cients (nre and npr) and respective linear chemical
reactions. Class of reactions: isomerization (1 � 6) and dimerization (7 � 10).

Index AP LIM AO BP D Reaction

1 -1 1 0 0 0 AP LIM
2 -1 0 1 0 0 AP AO
3 -1 0 0 1 0 AP BP
4 0 -1 1 0 0 LIM AO
5 0 -1 0 1 0 LIM BP
6 0 0 -1 1 0 AO BP
7 -2 0 0 0 1 2AP D
8 0 -2 0 0 1 2 LIM D
9 0 0 -2 0 1 2AO D
10 0 0 0 -2 1 2 BP D
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Energetic analysis of the 20 reaction �uxes (forward and reverse components) of the
listed chemical reactions was considered to identify their energetically viable reaction
�ux directions (net). The parameter values used to compute the standard potential of
the species are shown in Table 11.2. These values, together with polynomial forms for
�?,B , were retrieved from Aspen Properties®. For the BP and D species, the Δ�0

5 ,B,)ref

and Δ�0
5 ,B,)ref

were estimated using the Benson Group contribution method. Figure 11.2

presents the d�
/

db 9 pro�les. As can be observed on the right plot, the chemical reactions
relative to the dimerization (A7 − A10) are only feasible in the dimer formation direction.
The d�

/
db 9 of the other chemical reactions do not reach a value higher than 40 kJ mol−1,

indicating that an unique direction cannot be assertively identi�ed (Wells and Rose, 1986).
Hence, reactions A1 to A6 and their reverse counterparts are included as candidates in the
reaction network superstructure (Figure 11.3). Globally, instead of the original 20 distinct
reaction �uxes, 16 were considered as energetically feasible.

Table 11.2 Δ�0
5
and Δ�0

5
at )ref = 298 K, and `0 at ) = 204.5 ◦C. Units in kJ mol−1.

B Δ�0
5 ,298

Δ�0
5 ,298

`0

AP 216.0 28.3 328.9
LIM 202.1 6.4 319.9
AO 242.4 54.3 355.6
BP 208.8 2.4 332.9
D 240.2 198.3 265.4
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Figure 11.2 Gibbs free energy variations associated with the individual reactions.

The generation of reaction networks with this superstructure (Figure 11.3) was performed.
The number of generated reaction networks (without redundant pathways) decreased from
50 to 16, i.e., a reduction of 68% in the number of structures to be further analyzed. In
these solutions, the A9 reaction (2AO D) is present in all networks, as its occurrence
is known in the literature (Fuguitt and Hawkins, 1945). The 16 energetically feasible
reaction networks (composed of four chemical reactions) were classi�ed as plausible, since
these networks showed positive net reaction rates across the time domain.

However, when considering the list of 50 linear reaction networks generated in Step 4
of the methodology (without considering energetically favorable reaction directions), 31
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Figure 11.3 Linear superstructure with energetically feasible directions identi�ed in
blue arrows.

and 34 reaction networks were selected as plausible in relation to datasets )1 and )2,
respectively, for a threshold q < 0.005 established through the qualitative analysis of
the results obtained in Step 5. The ranking of these 50 network structures is shown in
Figure 11.4, where the networks are displayed (ranked) with increasing q value.

0.000

0.005

0.010

0.015

0.020

Rank

φ

Figure 11.4 Reaction networks ordered by the plausibility criterion using dataset T2.

When considering the implicit generation of reaction networks, 8 plausible reaction net-
work structures were generated with four positive net reaction rate pro�les, see Fig-
ure 11.5. The MILP formulation presented in Section 9.4.1 was run in GAMS® software
with the commercial solver CPLEX. The total CPU usage was 11.03 s.
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Figure 11.5 Linear graph representation of the eight plausible structures obtained in
the implicit generation of reaction networks. Notice that the 1st and the 7th networks in
this �gure correspond to the networks (a) and (c), respectively, in Figure 11.1.

After analyzing the individual plots of the net reaction rates as a function of the respec-
tive reactant species, the reaction kinetic expressions were proposed considering reversible
reaction components. Linear regressions for each network model were performed individ-
ually for each chemical reaction, and the best network together with its reaction kinetic
expressions could be found (based on the di�erential method), presenting �rst and sec-
ond order homogeneous kinetic laws, with reversible reaction components for A3 and A9
(Figure 11.6).

In the �nal phase of Step 6, where the integral method is performed using the original
experimental data, some changes were obtained in the model structure previously identi-
�ed. Using the : values from the di�erential method for every dataset as initial parameter
estimates, the di�erential mass balances (presented above) were numerically solved in a
nonlinear regression procedure without constraints. The results obtained are summa-
rized in Table 11.3, where the objective function value (SSE) related to each considered
method is also presented. The SSE concerns to molar ratios of species concentrations
(dimensionless). For both datasets, the :−3 showed no physical meaning converging to
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Figure 11.6 Reaction network identi�ed in Step 5 with 4 chemical reactions. Reversible
components of A3 and A9 were elucidated during the di�erential method of Step 6. Species
mass balances on the right-hand side.

negative values, and also, it presented (i) a great correlation with its opposite component
:3, (ii) poor con�dence intervals, and (iii) high ?-values (near to one). The same statistical
metrics were obtained when considering positive constraint to that parameter. Thus, the
reversible component A−3 was excluded of the proposed model as shown Figure 11.1(c),
consisting of a reaction network with a smaller number of parameters to be correlated
with temperature.

Table 11.3 Optimal kinetic parameters : × 103 in min−1 obtained at experimental
temperatures )1 = 189.5 ◦C and )2 = 204.5 ◦C. DM: di�erential method. IM: integral
method. CI: con�dence intervals. Results related to the reaction networks presented in
Figure 11.6 (*1) and Figure 11.1(c) (*2).

Parameter DM*1 IM*1 CI ?-val IM*2 CI ?-val

:1
)1 0.059 0.058 (0.056, 0.060) 0.000 0.058 (0.056, 0.060) 0.000
)2 0.220 0.223 (0.220, 0.225) 0.000 0.223 (0.220, 0.225) 0.000

:2
)1 0.033 0.026 (0.024, 0.029) 0.000 0.026 (0.024, 0.029) 0.000
)2 0.124 0.124 (0.121, 0.127) 0.000 0.124 (0.121, 0.126) 0.000

:3
)1 0.003 0.002 (-0.000, 0.005) 0.081 0.003 (0.001, 0.004) 0.001
)2 0.112 0.012 (0.009, 0.014) 0.000 0.012 (0.010, 0.014) 0.000

:−3
)1 0.002 -0.013 (-0.069, 0.043) 0.645 - - -
)2 0.030 -0.002 (-0.027, 0.022) 0.854 - - -

:9
)1 2.138 2.630 (0.497, 4.762) 0.017 2.621 (0.514, 4.728) 0.016
)2 3.167 4.971 (4.485, 5.457) 0.000 4.969 (4.281, 5.658) 0.000

:−9
)1 0.028 0.037 (-0.034, 0.107) 0.304 0.036 (-0.034, 0.105) 0.304
)2 0.165 0.138 (0.128, 0.147) 0.000 0.137 (0.095, 0.180) 0.000

SSE
)1 0.022 0.012 - - 0.012 - -
)2 0.003 0.001 - - 0.001 - -
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11.1.2 Parameter correlation with temperature

The di�erential mass balances with the respective : values replaced using (10.4) result in
the next system of equations:
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= −
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Parameter adjustments were obtained using Mathematica® 12.0 with the NonlinearMod-
elFit function. The CPU usage was 16 s in a quad core i7 Intel processor. In the �rst run,
the initial estimates of the parameters were considered by computing the logarithm of the
optimal values of : at the reference temperature, )ref = )2 = 477.65 K. Although bounds in
the V parameters were (initially) considered constraining them to be positive and inferior
than 250 kJ mol−1, these constraints never got active. No more than three iteration were
required to obtain the minimal value of the SSE, totaling 0.023120 in units of squared
molar concentration ratios. Table 11.4 presents the adjusted parameters with their con-
�dence intervals. All parameters presented a ?-value lower than 10−6, showing that they
have statistical signi�cance. The model simulation for the ten datasets is presented in
Figure 11.7 in comparison with the original data reported by Fuguitt and Hawkins (1945,
1947).

Table 11.4 Kinetic parameters tuned using data reported in Fuguitt and Hawkins
(1945, 1947). CI: Con�dence intervals, : ()ref) × 103 in min−1, �0 in min−1, and �0 in
kJ mol−1.

: 9 U CI V CI : ()ref) �0 �0

:1 -1.481 (-1.506,-1.454) 16.842 (16.426,17.258) 0.228 5.960×1014 168.416
:2 -2.152 (-2.192,-2.110) 17.381 (16.919,17.842) 0.116 1.184×1015 173.807
:3 -4.551 (-4.797,-4.304) 20.323 (19.347,21.299) 0.011 1.773×1017 203.227
:9 1.379 (1.290,1.468) 8.799 (8.218,9.380) 3.972 1.666×107 87.990
:−9 -2.121 (-2.288,-1.954) 10.405 (8.518,12.292) 0.120 2.869×107 104.049
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11.1.3 Parameter �tting in comparison with the Stewart & Sørensen

model

The 10 data sets presented by Stewart and Sørensen (1981) di�er from the original data
reported by Fuguitt and Hawkins (1945, 1947) in two respects: (i) the original mea-
surements were equally weighted to verify the overall mass balance and (ii) no related
assumptions the BP species was considered2, resulting in datasets with measures related
to the clustered species (no individual species measurements). Therefore, the species BP
is almost never recorded alone, appearing in measurements of clustered species (AP +BP
and BP + LIM) so as not to in�uence/bias the �t of the model parameters. The same
datasets reported by Stewart and Sørensen (1981) are considered here.

To adjust the model parameters, the previous ODEs system was numerically solved con-
sidering the initial conditions of each data set and the respective temperature of the ex-
periment. In addition, the use of {0,1} weights was necessary to activate and deactivate
the contribution of squared residues of species concentrations in the objective function,
since the residues of speci�c responses where no measurements are available should not be
evaluated. Furthermore, �ctitious species were additionally considered in the regression
data matrix representing the summed species. Therefore, an extension of the solution
list referring to the response variables of real species was made considering the �ctitious
species that are computed through the sum of the response variables of the model solved
numerically.

The results were obtained using Mathematica® 12.0 with the function NonlinearMod-
elFit. The CPU usage was 14 s in a quad core i7 Intel processor. The initial parameter
estimates were considered by computing the logarithm of the optimal values of : at the
reference temperature, )ref = )2 = 477.65 K, reported in Table 11.3. The results are pre-
sented in Table 11.5. All parameters presented a ?-value lower than 10−9, showing that
they have statistical signi�cance. The model simulation for the ten datasets is presented
in Figure 11.8 in comparison with Stewart & Sørensen model simulation and experimental
data. The SSE is 0.009915.

Table 11.5 Optimal kinetic parameters. CI: Con�dence intervals, : ()ref)×103 in min−1,
�0 in min−1, and �0 in kJ mol−1.

: 9 U CI V CI : ()ref) �0 �0

:1 -1.484 (-1.505,-1.462) 16.324 (16.000,16.648) 0.227 1.614×1014 163.243
:2 -2.168 (-2.199,-2.137) 16.922 (16.575,17.270) 0.114 3.671×1014 169.223
:3 -4.677 (-4.920,-4.433) 19.841 (18.796,20.886) 0.009 4.641×1016 198.406
:9 1.514 (1.419,1.609) 8.631 (8.137,9.126) 5.543 1.250×107 86.314
:−9 -1.977 (-2.122,-1.833) 10.183 (8.764,11.602) 0.138 1.894×107 101.831

2Stewart and Sørensen (1981) avoided using BP records calculated through a linear approximation
proposed by Fuguitt and Hawkins (1947).
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The structural model proposed by these authors consists of the reaction network in Fig-
ure 11.1(b). Kinetic expressions take the same format as (10.4) with reparameterized
kinetic constants, but no parameter scaling factor �0 (Stewart and Sørensen, 1981). The
simulation of their model was considered, presenting a total SSE of 0.028449. The un-
reparameterized parameters values are presented in Table 11.6.

Comparing the model simulations, a very similar goodness of �t (in terms of SSE) is
obtained for data sets #1 to #6. On the other hand, the literature model lost quality in
the prediction of data sets #7 to #10, showing a poor model-data agreement in relation
to the AO pro�les. From the simulation of the literature model, it is observed that the
species BP is produced when the experiment starts with AO (datasets #7 and #8) or
with D (datasets #9 and #10), although no measurements have been recorded for the
species BP. This result is in agreement with the structure of the proposed model, since
the species BP is formed in parallel with D from the reactant AO in the reaction network
(b).

Fuguitt and Hawkins (1945) commented that the experiments regarding datasets #7 to #10
were performed to study the dimerization reaction A9, concluding that D is formed from
AO in a reversible chemical reaction since an equilibrium relationship was established.
They also referred that the AO refractive index (RI) had decreased for experiments heated
for longer times, suggesting that the reason for that fact could be the formation of small
amounts of other compounds from AO, probably the pyronenes. However, they could
not measure any residual species, and, the RI decayed from 1.5412 to 1.5340, not quan-
titatively justifying (i) the presence of reaction A6, AO BP, and even more, (ii) the
presence of its reversible component as proposed by Stewart and Sørensen (1981). There-
fore, the reaction network (c) proposed in the thesis is preferable to describe this chemical
reaction system since it presents a better ability to predict data with a lower number of
parameters when compared to Stewart & Sørensen model.

Table 11.6 Equivalent kinetic parameters adjusted by Stewart and Sørensen (1981)
regarding the reaction network presented in Figure 11.1(b), with : ()ref) × 103 in min−1,
�0 in min−1, and �0 in kJ mol−1.

: 9 : ()ref) �0 �0

:1 0.240 2.179×1014 164.492
:2 0.128 1.171×1015 173.679
:6 0.276 1.155×1012 143.101
:−6 0.494 3.554×1012 145.254
:7 0.006 8.427×1012 165.817
:9 4.348 1.016×107 85.817
:−9 0.069 4.333×108 117.252
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11.1.4 Parameter �tting in comparison with the Box et al. and

Tjoa & Biegler models

Box et al. (1973) and Tjoa and Biegler (1991) studied the reaction kinetic modeling of the
U-pinene isothermal isomerization adopting di�erent optimization strategies. Box et al.
(1973) considered a reduced number of response variables from data, namely three linearly
independent variables, imposing two time-invariant relationships in the dynamic system:
the overall mass balance closure and the linear dependence of BP concentration related to
AP consumption, establishing that BP = 0.03(100 − AP). In addition to the classic least
squares regression procedure, these authors considered minimizing the determinant of the
matrix of squared residues related to concentration data using empirical eigenvectors (real
eigenvectors from the chosen response variables) and theoretical eigenvectors (orthonor-
malized vectors that maximize the data variance from the singular value decomposition),
�nding the parameter values which have the highest posterior density according to the
determinant criterion. Tjoa and Biegler (1991) presented another method to parame-
ter estimates based on orthogonal collocation on �nite elements, considering as objective
function the minimization of SSE using fourth order polynomials on ten �nite elements.

Several in common model characteristics were considered in both works: (i) same reaction
network structure as originally proposed by Fuguitt & Hawkins, Figure 11.1(a); (ii) pa-
rameter estimates supported on dataset #2, (original from Fuguitt and Hawkins (1947));
(iii) �rst order homogeneous kinetics for all chemical reactions (including dimerizations);
(iv) species stoichiometric coe�cients equal to unity, i.e., stoichiometric matrix corre-
sponds to an adjacency matrix; (v) parameters tuned using concentration ratios in units
of mass (weight percentages). As a result, the model proposed by Tjoa and Biegler (1991)
(reaction network, kinetic expressions and optimal parameters values) is exactly the same
of one of the proposals by Box et al. (1973), i.e., both works reported the same optimal
parameters values regarding the minimization of total SSE problem.

In order to perform the model comparison, the same conditions (ii) to (v) were adopted in
this work for parameter �ne tuning regarding the network in Figure 11.1(c). The resulting
di�erential mass balances are shown below, where �∗� di�ers : from previous models.

dAP(C)
dC

= −(:∗1 + :∗2 + :∗3)AP(C)

dLIM(C)
dC

= :∗1AP(C)

dAO(C)
dC

= −:∗9AO(C) + :∗2AP(C) + :∗−9D(C)

dBP(C)
dC

= :∗3AP(C)

dD(C)
dC

= :∗9AO(C) − :∗−9D(C)

The results were obtained using Mathematica® 12.0 with the NonlinearModelFit func-
tion. The CPU usage was 27 s in a quad core i7 Intel processor. The optimal parameter
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values with their con�dence intervals are presented in Table 11.7. All parameters pre-
sented a ?-value lower than 10−9, showing that they have statistical signi�cance.

