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Abstract

In this thesis we study several numerical methods, based on splines, to approximate the solution of
fractional diffusion equations. These equations model anomalous diffusion that can be categorized
as subdiffusion or superdiffusion, depending on the associated mean-squared displacement. In the
last decades, anomalous diffusion has been a subject of intense research activity and it describes
phenomena of different fields such as engineering, hydrology, physics, finance and biology.

The main tool that we use to derivate the numerical methods is splines. Splines are piecewise
interpolator functions, defined by a polynomial in each interval and that differ in the degree of the
polynomial and in the conditions imposed on the derivatives. The most common splines in literature
are of integer degree, namely the linear spline (degree 1) and the cubic spline (degree 3). In this work,
we explore splines of degree B where f3 is a real number between 0 and 2. For sufficiently smooth
functions, we verify that the splines of degree B approximate the corresponding functions with order
of convergence f3 + 1. For functions such that u = O(¢¥) when t — 0, which are of special interest in
the context of anomalous diffusion, we conclude that splines of degree 8 approximate these functions
with convergence order of the minimum between f8 + 1 and y+ 1/2, when considering the L? norm.
On other hand, to the L* norm, we obtain the heuristic result to the order of convergence given by the
minimum between 8 + 1 and y. After this, we approximate the fractional time integral of order o
resorting to splines of degree 3. For sufficiently smooth functions, the rate of convergence of this
approximation is 8 + 1, both for the L? and the L norms. For functions such that u = O(t¥) when ¢
tends to 0, for the L? norm we conclude that the approximation of the integral of order « using splines
of order 3 exhibits a rate of convergence of the minimum between 8 + 1 and Y+ o + 1/2. For the L™
norm, the order of convergence is the minimum between f8 + 1 and Y+ . In this work, we also study
subdiffusion modeled by an equation involving the first derivative in time of that fractional integral.
Hence, using the second order central finite difference formula, we obtain a numerical method that is
second order accurate in space. Regarding the accuracy in time, the numerical method presents the
same order of convergence as the approximation of the fractional integral by a fractional spline.

Concerning superdiffusion, we define a fractional integral in space that we approximate by the
linear spline, that can be seen as the fractional spline of degree 1. We consider two different types of
superdiffusion, depending on the value of o to be between 0 and 1 or between 1 and 2, since each
of these cases originates a different equation. For 0 < @ < 1, we study three numerical methods:
one using a second order central approximation, other using a first order upwind approximation and
another using a second order upwind approximation. From the study of the stability and consistency
of the numerical methods, we conclude that the best one is the second order upwind scheme, since it
is second order accurate and does not raise problems for larger meshes, as happens for the central
method that presents solutions with spurious oscillations. For 1 < a < 2, we derive a numerical
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method for the problem of superdiffusion with a reflecting wall, based on the linear spline for the
space approximation and on the Crank-Nicolson method for the time approximation. We complete the
convergence analysis and conclude that the numerical method is second order convergent both in time
and space.

Throughout this thesis, the stability analysis is made for the different numerical methods con-
sidering the von Neumann theory and all the conclusions stated are corroborated and illustrated by
numerical methods implemented by us in MATLAB ®. From numerical experiments, we also infer
the influence of the value of & regarding the processes of subdiffusion and superdiffusion.

Keywords: fractional splines, fractional differential equations, subdiffusion equation, Lévy flights,
Riemann-Liouville derivatives, finite difference methods, reflecting boundary condition.



Resumo

Nesta tese estudamos varios métodos numéricos, baseados em splines, para aproximar solugcdes de
equacgdes de difusdo com derivadas fraciondrias. Estas equacdes modelam difusdo anémala que
pode classificar-se como subdifusio ou superdifusio, dependendo do momento de segunda ordem do
deslocamento associado. A difusdo anémala € um tema que tem despertado cada vez mais interesse ao
longo das dltimas décadas e que descreve fendmenos em vdrias dreas tais como engenharia, hidrologia,
fisica, financas e biologia.

Para a construcdo dos métodos numéricos, utilizamos como ferramenta principal os splines.
Splines sdo fungdes interpoladoras segmentadas, definidas em cada intervalo por um polinémio, e que
variam consoante o grau do polinémio e as condi¢des impostas sobre as derivadas. Na literatura, os
splines mais comuns sdo os de grau inteiro, nomeadamente os splines lineares (de grau 1) e os splines
cibicos (de grau 3). Neste trabalho, exploramos os splines de grau 3, onde 8 é um ndmero real entre
0 e 2. Para fungdes suficientemente regulares, verificamos que os splines de grau  aproximam as
respetivas fun¢des com ordem de convergéncia 8 + 1. Para fungdes do tipo u = O(t?) quando t — 0,
que sdo fungdes de interesse no contexto da difusdo andmala, concluimos que os splines de grau 8
aproximam estas fun¢des com uma ordem de convergéncia que é o minimo entre § + 1 e Y+ 1/2 para
anorma L?. Por outro lado, considerando a norma L*, obtemos o resultado heuristico para a ordem
de convergéncia do minimo entre 3 + 1 e . Depois deste estudo, aproximamos integrais fraciondrios
de ordem o com recurso aos splines de ordem f. Para fun¢des suficientemente regulares, tanto para a
norma L? como para a norma L, obtemos uma taxa de convergéncia de 8 + 1. Para fungdes do tipo
u = O(t") quando ¢ tende para 0, para a norma L? deduzimos que a aproximacio do integral de ordem
o baseada em splines de grau 3 apresenta uma taxa de convergéncia que é o minimo entre 8 + 1 e
Y+ o + 1/2. Para a norma L* obtemos que a ordem de convergéncia é o minimo entre 8 + 1 e v+ a.
Neste trabalho estudamos também o fenémeno de subdifusao, modelado por uma equacéo envolvendo
a derivada de primeira ordem no tempo do integral fracionario. Desse modo, recorrendo a férmula
de diferencas finitas no espago, obtemos um método numérico de segunda ordem de convergéncia
no espaco e provamos que, no tempo, o método apresenta a mesma ordem de convergéncia que a da
aproximagdo do integral fraciondrio por um spline fraciondrio.

Para o caso da superdifusdo, € definido um integral fraciondrio no espago que aproximamos por
um spline linear, que pode ser visto como o spline fraciondrio de grau 1. Consideramos dois tipos de
superdifusao, dependendo se ¢, envolvido na derivada fraciondria, estd entre O e 1 ou entre 1 e 2, uma
vez que cada um destes casos origina uma equagdo diferente. Para 0 < o < 1, estudamos trés métodos
numéricos, um centrado de segunda ordem, um upwind de primeira ordem e um upwind de segunda
ordem. Feito o estudo da consisténcia e da estabilidade, concluimos que o melhor método numérico

€ o upwind de segunda ordem, uma vez que converge de ordem 2 e ndo apresenta problemas para



malhas mais largas, como € o caso do método centrado de segunda ordem, que da origem a oscilagdes.
Para 1 < o < 2, derivamos um método numérico para o problema de superdifusdo com uma parede
refletora, baseado no spline linear no espaco e no método de Crank-Nicolson no tempo. Fazemos o
estudo da convergéncia e concluimos que o método obtido é de segunda ordem tanto no espaco como
no tempo.

Os estudos de estabilidade dos métodos s@o todos feitos segundo a teoria de von Neumann e as
conclusdes retiradas nesta tese so todas corroboradas e ilustradas por testes numéricos, implementados
por nés em MATLAB ®. A partir de testes numéricos também se infere a influéncia do pardmetro
nos processos de subdifusdo e superdifusao.

Palavras-chave: splines fraciondrios, equacdes com derivadas fraciondrias, equacao de subdifusio,
voos de Lévy, derivadas de Riemann-Liouville, métodos de diferengas finitas, condicao de fronteira
refletora.
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Chapter 1

Introduction

1.1 General introduction

The purpose of this thesis is to derive numerical methods based on splines that provide approximate
solutions of fractional partial differential equations. The access to the closed form of solutions related
to these equations is quite limited. Therefore, the derivation of numerical methods is of extreme
importance, despite the fact that the interest on deriving numerical methods for this type of equations
is rather recent. Fractional calculus comes from the XVII century although it is not usually taught in
undergraduate courses. One of the first attempts to discuss derivatives of non integer order goes back
to 1695, when Leibniz, in a letter to L’Hopital, made some remarks on the possibility of considering
derivatives of order 1/2. Throughout the centuries, some of the most notable mathematicians made
their contributions to the study of this subject, such as Euler, Lagrange, Laplace, Lacroix, Fourier,
Abel, Liouville, De Morgan and Riemann [66].

In 1807, Fourier presented a manuscript where he demonstrated that heat propagation in a solid
could be described by a partial differential equation. In the same year Laplace showed that the
solution of the same equation gave an approximation to a probability event. Between 1880 and
1894, Lord Rayleigh and the economist Edgeworth formulate the stochastic diffusion equation with
probability density as the dependent variable, based on Laplace’s work [54]. Heat equation ended
up being a special case of the diffusion equation, which in turn was derived by Fick in 1855. In his
work, Fick modeled the movement of salt in liquids by analogy to the Fourier’s model and verified
it experimentally [55]. Nevertheless, it was Einstein who, in 1905, unified the phenomenological
approach with the probability approach in his work about Brownian motion [37, 51, 54].

Anomalous diffusion takes place when some of the hypothesis considered for classical diffusion
are not verified. For the classical diffusion, it was showed that the mean-squared displacement of
a particle, represented by < |x(¢)|> >, undergoing diffusion grows according to ¢. For anomalous
diffusion, the second order moment grows according to a power of ¢ that is different from 1 or even
diverges. When it grows according to a power of ¢ lower than 1, this is, < |x(¢)|?> >~ t* with0 < o < 1,
we have subdiffusion, which is a slow process in the sense of the spreading of particles compared
| >~ t% with a > 1, we are in the presence of superdiffusion. In
|2

to normal diffusion. For < |x(t)
the case of superdiffusion described by Lévy flights, we have < |x(#)| >— co. In this case, the

diffusion is called superdiffusion because it can be characterized by their fractional moments as

1
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< |x(t)|M >~ "* with 0 < < o. Rescaling these moments as follows < |x(z)[1 >2%M~ 2/% for
0 < a < 2, we obtain the superdiffusive character [51]. Nowadays, anomalous diffusion appears in
several fields, for instance, hydrology [21], biology [8], physics [71] and finance [11].

There are different fractional derivatives such as Caputo, Riemann-Liouville and Griinwall-
Letnikov. Other definitions have appeared, but their credibility is controversial [18, 78]. In this work,
we use the Riemann-Liouville derivative, which is the operator that naturally emerges from some
physical problems, as we will explain later on when describing the models we study in this thesis.
Fractional operators are harder to handle numerically than the classical derivatives, since they are
nonlocal operators composed by singular kernels. The challenge regarding nonlocality arises when
we perform the discretization of fractional operators. When the fractional operator is defined in space,
to consider all the needed information we have to deal with a dense iterative matrix of the numerical
method. When the fractional operator is defined in time, since at each time step we need to take into
account all the previous information, we have to store the solution for all the considered instants.
Hence, the numerical methods constructed to approximate solutions of equations involving this type
of derivative are more demanding than the numerical methods for the classical differential equations.

1.2 Statement of the main problem

The subject of anomalous diffusion is at the moment a field rich in open problems. Our work involves
the following main problems of anomalous diffusion: subdiffusion, superdiffusion and superdiffusion
with a reflecting boundary.

To the best of our knowledge, the majority of the numerical methods developed for fractional
differential equations that model superdiffusion were, until recently, numerical methods of order 1
(see, for example, [50, 64, 69, 73]). A numerical method with a second order approximation of the
fractional derivative resorting to the linear spline was derived in [74] based on an idea developed for
fractional integrals [17]. One of our main questions is to explore the possible advantages of using
a fractional spline, instead of a linear one, to approximate a fractional derivative and, consequently,
to approximate an anomalous diffusive model, once the fractional splines behave similarly to some
solutions of fractional differential equations. Here, we show how we can use fractional splines of order
0 < B < 2 to approximate a fractional integral that appears in the definition of Riemann-Liouville
fractional derivative in time, used to model a subdiffusion problem. Subdiffusion is a less developed
subject regarding the use of the Riemann-Liouville derivative [1, 43, 57, 63, 94]. Most of the works
developed in the last years that construct numerical methods to solve subdiffusion equations consider
the fractional Caputo derivative [13, 29, 34, 45, 62, 76, 87, 92]. However, the model using Caputo
derivative is correct only if the diffusive coefficient does not depend on time [27, 48]. The work
developed for equations involving the Riemann-Liouville derivative using splines of order 0 < 8 < 1
has been presented in [31].

Regarding superdiffusion, the problem with 1 < & < 2 has been widely studied using, for instance,
finite differences [3, 30] and finite element approaches [46], isogeometric collocation methods
[88], lattice Boltzmann schemes [10], spectral-Galerkin schemes [25, 91] and discontinuous Galerkin
methods [12]. None the less, there exist fewer works heeding the case when 0 < & < 1 [23, 59, 60, 86].
We derive a family of implicit numerical methods to determine the numerical solutions of the
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superdiffusive model for 0 < o < 1. In this work we also present the advantages and disadvantages
of each method supported by some numerical computations. In this case, we use the linear spline as
the basic tool to approximate the integral and upwind and central approximations to deal with the
derivative. This work has been published in [32].

Despite of the Lévy flights related to the superdiffusion problem for 1 < o < 2 being subject of
intense research, the inclusion of boundary conditions in this type of discussion is of special interest.
Due to the long jumps, characteristic of these processes, the consideration of boundary conditions is
nontrivial, neither from the physical nor the mathematical point of view. The presence of boundaries
cannot be uncoupled from the fractional partial differential equation and therefore it modifies the
nonlocal fractional space derivative as opposed to what happens when we consider an integer space
derivative. We suggest a new approach of the problem with a reflecting boundary to add to the ones
already studied in [2, 9, 15, 19, 20, 35, 40]. This work has been published in [33].

1.3 Thesis structure

This thesis is divided into four main chapters. In Chapter 2, we present the most important tool
of this work: splines. All the numerical methods constructed in Chapters 4 and 5, where we study
subdiffusion and superdiffusion problems, have been based on a spline approximation of a fractional
integral operator.

Chapter 2 is composed by four main sections. In Section 2.1, we present the concept of fractional
splines on the real line, introduced in [85]. The explicit construction of fractional B-splines, used to
define the splines, is not in [85] and therefore we explain the main steps based on [84], where they
establish the integer B-splines. After that, we present the fractional splines on an interval and we
divide this topic into two parts that need to be treated separately: 0 < f < 1 and 1 < 8 <2. In Section
2.2, we derive a formula for fractional splines of degree 8 between 0 and 1. In Section 2.3, we derive
a formula for fractional splines of degree 8 between 1 and 2, which is a more delicate case. The final
main part of Chapter 2, Section 2.4, concerns some upper bounds for the error of approximating a
function by a fractional spline. The theoretical study is based on Theorem 4.1 of [85] for the L?> norm
and then we derive an upper bound for the approximation of a special type of functions. For the L™
norm, we present a heuristic bound for the error. We illustrate all the results with tables regarding the
accuracy of these approximations.

Chapter 3 consists of two main sections and it is dedicated to the approximation of integral
operators that appear in the definition of the Riemann-Liouville derivatives. In Section 3.1, we use the
fractional splines of degree 0 < B < 2 to approximate the integral involved in the fractional derivative
in time and, similarly to Chapter 2, we determine some upper bounds for the integral approximation,
using the results obtained in Section 2.4. We present some tables from numerical tests that corroborate
the theoretical results. In Section 3.2, we use the linear spline to approximate the integral involved in
the spacial fractional derivative, already studied in [76] and, therefore, we only present the integral
approximation instead of doing the whole study.

Chapter 4 is focused on subdiffusion. In Section 4.1, we provide some insight on the mathematical
model that describes that phenomenon. In Section 4.2, we construct a numerical method based on
the approximation derived in Section 3.1 for 0 < 8 < 1 and on a finite differences formula. We
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study the convergence by evaluating the consistency and the stability of the method and illustrate its
convergence rate with numerical tests. In Section 4.3, we construct a numerical method based on a
finite differences formula and on the approximation derived in Section 3.1, but now for 1 < 8 < 2. Due
to the complexity of the approximation using fractional splines with degree in this range, the stability
study revealed itself to be very complicated. Hence, in this case we only present the numerical
experiments that indicate the order of accuracy of the method. In the final main section of this
chapter, Section 4.4, we exemplify the behaviour of the solution of the subdiffusive model given an
approximation to a narrow Gaussian function as initial condition.

Chapter 5 is about superdiffusion. In Section 5.1, we explain briefly the model problem and from
the model emerge two different equations, one for 0 < o < 1 and another for 1 < o < 2. Section 5.2
is dedicated to the problem for o between O and 1, where a linear spline is used to approximate the
integral operator. We consider three ways of approximating the derivative of the integral, construct
three numerical methods based on these approximations and study their consistency and stability. We
end the section by presenting some numerical experiments to illustrate the rate of convergence of the
method and to show the differences between the considered approaches. In Section 5.3, we explore
the problem with & between 1 and 2 on the open domain, that has already been studied in [76]. In
Section 5.4, we investigate a similar problem but now considering a reflecting wall at x = 0, leading to
a problem on the semi-infinite domain. We reformulate the model and construct a numerical method
for which we study the convergence utilizing results of the problem on the open domain. To conclude
this chapter, we present some numerical simulations for the three superdiffusive models with the intent
of analyzing the influence of various factors in Section 5.5, with initial condition an approximation
of the Dirac delta function. We finish the section with a figure containing two solutions, one of
the subdiffusive model and another of the superdiffusive model, illustrating some of the differences
between the phenomena.

All the experimental tests have been implemented by us using MATLAB®.

Before we start the study of the problems, we want to introduce some fundamental concepts,
definitions and properties that appear throughout the thesis. Hence, in the next chapters, we concentrate
our attention on the challenges that arise from our problems.

1.4 Fundamental concepts

In this section, we state some basic concepts, definitions and properties that will appear through the
thesis.

Let us start by giving the definition of Fourier transform and inverse Fourier transform.

Definition 1.1 ([77]). Let f € L'(R). The Fourier transform of f is defined by

flo) = f_oof(t)ei“”dt. (1.1)

A function f can be in L' (R) and yet # may not be in L' (R). If f belongs to L' (R), we can define
the inverse transform as follows.
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Definition 1.2 ([77]). Let f € L! (R). The inverse Fourier transform of f is defined by

_ % LO Flo)e @ do. (12)

In the next proposition we present a property on the Fourier transform of the convolution.

Proposition 1.3 ([77]). If f,g € L'(R), then

—_

(f=g)(0) = f(0)é(w) (1.3)

where

(f+8)(t f f(t—y)

We introduce the gamma function that appears in the definitions of the Riemann-Liouville
derivatives and give some of its properties.

Definition 1.4 ([64]). The gamma function is defined by
oe}
= f ¥ le ¥dx,
0

where z > 0.

Proposition 1.5 ([64]). The gamma function satisfies the following properties

(@)T(z+1) = z2I(z); (1.4)
() T(n+1) = nl, neN. (1.5)

We proceed with the definition of Riemann Liouville derivative, first in time and then in space.

Definition 1.6 ([64]). The Riemann-Liouville derivative of order o of a function f is defined fort > a
by

DYf(t) = Fon—a)dr J f(z yreldr, (1.6)

where a can be a real number or a = —0 and n is a positive integer such thatn—1 < a <n.

Definition 1.7 ([64]). For x € [a,b], the left Riemann-Liouville derivative is defined by

T o) =

dx® I'(n—a)dx"

f FE) (- Eyalae, (1.7)



6 Introduction

and the right Riemann-Liouville is defined by

of 1 a
202 = Tn—a) dw

b
f fE)(x—&) 7 ldE, (1.8)

where a can be a real number or a = —o0, b can be a real number or b = o0 and n is a positive integer
suchthatn—1 < a <n.

