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Abstract

In this thesis we study several numerical methods, based on splines, to approximate the solution of
fractional diffusion equations. These equations model anomalous diffusion that can be categorized
as subdiffusion or superdiffusion, depending on the associated mean-squared displacement. In the
last decades, anomalous diffusion has been a subject of intense research activity and it describes
phenomena of different fields such as engineering, hydrology, physics, finance and biology.

The main tool that we use to derivate the numerical methods is splines. Splines are piecewise
interpolator functions, defined by a polynomial in each interval and that differ in the degree of the
polynomial and in the conditions imposed on the derivatives. The most common splines in literature
are of integer degree, namely the linear spline (degree 1) and the cubic spline (degree 3). In this work,
we explore splines of degree β where β is a real number between 0 and 2. For sufficiently smooth
functions, we verify that the splines of degree β approximate the corresponding functions with order
of convergence β ` 1. For functions such that u “ Optγq when t Ñ 0, which are of special interest in
the context of anomalous diffusion, we conclude that splines of degree β approximate these functions
with convergence order of the minimum between β ` 1 and γ ` 1{2, when considering the L2 norm.
On other hand, to the L8 norm, we obtain the heuristic result to the order of convergence given by the
minimum between β ` 1 and γ . After this, we approximate the fractional time integral of order α

resorting to splines of degree β . For sufficiently smooth functions, the rate of convergence of this
approximation is β ` 1, both for the L2 and the L8 norms. For functions such that u “ Optγq when t
tends to 0, for the L2 norm we conclude that the approximation of the integral of order α using splines
of order β exhibits a rate of convergence of the minimum between β ` 1 and γ ` α ` 1{2. For the L8

norm, the order of convergence is the minimum between β ` 1 and γ ` α . In this work, we also study
subdiffusion modeled by an equation involving the first derivative in time of that fractional integral.
Hence, using the second order central finite difference formula, we obtain a numerical method that is
second order accurate in space. Regarding the accuracy in time, the numerical method presents the
same order of convergence as the approximation of the fractional integral by a fractional spline.

Concerning superdiffusion, we define a fractional integral in space that we approximate by the
linear spline, that can be seen as the fractional spline of degree 1. We consider two different types of
superdiffusion, depending on the value of α to be between 0 and 1 or between 1 and 2, since each
of these cases originates a different equation. For 0 ă α ă 1, we study three numerical methods:
one using a second order central approximation, other using a first order upwind approximation and
another using a second order upwind approximation. From the study of the stability and consistency
of the numerical methods, we conclude that the best one is the second order upwind scheme, since it
is second order accurate and does not raise problems for larger meshes, as happens for the central
method that presents solutions with spurious oscillations. For 1 ă α ă 2, we derive a numerical
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method for the problem of superdiffusion with a reflecting wall, based on the linear spline for the
space approximation and on the Crank-Nicolson method for the time approximation. We complete the
convergence analysis and conclude that the numerical method is second order convergent both in time
and space.

Throughout this thesis, the stability analysis is made for the different numerical methods con-
sidering the von Neumann theory and all the conclusions stated are corroborated and illustrated by
numerical methods implemented by us in MATLAB ®. From numerical experiments, we also infer
the influence of the value of α regarding the processes of subdiffusion and superdiffusion.

Keywords: fractional splines, fractional differential equations, subdiffusion equation, Lévy flights,
Riemann-Liouville derivatives, finite difference methods, reflecting boundary condition.



Resumo

Nesta tese estudamos vários métodos numéricos, baseados em splines, para aproximar soluções de
equações de difusão com derivadas fracionárias. Estas equações modelam difusão anómala que
pode classificar-se como subdifusão ou superdifusão, dependendo do momento de segunda ordem do
deslocamento associado. A difusão anómala é um tema que tem despertado cada vez mais interesse ao
longo das últimas décadas e que descreve fenómenos em várias áreas tais como engenharia, hidrologia,
física, finanças e biologia.

Para a construção dos métodos numéricos, utilizamos como ferramenta principal os splines.
Splines são funções interpoladoras segmentadas, definidas em cada intervalo por um polinómio, e que
variam consoante o grau do polinómio e as condições impostas sobre as derivadas. Na literatura, os
splines mais comuns são os de grau inteiro, nomeadamente os splines lineares (de grau 1) e os splines
cúbicos (de grau 3). Neste trabalho, exploramos os splines de grau β , onde β é um número real entre
0 e 2. Para funções suficientemente regulares, verificamos que os splines de grau β aproximam as
respetivas funções com ordem de convergência β ` 1. Para funções do tipo u “ Optγq quando t Ñ 0,
que são funções de interesse no contexto da difusão anómala, concluímos que os splines de grau β

aproximam estas funções com uma ordem de convergência que é o mínimo entre β ` 1 e γ ` 1{2 para
a norma L2. Por outro lado, considerando a norma L8, obtemos o resultado heurístico para a ordem
de convergência do mínimo entre β ` 1 e γ . Depois deste estudo, aproximamos integrais fracionários
de ordem α com recurso aos splines de ordem β . Para funções suficientemente regulares, tanto para a
norma L2 como para a norma L8, obtemos uma taxa de convergência de β ` 1. Para funções do tipo
u “ Optγq quando t tende para 0, para a norma L2 deduzimos que a aproximação do integral de ordem
α baseada em splines de grau β apresenta uma taxa de convergência que é o mínimo entre β ` 1 e
γ ` α ` 1{2. Para a norma L8 obtemos que a ordem de convergência é o mínimo entre β ` 1 e γ ` α .
Neste trabalho estudamos também o fenómeno de subdifusão, modelado por uma equação envolvendo
a derivada de primeira ordem no tempo do integral fracionário. Desse modo, recorrendo à fórmula
de diferenças finitas no espaço, obtemos um método numérico de segunda ordem de convergência
no espaço e provamos que, no tempo, o método apresenta a mesma ordem de convergência que a da
aproximação do integral fracionário por um spline fracionário.

Para o caso da superdifusão, é definido um integral fracionário no espaço que aproximamos por
um spline linear, que pode ser visto como o spline fracionário de grau 1. Consideramos dois tipos de
superdifusão, dependendo se α , envolvido na derivada fracionária, está entre 0 e 1 ou entre 1 e 2, uma
vez que cada um destes casos origina uma equação diferente. Para 0 ă α ă 1, estudamos três métodos
numéricos, um centrado de segunda ordem, um upwind de primeira ordem e um upwind de segunda
ordem. Feito o estudo da consistência e da estabilidade, concluímos que o melhor método numérico
é o upwind de segunda ordem, uma vez que converge de ordem 2 e não apresenta problemas para
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malhas mais largas, como é o caso do método centrado de segunda ordem, que dá origem a oscilações.
Para 1 ă α ă 2, derivamos um método numérico para o problema de superdifusão com uma parede
refletora, baseado no spline linear no espaço e no método de Crank-Nicolson no tempo. Fazemos o
estudo da convergência e concluímos que o método obtido é de segunda ordem tanto no espaço como
no tempo.

Os estudos de estabilidade dos métodos são todos feitos segundo a teoria de von Neumann e as
conclusões retiradas nesta tese são todas corroboradas e ilustradas por testes numéricos, implementados
por nós em MATLAB ®. A partir de testes numéricos também se infere a influência do parâmetro α

nos processos de subdifusão e superdifusão.

Palavras-chave: splines fracionários, equações com derivadas fracionárias, equação de subdifusão,
voos de Lévy, derivadas de Riemann-Liouville, métodos de diferenças finitas, condição de fronteira
refletora.
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Chapter 1

Introduction

1.1 General introduction

The purpose of this thesis is to derive numerical methods based on splines that provide approximate
solutions of fractional partial differential equations. The access to the closed form of solutions related
to these equations is quite limited. Therefore, the derivation of numerical methods is of extreme
importance, despite the fact that the interest on deriving numerical methods for this type of equations
is rather recent. Fractional calculus comes from the XVII century although it is not usually taught in
undergraduate courses. One of the first attempts to discuss derivatives of non integer order goes back
to 1695, when Leibniz, in a letter to L’Hôpital, made some remarks on the possibility of considering
derivatives of order 1{2. Throughout the centuries, some of the most notable mathematicians made
their contributions to the study of this subject, such as Euler, Lagrange, Laplace, Lacroix, Fourier,
Abel, Liouville, De Morgan and Riemann [66].

In 1807, Fourier presented a manuscript where he demonstrated that heat propagation in a solid
could be described by a partial differential equation. In the same year Laplace showed that the
solution of the same equation gave an approximation to a probability event. Between 1880 and
1894, Lord Rayleigh and the economist Edgeworth formulate the stochastic diffusion equation with
probability density as the dependent variable, based on Laplace’s work [54]. Heat equation ended
up being a special case of the diffusion equation, which in turn was derived by Fick in 1855. In his
work, Fick modeled the movement of salt in liquids by analogy to the Fourier’s model and verified
it experimentally [55]. Nevertheless, it was Einstein who, in 1905, unified the phenomenological
approach with the probability approach in his work about Brownian motion [37, 51, 54].

Anomalous diffusion takes place when some of the hypothesis considered for classical diffusion
are not verified. For the classical diffusion, it was showed that the mean-squared displacement of
a particle, represented by ă |xptq|2 ą, undergoing diffusion grows according to t. For anomalous
diffusion, the second order moment grows according to a power of t that is different from 1 or even
diverges. When it grows according to a power of t lower than 1, this is, ă |xptq|2 ą„ tα with 0 ă α ă 1,
we have subdiffusion, which is a slow process in the sense of the spreading of particles compared
to normal diffusion. For ă |xptq|2 ą„ tα with α ą 1, we are in the presence of superdiffusion. In
the case of superdiffusion described by Lévy flights, we have ă |xptq|2 ąÑ 8. In this case, the
diffusion is called superdiffusion because it can be characterized by their fractional moments as

1
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ă |xptq|η ą„ tη{α with 0 ă η ă α . Rescaling these moments as follows ă |xptq|η ą2{η„ t2{α for
0 ă α ă 2, we obtain the superdiffusive character [51]. Nowadays, anomalous diffusion appears in
several fields, for instance, hydrology [21], biology [8], physics [71] and finance [11].

There are different fractional derivatives such as Caputo, Riemann-Liouville and Grünwall-
Letnikov. Other definitions have appeared, but their credibility is controversial [18, 78]. In this work,
we use the Riemann-Liouville derivative, which is the operator that naturally emerges from some
physical problems, as we will explain later on when describing the models we study in this thesis.
Fractional operators are harder to handle numerically than the classical derivatives, since they are
nonlocal operators composed by singular kernels. The challenge regarding nonlocality arises when
we perform the discretization of fractional operators. When the fractional operator is defined in space,
to consider all the needed information we have to deal with a dense iterative matrix of the numerical
method. When the fractional operator is defined in time, since at each time step we need to take into
account all the previous information, we have to store the solution for all the considered instants.
Hence, the numerical methods constructed to approximate solutions of equations involving this type
of derivative are more demanding than the numerical methods for the classical differential equations.

1.2 Statement of the main problem

The subject of anomalous diffusion is at the moment a field rich in open problems. Our work involves
the following main problems of anomalous diffusion: subdiffusion, superdiffusion and superdiffusion
with a reflecting boundary.

To the best of our knowledge, the majority of the numerical methods developed for fractional
differential equations that model superdiffusion were, until recently, numerical methods of order 1
(see, for example, [50, 64, 69, 73]). A numerical method with a second order approximation of the
fractional derivative resorting to the linear spline was derived in [74] based on an idea developed for
fractional integrals [17]. One of our main questions is to explore the possible advantages of using
a fractional spline, instead of a linear one, to approximate a fractional derivative and, consequently,
to approximate an anomalous diffusive model, once the fractional splines behave similarly to some
solutions of fractional differential equations. Here, we show how we can use fractional splines of order
0 ă β ď 2 to approximate a fractional integral that appears in the definition of Riemann-Liouville
fractional derivative in time, used to model a subdiffusion problem. Subdiffusion is a less developed
subject regarding the use of the Riemann-Liouville derivative [1, 43, 57, 63, 94]. Most of the works
developed in the last years that construct numerical methods to solve subdiffusion equations consider
the fractional Caputo derivative [13, 29, 34, 45, 62, 76, 87, 92]. However, the model using Caputo
derivative is correct only if the diffusive coefficient does not depend on time [27, 48]. The work
developed for equations involving the Riemann-Liouville derivative using splines of order 0 ă β ď 1
has been presented in [31].

Regarding superdiffusion, the problem with 1 ă α ă 2 has been widely studied using, for instance,
finite differences [3, 30] and finite element approaches [46], isogeometric collocation methods
[88], lattice Boltzmann schemes [10], spectral-Galerkin schemes [25, 91] and discontinuous Galerkin
methods [12]. None the less, there exist fewer works heeding the case when 0 ă α ă 1 [23, 59, 60, 86].
We derive a family of implicit numerical methods to determine the numerical solutions of the



1.3 Thesis structure 3

superdiffusive model for 0 ă α ă 1. In this work we also present the advantages and disadvantages
of each method supported by some numerical computations. In this case, we use the linear spline as
the basic tool to approximate the integral and upwind and central approximations to deal with the
derivative. This work has been published in [32].

Despite of the Lévy flights related to the superdiffusion problem for 1 ă α ă 2 being subject of
intense research, the inclusion of boundary conditions in this type of discussion is of special interest.
Due to the long jumps, characteristic of these processes, the consideration of boundary conditions is
nontrivial, neither from the physical nor the mathematical point of view. The presence of boundaries
cannot be uncoupled from the fractional partial differential equation and therefore it modifies the
nonlocal fractional space derivative as opposed to what happens when we consider an integer space
derivative. We suggest a new approach of the problem with a reflecting boundary to add to the ones
already studied in [2, 9, 15, 19, 20, 35, 40]. This work has been published in [33].

1.3 Thesis structure

This thesis is divided into four main chapters. In Chapter 2, we present the most important tool
of this work: splines. All the numerical methods constructed in Chapters 4 and 5, where we study
subdiffusion and superdiffusion problems, have been based on a spline approximation of a fractional
integral operator.

Chapter 2 is composed by four main sections. In Section 2.1, we present the concept of fractional
splines on the real line, introduced in [85]. The explicit construction of fractional B-splines, used to
define the splines, is not in [85] and therefore we explain the main steps based on [84], where they
establish the integer B-splines. After that, we present the fractional splines on an interval and we
divide this topic into two parts that need to be treated separately: 0 ă β ď 1 and 1 ă β ď 2. In Section
2.2, we derive a formula for fractional splines of degree β between 0 and 1. In Section 2.3, we derive
a formula for fractional splines of degree β between 1 and 2, which is a more delicate case. The final
main part of Chapter 2, Section 2.4, concerns some upper bounds for the error of approximating a
function by a fractional spline. The theoretical study is based on Theorem 4.1 of [85] for the L2 norm
and then we derive an upper bound for the approximation of a special type of functions. For the L8

norm, we present a heuristic bound for the error. We illustrate all the results with tables regarding the
accuracy of these approximations.

Chapter 3 consists of two main sections and it is dedicated to the approximation of integral
operators that appear in the definition of the Riemann-Liouville derivatives. In Section 3.1, we use the
fractional splines of degree 0 ă β ď 2 to approximate the integral involved in the fractional derivative
in time and, similarly to Chapter 2, we determine some upper bounds for the integral approximation,
using the results obtained in Section 2.4. We present some tables from numerical tests that corroborate
the theoretical results. In Section 3.2, we use the linear spline to approximate the integral involved in
the spacial fractional derivative, already studied in [76] and, therefore, we only present the integral
approximation instead of doing the whole study.

Chapter 4 is focused on subdiffusion. In Section 4.1, we provide some insight on the mathematical
model that describes that phenomenon. In Section 4.2, we construct a numerical method based on
the approximation derived in Section 3.1 for 0 ă β ď 1 and on a finite differences formula. We
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study the convergence by evaluating the consistency and the stability of the method and illustrate its
convergence rate with numerical tests. In Section 4.3, we construct a numerical method based on a
finite differences formula and on the approximation derived in Section 3.1, but now for 1 ă β ď 2. Due
to the complexity of the approximation using fractional splines with degree in this range, the stability
study revealed itself to be very complicated. Hence, in this case we only present the numerical
experiments that indicate the order of accuracy of the method. In the final main section of this
chapter, Section 4.4, we exemplify the behaviour of the solution of the subdiffusive model given an
approximation to a narrow Gaussian function as initial condition.

Chapter 5 is about superdiffusion. In Section 5.1, we explain briefly the model problem and from
the model emerge two different equations, one for 0 ă α ă 1 and another for 1 ă α ă 2. Section 5.2
is dedicated to the problem for α between 0 and 1, where a linear spline is used to approximate the
integral operator. We consider three ways of approximating the derivative of the integral, construct
three numerical methods based on these approximations and study their consistency and stability. We
end the section by presenting some numerical experiments to illustrate the rate of convergence of the
method and to show the differences between the considered approaches. In Section 5.3, we explore
the problem with α between 1 and 2 on the open domain, that has already been studied in [76]. In
Section 5.4, we investigate a similar problem but now considering a reflecting wall at x “ 0, leading to
a problem on the semi-infinite domain. We reformulate the model and construct a numerical method
for which we study the convergence utilizing results of the problem on the open domain. To conclude
this chapter, we present some numerical simulations for the three superdiffusive models with the intent
of analyzing the influence of various factors in Section 5.5, with initial condition an approximation
of the Dirac delta function. We finish the section with a figure containing two solutions, one of
the subdiffusive model and another of the superdiffusive model, illustrating some of the differences
between the phenomena.

All the experimental tests have been implemented by us using MATLAB®.
Before we start the study of the problems, we want to introduce some fundamental concepts,

definitions and properties that appear throughout the thesis. Hence, in the next chapters, we concentrate
our attention on the challenges that arise from our problems.

1.4 Fundamental concepts

In this section, we state some basic concepts, definitions and properties that will appear through the
thesis.

Let us start by giving the definition of Fourier transform and inverse Fourier transform.

Definition 1.1 ([77]). Let f P L1pRq. The Fourier transform of f is defined by

f̂ pωq “

ż 8

´8

f ptqeiωtdt. (1.1)

A function f can be in L1pRq and yet f̂ may not be in L1pRq. If f̂ belongs to L1pRq, we can define
the inverse transform as follows.



1.4 Fundamental concepts 5

Definition 1.2 ([77]). Let f̂ P L1pRq. The inverse Fourier transform of f̂ is defined by

f ptq “
1

2π

ż 8

´8

f̂ pωqe´iωtdω. (1.2)

In the next proposition we present a property on the Fourier transform of the convolution.

Proposition 1.3 ([77]). If f ,g P L1pRq, then

{p f ˚ gqpωq “ f̂ pωqĝpωq (1.3)

where

p f ˚ gqptq “

ż 8

´8

f pt ´ yqgpyqdy.

We introduce the gamma function that appears in the definitions of the Riemann-Liouville
derivatives and give some of its properties.

Definition 1.4 ([64]). The gamma function is defined by

Γpzq “

ż 8

0
xz´1e´xdx,

where z ą 0.

Proposition 1.5 ([64]). The gamma function satisfies the following properties

(a) Γpz ` 1q “ zΓpzq; (1.4)

(b) Γpn ` 1q “ n!, n P N0. (1.5)

We proceed with the definition of Riemann Liouville derivative, first in time and then in space.

Definition 1.6 ([64]). The Riemann-Liouville derivative of order α of a function f is defined for t ą a
by

Dα
a f ptq “

1
Γpn ´ αq

dn

dtn

ż t

a
f pτqpt ´ τqn´α´1dτ, (1.6)

where a can be a real number or a “ ´8 and n is a positive integer such that n ´ 1 ă α ă n.

Definition 1.7 ([64]). For x P ra,bs, the left Riemann-Liouville derivative is defined by

dα f
dxα

pxq “
1

Γpn ´ αq

dn

dxn

ż x

a
f pξ qpx ´ ξ qn´α´1dξ , (1.7)
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and the right Riemann-Liouville is defined by

dα f
dp´xqα

pxq “
1

Γpn ´ αq

dn

dxn

ż b

x
f pξ qpx ´ ξ qn´α´1dξ , (1.8)

where a can be a real number or a “ ´8, b can be a real number or b “ 8 and n is a positive integer
such that n ´ 1 ă α ă n.

Note that the only difference between (1.6) and (1.7) is the notation. We present both cases
because Definition 1.6 appears in literature related to problems defined in time and Definition 1.7
appears in literature related to problems defined in space.

We present the generalized binomial coefficients as well as some properties and then the genera-
lized binomial theorem.

Definition 1.8 ([64]). The generalized binomial coefficients for z and j, possibly non integers, are
defined by

ˆ

z
j

˙

“
Γpz ` 1q

Γp j ` 1qΓpz ´ j ` 1q
. (1.9)

Proposition 1.9. The following relation between binomial coefficients is valid for j and z, possibly
non integers

ˆ

z
j

˙

`

ˆ

z
j ´ 1

˙

“

ˆ

z ` 1
j

˙

.

Proof. Using the generalized binomial coefficients (1.9), we get
ˆ

z
j

˙

`

ˆ

z
j ´ 1

˙

“
Γpz ` 1q

Γp j ` 1qΓpz ´ j ` 1q
`

Γpz ` 1q

Γp jqΓpz ´ p j ´ 1q ` 1q
.

Multiplying the numerator and denominator of the first fraction by pz ` 1 ´ jq and the numerator and
denominator of the second fraction by j, we obtain

ˆ

z
j

˙

`

ˆ

z
j ´ 1

˙

“
Γpz ` 1qpz ` 1 ´ jq

Γp j ` 1qΓpz ` 1 ´ jqpz ` 1 ´ jq
`

jΓpz ` 1q

jΓp jqΓpz ` 1 ´ j ` 1q
,

that, using the property of the gamma function (1.4), is equivalent to
ˆ

z
j

˙

`

ˆ

z
j ´ 1

˙

“
Γpz ` 2q

Γp j ` 1qΓpz ` 1 ´ j ` 1q
“

ˆ

z ` 1
j

˙

.

Proposition 1.10 ([64]). The generalized binomial theorem states that for z ą 0,

px ` yqz “

8
ÿ

k“0

ˆ

z
k

˙

p´1qkxkyz´k. (1.10)
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Next, we refer two properties involving integrals. The first one will be used in Theorem 3.1
Chapter 3. The second one will be used many times during the thesis.

Proposition 1.11 ([53]). Given f P LppΩ1 ˆ Ω2), f satisfies the following generalized Minkowski’s
integral inequality

ˆ
ż

Ω1

ˇ

ˇ

ˇ

ˇ

ż

Ω2

f px,yqdy
ˇ

ˇ

ˇ

ˇ

p

dx
˙

1
p

ď

ż

Ω2

ˆ
ż

Ω1

| f px,yq|
p dx

˙
1
p

dy. (1.11)

Proposition 1.12 ([81]). For z, w ą 0 is valid the following equality

ż b

a
pξ ´ aqz´1pb ´ ξ qw´1dξ “ pb ´ aqz`w´1 ΓpzqΓpwq

Γpz ` wq
. (1.12)

Using the last equality, we compute a fractional derivative of the power function.

Proposition 1.13. The fractional derivative Dα
0 of tγ is given by

Dα
0 ptγq “

Γpγ ` 1q

Γpγ ´ α ` 1q
tγ´α . (1.13)

Proof. From definition (1.6)

Dα
0 ptγq “

1
Γpn ´ αq

dn

dtn

ż t

0
τ

γpt ´ τqn´α´1dτ.

Using (1.12) we get

Dα
0 ptγq “

Γpγ ` 1qΓpn ´ αq

Γpn ´ αqΓpγ ´ α ` n ` 1q

dn

dtn tγ´α`n.

For γ ą ´1, taking the derivative and using (1.4), we obtain

Dα
0 ptγq “

Γpγ ` 1q

Γpγ ´ α ` n ` 1q
pγ ´ α ` nq

dn´1

dtn´1 tγ´α`n´1

“
Γpγ ` 1q

Γpγ ´ α ` nq

dn´1

dtn´1 tγ`n´1´α .

Repeating the procedure pn ´ 1q times, we arrive to

Dα
0 ptγq “

Γpγ ` 1q

Γpγ ´ α ` 1q
tγ´α .

In what follows, we introduce the Dirac delta function and some of its properties.

Definition 1.14 ([47]). The Dirac delta function can be expressed in distributional sense as

δ pt ´ xq “
1

2π

ż 8

´8

eiξ px´tqdξ . (1.14)
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Proposition 1.15 ([47]). The Dirac delta function satisfies the following properties

(a) δ pxq “ δ p´xq;

(b)
ż 8

´8

f ptqδ pt ´ T qdt “ f pT q.

We continue with the Fourier transform of the Riemann-Liouville derivatives.

Proposition 1.16 ([36]). The Fourier transform satisfies

F

"

dα f
dxα

pxq

*

“ p´iωqα f̂ pωq, α ą 0. (1.15)

and

F

"

dα f
dp´xqα

pxq

*

“ piωqα f̂ pωq, α ą 0. (1.16)

We finish this chapter on introductory concepts with the computation of the Fourier transforms of
the delta function and of the one-sided power function. Although the majority of the results are for
functions in L1, we will need to consider functions that do not belong to L1. The Fourier transform in
the distributional sense of a tempered distribution g satisfies

ż 8

´8

ĝpωqϕpωqdω “

ż 8

´8

gptqϕ̂ptqdt, (1.17)

where ϕ is a Schwartz function [77].

Proposition 1.17. The Fourier transform of the Dirac delta function is δ̂ pωq “ 1.

Proof. The Dirac function is a tempered distribution, which implies that its Fourier transform satisfies

ż 8

´8

δ̂ pωqϕpωqdω “

ż 8

´8

δ ptqϕ̂ptqdt, (1.18)

where ϕ is a Schwartz function. Noting that, from Proposition 1.15(b),

ż 8

´8

δ ptqϕ̂ptqdt “ ϕ̂p0q

and considering ω “ 0 in

ϕ̂pωq “

ż 8

´8

ϕptqe´iωtdt,

we get
ż 8

´8

δ ptqϕ̂ptqdt “

ż 8

´8

ϕpωqdω.

From this and (1.18), we conclude that δ̂ pωq “ 1.
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Proposition 1.18. The Fourier transform of the one sided power function tβ

` is given by

t̂β

`pωq “
Γpβ ` 1q

p´iωqβ`1 , (1.19)

where

tβ

` “

$

&

%

tβ , for t ě 0,

0, for t ă 0.

Proof. The Fourier transform of the one sided power function is calculated using the relation (1.15).
Computing the fractional derivative of tβ

`,

Dβ`1
´8 tβ

` “
1

Γpn ´ pβ ` 1qq

dn

dtn

ż t

´8

τ
β

`pt ´ τqn´pβ`1q´1dτ

that is equivalent to

Dβ`1
´8 tβ

` “
1

Γpn ´ pβ ` 1qq

dn

dtn

ż t

0
τ

β pt ´ τqn´pβ`1q´1dτ.

Resorting to (1.12), we obtain

Dβ`1
´8 tβ

` “
1

Γpn ´ pβ ` 1qq

dn

dtn tn´1
`

Γpβ ` 1qΓpn ´ pβ ` 1qq

Γpnq
.

The pn ´ 2q´th derivative of tn´1
` is

dn´2

dtn´2 tn´1
` “ pn ´ 1q!t`

and the weak derivative of t` is the Heaviside function hptq given by

hptq “

$

&

%

1, t ą 0,

0, t ď 0.

Finally, the distributional derivative of this last function is the Dirac delta function. We conclude that
the the n´th derivative of tn´1

` , in the sense of distributions, is given by

dn

dtn tn´1
` “ pn ´ 1q!δ ptq.

and therefore

Dβ`1
´8 tβ

` “
Γpβ ` 1q

Γpnq
pn ´ 1q!δ ptq.
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As n is a positive integer, using (1.5), we have pn ´ 1q! “ Γpnq and therefore

Dβ`1
´8 tβ

` “ Γpβ ` 1qδ ptq.

Consequently,
{

Dβ`1
´8 tβ

` “ Γpβ ` 1q yδ ptq.

Using Proposition 1.17, we obtain
{

Dβ`1
´8 tβ

` “ Γpβ ` 1q

Then, considering α “ β ` 1 in (1.15), the Fourier transform of the one sided power function tβ

` can
be written as

t̂β

`pωq “
Γpβ ` 1q

p´iωqβ`1 .



Chapter 2

Fractional splines

Splines are piecewise functions where each piece is a polynomial and the connections between pieces
satisfy conditions imposed on the derivatives up to an order, depending on the type of the spline. The
classical splines present in literature are made of polynomials of integer degree. Splines of degree
β , β ě 0, are sums of B-splines with the same degree. The "B" in the word "B-spline" stands for
"basis" or "basic". The derivation of the fractional B-splines can be found in [85], where Unser and
Blu resorted to the Fourier transform of the classical splines.

In the first section of this chapter, we establish the fractional splines on the real line. In the
following two sections, we derive the formulation of the fractional splines on an interval rt0, tMs for β

between 0 and 1 and then for β between 1 and 2. In the fourth and last section of this chapter, we
present some theoretical results for the error bounds for the fractional spline approximation in the L2

norm and some heuristic results for the L8 norm.

2.1 Splines on the real line

We construct the fractional B-splines following similar ideas to the ones presented in [84] for integer
B-splines. Consider the formula of the B-splines of order n ` 1 (or degree n), given by

B0
`ptq “

$

&

%

1, 0 ă t ă 1,

0, otherwise,
and Bn

`ptq “ B0
`ptq ˚ B0

`ptq ˚ ¨ ¨ ¨ ˚ B0
`ptq

loooooooooooooomoooooooooooooon

pn`1q times

,

where “ ˚ ” represents the convolution operation.

Let us construct the B-splines using the Fourier transform. The Fourier transform of B0
`ptq is

given by

B̂0
`pωq “

ż `8

´8

B0
`ptqeiωtdt.

Taking into account the definition of B0
`ptq, it is easy to obtain

B̂0
`pωq “

1 ´ eiω

´iω
.

11
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Using the convolution property (1.3), we have

B̂n
`pωq “

`

B̂0
`pωq

˘n`1
,

which leads us to

B̂n
`pωq “

ˆ

1 ´ eiω

´iω

˙n`1

.

If we generalize and replace n by a fractional number, β , we get

B̂β

`pωq “

ˆ

1 ´ eiω

´iω

˙β`1

.

Using the inverse Fourier transform of tβ

` (1.19), we can write

t̂β

`pωq
p´iωqβ`1

Γpβ ` 1q
“ 1,

which can be introduced in the Fourier transform of the B-spline as follows

B̂β

`pωq “

ˆ

1 ´ eiω

´iω

˙β`1
p´iωqβ`1

Γpβ ` 1q
t̂β

`pωq.

Applying the generalized binomial theorem to
`

1 ´ eiω
˘β`1, we get

B̂β

`pωq “
1

Γpβ ` 1q

8
ÿ

j“0

ˆ

β ` 1
j

˙

p´1q jeiω jt̂β

`pωq.

Let us now compute the inverse Fourier transform of B̂β

`pωq. Considering the formula (1.3) with
ûpωq “ eiω j and v̂pωq “ t̂β

`pωq, if we compute the inverse transform of û and do the convolution with
tβ

`, we obtain the formula for the B-splines. The inverse Fourier transform of û is

uptq “
1

2π

ż 8

´8

eiω je´iωtdω “
1

2π

ż 8

´8

eiωp j´tqdω “ δ pt ´ jq,

using (1.14). From (1.3), the inverse Fourier of pupωqpvpωq is pu ˚ vqptq. Therefore,

tβ

` ˚ δ pt ´ jq “

ż 8

´8

τ
β

`δ pt ´ j ´ τqdτ “

ż 8

´8

τ
β

`δ pτ ´ pt ´ jqqdτ “ pt ´ jqβ

`,

from Proposition 1.15. Finally, we arrive to the following formula for the fractional B-spline

Bβ

`ptq “
1

Γpβ ` 1q

8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

pt ´ jqβ

`, (2.1)
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where

pt ´ jq` “

$

&

%

t ´ j, for t ě j,

0, for t ă j.

Note that, for β “ 1, the linear B-spline given by (2.1) is

Bβ

`ptq “
1

Γp2q
pt` ´ 2pt ´ 1q` ` pt ´ 2q`q

which means that, when 0 ď t ă 1,
Bβ

`ptq “ t;

when 1 ď t ă 2,
Bβ

`ptq “ t ´ 2pt ´ 1q “ 2 ´ t;

and when t ě 2,
Bβ

`ptq “ t ´ 2pt ´ 1q ` t ´ 2 “ 0.

For t ă 0 we have Bβ

`ptq “ 0, since none of the parcels of the B-spline is positive. Therefore, we get
the classical linear B-spline as we usually see it in literature [28].

Some of the characteristics of the classical B-splines, more specifically their positivity and local
support, do not hold when considering fractional B-splines. In Figure 2.1 at left, we can see an
illustration of the integer B-splines from β “ 0 to the cubic B-spline. At right, we observe the
fractional B-splines from degree 0 to degree 3, with an interval of 0.2 between each of them. The fact
that the fractional B-splines are not always nonnegative is illustrated in this figure. The nonexistence
of compact support increases the need to characterize the B-splines decay. In [85] this is analyzed and
it is proved that the fractional B-splines are in L1 for β ą ´1 and in L2 for β ą ´1{2.
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(a) (b)

Fig. 2.1 (a) Classical B-splines (step, linear, quadratic and cubic). (b) Fractional B-splines (from
β “ 0 to β “ 3 with a difference of 0.2). Classical B-splines are represented using a thicker line.
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We can define the B-splines on the uniform grid ∆tZ [28] as

Bβ

`ptq “
1

Γpβ ` 1q

8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

´ t
∆t

´ j
¯β

`
, (2.2)

with stepsize ∆t. These functions are not centered (see Figure 2.1). Nevertheless, we can shift them
and arrive to the centered B-splines (see Figure2.2), which are given by

Bβ

`ptq “
1

Γpβ ` 1q

8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

t
∆t

´ j `
β ` 1

2

˙β

`

. (2.3)

In this work, we consider the shifted splines in order to have them centered on each interval.
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(a) (b)

Fig. 2.2 (a) Shifted classical B-splines (step, linear, quadratic and cubic). (b) Shifted fractional
B-splines (from β “ 0 to β “ 3 with a difference of 0.2). Classical B-splines are represented using a
thicker line.

Considering now a different grid, with a sequence of knots ttkukPZ, a spline of degree β is defined
by [85]

sβ ptq “
ÿ

kPZ
ckBβ

`pt ´ tkq. (2.4)

Using formula (2.3) of Bβ

`, we get

sβ ptq “
1

Γpβ ` 1q

ÿ

kPZ
ck

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

t ´ tk
∆t

´ j `
β ` 1

2

¸β

`

. (2.5)

The only issue remaining is how to determine the coefficients ck. The number of constants that need to
be determined depends on the degree of the spline. However, one characteristic of splines regardless
their degree is that they are interpolating functions.

In the next two sections, we explain how to approximate a function u defined in rt0, tMs by a
fractional spline in the uniform mesh. We split the cases of 0 ă β ď 1 and 1 ă β ď 2, because despite
the logic being similar, there are some details that need to be differentiated.
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2.2 Splines of degree 0 ă β ď 1 on an interval

We consider splines of degree 0 ă β ď 1 and, in particular, for β “ 1 we obtain the classical linear
spline. The B-spline of degree 1, also known as hat function, is used not only in image processing
[16, 84] but also in fractional calculus [42, 63, 76] and other fields such as medicine [80].

Let us proceed with the formulation of splines of degree between 0 and 1 with t P rt0, tMs. Let
ti`1 “ ti ` ∆t for i “ 0, . . . ,M ´ 1. Let us analyze

ˆ

t ´ tk
∆t

´ j `
β ` 1

2

˙β

`

.

We have

˜

t ´ tk
∆t

´ j `
β ` 1

2

¸β

`

“

$

’

’

&

’

’

%

˜

t ´ tk
∆t

´ j `
β ` 1

2

¸β

, if
t ´ tk

∆t
´ j `

β ` 1
2

ą 0

0, otherwise.

(2.6)

Then, it is different from zero for
t ´ tk

∆t
´ j `

β ` 1
2

ą 0

which means that

t ą tk ` j∆t ´
β ` 1

2
∆t. (2.7)

As t is, at most, equal to tM, we find that the highest k satisfying (2.7) for which exists a nonzero
parcel (2.6) is such that

tM ą tk ´
β ` 1

2
∆t. (2.8)

Note that the limit case is to consider k for which tM satisfies (2.8), but no other of the following
inequalities

tM ą tk ´
β ` 1

2
∆t ` j∆t, @ j ą 0.