The model simulation is presented in Figure 11.9, in comparison with the literature model
simulation (parameter values reported in Table 11.8). Although the number of parameters
regarding both reaction networks is the same, the model proposed in this work presents
a slightly better data agreement than the model proposed in literature with parameters
values obtained using SSE minimization. The simulation of the literature model regard-
ing the optimal parameter values from the minimization of determinant criterion showed
worst ability to predict data, especially in predicting BP species. However, the di�erence
in SSE values (14.061 vs. 19.880) does not justify a preference among the candidate reac-
tion networks (a) and (c). Nonetheless, weight concentration ratios (in percentage) were
used with kinetic expressions that varies linearly with the weight of reactant species, es-
tablishing that reactions occur in an one-to-one weight proportion, according to Lavoisier
rules. It is a correct approach from a mathematical and physical point of view, but it
does not allow the kinetic model identi�cation, namely the elucidation of the mass action
of power laws (in units of moles) that is happening in the system. Furthermore, in this
study only a single dataset was considered for parameter adjustment and, therefore, not
enough data were used to discriminate the origin of BP species.

Table 11.7 Optimal parameter values associated with the developed model.

Parameter : × 103 [min−1] CI

:∗1 0.059 (0.058,0.060)
:∗2 0.027 (0.026,0.028)
:∗3 0.003 (0.002,0.003)
:∗9 0.294 (0.247,0.340)
:∗−9 0.046 (0.029,0.062)
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Simulated model with adjusted k* parameters from

1: proposed model - min SSE
AP LIM AO BP D

2: Box et al. (1973) and Biegler and Tjoa (1991) - min SSE

AP LIM AO BP D

3: Box et al. (1973) - min Det using theoretical eigenvectors

AP LIM AO BP D

4: Box et al. (1973) - min Det using empirical eigenvectors

AP LIM AO BP D

Figure 11.9 Optimal model simulation in comparison with literature models from Box
et al. (1973) and Tjoa and Biegler (1991).
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Table 11.8 Optimal parameter values reported in Box et al. (1973) and Tjoa and
Biegler (1991) regarding the reaction network in Figure 11.1(a) and optimization ap-
proaches adopted. SSE: minimization of SSE, EE: minimization of determinant matrix
using empirical eigenvalues, TE: minimization of determinant matrix using theoretical
eigenvalues. Parameters : × 103 in min−1.

Parameter SSE EE TE

:∗1 0.059 0.060 0.060
:∗2 0.030 0.028 0.029
:∗6 0.021 0.004 0.005
:∗9 0.275 0.313 0.315
:∗−9 0.040 0.057 0.059

11.2 Hydrogenation of maleic acid (MAC)

Following the MAC case study introduced in Section 1.5.3, this section presents the re-
sults obtained from applying the methodology to this case study, presenting (i) how the
model structure was found in Section 11.2.1 and (ii) the correlation of parameters with
temperature in Section 11.2.2.

11.2.1 Finding the model structure

During the systematic methodology for developing chemical reaction models, the identi-
�cation of the reaction network was initially performed separately for each data set with
di�erent experimental temperatures in order to verify how the model structure behaves
under di�erent experimental conditions.

In Step 1, good estimates of species concentration derivatives were obtained for each
dataset through the data reconciliation procedure. At this stage, global mass conservation
was imposed at each collocation point on each �nite element. The pro�les of the individual
species are shown in Figure 11.10 referring to the T1 dataset, where the vertical lines (on
the grid) indicate the �nite elements equally distributed in the time horizon, the black
dots are the experimental data and the continuous pro�les are the optimal results of
the data reconciliation procedure. The smoothed pro�les obtained are the basis for the
identi�cation of the model structure, allowing the selection of plausible reaction networks
and expressions of viable kinetic models supported by the di�erential method.

The data dimension analysis, in Step 2, allowed the data space characterization identifying
the need of 4 extents/chemical reactions to describe the concentration changes among the
�ve observed species. This result con�rms the prior assumption about only a single time-
invariant relationship exists in this system, i.e., the overall mass conservation.

During Step 3, the superstructure of the reaction network (Figure 11.11) was obtained,
taking into account (i) the reaction stoichiometry, (ii) the data consistency criterion,
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Figure 11.10 Reconciled data for dataset T1 concerning the MAC case study.

and (iii) the thermodynamics of the reactions. The list of generated chemical reactions is
presented in Table 11.9, showing only the observed species. The stoichiometry of this set of
chemical reactions spans the data space identi�ed in the previous step. Table 11.10 shows
the negative changes of the standard Gibbs free energy at each experimental temperature
for each chemical reaction individually, indicating the feasible energetic direction of the
respective net reaction �ux. For this case study, the amount that contributes to the
Gibbs free energy change related to the change in species activities is insigni�cant when
compared to the contribution related to the change in the standard chemical potential of
the species. Thus, eq. (7.15) was approximated to

d�

db 9

����
),%,b 9 ′

≈
∑
B∈st

aB, 9`
0
B , ∀9 ∈ rx, 9 ′ ≠ 9
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Table 11.9 Target factor analysis. Euclidean norm of the error of stoichiometric vectors
projection in the data variant space of dimension four.

9 A 9 ‖v − projSv‖ × 1015

1 MAC AS 0.631
2 THF BuOH 8.851
3 GBL THF 6.056
4 AS GBL 4.567
5 GBL BuOH 2.901
6 MAC GBL 4.555
7 AS THF 1.741
8 MAC THF 1.749
9 AS BuOH 7.305
10 MAC BuOH 7.296

Table 11.10 List of stoichiometric balanced chemical reactions with negative standard
Gibbs free energy changes at each experimental temperature. Units in kJ mol−1.

9 A 9
∑
B∈st aB, 9`

0
B |)1

∑
B∈st aB, 9`

0
B |)2

∑
B∈st aB, 9`

0
B |)3

1 MAC + H2 AS -14.270 -9.132 -3.994
2 THF + H2 BuOH -57.330 -55.995 -54.659
3 GBL + H2 THF + H2O -6.498 -4.887 -3.277
4 AS + 2H2 GBL + 2H2O -48.909 -49.274 -49.639
5 GBL + 3H2 BuOH + H2O -63.828 -60.882 -57.936
6 MAC + 3H2 GBL + 2H2O -63.179 -58.406 -53.633
7 AS + 4H2 THF + 3H2O -55.407 -54.161 -52.916
8 MAC + 5H2 THF + 3H2O -69.677 -63.293 -56.910
9 AS + 5H2 BuOH + 3H2O -112.737 -110.156 -107.576
10 MAC + 6H2 BuOH + 3H2O -127.007 -119.288 -111.569

In Step 4, 24 linear reaction networks composed by 4 chemical reactions were generated
from the reaction network superstructure in Figure 11.11. Two plausible reaction networks
(named S13 and S14) were identi�ed in Step 5, taking into account the three datasets
analyzed individually. The S14 network consists of the same structure that was proposed
in the literature. The unique di�erence among S13 and S14 networks is the BuOH prece-
dence: in S13 it is formed from A5 with GBL as reactant, while in S14 from A2 with THF
as reactant species, see Figure 11.12. It was not possible to elucidate which structure is
the real reaction network, as both A2 and A5 showed small reaction extents, thus producing
residual amounts of BuOH during the three experiments.

However, S13 and S14 were carried out in Step 6 to identify the best kinetic model
for this system. Based on the analysis of experimental data and prior knowledge of
the literature, LH-type kinetic expressions with one and two active sites in the catalyst
were proposed. The algebraic superstructures of these kinetic expressions are shown
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in (11.1) and (11.2), where �rst- and second-order polynomials describe the adsorption
phenomenon, respectively.

r1

r8

r10r6

r7

r9r4

r2r3

r5

MAC

AS

THF

BuOHGBL

Figure 11.11 Reaction network superstructure.

MAC AS GBL

THF

BuOH

r1 r4

r3

r2

r5

Figure 11.12 Plausible reaction networks. The reactions A1, A3 and A4 belong to both
networks, A5 (blue) to S13 con�guring a scheme with parallel pathways and A2 (red) to
S14, a single (in series) pathway. Full arrows: identi�ed chemical reactions. Dashed
arrows: plausible reactions that may occur exclusively in the system.
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A 9 =
:′9�reac, 9

1 +  MACMAC +  ASAS +  GBLGBL +  THFTHF +  BuOHBuOH
, ∀9 ∈ ( (11.1)

A 9 =
:′9�reac, 9

(1 +  MACMAC +  ASAS +  GBLGBL +  THFTHF +  BuOHBuOH)2
, ∀9 ∈ (

(11.2)

The parameter related to hydrogen adsorption  H2
is unidenti�able since the H2 con-

centration does not change during the isobaric and isothermal experiment, assuming a
gas-liquid equilibrium. Hence, H2 contribution in the adsorption phenomenon cannot be
evaluated, although equations (11.1) and (11.2) can express this constant term through a
simple equation rearrangement.

Multiple response linear regression was considered with all parameters constrained to be
positive in the superstructure (11.1). After identi�ed the plausible adsorption terms that
remain in the model, parameter estimates without constraints were performed for ev-
ery potential combination and, BIC values were computed. The same procedures were
performed for the nonlinear case when considering the kinetic superstructure (11.2), al-
though with nonlinear regression optimization solvers. These problems were formulated
and solved in Mathematica® 12.0 software using local and global solvers, such as Find-
Minimum and NMinimize, respectively. Several optimization methods (stochastic and de-
terministic) were tested including Interior Point, Newton, Nelder-Mead, Random Search,
Simulated Anealling, and Di�erential Evolution.

Four models have established good tradeo�s between data agreement and number of model
parameters. The models associated with (i) reaction network S13 are presented by equa-
tions (11.3) and (11.4) in Figure 11.13, and, (ii) reaction network S14, equations (11.5)
and (11.6) in Figure 11.14. The four kinetic models presented a single adsorbed species in
the catalyst: the initial reactant, even with a di�erent number of active sites on the cata-
lyst. Henceforth the Langmuir-Hinshelwood kinetic models obtained with denominators
of 1st and 2nd order will be called LH1 and LH2, respectively. In the following text the
four models will be referred as (i) S13LH1, model (11.3); (ii) S13LH2, model (11.4), (iii)
S14LH1, model (11.5); and (iv) S14LH2, model (11.6). The acronym SSE, sum (total) of
the square error, is used during this section to report the value of the objective function
related to the adjustment of the parameters under analysis and, thus, SSE can present
di�erent units depending on the adjustment in question.
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Figure 11.13 DM results: reaction network S13; models S13LH1 in (11.3) and S13LH2
in (11.4). The plots (a � f) represent the respective simulation of the model with param-
eters adjusted using DM. SSE ×105 in min−2 related to the reaction rates adjustment in
units of squared molar ratio per time.



11.2 Hydrogenation of maleic acid (MAC) 303
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2nd order model results
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k1 → 0.0790784
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Results S13 for all data sets
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1st order model results

Material

balance

MAC′[t] ⩵ -
MAC[t] k1

1+MAC[t] KMAC

AS′[t] ⩵
MAC[t] k1

1+MAC[t] KMAC
-

AS[t] k4
1+MAC[t] KMAC

GBL′[t] ⩵ -
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1+MAC[t] KMAC
+
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1+MAC[t] KMAC
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1+MAC[t] KMAC

THF′[t] ⩵
GBL[t] k3

1+MAC[t] KMAC

BuOH′[t] ⩵
GBL[t] k5

1+MAC[t] KMAC

Data

sets

T1 = 503 K T2 = 523 K T3 = 543 K

Optimal k

values

k1 → 0.018878
k3 → 0.0013086
k4 → 0.00273573
k5 → 0.000442497
KMAC → 1.52599

k1 → 0.0508033
k3 → 0.00195255
k4 → 0.00501161
k5 → 0.000365151
KMAC → 0.0979302

k1 → 0.0779706
k3 → 0.00629304
k4 → 0.00892628
k5 → 0.00058306
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function
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2nd order model results

Material
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1st order model results
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1+MAC[t] KMAC

Data

sets

T1 = 503 K T2 = 523 K T3 = 543 K

Optimal k

values

k1 → 0.0188359
k2 → 0.00175802
k3 → 0.00175103
k4 → 0.0027344
KMAC → 1.51947

k1 → 0.0508053
k2 → 0.000674822
k3 → 0.00229173
k4 → 0.00501163
KMAC → 0.0979789

k1 → 0.0779706
k2 → 0.00110616
k3 → 0.0068761
k4 → 0.00892628

Obj.

function

5.38049×10-6 0.0000290033 0.0000592417

Simulated

model

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

t [min]

C
[%

M
]

Data set T1 = 503 K

cinética LH

Rede plausível 2

SSE = 0.00986991
MAC

AS

GBL

THF

BuOH

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

t [min]

C
[%

M
]

Data set T2 = 523 K

cinética LH

Rede plausível 1

SSE = 0.0255741

0 50 100 150 200 250 300 350

0.0

0.2

0.4

0.6

0.8

1.0

t [min]

C
[%

M
]

Data set T3 = 543 K

cinética homogénea

Rede plausível 2

SSE = 0.0758618

2nd order model results
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values
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KMAC → 0.636241
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k3 → 0.0022905
k4 → 0.00498132
KMAC → 0.102368

k1 → 0.0790784
k2 → 0.00110616
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1st order model results
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Data

sets
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Optimal k

values

k1 → 0.0188359
k2 → 0.00175802
k3 → 0.00175103
k4 → 0.0027344
KMAC → 1.51947

k1 → 0.0508053
k2 → 0.000674822
k3 → 0.00229173
k4 → 0.00501163
KMAC → 0.0979789

k1 → 0.0779706
k2 → 0.00110616
k3 → 0.0068761
k4 → 0.00892628
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2nd order model results
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(1+MAC[t] KMAC)2
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values
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k2 → 0.00110616
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1st order model results

Material

balance
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GBL′[t] ⩵ -
GBL[t] k3

1+MAC[t] KMAC
+

AS[t] k4
1+MAC[t] KMAC

THF′[t] ⩵ -
THF[t] k2

1+MAC[t] KMAC
+
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Data

sets
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Optimal k

values

k1 → 0.0188359
k2 → 0.00175802
k3 → 0.00175103
k4 → 0.0027344
KMAC → 1.51947

k1 → 0.0508053
k2 → 0.000674822
k3 → 0.00229173
k4 → 0.00501163
KMAC → 0.0979789
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1st order model results
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Figure 11.14 DM results: reaction network S14; models S14LH1 in (11.5) and S14LH2
in (11.6). The plots (a � f) represent the respective simulation of the model with param-
eters adjusted using DM. SSE ×105 in min−2 related to the reaction rates adjustment in
units of squared molar ratio per time.

All regression procedures so far have been performed by minimizing the SSE between
reaction rates based on DM, although model evaluation is done by analyzing the error in
the concentration data when simulating the integrated di�erential models using the �tted
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parameters, (see RMSE values at DM columns of Table 11.11). The kinetic expressions
LH1 and LH2 presented a similarly satisfactory behavior for both networks S13 and S14,
when simulating models with adjusted parameters and evaluating the agreement between
the model and the experimental data. Regarding the adjustment performed on the dataset
T3, the LH1-type kinetic models converged to 1st order homogeneous kinetics ( "�� ≈ 0).

Nonlinear regression procedures based on IM, minimization of SSE between model concen-
tration (integrated pro�les) and experimental data, were also performed in Mathematica®
12.0 software using the same solvers described above and initial parameter estimates given
by the optimal solutions obtained with DM. The objective function values are presented
in Table 11.11 in comparison with the simulated models from (i) literature, named as
Chaudhari (�rst author), and (ii) DM solutions. The optimal kinetic parameters are
presented in Table 11.12 for both DM and IM approaches.

Table 11.11 Root mean square error (RMSE) in concentration data. Results obtained
from DM and IM in comparison with the simulated literature model. Units in rooted
mean squared molar ratio, dimensionless.