Note that the only difference between (1.6) and (1.7) is the notation. We present both cases
because Definition 1.6 appears in literature related to problems defined in time and Definition 1.7
appears in literature related to problems defined in space.

We present the generalized binomial coefficients as well as some properties and then the genera-
lized binomial theorem.

Definition 1.8 ([64]). The generalized binomial coefficients for z and j, possibly non integers, are

defined b
e <z>_ T(z+1) 19)
i) TG+DI(z—j+1) '

Proposition 1.9. The following relation between binomial coefficients is valid for j and z, possibly

() G2)=05)

Proof. Using the generalized binomial coefficients (1.9), we get

Z z 0\ I'(z+1) [(z+1)
(;) i (j— 1) LG D=+ 1)  TIG-(—1)+1)

Multiplying the numerator and denominator of the first fraction by (z+ 1 — j) and the numerator and

non integers

denominator of the second fraction by j, we obtain

z z\ Fz+1)(z+1-)) JT(z+1)
(j) " <11> TTGH DTG+ 1= )et1—)) TG+ 1—j+1)

that, using the property of the gamma function (1.4), is equivalent to

@ i (jf 1> TG+ 1)1;(<Zzizl)—j+ - (Zj 1)‘

Proposition 1.10 ([64]). The generalized binomial theorem states that for 7 > 0,

(x+y)* = Z <i> (—1)kxkyk, (1.10)

k=0
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Next, we refer two properties involving integrals. The first one will be used in Theorem 3.1

Chapter 3. The second one will be used many times during the thesis.

Proposition 1.11 ([53]). Given f € LP(Q x Q,), f satisfies the following generalized Minkowski’s

integral inequality

f(x,y)dy

Uﬂ] de); <. (L |f<x,y>|de> "y

Proposition 1.12 ([81]). For z, w > 0 is valid the following equality

Q

fb(éi —a)z_l(b— EVldE = (b _a>z+w—1 F(Z)F(W)_

a [(z+w)

Using the last equality, we compute a fractional derivative of the power function.

Proposition 1.13. The fractional derivative D§ of t is given by

L(y+1) .
D§(t") = —————1" %
0 (") C(y—a+1)
Proof. From definition (1.6)
l d}’l !
D¢t)=— | TVe—1)"* ldr.
50 = g |, T e

Using (1.12) we get
Iy+1)I'(n—o) d"

7t7706+n'
I'n—a)['(y—o+n+1)dt"

D§ (1) =

For y > —1, taking the derivative and using (1.4), we obtain

L(y+1) dl
Doc Y _ o Y—a+n—1
0 (") F(Y—Ot—f-n—kl)(y « n)dtnflt

C(y+1) a! [rn—l-a
[(y—a+n)dm-! '

Repeating the procedure (n — 1) times, we arrive to

[(y+1)

S\ e
INy—oa+1)

D§ (") =

In what follows, we introduce the Dirac delta function and some of its properties.

Definition 1.14 ([47]). The Dirac delta function can be expressed in distributional sense as

1 (® .
5(t —x) f iGN g

=5 -

(1.11)

(1.12)

(1.13)

(1.14)
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Proposition 1.15 ([47]). The Dirac delta function satisfies the following properties
(a) 8(x)=0(—x);

) [ 50861y = sir)

We continue with the Fourier transform of the Riemann-Liouville derivatives.

Proposition 1.16 ([36]). The Fourier transform satisfies

F {f:cf(x)} = (-i0)*f(w), o>0. (1.15)
and

a daf _(; oz

F {d(—x)a(x>} = (i0)*f(w), o>0. (1.16)

We finish this chapter on introductory concepts with the computation of the Fourier transforms of
the delta function and of the one-sided power function. Although the majority of the results are for
functions in L!, we will need to consider functions that do not belong to L!. The Fourier transform in
the distributional sense of a tempered distribution g satisfies

[ oo swowa (1.17)

—00 —00

where @ is a Schwartz function [77].
Proposition 1.17. The Fourier transform of the Dirac delta function is 3(0)) =1.

Proof. The Dirac function is a tempered distribution, which implies that its Fourier transform satisfies

0 Q0
J o(w)p(w)dw = f o(t)¢(t)dt, (1.18)
—0 —0
where @ is a Schwartz function. Noting that, from Proposition 1.15(b),
a0
| swewar = o0
—00

and considering @ = 0 in
w .
po)= | o
—
we get

foo 5(1)p(r)dt = f; o(0)do.

From this and (1.18), we conclude that & (@) = 1. O
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B

Proposition 1.18. The Fourier transform of the one sided power function t'_is given by
B (B +1)
', (0) = Cio)FT (1.19)
where
B tﬁ, fort =0,
o=
0, fort<O.

Proof. The Fourier transform of the one sided power function is calculated using the relation (1.15).

Computing the fractional derivative of tf,

PP — o (BED) (lﬁ D) ;Z;lftoo P (1 — oy =(B+D-14z
that is equivalent to
DPiP — mﬂﬂrﬁ(t—r)”_(ﬁ“)_‘df.
Resorting to (1.12), we obtain
1 d L T(B D= (B+1)
T T(—(B+1))drm T ['(n)

The (n— 2)—th derivative of /! is

dn—Z |
dtnfztf =(n—1)t;

and the weak derivative of 7 is the Heaviside function () given by

1,t>0,
h(t) =
0,r<0.

Finally, the distributional derivative of this last function is the Dirac delta function. We conclude that

the the n—th derivative of ti‘l, in the sense of distributions, is given by

a
Tt = (n—1)18(z).

and therefore

PP — F(llf(:)”(n—mza(t).
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As n is a positive integer, using (1.5), we have (n— 1)! = I'(n) and therefore
DPHIP —T(B+1)5(r).

Consequently,

PP —T(B+1)5(r).

Using Proposition 1.17, we obtain

DPH1P (g +1)
Then, considering o = 8 + 1 in (1.15), the Fourier transform of the one sided power function tﬁ can

(B +1)

fﬁ(a’)—m~

be written as



Chapter 2

Fractional splines

Splines are piecewise functions where each piece is a polynomial and the connections between pieces
satisfy conditions imposed on the derivatives up to an order, depending on the type of the spline. The
classical splines present in literature are made of polynomials of integer degree. Splines of degree
B, B = 0, are sums of B-splines with the same degree. The "B" in the word "B-spline" stands for
"basis" or "basic". The derivation of the fractional B-splines can be found in [85], where Unser and
Blu resorted to the Fourier transform of the classical splines.

In the first section of this chapter, we establish the fractional splines on the real line. In the
following two sections, we derive the formulation of the fractional splines on an interval [, #y] for f8
between 0 and 1 and then for 8 between 1 and 2. In the fourth and last section of this chapter, we
present some theoretical results for the error bounds for the fractional spline approximation in the L2

norm and some heuristic results for the L* norm.

2.1 Splines on the real line

We construct the fractional B-splines following similar ideas to the ones presented in [84] for integer

B-splines. Consider the formula of the B-splines of order n + 1 (or degree n), given by

1, O0<r<l,

B (1) = and B (t) = B (1) *B%(t) »---+ BY(1),

0, otherwise, -
(n+1) times

o9

where “*” represents the convolution operation.
Let us construct the B-splines using the Fourier transform. The Fourier transform of BY. (¢) is

given by

A +o0 _
B (w) = J BY (1)e'™dt.
—00
Taking into account the definition of B (¢), it is easy to obtain

N | —el®
B () = )
+ (o) —p

11
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Using the convolution property (1.3), we have

B (0) = (B (w))"",

. l—ei“’ n+1
B (w) = )
to)- ()

If we generalize and replace n by a fractional number, 3, we get

o\ B+1
N 1—e?®

Using the inverse Fourier transform of tfi (1.19), we can write

which leads us to

B (—ia))B“ B
f+(w)m =1,

which can be introduced in the Fourier transform of the B-spline as follows

o\ B+, .
5B _(1-¢? (—iw)P*! g
Bi(w) = (—w> TE+1) @)

Applying the generalized binomial theorem to (1 — el )B 1 we get

AB 1 o (B+1 JoaiwjB
Bl (0) = MZ( i )(—l)e ) ().

Let us now compute the inverse Fourier transform of Eﬁ (w). Considering the formula (1.3) with
i(w) = e'® and ¥(w) = fﬁ (w), if we compute the inverse transform of i and do the convolution with
tﬁ, we obtain the formula for the B-splines. The inverse Fourier transform of # is

1 1 (*

o0
_ i), —ior j. _ 0(-1) g0 = —j
u(t) anooe o= | U do = 5 )

using (1.14). From (1.3), the inverse Fourier of u(®)v(w) is (u#*v)(t). Therefore,

0 Q0
Busa—i)= | doe-j-var= | dse——par= -,
—00 —00
from Proposition 1.15. Finally, we arrive to the following formula for the fractional B-spline

BL (1) = ﬁ+1 2= (ﬁ“)(r—j)fi, 2.1

j:O



2.1 Splines on the real line 13

where
t—j, fort=>=j,

(t—Jj)+ = )
0, fort<j.

Note that, for B = 1, the linear B-spline given by (2.1) is

B 1
B (1) = r2) (t+ =20t = 1)+ + (1 —2)4)
which means that, when 0 <t < 1,
Bﬁ(t) =t;

when 1 <t <2,
Bﬁ(t) =t-20—-1)=2—-1;

and when t > 2,
B[fr(t) =t—2(t—1)+r—-2=0.

For t < 0 we have B[jr (t) = 0, since none of the parcels of the B-spline is positive. Therefore, we get
the classical linear B-spline as we usually see it in literature [28].

Some of the characteristics of the classical B-splines, more specifically their positivity and local
support, do not hold when considering fractional B-splines. In Figure 2.1 at left, we can see an
illustration of the integer B-splines from 8 = 0 to the cubic B-spline. At right, we observe the
fractional B-splines from degree O to degree 3, with an interval of 0.2 between each of them. The fact
that the fractional B-splines are not always nonnegative is illustrated in this figure. The nonexistence
of compact support increases the need to characterize the B-splines decay. In [85] this is analyzed and
it is proved that the fractional B-splines are in L' for § > —1 and in L? for 8 > —1/2.

127 1.2
1 1 /
0.8 0.8 r / |
/ /
’/ / /X X
0.6 06 ’f / / Y
4t 4t | / /7 ( \\\\ \
0. 0. / // / \ \\\ \
/ // \ \ \ \)
02+ 02t / /) \
[ \
° ° N
0.2 . : : : . : . : : 0.2 . : : . : . : :
05 0 0.5 1 15 2 25 3 35 4 05 0 0.5 1 15 2 25 3 35 4
(a) (b)

Fig. 2.1 (a) Classical B-splines (step, linear, quadratic and cubic). (b) Fractional B-splines (from
B = 0to B = 3 with a difference of 0.2). Classical B-splines are represented using a thicker line.
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We can define the B-splines on the uniform grid At7Z [28] as

B (1) - B+1 i <B]f1> (At ]>i 2.2)

with stepsize Ar. These functions are not centered (see Figure 2.1). Nevertheless, we can shift them
and arrive to the centered B-splines (see Figure2.2), which are given by

BL(1) = B+1 i (B;l) <At ]+62+1>ﬁ' @.3)

=0 +

In this work, we consider the shifted splines in order to have them centered on each interval.

121 1.2
1 1
0.8 0.8
06 06
0.4 041
02r 02
° ° Nl
J
I s .
2.5 -2 15 -1 0.5 0 0.5 1 15 2 2.5 2.5 2 15 1 0.5 0 0.5 1 15 2 2.5
(a) (b)

Fig. 2.2 (a) Shifted classical B-splines (step, linear, quadratic and cubic). (b) Shifted fractional
B-splines (from B = 0 to B = 3 with a difference of 0.2). Classical B-splines are represented using a
thicker line.

Considering now a different grid, with a sequence of knots {f; }xcz, a spline of degree f3 is defined
by [85]
= > B (1 — 1), (2.4)

kEZ

Using formula (2.3) of B° , we get

2 BN\ [t—u . B+1 P
sp(t) = ﬁ+1 ZZ ;()(—w( ) )( it ) . 2.5)

+

The only issue remaining is how to determine the coefficients c;. The number of constants that need to
be determined depends on the degree of the spline. However, one characteristic of splines regardless
their degree is that they are interpolating functions.

In the next two sections, we explain how to approximate a function u defined in [z,#)] by a
fractional spline in the uniform mesh. We split the cases of 0 < f < 1 and 1 < 8 < 2, because despite
the logic being similar, there are some details that need to be differentiated.
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2.2 Splines of degree 0 < 3 < 1 on an interval

We consider splines of degree 0 < 8 < 1 and, in particular, for B = 1 we obtain the classical linear
spline. The B-spline of degree 1, also known as hat function, is used not only in image processing
[16, 84] but also in fractional calculus [42, 63, 76] and other fields such as medicine [80].

Let us proceed with the formulation of splines of degree between 0 and 1 with 7 € [z, #)/]. Let
tiy1 =t +Atfori=0,....,M —1. Let us analyze

B
t—t . B+1
<At It > '

+

We have

B

B t—tn . B+1 =1 B+l

t—t . B+1 ( —j+ ), if —Jj+ >0

_ = At 2 At 2 2.6

(At It ) (2.6)
* 0, otherwise.

Then, it is different from zero for
t—1ty ” B+1

0
N T

which means that

1
>ty + jAr — ﬁ%m. (2.7)

As t is, at most, equal to #);, we find that the highest k satisfying (2.7) for which exists a nonzero

parcel (2.6) is such that
+1

ty >t — 132At. (2.8)
Note that the limit case is to consider k for which #,; satisfies (2.8), but no other of the following
inequalities

B+1

l‘M>l‘k*TAl‘+jAl‘, vj>0.
As we are considering a uniform mesh,

1
Z‘M>l‘k—B%At

is equivalent to

1
M+ﬁ%>k

In this case, 0 < 8 < 1, which means that 1/2 < (4 1)/2 < 1 that gives us

1 1
M+§<M+ﬁ%<M+1

and, consequently, k. = M.
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Remember that 7 is at least ty and for j =0

th—t +1
0 k+ﬁ

>0
At 2

implies
B+1
k< ——
2

and then k,,;, = 0. Therefore, we arrive to the following formula of the spline

sp(t) = @fﬂ ><ﬁ+->(§f"—f+ﬁ§1>i'

J

From this, we conclude that we have to determine M + 1 coefficients c; such that sg(t;) = u(t;) for
i=0,...,M, which is equivalent to the system

M +00 o B
Z [5’+1 Z( 1)j<B;.L1> (t’Att"—j+ﬁ;1> =u(t), i=0,...,M. (2.9

Since t; — t;, = (i — k)At, we have

ti— 1ty B+1 ﬁ_ ik +ﬁ+1 B
IYEREAR) - It )

n +

Furthermore, this term is different from 0 only for j <i—k+ (8 + 1)/2. Then, fori =0,...,M, (2.9)
can be written as

M i—k B
Z B+1 Z (Bﬂ)(i—k—jJrBzH) =u(t;). (2.10)

In particular, if B = 1, the solution of (2.9) is ¢; = u(t;), i = 0,...,M. Let us define the coefficients

;mi (/m)(l k_jﬁ;l)ﬁ,

for k < i. For k > i, a;_; = 0. Using this notation in (2.10), we can write
i
Z CrQi—f = u(t,'), i=0,....M.

This system can be represented matricially by Ac =u where ¢ = [cg ... ey]?, w=[u(ty) ... u(tm)]’,
and
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[ ap O 0 ... 0 0 |
aj ap 0 ... 0 O
A= a aj ap 0 0 [,
| dm ay—1 ay—2 ... dp 4ap |

with

1 ¢ i(B+1 g1’ _

The matrix A is a Toeplitz matrix. A Toeplitz matrix is a matrix where the value of each diagonal
is constant. This type of matrices is very important both in theory and applications, specially in
mathematical modeling of phenomena where exists shift invariance. They are also used, for example,
in integral equations, signal and image processing and, as in our case, computation of spline functions.
Some of the properties of Toeplitz matrices and their inversion can be seen in [7, 14, 41, 58, 82, 83].
As A is a lower triangular Toeplitz matrix, its inverse is also a lower triangular Toeplitz matrix. Then,

we can write the coefficients c; at the expense of A~! and the values of u as

k
Ck = Z dk—Pu(tl’)a
p=0

where d; are the entries of A1 such that

do 0 0 O
ay - do 0 0 0
Al=| & a a 0 0
| dy dm—1 am—2 ... di do |
These entries d@,,r = 0,1,...,M can be computed recursively [83] by

o

a0:;07 ;}arap—rzoa p:l7"'7M7
that is,

1 &
dy = —, ap = —aorzllarap_,.
The formulation of the case 3 between 0 and 1 is complete. In the next section, we do a similar

formulation for B between 1 and 2.
2.3 Splines of degree 1 < 3 < 2 on an interval

We want to approximate a function u by a fractional spline of degree between 1 and 2. Consider
once again t € [fy,ty] and the uniform mesh #;11 —#; = At fori = 0,...,M — 1. It would be normal to
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assume that in this case we have the first sum of

B
B+1\[t—n . B+1
sp(t) = /3+1 chZ ( : ><Atk_/+ 2 )

keZ j=0 X

defined between 0 and M, as seen before. However, let us analyze this more carefully. We have

r—t +1
K .+[3

>0
A T2

that corresponds to

+1
t>tk+jAt—ﬁzAt.

Repeating the logic of last section, as 7 in [fy,#y] is less than or equal to #;, we have to find the highest
k for which

1
tM>tk—Atﬁi
2
With 1 < B <2, we arrive to kyqy = M + 1, this is, for 7 € [to,7)/], we have
M+1 4o B
ﬁ+1 — Iy . ﬁ+1
t) — . 2.11
(1) = ﬁﬂzckz (P (-5 ) @11

The step to be taken next is to determine the coefficients ¢, k = 0,...,M + 1, such that the spline
interpolates the function « at the points ¢;, i = 0,..., M. To get a unique solution for the coefficients,
we have to consider an additional constraint to the problem, that we will talk about later. Being the
spline an interpolating function, we have the following M + 1 equations

M+1 B
i k B+1 Z( )<B;L ><Ii;ttkj+B;1>+=u(ti),i=O,...,M.
Furthermore,
ti—tx . B+1 g ti—tx . B+1 ! ti—tx . B+1
(At AN >+:< T ) for =y~ =0
and zero otherwise. Therefore, this is zero fori —k+ (8 +1)/2> j. Since | <8 <2then j <i—k+ 1.
Hence for i = 0,...,M, this can be written as
M+1 | ik B (-t Bl B
];)ckw ;0(1)< ; >< raiat A ) = u(t;). (2.12)

In order to obtain all the coefficients, we have to consider an additional constraint.

The quadratic spline, obtained using 8 = 2, is a continuous function with continuous derivative
and that interpolates in the knots the function we want to approximate . According to [5], a spline of
degree 2 can be uniquely determined using one of the extra conditions of the following theorem.
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Theorem 2.1. (/5]) Given are the M + 1 points (t;,u(t;)) where ty < t; < --- < ty. The interpolation
task can then uniquely be solved by a quadratic spline in each of the following described situations:

The first derivative s5(tx) = f is given for one arbitrary k in {0,...,M}.

The second derivative s5(ty) = gi is given for one arbitrary k in {0,...,M —1}.

The relationship z- sy’ (tx) = s5(tx+1) is true for one certain k in {0,...,.M — 1} and z # —1.

When M + 1 is an even number, s:(ty) = s2(tm) and s5(ty) = s5(tm) are true. The spline is
constructed as a periodic function with the period tyy —to. When M + 1 is an odd number, the

antiperiodicity condition s} (ty) = —s(ty) is true.