As we are considering a uniform mesh,

tM ą tk ´
β ` 1

2
∆t

is equivalent to

M `
β ` 1

2
ą k

In this case, 0 ă β ď 1, which means that 1{2 ă pβ ` 1q{2 ď 1 that gives us

M `
1
2

ă M `
β ` 1

2
ď M ` 1

and, consequently, kmax “ M.
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Remember that t is at least t0 and for j “ 0

t0 ´ tk
∆t

`
β ` 1

2
ą 0

implies

k ă
β ` 1

2
and then kmin “ 0. Therefore, we arrive to the following formula of the spline

sβ ptq “
1

Γpβ ` 1q

M
ÿ

k“0

ck

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

t ´ tk
∆t

´ j `
β ` 1

2

˙β

`

.

From this, we conclude that we have to determine M ` 1 coefficients ck such that sβ ptiq “ uptiq for
i “ 0, . . . ,M, which is equivalent to the system

M
ÿ

k“0

ck
1

Γpβ ` 1q

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

ti ´ tk
∆t

´ j `
β ` 1

2

¸β

`

“ uptiq, i “ 0, . . . ,M. (2.9)

Since ti ´ tk “ pi ´ kq∆t, we have

˜

ti ´ tk
∆t

´ j `
β ` 1

2

¸β

`

“

ˆ

i ´ k ´ j `
β ` 1

2

˙β

`

.

Furthermore, this term is different from 0 only for j ă i ´ k ` pβ ` 1q{2. Then, for i “ 0, . . . ,M, (2.9)
can be written as

M
ÿ

k“0

ck
1

Γpβ ` 1q

i´k
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

i ´ k ´ j `
β ` 1

2

¸β

“ uptiq. (2.10)

In particular, if β “ 1, the solution of (2.9) is ci “ uptiq, i “ 0, . . . ,M. Let us define the coefficients
ai´k as

ai´k :“
1

Γpβ ` 1q

i´k
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

i ´ k ´ j `
β ` 1

2

¸β

,

for k ď i. For k ą i, ai´k “ 0. Using this notation in (2.10), we can write

i
ÿ

k“0

ckai´k “ uptiq, i “ 0, . . . ,M.

This system can be represented matricially by Ac “ u where c “ rc0 . . . cMsT , u “ rupt0q . . . uptMqsT ,
and
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A “

»

—

—

—

—

—

—

–

a0 0 0 . . . 0 0
a1 a0 0 . . . 0 0
a2 a1 a0 . . . 0 0
...

...
...

...
...

aM aM´1 aM´2 . . . a1 a0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

with

ap “
1

Γpβ ` 1q

p
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

p ´ j `
β ` 1

2

¸β

, p “ 0, . . . ,M.

The matrix A is a Toeplitz matrix. A Toeplitz matrix is a matrix where the value of each diagonal
is constant. This type of matrices is very important both in theory and applications, specially in
mathematical modeling of phenomena where exists shift invariance. They are also used, for example,
in integral equations, signal and image processing and, as in our case, computation of spline functions.
Some of the properties of Toeplitz matrices and their inversion can be seen in [7, 14, 41, 58, 82, 83].
As A is a lower triangular Toeplitz matrix, its inverse is also a lower triangular Toeplitz matrix. Then,
we can write the coefficients ck at the expense of A´1 and the values of u as

ck “

k
ÿ

p“0

ãk´puptpq,

where ãk are the entries of A´1 such that

A´1 “

»

—

—

—

—

—

—

–

ã0 0 0 . . . 0 0
ã1 ã0 0 . . . 0 0
ã2 ã1 ã0 . . . 0 0
...

...
...

...
...

ãM ãM´1 ãM´2 . . . ã1 ã0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

These entries ãr,r “ 0,1, . . . ,M can be computed recursively [83] by

ã0 “
1
a0

,

p
ÿ

r“0

arãp´r “ 0, p “ 1, . . . ,M,

that is,

ã0 “
1
a0

, ãp “ ´
1
a0

p
ÿ

r“1

arãp´r.

The formulation of the case β between 0 and 1 is complete. In the next section, we do a similar
formulation for β between 1 and 2.

2.3 Splines of degree 1 ă β ď 2 on an interval

We want to approximate a function u by a fractional spline of degree between 1 and 2. Consider
once again t P rt0, tMs and the uniform mesh ti`1 ´ ti “ ∆t for i “ 0, . . . ,M ´ 1. It would be normal to
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assume that in this case we have the first sum of

sβ ptq “
1

Γpβ ` 1q

ÿ

kPZ
ck

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

t ´ tk
∆t

´ j `
β ` 1

2

¸β

`

defined between 0 and M, as seen before. However, let us analyze this more carefully. We have

t ´ tk
∆t

´ j `
β ` 1

2
ą 0

that corresponds to

t ą tk ` j∆t ´
β ` 1

2
∆t.

Repeating the logic of last section, as t in rt0, tMs is less than or equal to tM , we have to find the highest
k for which

tM ą tk ´ ∆t
β ` 1

2
.

With 1 ă β ď 2, we arrive to kmax “ M ` 1, this is, for t P rt0, tMs, we have

sβ ptq “
1

Γpβ ` 1q

M`1
ÿ

k“0

ck

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

t ´ tk
∆t

´ j `
β ` 1

2

˙β

`

. (2.11)

The step to be taken next is to determine the coefficients ck, k “ 0, . . . ,M ` 1, such that the spline
interpolates the function u at the points ti, i “ 0, . . . ,M. To get a unique solution for the coefficients,
we have to consider an additional constraint to the problem, that we will talk about later. Being the
spline an interpolating function, we have the following M ` 1 equations

M`1
ÿ

k“0

ck
1

Γpβ ` 1q

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

ti ´ tk
∆t

´ j `
β ` 1

2

¸β

`

“ uptiq, i “ 0, . . . ,M.

Furthermore,

˜

ti ´ tk
∆t

´ j `
β ` 1

2

¸β

`

“

˜

ti ´ tk
∆t

´ j `
β ` 1

2

¸β

for
ti ´ tk

∆t
´ j `

β ` 1
2

ą 0

and zero otherwise. Therefore, this is zero for i´k`pβ `1q{2 ą j. Since 1 ă β ď 2 then j ď i´k`1.
Hence for i “ 0, . . . ,M, this can be written as

M`1
ÿ

k“0

ck
1

Γpβ ` 1q

i´k`1
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

ti ´ tk
∆t

´ j `
β ` 1

2

¸β

“ uptiq. (2.12)

In order to obtain all the coefficients, we have to consider an additional constraint.

The quadratic spline, obtained using β “ 2, is a continuous function with continuous derivative
and that interpolates in the knots the function we want to approximate . According to [5], a spline of
degree 2 can be uniquely determined using one of the extra conditions of the following theorem.
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Theorem 2.1. ([5]) Given are the M ` 1 points pti,uptiqq where t0 ă t1 ă ¨¨ ¨ ă tM . The interpolation
task can then uniquely be solved by a quadratic spline in each of the following described situations:

• The first derivative s1
2ptkq “ fk is given for one arbitrary k in t0, . . . ,Mu.

• The second derivative s2
2ptkq “ gk is given for one arbitrary k in t0, . . . ,M ´ 1u.

• The relationship z ¨ s2
1ptkq “ s1

2ptk`1q is true for one certain k in t0, . . . ,M ´ 1u and z ‰ ´1.

• When M ` 1 is an even number, s2pt0q “ s2ptMq and s1
2pt0q “ s1

2ptMq are true. The spline is
constructed as a periodic function with the period tM ´ t0. When M ` 1 is an odd number, the
antiperiodicity condition s1

2pt0q “ ´s1
2ptMq is true.

One of the most common additional constraints is to consider s1pt0q “ u1pt0q or its approximation
[4, 90]. However, without rearranging the terms obtained using the equalities (2.12), this condition
leads to an unstable scheme [4]. Since the terms involve fractional powers, we can not easily rearrange
them. Therefore we need to choose another condition such as s1

β
ptMq “ u1ptMq, which means that

1
Γpβ q∆t

M`1
ÿ

k“0

ck

M´k`1
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

tM ´ tk
∆t

´ j `
β ` 1

2

¸β´1

“ u1ptMq. (2.13)

Let us define the coefficients ai´k`1, for k ď i ` 1, as

ai´k`1 :“
1

Γpβ ` 1q

i´k`1
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

i ´ k ´ j `
β ` 1

2

¸β

and, for the other values of k, ai´k`1 “ 0. Furthermore, let us define

aM´k`1 :“
1

Γpβ q∆t

M´k`1
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

M ´ k ´ j `
β ` 1

2

¸β´1

.

We can write the system (2.12) as

i`1
ÿ

k“0

ckai´k`1 “ uptiq, i “ 0, . . . ,M (2.14)

and (2.13) as
M`1
ÿ

k“0

ckaM´k`1 “ u1ptMq. (2.15)

This can be represented matricially by AMc “ u where c “ rc0 . . . cM`1sT , u “ ru1ptMq upt0q . . . uptMqsT ,
and
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AM “

»

—

—

—

—

—

—

–

aM`1 aM aM´1 . . . a1 a0

a1 a0 0 . . . 0 0
a2 a1 a0 . . . 0 0
...

...
...

...
...

aM`1 aM aM´1 . . . a1 a0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.16)

where

ap “
1

Γpβ ` 1q

p
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

p ´ 1 ´ j `
β ` 1

2

¸β

, p “ 0, . . . ,M ` 1

and

ap “
1

Γpβ q∆t

p
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

p ´ 1 ´ j `
β ` 1

2

¸β´1

, p “ 0, . . . ,M ` 1.

The matrix AM is no longer a Toeplitz matrix and we do not have an explicit recursive formula to
obtain its inverse elements as before. A possible way to handle matrix (2.16) in order to compute its
inverse is to separate the matrix as follows

AM “

»

—

—

—

—

—

—

–

a0 0 0 . . . 0 0
a1 a0 0 . . . 0 0
a2 a1 a0 . . . 0 0
...

...
...

...
...

aM`1 aM aM´1 . . . a1 a0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

–

aM`1 ´ a0 aM aM´1 . . . a1 a0

0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.17)

and calculate the inverse as described in [52].

In the next section, we derive the error bounds for the interpolation when using fractional splines
of degree between 0 and 2.

2.4 Error bounds for the fractional spline interpolation

In this section, we discuss the order of approximation of the splines of degree between 0 and 2 both
for the L2 and L8 norms. As we referred at the beginning of the chapter, analyzing the rate of decay
of the error as the step ∆t goes to zero is specially important, since not all the splines have compact
support. We start by examining the error for the L2 norm.

2.4.1 Error bounds in the L2 norm

Before presenting the main theorem, we introduce some definitions that can be found in [6, 56, 85].

For a positive integer m and 1 ď p ď 8, the Sobolev space W m,p in Ω Ă R is given by

W m,ppΩq “ tu P LppΩq : Dαu P LppΩq,@0 ď |α| ď mu,
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For noninteger m, the definition is a little more complex. From [56] for s P p0,1q,

W s,ppΩq “

#

u P LppΩq :
|upxq ´ upyq|

|x ´ y|
1
p `s

P LppΩ ˆ Ωq

+

.

When s ą 1, with s “ m ` σ with m integer and σ P p0,1q, W s,ppΩq is defined as

W s,ppΩq “ tu P W m,ppΩq : Dαu P W σ ,ppΩq,@α : |α| “ mu.

In literature, we can find a theoretical result about the behavior of the fractional spline approxima-
tion error based on the Fourier domain characterization of the approximation. Therefore, we give an
alternative definition of Sobolev spaces using Fourier transform [24, 56]. When p “ 2, the Sobolev
spaces can be represented by HrpRq and are defined as the space functions that satisfy

ż

R
p1 ` ω

2qr|ûpωq|2dω ă 8,

where û denotes the Fourier transform of u. For r “ 0, we get H0pRq “ L2pRq.
We have the following result regarding the approximation of a function u by the spline defined in

(2.5).

Theorem 2.2. ([85]) For all u P Hβ`1pRq, the error is bounded by

||u ´ sβ ||L2 ď Cβ ||Dβ`1
´8 u||L2∆tβ`1,

with Cβ “
a

2ξ pβ ` 2q ´ 1{2{πβ`1, where ξ is the Riemann zeta function defined by ξ paq “
ř

ně1 n´a. This means the fractional splines have a fractional order of approximation β ` 1.

In the context of subdiffusion, functions of the form u “ Optγq for t P r0, tMs and zero otherwise are
of special interest, since they have been considered in the context of several partial integro-differential
equations with a weakly singular kernel [34, 38, 63, 79]. One important aspect that we need to pay
attention is that for small values of γ the first derivative can be unbounded near zero. Therefore,
consider the function defined in r0, tMs given by uptq “ tγ . Note that Dβ`1

´8 ptγ

`q “ Dβ`1
0 ptγq which is

given by

Dβ`1
0 ptγq “

1
Γp1 ´ β q

d2

dt2

ż t

0
τ

γpt ´ τq´β dτ (2.18)

for 0 ă β ď 1 and

Dβ`1
0 ptγq “

1
Γp2 ´ β q

d3

dt3

ż t

0
τ

γpt ´ τq1´β dτ

for 1 ă β ď 2. In both cases, as proved in Proposition 1.13,

Dβ`1
0 ptγq “

Γpγ ` 1q

Γpγ ´ β q
tγ´β´1,
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for 0 ă β ď 2. Hence, for values of t near 0, we have Dβ`1
0 ptγq “ Optγ´β´1q and therefore

||Dβ`1
0 ptγq||L2p0,∆tq “ O

`

∆tγ´β´1{2
˘

. Then, the order of the spline approximation is dominated
by the term

Cβ ||Dβ`1
0 ptγq||L2p0,∆tq∆tβ`1 “ Op∆tγ´β´1{2

∆tβ`1q “ Op∆tγ`1{2q.

Finally, combining the result of Theorem 2.2 with the previous discussion, we arrive to the following
conclusion. Given a function u such that u “ Optγq as t Ñ 0, the error of the spline approximation is
bounded by

||u ´ sβ ||L2p0,tMq ď Cγ,β ∆tmintβ`1,γ`1{2u, (2.19)

with Cγ,β a constant depending on γ and β .

To illustrate this result, we present some numerical tests that are in agreement with the predicted
theoretical upper bound (2.19) for the L2 norm. According to [22], the function vpxq “ xγ belongs to
Hsp0,1q for γ ą s ´ 1{2 with s integer. Furthermore, for s P p0,1q, it can be proved that the function
vpxq “ xγ belongs to Hsp0,1q for γ ą 1{2. Therefore, functions of the type uptq “ Ctγ , with C a
constant, belong to Hβ`1p0,1q with β P p0,1q for γ ą 3{2. When β “ 1, the condition is the same.
As we are aiming to show that the convergence rate of the approximation of a function using splines is
mintβ ` 1,γ ` 1{2u, for the previous condition the minimum between β ` 1 and γ ` 1{2 is always
β ` 1. Nonetheless, it is also easy to prove that uptq “ Ct belongs to Hβ`1p0,1q for β P p0,1s and
that uptq “ Ct2 belongs to Hβ`1p0,1q for β P p1,2s .

Recall that the evaluation of the numerical results is done in a discrete space. Considering a vector
f “ p f pt0q, . . . , f ptMqq, with ti`1 ´ ti “ ∆t, the discrete mesh-dependent L2 norm is given by

|| f ||2 “

˜

M
ÿ

m“0

∆t| f m|2

¸
1
2

.

In Tables 2.1 and 2.2, we display the numerical results of the approximation of the functions
uptq “ p2tq1.6 and uptq “ 2t by splines of degree β with β “ 0.2,0.4,0.6,0.8,1, in order to confirm
that the convergence rate is approximately of order mint1 ` β ,γ ` 1{2u. The rates presented are the
mean of the rates obtained between 0.1 and 0.01 and the ones between 0.01 and 0.001.

Table 2.1 Convergence rate in the L2 norm for the function uptq “ p2tq1.60.

∆t β “ 0.2 β “ 0.4 β “ 0.6 β “ 0.8 β “ 1

0.1 8.3492e-02 4.5657e-02 2.0210e-02 1.3451e-02 9.3879e-03
0.01 5.2315e-03 1.8240e-03 5.0305e-04 2.1679e-04 1.0368e-04

0.001 3.2987e-04 7.2640e-05 1.2625e-05 3.4522e-06 1.0941e-06

Rate 1.20 1.40 1.60 1.80 1.97

In Table 2.1 we obtain a convergence rate of order β ` 1 as expected. In Table 2.2, that has the
results concerning uptq “ 2t, the rate of convergence is mint1 ` β ,1 ` 0.5u, that is, for β “ 0.2,0.4
we have a rate near β ` 1 and for the other values of β is 1.5. In the last case, we did not present the
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Table 2.2 Convergence rate in the L2 norm for the function uptq “ 2t.

∆t β “ 0.2 β “ 0.4 β “ 0.6 β “ 0.8

0.1 4.8732e-02 2.7588e-02 8.9149e-03 3.2944e-03
0.01 3.1560e-03 1.2075e-03 3.3322e-04 1.1302e-04
0.001 2.0047e-04 5.0614e-05 1.1453e-05 3.6417e-06

Rate 1.19 1.37 1.45 1.48

error for β “ 1, because as we would be approximating a linear function using a linear spline, the
error of approximation would be given by rounding errors.

We also computed numerical tests for functions that are not in Hβ`1, that gave us results in
concordance with (2.19). In Table 2.3 we present the convergence rate for the function uptq “ p2tq0.4.
For γ “ 0.4, we display a convergence rate of order 0.9, that is, mintβ ` 1,γ ` 0.5u. In Table 2.4, that
has the result relative to uptq “ p2tq0.8, the rate of convergence is around mint1 ` β ,0.8 ` 0.5u, this
is, for β “ 0.2 we have a rate around 1.2 and for the other values of β is around 1.3.

Table 2.3 Convergence rate in the L2 norm for the function uptq “ p2tq0.4.

∆t β “ 0.2 β “ 0.4 β “ 0.6 β “ 0.8 β “ 1

0.1 9.6527e-02 9.9278e-02 7.4067e-02 7.1098e-02 7.2866e-02
0.01 1.2179e-02 1.2498e-02 9.3250e-03 8.9511e-03 9.1734e-03

0.001 1.5341e-03 1.5734e-03 1.1739e-03 1.1268e-03 1.1548e-03

Rate 0.89 0.90 0.90 0.90 0.90

Table 2.4 Convergence rate in the L2 norm for the function uptq “ p2tq0.8.

∆t β “ 0.2 β “ 0.4 β “ 0.6 β “ 0.8 β “ 1

0.1 4.6010e-02 3.2317e-02 1.2780e-02 9.3922e-03 1.0480e-02
0.01 3.1332e-03 1.7178e-03 6.4690e-04 4.7073e-04 5.2566e-04

0.001 2.0643e-04 8.9054e-05 3.2502e-05 2.3592e-05 2.6346e-05

Rate 1.17 1.27 1.29 1.30 1.29

We continue by showing the results for 1 ă β ď 2, using the functions uptq “ p2tqγ , with γ “

1.3, 1.5, 2 and 4 as examples.
For the cases uptq “ p2tq1.3 and uptq “ p2tq1.5, the minimum between β ` 1 and γ ` 0.5 is γ ` 0.5.

From the observation of Tables 2.5 and 2.6, we can see that the rates of convergence for these
functions of 1.8 and 2, respectively, are in agreement with the predicted theoretical results obtained
for functions in Hβ`1, despite these functions not being in Hβ`1. For uptq “ p2tq2 the expected order
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Table 2.5 Convergence rate in the L2 norm for the function uptq “ p2tq1.3.

∆t β “ 1.2 β “ 1.4 β “ 1.6 β “ 1.8 β “ 2

0.1 2.2719e-03 8.7856e-04 3.9671e-04 3.7559e-04 4.0754e-04
0.01 3.611e-05 1.394e-05 6.315e-06 5.958e-06 6.459e-06

0.001 5.725e-07 2.210e-07 1.001e-07 9.442e-08 1.024e-07

Rate 1.80 1.80 1.80 1.80 1.80

Table 2.6 Convergence rate in the L2 norm for the function uptq “ p2tq1.5.

∆t β “ 1.2 β “ 1.4 β “ 1.6 β “ 1.8 β “ 2

0.1 3.5513e-03 2.0695e-03 1.4677e-03 1.1665e-03 1.0033e-03
0.01 3.650e-05 2.071e-05 1.468e-05 1.167e-05 1.003e-05

0.001 3.689e-07 2.071e-07 1.468e-07 1.167e-07 1.003e-07

Rate 1.99 2.00 2.00 2.00 2.00

Table 2.7 Convergence rate in the L2 norm for the function uptq “ p2tq2.

∆t β “ 1.2 β “ 1.4 β “ 1.6 β “ 1.8 β “ 2

0.1 5.0447e-03 2.2964e-03 1.4733e-03 1.1864e-03 1.0547e-03
0.01 3.1002e-05 9.0643e-06 4.7945e-06 3.7556e-06 3.3351e-06

0.001 1.9442e-07 3.5933e-08 1.5431e-08 1.1882e-08 1.0553e-08

Rate 2.21 2.40 2.49 2.50 2.50

Table 2.8 Convergence rate in the L2 norm for the function uptq “ p2tq4.

∆t β “ 1.2 β “ 1.4 β “ 1.6 β “ 1.8 β “ 2

0.1 6.0617e-02 2.5721e-02 1.2122e-02 5.5188e-03 2.5388e-03
0.01 3.7171e-04 9.8375e-05 2.9442e-05 8.4502e-06 2.4595e-06

0.001 2.3370e-06 3.8970e-07 7.3655e-08 1.3334e-08 2.4757e-09

Rate 2.21 2.41 2.61 2.81 3.01

of convergence would be β ` 1, for β “ 1.2 and 1.4 and 2.5 for the other values of β , and that was
what we obtained in Table 2.7. For uptq “ p2tq4, we get the β ` 1 order of convergence, as shown in
Table 2.8 and as predicted by the theoretical results.
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2.4.2 Heuristic error bounds in the L8 norm

The discussion of the error bounds of the approximation using splines for the L2 norm is complete.
We present error bounds in the L8 norm. However, as the last section was based on a theorem that
used least square approximation and since that tool has no relation to the maximum norm, a bound in
the L8 norm is much harder to obtain than the bound in the L2 norm. Nevertheless, the experimental
tests for the L8 norm indicate the following result. For u sufficiently smooth and u P L8 we have

||u ´ sβ ||L8 ď Cβ ∆tβ`1||Dβ`1
´8 u||L8 , (2.20)

with Cβ a constant depending on β .
Once again, we discuss this upper bound when we have the functions u defined in r0, tMs and such

that u “ Optγq when t approaches 0. The order of approximation will be dominated by the term

||Dβ`1
0 ptγq||L8p0,∆tq∆tβ`1 “ Op∆tγ´β´1

∆tβ`1q “ Op∆tγq.

Therefore, if (2.20) holds, for a function u such that u “ Optγq when t Ñ 0, the interpolation error of
the spline approximation is bounded by

||u ´ sβ ||L8p0,tMq ď Cγ,β ∆tmintβ`1,γu, (2.21)

with Cγ,β a constant that depends on both γ and β .
In what follows, we exhibit several numerical tests done for the same type of functions presented

in the previous section. This means that, for 0 ă β ď 1, we present the results for the function
uptq “ p2tqγ for γ “ 0.4,1,1.2,1.6; for 1 ă β ď 2, we show the results when γ “ 2,2.5 and 4.

The numerical results were computed using the following discrete definition of L8. Considering a
vector f “ p f pt0q, . . . , f ptMqq, with ti`1 ´ ti “ ∆t, the discrete mesh-dependent L8 norm is given by

|| f ||8 “ max
m“0,...,M

| f m|.

In Tables 2.9 and 2.10, we present the results when the function is uptq “ p2tq0.4 and uptq “ 2t,
respectively. As, in both cases, mint1 ` β ,γu “ γ , we obtained the rates of convergence of 0.4 and
1, as expected. In Table 2.11 the tests are done for the function uptq “ p2tq1.6 and now the rate of
convergence is 1 ` β for β ă 0.6 and 1.6 for β ě 0.6 as predicted by the theoretical result (2.21).

Table 2.9 Convergence rate in the L8 norm for the function uptq “ p2tq0.4.

∆t β “ 0.2 β “ 0.4 β “ 0.6 β “ 0.8 β “ 1

0.1 3.0170e-01 3.0170e-01 2.0218e-01 1.7642e-01 1.7038e-01
0.01 1.2011e-01 1.2011e-01 8.0490e-02 7.0236e-02 6.7830e-02

0.001 4.7817e-02 4.7817e-02 3.2043e-02 2.7961e-02 2.7003e-02

Rate 0.40 0.40 0.40 0.40 0.40
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Table 2.10 Convergence rate in the L8 norm for the function uptq “ 2t.

∆t β “ 0.2 β “ 0.4 β “ 0.6 β “ 0.8

0.1 5.0000e-02 5.0000e-02 1.2107e-02 4.5404e-03
0.010 5.0000e-03 5.0000e-03 1.2107e-03 4.5404e-04
0.001 5.0000e-04 5.0000e-04 1.2107e-04 4.5404e-05

Rate 1.00 1.00 1.00 1.00

Table 2.11 Convergence rate in the L8 norm for the function uptq “ p2tq1.60.

∆t β “ 0.2 β “ 0.4 β “ 0.6 β “ 0.8 β “ 1

0.1 7.1719e-02 3.4942e-02 1.7154e-02 1.4683e-02 1.2954e-02
0.010 4.5509e-03 1.4182e-03 4.3090e-04 3.6882e-04 3.2540e-04
0.001 2.8731e-04 5.6562e-05 1.0824e-05 9.2643e-06 8.1736e-06

Rate 1.20 1.40 1.60 1.60 1.60

In Table 2.12, we can see that the results for uptq “ p2tq2 agree with the theoretical ones, since
mintβ ` 1,2u “ 2. In Table 2.13, that refers to the numerical experiments with uptq “ p2tq2.5, we get
rate of convergence of β ` 1 for β ă 0.5 and 2.5 for greater values of β . For uptq “ p2tq4, we obtain
β ` 1 for the convergence rate, as illustrated in Table 2.14.

Table 2.12 Convergence rate in the L8 norm for the function uptq “ p2tq2.

∆t β “ 1.2 β “ 1.4 β “ 1.6 β “ 1.8 β “ 2

0.1 6.0729e-03 4.2545e-03 3.2050e-03 2.6342e-03 2.3528e-03
0.010 6.0729e-05 4.2545e-05 3.2050e-05 2.6342e-05 2.3528e-05
0.001 6.0729e-07 4.2545e-07 3.2050e-07 2.6342e-07 2.3528e-07

Rate 2.00 2.00 2.00 2.00 2.00

Table 2.13 Convergence rate in the L8 norm for the function uptq “ p2tq2.5.

∆t β “ 1.2 β “ 1.4 β “ 1.6 β “ 1.8 β “ 2

0.1 9.5472e-03 3.5715e-03 1.4558e-03 1.1469e-03 9.7733e-04
0.010 6.1093e-05 1.4294e-05 4.6036e-06 3.6269e-06 3.0906e-06
0.001 3.8599e-07 5.6921e-08 1.4558e-08 1.1469e-08 9.7733e-09

Rate 2.20 2.40 2.50 2.50 2.50
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Table 2.14 Convergence rate in the L8 norm for the function uptq “ p2tq4.

∆t β “ 1.2 β “ 1.4 β “ 1.6 β “ 1.8 β “ 2

0.1 9.6447e-02 4.4402e-02 1.9671e-02 7.7228e-03 3.5727e-03
0.010 6.6291e-04 1.9261e-04 5.4002e-05 1.3431e-05 3.8933e-06
0.001 4.2175e-06 7.7321e-07 1.3696e-07 2.1781e-08 4.4750e-09

Rate 2.18 2.38 2.58 2.77 2.95

In the next chapter, we use the spline approximation to derive quadrature formulas for the integral
operators involved in fractional differential equations.





Chapter 3

Fractional integrals approximations

The main goal of our work is to derive numerical methods for fractional differential equations, related
not only with subdiffusion problems but also with superdiffusive models described by Lévy flights. In
the next sections, we derive some approximations for the fractional integral operators that will appear
later related to the fractional derivatives. In the first section, we approximate the integral operator
present in the subdiffusive model using fractional splines. In the second section, we approximate the
integral operator related to superdiffusion, using only the linear spline, which was used in [74, 76]
and it will be an important tool for the next chapters.

3.1 Time-integral operator of order 0 ă α ă 1

The subdiffusive processes can be described using fractional operators with α between 0 and 1. We
consider the fractional Riemann-Liouville integral of order α defined by

I αuptq “
1

Γpαq

ż t

0
upτqpt ´ τqα´1dτ, 0 ă α ă 1, (3.1)

for t P r0,bs. This integral exists when u P L1p0,bq. The difficulty of the approximation of the
Riemann-Liouville derivative is inherent to approximate (3.1). Therefore, we focus on approximating
this operator using the splines discussed in the last chapter. The general idea is to compute this integral
approximating u by a fractional spline sβ , where β is the degree of the spline. Once again, we divide
the cases 0 ă β ď 1 and 1 ă β ď 2.

Consider the discrete points tm, m “ 0, . . . ,M, where tm`1 “ tm `∆t, m “ 0, . . . ,M ´1. We denote
the approximation of (3.1) as Iα,β uptmq defined by

Iα,β uptmq “
1

Γpαq

ż tm

t0
sβ pτqptm ´ τqα´1dτ. (3.2)

In the following subsections, we replace the fractional spline by its explicit formula.

29
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3.1.1 Integral approximation using splines of degree 0 ă β ď 1

Recall the formula of the fractional spline with 0 ă β ď 1, given by

sβ ptq “
1

Γpβ ` 1q

M
ÿ

k“0

ck

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

t ´ tk
∆t

´ j `
β ` 1

2

˙β

`

. (3.3)

Inserting (3.3) in (3.2), we obtain the following expression

Iα,β uptmq“
1

Γpαq

ż tm

t0

»

–

1
Γpβ ` 1q

M
ÿ

k“0

ck

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

τ ´ tk
∆t

´ j `
β ` 1

2

¸β

`

fi

flˆptm ´ τqα´1dτ.

Note that the terms
˜

τ ´ tk
∆t

´ j `
β ` 1

2

¸β

`

are different from zero only for
τ ´ tk

∆t
´ j `

β ` 1
2

ą 0

that is equivalent to

j ă
τ ´ tk

∆t
`

β ` 1
2

.

Since τ ď tm and 1{2 ă pβ ` 1q{2 ď 1 this means that j ď m ´ k and we can exchange the infinite
sum, that was showed to be finite, with the integral. Furthermore, as j ě 0, we conclude that kmax “ m.
Hence, we arrive at

Iα,β uptmq “

m
ÿ

k“0

ck

m´k
ÿ

j“0

l j,k, (3.4)

where

l j,k “
1

Γpαq

1
Γpβ ` 1q

p´1q j
ˆ

β ` 1
j

˙
ż tm

t0

˜

τ ´ tk
∆t

´ j `
β ` 1

2

¸β

`

ptm ´ τqα´1dτ. (3.5)

Let us now pay attention to the integral of the previous formula (3.5). Note that

τ ´ tk
∆t

´ j `
β ` 1

2
ě 0

occurs when

τ ě tk ` j∆t ´
β ` 1

2
∆t.

This means that we can consider the lower limit of the integral to be tk ` j∆t ´ pβ ` 1q∆t{2, because
before this value the integrand is zero, except when p j,kq “ p0,0q. Therefore, for all p j,kq ‰ p0,0q,
we can write

l j,k “
1

Γpαq

1
Γpβ ` 1q

p´1q j
ˆ

β ` 1
j

˙

1
∆tβ

ż tm

tb
pτ ´ tbqβ ptm ´ τqα´1dτ,
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where tb “ tk ` j∆t ´ ∆tpβ ` 1q{2. Since the equality (1.12) holds, we obtain

l j,k “
1

Γpαq

1
Γpβ ` 1q

p´1q j
ˆ

β ` 1
j

˙

1
∆tβ

ptm ´ tbqβ`α Γpβ ` 1qΓpαq

Γpβ ` α ` 1q
,

which can be simplified to

l j,k “
∆tα

Γpβ ` α ` 1q
p´1q j

ˆ

β ` 1
j

˙ˆ

m ´ k ´ j `
β ` 1

2

˙β`α

. (3.6)

For the case p j,kq “ p0,0q we have, from (3.5),

l0,0 “
1

Γpαq

1
Γpβ ` 1q

ż tm

t0

˜

τ ´ t0
∆t

`
β ` 1

2

¸β

ptm ´ τqα´1dτ.

We use the trapezoidal rule to approximate this integral as follows. The integral present in l0,0 can be
written at the expenses of two other integrals

l0,0 “
1

Γpαq

1
Γpβ ` 1q

ż tm

t0´∆t β`1
2

˜

τ ´ t0
∆t

`
β ` 1

2

¸β

ptm ´ τqα´1dτ

´
1

Γpαq

1
Γpβ ` 1q

ż t0

t0´∆t β`1
2

˜

τ ´ t0
∆t

`
β ` 1

2

¸β

ptm ´ τqα´1dτ

The first integral can be computed as before, with tb “ t0 ´ ∆tpβ ` 1q{2,

l0,0 “
1

Γpαq

1
Γpβ ` 1q

„

1
∆tβ

ptm ´ tbqβ`α Γpβ ` 1qΓpαq

Γpβ ` α ` 1q
´

ż t0

tb
pτ ´ tbq

β
ptm ´ τqα´1dτ



.

In order to do the computational implementation of the second integral, we approximate it with the
trapezoidal rule, arriving to the following result

l0,0 «
1

Γpβ ` α ` 1q

1
∆tβ

ptm ´ tbqβ`α ´
1

ΓpαqΓpβ ` 1q

1
∆tβ

pt0 ´ tbq

„

1
2

pt0 ´ tbqβ ptm ´ t0qα´1


.

Next, in order to rewrite the integral approximation (3.4), we define bm,k, for k “ 1, . . .m, as

bm,k “
1

Γpβ ` α ` 1q

m´k
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ k ´ j `
β ` 1

2

˙β`α

(3.7)

and for k “ 0

bm,0 “
1

ΓpαqΓpβ ` 1q∆tα

ż tm

t0

˜

τ ´ t0
∆t

`
β ` 1

2

¸β

ptm ´ τqα´1dτ

`
1

Γpβ ` α ` 1q

m
ÿ

j“1

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ j `
β ` 1

2

˙β`α

.

(3.8)
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that is approximately

bm,0 «
1

Γpβ ` α ` 1q

m
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ j `
β ` 1

2

˙β`α

´
1

2ΓpαqΓpβ ` 1q

ˆ

β ` 1
2

˙β

mα´1

By convention b0,0 “ 0. We have

∆tαbm,k “

m´k
ÿ

j“0

l j,k,

and therefore, the approximation (3.4) can now be written as

Iα,β uptmq “ ∆tα

m
ÿ

k“0

ckbm,k.

In Chapter 2, we have seen that the coefficients ck are given by

ck “

k
ÿ

p“0

ãk´puptpq,

with

ã0 “
1
a0

, ãp “ ´
1
a0

p
ÿ

r“1

arãp´r, p “ 1, . . . ,M, (3.9)

and

ap “
1

Γpβ ` 1q

p
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

p ´ j `
β ` 1

2

¸β

, p “ 0, . . . ,M. (3.10)

Using this, we can write the approximation of the integral as

Iα,β uptmq “ ∆tα

m
ÿ

k“0

k
ÿ

p“0

ãk´puptpqbm,k.

Finally, rearranging the terms

Iα,β uptmq “ ∆tα

m
ÿ

p“0

¨

˝

m
ÿ

k“p

bm,kãk´p

˛

‚uptpq.

Therefore we arrive to the quadrature formula

Iα,β uptmq “ ∆tα

m
ÿ

p“0

wm,puptpq, wm,p “

m
ÿ

k“p

bm,kãk´p, (3.11)

with bm,k defined by (3.7)–(3.8) and ãk´p defined by (3.9).
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3.1.2 Integral approximation using splines of degree 1 ă β ď 2

In this section, we derive a formula to approximate the fractional integral using a fractional spline
of degree β . This approach differs from the one taken in the previous section, because we need an
additional condition to define the fractional spline.