Model
T1 = 503K T2 = 523K T3 = 543K
DM IM DM IM DM IM

S14
LH1 0.017 0.014 0.027 0.019 0.047 0.029
LH2 0.022 0.015 0.028 0.019 0.047 0.020

S13
LH1 0.016 0.014 0.027 0.018 0.039 0.028
LH2 0.018 0.015 0.027 0.018 0.039 0.019

Chaudhari 0.065 0.072 0.042

Table 11.12 Optimal kinetic parameters for datasets T1, T2 and T3. DM: di�erential
method and IM: integral method. Units of : × 102 in min−1 and  is dimensionless.

T1 = 503K T2 = 523K T3 = 543K
Parameters LH1 LH2 LH1 LH2 LH1 LH2

DM IM DM IM DM IM DM IM DM IM DM IM

S14

:1 1.884 2.254 1.921 2.105 5.081 5.619 5.571 5.595 7.797 5.764 7.908 11.194
:2 0.176 0.157 0.175 0.152 0.067 0.060 0.067 0.060 0.111 0.039 0.111 0.050
:3 0.175 0.161 0.173 0.156 0.229 0.218 0.229 0.218 0.688 0.656 0.688 0.688
:4 0.273 0.284 0.243 0.274 0.501 0.583 0.498 0.581 0.893 1.083 0.893 1.298

 MAC 1.519 2.244 0.636 0.780 0.098 1.000 0.102 0.439 - - 0.007 1.067

S13

:1 1.888 2.251 1.724 2.105 5.080 5.612 5.092 5.588 7.797 5.809 8.616 11.502
:3 0.131 0.126 0.131 0.123 0.195 0.193 0.195 0.193 0.629 0.623 0.630 0.645
:4 0.274 0.284 0.266 0.275 0.501 0.584 0.501 0.583 0.893 1.088 0.897 1.303
:5 0.044 0.035 0.044 0.035 0.037 0.027 0.037 0.027 0.058 0.040 0.067 0.048

 MAC 1.526 2.238 0.525 0.779 0.098 0.986 0.049 0.433 - - 0.053 1.089

The IM results show a better data agreement when compared to the DM results, see
Table 11.11. This is an expected result since the regression procedure in DM is done with
reaction rates, establishing an indirect adjustment of the concentration, while in IM, the
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adjustment is performed directly on the concentration measurements. In addition, notice
that the former method is biased once the reaction rates are computed from concentration
derivatives estimates, while the latter is bias-free. However, the better �t performance in
IM does not exclude the need of using DM at all, once the information related to concen-
tration derivatives enables the �nding of model structures: reaction network (Step 5) and
kinetic expressions (Step 6 initial phase).

The simulations of the models using the optimal parameters obtained through the IM are
presented in Figure 11.15. In this �gure, similarly to the DM results, the LH1 and LH2
kinetic models do not show signi�cant di�erences, i.e., the species concentration pro�les
of the LH1 and LH2 kinetic models respecting the same network are overlapped in all
plots, except for the pro�le of BuOH in the dataset T3. The same result of overlapping
pro�les is presented when comparing the concentration pro�les of networks S13 and S14
with the exception of the BuOH pro�les where a notable di�erence can be observed. This
di�erence happens due to BuOH's origin, where in S13 it is produced from GBL reactant
in A5, while in S14 network from THF reactant in A2 chemical reaction. However, note that
the concentration of BuOH is much lower (residual) than the other species and therefore
the di�erence between the experimental data and the simulated model pro�les does not
a�ect, to the same extent as the other species, the value of the objective function. In
addition, in each plot of this �gure, the di�erence between the pro�les of the optimal
models and the literature model (Chaudhari's model) is evident, where the literature
model presented the worst data agreement.

Therefore, it is clear that the common reaction rates in S13 and S14 (A1, A3 and A4)
assume the same value over time, even with the di�erent kinetic expressions of LH1 and
LH2 models. To understand the cause of the similar behavior presented by the LH1
and LH2 models, an additional analysis was performed comparing their adsorption terms
(denominators). In Figure 11.16 the adsorption terms were plotted as a function of MAC
concentration. For LH1-type models, the adsorption terms assume a straight line, where
 MAC is its slope, while in LH2-type models the  MAC is the slope of the squared root
of the respective response pro�le. In Figure 11.16(a) the pro�les respecting S14LH1 and
S14LH2 are overlapped by S13LH1 and S13LH2, respectively, and in (c) only LH2-type
models are presented since for data T3 the models LH1-type converged to homogeneous
models (with no adsorption term). From this �gure, it can be seen that both LH1- and
LH2-type models presented similar straight line pro�les, and therefore, the adsorption
phenomenon occurs in the same extent for every model. Since the denominators are
pretty the same, the numerators are idem in every reaction rate. As long as the initial
reagent is present in the reaction mixture the adsorption term in�uences every chemical
reaction in both networks with LH1 and LH2 kinetics, in such a way that this in�uence
is greater in A1 > A4 > A3. Therefore, there is enough freedom for the quadratic parcel in
the denominator of the LH2-type model to converge approximately to a linear parcel in
the denominator of the LH1-type model. This means that both models LH1 and LH2 are
undiscriminating, or indi�erent, since they produce almost the same response.
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Figure 11.15 IM results. Experimental data shown by black dots. Comparison of
individual species concentration pro�les from S13LH1, S13LH2, S14LH1, S14LH2 and
literature model. Simulation of models for (a) Data T1; (b) Data T2 and (c) Data T3.
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Figure 11.16 Comparison of reaction kinetic adsorption terms as a function of the
initial reactant concentration for S13LH1, S13LH2, S14LH1 and S14LH2 model in (a)
dataset T1, (b) dataset T2 and (c) dataset T3.

11.2.2 Parameter correlation with temperature

Since there are three sets of data available with di�erent temperatures, it is possible to
study the dependence of the parameters on temperature. We hope that based on the
correlation found it will be possible to discriminate the candidate models, identifying
which one is the true one. Both methods described in Steps 6.6 and 6.7 of Chapter 10
were considered for this case study. During Step 6.6, the natural log of : = 5 () ) and
 = 5 () ) were considered using eqs. (10.2) and (10.3), respectively, to obtain their linear
dependence with the inverse of the temperature. The results obtained are presented in
Table 11.13 and Figure 11.17.

In Table 11.13, the parameters �0 related to the reactions A2 and A5 (those that produce
BuOH) assume approximately null values, with no physical meaning. The estimation of
these parameters may lead to problematic solver convergence and sti�ness issues in the
next full nonlinear regression procedure. Also, many line slopes presented negative values
which do not confer realistic results for �0 parameters. Therefore, regarding the available
experimental data for this case study, the proposed linear method of Step 6.6 did not run
well, presenting unreliable parameter estimates. First of all, three points for adjusting
two variables consists of a very bad regression situation, since the number of points for
model regression is very small. Second, no signi�cant variation of ln(:) = 5 (1/) ) could
be observed in these pro�les, suggesting that perhaps for this case study it would be
necessary to carry out experiments with a wider range of temperatures to observe that
kinetic parameter dependence with experimental temperature. And �nally, the regression
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Table 11.13 Parameter values from linear regression. Results concerning the models:
(a) S14LH1, (b) S14LH2, (c) S13LH1 and (d) S13LH2; from top to bottom. Parameters
: × 104 and �0 × 105 values in min−1 m6 kg−1 kmol−1, �0 and Δ� in kJ mol−1, Δ( in
J mol−1 K−1, and  MAC is dimensionless.

:1 :2 :3 :4 :5  MAC

(a)

)1 3.731 0.261 0.266 0.470 - 2.244
)2 5.248 0.056 0.204 0.544 - 1.000
)3 2.399 0.016 0.273 0.451 - -
�0 0.136 0.000 3.200 2.978 - -
�0 -24.238 -157.043 1.152 -2.132 - -
Δ( - - - - - -168.962
Δ� - - - - - -88.369

(b)

)1 3.486 0.251 0.259 0.454 - 0.780
)2 5.225 0.056 0.204 0.543 - 0.439
)3 4.659 0.021 0.286 0.540 - 1.067
�0 2121.750 0.000 8.255 51.006 - -
�0 16.842 -141.910 5.239 9.997 - -
Δ( - - - - - 29.204
Δ� - - - - - 16.719

(c)

)1 3.726 - 0.208 0.470 0.060 2.238
)2 5.241 - 0.181 0.546 0.025 0.986
)3 2.418 - 0.259 0.453 0.017 -
�0 0.153 - 34.962 3.153 0.000 -
�0 -23.733 - 12.144 -1.899 -73.426 -
Δ( - - - - - -171.529
Δ� - - - - - -89.647

(d)

)1 3.485 - 0.204 0.455 0.058 0.779
)2 5.219 - 0.180 0.545 0.025 0.433
)3 4.788 - 0.269 0.543 0.020 1.089
�0 3050.170 - 73.085 53.389 0.000 -
�0 18.381 - 15.327 10.182 -60.039 -
Δ( - - - - - 31.531
Δ� - - - - - 17.925

points did not form a linear trend, showing very close and misaligned values. In conclusion,
this method was not able to discriminate between the four candidate models, since the
results obtained are not realistic, so we were unable to interpret the results. But even
so, the nonlinear correlation of the parameters with the temperature must be considered,
because in this case the regression is performed with more data, and therefore a better
performance of the method is expected.

During Step 6.7, the nonlinear regression procedure is considered by minimizing the SSE
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Figure 11.17 Linear regression results for Arrhenius and van't Ho� parameters tuning.
Since the models LH1 converged to homogeneous kinetics at temperature )3, there is no
experimental point for the adsorption term 1/)3.

in concentration data concerning the three datasets simultaneously. The reparametriza-
tion of kinetic parameters : and  (adsorption kinetics) presented in (10.4) and (10.6),
respectively, was adopted for this case study. The reparameterized species mass balances
assume the generic format as shown in eqs. (11.7) and (11.8), where F represents the
catalyst mass concentration, 2reac, 9 (C) the reactant species concentration of the respective
chemical reaction 9 ∈ rx, aB, 9 the stoichiometric coe�cient of species B ∈ sp in the reaction
9 ∈ rx, ) the experimental temperature, H2() ) the hydrogen concentration in liquid phase
computed using Henry's law for every experimental temperature, and )ref the reference
temperature, 523 K.

d2B (C)
dC

= FH2() )
∑
9∈rx

aB, 9

exp
(
U 9 −

V 910
4

'

(
1
)
− 1
)ref

))
2reac, 9 (C)

1 + exp
(
q102

'
− \105

'

(
1
)
− 1
)ref

))
MAC(C)

∀B ∈ sp (11.7)

d2B (C)
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= FH2() )
∑
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aB, 9

exp
(
U 9 −

V 910
4

'

(
1
)
− 1
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))
2reac, 9 (C)(

1 + exp
(
q102

'
− \105

'

(
1
)
− 1
)ref

))
MAC(C)

)2 ∀B ∈ sp (11.8)

Thus, for each model LH1-type (S13LH1 and S14LH1) a system of ODEs is established
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from (11.7), as the same for each LH2-type (S13LH2 and S14LH2) from (11.8). For
example, the ODEs respecting the S13LH1 model is represented in (11.9).

dMAC(C )
dC

= −
FH2() ) exp
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4
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1
)
− 1

)ref

))
MAC(C )

1 + exp
(
q102

'
− \105

'

(
1
)
− 1

)ref

))
MAC(C )

dAS(C )
dC

=FH2() )
exp

(
U1 − V110

4

'

(
1
)
− 1

)ref

))
MAC(C ) − exp

(
U4 − V410

4

'

(
1
)
− 1

)ref

))
AS(C )

1 + exp
(
q102

'
− \105

'

(
1
)
− 1

)ref

))
MAC(C )
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=
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(
U3 − V310

4

'

(
1
)
− 1

)ref

))
GBL(C )

1 + exp
(
q102

'
− \105

'

(
1
)
− 1

)ref

))
MAC(C )
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=
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(11.9)

The four problems were solved in Mathematica® 12.0, using the function NonlinearMod-
elFit. Parameter initial guesses were considered through the logarithm of the optimal
values of : at the reference temperature, )ref = )2 = 523 K reported in Table 11.13. The
CPU usage and the objective function value in each regression problem is presented in
Table 11.14. Tables 11.15 to 11.18 present the adjusted parameters with its con�dence
intervals and ?-values concerning the models S13LH1, S14LH1, S14LH1 and S14LH2,
respectively. The respective model simulations are presented in Figures 11.18 to 11.21.

Table 11.14 CPU usage and objective function value, SSE, in squared molar concen-
tration ratio, dimensionless.

S13LH1 S14LH1 S13LH2 S14LH2

CPU [s] 68 252 527 1345
SSE [-] 0.084 0.093 0.143 0.083

When analyzing the obtained results related to LH1 models for both S13 and S14 networks
(Tables 11.15 and 11.16), it is observed that V estimates presented poor con�dence inter-
vals and ?-values (nonsigni�cant statistical test), presenting high uncertainty about their
converging values, with the exception of V3 concerning the chemical reaction GBL
THF. In contrast, the estimates referring to U have presented opposite statistical metrics,
presenting good con�dence intervals and signi�cant ?-values. Also, it can be observed
that :Tref (from all reactions) have approximately converged to the values that we had
obtained in the di�erential method, con�rming that we already had a good estimate of
these parameters without assessing their correlation with temperature. When considering
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Table 11.15 Optimal parameter values for S13LH1 model. CI: Con�dence intervals,
: ()ref) and �0 in m6 kg−1 kmol−1 min−1, �0 and Δ� in kJ mol−1, and Δ( in J mol−1 K−1.
?-values: U1 ≈ 0, V1 ≈ 1, U3 ≈ 0, V3 ≈ 0, U4 ≈ 0, V4 ≈ 1, U5 ≈ 0, V5 ≈ 1, \ = 0.105 and
q = 0.302.

: 9 U CI V × 102 CI : ()ref) × 105 �0 × 105 �0 × 10

:1 -7.854 (-8.105,-7.602) 0.010 (-3.693,3.693) 38.837 38.845 0.010
:3 -10.845 (-10.917,-10.773) 245.207 (1.360,3.544) 1.950 548.524 245.207
:4 -9.954 (-10.010,-9.898) 0.003 (-0.719,0.719) 4.753 4.753 0.003
:5 -13.099 (-13.626,-12.572) 0.025 (-7.757,7.757) 0.205 0.205 0.025

\ CI q CI Δ� Δ(

 MAC -2.999 (-6.639,0.639) -0.154 (-0.449,0.141) -299.990 -589.005
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Figure 11.18 S13LH1 model simulation.
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Table 11.16 Optimal parameter values for S14LH1 model. CI: Con�dence intervals,
: ()ref) and �0 in m6 kg−1 kmol−1 min−1, �0 and Δ� in kJ mol−1, and Δ( in J mol−1 K−1.
?-values: U1 ≈ 0, V1 ≈ 1, U2 ≈ 0, V2 ≈ 1, U3 ≈ 0, V3 ≈ 0, U4 ≈ 0, V4 ≈ 1, \ = 0.123 and
q = 0.325.

: 9 U CI V × 102 CI : ()ref) × 105 �0 × 105 �0 × 10

:1 -7.857 (-8.120,-7.594) 0.010 (-3.871,3.872) 38.706 38.715 0.010
:2 -13.021 (-14.226,-11.817) 0.029 (-15.366,15.366) 0.221 0.221 0.029
:3 -10.778 (-10.856,-10.699) 244.773 (1.262,3.634) 2.086 580.816 244.773
:4 -9.963 (-10.021,-9.905) 0.004 (-0.745,0.745) 4.709 4.710 0.004

\ CI q CI Δ� Δ(

 MAC -2.999 (-6.830,0.830) -0.155 (-0.465,0.156) -299.990 -589.053
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Figure 11.19 S14LH1 model simulation.
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Table 11.17 Optimal parameter values for S13LH2 model. CI: Con�dence intervals,
: ()ref) and �0 in m6 kg−1 kmol−1 min−1, �0 and Δ� in kJ mol−1, and Δ( in J mol−1 K−1.
?-values: U1 ≈ 0, V1 ≈ 0, U3 ≈ 0, V3 = 0.0004, U4 ≈ 0, V4 = 0.1511, U5 ≈ 0, V5 ≈ 1, \ = −
and q = −.