One of the most common additional constraints is to consider s’(¢y) = u/(fy) or its approximation
[4, 90]. However, without rearranging the terms obtained using the equalities (2.12), this condition
leads to an unstable scheme [4]. Since the terms involve fractional powers, we can not easily rearrange
them. Therefore we need to choose another condition such as sb (tyr) = W' (tpr), which means that

M+l M—k+1 _ pt

Let us define the coefficients a;_;4 1, fork <i+1, as

i [3+1§ </3+1>< ke ,3;1>ﬁ

and, for the other values of k, a;_.; = 0. Furthermore, let us define

M—k+1 B-1
= g 3 V() <M_k_”ﬁz+l>

j=0

We can write the system (2.12) as

i+1
> cktiogpr = u(ti), i=0,....M (2.14)
k=0

and (2.13) as
M+1

Z Crap—k+1 = u’(tM). (2.15)
k=0

This can be represented matricially by Aye = u where ¢ =[co ... carr1]7, w= [ (tayr) u(to) ... u(ty)]?,
and
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[ ayy1 ay ay-1 ... @ a |
ai ap 0 ... 0 O
Ap = a aj ap e 00 |, (2.16)
| dy+1 day 4dAy—-1 ... dp 4o |
where
1 < B+1 B+1 P
a4, = _ (_1)J'< ) > p—1—j+——| ,p=0,... M+1
g F(ﬁ+1)§) J 2
and

L3 j(B+1 . B+1 P -
ap_r(B)AthO(_l)< ] ><p—1—]—|—2> ,p—O,...,M—i—],

The matrix Ay is no longer a Toeplitz matrix and we do not have an explicit recursive formula to

obtain its inverse elements as before. A possible way to handle matrix (2.16) in order to compute its
inverse is to separate the matrix as follows

ao 0 0 ... 0 0O ay+1—ao ay ay—1 ... ap Qo i
aj aop 0 ... 0 O 0 0 0 0 O
Am = ar aj aop ... 0 0 + 0 0 0 0 O (2.17)
| amy1 ay am—1 ... a1 ap | | 0 0 0 ... 0 0 |

and calculate the inverse as described in [52].

In the next section, we derive the error bounds for the interpolation when using fractional splines
of degree between 0 and 2.

2.4 Error bounds for the fractional spline interpolation

In this section, we discuss the order of approximation of the splines of degree between 0 and 2 both
for the L and L* norms. As we referred at the beginning of the chapter, analyzing the rate of decay
of the error as the step Ar goes to zero is specially important, since not all the splines have compact
support. We start by examining the error for the L? norm.

2.4.1 Error bounds in the L? norm

Before presenting the main theorem, we introduce some definitions that can be found in [6, 56, 85].

For a positive integer m and 1 < p < oo, the Sobolev space W™ ? in Q c R is given by

WP (Q) = {ue LP(Q) : D*ue LP(Q),Y0 < |a| < m},
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For noninteger m, the definition is a little more complex. From [56] for s € (0, 1),

WP (Q) = {ueLP(Q) : W eLP(Qx Q)}-
x—y|?

When s > 1, with s = m + o with m integer and o € (0, 1), W5?(Q) is defined as
WP(Q) = {ue W"P(Q): D*ue WP (Q),Vo : |a| = m}.

In literature, we can find a theoretical result about the behavior of the fractional spline approxima-
tion error based on the Fourier domain characterization of the approximation. Therefore, we give an
alternative definition of Sobolev spaces using Fourier transform [24, 56]. When p = 2, the Sobolev

spaces can be represented by H"(R) and are defined as the space functions that satisfy
f (1 + 02)']i(0)Pdo < o,
R
where i denotes the Fourier transform of u. For r = 0, we get H(R) = L*(R).

We have the following result regarding the approximation of a function u by the spline defined in
(2.5).

Theorem 2.2. ([85]) For all ue€ HP! (R), the error is bounded by

1= spll12 < Cyl D22 ul| 26eP

with Cg = /2E(B+2) —1/2/nPT1, where & is the Riemann zeta function defined by &(a) =

Z@l n~“. This means the fractional splines have a fractional order of approximation 3 + 1.

In the context of subdiffusion, functions of the form u = O(¢") for ¢ € [0, )] and zero otherwise are
of special interest, since they have been considered in the context of several partial integro-differential
equations with a weakly singular kernel [34, 38, 63, 79]. One important aspect that we need to pay
attention is that for small values of 7y the first derivative can be unbounded near zero. Therefore,
consider the function defined in [0,7] given by u(r) = t”. Note that D? ;1 th) = Dg+1 (¢7) which is
given by

DEF(my = F(ll_mcﬁﬂﬂ(z—r)—ﬁdr (2.18)
for0 < fB <1and
D (1) = & f (t—1)"Pdr
0 L(2—B)ar’ J

for 1 < B < 2. In both cases, as proved in Proposition 1.13,

Dgﬂ (t") = 11:((;/1';3)) r—B-1 7
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for 0 < B < 2. Hence, for values of 7 near 0, we have DgH(zV) = 0(;7*/3*1) and therefore
HDg—H(tY)HLZ(O,At) = O (Ar"=P=1/2). Then, the order of the spline approximation is dominated
by the term

Col[D5 ()] 120,40 AP 1 = O(ATP=12APH ) = O(Ar7H1/2),

Finally, combining the result of Theorem 2.2 with the previous discussion, we arrive to the following
conclusion. Given a function u such that u = O(t?) as t — 0, the error of the spline approximation is
bounded by

|t —sp1[12(04y) < CypAr™ntPHLYHIZE (2.19)

with C, g a constant depending on y and f3.

To illustrate this result, we present some numerical tests that are in agreement with the predicted
theoretical upper bound (2.19) for the L? norm. According to [22], the function v(x) = x” belongs to
H*(0,1) for y > s — 1/2 with s integer. Furthermore, for s € (0, 1), it can be proved that the function
v(x) = x7 belongs to H*(0,1) for y > 1/2. Therefore, functions of the type u(r) = Ct?, with C a
constant, belong to HA*1(0,1) with B € (0,1) for y > 3/2. When 8 = 1, the condition is the same.
As we are aiming to show that the convergence rate of the approximation of a function using splines is
min{f + 1,y+ 1/2}, for the previous condition the minimum between 8 + 1 and y+ 1/2 is always
B -+ 1. Nonetheless, it is also easy to prove that u(t) = Ct belongs to HA*1(0,1) for B € (0,1] and
that u() = Ct? belongs to HP+1(0,1) for B € (1,2] .

Recall that the evaluation of the numerical results is done in a discrete space. Considering a vector
f=(f(to),...,f(tm)), with t; | —t; = At, the discrete mesh-dependent L?> norm is given by

1

M 2
If]l2 = (Z Atf’“|2> :

m=0

In Tables 2.1 and 2.2, we display the numerical results of the approximation of the functions
u(t) = (2¢)"® and u(t) = 2t by splines of degree B with B = 0.2,0.4,0.6,0.8, 1, in order to confirm
that the convergence rate is approximately of order min{1 + 3,7+ 1/2}. The rates presented are the
mean of the rates obtained between 0.1 and 0.01 and the ones between 0.01 and 0.001.

Table 2.1 Convergence rate in the L? norm for the function u(t) = (2¢)".

At B=02 B=04 B=06 p=08 B=1

0.1 8.3492e-02 4.5657e-02 2.0210e-02 1.3451e-02 9.3879e-03
0.01 5.2315e-03 1.8240e-03 5.0305e-04 2.1679e-04 1.0368e-04
0.001 3.2987e-04 7.2640e-05 1.2625e-05 3.4522e-06 1.0941e-06

Rate 1.20 1.40 1.60 1.80 1.97

In Table 2.1 we obtain a convergence rate of order 3 + 1 as expected. In Table 2.2, that has the
results concerning u(r) = 2¢, the rate of convergence is min{1+ 3,1+ 0.5}, that is, for § =0.2,0.4
we have a rate near 3 + 1 and for the other values of 8 is 1.5. In the last case, we did not present the
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Table 2.2 Convergence rate in the L? norm for the function u(t) = 2t.

At B=02 B=04 B=06 =08

0.1 4.8732e-02 2.7588e-02 8.9149e-03 3.2944e-03
0.01 3.1560e-03 1.2075e-03 3.3322e-04 1.1302e-04
0.001 2.0047e-04 5.0614e-05 1.1453e-05 3.6417e-06

Rate 1.19 1.37 1.45 1.48

error for B = 1, because as we would be approximating a linear function using a linear spline, the
error of approximation would be given by rounding errors.

We also computed numerical tests for functions that are not in HB*!, that gave us results in
concordance with (2.19). In Table 2.3 we present the convergence rate for the function u(r) = (2¢)%4.
For y = 0.4, we display a convergence rate of order 0.9, that is, min{8 + 1,7+ 0.5}. In Table 2.4, that
has the result relative to u(t) = (2¢)*%, the rate of convergence is around min{1 + 3,0.8 + 0.5}, this
is, for B = 0.2 we have a rate around 1.2 and for the other values of 3 is around 1.3.

Table 2.3 Convergence rate in the L? norm for the function u(¢) = (2¢)%4.

At B=02 B=04 B=06  B=08 B=1

0.1  9.6527e-02 9.9278e-02 7.4067e-02 7.1098e-02 7.2866e-02
0.01 1.2179e-02 1.2498e-02 9.3250e-03 8.9511e-03  9.1734e-03
0.001 1.5341e-03 1.5734e-03 1.1739e-03 1.1268e-03 1.1548e-03

Rate 0.89 0.90 0.90 0.90 0.90

Table 2.4 Convergence rate in the L? norm for the function u(t) = (2¢)°3.

At B=02 B=04 B=06 B=08 B=1

0.1  4.6010e-02 3.2317e-02 1.2780e-02 9.3922e-03  1.0480e-02
0.01 3.1332e-03 1.7178e-03 6.4690e-04 4.7073e-04 5.2566e-04
0.001 2.0643e-04 8.9054e-05 3.2502e-05 2.3592e-05 2.6346e-05

Rate 1.17 1.27 1.29 1.30 1.29

We continue by showing the results for 1 < f8 < 2, using the functions u(r) = (2¢)%, with y =
1.3, 1.5, 2 and 4 as examples.

For the cases u(t) = (2¢)! and u(t) = (2¢)', the minimum between 8 + 1 and y+0.5 is y+0.5.
From the observation of Tables 2.5 and 2.6, we can see that the rates of convergence for these
functions of 1.8 and 2, respectively, are in agreement with the predicted theoretical results obtained
for functions in HP+!, despite these functions not being in HP*!. For u(t) = (2r)? the expected order
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Table 2.5 Convergence rate in the L? norm for the function u(t) = (2¢)'-3.

A B=12 B=14 PB=16 Pp=18 p=2

0.1 2.2719e-03 8.7856e-04 3.9671e-04 3.7559e-04 4.0754e-04
0.01 3.611e-05 1.394e-05 6.315e-06 5.958e-06 6.459e-06
0.001 5.725e-07 2.210e-07 1.001e-07 9.442e-08 1.024e-07

Rate 1.80 1.80 1.80 1.80 1.80

Table 2.6 Convergence rate in the L? norm for the function u(t) = (2¢)!-.

At B=12 B=14 B=16 p=18 B=2

0.1 3.5513e-03 2.0695e-03 1.4677e-03 1.1665e-03 1.0033e-03
0.01 3.650e-05 2.071e-05 1.468e-05 1.167e-05 1.003e-05
0.001 3.689e-07 2.071e-07 1.468e-07 1.167e-07 1.003e-07

Rate 1.99 2.00 2.00 2.00 2.00

Table 2.7 Convergence rate in the L? norm for the function u(t) = (2t).

At B=12 B=14 B=16 p=18 B=2

0.1 5.0447e-03 2.2964e-03 1.4733e-03 1.1864e-03 1.0547e-03
0.01 3.1002e-05 9.0643e-06 4.7945e-06 3.7556e-06 3.3351e-06
0.001 1.9442e-07 3.5933e-08 1.5431e-08 1.1882e-08 1.0553e-08

Rate 221 2.40 249 2.50 2.50

Table 2.8 Convergence rate in the L? norm for the function u(t) = (2¢)*.

At B=12 B=14 B=16 p=18 B =2

0.1 6.0617e-02 2.5721e-02 1.2122e-02 5.5188e-03 2.5388e-03
0.01 3.7171e-04 9.8375e-05 2.9442e-05 8.4502e-06 2.4595e-06
0.001 2.3370e-06 3.8970e-07 7.3655e-08 1.3334e-08 2.4757e-09

Rate 221 241 2.61 2.81 3.01

of convergence would be 8 + 1, for B = 1.2 and 1.4 and 2.5 for the other values of 3, and that was
what we obtained in Table 2.7. For u(t) = (2t)*, we get the B + 1 order of convergence, as shown in
Table 2.8 and as predicted by the theoretical results.
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2.4.2 Heuristic error bounds in the L*° norm

The discussion of the error bounds of the approximation using splines for the L> norm is complete.
We present error bounds in the L* norm. However, as the last section was based on a theorem that
used least square approximation and since that tool has no relation to the maximum norm, a bound in
the L norm is much harder to obtain than the bound in the L> norm. Nevertheless, the experimental
tests for the L* norm indicate the following result. For u sufficiently smooth and u € L™ we have

l|u— || < CpAtPH|DP |, (2.20)

with Cg a constant depending on f3.
Once again, we discuss this upper bound when we have the functions « defined in [0, 7] and such
that u = O(¢") when ¢ approaches 0. The order of approximation will be dominated by the term

1D5 (7)o 0. 4y AP = O(AT P APy = O(Ar?).

Therefore, if (2.20) holds, for a function u such that u = O(t¥) when t — 0, the interpolation error of
the spline approximation is bounded by

||t = 5B |0 0.) < Cy pAt™ P HLTE (2.21)

with Cy g a constant that depends on both y and f3.

In what follows, we exhibit several numerical tests done for the same type of functions presented
in the previous section. This means that, for 0 < 8 < 1, we present the results for the function
u(t) = (2t)7 for y=0.4,1,1.2,1.6; for 1 < B < 2, we show the results when y = 2,2.5 and 4.

The numerical results were computed using the following discrete definition of L*. Considering a
vector f = (f(to),...,f(tm)), with £;1; —t; = At, the discrete mesh-dependent L* norm is given by

,,,,,

In Tables 2.9 and 2.10, we present the results when the function is u() = (2¢t)%* and u(t) = 2¢,
respectively. As, in both cases, min{1+ 3,7} = ¥, we obtained the rates of convergence of 0.4 and
1, as expected. In Table 2.11 the tests are done for the function u(¢) = (2¢)'% and now the rate of
convergence is 1 + f3 for B < 0.6 and 1.6 for B > 0.6 as predicted by the theoretical result (2.21).

Table 2.9 Convergence rate in the L norm for the function u(¢) = (2¢)%4.

At B=02 B=04 B=06 p=08 B=1

0.1  3.0170e-01 3.0170e-01 2.0218e-01 1.7642e-01 1.7038e-01
0.01 1.2011e-01 1.2011e-01 8.0490e-02 7.0236e-02 6.7830e-02
0.001 4.7817e-02 4.7817e-02 3.2043e-02 2.7961e-02 2.7003e-02

Rate 0.40 0.40 0.40 0.40 0.40
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Table 2.10 Convergence rate in the L* norm for the function u(¢) = 2.

At B=02 B=04 B=06 =08

0.1 5.0000e-02 5.0000e-02 1.2107e-02 4.5404e-03
0.010 5.0000e-03 5.0000e-03 1.2107e-03 4.5404e-04
0.001 5.0000e-04 5.0000e-04 1.2107e-04 4.5404e-05

Rate 1.00 1.00 1.00 1.00

Table 2.11 Convergence rate in the L* norm for the function u(t) = (2¢)'.

At B=02 B=04 B=06 =08 B=1

0.1 7.1719e-02 3.4942e-02 1.7154e-02 1.4683e-02 1.2954e-02
0.010 4.5509e-03 1.4182e-03 4.3090e-04 3.6882e-04 3.2540e-04
0.001 2.8731e-04 5.6562e-05 1.0824e-05 9.2643e-06 8.1736e-06

Rate 1.20 1.40 1.60 1.60 1.60

In Table 2.12, we can see that the results for u(¢) = (2¢)? agree with the theoretical ones, since
min{f + 1,2} = 2. In Table 2.13, that refers to the numerical experiments with u(z) = (2¢)>>, we get
rate of convergence of 8 + 1 for 8 < 0.5 and 2.5 for greater values of 8. For u(t) = (2t)*, we obtain
B + 1 for the convergence rate, as illustrated in Table 2.14.

Table 2.12 Convergence rate in the L norm for the function u(t) = (2¢)?.

At B=12 B=14 B=16 p=18 B=2

0.1 6.0729e-03 4.2545e-03 3.2050e-03 2.6342e-03 2.3528e-03
0.010 6.0729e-05 4.2545e-05 3.2050e-05 2.6342e-05 2.3528e-05
0.001 6.0729e-07 4.2545e-07 3.2050e-07 2.6342e-07 2.3528e-07

Rate 2.00 2.00 2.00 2.00 2.00

Table 2.13 Convergence rate in the L% norm for the function u(t) = (2¢)>°.

A B=12 B=14 =16 =18 B=2

0.1 9.5472e-03 3.5715e-03 1.4558e-03 1.1469e-03 9.7733e-04
0.010 6.1093e-05 1.4294e-05 4.6036e-06 3.6269e-06 3.0906e-06
0.001 3.8599e-07 5.6921e-08 1.4558e-08 1.1469e-08 9.7733e-09

Rate 2.20 240 2.50 2.50 2.50
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Table 2.14 Convergence rate in the L* norm for the function u(t) = (2¢)*.

A B=12 B=14 PB=16 Pp=18 p=2

0.1 9.6447e-02 4.4402e-02 1.9671e-02 7.7228e-03 3.5727e-03
0.010 6.6291e-04 1.9261e-04 5.4002e-05 1.3431e-05 3.8933e-06
0.001 4.2175e-06 7.7321e-07 1.3696e-07 2.1781e-08 4.4750e-09

Rate 2.18 2.38 2.58 2.77 2.95

In the next chapter, we use the spline approximation to derive quadrature formulas for the integral
operators involved in fractional differential equations.






Chapter 3

Fractional integrals approximations

The main goal of our work is to derive numerical methods for fractional differential equations, related
not only with subdiffusion problems but also with superdiffusive models described by Lévy flights. In
the next sections, we derive some approximations for the fractional integral operators that will appear
later related to the fractional derivatives. In the first section, we approximate the integral operator
present in the subdiffusive model using fractional splines. In the second section, we approximate the
integral operator related to superdiffusion, using only the linear spline, which was used in [74, 76]
and it will be an important tool for the next chapters.

3.1 Time-integral operator of order 0 < a < 1

The subdiffusive processes can be described using fractional operators with ¢ between 0 and 1. We
consider the fractional Riemann-Liouville integral of order ¢ defined by

t
I%u(t) = F(loc)fo u(t)(t—1)%dr, 0<a<l, (3.1)
for ¢t € [0,b]. This integral exists when u € L'(0,b). The difficulty of the approximation of the
Riemann-Liouville derivative is inherent to approximate (3.1). Therefore, we focus on approximating
this operator using the splines discussed in the last chapter. The general idea is to compute this integral
approximating u by a fractional spline sg, where 3 is the degree of the spline. Once again, we divide
thecasesO0<fB <land1<f <2.

Consider the discrete points t,,, m =0,...,M, where ¢, =t,+At,m=0,...,M —1. We denote
the approximation of (3.1) as I%Pu(t,,) defined by

1

1%Bu(t,) = e ft " 55(0)(tw — )% d1. (3.2)

In the following subsections, we replace the fractional spline by its explicit formula.