Substituting in the integral (3.2) u by the formula of the spline (2.11), we obtain the following
expression

Iα,β uptmq “
1

Γpαq

ż tm

t0

»

–

1
Γpβ ` 1q

M`1
ÿ

k“0

ck

`8
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙

˜

τ ´ tk
∆t

´ j `
β ` 1

2

¸β

`

fi

flptm ´ τqα´1dτ.

Since t0 ď τ ď tm and 2 ă pβ ` 1q{2 ă 3{2 the terms of interest in the infinite sum are those for which
j ď m´k `1, otherwise the term to the power of β is zero. Therefore we can, once again, interchange
the integral with the sum, getting

Iα,β uptmq “

m`1
ÿ

k“0

ck

m´k`1
ÿ

j“0

l j,k, (3.12)

where

l j,k “
1

Γpαq

1
Γpβ ` 1q

p´1q j
ˆ

β ` 1
j

˙
ż tm

t0

˜

τ ´ tk
∆t

´ j `
β ` 1

2

¸β

`

ptm ´ τqα´1dτ.

We note that for all p j,kq ‰ p0,0q,p0,1q,p1,0q, we have pτ ´ tkq{∆t ´ j ` pβ ` 1q{2 ě 0 when τ ě

tk ` j∆t ´ pβ ` 1q∆t{2. Therefore, it follows that

l j,k “
∆tα

Γp1 ` β ` αq
p´1q j

ˆ

β ` 1
j

˙ˆ

m ´ k ´ j `
β ` 1

2

˙β`α

. (3.13)

Let us now analyze the exceptions. For p j,kq “ p0,0q, we have

l0,0 “
1

Γpαq

1
Γpβ ` 1q

ż tm

t0

˜

τ ´ t0
∆t

`
β ` 1

2

¸β

ptm ´ τqα´1dτ

that we can split into

l0,0 “
1

Γpαq

1
Γpβ ` 1q∆tβ

ż tm

tb
pτ ´ tbq

β
ptm ´τqα´1dτ ´

1
Γpαq

1
Γpβ ` 1q∆tβ

ż t0

tb
pτ ´ tbq

β
ptm ´τqα´1dτ,

where tb “ t0 ´ ∆tpβ ` 1q{2. Then, using the trapezoidal rule to approximate the second integral, we
get

l0,0 «
∆tα

Γp1 ` β ` αq

ˆ

m `
β ` 1

2

˙β`α

´
∆tα

2Γpβ ` 1qΓpαq

ˆ

β ` 1
2

˙β`1

mα´1.
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For the case p j,kq “ p1,0q we have, from (3.13),

l1,0 “ ´
β ` 1
Γpαq

1
Γpβ ` 1q

ż tm

t0

˜

τ ´ t0
∆t

´ 1 `
β ` 1

2

¸β

ptm ´ τqα´1dτ.

Using the same strategy as before, we arrive to

l1,0 « ´
∆tαpβ ` 1q

Γp1 ` β ` αq

ˆ

m ´ 1 `
β ` 1

2

˙β`α

`
∆tαpβ ` 1q

2Γpβ ` 1qΓpαq

ˆ

β ` 1
2

´ 1
˙β`1

mα´1.

For the case p j,kq “ p0,1q we have

l0,1 “
1

Γpαq

1
Γpβ ` 1q

ż tm

t0

˜

τ ´ t1
∆t

`
β ` 1

2

¸β

ptm ´ τqα´1dτ

that leads us to

l0,1 «
∆tα

Γp1 ` β ` αq

ˆ

m ´ 1 `
β ` 1

2

˙β`α

´
∆tα

2Γpβ ` 1qΓpαq

ˆ

β ` 1
2

´ 1
˙β`1

mα´1.

We define bm,k for 1 ă β ď 2 such that

∆tαbm,k “

m´k`1
ÿ

j“0

l j,k,

For k “ 1, . . .m ` 1 and m “ 1, . . . ,M we have

bm,k “
1

Γp1 ` β ` αq

m´k`1
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ k ´ j `
β ` 1

2

˙β`α

.

Considering b0,0 “ 0 by convention, for k “ 0 we have

bm,0 « ´
1

2Γpβ ` 1qΓpαq

«

ˆ

β ` 1
2

˙β`1

´ pβ ` 1q

ˆ

β ` 1
2

´ 1
˙β`1

ff

mα´1

`
1

Γp1 ` β ` αq

m`1
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ j `
β ` 1

2

˙β`α

and for k “ 1 we have

bm,1 « ´
1

2Γpβ ` 1qΓpαq

ˆ

β ` 1
2

´ 1
˙β`1

mα´1

`
1

Γp1 ` β ` αq

m
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ 1 ´ j `
β ` 1

2

˙β`α

.
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We arrive to the following approximation of (3.12)

Iα,β uptmq “ ∆tα

m`1
ÿ

k“0

ck,mbm,k, ck,m “ ãm
k,0u1ptmq `

m`1
ÿ

s“1

ãm
k,supts´1q,

with ãm
k,s being the entries of the matrix Ãm “ rãm

k,ss, k “ 0, . . . ,m ` 1, s “ 0, . . . ,m ` 1 which is the
inverse of Am (2.16).

Note that, in order to obtain ck,m, we need to have access to the derivative of u at the knots. As we
will see in the next chapter, sometimes this type of information is not available. Therefore, in order to
approximate the first derivative of u, we use the approximation given by [39]

D´uptmq

∆t
` c1

D2
´uptmq

∆t
` c2

D3
´uptmq

∆t
« u1ptmq

with
D´uptmq “ uptmq ´ uptm´1q.

The general formula can be written as

D´uptmq

∆t
` c1

D2
´uptmq

∆t
` c2

D3
´uptmq

∆t
“

“
uptmq ´ uptm´1q

∆t
` c1

uptmq ´ 2uptm´1q ` uptm´2q

∆t
` c2

uptmq ´ 3uptm´1q ` 3uptm´2q´uptm´3q

∆t

that can be rearranged as

D´uptmq

∆t
` c1

D2
´uptmq

∆t
` c2

D3
´uptmq

∆t
“

“
1
∆t

´

p1 ` c1 ` c2quptmq ´ p1 ` 2c1 ` 3c2quptm´1q ` pc1 ` 3c2quptm´2q ´ c2uptm´3q

¯

.

(3.14)

Ideally, we would use c1 “ ´1{2 and c2 “ 1{3, which is a third order accurate approximation. How-
ever, that is only possible for m ą 2 because, for m “ 1 and m “ 2, we would need the values upt´2q

and upt´1q. Therefore, for m “ 1, we use c1,c2 “ 0, which is a first order accurate approximation. For
m “ 2, we use c1 “ ´1{2 and c2 “ 0, which is a second order accurate approximation.

In the next section, we derive error bounds for the fractional integral approximation. We also
present some numerical simulations using the exact value of u1ptmq and using the approximation (3.14)
of u1ptmq.

3.1.3 Error bounds for the fractional integral approximation

In this section we discuss the error bounds, in the L2 norm and the L8 norm, for the approximation
of the fractional integral when we use fractional splines of degree β . In order to do it, we resort to
the result obtained in Chapter 2 for β P p0,2s. We also display some numerical tests to confirm the
theoretical results.

We denote by H̃β`1pΩq the set of functions u whose extension by zero to ũ is in Hβ`1pRq.
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Theorem 3.1. For all u P H̃β`1pΩq, Ω “ r0,T s, the error of the integral approximation is bounded
by

||I αu ´ Iα,β u||L2pΩq ď
T α

Γp1 ` αq
Cβ ||Dβ`1

0 u||L2pΩq∆tβ`1,

with Cβ a constant depending on β and Dβ`1
0 the Riemann-Liouville derivative (1.6).

Proof. We have that

I αuptq ´ Iα,β uptq “
1

Γpαq

ż t

0
pupξ q ´ sβ pξ qqpt ´ ξ qα´1dξ .

Considering Ω “ p0,T q, let us do the change of variables τ “ t ´ ξ . We get

I αuptq ´ Iα,β uptq “ ´
1

Γpαq

ż 0

t
pupt ´ τq ´ sβ pt ´ τqqτ

α´1dτ

that is equivalent to

I αuptq ´ Iα,β uptq “
1

Γpαq

ż t

0
pupt ´ τq ´ sβ pt ´ τqqτ

α´1dτ.

Therefore,
ˇ

ˇ

ˇ
I αuptq ´ Iα,β uptq

ˇ

ˇ

ˇ
ď

1
Γpαq

ż T

0

ˇ

ˇpupt ´ τq ´ sβ pt ´ τqq
ˇ

ˇ |τ|
α´1 dτ.

Taking the L2 norm,

||I αu ´ Iα,β u||L2pΩq “

ˆ
ż T

0

ˇ

ˇ

ˇ
I αuptq ´ Iα,β uptq

ˇ

ˇ

ˇ

2
dt

˙

1
2

,

we can write

||I αu ´ Iα,β u||L2pΩq ď

˜

ż T

0

ˆ

1
Γpαq

ż T

0

ˇ

ˇupt ´ τq ´ sβ pt ´ τq
ˇ

ˇ |τ|
α´1 dτ

˙2

dt

¸
1
2

.

Using the generalized Minkowski’s inequality (1.11), we obtain

||I αu ´ Iα,β u||L2pΩq ď
1

Γpαq

ż T

0

ˆ
ż T

0

ˇ

ˇupt ´ τq ´ sβ pt ´ τq
ˇ

ˇ

2
|τ|

2α´2 dt
˙

1
2

dτ

and, consequently,

||I αu ´ Iα,β u||L2pΩq ď
1

Γpαq

ż T

0

ˆ
ż T

0

ˇ

ˇupt ´ τq ´ sβ pt ´ τq
ˇ

ˇ

2 dt
˙

1
2

|τ|
α´1 dτ.

Doing the change of variable z “ t ´ τ , we get

||I αu ´ Iα,β u||L2pΩq ď
1

Γpαq

ż T

0

ˆ
ż T ´τ

´τ

ˇ

ˇupzq ´ sβ pzq
ˇ

ˇ

2 dz
˙

1
2

|τ|
α´1 dτ.
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Considering that upzq ´ sβ pzq “ 0 for z ď 0, it follows

||I αu ´ Iα,β u||L2pΩq ď
1

Γpαq

ż T

0

ˆ
ż T ´τ

0

ˇ

ˇupzq ´ sβ pzq
ˇ

ˇ

2 dz
˙

1
2

|τ|
α´1 dτ.

Furthermore, τ is between 0 and T , so we arrive to

||I αu ´ Iα,β u||L2pΩq ď
1

Γpαq

ż T

0
|τ|

α´1 dτ

ˆ
ż T

0

ˇ

ˇupzq ´ sβ pzq
ˇ

ˇ

2 dz
˙

1
2

which means that
||I αu ´ Iα,β u||L2pΩq ď

1
Γpαq

||u ´ sβ ||L2pΩq||K||L1pΩq,

where Kptq :“ tα´1. Therefore by Theorem 2.2 of Chapter 2, we obtain

||I αu ´ Iα,β u||L2pΩq ď Cβ

∆tβ`1

Γpα ` 1q
T α ||Dβ`1

0 u||L2pΩq.

From this discussion, we expect to have an order of approximation of β `1 for functions under the
conditions of the previous theorem. We also note that this order of convergence is mainly controlled
by the spline approximation, because it is the approximation we have done to compute the integral.

Consider the functions of interest, as in the previous subsections, that behave like u “ Optγq when
t tends to 0. Recalling that

||Dβ`1
0 ptγq||L2p0,∆tq “ Cγ,β ∆tγ´β´1{2

from Theorem 3.1, we can conclude the following result.

If u “ Optγq when t is close to zero then the error of the integral approximation is bounded by

||I αu ´ Iα,β u||L2pΩq ď Cγ,β ,α∆tmintβ`1,γ`1{2`αu,

with Cγ,β ,α a constant depending on γ,β and α . From this result we infer that the order of the integral,
α , may affect the order of convergence.

For the L8 norm, we assume that we have (2.20), that says

||u ´ sβ ||L8pΩq ď Cβ ∆tβ`1||Dβ`1
´8 u||L8pΩq,

which leads us to the following result. And, for functions that vanish outside Ω,

||u ´ sβ ||L8pΩq ď Cβ ∆tβ`1||Dβ`1
0 u||L8pΩq.

Theorem 3.2. Let u be a function sufficiently smooth, u P L8pΩq and

||u ´ sβ ||L8pΩq ď Cβ ∆tβ`1||Dβ`1
0 u||L8pΩq,
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with Cβ a constant depending on β . Then

||I αu ´ Iα,β u||L8pΩq ď
tα

Γpα ` 1q
Cβ ||Dβ`1

0 u||L8pΩq∆tβ`1.

Recalling that
||Dβ`1

0 ptγq||L8p0,∆tq “ Op∆tγq,

in the cases where we have a function u “ Optγq when t Ñ 0, the error of the integral approximation
is bounded by

||I αu ´ Iα,β u||L8pΩq ď Cγ,β ,α∆tmintβ`1,γ`αu,

with Cγ,β ,α a constant depending on γ , β and α .
We present some numerical tests for the same type of functions we have considered in the

discussions of the order of the spline approximation. In the next tables the numerical results are
obtained for the functions uptq “ p2tqγ , with γ “ 1, γ “ 1.6 and γ “ 2, for β and α between 0 and 1.

In Table 3.1, we show the results for the case γ “ 1, for β “ 0.4 and α “ 0.9 and for β “ 0.8 and
α “ 0.1. In the first case the minimum between β ` 1 and γ ` α ` 0.5 or γ ` α is the former one, this
is, 1.4. In the second case the minimum between β ` 1 and γ ` α ` 0.5 or γ ` α is the latter ones, this
is, γ ` α “ 1.1 for the L8 norm and γ ` α ` 0.5 “ 1.6 for the L2 norm. From the numerical results
we conclude the same, since we obtain approximately the expected order of convergence.

Table 3.1 Convergence rate for the integral using uptq “ 2t, pβ ,αq “ p0.4,0.9q and pβ ,αq “ p0.8,0.1q,
in the L2 norm and L8 norm.

β “ 0.4, α “ 0.9 β “ 0.8, α “ 0.1

∆t || ¨ ||8 Rate || ¨ ||2 Rate || ¨ ||8 Rate || ¨ ||2 Rate

0.1 2.7904e-03 1.8259e-03 5.3336e-04 4.0248e-04
0.01 1.4794e-04 1.28 1.0135e-04 1.26 4.2366e-05 1.10 1.4890e-05 1.43
0.001 6.3113e-06 1.37 4.4217e-06 1.36 3.3653e-06 1.10 4.3798e-07 1.53

In Table 3.2, we display the results for the case γ “ 1.6. In both cases considered, pβ ,αq “

p0.8,0.1q and pβ ,αq “ p1,0.2q, we obtain the order of convergence around β ` 1 for the L2 norm,
which is the minimum between β ` 1 and γ ` α ` 0.5. For the L8 norm, we obtain the order of
convergence around γ ` α , this is, 1.7 in the first case and 1.8 in the second case, which are the
minimum between β ` 1 and γ ` α .

In Table 3.3, we show the results for the function uptq “ p2tq2. From the information of the table,
we conclude that the order of convergence is β ` 1 for both norms as established in the theoretical
results. Note that, as γ “ 2, β `1 is always lower than γ `α and, consequently, lower than γ `α `0.5.

We present some numerical results for β P p1,2s and α P p0,1q, using the exact value for u1ptmq,
for the functions uptq “ p2tqγ , with γ “ 2 and γ “ 4.

In Table 3.4, we present the numerical results regarding γ “ 2, for pβ ,αq “ p1.2,0.4q and
pβ ,αq “ p1.8,0.2q. In the first case, the order of convergence is β ` 1 for both norms, since 2.2 is
lower than γ ` α “ 2.4. For the second pair of values, the rate of convergence for the L2 norm is
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Table 3.2 Convergence rate for the integral using uptq “ p2tq1.6, pβ ,αq “ p0.8,0.1q and pβ ,αq “

p1,0.2q, in the L2 norm and L8 norm.

β “ 0.8, α “ 0.1 β “ 1, α “ 0.2

∆t || ¨ ||8 Rate || ¨ ||2 Rate || ¨ ||8 Rate || ¨ ||2 Rate

0.1 2.1487e-03 2.0909e-03 2.6355e-03 2.3361e-03
0.01 4.3221e-05 1.70 4.2761e-05 1.69 4.1770e-05 1.80 2.9172e-05 1.90
0.001 8.6236e-07 1.70 8.0681e-07 1.72 6.6201e-07 1.80 3.3121e-07 1.94

Table 3.3 Convergence rate for the integral using uptq “ p2tq2, pβ ,αq “ p0.2,0.6q and pβ ,αq “

p0.6,0.8q, in the L2 norm and L8 norm.

β “ 0.2, α “ 0.6 β “ 0.6, α “ 0.8

∆t || ¨ ||8 Rate || ¨ ||2 Rate || ¨ ||8 Rate || ¨ ||2 Rate

0.1 1.7949e-02 1.0902e-02 1.1871e-02 7.1376e-03
0.01 7.6772e-04 1.37 4.0830e-04 1.43 2.7971e-04 1.63 1.5350e-04 1.67
0.001 4.3623e-05 1.25 2.2547e-05 1.26 6.9662e-06 1.60 3.7829e-06 1.61

Table 3.4 Convergence rate for the integral using uptq “ p2tq2, pβ ,αq “ p1.2,0.4q and pβ ,αq “

p1.8,0.2q, in the L2 norm and L8 norm.

β “ 1.2, α “ 0.4 β “ 1.8, α “ 0.2

∆t || ¨ ||8 Rate || ¨ ||2 Rate || ¨ ||8 Rate || ¨ ||2 Rate

0.1 1.8170e-03 1.4141e-03 5.1520e-04 1.8982e-04
0.01 1.1900e-05 2.18 9.5472e-06 2.17 3.2507e-06 2.20 3.9689e-07 2.68
0.001 7.6495e-08 2.19 6.3222e-08 2.18 2.0510e-08 2.20 8.0730e-10 2.69

Table 3.5 Convergence rate for the integral using uptq “ p2tq4, pβ ,αq “ p1.4,0.6q and pβ ,αq “

p1.6,0.8q, in the L2 norm and L8 norm.

β “ 1.4, α “ 0.6 β “ 1.6, α “ 0.8

∆t || ¨ ||8 Rate || ¨ ||2 Rate || ¨ ||8 Rate || ¨ ||2 Rate

0.1 9.8791e-03 3.9999e-03 2.8656e-03 1.1099e-03
0.01 4.1781e-05 2.37 1.7116e-05 2.37 7.5325e-06 2.58 3.1250e-06 2.55
0.001 1.6707e-07 2.40 7.0877e-08 2.38 1.8929e-08 2.60 8.0864e-09 2.59

γ ` α ` 0.5 “ 2.7 and for the L8 norm is γ ` α “ 2.2, since β ` 1 “ 2.8 . In Table 3.5, we show the
results of the numerical tests done with uptq “ p2tq4. We got an order of convergence of β ` 1 for
both cases and both norms, as expected by the theoretical results.
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In Table 3.6, we present a numerical test for the case uptq “ p2tq2 considered in Table 3.4, but
instead of using the exact value of u1ptmq, we use the approximation (3.14). When pβ ,αq “ p1.2,0.4q,
we obtain a convergence rate around β ` 1 for both norms. When pβ ,αq “ p1.8,0.2q, we obtain a
convergence rate around 2 ` α for both norms.

Table 3.6 Convergence rate for the integral using uptq “ p2tq2, pβ ,αq “ p1.2,0.4q and pβ ,αq “

p1.8,0.2q, in the L2 norm and L8 norm, resorting to the approximation (3.14).

β “ 1.2, α “ 0.4 β “ 1.8, α “ 0.2

∆t || ¨ ||8 Rate || ¨ ||2 Rate || ¨ ||8 Rate || ¨ ||2 Rate

0.1 3.4727e-03 4.4484e-03 3.4113e-03 3.9807e-03
0.01 1.9175e-05 2.26 2.3916e-05 2.27 2.1524e-05 2.20 2.4360e-05 2.21
0.001 1.0953e-07 2.24 1.3502e-07 2.25 1.3581e-07 2.20 1.5223e-07 2.20

We conclude that the numerical tests are according to the theoretical results and, for some cases,
the order of approximation is influenced by the value of α as expected. Furthermore, it is affected by
the approximation of the derivative u1ptmq, needed when β is between 1 and 2.

3.2 Space-integral operator of order 0 ă α ă 2, α ‰ 1

Superdiffusive phenomena can be modeled via fractional operators not only with α between 1 and 2
but also with α between 0 and 1. In this section, we describe the approximation of the left and right
fractional integrals of order α with n ´ 1 ă α ă n defined, respectively, by

I lupxq “
1

Γpn ´ αq

ż x

´8

upξ qpx ´ ξ qn´1´αdξ (3.15)

and

I rupxq “
1

Γpn ´ αq

ż 8

x
upξ qpξ ´ xqn´1´αdξ . (3.16)

These integrals are related to the definition of the fractional derivatives that will appear during in
Chapter 5.

3.2.1 Integral approximation using the linear spline

Consider the uniform discretization of the real line xk “ xk´1 ` ∆x, k P Z. We begin by approximating
the integral I lupx jq using the linear spline. As seen in Chapter 1, the linear spline is given by

spxq :“ s1pxq “
ÿ

kPZ
upxkqB1

`px ´ xkq,

with

B1
`px ´ xkq “

1
Γp2q

`8
ÿ

j“0

p´1q j
ˆ

2
j

˙

˜

x ´ xk

∆x
´ j ` 1

¸

`

.
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It is easy to see that B1
`px ´ xkq is equal to

B1
`px ´ xkq “

$

’

’

’

’

&

’

’

’

’

%

x ´ xk´1

∆x
, xk´1 ă x ď xk,

xk`1 ´ x
∆x

, xk ă x ď xk`1,

0, otherwise

for k ă j and, for k “ j,

B1
`px ´ x jq “

$

&

%

x j ´ x
∆x

, x j´1 ď x ď x j,

0, otherwise.

Then, the spline that approximates a function u is given by

spxq “

j
ÿ

k“´8

upxkqB1
`px ´ xkq.

Substituting u by s in (3.15),

Ilupx jq “
1

Γpn ´ αq

ż x j

´8

spξ qpx j ´ ξ qn´1´αdξ

“
1

Γpn ´ αq

j
ÿ

k“´8

ż x j

´8

upxkqB1
`pξ ´ xkqpx j ´ ξ qn´1´αdξ ,

provided that u is bounded.

For k ă j, the integral is given by

Ilupx jq “
1

Γpn ´ αq

j
ÿ

k“´8

upxkq

ż xk`1

xk´1

B1
`pξ ´ xkqpx j ´ ξ qn´1´αdξ

and

ż xk`1

xk´1

B1
`pξ ´ xkqpx j´ξ qn´1´αdξ “

ż xk

xk´1

ξ ´xk´1

∆x
px j´ξ qn´1´αdξ `

ż xk`1

xk

xk`1´ξ

∆x
px j´ξ qn´1´αdξ .

Integrating by parts,

ż xk`1

xk´1

B1
`pξ ´ xkqpx j ´ ξ qn´1´αdξ “

„

px j ´ ξ qn´αpξ ´ xk´1q

pα ´ nq∆x

xk

xk´1

`

ż xk

xk´1

px j ´ ξ qn´α

pn ´ αq∆x
dξ

`

„

px j ´ ξ qn´αpxk`1 ´ ξ q

pα ´ nq∆x

xk`1

xk

´

ż xk`1

xk

px j ´ ξ qn´α

pn ´ αq∆x
dξ ,

that is equivalent to
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ż xk`1

xk´1

B1
`pξ ´ xkqpx j ´ ξ qn´1´αdξ “ ´

px j ´ xkqn´αpxk ´ xk´1q

pn ´ αq∆x
´

„

px j ´ ξ qn`1´α

pn ´ αqpn ` 1 ´ αq∆x

xk

xk´1

`
px j ´ xkqn´αpxk`1 ´ xkq

pn ´ αq∆x
`

„

px j ´ ξ qn`1´α

pn ´ αqpn ` 1 ´ αq∆x

xk`1

xk

.

Recalling that xi ´ xi´1 “ ∆x,
ż xk`1

xk´1

B1
`pξ ´ xkqpx j ´ ξ qn´1´αdξ “

p j ´ k ` 1qn`1´α ´ 2p j ´ kqn`1´α ` p j ´ k ´ 1qn`1´α

pn ` 1 ´ αqpn ´ αq
∆xn´α .

For k “ j, due to the support of the B-spline, we have

Ilupx jq “
1

Γpn ´ αq

j
ÿ

k“´8

upxkq

ż x j

x j´1

B1
`pξ ´ xkqpx j ´ ξ qn´1´αdξ

with
ż x j

x j´1

B1
`pξ ´ x jqpx j ´ ξ qn´1´αdξ “

ż x j

x j´1

ξ ´ x j´1

∆x
px j ´ ξ qn´1´αdξ “

Γp2qΓpn ´ αq

Γpn ` 2 ´ αq
∆xn´α .

Finally, we arrive to the following approximation of I lupx jq

Ilupx jq “
∆xn´α

Γpn ` 2 ´ αq

j
ÿ

k“´8

upxkqal
j,k,

where

al
j,k “ p j ´ k ´ 1qn`1´α ´ 2p j ´ kqn`1´α ` p j ´ k ` 1qn`1´α , k ď j ´ 1,

al
j, j “ 1.

The approximation of the right integral follows similarly. We obtain the following approximation of
I rupx jq

Irupx jq “
∆xn´α

Γpn ` 2 ´ αq

8
ÿ

k“ j

upxkqar
j,k,

where

ar
j,k “ pk ` 1 ´ jqn`1´α ´ 2pk ´ jqn`1´α ` pk ´ 1 ´ jqn`1´α , k ě j ` 1,

ar
j, j “ 1.

Considering m “ j ´ k, we can rewrite the integrals as

Ilupx jq “
∆xn´α

Γpn ` 2 ´ αq

8
ÿ

m“0

amupx j´m, tq (3.17)
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and

Irupx jq “
∆xn´α

Γpn ` 2 ´ αq

8
ÿ

m“0

amupx j`mq, (3.18)

where the coefficients, that are equal for both quadratures, are given by

a0 “1,

am “pm ` 1qn`1´α ´ 2mn`1´α ` pm ´ 1qn`1´α , for m ě 1.
(3.19)

The error bounds for these integrals can be obtained in a similar way to what has been done in
Section 2.4, considering β “ 1.

In the next chapters, we develop numerical methods for fractional differential equations that can
model subdiffusion and superdiffusion, based on the discussion presented in this chapter.





Chapter 4

Subdiffusion problem

In the first section of this chapter, we describe briefly the deduction of the fractional differential
equation that models subdiffusion based on the continuous time random walk. A continuous time
random walk (CTRW) differs from the Brownian random walk in the waiting times. While in the latter
the waiting times are constant, in the CTRW they are given by a function. In the second section, we
derive a numerical method to approximate the solution of the subdiffusive problem resorting to splines
of degree β between 0 and 1. We study the stability and the convergence of the method, illustrating the
convergence rate with some numerical computations. In the third section, we formulate a numerical
method to approximate the same problem but now using splines of degree β between 1 and 2. As this
is a much more difficult problem, the stability of the method is yet to be studied. Nevertheless, we
give some numerical examples that indicate the order of accuracy of the method. In the last section,
we present some figures to illustrate the phenomena of subdiffusion when the initial condition is an
approximation of the Dirac delta function.

4.1 Model problem

The CTRW model is the basis for the fractional equation used in subdiffusion derived by Metzler and
Klafter in [51]. Consider a probability density function (pdf), ψ , that characterizes the length of a
jump and the waiting time between two consecutive jumps. The jump length pdf, λ , and the waiting
time pdf, w, can be determined respectively by

λ pxq “

ż 8

0
ψpx, tqdt and νptq “

ż 8

´8

ψpx, tqdx.

When the waiting time and the length of the jumps are independent, ψ can be written as ψpx, tq “

λ pxqνptq. It can be proved that, in the Fourier-Laplace space, the pdf u that represents the probability
of being in position x at time t, obeys to [44, 51]

ûpω,sq “
1 ´ ν̂psq

s
û0pωq

1 ´ ψ̂pω,sq
,

where û0pωq denotes the Fourier transform of the initial condition u0pxq. Note that f̂ pωq and f̂ psq

denote the Fourier transform and the Laplace transform of f , respectively. Furthermore, f̂ pω,sq

45
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represents the Fourier transform of the function of the first variable and a Laplace transform of the
second variable.

CTRW processes can be classified according to the characteristic waiting time, T , and the jump
length variance, σ2, given by

T “

ż 8

0
tνptqdt, σ

2 “

ż 8

´8

x2
λ pxqdx.

being finite or divergent. When T and σ2 are finite, we are in the presence of the Brownian motion.
Consider that T diverges, but σ2 remains finite with a waiting time pdf that obeys

νptq „ Aαpτ{tq1´α ,

for 0 ă α ă 1, with the Laplace transform behaving as

ν̂psq „ 1 ´ psτqα .

For the jump length pdf, choosing the Gaussian behaviour, the Fourier transform of λ is characterized
by

λ̂ pωq „ 1 ´ σ
2
ω

2 ` Opω
4q.

Then, the pdf u can be written in the Fourier-Laplace space as

ûpω,sq “
rû0pωq{ss

1 ` Kαs´αω2 .

Computing the inverse Fourier-Laplace transform, this leads us to the fractional integral equation

upx, tq ´ u0pxq “ Kα

B2

Bx2

„

1
Γpαq

ż t

0
pt ´ τqα´1upx,τqdτ



Applying the first derivative in time, we get

Bu
Bt

px, tq “ Kα

B2

Bx2 D1´α

0 upx, tq,

where D1´α

0 u is the fractional Riemann-Liouville derivative operator is given by

D1´α

0 uptq “
d
dt

I αuptq

with

I αuptq “
1

Γpαq

ż t

0
upτqpt ´ τqα´1dτ, 0 ă α ă 1.

A similar, more general, fractional equation related to subdiffusion processes [27] is given by

Bu
Bt

px, tq “
B2

Bx2

´

dpx, tqD1´α

0 upx, tq
¯

` gpx, tq, px, tq P ra,bs ˆ r0,T s (4.1)
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where dpx, tq is the positive diffusive coefficient and gpx, tq is a source term. Additionally, we consider
an initial condition and, for simplicity, we assume homogeneous Dirichlet boundary conditions
upa, tq “ upb, tq“ 0, for t P r0,T s. Other boundary conditions can be easily considered.

In the next section, we derive a numerical method to approximate the solution of this problem,
using the approximations presented in Chapters 2 and 3.

4.2 Numerical method using splines of degree 0 ă β ď 1

In the following sections, we construct a numerical method based on the integral approximation using
splines of degree 0 ă β ď 1 derived in Section 3.1.1. We proceed with its convergence analysis and
with numerical experiments that illustrate the order of convergence of the numerical method.

4.2.1 Finite differences method

The goal is to construct a numerical method based on fractional splines to solve equation (4.1) defined
in the domain ra,bs ˆ rt0,T s. In order to evaluate the method, let us start by discretize the interval
rt0,T s with a uniform grid tm`1 “ tm `∆t, m “ 0,1, . . . ,M ´1 with time step ∆t “ ptM ´ t0q{M, t0 “ 0
and tM “ T .

We start by integrating (4.1) over an interval of time ptm´1, tmq, similarly to what has been done in
[63], obtaining

upx, tmq ´ upx, tm´1q “

ż tm

tm´1

B2

Bx2

´

dpx, tq0D1´α
t upx, tq

¯

dt `

ż tm

tm´1

gpx, tqdt.

Approximating dpx, tq in each interval by the second order approximation dm` 1
2 pxq “ pdpx, tmq `

dpx, tm´1qq{2, we get

upx, tmq ´ upx, tm´1q «
B2

Bx2

´

dm` 1
2 pxq

ż tm

tm´1

B

Bt
I αupx, tq

¯

dt `

ż tm

tm´1

gpx, tqdt

that leads to

upx, tmq ´ upx, tm´1q «
B2

Bx2

´

dm` 1
2 pxqpI αupx, tmq ´I αupx, tm´1qq

¯

`

ż tm

tm´1

gpx, tqdt. (4.2)

Recall that in Chapter 3 we presented the approximation (3.11) of I αupx, tmq, given by

Iα,β upx, tmq “ ∆tα

m
ÿ

p“0

wm,pupx, tpq,

where

wm,p “

m
ÿ

k“p

bm,kãk´p. (4.3)
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Replacing I αupx, tmq by Iα,β upx, tmq for each x, we obtain

upx, tmq ´ upx, tm´1q «
B2

Bx2

˜

dm` 1
2 pxq∆tα

˜

m
ÿ

k“0

wm,kupx, tkq ´

m´1
ÿ

k“0

wm´1,kupx, tkq

¸¸

`

ż tm

tm´1

gpx, tqdt.

We proceed with the space discretization in order to approximate the second order derivative in
space. Consider the set of spatial discrete points x j “ a ` j∆x, j “ 0,1, . . . ,N with ∆x “ pb ´ aq{N
and the central second order operator δ 2upx j, tq “ upx j`1, tq ´ 2upx j, tq ` upx j´1, tq. We obtain the
following numerical method

Um
j ´Um´1

j “ µαδ
2

˜

dm` 1
2

j

˜

m
ÿ

k“0

wm,kUk
j ´

m´1
ÿ

k“0

wm´1,kUk
j

¸¸

`

ż tm

tm´1

gpx j, tqdt,

where we denote Um
j the approximation of upx j, tmq, dm` 1

2
j :“ dm` 1

2 px jq and µα “ ∆tα{∆x2. Aggre-
gating the terms,

Um
j ´Um´1

j “ µα

m´1
ÿ

k“0

pwm,k ´ wm´1,kqδ
2pdm` 1

2
j Uk

j q ` µαwm,mδ
2pdm` 1

2
j Um

j q `

ż tm

tm´1

gpx j, tqdt. (4.4)

The matricial form of this method is

pI ´ µαwm,mDmqUm “ IUm´1 ` µα

m´1
ÿ

k“0

pwm,k ´ wm´1,kqDmUk ` Gm, (4.5)

where I is the identity matrix, Um is the solution vector Um “ rUm
1 , . . . ,Um

N´1sT , Dm is a tridiagonal

matrix with entries Dm
j, j´1 “ dm` 1

2
j´1 , Dm

j, j “ ´2dm` 1
2

j and Dm
j, j`1 “ dm` 1

2
j`1 and Gm contains the values

of the integral of the source term.
In the next section, we discuss the convergence of the numerical method using von Neumann

analysis.

4.2.2 Convergence analysis

In this section, we discuss the consistency of the numerical method based on the error bounds derived
in Section 3.1.3. After that, we prove the stability of the numerical method using the von Neumann
approach.

In terms of consistency, from (4.2) we can state that the spatial accuracy of the method is based
on the approximation of the second order derivative in space. As we use a second order central finite
differences formula, we conclude that the method is second order accurate in space. The accuracy
of the method in time is based on the approximation of the integrals present in (4.2). Hence, we
conclude that the accuracy of the numerical method in time is the minimum between α ` γ and
β ` 1 for the L8 norm and is the minimum between α ` γ ` 0.5 and β ` 1 for the L2 norm, when
considering functions that behave as u “ Optγq when t tends to 0. Note that to compute (3.8), we use
the trapezoidal rule, which does not affect the order of accuracy of the method once it is a second
order accurate approximation.
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In order to study the stability of the method, we start by giving properties regarding the coefficients
wm,p that appear in the formula of the numerical method (4.5).

Proposition 4.1. The coefficients wm,p (4.3) verify

wm,p “ wn,q, for m ´ p “ n ´ q, p,q ‰ 0.

For p “ 0, we have wk´p,0 ď wk,p.

Proof. Recall that the coefficients wm,p that appear in (4.5) are given by

wm,p “

m
ÿ

k“p

bm,kãk´p, and wn,q “

n
ÿ

k“q

bn,kãk´q. (4.6)

For k ą 0, bm,k is defined as

bm,k “
1

Γpβ ` α ` 1q

m´k
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ k ´ j `
β ` 1

2

˙β`α

.

Doing a change of variables in (4.6), we get

wm,p “

m´p
ÿ

s“0

bm,s`pãs, and wn,q “

n´q
ÿ

s“0

bn,s`qãs.