: 9 U CI V CI : ()ref) × 105 �0 × 105 �0

:1 -7.800 (-8.088,-7.512) 9.863 (6.545,13.181) 40.956 2.90 ×1011 98.632
:3 -10.863 (-10.955,-10.772) 2.486 (1.135,3.838) 1.915 582.715 24.863
:4 -10.043 (-10.097,-9.988) 0.567 (-0.211,1.344) 4.350 16.006 5.666
:5 -13.178 (-13.904,-12.451) 0.000 (-10.552,10.552) 0.189 0.189 0.000

\ CI q CI Δ� Δ(

 MAC -0.450 (-0.451,-0.450) -2.248 (-2.249,-2.248) -45.040 -310.946

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

t [min]

C
[M
ol
ar
ra
tio

]

Data T = 503 K || SSE = 0.0469412

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

t [min]

C
[M
ol
ar
ra
tio

]

Data T = 523 K || SSE = 0.0413242

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

t [min]

C
[M
ol
ar
ra
tio

]

Data T = 503 K || SSE = 0.0469412

MAC

AS

GBL

THF

BuOH

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

t [min]

C
[M
ol
ar
ra
tio

]

Data T = 523 K || SSE = 0.0413242

MAC

AS

GBL

THF

BuOH

0 50 100 150 200 250 300 350

0.0

0.2

0.4

0.6

0.8

1.0

t [min]

C
[M
ol
ar
ra
tio

]

Data T = 543 K || SSE = 0.0545801

MAC

AS

GBL

THF

BuOH

Figure 11.20 S13LH2 model simulation.
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Table 11.18 Optimal parameter values for S14LH2 model. CI: Con�dence intervals,
: ()ref) and �0 in m6 kg−1 kmol−1 min−1, �0 and Δ� in kJ mol−1, and Δ( in J mol−1 K−1.
?-values: U1 ≈ 0, V1 ≈ 0, U2 ≈ 0, V2 ≈ 1, U3 ≈ 0, V3 ≈ 0, U4 ≈ 0, V4 ≈ 0, \ ≈ 0 and
q = 0.342.

: 9 U CI V CI : ()ref) × 105 �0 �0

:1 -7.289 (-7.654,-6.924) 14.321 (11.068,17.574) 68.307 1.37 ×1011 143.210
:2 -12.782 (-13.692,-11.872) 0.000 (-11.611,11.611) 0.281 2.81 ×10−6 0.000
:3 -10.773 (-10.847,-10.699) 3.410 (2.286,4.534) 2.096 0.053 34.101
:4 -9.896 (-9.956,-9.835) 2.541 (1.777,3.306) 5.040 0.017 25.415

\ CI q CI Δ� Δ(

 MAC 2.169 (1.714,2.624) -0.028 (-0.085,0.030) 216.923 412.012
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Figure 11.21 S14LH2 model simulation.
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the parameters associated with the adsorption phenomena, \ and q presented reasonable
con�dence intervals and ?-values inferior than 0.35, although \ tended to converge to its
lower bound (equivalent to an adsorption reaction enthalpy of −300 kJ mol−1).

When assessing the results obtained for LH2 kinetic models for both S13 and S14 reac-
tion networks in Tables 11.17 and 11.18, the parameters related to Arrhenius equation, U
and V, presented both good con�dence intervals and ?-values for every chemical reaction,
with exception of the reactions responsible to produce BuOH species (A2 in S14 and A5
in S13), where V values showed no statistical signi�cance. The fact that these chemical
reactions had small extents and, therefore, the concentration of BuOH is residual in this
system (consequently more a�ected by noise, presenting a signi�cant uncertainty in its
measurements), causes a high level of unpredictability associated with the optimal values
of the adjusted parameters, con�rming the previous analysis based on the results of the
approximate method where the linearized functions of : were considered. When consid-
ering the results related to the adsorption component in S14LH2 model, good con�dence
intervals were obtained for both \ and q , although the ?-value for this last parameter
rounded 0.3, while for S13LH2 these metrics could not be computed. Also, the enthalpy
changes Δ� assumed opposite signal values indicating exothermic and an endothermic
adsorption processes for S13LH2 and S14LH2 models, respectively.

In reality, the parameters related to the adsorption component are not signi�cant in the
overall adjustment since the catalytic hydrogenation of MAC clearly has the homogeneous
kinetic component predominating over the chemical adsorption phenomenon. When com-
paring the several kinetic models, where di�erent species are absorbed on the catalyst,
it could be found with con�dence that the optimal structure, i.e., the expression that
presents the best tradeo� between data �t adjustment and model complexity, consists in
the one where only MAC is adsorbed. However, when assessing the MAC species pro-
�le, it is observed that MAC is present for a short period of time in the reaction system,
especially when the temperature is increased � which makes sense since) is in the denom-
inator of a negative ratio in Arrhenius equation, thus, the rate of the reaction MAC
AS is sped up when increasing ) , i.e., :1 is increased. Therefore, it can be inferred that
the phenomenon of chemical adsorption for this system becomes increasingly negligible
with increasing temperature, and that it has a small contribution to the dynamics of the
system.

However, concluding this analysis, although the four models showed similar agreement in
the goodness of �t to the data, the S13LH2 and S14LH2 models presented parameters with
greater statistical signi�cance. Consequently, they are preferable to describe this system.
The developed models showed a better �t of the experimental data when compared to
the literature model, even presenting less complex structures with a smaller number of
parameters associated with the chemical adsorption process. Unfortunately, the available
datasets are not enough to discriminate between S13 and S14 networks (where the BuOH
species comes from di�erent paths). Additional experiments must be performed in order
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to identify the origin of BuOH. The suggestion here is to evaluate, under the same reaction
conditions, the THF species alone as the initial reagent and observe if BuOH is formed.

11.3 P�zer case study

The main results obtained through the application of the entire systematic methodology
to the P�zer case study (introduced in Section 1.5.4) are presented in this section. This
section is organized as follows. In Section 11.3.1, the data reconciliation results are pre-
sented. In Section 11.3.2, the way in which the time-invariant relationships were obtained
and selected for this case study is presented. Then, in Section 11.3.3, the use of these
conservation relationships in data reconciliation is discussed, considering a comparative
study of the reconciled data with di�erent ninli, and presenting how they improve the
identi�ability of the model when applied correctly. In Section 11.3.4, the identi�cation of
the reaction network is considered through the Steps 3 to 5 of the proposed methodol-
ogy. In Section 11.3.5, the identi�cation of the reaction kinetic expressions is considered
regarding the true reaction network. Finally, in Section 11.3.6, the parameter correlation
with temperature is presented.

11.3.1 Data reconciliation

The original data relating to all 17 experiments are presented in Figure 11.22. The set
of data presents a regular structure with measurements in every hour in a period of 12 h

for every experiment, in which datasets 1, 4 and 14 are replicas. In these �gures, the
linear interpolation of concentration measurements is presented for all species in the 17
experiments. From the analysis of these plots, it can be observed that regardless of the
initial and/or operating conditions, all concentration pro�les showed general trends for
each chemical species. Thus, these observed trends were implemented in the data rec-
onciliation procedure through shape constraints in order to remove undesired oscillatory
behavior from the species pro�les. Note that the experimental data related to species
H, I, and J, were the most a�ected by the addition of noise, since these species present
residual concentrations.

In order to exemplify the data reconciliation results for this case study, experiments 1, 4
and 14 (replicas) are illustrated in the following �gures. Figures 11.23 and 11.24 present
the results of reconciling the data without imposing restrictions on form, although time-
invariant relationships are veri�ed at all collocation points. The locations of collocation
points are shown in the 1st derivative pro�les through the gray dots. The time-invariant
relationships will be presented in the next section.

After the �rst data reconciliation procedure, the addition of shape constraints was consid-
ered, since the obtained pro�les showed unwanted oscillatory behavior. The same shape
constraints were applied to each dataset, since the observed trends are the same for all
17 experiments. These pro�le trends with their respective constraints are summarized
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in Table 11.19. Figures 11.25 and 11.26 present the smoothed pro�les of each individual
species, obtained after considering the shape constraints described in Table 11.19.
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Figure 11.23 A to E reconciled species pro�les without shape constraints.
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Figure 11.24 F to J reconciled species pro�les without shape constraints.
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Table 11.19 Pro�les trends from data analysis and respective implemented constraints.
Abbreviation: c.p. ≡ collocation point.

Species Observations Constraints

A and B
Initial reactants, d� (C )

dC ≤ 0
� (C) decrease in all time domain

� (C) decrease in a monotone manner d� (C )
dC |tcol ≤

d� (C )
dC |tcol+1

C

Intermediate species, d� (C )
dC |tcol≥3 ≤ 0

� (C) decrease from 3rd c.p. to the end

� (C) decrease from 4th c.p. to the end d� (C )
dC |tcol≥4 ≤

d� (C )
dC |tcol+1in a monotone way

� (C) increase in all time domain d� (C )
dC ≥ 0

D � (C) increase in a monotone manner d� (C )
dC |tcol ≥

d� (C )
dC |tcol+1

Species produced from the beginning d� (C )
dC |C=0 ≠ 0

Intermediate species, d� (C )
dC |tcol≥6 ≤ 0

� (C) decrease from 6th c.p. to the end

E � (C) decrease from 7th c.p. to the end d� (C )
dC |tcol≥7 ≤

d� (C )
dC |tcol+1in a monotone way

Species produced from the beginning d� (C )
dC |C=0 ≠ 0

F

Terminal? species, d� (C )
dC |tcol≤13 ≥ 0

� (C) increase from 1st to the 13th c.p.

� (C) increase from 5th c.p. to the end d� (C )
dC |tcol≥5 ≥

d� (C )
dC |tcol+1in a monotone way

Species not produced from the beginning d� (C )
dC |C=0 = 0

(in a 2nd, 3rd, etc step)

Terminal? species, d� (C )
dC |tcol≤12 ≥ 0

� (C) increase from 1st to the 12th c.p.

G � (C) increase from 3rd to the 12th c.p. d� (C )
dC |3≤tcol≤11 ≥

d� (C )
dC |tcol+1in a monotone way

Species produced from the beginning d� (C )
dC |C=0 ≠ 0

Terminal species (subproducts), d� (C )
dC ≥ 0

� (C) increase in all time domain

H and I � (C) increase in a monotone manner d� (C )
dC |tcol ≤

d� (C )
dC |tcol+1

Species not produced from the beginning d� (C )
dC |C=0 = 0

(in a 2nd, 3rd, etc step)

J
Terminal? species (subproduct) d� (C )

dC |C=0 ≠ 0
Species produced from the beginning
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Figure 11.25 A to E reconciled pro�les with constraints described in Table 11.19.
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Figure 11.26 F to J reconciled pro�les with constraints described in Table 11.19.

However, some species pro�les still show undesired oscillatory behavior, mainly in relation
to the 1st derivative pro�les. Therefore, additional shape constraints were needed to
smooth the 1st derivative pro�les. Although some species already present smooth pro�les
in relation to a speci�c dataset, additional restrictions were imposed on the 2nd derivatives
to guarantee the desired degree of smoothness in the other datasets. Therefore, some of
these inequality constraints may be inactive in some solutions (datasets). Note that
species J is a by-product with negligible extent, therefore it is strongly a�ected by noise,
making it di�cult to predict its behavior. Table 11.20 presents the new shape constraints
considered after the �rst iteration. Figure 11.27 presents the �nal smoothed pro�les of
each individual species obtained after considering the shape constraints observed from all
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data trends (described in Tables 11.19 and 11.20).

Table 11.20 Pro�les trends from previous smooth procedure (2nd iteration) and re-
spective implemented constraints. Abbreviation: c.p. ≡ collocation point.

Species Observations Constraints

A d2� (C )
dC2

decrease in a monotone manner in all domain d3� (C )
dC3
|tcol ≤ d3� (C )

dC3
|tcol+1

B d2� (C )
dC2

decrease in a monotone manner in all domain d3� (C )
dC3
|tcol ≤ d3� (C )

dC3
|tcol+1

C
d2� (C )
dC2

increase in a monotone way from 7th c.p. to
end

d3� (C )
dC3
|tcol≥7 ≥ d3� (C )

dC3
|tcol+1

� (C) null in the beginning � (0) = 0

D d2� (C )
dC2

increase in a monotone way in all time domain d3� (C )
dC3
|tcol ≥ d3� (C )

dC3
|tcol+1

E

d2� (C )
dC2

decrease in a monotone way from 10th c.p. to
end

d3� (C )
dC3
|tcol≥10 ≥ d3� (C )

dC3
|tcol+1

d� (C )
dC increase in a monotone way from 1st to 3rd c.p. d2� (C )

dC2
|tcol≤2 ≤ d2� (C )

dC2
|tcol+1

d� (C )
dC increase from the 1st to 3rd c.p. d2� (C )

dC2
|tcol≤3 ≤ 0

� (C) null in the beginning � (0) = 0

F

d� (C )
dC decrease in a monotone way from the 8th c.p. to

the end

d2� (C )
dC2
|tcol≥8 ≤ d2� (C )

dC2
|tcol+1

� (C) null in the beginning � (0) = 0

G

d� (C )
dC decrease in a monotone way from 5th c.p. to the

end

d2� (C )
dC2
|tcol≥5 ≤ d2� (C )

dC2
|tcol+1

d2� (C )
dC2

increase in a monotone way in all domain d3� (C )
dC3
|tcol ≥ d3� (C )

dC3
|tcol+1

� (C) null in the beginning � (0) = 0

H

d� (C )
dC increase in a monotone way from 5th c.p. to the

end

d2� (C )
dC2
|tcol≥5 ≥ d2� (C )

dC2
|tcol+1

� (C) null in the beginning � (0) = 0

I

d� (C )
dC increase in a monotone way in all domain d2� (C )

dC2
|tcol ≥ d2� (C )

dC2
|tcol+1

d2� (C )
dC2

decrease in a monotone way in all domain d3� (C )
dC3
|tcol ≤ d3� (C )

dC3
|tcol+1

� (C) null in the beginning � (0) = 0

J

d� (C )
dC decrease in a monotone way in all domain d2� (C )

dC2
|tcol ≤ d2� (C )

dC2
|tcol+1

� (C) increase in a monotone way in all domain d� (C )
dC |tcol ≤

d� (C )
dC |tcol+1

� (C) null in the beginning � (0) = 0
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11.3.2 Analysis of time invariants

Obtaining time-invariant relationships was achieved using the known system stoichiome-
try. However, no information about the nature of the species or their molecular formula
is provided by the P�zer in this example. Consequently, it is impossible to say what
these true relationships are, although we can accurately state the space that they span
(null(N)) and thus propose a basis that represents the most potential candidate relation-
ships for describing the conserved amounts between molecules. This approach is followed
considering the MILP formulation presented in Section 6.6.1.

Hence through the minimization of the ℓ1−norm of the solution vector that lies in the null
space of N and is constrained to present integer and positive entries, candidate invariant
relationship can be obtained. The enumeration of these solution through integer cut
equations ensures a generating set for describing a basis for row(A). Clearly this set
contains linearly dependent vectors (see the de�nition of a generating set in linear algebra),
but we are interested in selecting the most plausible vectors that also constitute a basis.
Here the criterion of plausible invariant candidates is de�ned as the compromise between
sparsity and vector length (ℓ1−norm).

A list of four candidates for invariant relationships is shown in Table 11.21, where the last
column indicates the vector ℓ1−norm. The results were obtained using GAMS®.

Table 11.21 Candidate invariant relationships for the P�zer example, expressed in
terms of the coe�cients that involve each chemical species.

A B C D E F G H I J Total
inv1 0 3 2 1 1 1 4 3 1 0 16
inv2 1 2 2 1 1 1 3 2 2 2 17
inv3 2 1 2 1 1 1 2 1 3 4 18
inv4 3 0 2 1 1 1 1 0 4 6 19

As can be seen from these results, the most sparse vectors are inv1 and inv4 and only two
of the four candidate solutions are linearly independent. Since no information regarding
the species molecules is known, it is not possible to interpret these quantities strictly as
physical amounts. However, since inv2 presents all values greater than zero and lower
than 3, it is a plausible candidate to describe the total mass balance closure. Moreover,
inv1 is also a plausible candidate for a system invariant, like inv4, but presents the
lowest total amount conserved of these species; thus inv1 can also be interpreted a true
conserved relation. Therefore, in this case we have selected the �rst two solutions. Any
vector that constitutes a linear combination of these two basis vectors could also be a
candidate invariant for this system, although these conserved amounts tend to be small
and need to be positive, i.e., they may present physical meaning.

An attempt to identify invariants from experimental data, as proposed in formulation
(6.38), was performed in Section 6.6.3. Unfortunately, for this case study (regarding the
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noisy dataset), the conserved relations could not be satisfactorily elucidated, but ninli = 2

could be inferred from the analysis of the results obtained.