29
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3.1.1 Integral approximation using splines of degree 0 < 8 < 1

Recall the formula of the fractional spline with 0 < 8 < 1, given by

1 & B B (g B+1)\°
sp(t) = =——= > & (—1)f< ) > < —j+ > . (3.3)
P T +1) k;) ,Eo j At 2 ).
Inserting (3.3) in (3.2), we obtain the following expression
B
1 1 & B[t B+1
1%By(t,))= J Cr 1J< . > k—jJri X (tm — )% 'd1.
(tn) I(a) ), |T(B+1) ];) j;)( ) J At 2 . ( )

Note that the terms

T—tk__+ﬁ+lﬁ
A T
+

T—1t . ﬁ+1
YRR

are different from zero only for
>0

that is equivalent to
T—t +1
ANy
At 2

j<

Since T < t,, and 1/2 < (B +1)/2 < 1 this means that j < m —k and we can exchange the infinite
sum, that was showed to be finite, with the integral. Furthermore, as j > 0, we conclude that k,;,;, = m.

Hence, we arrive at
m—

m k
Pu(ty) = > e > i, (3.4)
k=0 j=0

where

B
1 1 B+ (" (t—t . B+1 o
lj,k = F(a)l—w(_l)]< J ) J;O ( AL — ]+ 2) (tm—T) ]dT. (35)

+

Let us now pay attention to the integral of the previous formula (3.5). Note that

T—tk_ ,+ﬁ+1

>0
a T

occurs when

+1
r>tk+jAt—BTAt.

This means that we can consider the lower limit of the integral to be #; + jAt — (B + 1)Ar/2, because
before this value the integrand is zero, except when (j,k) = (0,0). Therefore, for all (j,k) # (0,0),
we can write

Ljse = 1~(1a)1~(/31+1)(—1)j (B ;r 1) ﬁ LW(T —1,)P (t,, — 1) ldr,
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where 1, = t; + jAt — At(f + 1) /2. Since the equality (1.12) holds, we obtain

S (B L el (B DI(@)
=gy () )ast ey

which can be simplified to

zjvkzwfjwl)(_l)j@;fl) <m—k—j+ﬁ2+1>ﬁ+a. (3.6)

For the case (j,k) = (0,0) we have, from (3.5),

B
1 1 mlrt—1 B+1 o
00 Faype ), ( a2 > (tn—7)*"dr.

We use the trapezoidal rule to approximate this integral as follows. The integral present in [y can be

written at the expenses of two other integrals

B
1 1 o T—1ty PB+1
I/ = _ + — t,—1)% ldr
" = Tq) F(ﬁ“)L—M;‘( n o) T

B
1 1 ‘0 T—10 B+1 a1
L P22 (-1
r(a)r(ﬁﬂ)[_mﬁ;l( A2 ) (tn — 1) dT

0

The first integral can be computed as before, with 7, = 1o — At (f + 1) /2,

1 1 1 JTB+1)(a) [ o
00~ Figy G5 1] 0O gy |, (o O e

In order to do the computational implementation of the second integral, we approximate it with the
trapezoidal rule, arriving to the following result

1

1 i 1 1 1 .
l0,0 5] mm(tm —tb)ﬁ — Wm (l() —tb) [2(10 —tb>ﬁ(tm —l()) 1} .

Next, in order to rewrite the integral approximation (3.4), we define b, x, for k = 1,...m, as

bm’k:F(lﬂlowl)g(_”j(B;l) <m—k—j+ B;”)ﬁw 3.7)

and fork =0

B
1 T T—1p ﬁ-l—l a—
b= e ) (Af B )(t'"_f) -

Io

Jj=1

(3.8)
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that is approximately

bmo ~ F(l3+la+1)i(_l)j<ﬁ j 1) (m—j+ 32+1>/3+°‘_ zr(a)l“l(ﬁ +1) (

J

By convention by = 0. We have

m—k

A%y = Z Ljks
=0

and therefore, the approximation (3.4) can now be written as

m

Ia'ﬂu(l‘m) = At® Z Ckbm,k-
k=0

In Chapter 2, we have seen that the coefficients c; are given by

k
2 kputp

with

N S I S P
apg=—, Clpz—%Zarap—h p=1....M,

and

p ﬁ
a, = B+1 Z (B+1)<pj+[32+1> . p=0,...,M.

Using this, we can write the approximation of the integral as

Iaﬁ = At® ZZak putp m.k-

k=0 p=0

Finally, rearranging the terms

Iaﬁ = i ib kak p utp)

p=0 \k=p

Therefore we arrive to the quadrature formula

m m
Ia’ﬁu(tm) = At% Z Win,pU(tp), Win,p = Z by kik—p,
p=0 =

with by, ; defined by (3.7)—=(3.8) and d;_, defined by (3.9).

B
) m(x—l

(3.9

(3.10)

(3.11)
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3.1.2 Integral approximation using splines of degree 1 < f§ <2

In this section, we derive a formula to approximate the fractional integral using a fractional spline
of degree 3. This approach differs from the one taken in the previous section, because we need an
additional condition to define the fractional spline.

Substituting in the integral (3.2) u by the formula of the spline (2.11), we obtain the following

expression

o N Ko . 1) o
Iﬁ”(t’")zr(a)fto ﬁ+1 2, ) (= < ' >( A ) (tn — 1) d.

k=0 j=0 +

Since 19 < T <ty and 2 < (B +1)/2 < 3/2 the terms of interest in the infinite sum are those for which
J <m—k+ 1, otherwise the term to the power of 3 is zero. Therefore we can, once again, interchange

the integral with the sum, getting

—

+

—k+1
1%By( Z 2 Lik, (3.12)
k=0 j=0

where

B
1 1 AB+1\ (" (t—t . B+1 o
lix= F(OC)F(ﬁ+1)(_1)J< j )L} < A —j+2>+(tm—r) lar.

We note that for all (j,k) # (0,0),(0,1),(1,0), we have (t—1;)/At — j+ (B +1)/2 >0 when 7 >
tx + jAt — (B + 1)At /2. Therefore, it follows that

1j7k=mf;+a)(_1>j</3;1> <m—k—j+ﬁz+1>ﬁ+a. (3.13)

Let us now analyze the exceptions. For (j,k) = (0,0), we have

B
1 1 T T—1 ﬁ—l—l o—
ZO’OZF(a)F(B+1)L < A2 ) (tn =) d7

that we can split into

B 1 1 tm B . 1 1 10 B o
1070_1_‘(“) F(B+1)A[ﬁ ﬁb (T—tb) (tm_f) ldT—F(a) F(ﬁ+1)AtB J;b (T—tb) (tm_f) 1d’1’,

where t, = 1o — At(f3 + 1)/2. Then, using the trapezoidal rule to approximate the second integral, we

get

loo ~

A ( B+1>f’+°‘_ (Az“ <B+1>B“ma—1_

I(l+B+a) mETT LB+ 1)) \ 2
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For the case (j,k) = (1,0) we have, from (3.13),

B
1 1 tim — 1 1
1170=—ﬁ+ f <T 0—1+B+> (tm—T)aild’C.
To

() T(B+1) At 2

Using the same strategy as before, we arrive to

ho~—

A*(B+1) (m_1+/3+1>ﬁ+“+ A% (B +1) (B+1_1>ﬁ“ma_1‘

I(1+B+a) 2 2r(B+1(ar) \ 2

For the case (j,k) = (0,1) we have

B
1 1 (-1 PB+1 o
| <Af e ) A

To

that leads us to

A B+1\Pre At B+1 NP
l°v“r(1+ﬁ+a)<m_1+2) _2F(B+1)F(a)< 2 _1> m®.

We define b, for 1 < B <2 such that
m—k+1
A%byi= > Lig,
j=0
Fork=1,..m+1andm=1,...,M we have

Pk = mﬁwm;?—w(ﬁf) (mosei *ﬁil)ﬁw'

Considering by o = 0 by convention, for k = 0 we have

(e +11>r<a> [(B?)BH‘(‘;“)(IS;]—1>ﬁ+1]m‘”“

rregra 50 (03 (e B

Jj=0

and for k = 1 we have

N 1 B+1 NPT
by~ _2F(B+1)F(a)< 2 _1> m®!

sy () (e )

j=0
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We arrive to the following approximation of (3.12)

m+1 m+1
IFuty) = A" combmi:  com = o (tn) + Y @ ute—y),
k=0 s=1

with @' being the entries of the matrix Ay, = [@'], k=0,....m+1,s=0,...,m+1 which is the
inverse of A,, (2.16). ’

Note that, in order to obtain ¢ ,,, we need to have access to the derivative of u at the knots. As we
will see in the next chapter, sometimes this type of information is not available. Therefore, in order to
approximate the first derivative of u, we use the approximation given by [39]

D_u(ty) D? u(ty) e D3 u(t,,)

m/t
A T At e (tm)

with
D_u(ty) = u(tm) — u(tm—1)-

The general formula can be written as

D_u(t D? u(t D3 u(t,
() |, D2ultn) | DVulty) _
At At At

_ u(ty) — u(tm—1) Lo u(tm) —2u(tm—1) + u(tm—2) N czu(tm) —3u(tm—1) + 3u(tm—2)—u(tm—3)
At At At

that can be rearranged as

D_u(t,) N D u(ty) D3 u(ty)

A T T A T (3.14)

— Ait ((1 +cr4e)u(ty) — (1+2¢1 4+ 3¢2)u(ty—1) + (c1 + 3c2)u(ty—2) — Czu(tm_3)>.

Ideally, we would use ¢; = —1/2 and ¢, = 1/3, which is a third order accurate approximation. How-
ever, that is only possible for m > 2 because, for m = 1 and m = 2, we would need the values u(z_,)
and u(z_ ). Therefore, for m = 1, we use ¢;,c, = 0, which is a first order accurate approximation. For
m =2, weuse c; =—1/2and ¢, = 0, which is a second order accurate approximation.

In the next section, we derive error bounds for the fractional integral approximation. We also
present some numerical simulations using the exact value of u’(z,,) and using the approximation (3.14)
of u/ (ty).

3.1.3 Error bounds for the fractional integral approximation

In this section we discuss the error bounds, in the L? norm and the L* norm, for the approximation
of the fractional integral when we use fractional splines of degree . In order to do it, we resort to
the result obtained in Chapter 2 for f € (0,2]. We also display some numerical tests to confirm the
theoretical results.

We denote by HP+1(Q) the set of functions u whose extension by zero to ii is in HBT!(R).
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Theorem 3.1. For all ue HP+'(Q), Q = [0,T], the error of the integral approximation is bounded
by
TOC

17°u= 1" ullz@) < Ty

1
Cpl1D5 ™ ul| 2y AP,

with Cg a constant depending on B and Dg ™! the Riemann-Liouville derivative (1.6).

Proof. We have that

I ut) = 1*Pu(r) = F(la) J (&) 3N~ &) dE.

0

Considering Q = (0,7), let us do the change of variables T = — &. We get

1 0
Fou(t) — 1%Bu(r) — —F(a)ﬁ (ult — 1) — st — 1))1% ' dz

that is equivalent to

() — 1B u(s) F(la) L (u(t — 1) — st — ))7% dx.

Therefore,

1 (7 o
f“u(z)—zaﬁu(t)\gr(a)fo (e —7) — s — )71 d.

Taking the L2 norm,

1

T 2 2
7% — 1P 2 = <J ‘ﬂau(t)—la’ﬁu(t)‘ dt) ,
0

we can write

1

T 1 T 2 2
H]au—la’ﬁMHLZ(Q)g (L <F(Q)J;) ‘M(l—f)—SB(I—T)HT’a_ldT) dt) .

Using the generalized Minkowski’s inequality (1.11), we obtain

1

T 2
J lu(t — 1) — st —7)[° 17|2°‘_2dt> dt

1 T
1Py < o | ( 0

(a) Jo

and, consequently,

1
1 T T 5 2 _
I«ffo‘u—1""ﬁbt||L2(s:)<F(OC)JO (L u(r —7) —sp(t —1)| df) 7| dr.

Doing the change of variable z =1 — 7, we get

1

1

T T—71 2
I %% — 1%By| <f <J u(z) —sg(z 2dz> 7| ldr.
H lew < gy [ ([ ) -sp(@az) Ie



3.1 Time-integral operator of order 0 < o < 1 37

Considering that u(z) —sg(z) = 0 for z <0, it follows

1
7% — 1% u)| 200y < 1JT <JTT|u(z) —s (z)|2dZ> 2 2" de
@ C(a) Jo \Jo P

Furthermore, 7 is between 0 and 7', so we arrive to

1
1 T _ T 5 2
I —1%By|| <J 7|% 1dr<J u(z) —sg(z dz>
| 2@ I'(a) Jo |7 . u(z) —sp(2)]

which means that

1
|7 %u— 1P u]| 2 < @H”_Sﬁ||L2(Q)HK||L‘(Q)7

where K(t) := t*~!. Therefore by Theorem 2.2 of Chapter 2, we obtain

Atﬁ+ 1
15U = 1Pulli2(0) < Cpro 3 TNIDG ullz (0.

1
(ax+1)

From this discussion, we expect to have an order of approximation of B + 1 for functions under the
conditions of the previous theorem. We also note that this order of convergence is mainly controlled

by the spline approximation, because it is the approximation we have done to compute the integral.

Consider the functions of interest, as in the previous subsections, that behave like u = O(¢") when
t tends to 0. Recalling that
DG (M)l12(0, = Crph? P17

from Theorem 3.1, we can conclude the following result.

If u = O(t") when t is close to zero then the error of the integral approximation is bounded by
Hﬂau _Ia,ﬁuHLZ(Q) < Cy’ﬁlaAtmin{B-&-l,y-i-l/Z-i-a},

with Cy g , a constant depending on ¥, 8 and a. From this result we infer that the order of the integral,

a, may affect the order of convergence.

For the L™ norm, we assume that we have (2.20), that says
= sl (@) < CpatP 12 ul 10 ),
which leads us to the following result. And, for functions that vanish outside Q,
=5l (2) < CparP* 1Dl = -

Theorem 3.2. Let u be a function sufficiently smooth, u € L*(Q) and

1
= sp | () < CpAPH|IDE || oo ()
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with Cg a constant depending on B. Then

a

B+1 B+1
_ D o AtP T
F((x—i—l)CBH 0 ullr Q)

17 %u=1%Pu]| 1) <
Recalling that
1
DB (1) |0 0.00) = O(AL?),

in the cases where we have a function u = O(t¥) when t — 0, the error of the integral approximation
is bounded by

|7 %u— 1Pyl 2(Q) S Cy7,37aAtmi“{ﬁ+‘ﬂY+“}’

with Cy g o a constant depending on 7, 8 and a.

We present some numerical tests for the same type of functions we have considered in the
discussions of the order of the spline approximation. In the next tables the numerical results are
obtained for the functions u(¢) = (2¢)%, with y =1, y = 1.6 and y = 2, for 8 and & between 0 and 1.

In Table 3.1, we show the results for the case ¥ = 1, for f = 0.4 and @ = 0.9 and for B = 0.8 and
o = 0.1. In the first case the minimum between 8 + 1 and Y+ a + 0.5 or Y+ o is the former one, this
is, 1.4. In the second case the minimum between 8 + 1 and Y+ o + 0.5 or Y+ « is the latter ones, this
is, Y+ o = 1.1 for the L* norm and ¥+ & + 0.5 = 1.6 for the L? norm. From the numerical results
we conclude the same, since we obtain approximately the expected order of convergence.

Table 3.1 Convergence rate for the integral using u(r) = 2t, (B, a) = (0.4,0.9) and (B8, o) = (0.8,0.1),
in the 2 norm and L* norm.

B =04, =09 B =08 a=0.1
At I [|oo Rate |-l Rate | |loo Rate -1l Rate
0.1 2.7904e-03 1.8259¢-03 5.3336e-04 4.0248e-04

0.01 1.4794e-04 1.28 1.0135e-04 1.26 4.2366e-05 1.10 1.4890e-05 1.43
0.001 6.3113e-06 137 4.4217e-06 1.36 3.3653e-06 1.10 4.3798e-07 1.53

In Table 3.2, we display the results for the case ¥ = 1.6. In both cases considered, (f,a) =
(0.8,0.1) and (B, ) = (1,0.2), we obtain the order of convergence around 8 + 1 for the L? norm,
which is the minimum between 8 + 1 and ¥+ a + 0.5. For the L* norm, we obtain the order of
convergence around Y + «, this is, 1.7 in the first case and 1.8 in the second case, which are the
minimum between 8 + 1 and ¥+ o.

In Table 3.3, we show the results for the function u(¢) = (2¢)?. From the information of the table,
we conclude that the order of convergence is § + 1 for both norms as established in the theoretical
results. Note that, as y =2, B + 1 is always lower than ¥+ o and, consequently, lower than Y+ o 4 0.5.

We present some numerical results for f € (1,2] and a € (0, 1), using the exact value for u’'(z,,),
for the functions u(z) = (2¢)%, with y =2 and y = 4.

In Table 3.4, we present the numerical results regarding y = 2, for (B,a) = (1.2,0.4) and
(B,a) = (1.8,0.2). In the first case, the order of convergence is 8 + 1 for both norms, since 2.2 is
lower than ¥+ o = 2.4. For the second pair of values, the rate of convergence for the L? norm is
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Table 3.2 Convergence rate for the integral using u(t) = (2¢)'%, (B,a) = (0.8,0.1) and (B, ) =
(1,0.2), in the L? norm and L norm.

B=08, a=0.1 B=1,a=02
At I Iloo Rate |-l Rate I |loo Rate [|-1]2 Rate

0.1  2.1487e-03 2.0909e-03 2.6355e-03 2.3361e-03
0.01 4.3221e-05 1.70 4.2761e-05 1.69 4.1770e-05 1.80 2.9172e-05 1.90
0.001 8.6236e-07 1.70 8.0681e-07 1.72 6.6201e-07 1.80 3.3121e-07 1.94

Table 3.3 Convergence rate for the integral using u(t) = (2t)%, (B, o) = (0.2,0.6) and (B, ) =
(0.6,0.8), in the L? norm and L norm.

B =02 a=06 B =06, a=08
At I [|oo Rate |-l Rate | [loo Rate -1l Rate
0.1 1.7949e-02 1.0902e-02 1.1871e-02 7.1376¢e-03

0.01 7.6772e-04 137 4.0830e-04 1.43 2.77971e-04 1.63 1.5350e-04 1.67
0.001 4.3623e-05 1.25 2.2547e-05 1.26 6.9662e-06 1.60 3.7829e-06 1.61

Table 3.4 Convergence rate for the integral using u(t) = (2¢)%, (B, o) = (1.2,0.4) and (B, ) =
(1.8,0.2), in the L? norm and L norm.

B=12 a=04 B=18, a=02
At |- 1]oo Rate |- 1]2 Rate I 1|0 Rate I|-1]2 Rate
0.1 1.8170e-03 1.4141e-03 5.1520e-04 1.8982e-04

0.01 1.1900e-05 2.18 9.5472e-06 2.17 3.2507e-06 2.20 3.9689%e-07 2.68
0.001 7.6495e-08 2.19 6.3222e-08 2.18 2.0510e-08 2.20 8.0730e-10 2.69

Table 3.5 Convergence rate for the integral using u(t) = (2t)*, (B, o) = (1.4,0.6) and (B, ) =
(1.6,0.8), in the L? norm and L norm.