Having

bm,s`p “
1

Γpβ ` α ` 1q

m´ps`pq
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ ps ` pq ´ j `
β ` 1

2

˙β`α

and

bn,s`q “
1

Γpβ ` α ` 1q

n´ps`qq
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

n ´ ps ` qq ´ j `
β ` 1

2

˙β`α

equivalent, respectively, to

bm,s`p “
1

Γpβ ` α ` 1q

pm´pq´s
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

pm ´ pq ´ s ´ j `
β ` 1

2

˙β`α

and

bn,s`q “
1

Γpβ ` α ` 1q

pn´qq´s
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

pn ´ qq ´ s ´ j `
β ` 1

2

˙β`α

,

we arrive to the result.
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Furthermore, these coefficients obey

wm,p ě 0, p “ 0,1, . . . ,m ´ 1,m, wm,p`1 ě wm,p, p “ 0,1, . . . ,m ´ 2. (4.7)

We plot in Figure 4.1 wm,p for m “ 1000 and p “ 0,1, . . . ,m ´ 1 for β between 0 and 1 and for
α “ 0.1, 0.2, . . . , 0.9.

Fig. 4.1 Two different views of the coefficients wm,p defined in (3.11) for β between 0 and 1 and α

changing from 0.1 to 0.9.

We can simplify the formulation (4.5) and also improve the performance of the numerical method
if we define the coefficients as

qm,k “ wm,k ´ wm´1,k, k “ 0,1, . . . ,m ´ 1. (4.8)

Using the definition of wm,k, we arrive to the following.

Proposition 4.2. The coefficients qm,k (4.8) can be rewritten as

qm,k “

m´1
ÿ

p“k

pbm,p ´ bm´1,pqãp´k ` bm,mãm´k. (4.9)

For p “ 1, . . . ,m ´ 1,

bm,p ´ bm´1,p “
1

Γpβ ` α ` 1q

m´p
ÿ

j“0

p´1q j
ˆ

β ` 2
j

˙ˆ

m ´ p ´ j `
β ` 1

2

˙β`α

(4.10)

and, for p “ 0,
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bm,0 ´ bm´1,0 “
1

Γpβ ` α ` 1q

m
ÿ

j“0

p´1q j
ˆ

β ` 2
j

˙ˆ

m ´ j `
β ` 1

2

˙β`α

`
∆t´α´β

ΓpαqΓpβ ` 1q

ż t0

tb
pτ ´ tbqβ rptm´1 ´ τqα´1 ´ ptm ´ τqα´1sdτ

where tb “ t0 ´ ∆tpβ ` 1q{2.

Proof. From (4.8), using (4.6) is easy to obtain (4.9). Let us show how we arrived to the formula
(4.10). Using the definition of bm,k,

bm,p ´ bm´1,p “
1

Γpβ ` α ` 1q

m´p
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ p ´ j `
β ` 1

2

˙β`α

´
1

Γpβ ` α ` 1q

m´1´p
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ 1 ´ p ´ j `
β ` 1

2

˙β`α

that is equivalent to

bm,p ´ bm´1,p “
1

Γpβ ` α ` 1q

m´p
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ p ´ j `
β ` 1

2

˙β`α

`
1

Γpβ ` α ` 1q

m´1´p
ÿ

j“0

p´1q j`1
ˆ

β ` 1
j

˙ˆ

m ´ p ´ p j ` 1q `
β ` 1

2

˙β`α

.

Considering s “ j ` 1 in the second sum, we get

bm,p ´ bm´1,p “
1

Γpβ ` α ` 1q

m´p
ÿ

j“0

p´1q j
ˆ

β ` 1
j

˙ˆ

m ´ p ´ j `
β ` 1

2

˙β`α

`
1

Γpβ ` α ` 1q

m´p
ÿ

s“1

p´1qs
ˆ

β ` 1
s ´ 1

˙ˆ

m ´ p ´ s `
β ` 1

2

˙β`α

.

which can be written as

bm,p ´ bm´1,p “
1

Γpβ ` α ` 1q

m´p
ÿ

j“1

p´1q j
„ˆ

β ` 1
j

˙

`

ˆ

β ` 1
j ´ 1

˙ˆ

m ´ p ´ j `
β ` 1

2

˙β`α

`
1

Γpβ ` α ` 1q
p´1q0

ˆ

β ` 1
0

˙ˆ

m ´ p `
β ` 1

2

˙β`α

.

(4.11)
Note that, using Proposition 1.9,

ˆ

β ` 1
j

˙

`

ˆ

β ` 1
j ´ 1

˙

“

ˆ

β ` 2
j

˙

and as
ˆ

β ` 1
0

˙

“ 1 “

ˆ

β ` 2
0

˙

,
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we can rewrite (4.11) as follows

bm,p ´ bm´1,p “
1

Γpβ ` α ` 1q

m´p
ÿ

j“0

p´1q j
ˆ

β ` 2
j

˙ˆ

m ´ p ´ j `
β ` 1

2

˙β`α

.

For p “ 0, we use the same strategy applied to (3.8).

In the next lemma we present some properties satisfied by the coefficients of the quadrature
formula that approximate the fractional integral.

Lemma 4.3. For wm,p satisfying (4.7) and qm,p defined by (4.8) we have the following properties.

(a) ´1 ă qm,m´1 ă 1, qm,p ď 0, p “ 0,1, . . . ,m ´ 2.

(b) If qm,m´1 is negative or zero then
m´1
ÿ

k“0

|qm,k| ď wm,m.

(c) If qm,m´1 is positive then ´qm,m´1 `

m´2
ÿ

k“0

|qm,k| ď wm,m.

Proof. (a) We have that

qm,p “ wm,p ´ wm´1,p “ wm,p ´ wm,p`1 ď 0, p “ 1, . . . ,m ´ 2.

In particular we have that qm,0 “ wm,0 ´ wm,1 ď 0 since wm,1 ě wm,0.
The definition of qm,m´1 is

qm,m´1 “ pbm,m´1 ´ bm´1,m´1qã0 ` bm,mã1 (4.12)

Resorting to ã0 “ 1{a0 and ã1 “ ´a1{a2
0,

qm,m´1 “ pbm,m´1 ´ bm´1,m´1q
1
a0

´ bm,m
a1

a2
0

that is equivalent to

qm,m´1 “
Γpβ ` 1q

Γpβ ` α ` 1q

«

ˆ

1 `
β ` 1

2

˙β`α

´ pβ ` 2q

ˆ

β ` 1
2

˙β`α
ff

ˆ

β ` 1
2

˙´β

´
1

Γpβ ` α ` 1q

ˆ

β ` 1
2

˙β`α
Γpβ ` 1q2

Γpβ ` 1q

«

ˆ

1 `
β ` 1

2

˙β

´ pβ ` 1q

ˆ

β ` 1
2

˙β
ff

ˆ

β ` 1
2

˙´2β

,

which can be simplified to

qm,m´1 “
Γpβ ` 1q

Γpβ ` α ` 1q

ˆ

β ` 1
2

˙α
«

ˆ

1 `
2

β ` 1

˙β`α

´ 1 ´

ˆ

1 `
2

β ` 1

˙β
ff

.
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As 0 ă α ă 1 and 0 ă β ď 1, we conclude that ´1 ă qm,m´1 ă 1.

(b) Using (a), for p “ 0,1, . . . ,m ´ 1 we have qm,p ď 0, then |qm,p| “ ´qm,p. Furthermore, if
qm,m´1 is nonpositive, we have

m´1
ÿ

k“0

|qm,k| “ ´qm,0 ´ qm,1 ´ qm,2 ´ ¨¨ ¨ ´ qm,m´2 ´ qm,m´1.

As qm,k “ wm,k ´ wm´1,k “ wm,k ´ wm,k`1,

m´1
ÿ

k“0

|qm,k| “ ´

m´1
ÿ

p“0

pwm,p ´ wm,p`1q “ ´wm,0 ` wm,m ď wm,m.

Since wm,k ě 0, k “ 0,1, . . . ,m, we get

m´1
ÿ

k“0

|qm,k| “ ´wm,0 ` wm,m ď wm,m.

(c) Provided qm,m´1 ą 0,

´qm,m´1 `

m´2
ÿ

k“0

|qm,k| “ ´qm,0 ´ qm,1 ´ qm,2 ´ ¨¨ ¨ ´ qm,m´2 ´ qm,m´1

Following the same logic as before, we get

´qm,m´1 `

m´2
ÿ

k“0

|qm,k| ď wm,m.

To prove the stability of the method, consider em
j such that em

j “ Um
j ´ um

j , where um
j is the exact

solution of the discretized equation upx j, tmq and Um
j is the computed solution. Then, em

j satisfies

em
j ´ µαwm,mδ

2pdm` 1
2

j em
j q “ em´1

j ` µα

m´1
ÿ

k“0

qm,kδ
2pdm` 1

2
j ek

jq. (4.13)

We assume that dm` 1
2

j is locally constant and denote it by d [26]. That is, freezing the coefficients at
their value at a certain point, we apply the von Neumann method to obtain a local stability condition.

Theorem 4.4. Let 0 ă β ď 1, 0 ă α ă 1 and µα
d “ d∆tα{∆x2.

(a) Let α be such that qm,m´1 ď 0. The β -method (4.4) is unconditionally von Neumann stable.

(b) Let α be such that qm,m´1 ą 0. If µα
d ď 1{p4qm,m´1q then the β -method (4.4) is von Neumann

stable.
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Proof. We start this proof with a general approach and then we proceed according to the sign of
qm,m´1.

Following the von Neumann stability analysis [65, 70, 72], a numerical solution of (4.13) can be
decomposed into a Fourier series as

em
j “

M
ÿ

p“´M

κ
m
p eiξp j∆x,

where κp is the p-th harmonic and ξp∆x “ pπ{M, which is called the phase angle, covers the domain
r´π{πs in steps of π{M. The time evolution of the solution can determined by just one parcel κmei jφ .
Then, replacing em

j by κmei jφ , we get

κ
mei jφ ´ µ

α
d wm,mδ

2pκ
mei jφ q “ κ

m´1ei jφ ` µ
α
d

m´1
ÿ

k“0

qm,kδ
2pκ

kei jφ q. (4.14)

The purpose of the stability Fourier analysis is to prove that the amplification factor is less than one.
Following an idea presented in [89], we define κm “ Gκm´1, that means

|Gpφq| “

ˇ

ˇ

ˇ

ˇ

κm

κm´1

ˇ

ˇ

ˇ

ˇ

ď 1, for all φ .

Dividing (4.14) by κm´1, we obtain

κm

κm´1 ei jφ ´ µ
α
d wm,m

κm

κm´1 δ
2pei jφ q “ ei jφ ` µ

α
d

m´1
ÿ

k“0

qm,kδ
2pei jφ q

κk

κm´1 .

Applying κm´1 “ Gκm´2 iteratively, κm´1 “ G2κm´3 “ ¨¨ ¨ “ Gm´1´kκk. Then, we have

Gei jφ ´ µ
α
d wm,mGδ

2pei jφ q “ ei jφ ` µ
α
d

m´1
ÿ

k“0

qm,kδ
2pei jφ qGk´m`1.

Furthermore,

δ
2pei jφ q “ ei jφ `

e´iφ ` eiφ ´ 2
˘

“ 2ei jφ pcosφ ´ 1q “ ´4sin2pφ{2qei jφ .

Thus, considering s2 “ 4sin2pφ{2q, we can write

Gei jφ ` Gµ
α
d wm,ms2ei jφ “ ei jφ ´ µ

α
d

m´1
ÿ

k“0

qm,kei jφ s2Gk´m`1.

Dividing by ei jφ and multiplying by Gm´1 we have

Gmp1 ` µ
α
d wm,ms2q “ Gm´1 ´ µ

α
d

m´1
ÿ

k“0

qm,ks2Gk.
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Therefore we have the polynomial in G

p1 ` µ
α
d wm,ms2qGm ´ p1 ´ µ

α
d qm,m´1s2qGm´1 ` µ

α
d s2

m´2
ÿ

k“0

qm,kGk “ 0

or, equivalently,

Gm ´
1 ´ µα

d qm,m´1s2

1 ` µα
d wm,ms2 Gm´1 `

µα
d s2

1 ` µα
d wm,ms2

m´2
ÿ

k“0

qm,kGk “ 0. (4.15)

We want to prove that the solutions of (4.15) are less than 1. The roots G˚ of the polynomial verify
[49]

|G˚| ď max

#

1,

ˇ

ˇ1 ´ µα
d qm,m´1s2

ˇ

ˇ

1 ` µα
d wm,ms2 `

µα
d s2

1 ` µα
d wm,ms2

m´2
ÿ

k“0

|qm,k|

+

.

Let us analyze for which conditions the roots G˚ are less or equal to 1, this means, for which
parameters

1
1 ` µα

d wm,ms2

˜

ˇ

ˇ1 ´ µ
α
d qm,m´1s2ˇ

ˇ ` µ
α
d s2

m´2
ÿ

k“0

|qm,k|

¸

ď 1.

(a) If qm,m´1 is nonpositive , then

ˇ

ˇ1 ´ µ
α
d qm,m´1s2ˇ

ˇ “ 1 ´ µ
α
d qm,m´1s2 “ 1 ` µ

α
d p´qm,m´1qs2 “ 1 ` µ

α
d |qm,m´1|s2

and, consequently,

ˇ

ˇ1 ´ µ
α
d qm,m´1s2ˇ

ˇ ` µ
α
d s2

m´2
ÿ

k“0

|qm,k| “ 1 ` µ
α
d |qm,m´1|s2 ` µ

α
d s2

m´2
ÿ

k“0

|qm,k| “ 1 ` µ
α
d s2

m´1
ÿ

k“0

|qm,k|.

From Lemma 4.3(b),
m´1
ÿ

k“0

|qm,k| ď wm,m and therefore

1
1 ` µα

d wm,ms2

˜

ˇ

ˇ1 ´ µ
α
d qm,m´1s2ˇ

ˇ ` µ
α
d s2

m´2
ÿ

k“0

|qm,k|

¸

“
1

1 ` µα
d wm,ms2

˜

1 ` µ
α
d s2

m´1
ÿ

k“0

|qm,k|

¸

ď
1 ` µα

d s2wm,m

1 ` µα
d wm,ms2 “ 1.

Finally, we conclude |G˚| ď 1.

(b) For qm,m´1 positive,

ˇ

ˇ1 ´ µ
α
d qm,m´1s2ˇ

ˇ “ 1 ´ µ
α
d qm,m´1s2, if µα

d qm,m´1s2 ď 1.

As s2 “ 4sin2pφ{2q ď 4,

ˇ

ˇ1 ´ µ
α
d qm,m´1s2ˇ

ˇ “ 1 ´ µ
α
d qm,m´1s2, for µα

d qm,m´1 ď 1{4.
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Therefore

ˇ

ˇ1 ´ µ
α
d qm,m´1s2ˇ

ˇ ` µ
α
d s2

m´2
ÿ

k“0

|qm,k| “ 1 ` µ
α
d s2

˜

´qm,m´1 `

m´2
ÿ

k“0

|qm,k|

¸

,

and, as from Lemma 4.3 (c)

´qm,m´1 `

m´2
ÿ

k“0

|qm,k| ď wm,m,

we obtain

1 ` µ
α
d s2

˜

´qm,m´1 `

m´2
ÿ

k“0

|qm,k|

¸

ď 1 ` µ
α
d s2wm,m.

Hence, we arrive to |G˚| ď 1 provided µα
d ď 1{p4qm,m´1q.

Remark. We have that qm,m´1 “ 0 for α and β such that

ˆ

1 `
2

β ` 1

˙β`α

´ 1 ´

ˆ

1 `
2

β ` 1

˙β

“ 0. (4.16)

That is, for 0 ă β ď 1, qm,m´1 “ 0 for α such that

α “
logp1 ` p1 ` 2{pβ ` 1qq´β q

logp1 ` 2{pβ ` 1qq
,

and it is represented in Figure 4.2 in red. We also note that the condition on the statement of Theorem
4.4 (b) is not very restrictive since qm,m´1 ă 1. Actually, observing Figure 4.2, the greater qm,m´1 is
near 0.5.

Fig. 4.2 Value of qm,m´1, with α and β between 0 and 1. Red line represents qm,m´1 “ 0.

4.2.3 Numerical experiments

In this section we compute the numerical solutions of equation (4.1) in the domain ra,bs ˆ r0,T s. As
before, we consider a uniform mesh in space and time, that is, x j “ a ` j∆x, for j “ 0, . . . ,N, with
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xN “ b and tm “ tm´1 ` ∆t, m “ 0, . . . ,M, with tM “ T . To discuss the accuracy of the approximation,
we define two types of error that take in consideration the discrete L8 norm in time and the discrete
L2 norm in time discussed in the previous chapter.

We define the error, related to the discrete L8 norm in time, as

E8 “ max
m“1,...,M

˜

∆x
N´1
ÿ

j“1

´

Um
j ´ upx j, tmq

¯2
¸

1
2

(4.17)

and the error related to the discrete L2 norm in time as

E2 “

˜

∆t∆x
M
ÿ

m“1

N´1
ÿ

j“1

´

Um
j ´ upx j, tmq

¯2
¸

1
2

. (4.18)

The value Um
j is the numerical approximation of the exact solution upx j, tmq. The test problems we

consider in what follows are similar to the ones presented in [43, 63]. For all problems, the rate of
convergence of the numerical method are denoted respectively by R8 and R2, with respect to the two
norms.

Problem 1. Let ra,bs “ r0,2s, T “ 1 and dpx, tq “ x. The source term gpx, tq and the initial
condition u0pxq are defined such that the exact solution of the problem is upx, tq “ t2`αx4p2 ´ xq4.

The regularity of the solution is C2pr0,T sq in time. Furthermore, note that u belongs to Hβ`1pr0,T sq.

Despite our focus being on the convergence in time, for this problem we illustrate the rate of
convergence in space in Tables 4.1 and 4.2 with respect to the two norms for different values of β

and α “ 0.2 and α “ 0.8. As expected, the numerical method is second accurate in space. For other
values of α we obtain similar results. We also note that the linear spline, β “ 1, is not necessarily the
one that performs better considering the magnitude of the error.

The order of convergence in time is shown in Table 4.3 and Table 4.4, α “ 0.2 and α “ 0.8,
respectively. Regarding both errors, we obtain 1 ` β as expected. The solution seems to be regular
enough near t “ 0, to the order of convergence is not be affected by the behaviour of the solution near
this point. In the next example we decrease the regularity of the solution and discuss if and how it
affects the order of convergence.

Problem 2. Let ra,bs “ r0,2s, T “ 1 and now dpx, tq “ 1. Once again, the source term gpx, tq
and the initial condition u0pxq are defined such that the exact solution of this problem is given by
upx, tq “ t1`α4x2p2´xq2. The regularity of the solution in time is C1pr0,T sq, which is lower compared
to the previous problem. Furthermore, there may exist some value of α for which u R Hβ`1p0,T q.

We display the order of convergence in time for a small ∆x, from Table 4.5 to Table 4.8 for
α “ 0.2,0.4,0.6,0.8, respectively. From the error bounds discussed in the previous chapters, the order
of convergence, regarding the error E8, would be of mint1 ` β ,1 ` 2αu and, regarding the error E2,
is expected to be mint1 ` β ,3{2 ` 2αu. For α “ 0.2, mint1 ` β ,1 ` 2αu is 1.2 for β “ 0.2 and 1.4
for the other values of β and mint1 ` β ,3{2 ` 2αu “ 1 ` β except for β “ 1, for which the minimum
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Table 4.1 Results concerning Problem 1. Convergence rate (R8 and R2) in space for different values
of β with α=0.2 and ∆t “ 1{5000, for the errors (4.17) and (4.18), respectively.

∆x β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 1.007e-02 1.008e-02 1.008e-02 1.008e-02 1.008e-02
2´4 2.487e-03 2.02 2.488e-03 2.02 2.488e-03 2.02 2.488e-03 2.02 2.488e-03 2.02
2´5 6.195e-04 2.01 6.200e-04 2.00 6.202e-04 2.00 6.202e-04 2.00 6.203e-04 2.00
2´6 1.542e-04 2.01 1.547e-04 2.00 1.549e-04 2.00 1.550e-04 2.00 1.550e-04 2.00
2´7 3.795e-05 2.02 3.851e-05 2.01 3.869e-05 2.00 3.873e-05 2.00 3.874e-05 2.00
2´8 8.967e-06 2.08 9.455e-06 2.03 9.633e-06 2.01 9.671e-06 2.00 9.684e-06 2.00
2´9 2.048e-06 2.13 2.215e-06 2.09 2.370e-06 2.02 2.407e-06 2.01 2.420e-06 2.00

R2 R2 R2 R2 R2

2´3 4.319e-03 4.319e-03 4.319e-03 4.319e-03 4.319e-03
2´4 1.066e-03 2.02 1.067e-03 2.02 1.067e-03 2.02 1.067e-03 2.02 1.067e-03 2.02
2´5 2.655e-04 2.01 2.658e-04 2.00 2.659e-04 2.00 2.659e-04 2.00 2.660e-04 2.00
2´6 6.601e-05 2.01 6.632e-05 2.00 6.642e-05 2.00 6.644e-05 2.00 6.645e-05 2.00
2´7 1.618e-05 2.03 1.648e-05 2.01 1.658e-05 2.00 1.660e-05 2.00 1.661e-05 2.00
2´8 3.776e-06 2.10 4.022e-06 2.03 4.120e-06 2.01 4.144e-06 2.00 4.152e-06 2.00
2´9 9.399e-07 2.01 9.298e-07 2.11 1.006e-06 2.03 1.030e-06 2.01 1.037e-06 2.00

Table 4.2 Results concerning Problem 1. Convergence rate (R8 and R2) in space for different values
of β with α=0.8 and ∆t “ 1{5000, for the errors (4.17) and (4.18), respectively.

∆x β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 9.147e-03 9.148e-03 9.148e-03 9.148e-03 9.148e-03
2´4 2.265e-03 2.01 2.266e-03 2.01 2.266e-03 2.01 2.266e-03 2.01 2.266e-03 2.01
2´5 5.647e-04 2.00 5.653e-04 2.00 5.656e-04 2.00 5.656e-04 2.00 5.657e-04 2.00
2´6 1.404e-04 2.01 1.411e-04 2.00 1.413e-04 2.00 1.414e-04 2.00 1.414e-04 2.00
2´7 3.441e-05 2.03 3.501e-05 2.01 3.526e-05 2.00 3.533e-05 2.00 3.535e-05 2.00
2´8 7.975e-06 2.11 8.499e-06 2.04 8.747e-06 2.01 8.816e-06 2.00 8.835e-06 2.00
2´9 1.801e-06 2.15 1.919e-06 2.15 2.120e-06 2.04 2.186e-06 2.01 2.205e-06 2.00

R2 R2 R2 R2 R2

2´3 3.486e-03 3.486e-03 3.486e-03 3.486e-03 3.486e-03
2´4 8.637e-04 2.01 8.640e-04 2.01 8.641e-04 2.01 8.642e-04 2.01 8.642e-04 2.01
2´5 2.153e-04 2.00 2.156e-04 2.00 2.157e-04 2.00 2.157e-04 2.00 2.157e-04 2.00
2´6 5.349e-05 2.01 5.377e-05 2.00 5.389e-05 2.00 5.393e-05 2.00 5.393e-05 2.00
2´7 1.305e-05 2.04 1.332e-05 2.01 1.344e-05 2.00 1.348e-05 2.00 1.348e-05 2.00
2´8 2.982e-06 2.13 3.210e-06 2.05 3.325e-06 2.02 3.360e-06 2.00 3.370e-06 2.00
2´9 7.217e-07 2.05 7.129e-07 2.17 7.981e-07 2.06 8.308e-07 2.02 8.403e-07 2.00

is 1.9. We are getting an order of 1.3 for the E8 and for the E2 norm when β “ 1, we observe the
order approaching 1.8 instead of 1.9, although these values are still very near to the expected order.
Considering α “ 0.4, for the error E2 we have mint1 ` β ,1 ` 2αu “ 1 ` β for β “ 0.2,0.4,0.6,0.8
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Table 4.3 Results concerning Problem 1. Convergence rate (R8 and R2) in time for different values of
β with α=0.2 and ∆x “ 1{5000, for the errors (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 4.632e-03 3.471e-03 2.566e-03 1.855e-03 1.302e-03
2´4 1.889e-03 1.29 1.313e-03 1.40 8.791e-04 1.55 5.660e-04 1.71 3.498e-04 1.90
2´5 7.803e-04 1.28 4.994e-04 1.39 3.001e-04 1.55 1.710e-04 1.73 9.271e-05 1.92
2´6 3.256e-04 1.26 1.904e-04 1.39 1.021e-04 1.56 5.126e-05 1.74 2.432e-05 1.93
2´7 1.369e-04 1.25 7.266e-05 1.39 3.457e-05 1.56 1.525e-05 1.75 6.320e-06 1.94
2´8 5.784e-05 1.24 2.772e-05 1.39 1.166e-05 1.57 4.507e-06 1.76 1.624e-06 1.96
2´9 2.454e-05 1.24 1.057e-05 1.39 3.914e-06 1.57 1.319e-06 1.77 4.088e-07 1.99

R2 R2 R2 R2 R2

2´3 2.988e-03 2.308e-03 1.781e-03 1.364e-03 1.034e-03
2´4 1.160e-03 1.36 8.361e-04 1.46 5.896e-04 1.60 4.067e-04 1.75 2.747e-04 1.91
2´5 4.661e-04 1.32 3.108e-04 1.43 1.981e-04 1.57 1.218e-04 1.74 7.276e-05 1.92
2´6 1.914e-04 1.28 1.171e-04 1.41 6.689e-05 1.57 3.643e-05 1.74 1.915e-05 1.93
2´7 7.972e-05 1.26 4.443e-05 1.40 2.260e-05 1.57 1.086e-05 1.75 5.005e-06 1.94
2´8 3.350e-05 1.25 1.691e-05 1.39 7.626e-06 1.57 3.218e-06 1.75 1.297e-06 1.95
2´9 1.416e-05 1.24 6.438e-06 1.39 2.564e-06 1.57 9.473e-07 1.76 3.318e-07 1.97

Table 4.4 Results concerning Problem 1. Convergence rate (R8 and R2) in time for different values of
β with α=0.8 and ∆x “ 1{5000, for the errors (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 6.421e-03 6.282e-03 5.573e-03 4.661e-03 3.734e-03
2´4 2.257e-03 1.51 2.156e-03 1.54 1.759e-03 1.66 1.321e-03 1.82 9.381e-04 1.99
2´5 8.544e-04 1.40 7.706e-04 1.48 5.661e-04 1.64 3.766e-04 1.81 2.351e-04 2.00
2´6 3.413e-04 1.32 2.824e-04 1.45 1.842e-04 1.62 1.077e-04 1.81 5.887e-05 2.00
2´7 1.413e-04 1.27 1.050e-04 1.43 6.030e-05 1.61 3.087e-05 1.80 1.472e-05 2.00
2´8 5.974e-05 1.24 3.938e-05 1.42 1.980e-05 1.61 8.846e-06 1.80 3.673e-06 2.00
2´9 2.558e-05 1.22 1.483e-05 1.41 6.509e-06 1.61 2.530e-06 1.81 9.092e-07 2.01

R2 R2 R2 R2 R2

2´3 3.690e-03 3.610e-03 3.265e-03 2.815e-03 2.348e-03
2´4 1.194e-03 1.63 1.151e-03 1.65 9.677e-04 1.75 7.572e-04 1.89 5.658e-04 2.05
2´5 4.278e-04 1.48 3.940e-04 1.55 3.008e-04 1.69 2.100e-04 1.85 1.388e-04 2.03
2´6 1.653e-04 1.37 1.410e-04 1.48 9.607e-05 1.65 5.921e-05 1.83 3.437e-05 2.01
2´7 6.709e-05 1.30 5.176e-05 1.45 3.115e-05 1.62 1.684e-05 1.81 8.551e-06 2.01
2´8 2.806e-05 1.26 1.927e-05 1.42 1.018e-05 1.61 4.810e-06 1.81 2.130e-06 2.01
2´9 1.194e-05 1.23 7.233e-06 1.41 3.339e-06 1.61 1.374e-06 1.81 5.285e-07 2.01

and 1.8 for β “ 1. For the error E8, we have that mint1 ` β ,3{2 ` 2αu is 1 ` β . From observing
the Table 4.6, the results are closer to the expected compared to α “ 0.2. Furthermore note that the
results for E8 are more tuned with the theoretical ones. For α “ 0.6 and α “ 0.8, for both errors the
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Table 4.5 Results concerning Problem 2. Convergence rate (R8 and R2) in time for different values of
β with α=0.2 and ∆x “ 1{5000, for the error (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 9.234e-03 7.390e-03 6.012e-03 4.944e-03 4.093e-03
2´4 3.806e-03 1.28 3.045e-03 1.28 2.476e-03 1.28 2.036e-03 1.28 1.685e-03 1.28
2´5 1.562e-03 1.28 1.249e-03 1.29 1.016e-03 1.29 8.349e-04 1.29 6.910e-04 1.29
2´6 6.477e-04 1.27 5.103e-04 1.29 4.148e-04 1.29 3.409e-04 1.29 2.821e-04 1.29
2´7 2.749e-04 1.24 2.076e-04 1.30 1.687e-04 1.30 1.387e-04 1.30 1.147e-04 1.30
2´8 1.169e-04 1.23 8.412e-05 1.30 6.835e-05 1.30 5.616e-05 1.30 4.646e-05 1.30
2´9 4.984e-05 1.23 3.396e-05 1.31 2.758e-05 1.31 2.266e-05 1.31 1.874e-05 1.31

R2 R2 R2 R2 R2

2´3 8.709e-03 6.245e-03 4.362e-03 2.938e-03 1.910e-03
2´4 3.627e-03 1.26 2.452e-03 1.35 1.586e-03 1.46 9.830e-04 1.58 5.911e-04 1.69
2´5 1.520e-03 1.26 9.566e-04 1.36 5.669e-04 1.48 3.223e-04 1.61 1.801e-04 1.71
2´6 6.395e-04 1.25 3.710e-04 1.37 1.998e-04 1.50 1.039e-04 1.63 5.421e-05 1.73
2´7 2.701e-04 1.24 1.431e-04 1.37 6.957e-05 1.52 3.301e-05 1.65 1.615e-05 1.75
2´8 1.145e-04 1.24 5.499e-05 1.38 2.398e-05 1.54 1.035e-05 1.67 4.769e-06 1.76
2´9 4.863e-05 1.24 2.105e-05 1.39 8.185e-06 1.55 3.207e-06 1.69 1.394e-06 1.77

Table 4.6 Results concerning Problem 2. Convergence rate (R8 and R2) in time for different values of
β with α=0.4 and ∆x “ 1{5000, for the errors (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 1.220e-02 9.776e-03 8.817e-03 8.067e-03 7.465e-03
2´4 4.811e-03 1.34 3.482e-03 1.49 2.887e-03 1.61 2.640e-03 1.61 2.442e-03 1.61
2´5 1.939e-03 1.31 1.297e-03 1.43 9.314e-04 1.63 8.515e-04 1.63 7.874e-04 1.63
2´6 7.944e-04 1.29 4.849e-04 1.42 2.969e-04 1.65 2.713e-04 1.65 2.509e-04 1.65
2´7 3.299e-04 1.27 1.819e-04 1.41 9.374e-05 1.66 8.565e-05 1.66 7.917e-05 1.66
2´8 1.384e-04 1.25 6.836e-05 1.41 3.081e-05 1.61 2.684e-05 1.67 2.481e-05 1.67
2´9 5.851e-05 1.24 2.569e-05 1.41 1.023e-05 1.59 8.370e-06 1.68 7.735e-06 1.68

R2 R2 R2 R2 R2

2´3 1.139e-02 9.218e-03 7.153e-03 5.391e-03 4.016e-03
2´4 4.282e-03 1.41 3.302e-03 1.48 2.355e-03 1.60 1.608e-03 1.75 1.085e-03 1.89
2´5 1.665e-03 1.36 1.206e-03 1.45 7.793e-04 1.60 4.769e-04 1.75 2.894e-04 1.91
2´6 6.652e-04 1.32 4.456e-04 1.44 2.582e-04 1.59 1.406e-04 1.76 7.643e-05 1.92
2´7 2.712e-04 1.29 1.659e-04 1.43 8.548e-05 1.59 4.120e-05 1.77 1.999e-05 1.93
2´8 1.123e-04 1.27 6.207e-05 1.42 2.827e-05 1.60 1.200e-05 1.78 5.175e-06 1.95
2´9 4.701e-05 1.26 2.328e-05 1.41 9.322e-06 1.60 3.467e-06 1.79 1.320e-06 1.97

theoretical results point to an order of convergence of β ` 1, as illustrated in Tables 4.7 and 4.8. Note
that, when the order of convergence is supposed to be β ` 1, the numerical experiments are more in
agreement with the theoretical results.
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Table 4.7 Results concerning Problem 2. Convergence rate (R8 and R2) in time for different values of
β with α=0.6 and ∆x “ 1{5000, for the errors (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 1.378e-02 1.210e-02 9.312e-03 7.383e-03 7.117e-03
2´4 5.265e-03 1.39 4.384e-03 1.46 3.041e-03 1.61 1.954e-03 1.92 1.803e-03 1.98
2´5 2.095e-03 1.33 1.616e-03 1.44 9.971e-04 1.61 5.633e-04 1.79 4.484e-04 2.01
2´6 8.584e-04 1.29 6.014e-04 1.43 3.277e-04 1.61 1.622e-04 1.80 1.102e-04 2.02
2´7 3.589e-04 1.26 2.253e-04 1.42 1.078e-04 1.60 4.669e-05 1.80 2.685e-05 2.04
2´8 1.520e-04 1.24 8.468e-05 1.41 3.544e-05 1.60 1.342e-05 1.80 6.789e-06 1.98
2´9 6.498e-05 1.23 3.188e-05 1.41 1.161e-05 1.61 3.846e-06 1.80 1.716e-06 1.98

R2 R2 R2 R2 R2

2´3 1.150e-02 1.030e-02 8.548e-03 6.771e-03 5.225e-03
2´4 4.081e-03 1.49 3.531e-03 1.54 2.689e-03 1.67 1.913e-03 1.82 1.314e-03 1.99
2´5 1.543e-03 1.40 1.260e-03 1.49 8.649e-04 1.64 5.463e-04 1.81 3.311e-04 1.99
2´6 6.113e-04 1.34 4.602e-04 1.45 2.815e-04 1.62 1.567e-04 1.80 8.339e-05 1.99
2´7 2.501e-04 1.29 1.706e-04 1.43 9.213e-05 1.61 4.498e-05 1.80 2.096e-05 1.99
2´8 1.046e-04 1.26 6.373e-05 1.42 3.023e-05 1.61 1.290e-05 1.80 5.242e-06 2.00
2´9 4.432e-05 1.24 2.392e-05 1.41 9.923e-06 1.61 3.683e-06 1.81 1.294e-06 2.02

Table 4.8 Results concerning Problem 2. Convergence rate (R8 and R2) in time for different values of
β with α=0.8 and ∆x “ 1{5000, for the error (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 1.473e-02 1.433e-02 1.191e-02 8.999e-03 6.374e-03
2´4 5.567e-03 1.40 5.150e-03 1.48 3.858e-03 1.63 2.575e-03 1.81 1.593e-03 2.00
2´5 2.223e-03 1.32 1.894e-03 1.44 1.260e-03 1.61 7.381e-04 1.80 3.986e-04 2.00
2´6 9.198e-04 1.27 7.061e-04 1.42 4.135e-04 1.61 2.117e-04 1.80 9.970e-05 2.00
2´7 3.889e-04 1.24 2.651e-04 1.41 1.360e-04 1.60 6.072e-05 1.80 2.491e-05 2.00
2´8 1.665e-04 1.22 9.989e-05 1.41 4.472e-05 1.60 1.737e-05 1.81 6.206e-06 2.01
2´9 7.176e-05 1.21 3.770e-05 1.41 1.468e-05 1.61 4.932e-06 1.82 1.532e-06 2.02

R2 R2 R2 R2 R2

2´3 1.089e-02 1.065e-02 9.333e-03 7.683e-03 6.080e-03
2´4 3.770e-03 1.53 3.586e-03 1.57 2.882e-03 1.70 2.128e-03 1.85 1.493e-03 2.03
2´5 1.423e-03 1.41 1.272e-03 1.50 9.182e-04 1.65 6.003e-04 1.83 3.704e-04 2.01
2´6 5.692e-04 1.32 4.647e-04 1.45 2.974e-04 1.63 1.709e-04 1.81 9.229e-05 2.00
2´7 2.361e-04 1.27 1.726e-04 1.43 9.716e-05 1.61 4.884e-05 1.81 2.303e-05 2.00
2´8 1.000e-04 1.24 6.468e-05 1.42 3.187e-05 1.61 1.397e-05 1.81 5.734e-06 2.01
2´9 4.286e-05 1.22 2.435e-05 1.41 1.046e-05 1.61 3.988e-06 1.81 1.413e-06 2.02

Problem 3. In this example we further reduce the regularity of the solution in time. We consider
ra,bs “ r0,πs, T “ 1 and dpx, tq “ 1. The source term gpx, tq and the initial condition u0pxq are
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defined such that the exact solution of this problem is given by

upx, tq “

˜

1 `
tα

Γp1 ` αq

¸

sinpxq.