11.3.3 Evaluating the use of invariants in data reconciliation to

increase model identi�ability

The inv1 and inv2 were incorporated at the previously presented data smoothing proce-
dure, resulting in the acquirement of reconciled data with minimized noise content. This
procedure reduces the chance of facing model identi�ability problems from reconciled data
since it clari�es the dimension of the data variant space, and, consequently, assists the
identi�cation of a basis for that space in which compositional changes occur. This means
that when facing small singular values from the SVD of reconciled data, they probably
are related to model components (signal) that should not be discarded.

An assessment of the singular values of the matrix of concentration derivatives collected
in every collocation point from the 15 sets of reconciled data, considering (i) no invariant
relationship, (ii) only the single inv1 relationship, and (iii) the both inv1 and inv2 rela-
tionships, was performed. The obtained singular values (f) are presented in Table 11.22.

Table 11.22 Singular values comparison using data reconciled with 0, 1 and 2 time-
invariant relationships. Data variant space concerning concentration derivatives data.

fB 0 invariants 1 invariant 2 invariants

f1 6.689 6.693 6.687
f2 1.865 1.894 1.815
f3 0.880 0.874 0.869
f4 0.519 0.539 0.524
f5 0.162 0.289 0.231
f6 0.141 0.182 0.109
f7 0.108 0.100 0.063
f8 0.066 0.045 0.028
f9 0.028 0.024 7.71×10−12
f10 0.022 3.49×10−12 2.10×10−12

Two important observations can be made from the results shown in Table 11.22. Firstly,
it is notable that the model direction (component) associated with f10 regarding data
reconciled with a single invariant converges to zero, i.e., 3.49 × 10−12 ≈ 0, since one
dimension of the 10-dimensional variant data space (with zero invariants) is removed when
decreasing the degrees of freedom in the data reconciliation procedure by imposing the
equality constraint concerning inv1, and the same happens for f9 and f10 in the reconciled
data using equality constraints concerning inv1 and inv2. Therefore, the use of invariants
decreases the data variant dimension, as previously discussed in Chapter 6. Secondly,
and not less important, it is observed that the noise contribution in the singular values is
greater in the respective model directions/components with lower variance, for example,
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regarding the column of 0 invariants, the noise contribution follows that f10 > f9 >

f8 > . . . > f1 since the signal-to-noise ratio decreases as the model grows in dimension,
i.e., as the signal related to the directions of lower variability decreases. Hence when
comparing the fB among the columns for the same row of this table, it can be seen that
the presented amounts tend to vary more for model components greater than 4. Since the
use of invariants in the treatment of data reduces the uncertainty present in the original
data, minimizing and/or (at least) optimally distributing the uncertainty (noise) in the
reconciled data through optimization, the singular values concerning the last column of
this table show greater signal-to-noise ratio than the ones with one and zero invariants,
considering the same model component for comparison. For example, the signal-to-noise
ratio presented in f8 with 0 invariants is lower than that with 1 invariant, which in turn
is lower than that with 2 invariants. Therefore, concluding this analysis, f9 and f10 from
reconciled data with 0 invariants, as well as f10 from reconciled data with 1 invariant,
only exist due to the presence of noise in the original data.

The projection of the true stoichiometric vectors was considered in the data variant space
determined from the row space of the instantaneous species concentration derivatives
collected at the collocation points, considering reconciled data without, with a single, and
with two time invariants. The results of this analysis are shown in Table 11.23. From these
results, one can see that the error of projection ‖v−projSv‖2, as well as the relative error
of projection i, decreases when the number of considered equality constraints increases.
This observation shows the importance of well determining time-invariant relationships,
and of incorporating them in the data reconciliation procedure in order to increase the
true model identi�ability.

Table 11.23 TFA results comparison using data reconciled with 0, 1 and 2 time-
invariant relationships. *The metrics in data with 2 invariants are multiplied by 1011.

True reaction network 0 invariants 1 invariant 2 invariants∗

A 9 Chemical reaction ‖v‖2 ‖v − projSv‖2 i ‖v − projSv‖2 i ‖v − projSv‖2 i

A1 A + B C + D 2.000 0.010 0.005 0.001 0.001 0.143 0.072
A2 C D + E 1.732 0.014 0.008 0.012 0.007 0.506 0.292
A3 E F 1.414 0.024 0.017 0.026 0.018 0.376 0.266
A4 B + D G 1.732 0.017 0.010 0.012 0.007 0.219 0.126
A5 G D + H 1.732 0.511 0.295 0.500 0.288 1.868 1.079
A6 A + F I 1.732 0.797 0.460 0.765 0.442 1.082 0.625
A7 2 A J 2.236 0.946 0.423 0.331 0.148 1.302 0.582
A8 B + J 2 E + I 2.646 1.353 0.511 1.129 0.427 0.561 0.212

Once having the data reconciled with good estimates of concentration derivatives and
knowing the stoichiometric relationships among species for this chemical system, the 8
reaction rates could be estimated. The reaction rates for every dataset are presented in
Figures 11.28 to 11.30, comparing their behavior when considering 0, 1 and 2 invariants.
The most reliable reaction rate pro�les are those related to 2 invariants, since the reaction
network comprises 8 linearly independent chemical reactions between 10 species, requiring
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two invariant relationships.

In order to compute/estimate these reaction rate pro�les di�erent methods were con-
sidered. On the one hand, when considering reconciled data with 0 and 1 invariant
relationships, the reaction rate estimates are performed using optimization since the data
dimension is greater than the number of variables, so the problem is to solve a linear
system of overdetermined equations for each instant of time using ordinary least squares
without constraints, where the

SSE(C) =
(
dc(C)

dC
−NT · r(C)

)T
·
(
dc(C)

dC
−NT · r(C)

)
is minimized. In the previous equation, dc(C)/dC ∈ R10 is the concentration derivative
vector, N ∈ N8×10 the stoichiometric matrix and r(C) ∈ R8 the reaction rate vector. Note
that, in this case, the vector of the derivatives cannot be described as a linear combination
of the basis formed by the network stoichiometry since the SSE is not zero. On the other
hand, when handling data that verify the same dimension as the number of variables and
since the row space of D (the matrix of concentration derivatives) is the same row space of
N, the instantaneous reaction rates are calculated through the simple solve of the linear
system of equations

dc(C)
dC

= NT · r(C)

that is well-determined. Note that r(C) is the coordinates vector that build dc(C)/dC in
the row space of N.

As can be seen in Figures 11.28 to 11.30, the use of invariants has impact in the reaction
rate pro�les and, consequently, in the reaction model identi�cation. The further com-
putations of physical quantities, such as reaction rates and/or reaction extents and their
parameters estimates, are more reliable from reconciled data that verify well established
time-invariant relationships. The reaction rate pro�les that have shown negative values
concerning data with 0 and 1 invariant, are less negative, and in some cases change their
signal, for data respecting the use of two invariant relationships. The following steps of
the methodology are applied using reconciled data with the two invariants identi�ed.

The next sections present two di�erent approaches for a complete identi�cation of the
reaction model for this case study. In the �rst approach (Section 11.3.4), the system
stoichiometry is treated as unknown, and the objective is to identify it through the appli-
cation of Steps 1 to 5 of the methodology. In the second approach (Section 11.3.5), the
identi�cation of the reaction kinetics is made trough the application of Step 6, regarding
the true stoichiometry.
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11.3.4 Identifying the true network

During Step 3, 131 chemical reactions were generated using the MILP formulation de-
scribed in Section 7.2.1. The results were obtained using GAMS® software with the com-
mercial solver CPLEX, with a total CPU usage of 28.93 s. The generated chemical reactions
are listed in Table 11.24, sorted with an increasing i value. The known (true) chemical
reactions are highlighted with red color. As can be seen, the stoichiometry lies in the
data variant space, presenting an insigni�cant relative error of projection (i ≡ 0). This
is not an unexpected result since (i) the matrix of data was built with reconciled data
in which the identi�ed time-invariant relationships were imposed as constraints of the
smoothing procedure, and (ii) the generated chemical reactions obey the same invariant
relationships.

Since there is no information regarding the molecules involved in the system, i.e., the com-
position of the molecules in terms of number and type of chemical elements is unknown,
the Gibbs free energy change could not be evaluated, and therefore, no feasible net �ux
directions were elucidated for this case study. Consequently, the superstructure of the re-
action networks presents a signi�cant number of candidate chemical reactions, presenting
262 directed arcs (131 in the forward direction plus 131 in the reverse direction).

The generation of reaction network structures was considered in Step 4, however, since
the dimension of the superstructure is large, the explicit generation exploded presenting
more than one billion networks composed by eight chemical reactions. Therefore, the
use of implicit generation of reaction networks was necessary for this case study. Firstly,
the formulation described in Section 9.4.1 was considered to enumerate a list of the �rst
�fty plausible structures composed by eight chemical reactions. Unfortunately, the true
reaction network was not presented in that list. When �xing the true schema as solution
of this problem, the objective function value assumed q = 1.542, showing that the positive
constraints for some of the reaction rate variables were active in certain time intervals of
few experiments. This result shows that even considering the time-invariant relationships
in data reconciliation, ensuring that the row space of the basis formed by the true reaction
stoichiometries is the same row space of the matrix of concentration derivatives, it does
not guarantee the veri�cation of the plausibility criterion in those respective reaction
rates. However, other studies were carried on, intensively analyzing the list of plausible
structures, for example evaluating the frequency of chemical reactions in that list, with
the aim to identify from the implicit generation at least some structural part of the
model. Nonetheless, these analyses were not successful since even considering a more
restrictive approach to enumerate network structures using the plausibility criterion, the
obtained number of plausible candidates still large, and also, no correlation among the
plausible reaction rates and the frequency of their appearance in the implicitly generated
solutions could be found. Therefore, a more �ne network generation approach was further
considered, identifying the reaction kinetic expressions simultaneously with the network.
For this purpose, the formulation described in Section 9.4.2 was considered, and in this
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Table 11.24 List of generated chemical reactions with the corresponding TFA metrics;
‖v − projSv‖2 and i are multiplied by 1011.

: A 9 Chemical reaction ‖v‖2 ‖v − projSv‖2 i : A 9 Chemical reaction ‖v‖2 ‖v − projSv‖2 i

1 A90 A + G C + 2 D 2.646 0.080 0.030 66 A43 B + F D + H 2.000 1.106 0.553
2 A34 B + C F + G 2.000 0.089 0.045 67 A113 B + I C + 2 F 2.646 1.501 0.567
3 A21 A + B C + D 2.000 0.143 0.072 68 A83 B + 2 E F + G 2.646 1.538 0.581
4 A131 H + I C + 2 F 2.646 0.196 0.074 69 A5 2 A J 2.236 1.302 0.582
5 A10 C D + F 1.732 0.130 0.075 70 A108 2 C + F G + I 2.646 1.590 0.601
6 A35 2 F D + E 2.449 0.196 0.080 71 A27 2 D E + F 2.449 1.515 0.618
7 A109 D + 2 F C + E 2.646 0.246 0.093 72 A46 A + H C + F 2.000 1.240 0.620
8 A69 A + 2 D F + I 2.646 0.256 0.097 73 A11 C E + F 1.732 1.075 0.621
9 A29 A + C E + I 2.000 0.210 0.105 74 A84 A + 2 F D + I 2.646 1.643 0.621
10 A13 B + D G 1.732 0.219 0.126 75 A111 E + 2 F C + D 2.646 1.645 0.622

11 A75 B + 2 D F + G 2.646 0.355 0.134 76 A17 A + F I 1.732 1.082 0.625
12 A58 A + 2 B C + G 2.646 0.361 0.136 77 A100 A + H 2 D + F 2.646 1.661 0.628
13 A56 A + B 2 D + E 2.646 0.363 0.137 78 A87 2 A + F E + J 2.646 1.678 0.634
14 A76 2 A + E D + J 2.646 0.363 0.137 79 A40 B + E F + H 2.000 1.283 0.641
15 A81 B + 2 E C + H 2.646 0.373 0.141 80 A7 C 2 E 2.236 1.451 0.649
16 A33 B + C E + G 2.000 0.289 0.144 81 A2 D E 1.414 0.945 0.668
17 A95 B + 2 F E + G 2.646 0.411 0.155 82 A15 B + E G 1.732 1.162 0.671
18 A103 2 A + H B + J 2.646 0.417 0.158 83 A45 A + G H + I 2.000 1.346 0.673
19 A110 B + I C + 2 D 2.646 0.419 0.158 84 A52 C + H E + G 2.000 1.372 0.686
20 A102 A + H 2 E + F 2.646 0.437 0.165 85 A77 A + 2 E F + I 2.646 1.828 0.691

21 A42 A + G B + I 2.000 0.341 0.170 86 A71 2 A + D F + J 2.646 1.870 0.707
22 A67 A + 2 D E + I 2.646 0.509 0.193 87 A59 A + B 2 E + F 2.646 1.877 0.709
23 A6 C 2 D 2.236 0.440 0.197 88 A97 2 C + E G + I 2.646 1.964 0.742
24 A23 2 C A + G 2.449 0.541 0.210 89 A91 A + G C + 2 E 2.646 1.964 0.742
25 A57 A + B D + 2 F 2.646 0.556 0.210 90 A126 2 F + H E + G 2.646 2.054 0.776
26 A88 2 B + E G + H 2.646 0.557 0.211 91 A105 2 I 2 D + J 3.000 2.344 0.781
27 A30 A + C F + I 2.000 0.424 0.212 92 A72 B + 2 D C + H 2.646 2.079 0.786
28 A118 B + J 2 E + I 2.646 0.561 0.212 93 A80 B + 2 E D + G 2.646 2.107 0.797
29 A24 A + B C + F 2.000 0.427 0.213 94 A127 2 E + I H + J 2.646 2.191 0.828
30 A130 H + I C + 2 E 2.646 0.639 0.242 95 A14 A + E I 1.732 1.454 0.840

31 A60 2 A + B C + I 2.646 0.673 0.254 96 A70 2 A + D E + J 2.646 2.246 0.849
32 A4 E F 1.414 0.376 0.266 97 A112 B + I C + 2 E 2.646 2.250 0.850
33 A85 A + 2 F E + I 2.646 0.714 0.270 98 A53 C + H F + G 2.000 1.740 0.870
34 A73 B + 2 D E + G 2.646 0.729 0.276 99 A104 2 A + H C + I 2.646 2.320 0.877
35 A86 2 A + F D + J 2.646 0.736 0.278 100 A68 B + C 2 F + H 2.646 2.337 0.883
36 A63 2 B + C 2 G 3.000 0.874 0.291 101 A38 C + D A + H 2.000 1.789 0.895
37 A9 C D + E 1.732 0.506 0.292 102 A116 B + J 2 D + I 2.646 2.390 0.903
38 A64 A + 2 C G + J 2.646 0.789 0.298 103 A74 A + 2 E D + I 2.646 2.392 0.904
39 A8 C 2 F 2.236 0.699 0.313 104 A48 A + I D + J 2.000 1.817 0.908
40 A12 A + D I 1.732 0.542 0.313 105 A54 C + I B + J 2.000 1.958 0.979

41 A32 B + C D + G 2.000 0.657 0.328 106 A44 B + F E + H 2.000 2.021 1.011
42 A25 2 C B + I 2.449 0.816 0.333 107 A18 G D + H 1.732 1.868 1.079
43 A99 D + 2 E C + F 2.646 0.882 0.333 108 A37 B + D F + G 2.000 2.208 1.104
44 A96 2 B + F G + H 2.646 0.893 0.338 109 A128 2 F + I H + J 2.646 2.923 1.105
45 A26 2 C H + I 2.449 0.836 0.341 110 A61 2 A + B H + J 2.646 2.944 1.113
46 A79 2 A + E F + J 2.646 0.926 0.350 111 A125 2 F + H D + G 2.646 2.989 1.130
47 A115 2 D + H E + G 2.646 0.963 0.364 112 A47 2 I C + J 2.449 2.770 1.131
48 A94 B + 2 F C + H 2.646 0.982 0.371 113 A51 D + G C + H 2.000 2.297 1.148
49 A39 B + E D + H 2.000 0.756 0.378 114 A107 2 I 2 F + J 3.000 3.459 1.153
50 A89 2 C + D G + I 2.646 1.032 0.390 115 A66 B + C 2 E + H 2.646 3.085 1.166

51 A22 A + B C + E 2.000 0.802 0.401 116 A1 B H 1.414 1.650 1.167
52 A3 D F 1.414 0.570 0.403 117 A50 A + I F + J 2.000 2.378 1.189
53 A41 C + E A + H 2.000 0.883 0.442 118 A122 2 E + H F + G 2.646 3.174 1.200
54 A16 G B + F 1.732 0.787 0.454 119 A36 B + D E + H 2.000 2.581 1.291
55 A92 A + G C + 2 F 2.646 1.213 0.458 120 A114 D + 2 H B + G 2.646 3.519 1.330
56 A65 B + C 2 D + H 2.646 1.231 0.465 121 A49 A + I E + J 2.000 2.753 1.376
57 A28 A + C D + I 2.000 0.954 0.477 122 A101 A + 2 H C + G 2.646 3.658 1.383
58 A129 H + I C + 2 D 2.646 1.270 0.480 123 A82 2 G C + 2 H 3.000 4.164 1.388
59 A119 B + J 2 F + I 2.646 1.273 0.481 124 A20 G F + H 1.732 2.426 1.401
60 A98 2 D + E A + H 2.646 1.293 0.489 125 A106 2 I 2 E + J 3.000 4.206 1.402

61 A62 2 A + C 2 I 3.000 1.487 0.496 126 A121 2 E + H D + G 2.646 3.738 1.413
62 A117 2 D + H F + G 2.646 1.320 0.499 127 A123 2 D + I H + J 2.646 4.036 1.526
63 A93 B + 2 F D + G 2.646 1.356 0.513 128 A124 F + 2 H B + G 2.646 4.075 1.540
64 A31 2 E D + F 2.449 1.321 0.539 129 A19 G E + H 1.732 2.800 1.616
65 A78 2 B + D G + H 2.646 1.433 0.542 130 A120 E + 2 H B + G 2.646 4.447 1.681

131 A55 C + I H + J 2.000 3.606 1.803
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approach, the analyses of the obtained solutions run better.