B=14, a=06 B=16, a=08
At |- 1]oo Rate - 1]2 Rate I 1|0 Rate |- 1]2 Rate
0.1 9.8791e-03 3.9999¢-03 2.8656e-03 1.1099¢-03

0.01 4.1781e-05 237 1.7116e-05 2.37 7.5325e-06 2.58 3.1250e-06 2.55
0.001 1.6707e-07 2.40 7.0877e-08 2.38 1.8929e-08 2.60 8.0864e-09 2.59

Y+ &+ 0.5 =2.7 and for the L* norm is y+ o = 2.2, since  + 1 = 2.8 . In Table 3.5, we show the
results of the numerical tests done with u(¢) = (2¢)*. We got an order of convergence of  + 1 for
both cases and both norms, as expected by the theoretical results.
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In Table 3.6, we present a numerical test for the case u(t) = (2¢)? considered in Table 3.4, but
instead of using the exact value of u/(t,,), we use the approximation (3.14). When (f, o) = (1.2,0.4),
we obtain a convergence rate around f3 + 1 for both norms. When (f, @) = (1.8,0.2), we obtain a

convergence rate around 2 + ¢ for both norms.

Table 3.6 Convergence rate for the integral using u(¢) = (2t)%, (B,a) = (1.2,0.4) and (B, ) =
(1.8,0.2), in the L? norm and L™ norm, resorting to the approximation (3.14).

B=12, =04 B=18, a=02
At |- 1]oo Rate I -1]2 Rate I 1]oo Rate [|-1]2 Rate
0.1 3.4727e-03 4.4484e-03 3.4113e-03 3.9807e-03

0.01 1.9175e-05 2.26 2.3916e-05 2.27 2.1524e-05 220 2.4360e-05 2.21
0.001 1.0953e-07 2.24 1.3502e-07 2.25 1.3581e-07 2.20 1.5223e-07 2.20

We conclude that the numerical tests are according to the theoretical results and, for some cases,
the order of approximation is influenced by the value of ¢ as expected. Furthermore, it is affected by
the approximation of the derivative /(z,,), needed when f3 is between 1 and 2.

3.2 Space-integral operator of order 0 < o <2, o # 1

Superdiffusive phenomena can be modeled via fractional operators not only with o between 1 and 2
but also with o between 0 and 1. In this section, we describe the approximation of the left and right
fractional integrals of order ¢ with n — 1 < & < n defined, respectively, by

Aul) = gy | w@ gyt 615
and
S ulx) = r(l_a) f u(E)(E —x)" 1L (3.16)

These integrals are related to the definition of the fractional derivatives that will appear during in
Chapter 5.

3.2.1 Integral approximation using the linear spline

Consider the uniform discretization of the real line x; = x;_| + Ax, k € Z. We begin by approximating
the integral % u(x ;) using the linear spline. As seen in Chapter 1, the linear spline is given by

s(x) :==s51(x) = Zu(xk)Bi(x—xk),

keZ

B! (x—x;) rli ()( gxxk—j+1> .

with
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It is easy to see that BY (x —x) is equal to

X — X1
Xk—1 <X < Xg,

Ax
B! X—Xr) = Xk+1—X
+( ) Ar X <X < Xgt1,
0, otherwise
for k < j and, for k = j,
Xj—X < r<
ST i <x<x;
1 ’ J Jo
B (x—ux;) =4 Ax .
0, otherwise.

Then, the spline that approximates a function u is given by
J
s(x) = Z u(x) B (x — xz).

k=—00

Substituting u by s in (3.15),
1 K n—l—o
s(8)(x;—&) dg

) = g,

Y f u(x)BY (& —x)(x) — )" 0dE,

Fn—a) &~ J »

provided that u is bounded.
For k < j, the integral is given by
/ 1 d e n—l-a
Pus) = gy 20 ) [ B (E )= 80

k=—00 Xk—1

and

Ty 1—8

[ sty tar = [ S gy e [

Xk—1

Integrating by parts,

[ By gyea - [BEEEIEE] T

Xk—1

k—1

(a¢—n)Ax

Xk Xk

that is equivalent to

(1—E) 1.
(xj—&6)"*
(I{l o)Ax ds

+ [(xj_é)n_a(xk—&-l —5)]xk+l _Jx“' j
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e n—l—o _ (x'_xk)n_a(x — Xk— ) ()Cj—g)”"']_a T
f Bi—(g—Xk)(xj_é) lmege — (n_a)gx 1—[(n—oc)(nJrl—oc)Akal

(xj = x)" ™ % (1 — xx) N [( (x; = E)rti-a ]m: |

Xk—1

+

(n—a)Ax n—o)(n+1—a)Ax

Xk

Recalling that x; — x;—; = Ax,

A"

e (kI gyl (e
j BL(E —xo)(xj — )1 -%aE = Pt

For k = j, due to the support of the B-spline, we have

1 1 ! Yo 1
Fu(j) = > ute) [ BLE )-8
k=—0o0 Xj—1

with

J‘Xj BL(& 7Xj)()€j*§)n_1_ad§ _ Jx] ‘S_Axxj—l ()Cj*é)n_l_adé _ MAX”_“.

Xj—1 F(I’l—l—Z—OC)

Finally, we arrive to the following approximation of .#/u(x i)

! Ax"¢ 4 !
1) = =gy 2 e
where
diy = (—k=1)""" 22—k (k)Y k<1,
[
a,. = 1.

The approximation of the right integral follows similarly. We obtain the following approximation of
Fu(x;)

A 2
r _ r
i) = 2 St
where
dip = (k1= )"0 =20k — )"0 (k= 1= )" k=41,
a.. = 1.

JiJ
Considering m = j — k, we can rewrite the integrals as

N 0
I'u(x)) = nii=o) > ntu(xjm,t) (3.17)

m=0
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and ”
. Axl’l—a

where the coefficients, that are equal for both quadratures, are given by

a0=1,

) | . (3.19)
Ay =(m+1)""% 2" L (m—1)" % form > 1.

The error bounds for these integrals can be obtained in a similar way to what has been done in
Section 2.4, considering 8 = 1.

In the next chapters, we develop numerical methods for fractional differential equations that can
model subdiffusion and superdiffusion, based on the discussion presented in this chapter.






Chapter 4

Subdiffusion problem

In the first section of this chapter, we describe briefly the deduction of the fractional differential
equation that models subdiffusion based on the continuous time random walk. A continuous time
random walk (CTRW) differs from the Brownian random walk in the waiting times. While in the latter
the waiting times are constant, in the CTRW they are given by a function. In the second section, we
derive a numerical method to approximate the solution of the subdiffusive problem resorting to splines
of degree 8 between 0 and 1. We study the stability and the convergence of the method, illustrating the
convergence rate with some numerical computations. In the third section, we formulate a numerical
method to approximate the same problem but now using splines of degree 3 between 1 and 2. As this
is a much more difficult problem, the stability of the method is yet to be studied. Nevertheless, we
give some numerical examples that indicate the order of accuracy of the method. In the last section,
we present some figures to illustrate the phenomena of subdiffusion when the initial condition is an
approximation of the Dirac delta function.

4.1 Model problem

The CTRW model is the basis for the fractional equation used in subdiffusion derived by Metzler and
Klafter in [51]. Consider a probability density function (pdf), y, that characterizes the length of a
jump and the waiting time between two consecutive jumps. The jump length pdf, A, and the waiting
time pdf, w, can be determined respectively by

A(x) = LOO y(x,t)dt and v(t) = JOOOO y(x,t)dx.

When the waiting time and the length of the jumps are independent, ¥ can be written as y/(x,7) =
A(x)v(t). It can be proved that, in the Fourier-Laplace space, the pdf u that represents the probability
of being in position x at time ¢, obeys to [44, 51]

. 1—-V(s) do(w)
i(w,s) = s 1—9(ws)

where 7ip(®) denotes the Fourier transform of the initial condition u(x). Note that f(®) and f(s)
denote the Fourier transform and the Laplace transform of f, respectively. Furthermore, f (o,s)

45
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represents the Fourier transform of the function of the first variable and a Laplace transform of the
second variable.

CTRW processes can be classified according to the characteristic waiting time, 7', and the jump

length variance, 62, given by

T— J “vd, ot = f " A,

0 —0

being finite or divergent. When T and 2 are finite, we are in the presence of the Brownian motion.
Consider that T diverges, but 6 remains finite with a waiting time pdf that obeys

V() ~ Aa(t/1)' ™%,
for 0 < o < 1, with the Laplace transform behaving as
V(s) ~1—(s7)*%

For the jump length pdf, choosing the Gaussian behaviour, the Fourier transform of A is characterized
by
() ~1— 020+ 0(w).

Then, the pdf u can be written in the Fourier-Laplace space as

Computing the inverse Fourier-Laplace transform, this leads us to the fractional integral equation
o I
u(x,t) —up(x) = Ka@ {1"(06) JO (t—7)% lu(x, ’L’)d’L‘]

Applying the first derivative in time, we get

ou *
E(X,t) = K(X@D(l) au(x,t),

where D(l)_“u is the fractional Riemann-Liouville derivative operator is given by
DYu(t) = L o)
dt
with

F%u(t) = F(la)ﬂu(f)(t—r)“_‘df, O<a<l.

A similar, more general, fractional equation related to subdiffusion processes [27] is given by

u 2
gt(x,z) - sz (d(x,t)Dg;“u(x,z)) ve(n),  (x1)€[ab] x [0,T] @.1)
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where d(x,t) is the positive diffusive coefficient and g(x,7) is a source term. Additionally, we consider
an initial condition and, for simplicity, we assume homogeneous Dirichlet boundary conditions
u(a,t) = u(b,t)=0, forz € [0,T]. Other boundary conditions can be easily considered.

In the next section, we derive a numerical method to approximate the solution of this problem,
using the approximations presented in Chapters 2 and 3.

4.2 Numerical method using splines of degree 0 < 8 < 1

In the following sections, we construct a numerical method based on the integral approximation using
splines of degree 0 < 3 < 1 derived in Section 3.1.1. We proceed with its convergence analysis and
with numerical experiments that illustrate the order of convergence of the numerical method.

4.2.1 Finite differences method

The goal is to construct a numerical method based on fractional splines to solve equation (4.1) defined
in the domain [a,b] x [tp, T]. In order to evaluate the method, let us start by discretize the interval
[to, T] with a uniform grid 5,41 = t,, + Af, m = 0,1,... .M — 1 with time step At = (tyy —19) /M, 19 =0
andfy =T.

We start by integrating (4.1) over an interval of time (,,—1,%,), similarly to what has been done in
[63], obtaining

Tm 62

m
(%, 1) — (X, ) = f 5 (@(e.r)0D! " u(x,r) ) dr + J g(x,1)dr.
—1 tm—1

Im

Approximating d(x,7) in each interval by the second order approximation dmtz (x) = (d(x,tm) +
d(x,tm—1))/2, we get

82 41 tm i " tm
that leads to
az I’I’l*‘rl o o fm
u(x,ty) —u(x,ty—1) ~ a2 (d 2(x) (I %u(x,ty) — I u(x,tm_l))) +J g(x,1)dr. 4.2)
x tm—1

Recall that in Chapter 3 we presented the approximation (3.11) of .#%u(x,t,,), given by
m
1%Pu(x, 1) = At* 2 Win,ptt (X, 1),
p=0

where

m
Wip = Y buidi—p. (4.3)
k=p
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Replacing .7 %u(x,1,,) by I%Pu(x,1,,) for each x, we obtain

(92 m m—1 tm
u(x,t) —u(x,ty—1) ~ pred (dm+%(x)Ata (Z Wkl (X, 1) — 2 wm_hku(x,tk))) +J g(x,r)dr.
k=0 k=0 1,

m—1

We proceed with the space discretization in order to approximate the second order derivative in
space. Consider the set of spatial discrete points x; = a + jAx, j=0,1,...,N with Ax = (b—a)/N
and the central second order operator 82u(x;,t) = u(x;t1,t) — 2u(x;,t) + u(x;—1,t). We obtain the
following numerical method

m m—1 1
_ l+l "
U]m—UJm 1 _ ‘ua52 (djn 2 (ZWmakUJ]'{_ 2 Wml,kUJ]'(>) -‘rj g(xj,t)dt,
k=0 k=0 Im—1

1

dT? = der%(xj) and Uy = At*/Ax*. Aggre-

where we denote U7" the approximation of u(x;,tn), d;

gating the terms,

m—1

m _ +1 41 T
UM =UP" = o Y Wik = Wine1,6)8%(d 2US) + taWmm(d} 2UT) +ft glxj,0)de. (4.4)
k=0 m—1
The matricial form of this method is
m—1
(T to W mD™U™ = TU™ " + 1y > (W — Wi 1,6)D"U* + G, (4.5)
k=0
where I is the identity matrix, U” is the solution vector U" = [U[",..., Uy |17, D" is a tridiagonal
1 1 1
matrix with entries D7;_; = d'/"_+12 D} = —Zd;?1+2 and D7, | = d;.n:lz and G" contains the values

of the integral of the source term.
In the next section, we discuss the convergence of the numerical method using von Neumann
analysis.

4.2.2 Convergence analysis

In this section, we discuss the consistency of the numerical method based on the error bounds derived
in Section 3.1.3. After that, we prove the stability of the numerical method using the von Neumann
approach.

In terms of consistency, from (4.2) we can state that the spatial accuracy of the method is based
on the approximation of the second order derivative in space. As we use a second order central finite
differences formula, we conclude that the method is second order accurate in space. The accuracy
of the method in time is based on the approximation of the integrals present in (4.2). Hence, we
conclude that the accuracy of the numerical method in time is the minimum between & + 7y and
B + 1 for the L norm and is the minimum between o + 7+ 0.5 and 8 + 1 for the L? norm, when
considering functions that behave as u = O(t¥) when 7 tends to 0. Note that to compute (3.8), we use
the trapezoidal rule, which does not affect the order of accuracy of the method once it is a second
order accurate approximation.
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In order to study the stability of the method, we start by giving properties regarding the coefficients
Wn,p that appear in the formula of the numerical method (4.5).

Proposition 4.1. The coefficients wy, ,, (4.3) verify
Wip = Wngq, form—p=n—q, p,q#0.
For p =0, we have wi_p, 0 < wgp.

Proof. Recall that the coefficients w, , that appear in (4.5) are given by

Wm,p = Z bm kQj— 2z and  wy, q = Z bn, KkGk— q: (4.6)
k=p k=q

For k > 0, b, x is defined as

b l OPICEE S

Doing a change of variables in (4.6), we get

m—p n—q
Wm,p = Z bm,s+pdS7 and Wng = Z bn,s+qu'
s=0 s=0

Having
m—(s+p) B+o
1 B+1 B+1
bmv lj . - - T~
ey 2 PP (=i B
and
1 a7 B+1\Fr
= —1)/ — -+ —

equivalent, respectively, to

and

1 (n—q)—s . ﬁ 1 B i1 B+a
bn,SJrq:m j;:) (—1)]< j ><(” Q)—S—J+2> )

we arrive to the result. O
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Furthermore, these coefficients obey
Wnp=0,p=0,1,....om—1,m, Wypir1=2wnp, p=0,1,....m—2. 4.7)

We plot in Figure 4.1 w,, , for m = 1000 and p = 0,1,...,m — 1 for 8 between 0 and 1 and for
a=0.1,02,...,0.9.

=09 0.8
Blo=038

a=0.6 g:
Ma=05 3
Bo=04| 04
a=03
Bl =0.1 '

1000 0
0 500 1000
p

Fig. 4.1 Two different views of the coefficients w,, , defined in (3.11) for  between 0 and 1 and «
changing from 0.1 to 0.9.

We can simplify the formulation (4.5) and also improve the performance of the numerical method
if we define the coefficients as

Amk = Wik —Wm—1k, k=0,1,... . m—1. (4.8)

Using the definition of w,, «, we arrive to the following.

Proposition 4.2. The coefficients q,, x (4.8) can be rewritten as

m—1
dmk = Z (bm,p - bm—l,p)dp—k + bm,mdm—k- (49)
p=k
Forp=1,....m—1,
1 '~ (B+2 B+1\Pre
[ S — — . W —p—j+E= 4.10

and, for p =0,
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bimo—bm-10

B+a+1 i ( )(m_j+132+1>ﬁ+a

a—p fo
+F($)tr(ﬁ+l)\[ (Titb)ﬁ[(tmfl 71)06—1 — (tm*'r)a_l]d’r

where t, =ty — At(B+1)/2.

Proof. From (4.8), using (4.6) is easy to obtain (4.9). Let us show how we arrived to the formula
(4.10). Using the definition of b, x,

1 EE O ﬁ+1>( /3+1)ﬁ+“
bmp—bm— = —— —1)/ , m—p—j+—
P Lp F(ﬁ+a+1);)( ) < j pP—J 2

Jj=0

that is equivalent to

Jj=

Jj=0

Considering s = j+ 1 in the second sum, we get

"Z

B+a+1

which can be written as

vt sz R[] () e

+Fu%:a+1%_lw<ﬁgl)(m_1r+ﬁgl>ﬁﬂa

SYRGHRGY
5003

Note that, using Proposition 1.9,

and as
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we can rewrite (4.11) as follows

bmp—bm—1,p = wg(—l)" (B +2> <m—p—j+ BZH)[H(X.

For p = 0, we use the same strategy applied to (3.8). O

In the next lemma we present some properties satisfied by the coefficients of the quadrature
formula that approximate the fractional integral.

Lemma 4.3. For w, , satisfying (4.7) and q,, , defined by (4.8) we have the following properties.

(a) =1 <gmm-1 <1, qm,psO, p=01,....m—2.

m—1
(b) If Gmm—1 is negative or zero then Z |Gm k| < Winm-
k=0
m—2
(C) Ime,mfl is POSiﬁve then —qmm—1 + Z |Qm,k‘ < Wmn,m-
k=0
Proof. (a) We have that
Amp = Wmp —Wm—1,p = Wmp — Wmp+1 S 0,p=1,....m—=2.

In particular we have that g, 0 = Wy,0 — W1 < 0 SInce Wy, 1 = Wi 0.
The definition of gy, ,—1 18

dmm—1 = (bm,m—l - bm—l,m—l)do + bm,mdl (412)
Resorting to dy = 1/ap and d; = —al/a(z),
1 aq
dmm—1 = (bm,m—l - bm—l,m—l>7 - bm,mﬁ

that is equivalent to

Gmam—1 = F(;(f;:r)l) [<1+ﬁz+l>ﬁ+a—(ﬁ +2) <[32+1)B+“] <[32+1>—/3
“T(B +1a+1) (B;Fl)ma E“(([231111))2 [<1+ﬁz+l>ﬁ_(ﬁ“) <BZ+1>B] <[32+1> 72[3,

which can be simplified to

Imm—1 = F(Z(ﬁ;—lk)l) <ﬁ;1>a[<l+ﬁi1>ﬁ+a_l_ <1+/32+1>ﬁ]‘
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AsO <o <1land0< B <1, we conclude that —1 < gy ,n—1 < 1.

(b) Using (a), for p = 0,1,...,m— 1 we have g,,, <0, then |¢,, ,| = —gpm,p. Furthermore, if
gm,m—1 18 nonpositive, we have

m—1
Z |Qm,k| = —q9m0 —49m,1 —q9m2 — * —Y4mm—-2 — 4mm—1-
k=0

As dmk = Wmk —Wm—1k = Wmk — Wmk+1>

m—1 m—1
Z ‘CIm,k‘ = - 2 (Wm,p _Wm,p+1) = Wm0+ Wnm < Wmm-
k=0 =0
Since wy,x =0,k =0,1,...,m, we get
m—1
Z |Qm,k‘ = —Wno+Wnm < Whnm-
k=0
(c) Provided gy u—1 > 0,
m—2
—qmm—1+ Z |Qm,k| = —qm0 —49m,1 —q9m2 —* —Ydmm—2 — 4mm—1
k=0

Following the same logic as before, we get

m—2

~qmm—1 Tt Z |CIm,k
k=0

< Wi

O]

To prove the stability of the method, consider €7} such that ¢ = U7" —u}', where u}' is the exact

solution of the discretized equation u(x;,t,) and U ;" is the computed solution. Then, ¢’/ satisfies

m—1 .
O — WO (d] 2 = " 1 > g8 (d] 2 ek). 4.13)
k=0

1
We assume that d;-"+ ? is locally constant and denote it by d [26]. That is, freezing the coefficients at
their value at a certain point, we apply the von Neumann method to obtain a local stability condition.