The regularity of the solution is only Cr0,T s in time, since ut “ Optα´1q.

We display the numerical results from Table 4.9 to Table 4.12 for α “ 0.2,0.4,0.6,0.8. For the
E8 error we obtain, in general, the expected order of convergence α . However, for the E2 error, we
obtain a smaller order of convergence than the expected α ` 0.5, where greater values of β display
better results in refined meshes. To better illustrate the rate of accuracy, we have introduced additional
time steps in the tables of this example.

Table 4.9 Results concerning Problem 3. Convergence rate (R8 and R2) in time for different values of
β with α=0.2 and ∆x “ π{2500, for the errors (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 1.720e-02 2.281e-02 3.093e-02 4.243e-02 5.789e-02
2´4 1.137e-02 0.60 1.606e-02 0.51 2.316e-02 0.42 3.343e-02 0.34 4.737e-02 0.29
2´5 6.891e-03 0.72 1.081e-02 0.57 1.702e-02 0.44 2.617e-02 0.35 3.871e-02 0.29
2´6 4.798e-03 0.52 6.795e-03 0.67 1.222e-02 0.48 2.036e-02 0.36 3.161e-02 0.29
2´7 4.891e-03 -0.03 4.975e-03 0.45 8.509e-03 0.52 1.574e-02 0.37 2.580e-02 0.29
2´8 4.874e-03 0.01 4.855e-03 0.04 5.673e-03 0.58 1.209e-02 0.38 2.107e-02 0.29
2´9 4.910e-03 -0.01 4.717e-03 0.04 3.537e-03 0.68 9.220e-03 0.39 1.722e-02 0.29
2´10 4.825e-03 0.03 4.538e-03 0.06 3.321e-03 0.09 6.979e-03 0.40 1.409e-02 0.29
2´11 4.650e-03 0.05 4.352e-03 0.06 3.124e-03 0.09 5.240e-03 0.41 1.154e-02 0.29
2´12 4.412e-03 0.08 4.146e-03 0.07 2.927e-03 0.09 3.898e-03 0.43 9.476e-03 0.28
2´13 4.134e-03 0.09 3.898e-03 0.09 2.728e-03 0.10 2.869e-03 0.44 7.798e-03 0.28
2´14 3.833e-03 0.11 3.624e-03 0.11 2.535e-03 0.11 2.086e-03 0.46 6.434e-03 0.28

R2 R2 R2 R2 R2

2´3 6.384e-03 8.331e-03 1.102e-02 1.537e-02 2.177e-02
2´4 4.024e-03 0.67 5.093e-03 0.71 6.167e-03 0.84 8.568e-03 0.84 1.276e-02 0.77
2´5 3.245e-03 0.31 3.929e-03 0.37 3.993e-03 0.63 4.849e-03 0.82 7.433e-03 0.78
2´6 2.850e-03 0.19 3.436e-03 0.19 3.132e-03 0.35 2.941e-03 0.72 4.315e-03 0.78
2´7 2.500e-03 0.19 3.064e-03 0.17 2.716e-03 0.21 2.029e-03 0.54 2.501e-03 0.79
2´8 2.164e-03 0.21 2.707e-03 0.18 2.407e-03 0.17 1.594e-03 0.35 1.449e-03 0.79
2´9 1.859e-03 0.22 2.369e-03 0.19 2.126e-03 0.18 1.346e-03 0.24 8.390e-04 0.79
2´10 1.594e-03 0.22 2.062e-03 0.20 1.865e-03 0.19 1.168e-03 0.20 4.862e-04 0.79
2´11 1.368e-03 0.22 1.790e-03 0.20 1.629e-03 0.20 1.019e-03 0.20 2.820e-04 0.79
2´12 1.178e-03 0.22 1.553e-03 0.20 1.420e-03 0.20 8.897e-04 0.20 1.638e-04 0.78
2´13 1.017e-03 0.21 1.349e-03 0.20 1.236e-03 0.20 7.760e-04 0.20 9.534e-05 0.78
2´14 8.808e-04 0.21 1.172e-03 0.20 1.075e-03 0.20 6.761e-04 0.20 5.561e-05 0.78

We note that the fractional splines that perform better for larger time steps, regarding the size of
the error, are the splines of degree β , with β closer to α as illustrated in Tables 4.9–4.12. For α “ 0.2,
the spline of degree β “ 0.2 presents the smallest error and for α “ 0.4, are the splines of degree
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Table 4.10 Results concerning Problem 3. Convergence rate (R8 and R2) in time for different values
of β with α=0.4 and ∆x “ π{2500, for the errors (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 1.027e-02 6.519e-03 1.320e-02 2.645e-02 4.258e-02
2´4 1.036e-02 -0.01 7.094e-03 -0.12 5.444e-03 1.28 1.589e-02 0.74 2.870e-02 0.57
2´5 1.050e-02 -0.02 6.972e-03 0.02 3.159e-03 0.79 9.353e-03 0.76 1.945e-02 0.56
2´6 9.915e-03 0.08 6.393e-03 0.13 3.228e-03 -0.03 5.393e-03 0.79 1.329e-02 0.55
2´7 8.727e-03 0.18 5.740e-03 0.16 3.058e-03 0.08 3.038e-03 0.83 9.175e-03 0.53
2´8 7.353e-03 0.25 5.086e-03 0.17 2.714e-03 0.17 1.664e-03 0.87 6.407e-03 0.52
2´9 6.018e-03 0.29 4.297e-03 0.24 2.306e-03 0.24 8.770e-04 0.92 4.528e-03 0.50
2´10 4.826e-03 0.32 3.520e-03 0.29 1.901e-03 0.28 6.432e-04 0.45 3.236e-03 0.48
2´11 3.814e-03 0.34 2.823e-03 0.32 1.534e-03 0.31 5.367e-04 0.26 2.337e-03 0.47
2´12 2.982e-03 0.35 2.231e-03 0.34 1.230e-03 0.32 4.376e-04 0.29 1.704e-03 0.46
2´13 2.314e-03 0.37 1.744e-03 0.36 9.831e-04 0.32 3.512e-04 0.32 1.252e-03 0.44
2´14 1.785e-03 0.37 1.353e-03 0.37 7.746e-04 0.34 2.778e-04 0.34 9.258e-04 0.44

R2 R2 R2 R2 R2

2´3 5.945e-03 3.865e-03 4.826e-03 9.665e-03 1.630e-02
2´4 5.375e-03 0.15 3.692e-03 0.07 2.260e-03 1.09 4.091e-03 1.24 7.947e-03 1.04
2´5 4.074e-03 0.40 3.064e-03 0.27 1.761e-03 0.36 1.758e-03 1.22 3.866e-03 1.04
2´6 2.833e-03 0.52 2.283e-03 0.42 1.447e-03 0.28 8.916e-04 0.98 1.885e-03 1.04
2´7 1.881e-03 0.59 1.606e-03 0.51 1.110e-03 0.38 5.859e-04 0.61 9.246e-04 1.03
2´8 1.219e-03 0.63 1.099e-03 0.55 8.139e-04 0.45 4.348e-04 0.43 4.572e-04 1.02
2´9 7.821e-04 0.64 7.463e-04 0.56 5.842e-04 0.48 3.272e-04 0.41 2.282e-04 1.00
2´10 5.035e-04 0.64 5.093e-04 0.55 4.174e-04 0.49 2.442e-04 0.42 1.150e-04 0.99
2´11 3.284e-04 0.62 3.522e-04 0.53 2.997e-04 0.48 1.813e-04 0.43 5.854e-05 0.97
2´12 2.187e-04 0.59 2.479e-04 0.51 2.171e-04 0.46 1.345e-04 0.43 3.007e-05 0.96
2´13 1.494e-04 0.55 1.775e-04 0.48 1.589e-04 0.45 1.000e-04 0.43 1.557e-05 0.95
2´14 1.046e-04 0.51 1.292e-04 0.46 1.174e-04 0.44 7.468e-05 0.42 8.120e-06 0.94

β “ 0.4 and β “ 0.6. Similarly, for α “ 0.6 the splines that lead to smaller errors for larger time steps
are for β “ 0.6 and β “ 0.8 and for α “ 0.8 are the splines of degree β “ 0.8 and β “ 1.

Overall, the errors in this example have a less regular behaviour when compared with the previous
examples, as presented in Tables 4.9 and 4.10 for α “ 0.2 and α “ 0.4. In Table 4.9, although we
observe for α “ 0.2 and β “ 0.2 some oscillations in the error E8, it becomes smaller as we refine
the time step. Still for α,β “ 0.2, at the beginning the rates of convergence R2 and R8 are higher
than expected but then slow down and stabilize. This last aspect can also be observed in Table 4.10
for β “ 0.6 and β “ 0.8.

Regarding the stability of the numerical method, when running the experiments we observed that
the method converges even when the stability condition presented in Theorem 4.4 (b) is not satisfied.
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Table 4.11 Results concerning Problem 3. Convergence rate (R8 and R2) in time for different values
of β with α=0.6 and ∆x “ π{2500, for the errors (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 2.634e-02 1.704e-02 7.312e-03 6.280e-03 2.092e-02
2´4 2.041e-02 0.37 1.410e-02 0.27 6.725e-03 0.12 1.941e-03 1.69 1.208e-02 0.79
2´5 1.493e-02 0.45 1.068e-02 0.40 5.678e-03 0.24 1.347e-03 0.53 7.141e-03 0.76
2´6 1.053e-02 0.50 7.685e-03 0.47 4.325e-03 0.39 1.183e-03 0.19 4.325e-03 0.72
2´7 7.260e-03 0.54 5.364e-03 0.52 3.118e-03 0.47 9.282e-04 0.35 2.678e-03 0.69
2´8 4.930e-03 0.56 3.670e-03 0.55 2.176e-03 0.52 6.832e-04 0.44 1.688e-03 0.67
2´9 3.315e-03 0.57 2.480e-03 0.57 1.488e-03 0.55 4.836e-04 0.50 1.078e-03 0.65
2´10 2.215e-03 0.58 1.662e-03 0.58 1.005e-03 0.57 3.340e-04 0.53 6.958e-04 0.63
2´11 1.473e-03 0.59 1.108e-03 0.59 6.734e-04 0.58 2.270e-04 0.56 4.523e-04 0.62
2´12 9.772e-04 0.59 7.360e-04 0.59 4.488e-04 0.59 1.527e-04 0.57 2.954e-04 0.61
2´13 6.470e-04 0.59 4.877e-04 0.59 2.980e-04 0.59 1.021e-04 0.58 1.936e-04 0.61
2´14 4.279e-04 0.60 3.227e-04 0.60 1.975e-04 0.59 6.791e-05 0.59 1.272e-04 0.61
2´15 2.828e-04 0.60 2.133e-04 0.60 1.307e-04 0.60 4.505e-05 0.59 8.364e-05 0.60

R2 R2 R2 R2 R2

2´3 1.363e-02 9.419e-03 4.478e-03 2.259e-03 8.309e-03
2´4 8.665e-03 0.65 6.290e-03 0.58 3.481e-03 0.36 9.125e-04 1.31 3.502e-03 1.25
2´5 5.152e-03 0.75 3.840e-03 0.71 2.299e-03 0.60 7.299e-04 0.32 1.488e-03 1.24
2´6 2.938e-03 0.81 2.229e-03 0.78 1.402e-03 0.71 5.385e-04 0.44 6.405e-04 1.22
2´7 1.630e-03 0.88 1.254e-03 0.83 8.186e-04 0.78 3.547e-04 0.60 2.800e-04 1.19
2´8 8.880e-04 0.88 6.931e-04 0.86 4.660e-04 0.81 2.192e-04 0.69 1.243e-04 1.17
2´9 4.781e-04 0.89 3.790e-04 0.87 2.619e-04 0.83 1.309e-04 0.74 5.591e-05 1.15
2´10 2.556e-04 0.90 2.063e-04 0.88 1.465e-04 0.84 7.693e-05 0.77 2.541e-05 1.13
2´11 1.362e-04 0.91 1.124e-04 0.88 8.214e-05 0.84 4.498e-05 0.77 1.164e-05 1.13
2´12 7.257e-05 0.91 6.154e-05 0.87 4.639e-05 0.82 2.638e-05 0.77 5.365e-06 1.12
2´13 3.882e-05 0.90 3.403e-05 0.85 2.649e-05 0.81 1.560e-05 0.76 2.483e-06 1.11
2´14 2.092e-05 0.89 1.906e-05 0.84 1.534e-05 0.79 9.341e-06 0.74 1.153e-06 1.11
2´15 1.139e-05 0.88 1.087e-05 0.81 8.934e-06 0.78 5.709e-06 0.71 5.526e-07 1.06

4.3 Numerical method using splines of degree 1 ă β ď 2

In the next sections, we construct a numerical method based on finite differences and on the integral
approximation using splines of degree 1 ă β ď 2 obtained in Section 3.1.2. This approach presented
more challenges than we anticipated. The analysis regarding the stability and consistency of the
method has hard details and we have decided to leave it as an open problem. However, since we find it
an interesting approach, we describe the numerical method and present some numerical experiments
that illustrates its order of convergence.

4.3.1 Finite differences method

We construct the numerical method that intends to obtain an approximate solution for (4.1), but now
using splines of degree 1 ă β ď 2 and for a constant diffusion coefficient dpx, tq :“ d. Following the
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Table 4.12 Results concerning Problem 3. Convergence rate (R8 and R2) in time for different values
of β with α=0.8 and ∆x “ π{2500, for the errors (4.17) and (4.18), respectively.

∆t β “ 0.2 R8 β “ 0.4 R8 β “ 0.6 R8 β “ 0.8 R8 β “ 1 R8

2´3 3.293e-02 2.471e-02 1.541e-02 4.822e-03 7.197e-03
2´4 2.024e-02 0.70 1.536e-02 0.69 9.804e-03 0.65 3.479e-03 0.47 3.711e-03 0.96
2´5 1.210e-02 0.74 9.231e-03 0.73 5.969e-03 0.72 2.249e-03 0.63 1.981e-03 0.91
2´6 7.110e-03 0.77 5.443e-03 0.76 3.545e-03 0.75 1.378e-03 0.71 1.086e-03 0.87
2´7 4.139e-03 0.78 3.174e-03 0.78 2.075e-03 0.77 8.208e-04 0.75 6.066e-04 0.84
2´8 2.395e-03 0.79 1.839e-03 0.79 1.205e-03 0.78 4.812e-04 0.77 3.426e-04 0.82
2´9 1.382e-03 0.79 1.062e-03 0.79 6.965e-04 0.79 2.796e-04 0.78 1.948e-04 0.81
2´10 7.957e-04 0.80 6.115e-04 0.80 4.015e-04 0.79 1.617e-04 0.79 1.112e-04 0.81
2´11 4.577e-04 0.80 3.518e-04 0.80 2.311e-04 0.80 9.322e-05 0.79 6.368e-05 0.80
2´12 2.631e-04 0.80 2.023e-04 0.80 1.329e-04 0.80 5.366e-05 0.80 3.651e-05 0.80
2´13 1.512e-04 0.80 1.162e-04 0.80 7.637e-05 0.80 3.086e-05 0.80 2.094e-05 0.80
2´14 8.686e-05 0.80 6.678e-05 0.80 4.388e-05 0.80 1.774e-05 0.80 1.202e-05 0.80
2´15 4.989e-05 0.80 3.836e-05 0.80 2.521e-05 0.80 1.019e-05 0.80 6.902e-06 0.80

R2 R2 R2 R2 R2

2´3 1.776e-02 1.341e-02 8.442e-03 3.028e-03 2.995e-03
2´4 9.675e-03 0.88 7.331e-03 0.87 4.697e-03 0.85 1.914e-03 0.66 1.133e-03 1.40
2´5 5.118e-03 0.92 3.869e-03 0.92 2.504e-03 0.91 1.099e-03 0.80 4.337e-04 1.38
2´6 2.653e-03 0.95 1.997e-03 0.95 1.302e-03 0.94 5.999e-04 0.87 1.686e-04 1.36
2´7 1.356e-03 0.97 1.017e-03 0.97 6.666e-04 0.97 3.179e-04 0.92 6.647e-05 1.34
2´8 6.869e-04 0.98 5.129e-04 0.99 3.383e-04 0.98 1.655e-04 0.94 2.648e-05 1.33
2´9 3.457e-04 0.99 2.574e-04 0.99 1.708e-04 0.99 8.518e-05 0.96 1.063e-05 1.32
2´10 1.732e-04 1.00 1.287e-04 1.00 8.592e-05 0.99 4.355e-05 0.97 4.285e-06 1.31
2´11 8.657e-05 1.00 6.426e-05 1.00 4.316e-05 0.99 2.217e-05 0.97 1.733e-06 1.31
2´12 4.318e-05 1.00 3.205e-05 1.00 2.166e-05 0.99 1.125e-05 0.98 7.036e-07 1.30
2´13 2.150e-05 1.01 1.597e-05 1.00 1.086e-05 1.00 5.702e-06 0.98 2.882e-07 1.29
2´14 1.070e-05 1.01 7.953e-06 1.01 5.433e-06 1.00 2.886e-06 0.98 1.266e-07 1.19
2´15 5.310e-06 1.01 3.961e-06 1.01 2.662e-06 1.03 1.486e-06 0.96 9.273e-08 0.45

same steps as last section, from (4.1), we arrive at

upx, tmq ´ upx, tm´1q « d
B2

Bx2

´

pI αupx, tmq ´I αupx, tm´1qq

¯

`

ż tm

tm´1

gpx, tqdt.

In Chapter 3, we have seen that the integral I αupx, tq could be approximated using splines of degree
between 1 and 2 given by

Iα,β upx, tmq “ ∆tα

m`1
ÿ

k“0

ck,mbm,k, ck,m “ ãm
k,0

Bu
Bt

px, tmq `

m`1
ÿ

s“1

ãm
k,supx, ts´1q,
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with Ãm “ rãm
k,ss, k “ 0, . . . ,m ` 1, s “ 0, . . . ,m ` 1 the inverse matrix of Am (2.16). Therefore,

upx, tmq ´ upx, tm´1q « d
B2

Bx2 ∆tα

˜

m`1
ÿ

k“0

´

ãm
k,0px, tmq `

m`1
ÿ

s“1

ãm
k,supx, ts´1q

¯

bm,k

´

m
ÿ

k“0

´

ãm´1
k,0

Bu
Bt

px, tm´1q `

m
ÿ

s“1

ãm´1
k,s upx, ts´1q

¯

bm´1,k

¸

`

ż tm

tm´1

gpx, tqdt.

Doing the space discretization as before and applying the approximation (3.14) of u1ptmq, we
obtain the following numerical method

Um
j ´Um´1

j “ d
∆tα

∆x2 δ
2

˜

m`1
ÿ

k“0

˜

ãm
k,0

∆t

´

p1 ` c1 ` c2qUm
j ´ p1 ` 2c1 ` 3c2qUm´1

j

`pc1 ` 3c2qUm´2
j ´ c2Um´3

j

¯

`

m`1
ÿ

s“1

ãm
k,sU

s´1
j

¸

bm,k ´

m
ÿ

k“0

˜

ãm´1
k,0

∆t

´

p1 ` d1qUm´1
j

´p1 ` 2d1qUm´2
j ` d1Um´3

j `

m
ÿ

s“1

ãm´1
k,s U s´1

j

¸

bm´1,k

¸

`

ż tm

tm´1

gpx j, tqdt

where we denote Um
j the approximation of upx j, tmq. At this point, a difficulty arises because we do not

have enough points at the first time steps to implement such numerical method. Therefore, we need
to do different approaches for m “ 1, m “ 2 and m ě 3. For the first time step, m “ 1, as we would
need the values of U´1

j and U´2
j , we consider c1,c2,d1 “ 0. For m “ 2, we would need the values of

U´1
j , therefore we define c1 “ ´1{2 and c2,d1 “ 0; for m ě 3, we consider c1 “ ´1{2, c2 “ 1{3 and

d1 “ ´1{2.

Let µα “ d∆tα{∆x2. We can write
˜

1 ´ µαδ
2

m`1
ÿ

k“0

ˆ

ãm
k,m`1 `

ãm
k,0

∆t
p1 ` c1 ` c2q

˙

bm,m`1

¸

Um
j “ Um´1

j

`µαδ
2

˜

m`1
ÿ

k“0

ˆ

´
ãm

k,0

∆t
p1 ` 2c1 ` 3c2q ` ãm

k,m

˙

bm,k ´

m
ÿ

k“0

´

´
ãm´1

k,0

∆t
p1 ` d1q ` ãm´1

k,m

¯

bm´1,k

¸

Um´1
j

`µαδ
2

˜

m`1
ÿ

k“0

ˆ ãm
k,0

∆t
pc1 ` 3c2q ` ãm

k,m´1

˙

bm,k ´

m
ÿ

k“0

´

´
ãm´1

k,0

∆t
p1 ` 2d1q ` ãm´1

k,n´1

¯

bm´1,k

¸

Um´2
j (4.19)

`µαδ
2

˜

m`1
ÿ

k“0

ˆ

´
ãm

k,0

∆t
c2 ` ãm

k,m´2

˙

bm,k ´

m
ÿ

k“0

ˆ ãm
k,0

∆t
d1 ` ãm´1

k,m´2

˙

bm´1,k

¸

Um´3
j

`µαδ
2

m´3
ÿ

s“1

˜

m`1
ÿ

k“0

ãm
k,sbm,k ´

m
ÿ

k“0

ãm´1
k,s bm´1,k

¸

U s´1
j `

ż tm

tm´1

gpx j, tqdt
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It can be written in the matricial form as
˜

I ´ µα

m`1
ÿ

k“0

ˆ

ãm
k,m`1 `

ãm
k,0

∆t
p1 ` c1 ` c2q

˙

bm,m`1

¸

DUm “ IUm´1

`µα

˜

m`1
ÿ

k“0

ˆ

´
ãm

k,0

∆t
p1 ` 2c1 ` 3c2q ` ãm

k,m

˙

bm,k ´

m
ÿ

k“0

´

´
ãm´1

k,0

∆t
p1 ` d1q ` ãm´1

k,m

¯

bm´1,k

¸

DUm´1

`µα

˜

m`1
ÿ

k“0

ˆ ãm
k,0

∆t
pc1 ` 3c2q ` ãm

k,m´1

˙

bm,k ´

m
ÿ

k“0

´

´
ãm´1

k,0

∆t
p1 ` 2d1q ` ãm´1

k,m´1

¯

bm´1,k

¸

DUm´2

`µα

˜

m`1
ÿ

k“0

ˆ

´
ãm

k,0

∆t
c2 ` ãm

k,m´2

˙

bm,k ´

m
ÿ

k“0

ˆ ãm
k,0

∆t
d1 ` ãm´1

k,m´2

˙

bm´1,k

¸

DUm´3

`µα

m´3
ÿ

s“1

˜

m`1
ÿ

k“0

ãm
k,sbm,k ´

m
ÿ

k“0

ãm´1
k,s bm´1,k

¸

DUs´1 ` Gm,

where I is the identity matrix, Um is the solution vector Um “ rUm
1 , . . . ,Um

N´1sT , D is a tridiagonal
matrix with entries D j, j´1 “ 1, D j, j “ ´2 and D j, j`1 “ 1 and Gm contains the values of the integral
of the source term.

We proceed with one numerical test that may indicate the convergence rate of this method.

4.3.2 Numerical experiments

Consider the same conditions as in Section 4.2.3. We present an example of an approximate solution
of the fractional differential equation (4.1) obtained by the numerical method constructed resorting to
splines of degree 1 ă β ď 2.

Let ra,bs “ r0,2s, T “ 1 and d “ 1. The source term gpx, tq and the initial condition u0pxq are
defined such that the exact solution of the problem is upx, tq “ t4x4p2 ´ xq4.

In Tables 4.13–4.15 we present the results and now we analyze them to try to identify the trend,
or rule, of the convergence order that the method obeys. By observation of the tables, we see that
both errors E2 and E8 follow the same tendency. For α “ 0.2, we observe an order of accuracy of
around 2.2. For α “ 0.4, we see that the order of accuracy is about 2.2 for β “ 1.2 and around 2.4
for the other values of β . And finally, for α “ 0.8, we note that the order of accuracy is around 2.2
for β “ 1.2, 2.6 for β “ 1.4 and between 2.8 and 2.9 for β “ 1.8 and β “ 2. Then, heuristically,
the experimental results of this problem point out that the order of accuracy of this method is the
minimum between β ` 1 and 2 ` α , for sufficiently smooth solutions.

At the end of this and the next chapters, we present some figures that illustrate the evolution of the
solution along time for different values of α .
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Table 4.13 Convergence rate (R8 and R2) in time for different values of β with α=0.2 and ∆x “

2{10000, for the errors (4.17) and (4.18), respectively.

∆t β “ 1.2 R8 β “ 1.4 R8 β “ 1.6 R8 β “ 1.8 R8 β “ 2 R8

2´3 2.959e-03 2.645e-03 2.624e-03 2.676e-03 2.732e-03
2´4 7.059e-04 2.07 6.003e-04 2.14 5.948e-04 2.14 6.107e-04 2.13 6.267e-04 2.12
2´5 1.636e-04 2.11 1.325e-04 2.18 1.315e-04 2.18 1.360e-04 2.17 1.401e-04 2.16
2´6 3.729e-05 2.13 2.882e-05 2.20 2.873e-05 2.19 2.991e-05 2.18 3.091e-05 2.18
2´7 8.400e-06 2.15 6.213e-06 2.21 6.233e-06 2.20 6.531e-06 2.20 6.765e-06 2.19
2´8 1.871e-06 2.17 1.327e-06 2.23 1.342e-06 2.22 1.415e-06 2.21 1.468e-06 2.20
2´9 4.084e-07 2.20 2.761e-07 2.27 2.818e-07 2.25 2.998e-07 2.24 3.111e-07 2.24

R2 R2 R2 R2 R2

2´3 1.522e-03 1.375e-03 1.366e-03 1.391e-03 1.419e-03
2´4 3.418e-04 2.16 2.943e-04 2.22 2.917e-04 2.23 2.989e-04 2.22 3.064e-04 2.21
2´5 7.691e-05 2.15 6.313e-05 2.22 6.261e-05 2.22 6.462e-05 2.21 6.651e-05 2.20
2´6 1.728e-05 2.15 1.354e-05 2.22 1.347e-05 2.22 1.400e-05 2.21 1.446e-05 2.20
2´7 3.869e-06 2.16 2.899e-06 2.22 2.902e-06 2.21 3.035e-06 2.21 3.142e-06 2.20
2´8 8.609e-07 2.17 6.185e-07 2.23 6.238e-07 2.22 6.564e-07 2.21 6.808e-07 2.21
2´9 1.889e-07 2.19 1.297e-07 2.25 1.320e-07 2.24 1.400e-07 2.23 1.453e-07 2.23

Table 4.14 Convergence rate (R8 and R2) in time for different values of β with α=0.4 and ∆x “

2{10000, for the errors (4.17) and (4.18), respectively.

∆t β “ 1.2 R8 β “ 1.4 R8 β “ 1.6 R8 β “ 1.8 R8 β “ 2 R8

2´3 3.774e-03 3.131e-03 3.017e-03 3.055e-03 3.121e-03
2´4 8.271e-04 2.19 6.279e-04 2.32 5.952e-04 2.34 6.052e-04 2.34 6.215e-04 2.33
2´5 1.779e-04 2.22 1.227e-04 2.36 1.146e-04 2.38 1.171e-04 2.37 1.208e-04 2.36
2´6 3.795e-05 2.23 2.365e-05 2.38 2.179e-05 2.40 2.238e-05 2.39 2.317e-05 2.38
2´7 8.059e-06 2.24 4.517e-06 2.39 4.110e-06 2.41 4.245e-06 2.40 4.408e-06 2.39
2´8 1.703e-06 2.24 8.518e-07 2.41 7.658e-07 2.42 7.956e-07 2.42 8.284e-07 2.41
2´9 3.530e-07 2.27 1.530e-07 2.48 1.356e-07 2.50 1.419e-07 2.49 1.482e-07 2.48

R2 R2 R2 R2 R2

2´3 1.959e-03 1.656e-03 1.602e-03 1.621e-03 1.654e-03
2´4 4.040e-04 2.28 3.140e-04 2.40 2.990e-04 2.42 3.037e-04 2.42 3.114e-04 2.41
2´5 8.420e-05 2.26 5.973e-05 2.39 5.602e-05 2.42 5.715e-05 2.41 5.888e-05 2.40
2´6 1.767e-05 2.25 1.136e-05 2.39 1.051e-05 2.41 1.077e-05 2.41 1.114e-05 2.40
2´7 3.723e-06 2.25 2.157e-06 2.40 1.970e-06 2.42 2.031e-06 2.41 2.107e-06 2.40
2´8 7.845e-07 2.25 4.069e-07 2.41 3.673e-07 2.42 3.809e-07 2.42 3.962e-07 2.41
2´9 1.635e-07 2.26 7.440e-08 2.45 6.630e-08 2.47 6.918e-08 2.46 7.218e-08 2.46



4.4 Numerical approximations of the fundamental solutions 69

Table 4.15 Convergence rate (R8 and R2) in time for different values of β with α=0.8 and ∆x “

2{10000, for the errors (4.17) and (4.18), respectively.

∆x β “ 1.2 R8 β “ 1.4 R8 β “ 1.6 R8 β “ 1.8 R8 β “ 2 R8

2´3 3.307e-03 2.234e-03 1.921e-03 1.864e-03 1.886e-03
2´4 6.678e-04 2.31 3.742e-04 2.58 2.946e-04 2.70 2.800e-04 2.73 2.834e-04 2.73
2´5 1.367e-04 2.29 6.265e-05 2.58 4.433e-05 2.73 4.110e-05 2.77 4.163e-05 2.77
2´6 2.841e-05 2.27 1.058e-05 2.57 6.608e-06 2.75 5.958e-06 2.79 6.037e-06 2.79
2´7 5.977e-06 2.25 1.806e-06 2.55 9.756e-07 2.76 8.513e-07 2.81 8.627e-07 2.81
2´8 1.263e-06 2.24 3.062e-07 2.56 1.375e-07 2.83 1.150e-07 2.89 1.166e-07 2.89
2´9 2.630e-07 2.26 4.877e-08 2.65 1.917e-08 2.84 1.641e-08 2.81 1.711e-08 2.77

R2 R2 R2 R2 R2

2´3 1.713e-03 1.202e-03 1.054e-03 1.027e-03 1.039e-03
2´4 3.219e-04 2.41 1.899e-04 2.66 1.537e-04 2.78 1.470e-04 2.80 1.488e-04 2.80
2´5 6.326e-05 2.35 3.075e-05 2.63 2.254e-05 2.77 2.108e-05 2.80 2.135e-05 2.80
2´6 1.284e-05 2.30 5.091e-06 2.59 3.318e-06 2.76 3.022e-06 2.80 3.062e-06 2.80
2´7 2.667e-06 2.27 8.586e-07 2.57 4.880e-07 2.77 4.310e-07 2.81 4.368e-07 2.81
2´8 5.604e-07 2.25 1.455e-07 2.56 6.988e-08 2.80 5.942e-08 2.86 6.024e-08 2.86
2´9 1.170e-07 2.26 2.359e-08 2.62 9.288e-09 2.91 7.627e-09 2.96 7.905e-09 2.93

4.4 Numerical approximations of the fundamental solutions

To conclude this chapter, we want to illustrate the process of subdiffusion for different values of α .
We consider equation (4.1) without source term and with initial condition

u0pxq “ δεpxq, with δεpxq “
1

ε
?

π
e´x2{ε2

, (4.20)

for a small value of ε , that can be seen as an approximation of the Dirac delta function.
In Figure 4.3 we plot the numerical solution of our method, for β “ 1 and α “ 0.1,0.5,0.9

from t “ 1 to t “ 2. We can see that, as α grows, the shape of the solution tends to be less sharp.
Furthermore, the variation of the maximum value of the solution is more accentuated for α “ 0.9,
pointing out that the phenomenon of (anomalous) diffusion is faster for bigger values of α . We finish
the study of subdiffusion with Figure 4.4, where we plot the solutions for t “ 2 and α between 0.1
and 0.9 that corroborates the conclusions already stated.
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Fig. 4.3 Numerical solutions when the initial condition is (4.20) and D “ 1, as time changes from 1 to
2. Left: α “ 0.1. Center: α “ 0.5. Right: α “ 0.9.
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Fig. 4.4 Numerical solutions when the initial condition is (4.20) for t “ 2, D “ 1 and α changing from
0.1 to 0.9.



Chapter 5

Superdiffusion problem

In parallel to what we have done in the previous chapter, the first section of Chapter 5 is dedicated
to the deduction of the fractional differential equation that models superdiffusion, related to Lévy
flights when 0 ă α ă 2 pα ‰ 1q. We separate the cases when 0 ă α ă 1 and 1 ă α ă 2, since the
fractional partial differential equation must be solved differently for each case. For the first one,
this is, α between 0 and 1, there are less studies. Here, we present three different approaches to
the approximation of the fractional derivative involved in this superdiffusive problem. We construct
three numerical methods based on these approximations and study their convergence. Numerical
experiments are done to support the theoretical results. For the case when α is between 1 and 2,
more studied in literature, we present a numerical method on the open domain [76] and adapt this
approach to solve a problem that includes a reflecting boundary. For the reflecting case, we study the
convergence properties of the method in detail. At the end of the chapter, we display and analyze
some computational simulations for all the considered cases of superdiffusion and we finish with an
example that juxtaposes one solution of the subdiffusive model and one solution of the superdiffusive
model.

5.1 Model problem

The class of Lévy stable processes that we consider is the class for which the Fourier transform of the
jump distribution [68] is described by the characteristic function ψ ,

ψpω,α, pq “ exp
„

p´1qnDt
ˆ

1 ` p
2

p´iωqα `
1 ´ p

2
piωqα

˙

, (5.1)

where n “ rαs ` 1, D is a positive constant, α is the characteristic exponent that describes the tail of
the distribution and ´1 ď p ď 1 is the skewness and specifies if the distribution is skewed to the left
(p ă 0), right (p ą 0) of if it is symmetric (p “ 0). According to [67], the probability density function
is positive if we have 0 ă α ď 2, with α “ 2 corresponding to the Gaussian case. For 0 ă α ă 2, it
describes Lévy flights where the jumps are typically very large.

71
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The characteristic function (5.1), when 0 ă α ă 2 and α ‰ 1, is the solution of the equation

Bûpω, tq
Bt

“ p´1qnD
ˆ

1 ` p
2

p´iωqα `
1 ´ p

2
piωqα

˙

ûpω, tq. (5.2)

Applying the inverse Fourier transform, we can write

Bupx, tq
Bt

“ p´1qnD
ˆ

1 ` p
2

F ´1 tp´iωqα ûpω, tqu `
1 ´ p

2
F ´1 tpiωqα ûpω, tqu

˙

.

Using the properties present in Proposition 1.16

Bαu
Bxα

px, tq :“ F ´1 tp´iωqα ûpω, tqu and
Bαu

Bp´xqα
px, tq :“ F ´1 tpiωqα ûpω, tqu ,

we arrive at the final equation, for 0 ă α ă 2 pα ‰ 1q,

Bu
Bt

px, tq “ p´1qnD∇
p
αupx, tq, (5.3)

where
∇

p
αupx, tq “

1 ` p
2

Bαu
Bxα

px, tq `
1 ´ p

2
Bαu

Bp´xqα
px, tq, (5.4)

for ´1 ď p ď 1, where D is the diffusion coefficient.
For 0 ă α ă 1, described in Section 5.2, we construct and compare three different numerical

methods to approximate the solution of equation

Bupx, tq
Bt

“ ´D∇
p
αupx, tq ` gpx, tq, x P R, t ą 0, (5.5)

where we have introduced a source term, gpx, tq. Additionally, we consider an initial condition and

lim
|x|Ñ8

upx, tq “ 0. (5.6)

For 1 ă α ă 2, described in Section 5.3, we present the numerical method considered in [76] to
approximate the solution of equation

Bupx, tq
Bt

“ D∇
p
αupx, tq ` gpx, tq, x P R, t ą 0, (5.7)

and in Section 5.4 we propose an approach when a reflecting wall is at x “ 0.