A list of the �rst ten implicit generated reaction networks was obtained with established ki-
netic expressions using GAMS® software with the commercial solver CPLEX. The true chem-
ical reactions A4, A9, A13 and A21 appear in all 10 solutions presenting the same respective
homogeneous kinetic expressions. The unique true chemical reaction that did not appear
in those solutions is A118. The objective function values varied among q = [8.666, 8.985]
in those solutions, presenting a CPU usage within [74.4 min, 172.8 min]. The solutions
presented great computational e�ort, even considering a relaxation in the optimization
convergence criteria (the absolute and the relative gaps). However, all the obtained solu-
tions converged to the optimal integer solution with normal completion status.

When �xing the reaction binary variables to converge to the true reaction network, the
solution presents q = 13.310. At this problem with �xed reactions as solution constituent,
the kinetic models converged to the same structure of the best expressions found in Step
6 of the methodology, and presented almost the same parameters values of the ones
obtained using DMmethod in Step 6. These kinetic expressions and respective parameters
estimates, are presented in the next section. However, from that list, the only network
that will be analyzed here, in more detail, is the one with lowest q value, i.e., the best
structure found according to the considered optimization problem. The best structure
found is shown in Figure 11.31.

r4

C

r9

D E

B

r13

G

A

r17

F

I

r18

H

r21 r56

r87

J

Figure 11.31 First implicitly generated network structure with simultaneous identi�-
cation of kinetic models.

This reaction network contains six of the eight true stoichiometries: presenting A4, A9, A13,
A17, A18 and A21 in common with the true network, and presenting A56 and A87 as additional
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chemical reactions instead of A5 and A118. Notice that

A5 : 2A J and A118 : B + J 2E + I

were replaced by

A56 : A + B 2D + E and A87 : 2A + F E + J

in which one of them forms a set of linearly dependent chemical reactions, i.e., the ma-
trix rank of the stoichiometric matrix, concerning the reaction network in Figure 11.31
composed by eight chemical reactions, is seven. The kinetic expression regarding A87 con-
verged to an homogeneous kinetics of 2nd order as a function of a single initial reactant
species (see Table 11.25). Notice that the reaction A5 can also be described by an homo-
geneous kinetics of 2nd order as a function of A species, as it will be shown in the next
section. However, both A5 and A87 (i) present small reaction extents in every experiment
and (ii) originate the same side-product species J that is substantially a�ected by the
noise. Similar observations happens to A118, which is a chemical reaction that presents
small extents in every experiment, responsible to produce the side-product species I that is
also substantially a�ected by the noise. Therefore, interpreting these results, the obtained
optimal model (i) excluded one model component related to A118, since this component is
pretty near to the dot origin in the original network basis, not greatly a�ecting the value
of the objective function, and (ii) added a linearly dependent chemical reaction A56 that
�ts the data subject to all formulation constraints.

Table 11.25 List of kinetic expressions identi�ed simultaneously with the reaction
network in Figure 11.31, and corresponding parameter estimates : in h−1 for every exper-
imental temperature.

A 9 Kinetic expression : at ) = 50 ◦C : at ) = 70 ◦C : at ) = 90 ◦C

A4 :4E 0.999 1.239 1.560
A9 :9C 0.803 0.754 0.682
A13 :13BD 0.097 0.101 0.107
A17 :17AF 0.024 0.030 0.040
A18 :18G 0.010 0.020 0.035
A21 :21AB 0.350 0.444 0.455
A56 :56AB 0.111 0.217 0.411
A87 :87A

2 0.007 0.005 0.008

Concluding this analysis, the reaction components that are identi�able, involving species
that were weakly a�ected by noise, are those listed in Table 11.25 that appear in common
in both Figure 1.6 and Table 11.26 (with the identi�ed kinetic laws). On the other
hand, the remaining reactions can be any as long as, together with the others, they
present a consistent network with an acceptable correlation between the reaction rates
and the reactant species, since they will not signi�cantly a�ect the model data adjustment
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procedure, i.e., the value of the objective function.

We decided to consider the true network for kinetic modeling of reactions in Step 6, even
having already obtained plausible kinetic models with the implicit generation for some
reactions of this true network. In this case, we chose to adopt the original reaction labels
(A1 to A8) in order to simplify the notation. The eight true chemical reactions were indexed
by the generation number as shown in Table 11.26.

Table 11.26 True reaction network with corresponding reaction labels numbered ac-
cording to the reaction generation order.

A 9 True chemical reactions Network graph

r5
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r21

B

C

D
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E

r13

G

r18

H

r17

F

I

r118

J

A21 (A1) A + B C + D

A9 (A2) C D + E

A4 (A3) E F

A13 (A4) B + D G

A18 (A5) G D + H

A17 (A6) A + F I

A5 (A7) 2A J

A118 (A8) B + J 2E + I
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11.3.5 Reaction kinetic expressions

The 17 datasets were grouped according to their experimental temperature, forming three
clusters: data at 70 ◦C, 50 ◦C, and 90 ◦C composed of 7, 5, and 5 datasets, respectively.
The reaction kinetic superstructures considered for the 8 chemical reactions are shown in
(11.10).

A1(C) = :1,�A(C) + :1,�B(C) + :1,��A(C)B(C) − :1,�C(C) − :1,�D(C) − :1,��C(C)D(C)

A2(C) = :2,�C(C) − :2,�D(C) − :2,�E(C) − :2,��D(C)E(C)

A3(C) = :3,�E(C) − :3,�F(C)

A4(C) = :4,�B(C) + :4,�D(C) + :4,��B(C)D(C) − :4,�G(C)

A5(C) = −:5,�D(C) + :5,�G(C) − :5,�H(C) − :5,��D(C)H(C)

A6(C) = :6,�A(C) + :6,�F(C) + :6,��A(C)F(C) − :6,� I(C)

A7(C) = :7,�2A(C)2 − :7,�J(C)

A8(C) = :8,�B(C) − :8,�2E(C)2 − :8,� I(C) − :8,�2�E(C)2I(C) + :8,�J(C) + :8,��B(C)J(C)

(11.10)

The best correlation found of A = 5 (�) of each reaction superstructure is shown in Fig-
ures 11.32 and 11.33, where the corresponding BIC values are reported. The : values are
reported in Table 11.27.

The reaction rates A1 to A4 have shown good linear approximation with their reactant
species concentration, in Figure 11.32. These chemical reactions are responsible for form-
ing the main chemical products (species C, D, E, F, and G) and occur in more signi�cant
proportions than A5 to A8, see Figure 11.33, which are responsible for producing the sec-
ondary products (species H, I, and J). These last species are the most a�ected by noise
because they present residual amounts of concentration. Despite producing H, A5 also pro-
duces D to a lesser extent having shown an acceptable linear correlation with the reagent
G, in contrast to A6 to A8 where the behavior of the rate pro�les is more di�cult to predict.
Thus, A6 to A8 have identi�ability problems associated with noisy measurements.
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Figure 11.32 Reaction rates A1 to A4 as a function of reactant species concentration.
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Figure 11.33 Reaction rates A5 to A8 as a function of reactant species concentration.
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After considering the linear regressions performed individually for each reaction rate in
the DM approach, having found the optimal reaction kinetic structures, the IM must be
considered for the estimation of bias-free parameters constituting a nonlinear multiple
response regression problem for each dataset cluster. In this case, (i) original species
concentration measurements (with noise), (ii) the best model structure found, and (iii)
the optimal DM solutions as initial parameter estimates, are used. The species mass
balances are shown in (11.11). The optimal kinetic parameters with their con�dence
intervals are presented in Table 11.27, compared to the DM results.

dA(C)
dC

= −:1A(C)B(C) − :6A(C)F(C) − 2:7A(C)2

dB(C)
dC

= −:1A(C)B(C) − :4B(C)D(C) − :8B(C)J(C)

dC(C)
dC

= :1A(C)B(C) − :2C(C)

dD(C)
dC

= :1A(C)B(C) + :2C(C) − :4B(C)D(C) + :5G(C)

dE(C)
dC

= :2C(C) − :3E(C) + 2:8B(C)J(C)

dF(C)
dC

= :3E(C) − :6A(C)F(C)

dG(C)
dC

= :4B(C)D(C) − :5G(C)

dH(C)
dC

= :5G(C)

dI(C)
dC

= :6A(C)F(C) + :8B(C)J(C)

dJ(C)
dC

= :7A(C)2 − :8B(C)J(C)

(11.11)

Table 11.27 Optimal kinetic parameters for each dataset cluster. DM: di�erential
method, IM: integral method, and CI: Con�dence interval. Parameters : in h−1.

: 9
T = 70 ◦C T = 50 ◦C T = 90 ◦C

DM IM CI DM IM CI DM IM CI

:1 0.608 0.654 (0.651, 0.658) 0.468 0.466 (0.463, 0.469) 0.748 0.892 (0.883, 0.900)
:2 1.165 1.251 (1.231, 1.270) 1.035 1.042 (1.022, 1.063) 1.303 1.487 (1.452, 1.522)
:3 1.261 1.307 (1.283, 1.332) 0.981 0.982 (0.961, 1.004) 1.600 1.684 (1.632, 1.736)
:4 0.109 0.111 (0.110, 0.112) 0.098 0.102 (0.101, 0.103) 0.118 0.125 (0.124, 0.127)
:5 0.020 0.021 (0.020, 0.022) 0.011 0.010 (0.009, 0.011) 0.037 0.039 (0.037, 0.040)
:6 0.018 0.029 (0.028, 0.030) 0.023 0.021 (0.020, 0.022) 0.035 0.040 (0.038, 0.041)
:7 0.005 0.010 (0.009, 0.010) 0.020 0.009 (0.009, 0.010) 0.020 0.009 (0.008, 0.010)
:8 0.849 0.476 (0.366, 0.586) -0.024 0.452 (0.346, 0.557) 0.427 0.361 (0.127, 0.595)
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11.3.6 Parameter correlation with temperature

The reparametrization of the Arrhenius equation in (10.5) was adopted to estimate the �-
nal temperature-dependent parameters, the respective mass balances are shown in (11.12).

dA(C)
dC

= − exp
(
�01 −

�0110
4

')

)
A(C)B(C) − exp

(
�06 −

�0610
4

')

)
A(C)F(C) − 2 exp

(
�07 −

�0710
4

')

)
A(C)2

dB(C)
dC

= − exp
(
�01 −

�0110
4

')

)
A(C)B(C) − exp

(
�04 −

�0410
4

')

)
B(C)D(C) − exp

(
�08 −

�0810
4

')

)
B(C)J(C)

dC(C)
dC

= exp

(
�01 −

�0110
4

')

)
A(C)B(C) − exp

(
�02 −

�0210
4

')

)
C(C)

dD(C)
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= exp

(
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4

')

)
A(C)B(C) + exp

(
�02 −

�0210
4

')

)
C(C) − exp

(
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�0410
4

')

)
B(C)D(C)+

exp

(
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�0510
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)
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dE(C)
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(
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')

)
C(C) − exp

(
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)
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A(C)2 − exp
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�0810
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')

)
B(C)J(C)

(11.12)

The nonlinear multiple dynamic response problem was solved in Mathematica® using
the NonlinearModelFit function. In the initial iterations the parameters �07 and �08

converged to negative values, presenting a result with no physical meaning. Thus, these
parameters were set equal to zero in the next iterations, establishing no dependence on
temperature, where �07 and �08 are actually : constant parameters in all datasets. The
optimal values of the Arrhenius parameters are shown in Table 11.28. All parameters
presented a ?-value lower than 10−6, showing that they have statistical signi�cance. The
model simulation with its adjusted parameters is presented in Figures 11.34 to 11.36 for
the temperature conditions of 70, 50, and 90 ◦C, respectively. The global SSE is 0.124,
achieved after 9 s of CPU usage.

From the model simulation, one can observe a good model-data agreement for species
A to G, and reasonable pro�le behaviors for H to J, since their original measurements
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Table 11.28 Optimal Arrhenius parameter values: �0 in h−1 and �0 in J mol−1.

log(�0) CI �0 �0 × 10−4 CI

:1 5.112 (5.023,5.202) 166.069 1.579 (1.553,1.604)
:2 3.267 (3.021,3.512) 26.225 0.867 (0.797,0.937)
:3 4.860 (4.565,5.155) 128.981 1.310 (1.227,1.394)
:4 -0.523 (-0.647,-0.399) 0.593 0.473 (0.438,0.509)
:5 7.191 (6.635,7.746) 1326.820 3.156 (2.993,3.320)
:6 1.892 (1.349,2.436) 6.634 1.546 (1.388,1.705)
:7 -4.662 (-4.707,-4.618) 0.009 0 �
:8 -0.806 (-0.976,-0.636) 0.447 0 �

are noisy, presenting observations with random trends. The model simulation for every
dataset is presented in Figure 11.37. The proposed methodology of kinetic modeling of
chemical reactions (Step 6), from a known reaction stoichiometry, was able to (i) identify
the kinetic expression of each chemical reaction and (ii) perform its parameter estimates,
describing well the noisy data available in the case study of the P�zer company.
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Chapter 12

Conclusions and Possible Extensions

�Knowledge gives humility, from humility comes worthiness, from worthiness one

gets wealth, from wealth (one does) righteous deeds, from that (comes) joy.�

� Hitopadesha, 12th-century CE

Contents
12.1 Main methodology attributes and contributions . . . . . . . . . . . . . 347

12.2 Conclusions related to the case studies . . . . . . . . . . . . . . . . . . 349

12.3 Possible extensions of the methodology . . . . . . . . . . . . . . . . . 351

12.1 Main methodology attributes and contributions

Attending to Problems P1 to P5 listed in the thesis introduction, a systematic methodol-
ogy was proposed for incrementally build �rst principles models incorporating experimen-
tal data and chemical reaction theoretical knowledge. The methodology contemplates a
data processing step that enables obtaining robust estimates of the species concentrations
together with their time derivatives to support structural model identi�cation. The time
derivatives of these smoothed pro�les are then the basis to identify the reaction network
that explains/respects the key directions of species compositional changes. Finally, reac-
tion kinetic expressions for each component of the model are individually identi�ed from
the respective reaction rates. When parts of the model are not satisfactorily identi�ed,
design of experiments is considered in order to elucidate the complete structure of the
model under analysis. Therefore, a systematic and generic methodology was developed,
allowing the incremental construction of robust models taking full advantage of exper-
imental data and various optimization techniques. The proposed methodology can be
used for simpli�cation of dynamic models, transforming complex dynamic models into
physical meaningful models, removing redundant elements and identifying time-invariant
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relationships. Thus, the obtained model increases process knowledge and facilitates pro-
cess scale-up, monitoring, control and optimization, which in fact, naturally, may be used
for improving safety, product quality and productivity.