Theorem 4.4. Let0 < B <1,0< a < 1 and ug = dAt®/Ax*.

(a) Let o be such that ¢y ;,m—1 < 0. The B-method (4.4) is unconditionally von Neumann stable.

(b) Let & be such that gy pm—1 > 0. If 0 < 1/(4qmm—1) then the B-method (4.4) is von Neumann
stable.
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Proof. We start this proof with a general approach and then we proceed according to the sign of

qmm—1-

Following the von Neumann stability analysis [65, 70, 72], a numerical solution of (4.13) can be
decomposed into a Fourier series as

M
m_ iSp
ef = 2 Kpe,
p=—M

where K, is the p-th harmonic and &,Ax = pm/M, which is called the phase angle, covers the domain
[—7/7] in steps of /M. The time evolution of the solution can determined by just one parcel k™e'/?.

Then, replacing €' by K"eli? we get

m—1
K€ — 1wy 8% (KMe0) = 1m0 4 Z qmi &% (5e?). (4.14)
k=0
The purpose of the stability Fourier analysis is to prove that the amplification factor is less than one.
Following an idea presented in [89], we define ¥ = Gk™~!, that means

K.m
|G(¢)| = 1| S 1, forall ¢.
Dividing (4.14) by k¥"~!, we obtain
koo K B B m—1 B K-k
7€ w82 () = T Y g8 ()
k=0
Applying k"' = Gx™? iteratively, k"' = G*k" 3 = ... = G"~!7*x*. Then, we have

m—1
Ge'l? — Wi mGE* (€)= &0 + uf N 187 (e70) G
k=0

Furthermore,
82(eV?) =€ (e7 +e? —2) = 269 (cos ¢ — 1) = —4sin*(¢/2)e'?.

Thus, considering s> = 4sin®(¢/2), we can write

m—1
Ge? + GUEW mse? = eV — g Z qmie’0s2GHmL
k=0
Dividing by ¢/¢ and multiplying by G”~! we have
m—1

G"(1 +.ugwm,msz) =G - .u;,’x Z Qm,kssz-
k=0
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Therefore we have the polynomial in G

m—2

(14 B W) G = (1 = B G 157)G" + 185> 3 Gk GF = 0

or, equivalently,

m—2
gmiG* = 0. (4.15)
k=0

Gm_ 1_“(§xqmvmflssz—l ‘ugsz
1+ 1w ms? 1+ LW ms?

We want to prove that the solutions of (4.15) are less than 1. The roots G* of the polynomial verify
[49]

1_.anm m71S2|
| ’ max{ ) 1+H6?Wm7m32 + 1+‘ud Wmms2 Z ‘qu‘

Let us analyze for which conditions the roots G* are less or equal to 1, this means, for which
parameters

-2
1 o 2 o 2m
W <’1_“d qdmm—18 ‘—F,uds Z |Qm,k| <1

(a) If g ;m—1 1s nonpositive , then

|1 _“g‘]m,m7152| =1 _.ug(i)c‘]m,mfls2 =1+ U:zx(_Qm,mfl)sz =1+ ﬂt(ix|CIm,mfl|s2

and, consequently,

m—2
1= b Gnmr 5[+ 1T D amal = 1+ 1 [ gmm—1]5” +uds22 |gm | = 1+uds22 Gmil-
k=0
m—1
From Lemma 4.3(b), 2 |@m.k| < Win,m and therefore
k=0
1 m—2 1
- 1_ o _ 2 + o 2 : — - 1+ 2
e (e ) B (L

1 —i—uds Winm
1+ pS Wi ms?

IN

=1.

Finally, we conclude |G*| < 1.

(b) For gy m—1 positive,

’1 _,u(;me,m—152| =1 _udan,m—lszu if .uC?Qm,m—lsz <1l

As 2 = 4sin®(¢/2) < 4

‘1 _.u:GCIm,m—ls2’ = l_ﬂg(GCIm,m—lsz, for uiqmm—1 < 1/4.
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Therefore

m—2 m—2
}1 _.qum,m—lsz‘ +.ug‘lxs2 2 |51m,k| =1 +.u¢(ixsz <_Qm,m—l + Z ‘Qm,k|) )
k=0 k=0

and, as from Lemma 4.3 (¢)
m—2

—qmm—1+ Z |¢Im,k| < Wi,
k=0

we obtain
m—2

1 +‘ugs2 (‘qm,m—l + Z |Qm,k|) <1 +/~1¢(1X52Wm,m-
k=0

Hence, we arrive to |G*| < 1 provided pu$ < 1/(4gmm—1). O

Remark. We have that g, ,,—1 = 0 for & and 8 such that

2 \Pre 2 \*
(HW) —1—(1+m) — 0. (4.16)

That is, for 0 < B < 1, gy m—1 = 0 for a such that

Clog(1+(1+2/(B+1)7F)
B log(1+2/(B+1)) ’

and it is represented in Figure 4.2 in red. We also note that the condition on the statement of Theorem

4.4 (b) is not very restrictive since g, »—1 < 1. Actually, observing Figure 4.2, the greater g, ,—1 is
near 0.5.

0.5 +

gm,m—1

-0.5 4

0.5 0.5
B

Fig. 4.2 Value of gy, u—1, with o and B between 0 and 1. Red line represents gy, ,—1 = O.

4.2.3 Numerical experiments

In this section we compute the numerical solutions of equation (4.1) in the domain [a,b] x [0,T]. As
before, we consider a uniform mesh in space and time, that is, x; = a + jAx, for j =0,...,N, with
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xy=bandt, =t,—1+At, m=0,...,M, with )y = T. To discuss the accuracy of the approximation,
we define two types of error that take in consideration the discrete L* norm in time and the discrete
L? norm in time discussed in the previous chapter.

We define the error, related to the discrete L* norm in time, as

1
2

E, — max< 2( xj,tm)>2> 4.17)

and the error related to the discrete L2 norm in time as

1

M — 2
Ey — (AtAxZ Z (U —u( xj,tm)>2> . (4.18)

The value U} is the numerical approximation of the exact solution u(xj,t,). The test problems we
consider in what follows are similar to the ones presented in [43, 63]. For all problems, the rate of
convergence of the numerical method are denoted respectively by R, and R;, with respect to the two
norms.

Problem 1. Let [a,b] = [0,2], T = 1 and d(x,7) = x. The source term g(x,7) and the initial
condition ug(x) are defined such that the exact solution of the problem is u(x,t) = >*%x*(2 — x)*.
The regularity of the solution is C?([0,T]) in time. Furthermore, note that u belongs to H8+1([0, T7).

Despite our focus being on the convergence in time, for this problem we illustrate the rate of
convergence in space in Tables 4.1 and 4.2 with respect to the two norms for different values of 3
and o = 0.2 and o = 0.8. As expected, the numerical method is second accurate in space. For other
values of @ we obtain similar results. We also note that the linear spline, 3 = 1, is not necessarily the
one that performs better considering the magnitude of the error.

The order of convergence in time is shown in Table 4.3 and Table 4.4, o = 0.2 and & = 0.8,
respectively. Regarding both errors, we obtain 1 + f8 as expected. The solution seems to be regular
enough near ¢ = 0, to the order of convergence is not be affected by the behaviour of the solution near
this point. In the next example we decrease the regularity of the solution and discuss if and how it
affects the order of convergence.

Problem 2. Let [a,b] = [0,2], T = 1 and now d(x,7) = 1. Once again, the source term g(x,?)
and the initial condition u((x) are defined such that the exact solution of this problem is given by
u(x,t) = t'T%4x?(2 — x)2. The regularity of the solution in time is C' ([0, T']), which is lower compared
to the previous problem. Furthermore, there may exist some value of ¢ for which u ¢ HF*! (0,T).

We display the order of convergence in time for a small Ax, from Table 4.5 to Table 4.8 for
a=0.2,0.4,0.6,0.8, respectively. From the error bounds discussed in the previous chapters, the order
of convergence, regarding the error Eo,, would be of min{1 + 3,1 + 2} and, regarding the error Ey,
is expected to be min{1 + f3,3/2+ 2a}. For o = 0.2, min{1 + ,1+2a} is 1.2 for § =0.2 and 1.4
for the other values of B and min{1 + 3,3/2+2a} = 1 + f3 except for = 1, for which the minimum
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Table 4.1 Results concerning Problem 1. Convergence rate (R, and R;) in space for different values
of B with ¢=0.2 and Ar = 1/5000, for the errors (4.17) and (4.18), respectively.

273 1.007e-02 1.008e-02 1.008e-02 1.008e-02 1.008e-02

274 2.487e-03 2.02 2.488e-03 2.02 2.488e-03 2.02 2.488e-03 2.02 2.488e-03 2.02

275 6.195¢-04 2.01 6.200e-04 2.00 6.202e-04 2.00 6.202e-04 2.00 6.203e-04 2.00

276 1.542e-04 2.01 1.547e-04 2.00 1.549e-04 2.00 1.550e-04 2.00 1.550e-04 2.00
7

s

2 9

3.795e-05 2.02 3.851e-05 2.01 3.869e-05 2.00 3.873e-05 2.00 3.874e-05 2.00
8.967e-06 2.08 9.455e-06 2.03 9.633e-06 2.01 9.671e-06 2.00 9.684e-06 2.00
2.048e-06 2.13 2.215e-06 2.09 2.370e-06 2.02 2.407e-06 2.01 2.420e-06 2.00

R2 R2 R2 R2 RZ

273 4.319e-03 4.319e-03 4.319e-03 4.319e-03 4.319¢-03

274 1.066e-03 2.02 1.067e-03 2.02 1.067e-03 2.02 1.067e-03 2.02 1.067e-03 2.02

275 2.655e-04 2.01 2.658e-04 2.00 2.659%-04 2.00 2.659¢-04 2.00 2.660e-04 2.00

276 6.601e-05 2.01 6.632e-05 2.00 6.642e-05 2.00 6.644e-05 2.00 6.645¢-05 2.00
7

s

2 9

1.618e-05 2.03 1.648e-05 2.01 1.658e-05 2.00 1.660e-05 2.00 1.661e-05 2.00
3.776e-06 2.10 4.022e-06 2.03 4.120e-06 2.01 4.144e-06 2.00 4.152e-06 2.00
9.399¢-07 2.01 9.298e-07 2.11 1.006e-06 2.03 1.030e-06 2.01 1.037e-06 2.00

Table 4.2 Results concerning Problem 1. Convergence rate (R, and R») in space for different values
of B with o=0.8 and Az = 1/5000, for the errors (4.17) and (4.18), respectively.

273 9.147¢-03 9.148e-03 9.148e-03 9.148e-03 9.148e-03

4 2.265e-03 2.01 2.266e-03 2.01 2.266e-03 2.01 2.266e-03 2.01 2.266e-03 2.01
> 5.647e-04 2.00 5.653e-04 2.00 5.656e-04 2.00 5.656e-04 2.00 5.657e-04 2.00
6 1.404e-04 2.01 1.411e-04 2.00 1.413e-04 2.00 1.414e-04 2.00 1.414e-04 2.00

~7 3.441e-05 2.03 3.501e-05 2.01 3.526e-05 2.00 3.533e-05 2.00 3.535e¢-05 2.00
8
9

7.975e-06 2.11 8.499e-06 2.04 8.747e-06 2.01 8.816e-06 2.00 8.835e-06 2.00
1.801e-06 2.15 1.919e-06 2.15 2.120e-06 2.04 2.186e-06 2.01 2.205e-06 2.00

R2 R2 R2 R2 R2

273 3.486e-03 3.486e-03 3.486e-03 3.486e-03 3.486e-03

274 8.637e-04 2.01 8.640e-04 2.01 8.641e-04 2.01 8.642e-04 2.01 8.642e-04 2.01

275 2.153e-04 2.00 2.156e-04 2.00 2.157e-04 2.00 2.157e-04 2.00 2.157e-04 2.00

276 5.349¢-05 2.01 5.377e-05 2.00 5.389¢-05 2.00 5.393e-05 2.00 5.393e-05 2.00
7

s

2 9

1.305e-05 2.04 1.332e-05 2.01 1.344e-05 2.00 1.348e-05 2.00 1.348e-05 2.00
2.982e-06 2.13 3.210e-06 2.05 3.325e-06 2.02 3.360e-06 2.00 3.370e-06 2.00
7.217e-07 2.05 7.129e-07 2.17 7.981e-07 2.06 8.308e-07 2.02 8.403e-07 2.00

is 1.9. We are getting an order of 1.3 for the E,, and for the E; norm when 8 = 1, we observe the
order approaching 1.8 instead of 1.9, although these values are still very near to the expected order.
Considering o = 0.4, for the error E; we have min{1 + 3,1 +2a} =1+ f for § =0.2,0.4,0.6,0.8
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Table 4.3 Results concerning Problem 1. Convergence rate (R, and R») in time for different values of
B with a=0.2 and Ax = 1/5000, for the errors (4.17) and (4.18), respectively.

At B=02 Ry, PB=04 Ry P=06 Ro B=08 Re P=1 Ry

273 4.632¢-03 3.471e-03 2.566e-03 1.855e-03 1.302e-03

274 1.889e-03 129 1.313e-03 1.40 8.791e-04 1.55 5.660e-04 1.71 3.498e-04 1.90

275 7.803e-04 1.28 4.994e-04 1.39 3.001e-04 1.55 1.710e-04 1.73 9.271e-05 1.92

276 3256e-04 126 1.904e-04 1.39 1.021e-04 1.56 5.126e-05 1.74 2.432e-05 1.93
7

s

2 9

1.369e-04 1.25 7.266e-05 1.39 3.457e-05 1.56 1.525e-05 1.75 6.320e-06 1.94
5.784e-05 1.24 2.772e-05 1.39 1.166e-05 1.57 4.507e-06 1.76 1.624e-06 1.96
2.454e-05 1.24 1.057e-05 1.39 3.914e-06 1.57 1.319e-06 1.77 4.088e-07 1.99

R2 R2 R2 R2 RZ

273 2.988e-03 2.308e-03 1.781e-03 1.364e-03 1.034e-03

274 1.160e-03 1.36 8.36le-04 1.46 5.896e-04 1.60 4.067e-04 1.75 2.747e-04 191

275 4.66le-04 132 3.108e-04 1.43 1.981e-04 1.57 1.218e-04 1.74 7.276e-05 1.92

276 1.914e-04 128 1.171e-04 1.41 6.689-05 1.57 3.643e-05 1.74 1.915e-05 1.93
7

s

2 9

7.972e-05 1.26 4.443e-05 1.40 2.260e-05 1.57 1.086e-05 1.75 5.005e-06 1.94
3.350e-05 1.25 1.691e-05 1.39 7.626e-06 1.57 3.218e-06 1.75 1.297e-06 1.95
1.416e-05 1.24 6.438e-06 1.39 2.564e-06 1.57 9.473e-07 1.76 3.318e-07 1.97

Table 4.4 Results concerning Problem 1. Convergence rate (R, and R») in time for different values of
B with a=0.8 and Ax = 1/5000, for the errors (4.17) and (4.18), respectively.

3 6.421e-03 6.282e-03 5.573e-03 4.661e-03 3.734e-03

4 2.257e-03 1.51 2.156e-03 1.54 1.759e-03 1.66 1.321e-03 1.82 9.381e-04 1.99
> 8.544e-04 1.40 7.706e-04 1.48 5.66le-04 1.64 3.766e-04 1.81 2.351e-04 2.00
6 3.413e-04 1.32 2.824e-04 1.45 1.842e-04 1.62 1.077e-04 1.81 5.887e-05 2.00

7 1.413e-04 127 1.050e-04 1.43 6.030e-05 1.61 3.087e-05 1.80 1.472¢-05 2.00
8
9

5.974e-05 1.24 3.938e-05 1.42 1.980e-05 1.61 8.846e-06 1.80 3.673e-06 2.00
2.558e-05 1.22 1.483e-05 1.41 6.509e-06 1.61 2.530e-06 1.81 9.092e-07 2.01

R2 R2 R2 R2 R2

273 3.690e-03 3.610e-03 3.265e-03 2.815e-03 2.348e-03

2% 1.194e-03 1.63 1.151e-03 1.65 9.677e-04 1.75 7.572e-04 1.89 5.658e-04 2.05

275 4.278e-04 1.48 3.940e-04 1.55 3.008e-04 1.69 2.100e-04 1.85 1.388e-04 2.03

276 1.653e-04 1.37 1.410e-04 1.48 9.607e-05 1.65 5.921e-05 1.83 3.437e-05 2.01
7

s

2 9

6.709¢-05 1.30 5.176e-05 1.45 3.115e-05 1.62 1.684e-05 1.81 8.551e-06 2.01
2.806e-05 1.26 1.927e-05 1.42 1.018e-05 1.61 4.810e-06 1.81 2.130e-06 2.01
1.194e-05 1.23 7.233e-06 1.41 3.339e-06 1.61 1.374e-06 1.81 5.285e-07 2.01

and 1.8 for B = 1. For the error E,,, we have that min{1 + 3,3/2 + 2o} is 1 + 8. From observing
the Table 4.6, the results are closer to the expected compared to & = 0.2. Furthermore note that the
results for E, are more tuned with the theoretical ones. For a = 0.6 and ¢ = 0.8, for both errors the
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Table 4.5 Results concerning Problem 2. Convergence rate (R, and R») in time for different values of
B with a=0.2 and Ax = 1/5000, for the error (4.17) and (4.18), respectively.

At B=02 Ry, PB=04 Ry P=06 Ro B=08 Re P=1 Ry

273 9.234¢-03 7.390e-03 6.012e-03 4.944e-03 4.093e-03

274 3.806e-03 1.28 3.045e-03 1.28 2.476e-03 1.28 2.036e-03 1.28 1.685e-03 1.28

275 1.562e-03 1.28 1.249e-03 1.29 1.016e-03 1.29 8.349¢-04 1.29 6.910e-04 1.29

276 6.477e-04 127 5.103e-04 1.29 4.148¢-04 1.29 3.409e-04 129 2.821e-04 1.29
7

s

2 9

2.749e-04 1.24 2.076e-04 1.30 1.687e-04 1.30 1.387e-04 1.30 1.147e-04 1.30
1.169e-04 1.23 8.412e-05 1.30 6.835e-05 1.30 5.616e-05 1.30 4.646e-05 1.30
4.984e-05 1.23 3.396e-05 1.31 2.758e-05 1.31 2.266e-05 1.31 1.874e-05 1.31

R2 R2 R2 R2 RZ

273 8.709e-03 6.245e-03 4.362e-03 2.938e-03 1.910e-03

274 3.627e-03 1.26 2.452e-03 1.35 1.586e-03 1.46 9.830e-04 1.58 5.911e-04 1.69

275 1.520e-03 1.26 9.566e-04 1.36 5.669¢-04 1.48 3.223e-04 1.61 1.801e-04 1.71

276 6.395e-04 125 3.710e-04 1.37 1.998e-04 1.50 1.039e-04 1.63 5.421e-05 1.73
7

s

2 9

2.701e-04 1.24 1.431e-04 1.37 6.957e-05 1.52 3.301e-05 1.65 1.615e-05 1.75
1.145e-04 1.24 5.499e-05 1.38 2.398e-05 1.54 1.035e-05 1.67 4.769e-06 1.76
4.863e-05 1.24 2.105e-05 1.39 8.185e-06 1.55 3.207e-06 1.69 1.394e-06 1.77

Table 4.6 Results concerning Problem 2. Convergence rate (R, and R») in time for different values of
B with a=0.4 and Ax = 1/5000, for the errors (4.17) and (4.18), respectively.