5.2 Superdiffusion when 0 ă α ă 1

In the next sections we present three ways of approximating the Riemann-Liouville derivatives, which
for 0 ă α ă 1, as seen before, are the first derivative of integral operators. First, to approximate the
integral, we use the linear spline approximation. Then, we use three different ways of approximating
the derivative outside the integral: a central difference method, a first order upwind method and a
second order upwind method. We construct a family of implicit methods and discuss their consistency
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and stability. Furthermore, we present numerical experiments to illustrate the theoretical results and to
show the disadvantages of the central approximation in comparison with the upwind approaches.

5.2.1 Fractional derivative approximations

In this section we describe how we approximate the left and right fractional Riemann-Liouville
derivatives, that are defined by the first derivative of a fractional integral. For the integral, we use
the approximation derived in Section 3.2. For the first order derivative, we build three types of
approximation.

Fractional derivative approximation

In this section, we approximate the left and right Riemann-Liouville derivatives

B

Bx
I lupx, tq, ´

B

Bx
I rupx, tq (5.8)

using a central and two upwind approximations of the derivative and the linear spline approximation
of the integral developed in Section 3.2 for α P p0,1q. Recall that, resorting to the linear spline and
considering the uniform domain discretization x j “ x j´1 ` ∆x, j P Z, the integrals I lupx, tq and
I rupx, tq can be approximated by

Ilupx j, tq “
∆x1´α

Γp3 ´ αq

8
ÿ

k“0

akupx j´k, tq, (5.9)

Irupx j, tq “
∆x1´α

Γp3 ´ αq

8
ÿ

k“0

akupx j`k, tq, (5.10)

respectively, with the coefficients of both quadratures given by (3.19).
We proceed with the derivative approximation.

Fractional derivative central approximation

We start by considering the left Riemann-Liouville derivative; the steps for the right derivative are
similar. This type of approximation was done in [75]. The central approximation for the first order
derivative of the integral is given by

B

Bx
I lupx j, tq «

I lupx j`1, tq ´I lupx j´1, tq
2∆x

and, furthermore,
B

Bx
I lupx j, tq «

Ilupx j`1, tq ´ Ilupx j´1, tq
2∆x

.

Using (5.9), we obtain

B

Bx
I lupx j, tq «

∆x1´α

2∆xΓp3 ´ αq

˜

8
ÿ

k“0

akupx j`1´k, tq ´

8
ÿ

k“0

akupx j´1´k, tq

¸
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and, considering k1 “ k ´ 1 in the first sum and k1 “ k ` 1 in the second sum,

B

Bx
I lupx j, tq «

∆x1´α

2∆xΓp3 ´ αq

˜

8
ÿ

k1“´1

ak1`1upx j´k1 , tq ´

8
ÿ

k1“1

ak1´1upx j´k1 , tq

¸

.

Finally, we can combine the terms as follows

B

Bx
I lupx j, tq «

∆x´α

2Γp3 ´ αq

˜

a0upx j`1, tq ` a1upx j, tq `

8
ÿ

k“1

pak`1 ´ ak´1qupx j´k, tq

¸

.

Therefore, we conclude that the left fractional derivative BI lupx j, tq{Bx can be approximated by
δ l

cupx j, tq{∆xα with δ l
cu defined as

δ
l
cupx j, tq “

1
2Γp3 ´ αq

8
ÿ

k“´1

bk,cupx j´k, tq,

where
b´1,c “ a0, b0,c “ a1, bk,c “ ak`1 ´ ak´1, k ě 1. (5.11)

Replicating the same steps using (5.10), for the right Riemann-Liouville derivative we obtain

´
B

Bx
I rupx j, tq «

∆x1´α

2∆xΓp3 ´ αq

8
ÿ

k“´1

bk,cupx j`k, tq, (5.12)

and then the right fractional Riemann-Liouville derivative ´BI rupx j, tq{Bx can be approximated by
δ r

c upx j, tq{∆xα with δ r
c u defined as

δ
r
c upx j, tq “

1
2Γp3 ´ αq

8
ÿ

k“´1

bk,cupx j`k, tq,

where the coefficients bk,c are defined in (5.11).

Therefore, we can define the general operator ∇
p
αu, for 0 ă α ă 1 and ´1 ď p ď 1, can be

approximated by the operator δ
p
α,cupx j, tq{∆xα where the operator δ

p
α,cu is given by

δ
p
α,cupx j, tq “

1 ` p
2

δ
l
cupx j, tq `

1 ´ p
2

δ
r
c upx j, tq. (5.13)

The reason why we want to derive alternative approximations is the fact that, using this approach,
we may obtain spurious numerical oscillations, although we are in the presence of a second order
accurate scheme. We show some examples in Section 5.2.5. Even though we did not present the
numerical method using this approximation yet, in Figure 5.1 we plot the solution of the central
method considering α “ 0.1,0.3,0.5,0.7,0.9 for p “ ´0.8 at left, p “ 0 at center and p “ 0.8 at right.
We can observe that, in the asymmetric cases p “ ´0.8,0.8, as α grows more severe oscillations
appear. For p “ ´0.8 they emerge at the left side of the solution and for p “ 0.8 they emerge at the
right side. For the symmetric case, there are no oscillations, regardless of the value of α .
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Fig. 5.1 Numerical solution with the central method for α “ 0.1,0.3,0.5,0.7,0.9. Left: p “ ´0.8.
Center: p “ 0. Right:p “ 0.8.

Therefore, in the next two sections we resort to a first order and a second order upwind discretiza-
tions to approximate the fractional derivative in an attempt to obtain solutions without oscillations.

Fractional derivative upwind first order approximation

In this section, we approximate the derivative of the fractional integral by a first order upwind
approximation. In the case of the left fractional derivative, it uses a two-point backward difference
and, in the case of the right fractional derivative, a two-point forward difference. This is a natural
consequence of the fact that the left and right derivatives have opposite signs for 0 ă α ă 1.

The first order upwind approximation [61] is given by

c
Bu
Bx

px jq «

$

’

’

’

&

’

’

’

%

c
upx jq ´ upx j´1q

∆x
, for c ą 0,

c
upx j`1q ´ upx jq

∆x
, for c ă 0.

For the left fractional derivative we have

B

Bx
I lupx j, tq «

Ilupx j, tq ´ Ilupx j´1, tq
∆x

“
∆x1´α

Γp3 ´ αq∆x

˜

8
ÿ

k“0

akupx j´k, tq ´

8
ÿ

k“0

akupx j´1´k, tq

¸

.

Considering k1 “ k ` 1 in the second sum and aggregating the terms,

B

Bx
I lupx j, tq «

1
Γp3 ´ αq∆xα

˜

8
ÿ

k“0

akupx j´k, tq ´

8
ÿ

k1“1

ak1´1upx j´k1 , tq

¸

“
1

Γp3 ´ αq∆xα

˜

a0upx j, tq `

8
ÿ

k“1

pak ´ ak´1qupx j´k, tq

¸

.
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We arrive to
B

Bx
I lupx j, tq «

1
Γp3 ´ αq∆xα

8
ÿ

k“0

bk,1upx j´k, tq,

where
b0,1 “ a0, bk,1 “ ak ´ ak´1, k ě 1. (5.14)

For the right fractional derivative, it follows

´
B

Bx
I rupx j, tq « ´

Irupx j`1, tq ´ Irupx j, tq
∆x

“ ´
∆x1´α

Γp3 ´ αq∆x

˜

8
ÿ

k“0

akupx j`1`k, tq ´

8
ÿ

k“0

akupx j`k, tq

¸

.

Once again, considering k1 “ k ` 1 in the first sum and aggregating the terms, we get

´
B

Bx
I rupx j, tq « ´

1
Γp3 ´ αq∆xα

˜

8
ÿ

k1“1

ak1´1upx j`k1 , tq ´

8
ÿ

k“0

akupx j`k, tq

¸

“
1

Γp3 ´ αq∆xα

˜

8
ÿ

k“1

pak ´ ak´1qupx j`k, tq ` a0upx j, tq

¸

.

Therefore, we obtain

´
B

Bx
I rupx j, tq «

1
Γp3 ´ αq∆xα

8
ÿ

k“0

bk,1upx j`k, tq,

where bk,1 are defined in (5.14). Then, the left and right fractional derivatives, BI lupx j, tq{Bx and
´BI rupx j, tq{Bx, can be approximated respectively by δ l

1upx j, tq{∆xα and δ r
1upx j, tq{∆xα , such that

δ
l
1upx j, tq “

1
Γp3 ´ αq

8
ÿ

k“0

bk,1upx j´k, tq, δ
r
1upx j, tq “

1
Γp3 ´ αq

8
ÿ

k“0

bk,1upx j`k, tq.

Therefore, the general operator ∇
p
αu, for 0 ă α ă 1 and ´1 ď p ď 1, will be approximated by the

operator δ
p
α,1upx j, tq{∆xα where δ

p
α,1u is given by

δ
p
α,1upx j, tq “

1 ` p
2

δ
l
1upx j, tq `

1 ´ p
2

δ
r
1upx j, tq. (5.15)

Fractional derivative upwind second order approximation

Similarly to what we have done in the previous section, we build a new approximation for the
derivative of the fractional integrals by a second order upwind approximation. It consists in a three-
point backward finite difference for the left fractional derivative and in a three-point forward finite
difference for the right fractional derivative.
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The second order upwind approximation is defined as

c
Bu
Bx

px jq «

$

’

’

’

&

’

’

’

%

c
3upx jq ´ 4upx j´1q ` upx j´2q

∆x
, for c ą 0,

c
´3upx jq ` 4upx j`1q ´ upx j`2q

∆x
, for c ă 0.

Thus, for the left fractional derivative we have

B

Bx
I lupx j, tq «

3Ilupx j, tq ´ 4Ilupx j´1, tq ` Ilupx j´2, tq
2∆x

“
∆x1´α

2Γp3 ´ αq∆x

˜

3
8
ÿ

k“0

akupx j´k, tq ´ 4
8
ÿ

k“0

akupx j´1´k, tq `

8
ÿ

k“0

akupx j´2´k, tq

¸

.

Doing k1 “ k ` 1 in the second sum and k1 “ k ` 2 in the third one and rearranging the terms,

B

Bx
I lupx j, tq «

1
2Γp3 ´ αq∆xα

˜

3
8
ÿ

k“0

akupx j´k, tq ´ 4
8
ÿ

k1“1

ak1´1upx j´k1 , tq `

8
ÿ

k1“2

ak1´2upx j´k1 , tq

¸

“
1

2Γp3 ´ αq∆xα

˜

3a0upx j, tq ` p3a1 ´ 4a0qupx j´1, tq `

8
ÿ

k“2

p3ak ´ 4ak´1 ` ak´2qupx j´k, tq

¸

.

Then, the approximation can be written as

B

Bx
I lupx j, tq «

1
2Γp3 ´ αq∆xα

8
ÿ

k“0

bk,2upx j´k, tq, (5.16)

where
b0,2 “ 3a0, b1,2 “ 3a1 ´ 4a0, bk,2 “ 3ak ´ 4ak´1 ` ak´2, k ě 2. (5.17)

Similarly, for the right derivative we have

´
B

Bx
I rupx j, tq « ´

´3Irupx j, tq ` 4Irupx j`1, tq ´ Irupx j`2, tq
2∆x

“
´∆x1´α

2Γp3 ´ αq∆x

˜

´3
8
ÿ

k“0

akupx j`k, tq ` 4
8
ÿ

k“0

akupx j`1`k, tq ´

8
ÿ

k“0

akupx j`2`k, tq

¸

.

Using the same strategy as before,

´
B

Bx
I rupx j, tq«

´1
2Γp3 ´ αq∆xα

˜

´3
8
ÿ

k“0

akupx j`k, tq ` 4
8
ÿ

k“1

ak´1upx j`k, tq ´

8
ÿ

k“2

ak´2upx j`k, tq

¸

“
1

2Γp3 ´ αq∆xα

˜

3a0upx j, tq ` p3a1 ´ 4a0qupx j`1, tq `

8
ÿ

“2

p3ak ´ 4ak´1 ` ak´2qupx j`k, tq

¸

.

We arrive to

´
B

Bx
I rupx j, tq «

1
2Γp3 ´ αq∆xα

8
ÿ

k“0

bk,2upx j`k, tq. (5.18)
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Finally, we conclude that the left and right fractional derivatives, BI lupx j, tq{Bx and ´BI rupx j, tq{Bx,
can be approximated respectively by δ l

2upx j, tq{∆xα and δ r
2upx j, tq{∆xα with δ l

2u and δ r
2u defined as

δ
l
2upx j, tq “

1
2Γp3 ´ αq

8
ÿ

k“0

bk,2upx j´k, tq, δ
r
2upx j, tq “

1
2Γp3 ´ αq

8
ÿ

k“0

bk,2upx j`k, tq,

with the coefficients bk,2 given by (5.17). The general operator ∇
p
αu, for 0 ă α ă 1 and ´1 ď p ď 1,

will be approximated by the operator δ
p
α,2upx j, tq{∆xα where δ

p
α,2u is given by

δ
p
α,2upx j, tq “

1 ` p
2

δ
l
2upx j, tq `

1 ´ p
2

δ
r
2upx j, tq. (5.19)

Concluded the three approaches, we proceed with the construction of the numerical method with
an even more general operator.

5.2.2 Numerical methods

We present a numerical method for the equation (5.5). Let us consider a uniform mesh in time
tm`1 “ tm ` ∆t, with t0 “ 0 and tM “ T , for m “ 0, . . . ,M ´ 1. In space, consider the uniform mesh in
the real line defined as x j “ x j´1 ` ∆x, for j P Z.

Note that the three operators (5.13), (5.15) and (5.19) are defined similarly. Therefore, we can
consider a general operator that represents each of the three operators given previously, δ

p
α,cu, δ

p
α,1u

or δ
p
α,2u, and we denote it by δ

p
α,˚u.

The explicit and implicit Euler numerical methods are given respectively by

Um`1
j ´Um

j

∆t
“ ´

D
∆xα

δ
p
α,˚Um

j ` gm
j ,

Um`1
j ´Um

j

∆t
“ ´

D
∆xα

δ
p
α,˚Um`1

j ` gm`1
j .

The Crank-Nicolson scheme is given by the average of the last two methods, this is,

Um`1
j ´Um

j

∆t
“ ´

D
∆xα

1
2

δ
p
α,˚Um

j ´
D

∆xα

1
2

δ
p
α,˚Um`1

j ` gm`1{2
j ,

where gm`1{2
j “ pgm`1

j ` gm
j q{2, that is,

ˆ

1 `
D

2∆xα
∆tδ p

α,˚

˙

Um`1
j “

ˆ

1 ´
D

2∆xα
∆tδ p

α,˚

˙

Um
j ` gm`1{2

j .

Let µα “ D∆t{∆xα . The numerical method can be rewritten as

ˆ

1 `
1
2

µαδ
p
α,˚

˙

Um`1
j “

ˆ

1 ´
1
2

µαδ
p
α,˚

˙

Um
j ` gm`1{2

j . (5.20)

All the three schemes can also be written in a matricial form. When the problem is defined in the
real line we assume natural boundary conditions given by (5.6). Hence, for the implementation of the
numerical method, if we consider N large enough, that is, N such that the condition upx, tq « 0, for
x R rx0,xNs, the numerical boundary conditions do not interfere with the accuracy of the numerical
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solutions. Therefore, assume the nodal points are Um
j , j “ ´N, ...,N such that Uk “ 0 for k ă ´N and

k ą N. Introducing the vector Um “ rUm
´N , ...,U

m
N sT , the schemes may be written as matrix equations

ˆ

I `
1
2

µαBp
α,˚

˙

Um`1 “

ˆ

I ´
1
2

µαBp
α,˚

˙

Um ` Gm`1{2,

where I is the identity matrix, Um is the solution vector Um “ rUm
´N , . . . ,U

m
N sT , Gm contains the values

of the source term and Bp
α,˚ is defined such that

Bp
α,˚ “

1 ` p
2

Bα,˚ `
1 ´ p

2
BT

α,˚, (5.21)

with Bα,˚, the matrix associated with the operators δ
p
α,cu, δ

p
α,1u and δ

p
α,2u and given by

Bα,c “
1

2Γp3 ´ αq

»

—

—

—

—

—

—

–

b0,c b´1,c 0 . . . 0 0
b1,c b0,c b´1,c . . . 0 0
b2,c b1,c b0,c . . . 0 0

...
...

...
...

...
b2N,c b2N´1,c b2N´2,c . . . b1,c b0,c

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.22)

in the first case,

Bα,1 “
1

Γp3 ´ αq

»

—

—

—

—

—

—

–

b0,1 0 0 . . . 0 0
b1,1 b0,1 0 . . . 0 0
b2,1 b1,1 b0,1 . . . 0 0

...
...

...
...

...
b2N,1 b2N´1,1 b2N´2,1 . . . b1,1 b0,1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.23)

in the second case and

Bα,2 “
1

2Γp3 ´ αq

»

—

—

—

—

—

—

–

b0,2 0 0 . . . 0 0
b1,2 b0,2 0 . . . 0 0
b2,2 b1,2 b0,2 . . . 0 0

...
...

...
...

...
b2N,2 b2N´1,2 b2N´2,2 . . . b1,2 b0,2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.24)

in the last case. Note that Bα,˚ is a Toeplitz matrix, a type of matrices that we have already seen in
Section 2.2. Furthermore, Bα,˚ for ˚ “ 1,2 is, additionally, a lower triangular matrix.

In the next section, we study the convergence of the three numerical methods obtained specifying
the operator in equation (5.20).

5.2.3 Convergence analysis

In order to analyze the convergence of the proposed numerical methods, in this section we study their
consistency and stability. In our analysis, we assume we are dealing with functions that vanish at
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infinity, since our problems are defined in the whole real line. We start by presenting some results
regarding the consistency and then present the stability analysis.

Consistency analysis

We discuss the truncation errors of the fractional derivative approximations and, for the sake of clarity,
we omit the variable t. Furthermore, we present the results only for the left fractional derivative since
the ones for the right fractional derivative can be obtained in a similar manner.

We start by presenting a known result for the central approximation.

Theorem 5.1 (Central approximation, [75]). Let 0 ă α ă 1, u P C3pRq and such that the third-order
derivative, up3q, has compact support. We have that

Bαu
Bxα

px jq ´
δ l

cu
∆xα

px jq “ εpx jq, |εpx jq| ď C∆x2,

where C does not depend on ∆x.

Before moving to the next method, we present a result of great use for the next consistency
theorems.

Lemma 5.2. Consider ξ P rxk´1,xks and

skpξ q “
xk ´ ξ

∆x
upxk´1q `

ξ ´ xk´1

∆x
upxkq. (5.25)

(a) For u P C2pRq, we have

upξ q ´ skpξ q “ ´
1
2

up2qpσkqlk,2pξ q, σk P rxk´1,xks.

(b) For u P C3pRq, we have

upξ q´skpξ q “ ´
1
2

up2qpηkqlk,2pξ q´
1
3!

ˆ

up3qpηkq
xk ´ ξ

∆x
pxk´1 ´ ξ q3 ` up3qpζkqpxk ´ ξ q3 ξ ´ xk´1

∆x

˙

,

for ηk P rxk´1,ξ s and ζk P rξ ,xks.

In both lines, lk,2pξ q “ pxk ´ ξ q∆x ´ pxk ´ ξ q2.

Proof. (a) We follow the proof presented in [76]. For ξ P rxk´1,xks, doing the Taylor expansions of
upxk´1q and upxkq around ξ ,

upxk´1q “ upξ q ` u1pξ qpxk´1 ´ ξ q `
1
2!

up2qpηkqpxk´1 ´ ξ q2, ηk P rxk´1,ξ s,

upxkq “ upξ q ` u1pξ qpxk ´ ξ q `
1
2!

up2qpζkqpxk ´ ξ q2, ζk P rξ ,xks.
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Replacing upxk´1q and upxkq in (5.25) by the previous expansions,

skpξ q “
xk ´ ξ

∆x

ˆ

upξ q ` u1pξ qpxk´1 ´ ξ q `
1
2!

up2qpηkqpxk´1 ´ ξ q2
˙

`
ξ ´ xk´1

∆x

ˆ

upξ q ` u1pξ qpxk ´ ξ q `
1
2!

up2qpζkqpxk ´ ξ q2
˙

.

that is equivalent to

skpξ q “ upξ q `
1
2

up2qpσkq

ˆ

xk ´ ξ

∆x
pxk´1 ´ ξ q2 ` pxk ´ ξ q2 ξ ´ xk ` ∆x

∆x

˙

with σk P rxk´1,xks, since up2q is continuous and the coefficients of up2q have the same sign.

Then, we can write

upξ q ´ skpξ q “ ´
1
2

up2qpσkqlk,2pξ q, σk P rxk´1,xks,

with
lk,2pξ q “ pxk ´ ξ q∆x ´ pxk ´ ξ q2. (5.26)

(b) Following the same ideas of the previous proof, doing the Taylor expansions of upxk´1q and
upxkq around ξ ,

upxk´1q “ upξ q ` u1pξ qpxk´1 ´ ξ q `
1
2!

up2qpξ qpxk´1 ´ ξ q2 `
1
3!

up3qpηkqpxk´1 ´ ξ q3, ηk P rxk´1,ξ s,

upxkq “ upξ q ` u1pξ qpxk ´ ξ q `
1
2!

up2qpξ qpxk ´ ξ q2 `
1
3!

up3qpζkqpxk ´ ξ q3, ζk P rξ ,xks

and replacing upxk´1q and upxkq in (5.25) by the previous expansions,

skpξ q “
xk ´ ξ

∆x

ˆ

upξ q ` u1pξ qpxk´1 ´ ξ q `
1
2!

up2qpξ qpxk´1 ´ ξ q2 `
1
3!

up3qpηkqpxk´1 ´ ξ q3
˙

`
ξ ´ xk´1

∆x

ˆ

upξ q ` u1pξ qpxk ´ ξ q `
1
2!

up2qpξ qpxk ´ ξ q2 `
1
3!

up3qpζkqpxk ´ ξ q3
˙

.

Gathering the terms according to the derivative of u, we obtain

skpξ q “ upξ q `
1
2

up2qpξ q

ˆ

xk ´ ξ

∆x
pxk´1 ´ ξ q2 ` pxk ´ ξ q2 ξ ´ xk ` ∆x

∆x

˙

`
1
3!

ˆ

up3qpηkq
xk ´ ξ

∆x
pxk´1 ´ ξ q3 ` up3qpζkqpxk ´ ξ q3 ξ ´ xk ` ∆x

∆x

˙

.

In this case, despite up3q being continuous, one coefficient is positive and the other is negative.
Therefore,

upξ q´skpξ q “ ´
1
2

up2qpξ qlk,2pξ q´
1
3!

ˆ

up3qpηkq
xk ´ ξ

∆x
pxk´1 ´ ξ q3 ` up3qpζkqpxk ´ ξ q3 ξ ´ xk ` ∆x

∆x

˙

with ηk P rxk´1,ξ s, ζk P rξ ,xks and lk,2 defined in (5.26).
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We present the result for the upwind first order approximation.

Theorem 5.3 (Upwind first order approximation). Let 0 ă α ă 1, u P C2pRq and such that the spatial
derivatives vanish at infinity in an appropriate manner, that is, there exists an xa such that

ż xa

´8

up2qpξ qpx j ´ ξ q´αdξ ă CI∆x3. (5.27)

Then, we have that
Bαu
Bxα

px jq ´
δ l

1u
∆xα

px jq “ εpx jq, |εpx jq| ď C∆x,

where C does not depend on ∆x.

Proof. For the first order upwind approximation, we have

B

Bx
I lupx jq “

I lupx jq ´I lupx j´1q

∆x
` ε1px jq

where ε1px jq “ Op∆xq. Considering now the approximation of I lupx jq by Ilupx jq, we can write

B

Bx
I lupx jq “

δ l
1u

∆x
px jq ` ε2px jq ` ε1px jq

where
ε2px jq “

1
∆x

`“

I lupx jq ´ Ilupx jq
‰

´
“

I lupx j´1q ´ Ilupx j´1q
‰˘

.

Recall that the approximation Ilupx jq is obtained substituting u by the linear spline s

spxq “

j
ÿ

k“´8

upxkqB1
`px ´ xkq,

where, for k ă j

B1
`px ´ xkq “

$

’

’

’

’

&

’

’

’

’

%

x ´ xk´1

∆x
, xk´1 ă x ď xk,

xk`1 ´ x
∆x

, xk ă x ď xk`1,

0, otherwise

and B1
`px ´ x jq “

$

&

%

x j ´ x
∆x

, x j´1 ď x ď x j,

0, otherwise.

Then, we can rewrite the spline as

spxq “

j
ÿ

k“´8

skpxq,

with

skpξ q “
xk ´ ξ

∆x
upxk´1q `

ξ ´ xk´1

∆x
upxkq, for k ď j.

Hence,

I lupx jq ´ Ilupx jq “
1

Γp3 ´ αq

ż x j

´8

pupξ q ´ spξ qqpx j ´ ξ q´αdξ (5.28)
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can be written as

I lupx jq ´ Ilupx jq “
1

Γp3 ´ αq

j
ÿ

k“´8

ż xk

xk´1

pupξ q ´ skpξ qqpx j ´ ξ q´αdξ

Therefore

ε2px jq“
1

∆x
1

Γp3 ´ αq

˜

j
ÿ

k“´8

ż xk

xk´1

pupξ q´skpξ qqpx j´ξ q´αdξ ´

j´1
ÿ

k“´8

ż xk

xk´1

pupξ q´skpξ qqpx j´1´ξ q´αdξ

¸

.

From Lemma 5.2(a),

upξ q ´ skpξ q “ ´
1
2

up2qpηkqlk,2pξ q, ηk P rxk´1,xks, (5.29)

where
lk,2pξ q “ pxk ´ ξ q∆x ´ pxk ´ ξ q2

and therefore, |lk,2pξ q| ď ∆x2. Using (5.29),

ε2px jq“
´1

∆xΓp3´αq

˜

j
ÿ

k“´8

ż xk

xk´1

up2qpηkqlk,2pξ qpx j´ξ q´αdξ ´

j´1
ÿ

k“´8

ż xk

xk´1

up2qpηkqlk,2pξ qpx j´1´ξ q´αdξ

¸

.

For the second integral, by doing a change of variable ξ “ ξ ´ ∆x,

j´1
ÿ

k“´8

ż xk

xk´1

up2qpηkqlk,2pξ qpx j´1 ´ ξ q´αdξ “

j´1
ÿ

k“´8

ż xk`1

xk

up2qpηk´1qlk,2pξ ´ ∆xqpx j ´ ξ q´αdξ .

Noting that
lk,2pξ ´ ∆xq “ pxk ´ ξ ` ∆xq∆x ´ pxk ´ ξ ` ∆xq2

“ pxk`1 ´ ξ q∆x ´ pxk`1 ´ ξ q2

“ lk`1,2pξ q,

we obtain

j´1
ÿ

k“´8

ż xk

xk´1

up2qpηkqlk,2pξ qpx j´1 ´ ξ q´αdξ “

j´1
ÿ

k“´8

ż xk`1

xk

up2qpηk´1qlk`1,2pξ qpx j ´ ξ q´αdξ .

that is equivalent to

j´1
ÿ

k“´8

ż xk

xk´1

up2qpηkqlk,2pξ qpx j´1 ´ ξ q´αdξ “

j
ÿ

k“´8

ż xk

xk´1

up2qpηk´1qlk,2pξ qpx j ´ ξ q´αdξ .
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Additionally, if we assume that the function u and its derivatives behave as (5.27), then we can write

ε2px jq “
1

∆x
1

Γp3 ´ αq

j
ÿ

k“rxa{∆xs

ż xk

xk´1

up2qpηk´1qlk,2pξ qpx j ´ ξ q´αdξ

´
1

∆x
1

Γp3 ´ αq

j
ÿ

k“rxa{∆xs

ż xk

xk´1

up2qpηkqlk,2pξ qpx j ´ ξ q´αdξ ` Op∆x2q.

Therefore we can obtain the following upper bound for ε2px jq

|ε2px jq| ď
2

∆xΓp3 ´ αq
||up2q||8∆x2 px j ´ xaq1´α

1 ´ α
`CI∆x2.

We conclude that this approximation is a first order approximation for the fractional derivative.

We finish this section with the result regarding the accuracy of the upwind second order approxi-
mation.

Theorem 5.4 (Upwind second order approximation). Let 0 ă α ă 1, u P C3pRq and such that the
spatial derivatives vanish at infinity in an appropriate manner as in (5.27). We have that

Bαu
Bxα

px jq ´
δ l

2u
∆xα

px jq “ εpx jq, |εpx jq| ď C∆x2,

where C does not depend on ∆x.

Proof. For the second order upwind approximation, we have

B

Bx
I lupx jq “

3I lupx jq ´ 4I lupx j´1q `I lupx j´2q

2∆x
` ε1px jq

where ε1px jq “ Op∆x2q. Then, using the spline approximation of the integral, we can write

B

Bx
I lupx jq “

δ l
2u

∆x
px jq ` ε2px jq ` ε1px jq

where

ε2px jq “
1

2∆x

`

3pI lupx jq ´ Ilupx jqq ´ 4pI lupx j´1q ´ Ilupx j´1qq ` pI lupx j´2q ´ Ilupx j´2qq
˘

.

From Lemma 5.2(b),

upξ q ´ skpξ q “ ´
1
2

up2qpξ qlk,2pξ q ´
1
3!

ckpξ ,ηk,ζkq

with lk,2 given by (5.26) and ckpξ ,ηk,ζkq given by

ckpξ ,ηk,ζkq “ up3qpηkq
xk ´ ξ

∆x
pxk´1 ´ ξ q3 ` up3qpζkqpxk ´ ξ q3 ξ ´ xk ` ∆x

∆x
.
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Therefore we can write
ε2px jq “ ´

1
2

ε2,2px jq ´
1
3!

ε2,3px jq

with

ε2,2px jq “
1

2∆x
3

Γp3 ´ αq

j
ÿ

k“´8

ż xk

xk´1

lk,2pξ qup2qpξ qpx j ´ ξ q´αdξ

´
1

2∆x
4

Γp3 ´ αq

j´1
ÿ

k“´8

ż xk

xk´1

lk,2pξ qup2qpξ qpx j´1 ´ ξ q´αdξ

`
1

2∆x
1

Γp3 ´ αq

j´2
ÿ

k“´8

ż xk

xk´1

lk,2pξ qup2qpξ qpx j´2 ´ ξ q´αdξ

and

ε2,3px jq “
1

2∆x
3

Γp3 ´ αq

j
ÿ

k“´8

ż xk

xk´1

ckpξ ,ηk,ζkqpx j ´ ξ q´αdξ

´
1

2∆x
4

Γp3 ´ αq

j´1
ÿ

k“´8

ż xk

xk´1

ckpξ ,ηk,ζkqpx j´1 ´ ξ q´αdξ

`
1

2∆x
1

Γp3 ´ αq

j´2
ÿ

k“´8

ż xk

xk´1

ckpξ ,ηk,ζkqpx j´2 ´ ξ q´αdξ .

We continue with the simplification of the term ε2,2px jq. By doing the change of variables ξ “ ξ ´ ∆x
in the second integral and ξ “ ξ ´ 2∆x in the third one, we obtain

ε2,2px jq “
3

2∆x
1

Γp3 ´ αq

j
ÿ

k“´8

ż xk

xk´1

lk,2pξ qup2qpξ qpx j ´ ξ q´αdξ

´
4

2∆x
1

Γp3 ´ αq

j´1
ÿ

k“´8

ż xk`∆x

xk´1`∆x
lk,2pξ ´ ∆xqup2qpξ ´ ∆xqpx j ´ ξ q´αdξ

`
1

2∆x
1

Γp3 ´ αq

j´2
ÿ

k“´8

ż xk`2∆x

xk´1`2∆x
lk,2pξ ´ 2∆xqup2qpξ ´ 2∆xqpx j ´ ξ q´αdξ .

Since lk,2pξ ´ ∆xq “ lk`1,2pξ q, as we seen in the last theorem, it follows that

ε2,2px jq “
1

2∆xΓp3 ´ αq

j
ÿ

k“´8

ż xk

xk´1

lk,2pξ qp3up2qpξ q ´ 4up2qpξ ´ ∆xq ` up2qpξ ´ 2∆xqqpx j ´ ξ q´αdξ .

Note that

3up2qpξ q´4up2qpξ ´∆xq`up2qpξ ´2∆xq“3
´

up2qpξ q ´ up2qpξ ´∆xq

¯

´

´

up2qpξ ´∆xq ´ up2qpξ ´2∆xq

¯

.

(5.30)
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Doing a Taylor expansion of up2qpξ ´ ∆xq around ξ and a Taylor expansion of up2qpξ ´ 2∆xq around
ξ ´ ∆x,

up2qpξ ´ ∆xq “ up2qpξ q ´ ∆xup3qpξ1q, ξ1 P rξ ´ ∆x,ξ s,

up2qpξ ´ 2∆xq “ up2qpξ ´ ∆xq ´ ∆xup3qpξ2q, ξ2 P rξ ´ 2∆x,ξ ´ ∆xs

and therefore, (5.30) can be written as

3up2qpξ q ´ 4up2qpξ ´ ∆xq ` up2qpξ ´ 2∆xq “

´

3up3qpξ1q ´ up3qpξ2q

¯

∆x.

Thus, assuming that the derivatives of u vanish in an appropriate manner as in (5.27) so that there
exists xa such that

ε2,2px jq “
1

2∆xΓp3 ´ αq

j
ÿ

k“rxa{∆xs

ż xk

xk´1

lk,2pξ qp3∆xup3qpξ1q ´ ∆xup3qpξ2qqpx j ´ ξ q´αdξ `CI∆x2,

we obtain

|ε2,2px jq| ď
4

2Γp3 ´ αq
∆x2||up3q||8

px j ´ xaq1´α

1 ´ α
`CI∆x2.

Similarly, for the term ε2,3, by doing a change of variables and assuming that the derivatives of u
vanish in an appropriate manner as in (5.27) we have that there exists xa such that

ε2,3px jq “
1

2∆x
3

Γp3 ´ αq

j
ÿ

k“xa

ż xk

xk´1

ckpξ ,ηk,ζkqpx j ´ ξ q´αdξ

´
4

2∆x
1

Γp3 ´ αq

j
ÿ

k“xa

ż xk

xk´1

ckpξ ´ ∆x,ηk´1,ζk´1qpx j ´ ξ q´αdξ

`
1

2∆x
1

Γp3 ´ αq

j
ÿ

k“xa

ż xk

xk´1

ckpξ ´ 2∆x,ηk´2,ζk´2qpx j ´ ξ q´αdξ `CI∆x2.

Therefore

|ε2,3px jq| ď
8

2Γp3 ´ αq
∆x2||up3q||8

px j ´ xaq1´α

1 ´ α
`CI∆x2.

It follows from the bounds of ε2,2px jq and ε2,3px jq that the bound of ε2px jq is of second order.

In the next section, we discuss the stability of the methods described previously.

Stability analysis

We present the stability results using the von Neumann analysis, regarding the central, the upwind
first order and the upwind second order methods. The study of the three implicit methods is done in
the same way. For each method, we present a lemma that involves properties of the coefficients that
will be needed to prove the main theorem on stability.

We start with the implicit central method given by

Um`1
j `

1
2

µαδ
p
α,cUm`1

j “ Um
j ´

1
2

µαδ
p
α,cUm

j ` gm`1{2
j , (5.31)
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where the operator δ
p
α,cu is defined by (5.13).

The next lemma concerns the coefficients that appear in the operator (5.13) that already appeared
in the literature.

Lemma 5.5 ([75]). The coefficients bk,c, defined by (5.11), verify

(a) |bk`1,c| ă |bk,c|, k ě 1, lim
kÑ8

bk,c “ 0,

(b)
8
ÿ

k“´1

bk,c cospkφq ě 0,
8
ÿ

k“´1

bk,c “ 0,
8
ÿ

k“´1

bk,cp´1qk “ 0.