The next item list summarizes the main methodology characteristics:

� The identi�cation of the reaction network is uncoupled from the kinetic parameter
estimates. The use of the di�erential method supports the network identi�cation.
Basically the model components that constitute the network correspond to key di-
rections of compositional changes. In this sense, the network consists of a basis
that spans the data variant space. The methodology spans all plausible bases for
that variant space, ensuring that the best structure is found. For elucidating uncer-
tain pathways, or discriminate between candidate network structures, experimental
proposals can be suggested based on model information obtained.

� The enumeration of reaction networks is considered using MILP formulations, ensur-
ing linear independence among chemical reactions and feasible connected solutions
from a superstructure of reaction networks. These formulations are generic, and
they can be applied for synthesis of any process that can be described by graphs.
The incorporation of precedence constraints is considered for nonlinear structures
synthesis, guaranteeing, beyond connectivity, network consistency. The formula-
tions developed are a contribute to the state of the art. However, it consists of a
combinatorial problem that can be computational intensive for large problem sizes.

� The implicit generation of networks that incorporates experimental data in the for-
mulation is considered in order to enumerate plausible solutions that (most) close
the species di�erential mass balance with positive reaction �uxes; or in a more re-
strictive perspective/outlook, the implicit generation of networks that present good
correlations between reaction �uxes and respective reactant species concentration for
each reaction model component can be also considered, for avoiding combinatorial
problems (explosion) in the explicit network enumeration.

� Data treatment with incorporation of time-invariant relationships is a crucial step of
the proposed methodology. It increases data accuracy and enables good estimates
of species �uxes, supporting the entire structural model identi�cation.

� The methodology incorporates the use of methods for determining data variant and
invariant spaces, and validating them. A novel method for determining the data
invariant space dimension supported on SVD was proposed in the thesis.

� The identi�cation of kinetic expressions is performed separately/individually for
each model component. It is supported on the di�erential method and Bayesian
information criterion. For reaction kinetic modeling, a systematic methodology
is proposed that captures linear correlation among reaction rates (or a surrogate
variable/response/dependent variable) and species concentration, identifying the
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best kinetic expression that �ts data with the lowest number of parameters. After
the structure of the model has been identi�ed, the integral method is also considered
for obtaining unbiased parameter estimates, according to the maximum likelihood
criterion. The obtained solution approaches the global optimum since the initial
biased estimates were obtained using the incremental methodology proposed, where
the model is developed with great accuracy and robustness.

� In order to support the identi�cation of the model, the need for more experimental
data and, consequently, for proposals for additional experiments can happen in three
phases of the methodology: during (i) data treatment and data analysis, in order
to help the identi�cation of data dimension and time-invariant relationships, (ii)
network identi�cation phase, in order to elucidate uncertain reaction pathways (in
general for elucidating the origin of residual species), and, �nally, (iii) kinetic model
development, for discrimination between candidate kinetic expressions. However, it
is notable that these experiments are aimed at elucidating speci�c problems that
arise from incomplete/unsatisfactory information, which in turn constitute model
results obtained during the application of the methodology. Therefore, these exper-
imental proposals are model-driven, supported on mechanistic information.

Table 12.1 presents an overview of the main contributions of the thesis that are relevant
for academia and industrial applications, pointing out their advantages and limitations.
Notice that each thesis contribution corresponds to the main objective of a particular
methodology step.

12.2 Conclusions related to the case studies

The main results obtained from the methodology application to the considered case studies
are presented in this conclusion section.

On the basis of the results obtained for AP and MAC case studies, it can be concluded that
a systematic development of models is very important for obtaining models of reduced
complexity (simpler models) with great con�dence that still are highly process descriptive,
(when compared to literature model proposals).

The AS case study enabled to conclude that experimental data with high uncertainty
may compromise the complete identi�cation of the model structure, requiring additional
experiments for allowing a better explanation of the network structure, eventually vali-
dating the network proposed in the literature. In addition, regarding the enumeration of
reaction networks, this case study has demonstrated that the use of (i) energetic criterion
for constraining the network superstructure, enabled a signi�cant reduction of the num-
ber of generated networks, saving time and computational e�ort, and (ii) of precedence
constraints is required for generating consistently connected nonlinear reaction networks.

On the basis of the results obtained for MAC case study, it can be concluded that system-
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atic methods for reaction kinetic modeling is required for accurate model identi�cation,
avoiding overparameterization, and obtaining tight parameter con�dence intervals.

The impact on the use of time-invariant relationships in the data reconciliation procedure
was demonstrated using data from the pharmaceutical P�zer company. It was demon-
strated that under-dimensioned null spaces have a negative impact on the �nal quality
of the reconciled data obtained, compromising the complete structural identi�cation of
the model. Therefore, when properly applied, these conserved relationships reduce the
noise-to-signal ratio, and consequently, increase the model identi�ability using reconciled
data. This is an important contribute of the thesis for the state of the art.

Moreover, the implicit generation of reaction networks were tested considering the AP
and P�zer case studies, showing that it is possible to incorporate experimental data in
the network generation phase to structural identi�cation, and thus, consequently, reduce
the number of alternative model candidates to be further analyzed, but at the cost of
loosing incremental model development.

12.3 Possible extensions of the methodology

The improvement of the design of experiments in Step 7 of the methodology is one of the
future works that should be considered. Several steps in the methodology may lead to
the conclusion that more data is needed, however, at each step the need for more data
can have a di�erent reason. For example, in Step 2 additional data may be needed to (i)
help in identifying the dimension of the data in the variant form, and (ii) establish the
number of invariant relationships over time. In Step 5, additional data may be needed to
discriminate plausible reaction network structures, thus elucidating the uncertain origin
of residual species, for example. In Step 6, additional data may be needed to identify
candidate kinetic expressions that have shown equal data-�tting performance. For these
reasons, a more systematic approach to designing experiments should be considered, tak-
ing advantage of existing methods in the literature and incorporating new techniques
aimed to solve the speci�c problems described above.

Another future work is to demonstrate the impact of handling reliable models that describe
a reaction system for applications after the modeling phase on, for example, optimum
design of equipment, monitoring and control of chemical industrial processes, and energy
and mass integration of processes. In this scope, the comparison of models must be carried
out, together with a sensitivity analysis of the optimal solution obtained in the presence
of variations in the model parameters.

Finally, another interesting �eld for future work is to improve the proposed method-
ology by incorporating more data-driven approaches, supported on statistical learning
techniques, enabling the obtainment of hybrid models. This may require the use of deter-
ministic and empirical modeling strategies for determining (semi) surrogate models that
can enable a better description of the chemical reaction process.





Appendix I

Basic Concepts

This chapter presents basic concepts that support methods proposed and used in the the-
sis, namely the Singular Value Decomposition in Appendix I.1, the orthogonal projection
of vectors in linear spaces in Appendix I.2, and singular values and eigenvalues related
de�nitions in Appendix I.3.

I.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix factorization technique in which
the original matrix, is decomposed in three matrices with particular characteristics. For
example, consider an arbitrary matrix X ∈ R< × = which is decomposed as

X = U · � ·VT (I.1)

where U is a squared real matrix with dimensions dictated by the number of rows of X,
i.e., U ∈ R< × <, � is a diagonal matrix with the same dimensions of X with positive
entries, � ∈ R< × =+ , and V another squared real matrix with dimensions dictated by the
number of columns of X, i.e., V ∈ R= × =. Matrices U and V are orthonormal, i.e., they
are formed by orthogonal unitary vectors. The inner product of orthonormal vectors is
zero. The inner product of an orthonormal vector with itself is unity. Hence U and V
are full rank and

UT ·U = U ·UT = I< and VT ·V = V ·VT = I= (I.2)

where I is the identity matrix with the respective dimensions < and =. The � diagonal
positive entries are sorted in a decreasing order, i.e., f1,1 ≥ f2,2 ≥ f3,3 ≥ . . . ≥ 0, and the
number of f8, 9 : 8 = 9, (8, 9) = 1, . . . ,min(<,=), di�ering zero, establishes the matrix rank, ',
of X.

Since only the diagonal entries of � can be di�erent of zero, it is possible to write the
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same factorization as a sum of outer products u ⊗ v scaled by the respective f, i.e.,

X =

min(<,=)∑
8= 9

f8, 9u8 · vT9 (I.3)

where each matrix u8 · vT9 , 8 = 9 , has unitary rank.

However when ' ≤ min(<,=) and < ≠ =, there exists the economy SVD form in which

X = Û · �̂ · V̂T
(I.4)

where Û ∈ R< × ', �̂ ∈ R' × '
+ , and V̂ ∈ R= × '.

In cases where ' < min(<,=), X contains linear dependencies in = − ' columns and < − '
rows, thus, there exists = − ' null f diagonal entries, i.e., f8 = 0, 8 = ' + 1, . . . , =. For
notation simpli�cation consider f8 ≡ f8, 9 , 8 = 9 . Therefore in (I.3) will exists (i) = − '
matrices (multiplied by null values) and (ii) < − ' vectors u, i.e., u8, 8 = ' + 1, . . . ,<, that
are not contributing to X formation. In Figure I.1 there is an example where ' = = < <

of the economy SVD of X.
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XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
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Figure 1.1: Schematic of matrices in the full and economy SVD.

Computing the SVD

The SVD is a cornerstone of computational science and engineering, and the
numerical implementation of the SVD is both important and mathematically
enlightening. That said, most standard numerical implementations are mature
and a simple interface exists in many modern computer languages, allowing
us to abstract away the details underlying the SVD computation. For most
purposes, we simply use the SVD as a part of a larger effort, and we take for
granted the existence of efficient and stable numerical algorithms. In the sec-
tions below, we demonstrate how to use the SVD in various computational lan-
guages, and we also discuss the most common computational strategies and
limitations. There are numerous important results on the computation of the
SVD [212, 106, 211, 292, 238]. A more thorough discussion of computational is-
sues can be found in [214]. Randomized numerical algorithms are increasingly
used to compute the SVD of very large matrices as discussed in Sec. 1.8.

Matlab. In Matlab, computing the SVD is straightforward:

>>X = randn(5,3); % Create a 5x3 random data matrix
>>[U,S,V] = svd(X); % Singular Value Decomposition

For non-square matrices X, the economy SVD is more efficient:

>>[Uhat,Shat,V] = svd(X,’econ’); % economy sized SVD

Copyright © 2017 Brunton & Kutz. All Rights Reserved.

Figure I.1 Schematic representation of the SVD of X[< × =] and economy SVD of X
when ' = =, i.e., X in non-singular (full rank) in this example. Notice that all diagonal
entries are positive, f8 > 0, 8 = 1, . . . , =, but once < > = there exists the economy SVD.
V∗ ≡ VT (Brunton and Kutz, 2019). Copyright (2021) by Cambridge University Press.

These u8, 8 = ' + 1, . . . ,< and v 9 , 9 = ' + 1, . . . ,= are exactly the vectors that form, respec-
tively, the orthogonal basis of left and right null spaces of X. Hence the economy SVD,
in (I.4), excludes the components related to the null spaces of X. On the other hand, the
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components that do contribute to X formation, for example in eqs. (I.3) and (I.4), are
located at the column and row spaces of X, such that u8 and v8, 8 = 1, . . . ,' are orthogonal
basis for the column and row space of X, respectively. These vectors u8 and v8, 8 = 1, . . . ,'

are named as left and right singular vectors, respectively, while f8, 8 = 1, . . . ,' are the
singular values X. Notice that the left singular vectors multiplies X on the left side such
that

uT8 ·X = f8v
T
8 , 8 = 1, . . . ,' (I.5)

while the right singular vectors multiplies X on the right side

X · v8 = f8u8, 8 = 1, . . . ,' (I.6)

Therefore the left singular vectors may be viewed as a system of coordinates of the right
singular vectors scaled by their respective singular values in the row space of X. Similarly
the right singular vectors are coordinates of respective left singular vectors weighted by
the singular value in the columns space of X.

In fact f translates the importance associated with original data in X described on (i)
its columns, thus captured in the respective direction u, and (ii) its rows, depicted on v
vectors. Since they are hierarchically sorted in order of decreasing values, the SVD decom-
poses the original matrix looking for the directions where the variances are largest, and
this arrange turns this decomposition unique when all singular values are distinct. When
the singular values are degenerated, the uniqueness of this decomposition is no longer
valid, although the lack of uniqueness does not a�ect any of the low-rank approximation
properties of SVD (Kambhampati, 2020).

Considering the correlation matrix given by C = XT · X, in which C is symmetric and
positive semi-de�nite since its entries are obtained from every inner product among column
vectors of X1, i.e.,

C =


xT1 x1 xT1 x2 . . . xT1 x=
xT2 x1 xT2 x2 . . . xT2 x=
...

...
. . .

...

xT= x1 xT= x2 . . . xT= x=


this matrix can also be obtained through the SVD of XTX such that

C = V · � ·UT ·U · � ·VT = V · �2 ·VT (I.7)

It is possible to see that every right singular vector of X, v8, 8 = 1, . . . ,', constitutes an
eigenvector of C, i.e.,

C · v8 = f28 v8, 8 = 1, . . . ,' (I.8)

where f28 is the eigenvalue of C, corresponding to the squared singular value of X.

1Essentially it guarantees the achievement of nonnegative real eigenvalues.
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Similarly, it is also valid for the left singular vectors of X, u8, 8 = 1, . . . ,', corresponding
to the eigenvectors of CT, such that

CTu8 = f
2
8 u8, 8 = 1, . . . ,' (I.9)

Therefore another valid interpretation related to U, � and V follows the correlation
criterion, the columns of U and V are hierarchically ordered by how much correlation
they capture, respectively, in the columns and in the rows of X, since the singular values
are arranged in descending order by magnitude in � (Brunton and Kutz, 2019).

The SVD has many powerful applications in several areas, it can be used to (i) dimension-
ality reduction of high-dimensional data, (ii) compute the pseudo-inverse of nonsquare
matrices, providing solutions to underdetermined and overdetermined linear system of
equations, (iii) de-noise datasets, and (iv) to characterize the input and output geometry
of a linear map between vector spaces. The items (i), (ii) and (iii) are discussed in Chap-
ter 6 where SVD is used to assess the dimension of noisy experimental data from batch
reaction experiments in order to determine the required dimension of the network that
will make up the developing model. However, the item (iv) is illustrated in Section 2.2.3
in the context of the stoichiometric matrix.

I.2 Orthogonal projection

The shortest distance among a vector v ∈ R< and a subspace S ∈ R< with dimension =
(with < > =) is obtained when computing the orthogonal projection of v in S, projSv, in
which this latter is the vector in S such that v−projSv is orthogonal to S (Meyer, 2000).
Therefore, the di�erence vector v − projSv represents the shortest distance among the
vector v ∈ R< and the subspace S ∈ R< with dimension = since it is orthogonal to every
member of S. Notice that v − projSv belongs to the orthogonal complement of S, i.e.,
v−projSv ∈ S⊥, where S⊥ is also a subspace of R<, complementary to S, with dimension
< − =. In fact, the vector v is being written as the sum of the two vector components
which lie in both complementary subspaces of R<, i.e.,

v = projSv + projS⊥v (I.10)

Considering that B ∈ R< × = has full rank matrix in which its = columns constitute a basis
for S, it is clear that (i) the vector projSv ∈ col (B), i.e., it can be written as a linear
combination of the = column vectors of B, and (ii) the vector projS⊥v ∈ leftNull (B),
i.e., it belongs to the orthogonal complement of col (B), whose < − = basis vectors, w8 ∈
R<, 8 = 1, . . . ,< − =, satisfy the homogeneous system of equations BT · w = 0, de�ning
a basis for the left null space of B in which projS⊥v is written as a linear combination.
Hence, BT · projS⊥v = 0. A detailed discussion about the four subspaces that a matrix
can present is addressed in Section 2.2.2.
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The projSv is computed through the sum of individual projections of v in each column
vector that form a basis that spans S, as it is shown in (I.11)

projSv =
v · b∗,1
‖b∗,1‖2

b∗,1 +
v · b∗,2
‖b∗,2‖2

b∗,2 + · · · +
v · b∗,=
‖b∗,=‖2

b∗,= (I.11)

where b∗, 9 , 9 = 1, . . . ,= are column vectors of the matrix B ∈ R< × = that form a basis for
S with dimension =.

Therefore, simplifying the previous equation, one can simply mention that projSv is
written (uniquely) as a linear combination of the columns of B (full rank matrix), i.e.,

projSv = B · x (I.12)

with x ∈ R=, where every element of this vector x is v·b∗, 9
‖b∗, 9 ‖2

of the corresponding 9 = 1, . . . ,=.