3 1.220e-02 9.776e-03 8.817e-03 8.067e-03 7.465e-03

4 4.811e-03 1.34 3.482e-03 1.49 2.887e-03 1.61 2.640e-03 1.61 2.442¢-03 1.61
> 1.939e-03 1.31 1.297e-03 1.43 9.314e-04 1.63 8.515e-04 1.63 7.874e-04 1.63
6 7.944e-04 129 4.849e-04 1.42 2.969e-04 1.65 2.713e-04 1.65 2.509e-04 1.65

7 3.299-04 127 1.819e-04 1.41 9.374e-05 1.66 8.565¢-05 1.66 7.917e-05 1.66
8
9

1.384e-04 1.25 6.836e-05 1.41 3.081e-05 1.61 2.684e-05 1.67 2.481e-05 1.67
5.851e-05 1.24 2.569e-05 1.41 1.023e-05 1.59 8.370e-06 1.68 7.735e-06 1.68

R2 R2 R2 R2 R2

273 1.139¢-02 9.218e-03 7.153e-03 5.391e-03 4.016e-03

274 4.282e-03 1.41 3.302e-03 1.48 2.355e-03 1.60 1.608¢-03 1.75 1.085e-03 1.89

275 1.665¢-03 1.36 1.206e-03 1.45 7.793e-04 1.60 4.769¢-04 1.75 2.894e-04 1.91

276 6.652e-04 1.32 4.456e-04 1.44 2.582e-04 1.59 1.406e-04 1.76 7.643e-05 1.92
7

s

2 9

2.712e-04 1.29 1.659e-04 1.43 8.548e-05 1.59 4.120e-05 1.77 1.999e-05 1.93
1.123e-04 1.27 6.207e-05 1.42 2.827e-05 1.60 1.200e-05 1.78 5.175e-06 1.95
4.701e-05 1.26 2.328e-05 1.41 9.322e-06 1.60 3.467e-06 1.79 1.320e-06 1.97

theoretical results point to an order of convergence of 8 + 1, as illustrated in Tables 4.7 and 4.8. Note
that, when the order of convergence is supposed to be 8 + 1, the numerical experiments are more in
agreement with the theoretical results.
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Table 4.7 Results concerning Problem 2. Convergence rate (R, and R») in time for different values of
B with a=0.6 and Ax = 1/5000, for the errors (4.17) and (4.18), respectively.

At B=02 Ry, PB=04 Ry P=06 Ro B=08 Re P=1 Ry

273 1.378e-02 1.210e-02 9.312e-03 7.383e-03 7.117e-03

274 5265e-03 1.39 4.384e-03 1.46 3.041e-03 1.61 1.954e-03 1.92 1.803e-03 1.98

275 2.095¢-03 1.33 1.616e-03 1.44 9.971e-04 1.61 5.633e-04 1.79 4.484e-04 2.01

276 8.584e-04 129 6.014e-04 143 3.277e-04 1.61 1.622e-04 1.80 1.102e-04 2.02
7

s

2 9

3.589%-04 1.26 2.253e-04 1.42 1.078e-04 1.60 4.669e-05 1.80 2.685e-05 2.04
1.520e-04 1.24 8.468e-05 1.41 3.544e-05 1.60 1.342e-05 1.80 6.789e-06 1.98
6.498e-05 1.23 3.188e-05 1.41 1.161e-05 1.61 3.846e-06 1.80 1.716e-06 1.98

R2 R2 R2 R2 RZ

273 1.150e-02 1.030e-02 8.548e-03 6.771e-03 5.225e-03

2% 4.081e-03 1.49 3.531e-03 1.54 2.689¢-03 1.67 1.913e-03 1.82 1.314e-03 1.99

275 1.543e-03 1.40 1.260e-03 1.49 8.649¢-04 1.64 5.463e-04 1.81 3.311e-04 1.99

276 6.113e-04 1.34 4.602e-04 1.45 2.815e-04 1.62 1.567e-04 1.80 8.339e-05 1.99
7

s

2 9

2.501e-04 1.29 1.706e-04 1.43 9.213e-05 1.61 4.498e-05 1.80 2.096e-05 1.99
1.046e-04 1.26 6.373e-05 1.42 3.023e-05 1.61 1.290e-05 1.80 5.242e-06 2.00
4.432e-05 1.24 2.392e-05 1.41 9.923e-06 1.61 3.683e-06 1.81 1.294e-06 2.02

Table 4.8 Results concerning Problem 2. Convergence rate (R, and R») in time for different values of
B with a=0.8 and Ax = 1/5000, for the error (4.17) and (4.18), respectively.

273 1.473e-02 1.433e-02 1.191e-02 8.999¢-03 6.374e-03

2% 5.567e-03 1.40 5.150e-03 1.48 3.858e-03 1.63 2.575e-03 1.81 1.593e-03 2.00

275 2223e-03 1.32 1.894e-03 1.44 1.260e-03 1.61 7.381e-04 1.80 3.986e-04 2.00

276 0.198¢-04 1.27 7.061e-04 1.42 4.135e-04 1.61 2.117e-04 1.80 9.970e-05 2.00
7

oot

2 9

3.889e-04 1.24 2.651e-04 1.41 1.360e-04 1.60 6.072e-05 1.80 2.491e-05 2.00
1.665e-04 1.22 9.989e-05 1.41 4.472e-05 1.60 1.737e-05 1.81 6.206e-06 2.01
7.176e-05 1.21 3.770e-05 1.41 1.468e-05 1.61 4.932e-06 1.82 1.532e-06 2.02

R R R R R

273 1.089¢-02 1.065e-02 9.333e-03 7.683e-03 6.080e-03

274 3.770e-03 1.53 3.586e-03 1.57 2.882e-03 1.70 2.128e-03 1.85 1.493e-03 2.03

275 1.423e-03 1.41 1.272e-03 1.50 9.182e-04 1.65 6.003e-04 1.83 3.704e-04 2.01

276 5.692e-04 1.32 4.647e-04 1.45 2.974e-04 1.63 1.709e-04 1.81 9.229e-05 2.00
7

s

2 9

2.361e-04 1.27 1.726e-04 1.43 9.716e-05 1.61 4.884e-05 1.81 2.303e-05 2.00
1.000e-04 1.24 6.468e-05 1.42 3.187e-05 1.61 1.397e-05 1.81 5.734e-06 2.01
4.286e-05 1.22 2.435e-05 1.41 1.046e-05 1.61 3.988e-06 1.81 1.413e-06 2.02

Problem 3. In this example we further reduce the regularity of the solution in time. We consider
[a,b] = [0,x], T =1 and d(x,7) = 1. The source term g(x,z) and the initial condition ug(x) are
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defined such that the exact solution of this problem is given by

t* ,
u(x,t) = (1 + F(H—(x)) sin(x).

The regularity of the solution is only C[0, T] in time, since u, = O(t*~ ).
We display the numerical results from Table 4.9 to Table 4.12 for & = 0.2,0.4,0.6,0.8. For the
E., error we obtain, in general, the expected order of convergence ¢. However, for the E, error, we

obtain a smaller order of convergence than the expected o + 0.5, where greater values of 8 display

better results in refined meshes. To better illustrate the rate of accuracy, we have introduced additional

time steps in the tables of this example.

Table 4.9 Results concerning Problem 3. Convergence rate (R, and R») in time for different values of
B with @=0.2 and Ax = /2500, for the errors (4.17) and (4.18), respectively.

At

B =02

Ry

p=04

Ry

B =06

Ry

B =08

Ry

B=1

Ry

TTINTNTNLIY
T~ SR B Y

—_
»~

1.720e-02
1.137e-02
6.891e-03
4.798e-03
4.891e-03
4.874e-03
4.910e-03
4.825e-03
4.650e-03
4.412e-03
4.134e-03
3.833e-03

0.60
0.72
0.52
-0.03
0.01
-0.01
0.03
0.05
0.08
0.09
0.11

2.281e-02
1.606e-02
1.081e-02
6.795e-03
4.975e-03
4.855e-03
4.717e-03
4.538e-03
4.352e-03
4.146e-03
3.898e-03
3.624e-03

0.51
0.57
0.67
0.45
0.04
0.04
0.06
0.06
0.07
0.09
0.11

3.093e-02
2.316e-02
1.702e-02
1.222e-02
8.509e-03
5.673e-03
3.537e-03
3.321e-03
3.124e-03
2.927e-03
2.728e-03
2.535e-03

0.42
0.44
0.48
0.52
0.58
0.68
0.09
0.09
0.09
0.10
0.11

4.243e-02
3.343e-02
2.617e-02
2.036e-02
1.574e-02
1.209e-02
9.220e-03
6.979e-03
5.240e-03
3.898e-03
2.869e-03
2.086e-03

0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.43
0.44
0.46

5.789e-02
4.737e-02
3.871e-02
3.161e-02
2.580e-02
2.107e-02
1.722e-02
1.409e-02
1.154e-02
9.476e-03
7.798e-03
6.434e-03

0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.28
0.28
0.28

Ry

R

R

R

R

NNM[\‘JNNN
O © N N W kW

~
2

6.384¢e-03
4.024e-03
3.245e-03
2.850e-03
2.500e-03
2.164e-03
1.859¢-03
1.594e-03
1.368e-03
1.178e-03
1.017e-03
8.808e-04

0.67
0.31
0.19
0.19
0.21
0.22
0.22
0.22
0.22
0.21
0.21

8.331e-03
5.093e-03
3.929e-03
3.436e-03
3.064e-03
2.707e-03
2.369¢-03
2.062e-03
1.790e-03
1.553e-03
1.349¢-03
1.172e-03

0.71
0.37
0.19
0.17
0.18
0.19
0.20
0.20
0.20
0.20
0.20

1.102e-02
6.167e-03
3.993e-03
3.132e-03
2.716e-03
2.407e-03
2.126e-03
1.865e-03
1.629e-03
1.420e-03
1.236e-03
1.075e-03

0.84
0.63
0.35
0.21
0.17
0.18
0.19
0.20
0.20
0.20
0.20

1.537e-02
8.568e-03
4.849e-03
2.941e-03
2.029e-03
1.594e-03
1.346e-03
1.168e-03
1.019e-03
8.897e-04
7.760e-04
6.761e-04

0.84
0.82
0.72
0.54
0.35
0.24
0.20
0.20
0.20
0.20
0.20

2.177e-02
1.276e-02
7.433e-03
4.315e-03
2.501e-03
1.449e-03
8.390e-04
4.862e-04
2.820e-04
1.638e-04
9.534e-05
5.561e-05

0.77
0.78
0.78
0.79
0.79
0.79
0.79
0.79
0.78
0.78
0.78

We note that the fractional splines that perform better for larger time steps, regarding the size of
the error, are the splines of degree 3, with 3 closer to « as illustrated in Tables 4.9-4.12. For ot = 0.2,

the spline of degree B = 0.2 presents the smallest error and for & = 0.4, are the splines of degree
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Table 4.10 Results concerning Problem 3. Convergence rate (R, and R;) in time for different values
of B with =0.4 and Ax = 7/2500, for the errors (4.17) and (4.18), respectively.

At

B =02

Ry

B =04

Ry

B =06

Ry

B =038

Ry

B=1

R

1.027e-02
1.036e-02
1.050e-02
9.915e-03
8.727e-03
7.353e-03
6.018e-03
4.826¢-03
3.814e-03
2.982e-03
2.314e-03
1.785e-03

-0.01
-0.02
0.08
0.18
0.25
0.29
0.32
0.34
0.35
0.37
0.37

6.519¢-03
7.094e-03
6.972¢-03
6.393e-03
5.740e-03
5.086e-03
4.297e-03
3.520e-03
2.823e-03
2.231e-03
1.744e-03
1.353e-03

-0.12
0.02
0.13
0.16
0.17
0.24
0.29
0.32
0.34
0.36
0.37

1.320e-02
5.444e-03
3.159¢e-03
3.228e-03
3.058e-03
2.714e-03
2.306e-03
1.901e-03
1.534e-03
1.230e-03
9.831e-04
7.746e-04

1.28
0.79
-0.03
0.08
0.17
0.24
0.28
0.31

0.32
0.32
0.34

2.645e-02
1.589e-02
9.353e-03
5.393e-03
3.038e-03
1.664e-03
8.770e-04
6.432e-04
5.367e-04
4.376e-04
3.512e-04
2.778e-04

0.74
0.76
0.79
0.83
0.87
0.92
0.45
0.26
0.29
0.32
0.34

4.258e-02
2.870e-02
1.945e-02
1.329¢-02
9.175e-03
6.407e-03
4.528e-03
3.236e-03
2.337e-03
1.704e-03
1.252e-03
9.258e-04

0.57
0.56
0.55
0.53
0.52
0.50
0.48
0.47
0.46
0.44
0.44

R,

R,

Ry

R,

Ry

5.945e-03
5.375e-03
4.074e-03
2.833e-03
1.881e-03
1.219e-03
7.821e-04
5.035e-04
3.284e-04
2.187e-04
1.494e-04
1.046e-04

0.15
0.40
0.52
0.59
0.63
0.64
0.64
0.62
0.59
0.55
0.51

3.865e-03
3.692e-03
3.064e-03
2.283e-03
1.606e-03
1.099e-03
7.463e-04
5.093e-04
3.522e-04
2.479e-04
1.775e-04
1.292e-04

0.07
0.27
0.42
0.51
0.55
0.56
0.55
0.53
0.51
0.48
0.46

4.826e-03
2.260e-03
1.761e-03
1.447e-03
1.110e-03
8.139e-04
5.842e-04
4.174e-04
2.997e-04
2.171e-04
1.589¢-04
1.174e-04

1.09
0.36
0.28
0.38
0.45
0.48
0.49
0.48
0.46
0.45
0.44

9.665e-03
4.091e-03
1.758e-03
8.916e-04
5.859¢-04
4.348e-04
3.272e-04
2.442e-04
1.813e-04
1.345e-04
1.000e-04
7.468e-05

1.24
1.22
0.98
0.61
0.43
0.41
0.42
0.43
0.43
0.43
0.42

1.630e-02
7.947e-03
3.866¢-03
1.885e-03
9.246e-04
4.572e-04
2.282e-04
1.150e-04
5.854e-05
3.007e-05
1.557e-05
8.120e-06

1.04
1.04
1.04
1.03
1.02
1.00
0.99
0.97
0.96
0.95
0.94

B = 0.4 and B = 0.6. Similarly, for & = 0.6 the splines that lead to smaller errors for larger time steps
are for B = 0.6 and B = 0.8 and for o = 0.8 are the splines of degree § = 0.8 and 8 = 1.

Overall, the errors in this example have a less regular behaviour when compared with the previous
examples, as presented in Tables 4.9 and 4.10 for & = 0.2 and o = 0.4. In Table 4.9, although we

observe for &« = 0.2 and 8 = 0.2 some oscillations in the error E,, it becomes smaller as we refine

the time step. Still for o, = 0.2, at the beginning the rates of convergence R, and R, are higher

than expected but then slow down and stabilize. This last aspect can also be observed in Table 4.10
for f =0.6 and § = 0.8.

Regarding the stability of the numerical method, when running the experiments we observed that

the method converges even when the stability condition presented in Theorem 4.4 (b) is not satisfied.
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Table 4.11 Results concerning Problem 3. Convergence rate (R, and R;) in time for different values
of B with o=0.6 and Ax = /2500, for the errors (4.17) and (4.18), respectively.

273 2.634e-02 1.704e-02 7.312e-03 6.280e-03 2.092e-02

274 2.041e-02 0.37 1.410e-02 027 6.725e-03 0.12 1.941e-03 1.69 1.208e-02 0.79
275 1.493e-02 0.45 1.068e-02 0.40 5.678e-03 0.24 1.347e-03 0.53 7.141e-03 0.76
276 1.053e-02 0.50 7.685e-03 0.47 4.325e-03 0.39 1.183e-03 0.19 4.325e¢-03 0.72
277 7.260e-03 0.54 5.364e-03 0.52 3.118e-03 0.47 9.282e-04 0.35 2.678e-03 0.69
278 4.930e-03 0.56 3.670e-03 0.55 2.176e-03 0.52 6.832e-04 0.44 1.688e-03 0.67
279 3.315e-03 0.57 2.480e-03 0.57 1.488e-03 0.55 4.836e-04 0.50 1.078e-03 0.65
2710 2215¢-03 0.58 1.662¢-03 0.58 1.005e-03 0.57 3.340e-04 0.53 6.958¢-04 0.63
2711 1.473e-03 0.59 1.108e-03 0.59 6.734e-04 0.58 2.270e-04 0.56 4.523e-04 0.62
2712 9.772e-04 0.59 7.360e-04 0.59 4.488e-04 0.59 1.527e-04 0.57 2.954e-04 0.61
2713 6.470e-04 0.59 4.877e-04 0.59 2.980e-04 0.59 1.021e-04 0.58 1.936e-04 0.61
2714 4279e-04 0.60 3.227e-04 0.60 1.975e-04 0.59 6.791e-05 0.59 1.272e-04 0.61
2715 2.828e-04 0.60 2.133e-04 0.60 1.307e-04 0.60 4.505e-05 0.59 8.364e-05 0.60

R R> Ry R R

273 1.363e-02 9.419e-03 4.478e-03 2.25%¢-03 8.309e-03

274 8.665e-03 0.65 6.290e-03 0.58 3.481e-03 0.36 9.125¢-04 1.31 3.502e-03 1.25
27% 5.152e-03 0.75 3.840e-03 0.71 2.299e-03 0.60 7.299e-04 0.32 1.488e-03 1.24
276 2.938¢-03 0.81 2.229e-03 0.78 1.402e-03 0.71 5.385e-04 0.44 6.405e-04 1.22
277 1.630e-03 0.88 1.254e-03 0.83 8.186e-04 0.78 3.547e-04 0.60 2.800e-04 1.19
278 8.880e-04 0.88 6.931e-04 0.86 4.660e-04 0.81 2.192e-04 0.69 1.243e-04 1.17
27% 4781e-04 0.89 3.790e-04 0.87 2.619e-04 0.83 1.309e-04 0.74 5.591e-05 1.15
2710 2.556e-04 0.90 2.063e-04 0.88 1.465e-04 0.84 7.693e-05 0.77 2.541e-05 1.13
2711 1.362e-04 0.91 1.124e-04 0.88 8.214e-05 0.84 4.498¢-05 0.77 1.164e-05 1.13
2712 7.257e-05 0.91 6.154e-05 0.87 4.639¢-05 0.82 2.638e-05 0.77 5.365e-06 1.12
2713 3.882e-05 0.90 3.403e-05 0.85 2.649e-05 0.81 1.560e-05 0.76 2.483e-06 1.11
2714 2,092e-05 0.89 1.906e-05 0.84 1.534e-05 0.79 9.341e-06 0.74 1.153e-06 1.11
2715 1.139e-05 0.88 1.087e-05 0.81 8.934e-06 0.78 5.709e-06 0.71 5.526e-07 1.06

4.3 Numerical method using splines of degree 1 < 3 <2

In the next sections, we construct a numerical method based on finite differences and on the integral
approximation using splines of degree 1 < 8 < 2 obtained in Section 3.1.2. This approach presented
more challenges than we anticipated. The analysis regarding the stability and consistency of the
method has hard details and we have decided to leave it as an open problem. However, since we find it
an interesting approach, we describe the numerical method and present some numerical experiments
that illustrates its order of convergence.

4.3.1 Finite differences method

We construct the numerical method that intends to obtain an approximate solution for (4.1), but now
using splines of degree 1 < B < 2 and for a constant diffusion coefficient d(x,7) := d. Following the
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Table 4.12 Results concerning Problem 3. Convergence rate (R, and R;) in time for different values
of B with =0.8 and Ax = /2500, for the errors (4.17) and (4.18), respectively.