The main stability result for the method involving the central approximation is presented next.

Theorem 5.6 (Central method). The implicit central method is unconditionally stable.

Proof. As described in section 4.2.2, the Fourier analysis can be done, in brief, substituting the error
in equation

em`1
j `

1
2

µαδ
p
α,cem`1

j “ em
j ´

1
2

µαδ
p
α,cem

j , (5.32)

by κmei jφ and verifying if the amplification factor κ is not larger than 1, for all φ P r0,πs. Using the
formula of the operator δ

p
α,cu

κ
m`1ei jφ `

1
2

µακ
m`1

«

1 ` p
2

1
2Γp3 ´ αq

8
ÿ

k“´1

bk,ceip j´kqφ `
1 ´ p

2
1

2Γp3 ´ αq

8
ÿ

k“´1

bk,ceip j`kqφ

ff

“

“ κ
mei jφ ´

1
2

µακ
m

«

1 ` p
2

1
2Γp3 ´ αq

8
ÿ

k“´1

bk,ceip j´kqφ `
1 ´ p

2
1

2Γp3 ´ αq

8
ÿ

k“´1

bk,ceip j`kqφ

ff

.

Simplifying κmei jφ on both sides we obtain

κ

˜

1 `
1
2

µα

«

1 ` p
2

1
2Γp3 ´ αq

8
ÿ

k“´1

bk,ce´ikφ `
1 ´ p

2
1

2Γp3 ´ αq

8
ÿ

k“´1

bk,ceikφ

ff¸

“

“ 1 ´
1
2

µα

«

1 ` p
2

1
2Γp3 ´ αq

8
ÿ

k“´1

bk,ce´ikφ `
1 ´ p

2
1

2Γp3 ´ αq

8
ÿ

k“´1

bk,ceikφ

ff

.

Since µα ą 0, if the real part of

1 ` p
2

8
ÿ

k“´1

bk,ce´ikφ `
1 ´ p

2

8
ÿ

k“´1

bk,ceikφ

is positive or zero then |κpφq| ď 1, as explained in the remark after this proof. The real part is given
by

1 ` p
2

8
ÿ

k“´1

bk,c cospkφq `
1 ´ p

2

8
ÿ

k“´1

bk,c cospkφq

that is equal to
8
ÿ

k“´1

bk,c cospkφq.
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By the previous lemma we can conclude that it is nonnegative.

Remark. Consider three complex numbers z1,z2 and z3 such that z2 “ 1 ´ a ´ ib, z3 “ 1 ` a ` ib
and z1 “ z2{z3. In polar coordinates, we have zk “ rkeiφk for k “ 1,2,3 where |zk| “ rk. Then, we can
write

z1 “
z2

z3
“

r2

r3
eipφ2´φ3q

that implies that

|z1| “

a

p1 ´ aq2 ` b2
a

p1 ` aq2 ` b2
.

In order to have |z1| ď 1, it requires that p1 ´ aq2 ď p1 ` aq2 and therefore we just have to guarantee
that a ě 0.

Let us now consider the implicit upwind first order method given by

Um`1
j `

1
2

µαδ
p
α,1Um`1

j “ Um
j ´

1
2

µαδ
p
α,1Um

j ` gm`1{2
j , (5.33)

where the operator δ
p
α,1u is defined by (5.15).

Lemma 5.7. The coefficients bk,1, defined by (5.14), verify:

(a) lim
kÑ8

bk,1 “ 0, bk,1 ď 0, k ě 2 ,

(b)
8
ÿ

k“0

bk,1 “ 0,
8
ÿ

k“0

bk,1 cospkφq ě 0.

Proof. (a) Recall that bk,1 is defined by (5.14) as

b0,1 “ a0, bk,1 “ ak ´ ak´1, m ě 1,

with
a0 “ 1, ak “ pk ` 1q2´α ´ 2k2´α ` pk ´ 1q2´α , for k ě 1.

Then, b0,1 ą 0, b1,1 “ 22´α ´ 3 can be positive, negative or 0 and, for k ě 2, we have bk,1 ď 0. The
coefficient b1,1 is positive for α ď lnp4{3q{ lnp2q » 0,415 and negative otherwise.

The coefficients bk,1 can be written for k ą 1 in the form

bk,1 “ pk ` 1q2´α ´ 3k2´α ` 3pk ´ 1q2´α ´ pk ´ 2q2´α ,

that is equivalent to

bk,1 “ k2´α

«

ˆ

1 `
1
k

˙2´α

´ 3 ` 3
ˆ

1 ´
1
k

˙2´α

´

ˆ

1 ´
2
k

˙2´α
ff

.
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Using the generalized binomial theorem,

bk,1 “ k2´α

˜

´3 `

`8
ÿ

j“0

ˆ

2 ´ α

j

˙

`

1 ` p´1q j3 ´ p´1q j2 j˘
ˆ

1
k

˙ j
¸

.

In the series, the first three terms are given by

p1 ` 3 ´ 1q “ 3, p2 ´ αqp1 ´ 3 ` 2q
1
k

“ 0,
ˆ

2 ´ α

2

˙

`

1 ` 3 ´ 22˘

ˆ

1
k

˙2

“ 0

and therefore we can arrive to

bk,1 “

8
ÿ

j“3

ˆ

2 ´ α

j

˙

c j

k j`α´2 , (5.34)

where c j “ 1 ` p´1q jp3 ´ 2 jq.It follows from (5.34) that, for 0 ă α ă 1, we have lim
kÑ8

bk,1 “ 0.

(b) Note that
`8
ÿ

k“0

bk,1 can be seen as lim
NÑ8

N
ÿ

k“0

bk,1. Then, let us consider sN “

N
ÿ

k“0

bk,1. We have

that

sN “ b0,1 ` b1,1 ` ¨¨ ¨ ` bN´1,1 ` bN,1

“ a0 ` a1 ´ a0 ` ¨¨ ¨ ` aN´1,1 ´ aN´2,1 ` aN,1 ´ aN´1,1

“ aN,1

that is equivalent to

sN “ pN ` 1q2´α ´ 2N2´α ` pN ´ 1q2´α “

8
ÿ

j“2

ˆ

2 ´ α

j

˙

1 ` p´1q j

Nα´2` j .

Therefore lim
NÑ8

sN “ 0 and we have
8
ÿ

k“0

bk,1 “ 0. (5.35)

Regarding the cosine series, we denote it by spφq, that is,

spφq :“
8
ÿ

k“0

bk,1 cospkφq. (5.36)

Since

b0,1 “ ´b1,1 `

8
ÿ

k“2

p´bk,1q

we have

spφq “ b0,1 ` b1,1 cosφ `

8
ÿ

k“2

bk,1 cospkφq “ ´b1,1p1 ´ cosφq `

8
ÿ

k“2

p´bk,1qp1 ´ cospkφqq.
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The series is nonnegative, once bk,1 ď 0 for k ą 1 and 0 ď 1 ´ cospkφq ď 2. However, the term
´b1,1p1 ´ cosφq can be either positive or negative, depending on the sign of b1,1. For the values of
α such that b1,1 ď 0, we can conclude immediately that spφq ě 0. If b1,1 ě 0 we proceed differently.
From the definition of spφq we conclude that it is a continuous function for φ P r0,πs and, from (5.35),
sp0q “ 0. Furthermore, spφq is positive, since spπ{2q ą 0 and spφq ‰ 0 for all φ ‰ 0 as can be seen in
Figure 5.2.
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Fig. 5.2 Plot of the series function of cosines spφq given by (5.36) when φ P r0,πs and for different
values of α changing from 0.1 to 0.9.

The main stability result for the method involving the first order upwind approximation is presented
next.

Theorem 5.8 (Upwind first order method). The implicit upwind first order method is unconditionally
stable.

Proof. Similarly to the last theorem, the von Neumann analysis can be done replacing the error in
equation

em`1
j `

1
2

µαδ
p
α,1em`1

j “ em
j ´

1
2

µαδ
p
α,1em

j , (5.37)

by κmei jφ and verifying if the amplification factor κ is less than or equal to 1, for all φ P r0,πs. Using
the formula of the operator δ 2

α,1u and dividing the whole equation by κmei jφ ,

κ

˜

1 `
µα

2Γp3 ´ αq

«

1 ` p
2

8
ÿ

k“0

bk,1e´ikφ `
1 ´ p

2

8
ÿ

k“0

bk,1eikφ

ff¸

“ 1 ´
µα

2Γp3 ´ αq

«

1 ` p
2

8
ÿ

k“0

bk,1e´ikφ `
1 ´ p

2

8
ÿ

k“0

bk,1eikφ

ff

.
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If the real part of
1 ` p

2

8
ÿ

k“0

bk,1e´ikφ `
1 ´ p

2

8
ÿ

k“0

bk,1eikφ

is positive or zero then |κpφq| ď 1 as seen before. The real part is given by

1 ` p
2

8
ÿ

k“0

bk,1 cospkφq `
1 ´ p

2

8
ÿ

k“0

bk,1 cospkφq.

By the previous lemma we can conclude that it is nonnegative.

The implicit upwind second order method is given by

Um`1
j `

1
2

µαδ
p
α,2Um`1

j “ Um
j ´

1
2

µαδ
p
α,2Um

j ` gm`1{2
j , (5.38)

where the operator δ
p
α,2u is defined by (5.19).

Lemma 5.9. The coefficients bk,2, defined by (5.17), verify:

(a) lim
kÑ8

bk,2 “ 0, bk,2 ď 0, k ě 4,

(b)
8
ÿ

k“0

bk,2 “ 0,
8
ÿ

k“0

bk,2 cospkφq ě 0.

Proof. The proof can be done following the same steps of Lemma 5.7.

(a) From (5.17), we have

b0,2 “ 3a0, b1,2 “ 3a1 ´ 4a0, bk,2 “ 3ak ´ 4ak´1 ` ak´2, k ě 2.

It is easy to check that, for all k ě 4, we have bk,2 ď 0. For k “ 0, we have b0,2 “ 3 ą 0. For k “ 1,
b1,2 “ 3 ˆ 22´α ´ 10 is positive for α ď lnp6{5q{ lnp2q » 0,263 and negative otherwise. For k “ 2,3,
we have that b2,k can be positive or negative, once again depending on the value of α .

For k ě 3, the coefficients bk,2 can be written as

bk,2 “ 3pk ` 1q2´α ´ 10k2´α ` 12pk ´ 1q2´α ´ 6pk ´ 2q2´α ` pk ´ 3q2´α ,

that leads us

bk,2 “ k2´α

«

3
ˆ

1 `
1
k

˙2´α

´ 10 ` 12
ˆ

1 ´
1
k

˙2´α

´ 6
ˆ

1 ´
2
k

˙2´α

`

ˆ

1 ´
3
k

˙2´α
ff

.

Applying the generalized binomial theorem,

bk,2 “ k2´α

˜

´10 `

`8
ÿ

j“0

ˆ

2 ´ α

j

˙

`

3 ` 12 ˆ p´1q j ´ 6 ˆ p´1q j2 j ` p´1q j3 j˘
ˆ

1
k

˙ j
¸

.



92 Superdiffusion problem

Note that, the first three terms of the series are given by

3 ` 12 ´ 6 ` 1 “ 10, p3 ´ 12 ` 6 ˆ 2 ´ 3q
1
k

“ 0, p3 ` 12 ´ 6 ˆ 4 ` 9q
1
k2 “ 0.

Therefore, we can write that the coefficients bk,2 are defined by the series

bk,2 “

8
ÿ

j“3

ˆ

2 ´ α

j

˙

3c j

k j`α´2 , (5.39)

for k ą 2, with c j “ 1 ` p´1q jp4 ´ 2 j`1 ` 3 j´1q. It follows from (5.39) that, for 0 ă α ă 1, we have
lim

kÑ8
bk,2 “ 0.

(b) Considering sN “

N
ÿ

k“0

bk,2, we can write lim
NÑ8

sN “

8
ÿ

k“0

bk,2. Using the definition of bk,2, for sN

we have

sN “ b0,2 ` b1,2 ` b2,2 ` ¨¨ ¨ ` bN,2

“ 3a0 ` 3a1 ´ 4a0 ` 3a2 ´ 4a1 ` a0 ¨ ¨ ¨ ` 3aN´1 ´ 4aN´2 ` aN´3 ` 3aN ´ 4aN´1 ` aN´2

“ 3aN,1 ´ aN´1,1,

which is equivalent to

sN “ 3
`

pN ` 1q2´α ´ 2N2´α ` pN ´ 1q2´α
˘

´
`

N2´α ´ 2pN ´ 1q2´α ` pN ´ 2q2´α
˘

and then
sN “ 3pN ` 1q2´α ´ 7N2´α ` 5pN ´ 1q2´α ´ pN ´ 2q2´α .

Using once again the generalized binomial theorem, we obtain

sN “

8
ÿ

j“2

ˆ

2 ´ α

j

˙

d j

Nα´2` j ,

where d j “ 3 ` p´1q jp5 ´ 2 jq. Therefore lim
NÑ8

sN “ 0 and

8
ÿ

k“0

bk,2 “ 0. (5.40)

Regarding the cosine series, that we denote it by spφq,

spφq :“
8
ÿ

k“0

bk,2 cospkφq, (5.41)

and, from (5.40), we have that sp0q “ 0. Furthermore, spφq is positive, since it is a continuous function
spπ{2q ą 0 and spφq ‰ 0 for all φ ‰ 0 as can be seen in Figure 5.3.
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Fig. 5.3 Plot of the series function of cosines spφq given by (5.41) when φ P r0,πs and for different
values of α changing from 0.1 to 0.9.

The main stability result for the method involving the second order upwind approximation is
presented next.

Theorem 5.10 (Upwind second order method). The implicit upwind second order method is uncondi-
tionally stable.

Proof. The proof is similar to the proof of Theorem 5.8. By replacing the error in equation

em`1
j `

1
2

µαδ
p
α,2em`1

j “ em
j ´

1
2

µαδ
p
α,2em

j , (5.42)

by a single mode κmei jφ and simplifying κmei jφ on both sides we obtain

κ

˜

1 `
µα

4

«

1 ` p
2

1
Γp3 ´ αq

8
ÿ

k“0

bk,2e´ikφ `
1 ´ p

2
1

Γp3 ´ αq

8
ÿ

k“0

bk,2eikφ

ff¸

“ 1 ´
µα

4

˜

1 ` p
2

1
Γp3 ´ αq

8
ÿ

k“0

bk,2e´ikφ `
1 ´ p

2
1

Γp3 ´ αq

8
ÿ

k“0

bk,2eikφ

¸

.

If the real part of
1 ` p

2

8
ÿ

k“0

bk,2e´ikφ `
1 ´ p

2

8
ÿ

k“0

bk,2eikφ

is non-negative then |κpφq| ď 1. The real part is given by

1 ` p
2

8
ÿ

k“0

bk,2 cospkφq `
1 ´ p

2

8
ÿ

k“0

bk,2 cospkφq
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and, by Lemma 5.9(b), we can conclude that it is positive or zero.

In the next sections we present some experiments with the three numerical methods discussed
previously.

5.2.4 Numerical experiments

Consider equation (5.5), with D “ 1, source term gpx, tq and initial condition u0pxq are defined in
order to the exact solution of the problem be upx, tq “ e´tx4p2´xq4. Moreover, consider the following
domain r0,2s ˆ r0,1s, discretized uniformly.

In the next tables we determine the discrete L8 norm and the discrete L2 norm of error for an
instant of time tM “ M∆t, as follows

||uM ´UM||8 “ max
j“1,...,N´1

ˇ

ˇupx j, tMq ´UM
j

ˇ

ˇ (5.43)

and

||uM ´UM||2 “

˜

∆x
N´1
ÿ

j“1

ˇ

ˇupx j, tMq ´UM
j

ˇ

ˇ

2

¸1{2

. (5.44)

We present the convergence in space, for different values of α and for p “ ´1,0,1, for the three
numerical methods suggested previously.

Table 5.1 Results concerning the central approximation for p “ 1, ∆t “ 0.001 and different values of
α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 1.923e-04 2.227e-04 2.606e-04 2.998e-04 4.132e-04
2´7 4.805e-05 2.00 5.567e-05 2.00 6.538e-05 2.00 7.569e-05 1.99 1.049e-04 1.98
2´8 1.199e-05 2.00 1.390e-05 2.00 1.637e-05 2.00 1.907e-05 1.99 2.659e-05 1.98
2´9 2.975e-06 2.01 3.455e-06 2.01 4.080e-06 2.00 4.783e-06 2.00 6.756e-06 1.98

R2 R2 R2 R2 R2

2´6 1.514e-04 1.766e-04 2.079e-04 2.400e-04 2.565e-04
2´7 3.783e-05 2.00 4.416e-05 2.00 5.213e-05 2.00 6.062e-05 1.99 6.490e-05 1.98
2´8 9.447e-06 2.00 1.104e-05 2.00 1.306e-05 2.00 1.528e-05 1.99 1.641e-05 1.98
2´9 2.352e-06 2.01 2.752e-06 2.00 3.266e-06 2.00 3.844e-06 1.99 4.142e-06 1.99

In Tables 5.1–5.9 we have the results for the three methods, for p “ 1,0 and ´1. In Tables 5.1–5.3
we exhibit the results for the central approximation; in Tables 5.4–5.6 we exhibit the results for the
first order upwind approximation; and in Tables 5.7–5.9 we exhibit the results for the second order
upwind approximation. By observing the tables, we conclude that the methods using the central
approximation and the second order upwind approximation are second order accurate while the first
order accuracy is attained by the first order upwind scheme. All the results are according to the
theoretical results.
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Table 5.2 Results concerning the central approximation for p “ 0, ∆t “ 0.001 and different values of
α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 1.902e-04 2.029e-04 2.046e-04 1.907e-04 1.226e-04
2´7 4.753e-05 2.00 5.069e-05 2.00 5.109e-05 2.00 4.760e-05 2.00 3.057e-05 2.00
2´8 1.186e-05 2.00 1.265e-05 2.00 1.275e-05 2.00 1.187e-05 2.00 7.604e-06 2.01
2´9 2.942e-06 2.01 3.140e-06 2.01 3.163e-06 2.01 2.940e-06 2.01 1.867e-06 2.03

R2 R2 R2 R2 R2

2´6 1.498e-04 1.612e-04 1.642e-04 1.556e-04 1.032e-04
2´7 3.742e-05 2.00 4.027e-05 2.00 4.102e-05 2.00 3.883e-05 2.00 2.572e-05 2.00
2´8 9.344e-06 2.00 1.006e-05 2.00 1.024e-05 2.00 9.694e-06 2.00 6.413e-06 2.00
2´9 2.326e-06 2.01 2.505e-06 2.01 2.552e-06 2.00 2.414e-06 2.01 1.592e-06 2.01

Table 5.3 Results concerning the central approximation for p “ ´1, ∆t “ 0.001 and different values
of α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 1.923e-04 2.227e-04 2.606e-04 2.998e-04 4.132e-04
2´7 4.805e-05 2.00 5.567e-05 2.00 6.538e-05 2.00 7.569e-05 1.99 1.049e-04 1.98
2´8 1.199e-05 2.00 1.390e-05 2.00 1.637e-05 2.00 1.907e-05 1.99 2.659e-05 1.98
2´9 2.975e-06 2.01 3.455e-06 2.01 4.080e-06 2.00 4.783e-06 2.00 6.756e-06 1.98

R2 R2 R2 R2 R2

2´6 1.514e-04 1.766e-04 2.079e-04 2.400e-04 2.565e-04
2´7 3.783e-05 2.00 4.416e-05 2.00 5.213e-05 2.00 6.062e-05 1.99 6.490e-05 1.98
2´8 9.447e-06 2.00 1.104e-05 2.00 1.306e-05 2.00 1.528e-05 1.99 1.641e-05 1.98
2´9 2.352e-06 2.01 2.752e-06 2.00 3.266e-06 2.00 3.844e-06 1.99 4.142e-06 1.99

Table 5.4 Results concerning the upwind first order approximation for p “ 1, ∆t “ 0.001 and different
values of α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 2.166e-02 2.278e-02 2.346e-02 2.840e-02 4.084e-02
2´7 1.083e-02 1.00 1.140e-02 1.00 1.176e-02 1.00 1.424e-02 1.00 2.054e-02 0.99
2´8 5.415e-03 1.00 5.703e-03 1.00 5.890e-03 1.00 7.132e-03 1.00 1.030e-02 1.00
2´9 2.708e-03 1.00 2.852e-03 1.00 2.947e-03 1.00 3.569e-03 1.00 5.158e-03 1.00

R2 R2 R2 R2 R2

2´6 5.194e-03 5.930e-03 6.969e-03 8.447e-03 1.063e-02
2´7 2.599e-03 1.00 2.974e-03 1.00 3.507e-03 0.99 4.269e-03 0.98 5.411e-03 0.97
2´8 1.300e-03 1.00 1.490e-03 1.00 1.759e-03 1.00 2.146e-03 0.99 2.731e-03 0.99
2´9 6.501e-04 1.00 7.455e-04 1.00 8.810e-04 1.00 1.076e-03 1.00 1.372e-03 0.99
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Table 5.5 Results concerning the upwind first order approximation for p “ 0, ∆t “ 0.001 and different
values of α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 3.356e-03 1.252e-02 2.593e-02 4.702e-02 8.402e-02
2´7 1.788e-03 0.91 6.400e-03 0.97 1.318e-02 0.98 2.392e-02 0.98 4.300e-02 0.97
2´8 9.219e-04 0.96 3.235e-03 0.98 6.647e-03 0.99 1.206e-02 0.99 2.175e-02 0.98
2´9 4.679e-04 0.98 1.626e-03 0.99 3.337e-03 0.99 6.056e-03 0.99 1.093e-02 0.99

R2 R2 R2 R2 R2

2´6 6.650e-04 2.554e-03 5.077e-03 9.088e-03 1.789e-02
2´7 3.674e-04 0.86 1.321e-03 0.95 2.602e-03 0.96 4.664e-03 0.96 9.272e-03 0.95
2´8 1.926e-04 0.93 6.715e-04 0.98 1.317e-03 0.98 2.363e-03 0.98 4.722e-03 0.97
2´9 9.852e-05 0.97 3.385e-04 0.99 6.627e-04 0.99 1.189e-03 0.99 2.383e-03 0.99

Table 5.6 Results concerning the upwind first order approximation for p “ ´1, ∆t “ 0.001 and
different values of α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 2.152e-02 2.269e-02 2.509e-02 3.025e-02 4.282e-02
2´7 1.076e-02 1.00 1.135e-02 1.00 1.259e-02 0.99 1.531e-02 0.98 2.224e-02 0.95
2´8 5.379e-03 1.00 5.679e-03 1.00 6.309e-03 1.00 7.707e-03 0.99 1.135e-02 0.97
2´9 2.689e-03 1.00 2.840e-03 1.00 3.158e-03 1.00 3.866e-03 1.00 5.735e-03 0.98

R2 R2 R2 R2 R2

2´6 5.194e-03 5.930e-03 6.969e-03 8.447e-03 1.063e-02
2´7 2.599e-03 1.00 2.974e-03 1.00 3.507e-03 0.99 4.269e-03 0.98 5.411e-03 0.97
2´8 1.300e-03 1.00 1.490e-03 1.00 1.759e-03 1.00 2.146e-03 0.99 2.731e-03 0.99
2´9 6.501e-04 1.00 7.455e-04 1.00 8.810e-04 1.00 1.076e-03 1.00 1.372e-03 0.99

Table 5.7 Results concerning the upwind second order approximation for p “ 1, ∆t “ 0.001 and
different values of α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 7.649e-04 8.042e-04 8.310e-04 8.321e-04 1.292e-03
2´7 2.036e-04 1.91 2.135e-04 1.91 2.213e-04 1.91 2.207e-04 1.91 3.187e-04 2.02
2´8 5.280e-05 1.95 5.548e-05 1.94 5.744e-05 1.95 5.700e-05 1.95 7.881e-05 2.02
2´9 1.359e-05 1.96 1.420e-05 1.97 1.468e-05 1.97 1.454e-05 1.97 1.956e-05 2.01

R2 R2 R2 R2 R2

2´6 1.512e-04 1.770e-04 2.129e-04 2.674e-04 3.539e-04
2´7 3.784e-05 2.00 4.427e-05 2.00 5.312e-05 2.00 6.636e-05 2.01 8.816e-05 2.01
2´8 9.473e-06 2.00 1.107e-05 2.00 1.326e-05 2.00 1.647e-05 2.01 2.188e-05 2.01
2´9 2.378e-06 1.99 2.776e-06 2.00 3.314e-06 2.00 4.093e-06 2.01 5.426e-06 2.01
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Table 5.8 Results concerning the upwind second order approximation for p “ 0, ∆t “ 0.001 and
different values of α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 7.822e-04 8.302e-04 8.085e-04 8.064e-04 1.079e-03
2´7 2.115e-04 1.89 2.230e-04 1.90 2.082e-04 1.96 2.097e-04 1.94 2.743e-04 1.98
2´8 5.499e-05 1.94 5.756e-05 1.95 5.232e-05 1.99 5.290e-05 1.99 6.809e-05 2.01
2´9 1.404e-05 1.97 1.459e-05 1.98 1.296e-05 2.01 1.319e-05 2.00 1.681e-05 2.02

R2 R2 R2 R2 R2

2´6 1.508e-04 1.662e-04 1.750e-04 1.767e-04 1.517e-04
2´7 3.761e-05 2.00 4.097e-05 2.02 4.244e-05 2.04 4.155e-05 2.09 3.186e-05 2.25
2´8 9.394e-06 2.00 1.017e-05 2.01 1.044e-05 2.02 1.006e-05 2.05 7.207e-06 2.14
2´9 2.356e-06 2.00 2.540e-06 2.00 2.598e-06 2.01 2.481e-06 2.02 1.717e-06 2.07

Table 5.9 Results concerning the upwind second order approximation for p “ ´1, ∆t “ 0.001 and
different values of α . Convergence rates R8 for the error (5.43) and R2 for the error (5.44).

∆x α “ 0.1 R8 α “ 0.3 R8 α “ 0.5 R8 α “ 0.7 R8 α “ 0.9 R8

2´6 8.248e-04 8.904e-04 8.877e-04 9.327e-04 1.184e-03
2´7 2.186e-04 1.92 2.324e-04 1.94 2.269e-04 1.97 2.360e-04 1.98 2.978e-04 1.99
2´8 5.646e-05 1.95 5.894e-05 1.98 5.730e-05 1.99 5.908e-05 2.00 7.426e-05 2.00
2´9 1.439e-05 1.97 1.484e-05 1.99 1.436e-05 2.00 1.471e-05 2.01 1.841e-05 2.01

R2 R2 R2 R2 R2

2´6 1.512e-04 1.770e-04 2.129e-04 2.674e-04 3.539e-04
2´7 3.784e-05 2.00 4.427e-05 2.00 5.312e-05 2.00 6.636e-05 2.01 8.816e-05 2.01
2´8 9.473e-06 2.00 1.107e-05 2.00 1.326e-05 2.00 1.647e-05 2.01 2.188e-05 2.01
2´9 2.378e-06 1.99 2.776e-06 2.00 3.314e-06 2.00 4.093e-06 2.01 5.426e-06 2.01

Furthermore note that, by analyzing all the tables, in general the values of the error are higher
for larger values of α , as it is illustrated by some figures displayed in the next section. Moreover,
from Tables 5.1–5.3 we can see that the values of the error for the central method are smaller for
the symmetric case p “ 0. From Tables 5.4–5.6 we confirm that for larger values of α , namely
α “ 0.5,0.7,0.9, the upwind first order method presents higher values for the error when p “ 0
comparing with p “ ´1 and p “ 1. These features are also highlighted by figures in the next section.

One computational advantage of using the upwind numerical method is the lack of need of
extending the computational domain to the right-hand side, as in the central method case, when p “ 1
since the numerical method only uses interpolation points on the left, for the left fractional derivative.
Similarly, for the right fractional derivative, for p “ ´1 we do not have to extend the computational
domain to the left-hand side since the numerical method only uses interpolation points on the right.

Furthermore, the main advantage of the upwind methods over the central method is going to be
explored in the next section and is related to oscillations.
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5.2.5 Central method versus upwind methods: numerical behaviour

It is known that some high-order finite differences methods may trigger spurious oscillations, including
the central differences scheme [93]. We have used a second-order central difference to approximate
the derivative outside the integral that appears in the left and right fractional derivatives of order
0 ă α ă 1. In what follows, we present examples for which spurious oscillations arise when using
the central discretization and do not occur when using an upwind approximation for the fractional
derivatives.

Consider equation (5.5) defined in the domain r0,2s ˆ r0,T s and the following uniform space
and time discretizations x j “ j∆x, j “ 0, . . . ,N with xN “ 2 and tm “ tm´1 ` m∆t, m “ 1, . . . ,M with
tM “ T . Also consider the diffusion coefficient D “ 1 and the source term gpx, tq and the initial
condition u0pxq such that the exact solution of the problem is upx, tq “ e´tx4p2 ´ xq4. Note that the
problem can be interpreted as defined on the real line with upx, tq “ 0, x R p0,2q. Then, the regularity
of the solution in space is C3pRq.

In the following, we present several numerical tests with space step ∆x “ 2{125, for T “ 5 and,
since we have implicit methods one of the advantages would be to be able to choose a large time step,
and therefore we chose ∆t “ 0.1.

In Figures 5.4–5.6, we plot the numerical solutions versus the exact solution for different values
of p “ ´0.8,´0.4,0,0.4,0.8 and α “ 0.8 (left) and α “ 0.2 (right), for the three methods. The
experiments using the central method in Figure 5.4 show, once again, the influence of p in where
appear the oscillations, specially for α “ 0.8. For α “ 0.2, we can still spot some oscillations for
the more extreme cases p “ ´0.8 and p “ 0.8, signalized with black ellipses. In Figure 5.5, we plot

Fig. 5.4 Numerical solution with the central method for p “ ´0.8,´0.4,0,0.4,0.8. Left: α “ 0.8.
Right: α “ 0.2.

the numerical solutions obtained using the second order upwind method. In this case, we no longer
observe the spurious oscillations for any values of p and α . In Figure 5.5, we present the numerical
solutions obtained using the first order upwind method. Despite not having the oscillations observed
previously, for α “ 0.8 the method does not approximate the exact solution as effectively as the
second order upwind method, specially for p “ 0 and closer values.
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Fig. 5.5 Numerical solution with the upwind second order method for p “ ´0.8,´0.4,0,0.4,0.8.
Left: α “ 0.8. Right: α “ 0.2.

Fig. 5.6 Numerical solution with the upwind first order method for p “ ´0.8,´0.4,0,0.4,0.8. Left:
α “ 0.8. Right: α “ 0.2.

Note that, by observing the three Figures 5.4, 5.5 and 5.6, all the methods seems to perform better
for α “ 0.2, when considering ∆t “ 0.1. None the less, as we have seen in the last section, as we
refine the mesh the three methods approximate accurately the solution as expected by the theoretical
analysis for all values of α .

5.3 Superdiffusion when 1 ă α ă 2

In this section, we present the numerical method derived in [76] for the real line and then we suggest
an approach to the case with a reflecting boundary at x “ 0. Hence, the only purpose of including this
section is to turn the next one more clear, this is, to better expose the difference between not having a
boundary and having a reflecting boundary. Therefore, for all the results presented in this section, the
proofs are omitted.
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As described at the beginning of the chapter, in Section 5.1 we saw that Lévy flights can be
represented by the fractional equation

Bupx, tq
Bt

“ dpxq∇
p
αupx, tq ` gpx, tq, x P R, t ą 0, (5.45)

where
∇

p
αupx, tq “

1 ` p
2

Bαu
Bxα

px, tq `
1 ´ p

2
Bαu

Bp´xqα
px, tq,

for 1 ă α ă 2, ´1 ď p ď 1, x P R, where dpxq ą 0 is the diffusion coefficient and gpx, tq is the source
term. Furthermore, we start by considering an initial condition and

lim
|x|Ñ8

upx, tq “ 0.

The Riemann-Liouville derivatives are given by (1.7) and (1.8) for 1 ă α ă 2, this is, for x P ra,bs,
the left and right Riemann-Liouville derivatives are defined by

Bαu
Bxα

px, tq “
1

Γp2 ´ αq

d2

dx2

ż x

a
upξ , tqpx ´ ξ q1´αdξ (5.46)

and
Bαu

Bp´xqα
px, tq “

1
Γp2 ´ αq

d2

dx2

ż b

x
upξ , tqpx ´ ξ q1´αdξ . (5.47)

In order to approximate these derivatives, we use the integral approximation derived in Section 3.2
and the central second order finite differences to approximate the second order derivative.

5.3.1 Numerical method

In this section we develop the approximations to the fractional derivatives.

Consider the uniform domain discretization x j “ x j´1 ` ∆x, j P Z. As we saw in Section 3.2, to
approximate

I lpx, tq “
1

Γp2 ´ αq

ż x

a
upξ , tqpx ´ ξ q1´αdξ and I rpx, tq “

1
Γp2 ´ αq

ż b

x
upξ , tqpx ´ ξ q1´αdξ

(5.48)
using the linear spline approximation, we obtain the following formulas

Ilupx j, tq “
∆x2´α

Γp4 ´ αq

8
ÿ

k“0

akupx j´k, tq, Irupx j, tq “
∆x2´α

Γp4 ´ αq

8
ÿ

k“0

akupx j`k, tq, (5.49)

respectively, where the coefficients of both quadratures are given by (3.19).

Considering the second order centered finite differences

δ
2 f px jq “ f px j`1q ´ 2 f px jq ` f px j´1q,



5.3 Superdiffusion when 1 ă α ă 2 101

we obtain, for the left Riemann-Liouville derivative

Bαu
Bxα

px, tq “
d2

dx2 I lpx, tq

the following

Bαu
Bxα

px, tq «
Ilpx j`1, tq ´ 2Ilpx j, tq ` Ilpx j´1, tq

∆x2

“
1

∆xαΓp4 ´ αq

«

8
ÿ

k“0

akupx j´1´k, tq ´ 2
8
ÿ

k“0

akupx j´k, tq `

8
ÿ

k“0

akupx j`1´k, tq

ff

.

Considering k1 “ k ` 1 in the first sum and k1 “ k ´ 1 in the last sum, we have

Bαu
Bxα

px, tq «
1

∆xαΓp4 ´ αq

«

8
ÿ

k1“1

ak1´1upx j´k1 , tq ´ 2
8
ÿ

k“0

akupx j´k, tq `

8
ÿ

k1“´1

ak1`1upx j´k1 , tq

ff

that is equivalent to
Bαu
Bxα

px, tq «
1

∆xαΓp4 ´ αq

8
ÿ

k“´1

qkupx j´k, tq,

with
q´1 “ a0, q0 “ ´2a0 ` a1, qk “ ak´1 ´ 2ak ` ak`1, for k ě 1. (5.50)

For the right Riemann-Liouville derivative, we obtain similarly

Bαu
Bp´xqα

px, tq «
1

∆xαΓp4 ´ αq

8
ÿ

k“´1

qkupx j`k, tq,

with qk defined in (5.50).

We construct a numerical method based on these approximations, but before we need to do the time
discretization. In [46], they use the θ´method but here we take into account only the Crank-Nicolson
method. Consider a uniform mesh 0 ď tm ď tM with time step ∆t, d j “ dpx jq, gm

j “ gpx j, tmq and the
operators δ α

l Um{∆xα and δ α
r Um{∆xα given by

δ l
αUm

j

∆xα
“

1
∆xαΓp4 ´ αq

8
ÿ

k“´1

qkUm
j´k (5.51)

and
δ r

αUm
j

∆xα
“

1
∆xαΓp4 ´ αq

8
ÿ

k“´1

qkUm
j`k, (5.52)

with qk defined in (5.50).

We arrive to the numerical method
ˆ

1 ´
1
2

µαδ
p
α

˙

Um`1
j “

ˆ

1 `
1
2

µαδ
p
α

˙

Um
j ` gm`1{2, (5.53)



102 Superdiffusion problem

where gm`1{2
j “ pgm`1

j ` gm
j q{2, µα “ ∆t{∆xα and

δ
p
αUm

j “
1 ` p

2
δ

l
αUm

j `
1 ´ p

2
δ

r
αUm

j . (5.54)

If we assume Um
j , j “ ´N, ...,N such that Uk “ 0 for k ă ´N and k ą N, we can rewrite the

scheme in the matricial form
ˆ

I `
1
2

µαQp
α

˙

Um`1 “

ˆ

I ´
1
2

µαQp
α

˙

Um ` Gm`1{2,

where Um “ rUm
´N , ...,U

m
N sT is the solution vector, I is the identity matrix and Gm contains the values

of the source term. The matrix Qp
α is given by

Qp
α “

1 ` p
2

Qα `
1 ´ p

2
QT

α , (5.55)

with Qα defined as

Qα “
1

Γp4 ´ αq

»

—

—

—

—

—

—

–

q0 q´1 0 . . . 0 0
q1 q0 q´1 . . . 0 0
q2 q1 q0 . . . 0 0
...