Considering the vector v decomposition in (I.10), it is possible to write that

BT · (v − projSv) = 0 (I.13)

since projS⊥v lies in the left null space of B.

Substituting variables from (I.12) in (I.13), it is obtained

BT · v −BT ·B · x = 0 (I.14)

Since B has full (column) rank the matrix product BT · B is invertible, and, therefore,
after some mathematical manipulation of the previous equation, the vector of coordinates
x is calculated through

x =

(
BT ·B

)−1
·BT · v ⇔ x = B+ · v (I.15)

Therefore, the x that satis�es (I.12) is obtained using (I.15). This vector corresponds to
the optimal solution in the least squares sense. It is the coordinates of projSv in the basis
B that gives the minimum error of projection, satisfying (I.13). Moreover, we see that
the pseudo-inverse of B is given by

B+ =
(
BT ·B

)−1
·BT (I.16)

Hence, the projection of v into S is given by

projSv = B ·
(
BT ·B

)−1
·BT · v ⇔ projSv = B ·B+ · v (I.17)

If we consider the economy SVD(B) to compute its pseudo-inverse, after some manipu-
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lation of (I.17) we obtain

projSv = Û · ÛT · v (I.18)

where Û is the orthonormal basis that for col(B) without its complementary left null
space component (economy format).

However, when considering the same matrix B, but at this time having full row rank, as
a basis that span the row space of S, similarly, the same analysis can be done but now for
the complementary row and null spaces of S. For example considering M[= × <] = BT

as a basis whose rows span the row space of S of dimension =, the projection of z ∈ R<
in M is given by

projMz = B
T ·

(
B ·BT

)−1
·B · z ⇔ projMz = B

+ ·B · z (I.19)

If we consider the economy SVD(BT) to compute its pseudo-inverse, after some manipu-
lation of (I.19) we obtain

projMz = V̂ · V̂
T · z. (I.20)

where V̂ is the orthonormal basis for row(B) without its complementary null space com-
ponent (economy format).

I.3 Singular values and eigenvalues � what they mean

and how they are related

The Singular Value Decomposition (SVD) is a method of decomposing vectors onto or-
thogonal axes. Any vector d ∈ R= can be expressed in terms of (i) projection directions
unit vectors (v1,v2, . . . ,v=) and (ii) the lengths of projections onto them (;31, ;32, . . . , ;3=),
such that

d = ;31v1 + ;32v2 + . . . + ;3=v= (I.21)

Therefore, in this nomenclature, v represents the directions onto which the original vector
d is decomposed, and ; the lengths of projection which informs how much of the vector
is contained in each direction of projection.

If instead of only a single vector of d we have a matrix D ∈ R< × = in which < di�erent
transposed d vectors are displayed at the rows of D, this matrix can also be decomposed
as

D = L ·VT (I.22)

where L ∈ R< × = is the matrix containing lengths of projection, and V ∈ R= × = is the
matrix containing the decomposition axes. Notice that V contains orthonormal columns,
i.e., it is composed by unitary and orthogonal vectors, such thatD = L·V−1 and L = D·V.

Hence, every column of L contains the lengths of projections of each data point in the
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respective coordinate axis v, i.e., the �rst column l1 has< lengths of projection respected
to each data point projection onto the axis v1, and so on. If we consider the normalization
of these vectors l1, l2, . . . , l= by dividing each column vector by its respective magnitude

f, such that f1 =

√
;2
3=1,1
+ ;2

3=2,1
+ . . . + ;2

3=<,1
, f2 =

√
;2
3=1,2
+ ;2

3=2,2
+ . . . + ;2

3=<,2
, and so on.

We can decompose L as the product of two matrices:

L =


;3=1,1/f1 ;3=1,2/f2 . . . ;3=1,=/f=
;3=2,1/f1 ;3=2,2/f2 . . . ;3=2,=/f=

...
...

. . .
...

;3=<,1/f1 ;3=<,2/f2 . . . ;3=<,=/f=


·


f1 0 . . . 0

0 f2
...

...
... . . .

. . .
...

0 . . . . . . f=


= U · � (I.23)

The conventional SVD formula
D = U · � ·VT (I.24)

is equivalent to (I.22), since U · � = L. Notice that U contains the normalized lengths
of projections of each data point in the system of coordinates V, and � contains in its
diagonal the square root of the sum of squared projection lengths, of all points, onto the
respective basis vectors that form V. Therefore, the f values represent how close all the
points are to the respective axis of the basis V. Hence, the closer the points to a speci�c
axis of projection, the larger the value of the corresponding f.

Finding a low-dimensional representation of the data that retains as much information as
possible, i.e., to project the dataset on the line (or plane, or space) of largest variance, is
the main objective of dimensionality reduction. For this purpose, another representation
of the data (another set of features that are linear combinations of the original ones) is
identi�ed such that the features in this representation have the highest possible variance
and lowest possible covariance (Abdullatif, 2019). The covariance can be interpreted as
a measure of how accurately one variable can be predicted from another. Notice that
features with high variance are more informative and more important, and, in contrast,
highly correlated features brings (almost) redundant information since they can be de-
duced from one to another with little loss of information. The inner (dot) product is
a very natural measure for covariance since the more the data deviates from the vector
where data is being projected, the larger the angle between the two vectors, and hence
the smaller the dot product (Abdullatif, 2019).

The variance along a vector x ∈ R= is the average squared deviations of its coordinates
from their mean. However, when data is mean-centered, the variance formula is simpli�ed
to the average of the inner product x to itself, since the mean is zero, such that

f2 =
xT · x
=

(I.25)

where = is the dimension of x. On the other hand, the covariance is a metric established
for a pair of vectors, which measures how much they are linearly (in)dependent, i.e., how
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much they are correlated. For example consider the vector y ∈ R=, the covariance of x

and y is simply cov (x,y) = xT·y
=

. This can be extended to the matrix format, such that

cov (X) =
XT ·X
=

=

[
f2G cov (x,y)

cov (y,x) f2~

]
, (I.26)

withX ∈ R< × 2 containing in its columns the vectors x and y and cov (X) is its covariance
matrix of square dimension equal to the number of X columns, in this case 2. Notice that
cov (X) has in its diagonal the variances of each column vector of X, and it is symmetrical
since cov (x,y) = cov (y,x).

Regarding a single unit vector v ∈ R=, the same relationship in (I.22) can be written as

l = D · v (I.27)

where l ∈ R< is the projection of data D on the axis v ∈ R=. Therefore, it is easy to �nd
the variance along any axis by projecting the data points on the unit vector representing
the line, and then computing the variance of this projection, such that

f2E =
lT · l
=

=
(D · v)T ·D · v

=
= vT · (D

T ·D)
=

·v = vT ·cov (D) ·v (I.28)

Therefore, once having cov (D), the problem of data dimension reduction can pass through
�nding the vector v such that f2E is maximum. Moreover, the vector v is an eigenvector
of the matrix cov (D), since

cov (D) · v = _v (I.29)

where _ (scalar) is the eigenvalue corresponding to v. Consequently, it is possible to verify
from (I.28) and (I.29) that

f2E = vT · cov (D) · v = vT · (_v) = _vT · v = _ (I.30)

Therefore, the f2, that has been de�ned in so many ways during this section, i.e., the
square of the singular value of the SVD ofD, the variance of l, the covariance of l and itself,
and the approximation of the squared ℓ2-norm of l, is also the eigenvalue of the covariance
matrix ofD. Consequently, the eigenvector v of the covariance matrix that has the largest
absolute eigenvalue (largest f2) is the direction of greatest variance2. Hence, another valid
interpretation related to the SVD follows the correlation (covariance) criterion, since the
singular values are arranged in descending order by magnitude in �, the columns of U
and V are hierarchically ordered by how much correlation they capture in the columns
and in the rows of D, respectively (Brunton and Kutz, 2019).

2In the end of Appendix I.1, we present the same analysis but considering the cov
(
D

T
)
, and its

associated eigenvalues and eigenvectors.
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Appendix II

Generation of reaction networks without

using MILP

II.1 Recursive algorithm to generate the tree of states

Inspired on STN concept, a recursive formulation was developed to generate all feasible
reaction networks composed by linearly independent sets of chemical reactions from a
network superstructure. The reaction networks are gradually built in every recursion in
which a state of the tree is obtained, attending to constraints related to consistency among
species production and linear independence of the set of chemical reactions. With this
formulation, a single reaction network can be obtained in few recursions. However, the
goal is to obtain all feasible reaction networks, and therefore, to build the tree of states.

The tree of states is recursively built spanning the linearly independent space of chemical
reactions. Similarly with the previous FASP, a state is de�ned by two lists, one composed
by species and other by reactions. In Figure II.1 a �owchart of the proposed algorithm is
shown, in which two starting points are presented: (i) the initial state composed by the
initial reactant(s) and an empty set of reactions, and (ii) a list of chemical reactions that
compose the network superstructure.

According to the �owchart in Figure II.1, when evaluating, from the list of chemical
reactions of the superstructure, which chemical reactions (i) can be consistently appended
to the reference state, i.e., reactions in which the reactant(s) is/are present in the reference
state, ensuring precedence among species production (thus avoiding the generation of
inconsistent networks, see example in Figure 8.9), and, (ii) individually appended to the
reference state maintain the set linearly independent, a list of potential reactions to be
appended to the reference state is obtained. When this list is not empty, i.e., the dimension
of the list is greater than zero, one reaction from this list is appended to the reference state
con�guring a new state formed by the (i) list of species that now contains the product
species of the appended reaction plus the species that were earlier presented, and, (ii)

363
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Chemical reactions 
in the superstructure

Ref state

Initial state =
[{rp},{Null}]

Consistency test &
linear independence analysis

List of candidate
 reactions has dimension 

> 0 ?

Select one* - New state 

Is there a state, in the state list, 
with dim = dim(Ref state) -1?

Select the last one - Old state 

Stop -
Return the
state list

Yes
Yes

No

No

Figure II.1 Recursive algorithm �owchart for the generation of consistent and linearly
independent reaction networks. (*) The criterion to select one chemical reaction to the
new reference state is set according to the adopted search strategy.

list of reactions that now contain the reaction selected. On the other hand, if there is no
chemical reaction from the initial list that satis�es the previously described criteria, the
algorithm searches for the nearest previous state, that contains a lower dimension of the
chemical reactions set, and it starts again the consistency test and linear independence
analysis for this reference state. Finally, when there is no more states in which chemical
reactions can be added satisfying the imposed criteria, the tree of states is completed.

In short, in each recursion one reaction is added to the reference state maintaining the
sub-network consistent and linearly independent. If the nrxli,max is reached, the algorithm
uses the last evaluated reference state with a lower network dimension to continue adding
independent and consistent chemical reactions. Therefore, all LI reaction networks can
be obtained using this recursive formulation. The non-repetition of states is ensured by
forbidding the selection of reactions that conduct to previous states already built/visited.
Every built state is saved in a �dejavu� list.

The state is called complete when it consists of a reaction network with DI = 0. In
Figure 8.12, there are 16 complete states at the bottom level of the tree. The adopted
strategy to span all states can involve the search in depth or in width over the tree of
states, and it can also follow a greedy criterion. For example, from the list of candidate
reactions, the one that produces more species is selected, like an heuristic guide procedure.
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Thus, the complete states would be found faster. However, as we are concerned in �nding
all complete states, this kind of greedy procedure does not present advantages. In the
previous described approach the search strategy is done in depth, and no preference related
to the list of candidate chemical reactions is imposed.

II.1.1 Pseudo-code

The pseudo-code is presented in the following algorithms (1) and (2).

Algorithm 1 List of consistent and LI chemical reactions

Require: estref, stocMat, listrx, listest
Ensure: reac ∈ estref ∧ rank(est)> rank(estref)
for rx= 1, rx≤ Length[stocMat], rx++, do
line=stocMat[[rx]];
est= AppendTo[estref,line];
if reac[line] ∈ reac[estref] ∧ rank(est)>rank(estref) ∧ est 3 listest then
AppendTo[listrx,line]

end if
end for
return listrx

Algorithm 2 Tree of states

Require: estref, stocMat, listest
rxad= Call[Algorithm 1,{estref, stocMat, listest}];
if rxad = ∅ then
if listest[[-1]] = ∅ then
return listest

else
est=listest[[-1]];

end if
Call[Algorithm 2,{est, stocMat, listest}];

else
rxad = First[rxad];
est= AppendTo[estref,rxad];
listest= AppendTo[listest,est];
Call[Algorithm 2,{est, stocMat, listest}];

end if

II.1.2 Example

Considering the tree of states obtained for the nonlinear AS case study, it presented
10269 states in which 8739 are complete states with nrxli,max = 5 containing the set of LI
redundant and non-redundant networks, and, 241 are complete states with nrxmin = 4.
The results were obtained using Mathematica software.
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The linear AS case study presented 902 states, in which 540 are complete ones, located
at the bottom of the tree. The tree of states is presented in Figure II.2.

Figure II.2 Representation of the tree of states containing the linear reaction networks
for case study AS at the bottom level of the tree.

II.2 Another application example

The catalytic reaction of toluene with benzyl alcohol over sulfated zirconia is considered
in this section (Ardizzone et al., 2006).

II.2.1 Toluene case study

The catalytic reaction of toluene with benzyl alcohol over sulfated zirconia was considered
(Ardizzone et al., 2006). This case study involves 6 chemical species: toluene (TOL),
benzyl alcohol (BzOH), dibenzyl ether (BzOBz), dibenzyl toluene (D), benzyl toluene
(M) and water (H2O). The water component is not an abundant chemical species since
the reactions occur in cyclohexane solvent. Besides nonlinear chemical reactions, two
initial reactants are present in the system with high level of purity, they are TOL and
BzOH (Figure II.3).

BzOBz

BzOH

H2OTOL

M

D

r2

r7

r1

Figure II.3 Reaction network proposed by Ardizzone et al. (2006).

The chemical reactions are listed in Table II.1. These reactions were obtained considering
the formulation to generate chemical reactions presented in the previous work (REF -
parte1). The reaction network superstructure is shown in Figure II.4.

TOL case study characteristics:
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Table II.1 Stoichiometric coe�cients of the nonlinear chemical reactions � Toluene
case study.

Index TOL BzOH BzOBz D M H2O Reaction

1 0 -2 1 0 0 1 2 BzOH BzOBz + H2O
2 -1 -1 0 0 1 1 TOL + BzOH M + H2O
3 -1 1 -1 0 1 0 TOL + BzOBz BzOH + M
4 -1 0 -1 1 0 1 TOL + BzOBz D + H2O
5 -1 0 0 -1 2 0 TOL + D 2M
6 0 -1 1 -1 1 0 BzOH + D BzOBz + M
7 0 -1 0 1 -1 1 BzOH + M D + H2O
8 -1 -2 0 1 0 2 TOL + 2BzOH D + 2H2O
9 -1 2 -2 1 0 0 TOL + 2BzOBz 2 BzOH + D
10 -2 0 -1 0 2 1 2 TOL + BzOBz 2M + H2O
11 0 0 -1 2 -2 1 BzOBz + 2M 2D + H2O

BzOBz

BzOH

H2O

TOL

M

D

r2

r7

r1

r4

r3

r8

r9

r6

r5

r10

r11

Figure II.4 Superstructure for the generation of nonlinear reaction networks �
Toluene case study. The diamond nodes represent the reaction events and their link-
ing arcs map the pair of species in each side of the reaction.

� Rank of Nsup is 3, networks with nrxli,max = 3 have RI = 0,

� nrxsup = 22; nrxmax = 11 and nrxmin = 2.

The Figure II.5 presents the �rst 3 nonlinear reaction networks obtained for this case
study.

Considering the algorithms (1 and 2), using the Mathematica software, the number of
states obtained was 123 in approximately 4 s. The tree of states is presented in Fig-
ure II.6. The number of complete networks with LI redundant and non-redundant chem-
ical reactions obtained was 104, from this set 2 are composed by nrxmin = 2 and 121
by nrxli,max = 3. Note that from these 121 LI networks with nrxli,max = 3, 67 are LI
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BzOH

r6

D
BzOBz

M

TOL

r8

H2O TOL

r8

BzOH
D

H2O

-r11

BzOBz

M

D

-r7

H2O

BzOH

M

TOL

r8

-r10
BzOBz

Figure II.5 First 3 nonlinear reaction networks obtained � Toluene case study.

non-redundant and 54 are LI redundant.

Figure II.6 Tree of states - Toluene case study.
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