...
...

...
...

q2N q2N´1 q2N´2 . . . q1 q0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.56)

In the next section we state the results regarding the accuracy and the stability of the numerical
method.

5.3.2 Convergence analysis

In this section, we do not provide the proofs because they are very similar with the ones done in
Section 5.2.3 and can also be seen in [76]. Once again, for the sake of clarity, we omit the variable t.

Theorem 5.11 ([76]). Let u P C4pRq and such that up4qpxq “ 0, for x ď a, being a a real constant. We
have that

Bαu
Bxα

px jq ´
δ αu
∆xα

px jq “ εpx jq,

where |εpx jq| ď C∆x2 and C is a constant independent of ∆x.

Using this result, we are able to prove the following consistency result.

Theorem 5.12 ([76]). The truncation error of the weighted numerical method (5.53) is of order
Op∆x2q+Op∆t2q.

We proceed with the study of the stability of the method using the von Neumann approach. We
start by presenting some results on the coefficients (5.50).

Lemma 5.13. Consider the coefficients qk defined by (5.50). Then

(a) q´1 “ 1, q0 ď 0, qk ě 0 for k ě 2, lim
kÑ8

qk “ 0 and qk`1 ď qk ď q2,
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(b)
8
ÿ

k“2

qk “ ´3 ` 3 ˆ 23´α ´ 33´α ,

(c)
8
ÿ

k“´1

qk “ 0,

(d)
8
ÿ

k“´1

qk cospkφq ď 0.

Using this lemma, it can be proved that the numerical method is unconditionally von Neumann
stable. It can also be concluded that the numerical method (5.53) is second order convergent both in
time and space [76].

5.4 Superdiffusion with a reflecting boundary

The problem of including boundary conditions in nonlocal problems is very interesting and challenging.
It also ables us to simulate different phenomena. The two types of conditions that appear more
frequently related to Lévy flights are the absorbing and the reflecting boundary conditions. For the
absorbing boundary conditions it is considered that, at the bounds of an interval, the probability of
a particle to be there or anywhere out of the interval is zero. In other words, if we consider a mass
from which a particle jumps to outside the domain (or to the boundaries), then the mass of the system
decreases, once the particle is absorbed. This can be represented by homogeneous Dirichlet boundary
conditions [2]. For the reflecting condition, in a porous medium, such boundary may represent a wall
permeable to the fluid but impermeable to the tracer: the particle hits the wall and is bounced back,
which means that if it would reach the position x “ ´a with a ą 0, then it will end at x “ a [40]. The
imposition of boundary conditions changes the fractional differential equation as we are going to see
during this section.

We start by formulating the superdiffusive problem with a left reflecting wall. The chosen
reflecting boundary is according to [40], where a symmetric diffusion on a semi-infinite domain is
considered, this is, the particles are restricted to a semi-infinite domain limited by a reflecting wall.
Mathematically, we have a problem defined by equation (5.45)

Bupx, tq
Bt

“ D∇
p
αupx, tq ` gpx, tq,

where
∇

p
αupx, tq “

1 ` p
2

Bαu
Bxα

px, tq `
1 ´ p

2
Bαu

Bp´xqα
px, tq,

for ´1 ď p ď 1, x P R, where D ą 0 is the diffusion coefficient and gpx, tq is the source term. This
equation is subjected to the wall condition, suggested in [40], upx, tq “ up´x, tq, for x ă 0 and
illustrated in Figure 5.7.

The left Riemann-Liouville fractional derivative for x ą 0

Bαu
Bxα

px, tq “
1

Γp2 ´ αq

B2

Bx2

ż 0

´8

upξ , tqpx ´ ξ q1´αdξ `
1

Γp2 ´ αq

B2

Bx2

ż x

0
upξ , tqpx ´ ξ q1´αdξ
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-0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

direct flight

flight hitting the wall
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Fig. 5.7 Illustration of the reflecting boundary condition at x “ 0.

is affected by this condition upx, tq “ up´x, tq for x ă 0 as follows

Bαu
Bxα

px, tq “
1

Γp2 ´ αq

B2

Bx2

ż 0

´8

up´ξ , tqpx ´ ξ q1´αdξ `
1

Γp2 ´ αq

B2

Bx2

ż x

0
upξ , tqpx ´ ξ q1´αdξ .

By doing a change of variables, we obtain what we define as the reflecting left Riemann-Liouville
fractional derivative, for x ą 0,

Bα
re f u

Bxα
px, tq :“

1
Γp2 ´ αq

B2

Bx2

ż 8

0
upξ , tqpx ` ξ q1´αdξ `

1
Γp2 ´ αq

B2

Bx2

ż x

0
upξ , tqpx ´ ξ q1´αdξ .

(5.57)
The right Riemann-Liouville derivative is not affected by the reflecting wall and remains defined by
(5.47).

Formally, when subjected to a reflecting wall, we are considering the following problem

Bu
Bt

px, tq “ D
ˆ

1 ` p
2

Bα
re f u

Bxα
px, tq `

1 ´ p
2

Bαu
Bp´xqα

px, tq
˙

` gpx, tq, x ą 0, (5.58)

upx, tq “ up´x, tq, for all x ă 0, (5.59)

with an initial condition upx,0q “ u0pxq, x ě 0.

In the next section, we derive a similar numerical method to the one described in Section 5.3.1.

5.4.1 Numerical method

When we have a reflecting boundary condition at x “ 0, since the left fractional derivative is modified
to (5.57), the modified left fractional integral is defined by

I l
re f upx j, tq “

1
Γp2 ´ αq

ż 8

0
upξ , tqpx ` ξ q1´αdξ `

1
Γp2 ´ αq

ż x

0
upξ , tqpx ´ ξ q1´αdξ . (5.60)
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Following a similar approach as in the open domain, where u inside the integral is approximated by a
linear spline, we obtain the following approximation for the left fractional integral (5.60),

Il
re f upx j, tq “

∆x2´α

Γp4 ´ αq

8
ÿ

k“ j`1

akupxk´ j, tq `
∆x2´α

Γp4 ´ αq

j
ÿ

k“0

akupx j´k, tq. (5.61)

Once again, we use the central second order finite difference to discretize the second order
derivative involved in the modified left Riemann-Liouville derivative B2I l

re f upx, tq{Bx2 and in the right
Riemann-Liouville derivative B2I rupx, tq{Bx2. For the modified left Riemann-Liouville derivative, it
follows

B2

Bx2 I l
re f upx j, tq «

1
∆xαΓp4 ´ αq

j
ÿ

k“´1

qkupx j´k, tq `
1

∆xαΓp4 ´ αq

8
ÿ

k“ j`1

qkupxk´ j, tq,

with qk defined in (5.50). For the right Riemann-Liouville derivative, we use the approximation given
by (5.52).

We assume a uniform mesh in time and space with tm`1 “ tm ` ∆t, m “ 0, . . . ,M ´ 1, x j “

x j´1 ` ∆x, j P N. Let Um
j be the approximated solution of upx j, tmq and define µα “ D∆t{∆xα .

Consider the Crank-Nicolson scheme to approximate equation (5.45) given by
ˆ

1 ´
1
2

µαδ
p
α,re f

˙

Um`1
j “

ˆ

1 `
1
2

µαδ
p
α,re f

˙

Um
j ` gm`1{2

j (5.62)

where gm`1{2
j “ pgm`1

j ` gm
j q{2 and

δ
p
α,re fU

m
j “

1 ` p
2

δ
l
α,re fU

m
j `

1 ´ p
2

δ
r
αUm

j (5.63)

and
δ l

α,re fU
m
j

∆xα
“

1
∆xαΓp4 ´ αq

j
ÿ

k“´1

qkUm
j´k `

1
∆xαΓp4 ´ αq

8
ÿ

k“ j`1

qkUm
k´ j. (5.64)

Consider the nodal points Um
j , j “ 0, ...,N such that Um

k « 0 for k ą N. The numerical method
can be written matricially as

ˆ

I `
1
2

µαQp
α,re f

˙

Um`1 “

ˆ

I ´
1
2

µαQp
α,re f

˙

Um ` Gm`1{2,

where Um “ rUm
0 , ...,Um

N sT is the solution vector, I is the identity matrix and Gm contains the values
of the source term. The matrix Qp

α,re f is given by

Qp
α,re f “

1 ` p
2

Ql
α,re f `

1 ´ p
2

Qr
α,re f , (5.65)
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with Ql
α,re f defined by

Ql
α,re f “

1
Γp4 ´ αq

»

—

—

—

—

—

—

–

q0 q´1 ` q1 q2 . . . qN´1 qN

q1 q0 ` q2 q´1 ` q3 . . . qN qN`1

q2 q1 ` q3 q0 ` q4 . . . qN`1 qN`2
...

...
...

...
...

qN qN´1 ` qN`1 qN´2 ` qN`2 . . . q1 ` q2N´1 q0 ` q2N

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.66)

Note that as we are considering the positive semi-infinite domain p0,8q, for the right derivative at Um
0

we have, from (5.52),

δ
r
αUm

0 “
1

Γp4 ´ αq

8
ÿ

k“´1

qkUm
k “

1
Γp4 ´ αq

˜

q´1Um
´1 `

8
ÿ

k“0

qkUm
k

¸

and using the fact that Um
´1 “ Um

1 we obtain

δ
r
αUm

0 “
1

Γp4 ´ αq

˜

q0Um
0 ` pq´1 ` q1qUm

1 `

8
ÿ

k“2

qkUm
k

¸

.

Hence

Qr
α,re f “

1
Γp4 ´ αq

»

—

—

—

—

—

—

–

q0 q´1 ` q1 q2 . . . qN´1 qN

q´1 q0 q1 . . . qN´2 qN´1

0 q´1 q0 . . . qN´1 qN´2
...

...
...

...
...

0 0 0 . . . q´1 q0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.67)

We continue with the study of the convergence of the method.

5.4.2 Convergence analysis

The dependency on t is omitted in the following results in the sake of clarity and simplicity. The
results on the open domain are present in Section 5.3.2. The approach to the convergence analysis is
similar to the ones taken previously.

The next result determines the truncation error for the approximation (5.64) of the modified left
Riemann-Liouville derivative.

Theorem 5.14. Let u P C4pRq and such that verifies (5.59). Additionally, let the spatial derivatives
vanish at infinity in an appropriate manner. Then

Bα
re f u

Bxα
px jq ´

δ l
α,re f u

∆xα
px jq “ εre f ,lpx jq, |εre f ,lpx jq| ď Cre f ,l∆x2,

where Cre f ,l does not depend on ∆x.
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Proof. We start by focusing our attention on the difference I l
re f upx jq ´ Il

re f upx jq. For exact value of
the integral, I l

re f upx jq, by doing a change of variable we have

I l
re f upx jq “

ż x j

0
upξ qpx j ´ ξ q1´αdξ `

ż 8

0
upξ qpx j ` ξ q1´αdξ

“

ż x j

0
upξ qpx j ´ ξ q1´αdξ ´

ż ´8

0
up´ξ qpx j ´ ξ q1´αdξ

and, taking in consideration the reflecting condition (5.59),

I l
re f upx jq “

ż x j

0
upξ qpx j ´ ξ q1´αdξ `

ż 0

´8

upξ qpx j ´ ξ q1´αdξ

“
1

Γp4 ´ αq

j
ÿ

k“´8

ż xk

xk´1

upξ qpx j ´ ξ q1´αdξ .

For the approximation of the integral, we have

Il
re f upx jq “

∆x2´α

Γp4 ´ αq

j
ÿ

k“0

akupx j´kq `
∆x2´α

Γp4 ´ αq

8
ÿ

k“ j`1

akupxk´ jq

and, taking into account (5.59),

Il
re f upx jq “

∆x2´α

Γp4 ´ αq

j
ÿ

k“0

akupx j´kq `
∆x2´α

Γp4 ´ αq

8
ÿ

k“ j`1

akupx j´kq

“
∆x2´α

Γp4 ´ αq

8
ÿ

k“0

akupx j´kq.

Therefore, we have that

I l
re f upx jq ´ Il

re f upx jq “
1

Γp4 ´ αq

j
ÿ

k“´8

ż xk

xk´1

pupξ q ´ skpξ qqpx j ´ ξ q1´αdξ ,

where

skpξ q “
xk ´ ξ

∆x
upxk´1q `

ξ ´ xk´1

∆x
upxkq.

From this point on, the proof follows the same steps as the proof of Theorem 5.11 that can be seen in
[76].

In the next theorem, we study the stability of the numerical method, based on the von Neumann
analysis, resorting to Lemma 5.13.

Theorem 5.15. The numerical method (5.62) is unconditionally stable.
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Proof. The difference operator defined in (5.63)

δ
p
α,re fU

m
j “

1 ` p
2

»

–

1
Γp4 ´ αq

j
ÿ

k“´1

qkUm
j´k `

1
Γp4 ´ αq

8
ÿ

k“ j`1

qkUm
k´ j

fi

fl`
1 ´ p

2
1

Γp4 ´ αq

8
ÿ

k“´1

qkUm
j`k

can be rewritten as

δ
p
α,re fU

m
j “

1 ` p
2

»

–

1
Γp4 ´ αq

j
ÿ

k“´1

qkUm
j´k `

1
Γp4 ´ αq

8
ÿ

k“ j`1

qkUm
j´k

fi

fl`
1 ´ p

2
1

Γp4 ´ αq

8
ÿ

k“´1

qkUm
j`k,

since Um
k´ j “ Um

j´k for k ą j.
As seen previously, we can do the von Neumann analysis by inserting a single mode κmei jφ into

the numerical scheme (5.62), neglecting the source term. Taking in consideration the previous equality
for the reflecting operator, then

κ
m`1ei jφ ´

1
2

µακ
m`1

«

1 ` p
2

1
Γp4 ´ αq

8
ÿ

k“´1

qkeip j´kqφ `
1 ´ p

2
1

Γp4 ´ αq

8
ÿ

k“´1

qkeip j`kqφ

ff

“ κ
mei jφ `

1
2

µακ
m

«

1 ` p
2

1
Γp4 ´ αq

8
ÿ

k“´1

qkeip j´kqφ `
1 ´ p

2
1

Γp4 ´ αq

8
ÿ

k“´1

qkeip j`kqφ

ff

.

Dividing the whole equality by κmei jφ , we obtain

κ

˜

1 ´
1
2

µα

«

1 ` p
2

1
Γp4 ´ αq

8
ÿ

k“´1

qke´ikφ `
1 ´ p

2
1

Γp4 ´ αq

8
ÿ

k“´1

qkeikφ

ff¸

“ 1 `
1
2

µα

«

1 ` p
2

1
Γp4 ´ αq

8
ÿ

k“´1

qke´ikφ `
1 ´ p

2
1

Γp4 ´ αq

8
ÿ

k“´1

qkeikφ

ff

.

If the real part of
1 ` p

2

8
ÿ

k“´1

qke´ikφ `
1 ´ p

2

8
ÿ

k“´1

qkeikφ

is negative or zero then |κpφq| ď 1 (see remark of Theorem 5.6). The real part is given by

1 ` p
2

8
ÿ

k“´1

qk cospkφq `
1 ´ p

2

8
ÿ

k“´1

qk cospkφq

and by Lemma 5.13 we can conclude that it is nonpositive.

In the next section we present a numerical test that illustrates the order of accuracy of the method.

5.4.3 Numerical experiments

Let Um
j and upx j, tmq be the approximate solution and the exact solution, respectively, at x j “ j∆x,

j P N0, and tm “ m∆t, m “ 0, . . . ,M.
Consider the problem with a reflecting wall at x “ 0 and with source term and initial condition

defined such that the solution upx, tq “ 4e´tp2 ` xq2p2 ´ xq2 is the exact solution of the equation
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(5.58), for 0 ă x ă 2. In Tables 5.10–5.12, we illustrate the order of accuracy of the method for
α “ 1.1,1.4,1.5,1.7,1.9 resorting to the L2 discrete norm and the L8 discrete norm given, respectively,
by (5.44) and (5.43). Table 5.10 refers to the use of p “ 1, the results displayed in Table 5.10 have to
do with p “ 0 and in Table 5.10 are the results for p “ ´1. As predicted by the theoretical result, the
numerical method is second order accurate.

Table 5.10 Results concerning problem with a reflecting boundary, for upx, tq “ 4e´tp2 ` xq2p2 ´ xq2

and p “ 1 for different values of α and ∆t “ 0.0001. Convergence rates in space R8 for the error
(5.43) and R2 for the error (5.44).

∆x α “ 1.1 R8 α “ 1.3 R8 α “ 1.5 R8 α “ 1.7 R8 α “ 1.9 R8

2´7 3.163e-03 2.638e-03 2.416e-03 2.209e-03 1.666e-03
2´8 7.908e-04 2.00 6.599e-04 2.00 6.063e-04 1.99 5.588e-04 1.98 4.2547e-04 1.97
2´9 1.977e-04 2.00 1.651e-04 2.00 1.519e-04 2.00 1.410e-04 1.99 1.0847e-04 1.97
2´10 4.942e-05 2.00 4.127e-05 2.00 3.804e-05 2.00 3.549e-05 1.99 2.7595e-05 1.97
2´11 1.235e-05 2.00 1.031e-05 2.00 9.510e-06 2.00 8.911e-06 1.99 6.9979e-06 1.98

R2 R2 R2 R2 R2

2´7 3.257e-03 2.961e-03 2.713e-03 2.412e-03 1.7824e-03
2´8 8.139e-04 2.00 7.399e-04 2.00 6.797e-04 2.00 6.088e-04 1.99 4.544e-04 1.97
2´9 2.034e-04 2.00 1.849e-04 2.00 1.702e-04 2.00 1.534e-04 1.99 1.157e-04 1.97
2´10 5.084e-05 2.00 4.622e-05 2.00 4.260e-05 2.00 3.860e-05 1.99 2.942e-05 1.98
2´11 1.270e-05 2.00 1.154e-05 2.00 1.065e-05 2.00 9.690e-06 1.99 7.460e-06 1.98

Table 5.11 Results concerning problem with a reflecting boundary, for upx, tq “ 4e´tp2 ` xq2p2 ´ xq2

and p “ 0 for different values of α and ∆t “ 0.0001. Convergence rates in space R8 for the error
(5.43) and R2 for the error (5.44).

∆x α “ 1.1 R8 α “ 1.3 R8 α “ 1.5 R8 α “ 1.7 R8 α “ 1.9 R8

2´7 1.610e-03 1.516e-03 1.184e-03 1.137e-03 1.194e-03
2´8 4.268e-04 1.92 4.036e-04 1.91 3.225e-04 1.88 2.829e-04 2.01 3.0107e-04 1.99
2´9 1.121e-04 1.93 1.059e-04 1.93 8.637e-05 1.90 7.027e-05 2.01 7.5773e-05 1.99
2´10 2.910e-05 1.95 2.749e-05 1.95 2.283e-05 1.92 1.742e-05 2.01 1.9035e-05 1.99
2´11 7.479e-06 1.96 7.077e-06 1.96 5.976e-06 1.93 4.373e-06 1.99 4.7642e-06 2.00

R2 R2 R2 R2 R2

2´7 7.296e-04 1.076e-03 1.059e-03 1.039e-03 1.1292e-03
2´8 1.946e-04 1.91 2.821e-04 1.93 2.754e-04 1.94 2.629e-04 1.98 2.821e-04 2.00
2´9 5.072e-05 1.94 7.305e-05 1.95 7.120e-05 1.95 6.662e-05 1.98 7.053e-05 2.00
2´10 1.304e-05 1.96 1.875e-05 1.96 1.831e-05 1.96 1.688e-05 1.98 1.762e-05 2.00
2´11 3.322e-06 1.97 4.781e-06 1.97 4.685e-06 1.97 4.272e-06 1.98 4.393e-06 2.00

We proceed with some numerical simulations involving the three cases of superdiffusion con-
sidered previously: superdiffusion on the open domain for 0 ă α ă 1, superdiffusion on the open
domain for 1 ă α ă 2 and superdiffusion considering a reflecting wall for 1 ă α ă 2. We complete
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Table 5.12 Results concerning problem with a reflecting boundary, for upx, tq “ 4e´tp2 ` xq2p2 ´ xq2

and p “ ´1 for different values of α and ∆t “ 0.0001. Convergence rates in space R8 for the error
(5.43) and R2 for the error (5.44).

∆x α “ 1.1 R8 α “ 1.3 R8 α “ 1.5 R8 α “ 1.7 R8 α “ 1.9 R8

2´7 5.535e-03 3.550e-03 2.345e-03 1.449e-03 8.618e-04
2´8 1.355e-03 2.03 8.601e-04 2.05 5.752e-04 2.03 3.815e-04 1.93 2.1583e-04 2.00
2´9 3.316e-04 2.03 2.090e-04 2.04 1.416e-04 2.02 9.950e-05 1.94 5.4033e-05 2.00
2´10 8.113e-05 2.03 5.098e-05 2.04 3.496e-05 2.02 2.575e-05 1.95 1.3513e-05 2.00
2´11 1.987e-05 2.03 1.248e-05 2.03 8.661e-06 2.01 6.625e-06 1.96 3.4147e-06 1.98

R2 R2 R2 R2 R2

2´7 2.117e-03 1.659e-03 1.368e-03 1.080e-03 7.8427e-04
2´8 5.316e-04 1.99 4.211e-04 1.98 3.497e-04 1.97 2.820e-04 1.94 1.999e-04 1.97
2´9 1.332e-04 2.00 1.060e-04 1.99 8.861e-05 1.98 7.285e-05 1.95 5.109e-05 1.97
2´10 3.336e-05 2.00 2.662e-05 1.99 2.235e-05 1.99 1.868e-05 1.96 1.306e-05 1.97
2´11 8.359e-06 2.00 6.675e-06 2.00 5.622e-06 1.99 4.765e-06 1.97 3.335e-06 1.97

the simulations presenting a final experiment focused on illustrating the main differences between
superdiffusion and subdiffusion.

5.5 Numerical approximations of the fundamental solutions

Similar to what has been done in the last chapter, we illustrate the process of superdiffusion for
different values of α . We also compare different values of p. We consider the approximations of the
solution of equation (5.5) defined for 0 ă α ă 1 and the solutions of (5.45) defined for 1 ă α ă 2
without source term. The initial condition is an approximation of the Dirac delta function, this is,

u0pxq “ δεpxq, with δεpxq “
1

ε
?

π
e´px´x0q2{ε2

, (5.68)

for a small ε ą 0. For all figures, we have considered D “ 1, ε “ 0.1, x0 “ 0 and p “ ´0.8,0,0.8.

In Figures 5.8, 5.9, 5.10 and 5.11 we show the evolution of the solution along time for α “

0.2,0.8,1.2 and 1.8, respectively, for different values of p. Overall, we observe the asymmetry taking
place as we evolve in time, being more prominent for α near 1, both for 0 ă α ă 1 and 1 ă α ă 2.
We can also see that, as α increases the solution is more diffusive. Therefore the peak values of
the solutions are higher for smaller values of α , illustrating the increasing speed of the (anomalous)
diffusion with the increase of α . Recall that the initial condition and the final instant are the same for
all the involved experiments.

In Figures 5.12 and 5.13, we show the evolution of the numerical solution along time for the
reflecting problem given by (5.58) and (5.59) with initial condition (5.68) for α “ 1.2 and 1.8,
respectively, and for different values of p. The parameters considered were D “ 1, ε “ 0.1, x0 “ 0.7
and p “ ´0.8,0,0.8. The solutions exhibit similar behaviour as the solutions for α between 1 and 2
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Fig. 5.8 Numerical solutions when the initial condition is (5.68) with x0 “ 0, D “ 1, α “ 0.2 and as
time changes from 1 to 2. Left: p “ ´0.8. Center: p “ 0. Right: p “ 0.8.

Fig. 5.9 Numerical solutions when the initial condition is (5.68) with x0 “ 0, D “ 1, α “ 0.8 and as
time changes from 1 to 2. Left: p “ ´0.8. Center: p “ 0. Right: p “ 0.8.

Fig. 5.10 Numerical solutions when the initial condition is (5.68) with x0 “ 0, D “ 1, α “ 1.2 and as
time changes from 1 to 2. Left: p “ ´0.8. Center: p “ 0. Right: p “ 0.8.

on the open domain regarding the influence of p and α : for α “ 1.2 the asymmetry is more noticeable
and for α “ 1.8 the dispersion occurs faster.
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Fig. 5.11 Numerical solutions when the initial condition is (5.68) with x0 “ 0, D “ 1, α “ 1.8 and as
time changes from 1 to 2. Left: p “ ´0.8. Center: p “ 0. Right: p “ 0.8.

Fig. 5.12 Numerical solutions considering a reflecting wall when the initial condition is (5.68) with
x0 “ 0.7, D “ 1, α “ 1.2 and as time changes from 1 to 2. Left: p “ ´0.8. Center: p “ 0. Right:
p “ 0.8.

Fig. 5.13 Numerical solutions considering a reflecting wall when the initial condition is (5.68) with
x0 “ 0.7, D “ 1, α “ 1.8 and as time changes from 1 to 2. Left: p “ ´0.8. Center: p “ 0. Right:
p “ 0.8.
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In Figures 5.14, 5.15 and 5.16 we plot the numerical solutions for tM “ 0.5 for the problem with a
reflecting wall at x “ 0 (solid lines) versus the problem defined on the open domain (dashed lines)
for α “ 1.1,1.5 and 1.9, respectively, and for p “ ´0.8,0,0.8, in order to see the effect of having a
reflecting condition. The initial condition is, once again, (5.68) with x0 “ 0.7 and ε “ 0.1. We can
observe that the area under the graph of the open domain solution for p´8,0q seems to accumulate
under the graph of the reflecting wall solution, specially near the reflecting boundary. Therefore, the
differences between the solutions with and without wall tend to escalate for higher values of α .

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

Fig. 5.14 Numerical solutions on the infinite domain (´´) versus on the semi-infinite domain with a
reflecting wall at x “ 0 (´) for α “ 1.1 and p “ ´0.8,0,0.8.
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Fig. 5.15 Numerical solutions on the infinite domain (´´) versus on the semi-infinite domain with a
reflecting wall at x “ 0 (´) for α “ 1.5 and p “ ´0.8,0,0.8.
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Fig. 5.16 Numerical solutions on the infinite domain (´´) versus on the semi-infinite domain with a
reflecting wall at x “ 0 (´) for α “ 1.9 and p “ ´0.8,0,0.8.

To finalize, we want to illustrate the differences between subdiffusion and superdiffusion, both
considering 0 ă α ă 1. Therefore, we choose the parameters that equalize the approaches. For
subdiffusion, we use the method derived in Chapter 4 for β “ 1 and, for superdiffusion, we use the
upwind second order method derived in Section 5.2.1 for p “ 0 to preserve the spacial symmetry
verified in the subdiffusive case. All the other parameters are the same for the two methods.

In Figure 5.17, we plot the solutions obtained for the subdiffusive model, in blue, and for the
superdiffusive model, in orange. By observing the figure, we can identify the expected differences
between the two models. For the Lévy flights (superdiffusion), we see that the solution peak remains
higher for a longer period of time but, eventually, surpasses the subdiffusion solution. Additionally,
we can spot the tails of the superdiffusive solution reaching a longer distance in a shorter period of
time, illustrating the divergent second order moment of the displacement while for subdiffusion we
can notice the tails tending to zero. Figure 5.18 is a cropped version of Figure 5.17 that makes more
clear the previous conclusions.
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Fig. 5.17 Numerical solutions of the subdifusion and the superdiffusion problems when the initial
condition is (5.68) with x0 “ 0 for α “ 0.5. Top left: t “ 0.5. Top right: t “ 1. Bottom: t “ 2.
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Fig. 5.18 Cropped plot of Figure 5.17 to enhance the different behaviour of the numerical solutions of
the subdiffusion and the superdiffusion problems when the initial condition is (5.68) with x0 “ 0 for
α “ 0.5. Top left: t “ 0.5. Top right: t “ 1. Bottom: t “ 2.



Chapter 6

Conclusions and future work

In this thesis, we have investigated different problems in the field of anomalous diffusion, more
specifically models related with subdiffusion and superdiffusion.

We have started, in Chapter 2, by presenting the definitions of B-splines and splines of fractional
degree and then we have described the construction of the fractional B-splines on the real line, based
on integer B-splines. Handling fractional splines is much more delicate than the classical ones, since
the support of the functions is no longer compact and they are not always positive. We have focused
our attention on splines with degree 0 ă β ď 2. We have started by studying the splines of degree
0 ă β ď 1, which are fully determined by the values on the knots of the function being interpolated.
However, for the splines of degree β ą 1, additional conditions are required. The most common
condition is s1pt0q “ u1pt0q. Nevertheless, this imposition originates an unstable scheme and therefore
we have chosen the condition s1ptMq “ u1ptMq, being tM the last knot. Resorting to [85], we have seen
that the fractional approximation is of order β ` 1 for functions in Hβ`1pRq. Furthermore, when the
function has unbounded derivatives near the initial point of the time domain, that is, at t “ 0, the order
of convergence is affected. For functions such that u “ Optγq as t Ñ 0, we have obtained that the order
of accuracy of the approximation of a function by its spline interpolator of degree β is the minimum
between β ` 1 and γ ` 1{2, for the L2 norm. This result was illustrated by numerical tests. For the L8

norm, we have obtained a heuristic result for the order of accuracy of the approximation that is the
minimum between β ` 1 and γ . This result was supported by numerical experiments.

In Chapter 3, we have approximated the fractional integrals that are part of the definition of the
Riemann-Liouville derivatives. These integrals are defined as the convolution of the function and
a kernel. To approximate these integrals, we replace the function by a spline that is a polynomial.
This allows us to compute exactly the integral for almost every point. For the points for which we
cannot determine it exactly, we use the trapezoidal rule to approximate the integral. For the integral
operator in time, we have used fractional splines of degree 0 ă β ď 2. In all cases we have arrived
to a recursive formula to compute the integral that involves the values of the replaced function on
the knots. For 0 ă β ď 1, the quadrature formula includes another recursive formula that expresses
the entries of an inverse matrix by the values of the original lower triangular matrix, constructed
using the B-splines. For 1 ă β ď 2, such explicit recursive formula has not been obtained due to the
change of structure of the matrix, that is no longer a triangular matrix. Furthermore, because the value
of the derivative of u is needed but, in the scope of these problems, it is hardly available, we have

117
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included an approximation of the first order derivative considered in [39]. Using the error bounds
for the spline approximation, we obtain the upper bound for the error norm when approximating the
integral of order α . The upper bound tells us that the order of the approximation is the minimum
between β ` 1 and γ ` α ` 1{2 for the L2 norm and the minimum between β ` 1 and γ ` α for the
L8 norm, when 0 ă β ď 1. All the results have been corroborated by numerical tests represented by
tables. For 1 ă β ď 2, the numerical experiments point out that the approximation of the first order
derivative of u influence the rate of convergence of the method: for the L2 discrete norm, we obtain as
order of convergence the minimum between β ` 1, γ ` α ` 1{2 and 2 ` α; for the L8 discrete norm
we obtain as order of convergence the minimum between β ` 1, γ ` α and 2 ` α . All the results have
been indicated by numerical tests displayed in tables. These conclusions have been obtained once
again for functions u “ Optγq as t Ñ 0. For the integral operator in space, we have only presented
an approximation with the linear spline. This has been studied in [76] and it has been useful when
approaching the problem of superdiffusion.

In Chapter 4, we have derived a numerical method for equation (4.1) by approximating the integral
of order α , with 0 ă α ă 1, using a fractional spline of degree β , derived in Chapter 3. To discretize
the second order spatial derivative, we have used the central second order difference formula. For
0 ă β ď 1, as we had the explicit values of the inverse matrix, we have been able to study the stability
of the method and have concluded that the method was conditionally stable with a not very restrictive
condition referred in Theorem 4.4(b). The order of convergence of the numerical method has been
predicted from the error bounds derived for the fractional integral approximation. For 0 ď β ď 1, the
order of convergence is the minimum between β ` 1 and γ ` α ` 1{2 for the L2 discrete norm and the
minimum between β ` 1 and γ ` α for the L8 discrete norm. Furthermore, the results have pointed
out that the fractional splines of degree β “ α perform better for larger meshes. For 1 ă β ď 2, the
order of convergence is the minimum between β ` 1, γ ` α ` 1{2 and 2 ` α for the L2 discrete norm
and the minimum between β ` 1, γ ` α and 2 ` α for the L8 discrete norm. Once again, these results
have been illustrated by numerical tests. At the end we have compared some figures with approximate
solutions obtained by the numerical method with initial condition an approximation to the Dirac delta
function. We have concluded that the process of subdiffusion is faster for higher values of α , this is,
the peak values of the solution are lower for the same initial condition and final instant.

In Chapter 5, we have explored superdiffusion for 0 ă α ă 1 and for 1 ă α ă 2. For the case with
0 ă α ă 1, we have presented three different numerical methods to obtain numerical solutions for the
problem involving the fractional differential equation (5.5). In order to approximate the derivative
in time, we have used the Crank-Nicolson method. To approximate the integral operator in space,
we used the linear spline, already proven to be of second order for sufficiently smooth function. To
approximate the derivative of the integral, it has been considered a central approximation of second
order (already studied in [75]) and two upwind approximations, one of first order and another of
second order. The upwind schemes have been considered because the central method, despite being
of second order, presented spurious oscillation for nonsymmetric cases for larger time steps. With the
first order upwind method we extinguish the false oscillations, however it presents a lower order of
accuracy. We have concluded that the upwind second order implicit method is the best choice since it
is second order accurate and delivers solutions without unwanted oscillations. We have also studied
the stability of the methods that have been proved to be unconditionally stable. We have presented
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tables with data obtained by the implementation of the numerical methods that illustrates the expected
order of convergence for the three methods. For the superdiffusion with 1 ă α ă 2, we have presented
briefly a second order numerical method based on the linear spline to approximate the solution of
equation (5.7) that was derived in [76]. Then, we move forward to consider a reflecting boundary at
x “ 0. This resulted in considering equation (5.7) for x ą 0 and upx, tq “ up´x, tq for x ą 0, which
led to a direct impact on the fractional operator. We have analyzed the stability and consistency of
the new method, based on the proofs done in [76] for the open domain and have concluded that we
had obtained a second order accurate and unconditionally stable method. This result was supported
by numerical tests. The influence of the boundary condition has been illustrated by displaying the
solution of the same model with and without boundary and we observed that the area that is under the
open domain solution for p´8,0q accumulates under the solution of the problem with the reflecting
wall defined in p0,8q, namely closer to x “ 0. At the end, we show several numerical simulations
for the three superdiffusive models with the initial condition once again being an approximation to
the Dirac delta function. By observing these simulations, we have concluded that the asymmetry
involved in all cases of superdiffusion considered in this thesis influences more the solutions for
α near to 1. Furthermore, the spread of the solution seems to be faster for larger values of α . We
conclude the chapter with a figure containing one solution of the subdiffusive model and another
of the superdiffusive model, illustrating the characteristic behaviour of Lévy flights, with the tails
becoming heavier as time evolves, while for the subdiffusive solutions the tails tend to zero.

Beyond the themes that we have approached in this thesis, there are still a lot of open problems
related to anomalous diffusion. The open questions that are more closely correlated with our work are
enumerated next. For the subdiffusion equation, it would be valuable to perform a more complete
convergence analysis of the method proposed in Chapter 4 when using fractional splines of degree β

with 1 ă β ď 2. Furthermore, it may be of interest to apply the fractional splines approximation in
space and therefore in problems of superdiffusion. The behaviour of the fractional splines approach
the behaviour of the solution and we could expect that, to simulate superdiffusion of order α , the best
tools would be splines of degree β “ α . Therefore, the study of fractional splines for 1 ă β ď 2 is
even more important since superdiffusion may contemplate the values of α between 1 and 2. Another
question is how to include boundary conditions properly in superdiffusive models. The consideration
of boundary conditions will remain one of the most important and challenging topics to be researched.
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