At

B =02

R

B =06

Ry

B=08 R, f=1

R

3.293e-02
2.024e-02
1.210e-02
7.110e-03
4.139e-03
2.395e-03
1.382e-03
7.957e-04
4.577e-04
2.631e-04
1.512e-04
8.686e-05
4.989¢-05

2.471e-02
0.70 1.536e-02
0.74 9.231e-03
0.77 5.443e-03
0.78 3.174e-03
0.79 1.839e-03
0.79 1.062e-03
0.80 6.115e-04
0.80 3.518e-04
0.80 2.023e-04
0.80 1.162e-04
0.80 6.678e-05
0.80 3.836e-05

0.69
0.73
0.76
0.78
0.79
0.79
0.80
0.80
0.80
0.80
0.80
0.80

1.541e-02
9.804e-03
5.969¢e-03
3.545e-03
2.075e-03
1.205e-03
6.965e-04
4.015e-04
2.311e-04
1.329e-04
7.637e-05
4.388e-05
2.521e-05

0.65
0.72
0.75
0.77
0.78
0.79
0.79
0.80
0.80
0.80
0.80
0.80

4.822e-03 7.197e-03
3.479e-03 0.47 3.711e-03
2.249e-03 0.63 1.981e-03
1.378e-03 0.71 1.086e-03
8.208e-04 0.75 6.066e-04
4.812e-04 0.77 3.426e-04
2.796e-04 0.78 1.948e-04
1.617e-04 0.79 1.112e-04
9.322e-05 0.79 6.368e-05
5.366e-05 0.80 3.651e-05
3.086e-05 0.80 2.094e-05
1.774e-05 0.80 1.202e-05
1.019e-05 0.80 6.902e-06

0.96
0.91
0.87
0.84
0.82
0.81
0.81
0.80
0.80
0.80
0.80
0.80

R

R>

Ry

R

R

1.776e-02
9.675e-03
5.118e-03
2.653e-03
1.356e-03
6.869¢-04
3.457e-04
1.732e-04
8.657e-05
4.318e-05
2.150e-05
1.070e-05
5.310e-06

1.341e-02
0.88 7.331e-03
0.92 3.869e-03
0.95 1.997e-03
0.97 1.017e-03
0.98 5.129e-04
0.99 2.574e-04
1.00 1.287e-04
1.00 6.426e-05
1.00 3.205e-05
1.01 1.597e-05
1.01 7.953e-06
1.01 3.961e-06

0.87
0.92
0.95
0.97
0.99
0.99
1.00
1.00
1.00
1.00
1.01
1.01

8.442¢-03
4.697¢-03
2.504e-03
1.302e-03
6.666¢e-04
3.383e-04
1.708e-04
8.592e-05
4.316e-05
2.166e-05
1.086e-05
5.433e-06
2.662e-06

0.85
0.91
0.94
0.97
0.98
0.99
0.99
0.99
0.99
1.00
1.00
1.03

3.028e-03 2.995e-03
1.914e-03 0.66 1.133e-03
1.099e-03 0.80 4.337e-04
5.999e-04 0.87 1.686e-04
3.179e-04 0.92 6.647e-05
1.655e-04 0.94 2.648e-05
8.518e-05 0.96 1.063e-05
4.355e-05 0.97 4.285e-06
2.217e-05 0.97 1.733e-06
1.125e-05 0.98 7.036e-07
5.702e-06 0.98 2.882e-07
2.886e-06 0.98 1.266e-07
1.486e-06 0.96 9.273e-08

1.40
1.38
1.36
1.34
1.33
1.32
1.31
1.31
1.30
1.29
1.19
0.45

same steps as last section, from (4.1), we arrive at

u(x,ty) —

0%
u(x,ty—1) ~ dﬁ

((ﬂau(x,tm) _ fau(x,zm,l))) + f’" g(x,1)d.

tn—1

In Chapter 3, we have seen that the integral . “u(x,#) could be approximated using splines of degree

between 1 and 2 given by

1%Py(

m+1

chm mks  Ckm

m+1

—akoa xtm Zaks xtgl
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with A,, = [dkmys]a k=0,....m+1, s=0,...,m+ 1 the inverse matrix of A,, (2.16). Therefore,

02 m+1 m+1
u(x,ty) —u(x,ty—1) =~ d@Ato’ ( Z <d’,20(x,tm) + Z dﬂsu(x,ts,l))bm’k

k=0 s=1

m o
_Z <~km01 p” (%, tm—1 +2a u(x, o )bm_17k> +J g(x,t)dt.
1,

m—1

Doing the space discretization as before and applying the approximation (3.14) of u'(z,,), we
obtain the following numerical method

ur_yn-t A5 f % ((1+ +e)UJ = (1+2¢; +3c) U !
j i = A2 ~ Al Cl1TC C1 (&)

m+1 m an 1
+(cl+3cz)Uj’.”_2—czUj’?1_3) Ea,ﬁUS 1) b — ) (’“AO((Hdl)Uj’."—l

k=0

Im
—(1+2d) U2 +d U + EazslUjl>bm1,k) +f g(xj,1)dt
s=1 Im—1

where we denote U" the approximation of u(x;j,t,). At this point, a difficulty arises because we do not
have enough points at the first time steps to implement such numerical method. Therefore, we need

to do different approaches for m =1, m =2 and m = 3. For the first time step, m = 1, as we would
need the values of U~ ; and U , we consider ¢y, cp,d; = 0. For m = 2, we would need the values of
Uj_l, therefore we define ¢; = —1/2 and ¢,,d; = 0; for m > 3, we consider ¢; = —1/2, ¢; = 1/3 and
dy=-1)2.

Let tg = dAt* /Ax?. We can write

m+1 m
<l—ua5 Z <akm+1+ (1+c1+cQ)>bm,m+1>U}”_UJm—1

n !
+ U 8> Z ——2(1+2¢1 +3c2) +a,, bm7k—2(—’—(1+d1)+az;1)bm,1,k U}’H
= At = At

=~

k=0

At km—2 m,k A m—1,k j

k=0

(=]

2 & 672170 ~1m S &‘2’161 ~m—1 m—2
a8 Y] (e +3e2) +afl bmk—z(—T(szl)mk’n_l)bm_l?k Ur(4.19)

+

+,Lta52<
k=

0
m— m+1 m o

+Had ) (Z UTEDY dzf;lbm_l,k> u;™! +f g(xj1)dt
s=1 \ k=0 k=0 Im—1

3
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It can be written in the matricial form as

m+1 dm
(Iua Z (d}?mﬂ + A (1 +ci +cz)> bm,,,,H) DU" = TU"~!
k=0

—1

+ S %01 4043 b= S (= 50 (1w a1 pU”!
Mo At (142c1+3c2) + @, | bmk Z At (1+ 1)+akm m—1k
k=0

hd

o~
Il
o

vy
+Ha ( < A% 1+ 3e2) + 1> bni— Y, (= -1+ 2d1) +ap,! l)bm_Lk) DU
k=0 _
m+1 5210 m ~m
+Ue ——=co+ay s | bk — Z d] +a ~;(n’; 2 | b1k pu"—?
At ' A
k=0 k=0
m—3 /m
+HUo (Zaks mk — Zakvlbm 1k>DUS ! +G™ )
s=1 \k=0 k=0
where I is the identity matrix, U™ is the solution vector U" = [Ul’", .U ,’\’,“_I]T, D is a tridiagonal
matrix with entries D; ;_1 = 1,D;; = =2 and D; j;1 = 1 and G™ contains the values of the integral

of the source term.

We proceed with one numerical test that may indicate the convergence rate of this method.

4.3.2 Numerical experiments

Consider the same conditions as in Section 4.2.3. We present an example of an approximate solution
of the fractional differential equation (4.1) obtained by the numerical method constructed resorting to
splines of degree 1 < f8 < 2.

Let [a,b] = [0,2], T = 1 and d = 1. The source term g(x,?) and the initial condition ug(x) are
defined such that the exact solution of the problem is u(x,t) = t*x*(2 — x)*.

In Tables 4.13-4.15 we present the results and now we analyze them to try to identify the trend,
or rule, of the convergence order that the method obeys. By observation of the tables, we see that
both errors E, and E,, follow the same tendency. For & = 0.2, we observe an order of accuracy of
around 2.2. For a = 0.4, we see that the order of accuracy is about 2.2 for § = 1.2 and around 2.4
for the other values of 3. And finally, for o = 0.8, we note that the order of accuracy is around 2.2
for B = 1.2, 2.6 for B = 1.4 and between 2.8 and 2.9 for § = 1.8 and B = 2. Then, heuristically,
the experimental results of this problem point out that the order of accuracy of this method is the
minimum between 8 + 1 and 2 + o, for sufficiently smooth solutions.

At the end of this and the next chapters, we present some figures that illustrate the evolution of the

solution along time for different values of «.
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Table 4.13 Convergence rate (R, and R;) in time for different values of f with @=0.2 and Ax =
2/10000, for the errors (4.17) and (4.18), respectively.

273 2.959e-03 2.645e-03 2.624e-03 2.676e-03 2.732e-03

274 7.059e-04 2.07 6.003e-04 2.14 5.948e-04 2.14 6.107e-04 2.13 6.267e-04 2.12
275 1.636e-04 2.11 1.325e-04 2.18 1.315e-04 2.18 1.360e-04 2.17 1.401e-04 2.16
276 3.729e-05 2.13 2.882e-05 2.20 2.873e-05 2.19 2.991e-05 2.18 3.091e-05 2.18
277 8.400e-06 2.15 6.213e-06 221 6.233e-06 220 6.531e-06 2.20 6.765¢-06 2.19
278 1.871e-06 2.17 1.327e-06 223 1.342e-06 222 1.415e-06 221 1.468e-06 2.20
27% 4.084e-07 2.20 2.761e-07 2.27 2.818e-07 2.25 2.998e-07 2.24 3.111e-07 2.24

R2 R2 R2 R2 R2

273 1.522e-03 1.375e-03 1.366e-03 1.391e-03 1.419e-03

274 3.418e-04 2.16 2.943e-04 222 2917e-04 223 2.989%e-04 222 3.064e-04 2.21

275 7.691e-05 2.15 6.313e-05 222 6.26le-05 222 6.462e-05 221 6.651e-05 2.20

276 1.728e-05 2.15 1.354e-05 222 1.347e-05 222 1.400e-05 221 1.446e-05 2.20
7

s

2 9

3.869e-06 2.16 2.899e-06 2.22 2.902e-06 2.21 3.035e-06 2.21 3.142e-06 2.20
8.609e-07 2.17 6.185e-07 2.23 6.238e-07 2.22 6.564e-07 2.21 6.808e-07 2.21
1.889¢-07 2.19 1.297e-07 2.25 1.320e-07 2.24 1.400e-07 2.23 1.453e-07 2.23

Table 4.14 Convergence rate (R, and R») in time for different values of f with =0.4 and Ax =
2/10000, for the errors (4.17) and (4.18), respectively.

273 3.774e-03 3.131e-03 3.017e-03 3.055e-03 3.121e-03

274 8.271e-04 2.19 6.279e-04 2.32 5.952e-04 2.34 6.052e-04 2.34 6.215e-04 2.33

275 1.779e-04 222 1.227e-04 236 1.146e-04 2.38 1.171e-04 2.37 1.208e-04 2.36

276 3.795¢-05 2.23 2.365e-05 2.38 2.179e-05 2.40 2.238e-05 2.39 2.317e-05 2.38
7

s

2 9

8.059e-06 2.24 4.517e-06 2.39 4.110e-06 2.41 4.245e-06 2.40 4.408e-06 2.39
1.703e-06 2.24 8.518e-07 2.41 7.658e-07 2.42 7.956e-07 2.42 8.284e-07 2.41
3.530e-07 2.27 1.530e-07 2.48 1.356e-07 2.50 1.419e-07 2.49 1.482e-07 2.48

Ry Ry Ry Ry Ry

273 1.95%-03 1.656e-03 1.602e-03 1.621e-03 1.654e-03

274 4.040e-04 2.28 3.140e-04 2.40 2.990e-04 2.42 3.037e-04 2.42 3.114e-04 2.41

275 8.420e-05 226 5.973e-05 2.39 5.602e-05 2.42 5.715e-05 2.41 5.888e-05 2.40

276 1.767e-05 225 1.136e-05 2.39 1.051e-05 2.41 1.077e-05 2.41 1.114e-05 2.40
7

s

2 9

3.723e-06 2.25 2.157e-06 2.40 1.970e-06 2.42 2.031e-06 2.41 2.107e-06 2.40
7.845e-07 2.25 4.069e-07 2.41 3.673e-07 2.42 3.809e-07 2.42 3.962e-07 2.41
1.635e-07 2.26 7.440e-08 2.45 6.630e-08 2.47 6.918e-08 2.46 7.218e-08 2.46
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Table 4.15 Convergence rate (R, and R;) in time for different values of f with ¢=0.8 and Ax =
2/10000, for the errors (4.17) and (4.18), respectively.

273 3.307¢-03 2.234e-03 1.921e-03 1.864e-03 1.886e-03

274 6.678e-04 231 3.742e-04 2.58 2.946e-04 2.70 2.800e-04 2.73 2.834e-04 2.73

275 1.367e-04 2.29 6.265e-05 2.58 4.433e-05 2.73 4.110e-05 2.77 4.163e-05 2.77

276 2.841e-05 227 1.058e-05 2.57 6.608e-06 2.75 5.958¢-06 2.79 6.037e-06 2.79
7

s

2 9

5.977e-06 2.25 1.806e-06 2.55 9.756e-07 2.76 8.513e-07 2.81 8.627e-07 2.81
1.263e-06 2.24 3.062e-07 2.56 1.375e-07 2.83 1.150e-07 2.89 1.166e-07 2.89
2.630e-07 2.26 4.877e-08 2.65 1.917e-08 2.84 1.641e-08 2.81 1.711e-08 2.77

R2 R2 R2 R2 RZ

273 1.713e-03 1.202e-03 1.054e-03 1.027e-03 1.039¢-03

274 3.219e-04 241 1.899e-04 2.66 1.537e-04 2.78 1.470e-04 2.80 1.488e-04 2.80

275 6.326e-05 2.35 3.075e-05 2.63 2.254e-05 2.77 2.108e-05 2.80 2.135e-05 2.80

276 1.284e-05 230 5.091e-06 2.59 3.318e-06 2.76 3.022e-06 2.80 3.062e-06 2.80
7

s

2 9

2.667e-06 2.27 8.586e-07 2.57 4.880e-07 2.77 4.310e-07 2.81 4.368e-07 2.81
5.604e-07 2.25 1.455e-07 2.56 6.988e-08 2.80 5.942e-08 2.86 6.024e-08 2.86
1.170e-07 2.26 2.359e-08 2.62 9.288e-09 291 7.627e-09 2.96 7.905e-09 2.93

4.4 Numerical approximations of the fundamental solutions

To conclude this chapter, we want to illustrate the process of subdiffusion for different values of «.
We consider equation (4.1) without source term and with initial condition

uo(x) = 8e(x), with & (x) = &I/Eexz/ez, (4.20)
for a small value of €, that can be seen as an approximation of the Dirac delta function.

In Figure 4.3 we plot the numerical solution of our method, for B = 1 and o = 0.1,0.5,0.9
from ¢t =1 to t = 2. We can see that, as & grows, the shape of the solution tends to be less sharp.
Furthermore, the variation of the maximum value of the solution is more accentuated for ¢ = 0.9,
pointing out that the phenomenon of (anomalous) diffusion is faster for bigger values of ¢.. We finish
the study of subdiffusion with Figure 4.4, where we plot the solutions for t = 2 and & between 0.1
and 0.9 that corroborates the conclusions already stated.
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Fig. 4.3 Numerical solutions when the initial condition is (4.20) and D = 1, as time changes from 1 to
2. Left: o = 0.1. Center: o = 0.5. Right: o« = 0.9.
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Fig. 4.4 Numerical solutions when the initial condition is (4.20) for t = 2, D = 1 and o changing from
0.1 t0 0.9.



Chapter 5

Superdiffusion problem

In parallel to what we have done in the previous chapter, the first section of Chapter 5 is dedicated
to the deduction of the fractional differential equation that models superdiffusion, related to Lévy
flights when 0 < @ < 2 (@ # 1). We separate the cases when 0 < @ < 1 and 1 < a < 2, since the
fractional partial differential equation must be solved differently for each case. For the first one,
this is, o@ between O and 1, there are less studies. Here, we present three different approaches to
the approximation of the fractional derivative involved in this superdiffusive problem. We construct
three numerical methods based on these approximations and study their convergence. Numerical
experiments are done to support the theoretical results. For the case when « is between 1 and 2,
more studied in literature, we present a numerical method on the open domain [76] and adapt this
approach to solve a problem that includes a reflecting boundary. For the reflecting case, we study the
convergence properties of the method in detail. At the end of the chapter, we display and analyze
some computational simulations for all the considered cases of superdiffusion and we finish with an
example that juxtaposes one solution of the subdiffusive model and one solution of the superdiffusive

model.

5.1 Model problem

The class of Lévy stable processes that we consider is the class for which the Fourier transform of the
jump distribution [68] is described by the characteristic function v,

(@, 0, p) — exp {(1)% <1;p(iw)“ + 1;”(1(0)0‘” , 5.1)

where n = [a] + 1, D is a positive constant, o is the characteristic exponent that describes the tail of
the distribution and —1 < p < 1 is the skewness and specifies if the distribution is skewed to the left
(p < 0), right (p > 0) of if it is symmetric (p = 0). According to [67], the probability density function
is positive if we have 0 < a < 2, with @ = 2 corresponding to the Gaussian case. For 0 < o < 2, it
describes Lévy flights where the jumps are typically very large.

71
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The characteristic function (5.1), when 0 < o < 2 and o # 1, is the solution of the equation

on(m,1)
ot

1+p

=(-1)"D (2(—iw)“ + 1;p('a))"‘) h(o,r1). (5.2)

Applying the inverse Fourier transform, we can write

=(—-1)"D <1+pﬁ1 {(—iw)%4(w,t)} + I_Tpgf’l {(iw)“ﬁ(m,t)}) :

2
Using the properties present in Proposition 1.16

ng(x,t) =z {(-iw)%4(w,t)} and a(a_axu)a(x,t) — g1 ((i0)%a(w,1)},

we arrive at the final equation, for 0 < o <2 (o # 1),

ou

E(X,t) = (—1)nDVIOJcM(]C,t)7 (53)
where
1+ pd%u l—p 0%
P = —
Viu(x,t) > (x,1) + 3 o(—x)e (x,1), (5.4)

for —1 < p < 1, where D is the diffusion coefficient.
For 0 < o < 1, described in Section 5.2, we construct and compare three different numerical
methods to approximate the solution of equation

Ou(x,t)

e —DVhu(x,t) +g(x,t), xeR,t>0, (5.5)

where we have introduced a source term, g(x,7). Additionally, we consider an initial condition and

lim u(x,t) = 0. (5.6)

x| —o0

For 1 < & < 2, described in Section 5.3, we present the numerical method considered in [76] to
approximate the solution of equation

ou(x,t)
ot

=DVhu(x,t) +g(x,t), xeR, t>0, (5.7)

and in Section 5.4 we propose an approach when a reflecting wall is at x = 0.

5.2 Superdiffusion when 0 < o < 1

In the next sections we present three ways of approximating the Riemann-Liouville derivatives, which
for 0 < o < 1, as seen before, are the first derivative of integral operators. First, to approximate the
integral, we use the linear spline approximation. Then, we use three different ways of approximating
the derivative outside the integral: a central difference method, a first order upwind method and a
second order upwind method. We construct a family of implicit methods and discuss their consistency
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and stability. Furthermore, we present numerical experiments to illustrate the theoretical results and to
show the disadvantages of the central approximation in comparison with the upwind approaches.

5.2.1 Fractional derivative approximations

In this section we describe how we approximate the left and right fractional Riemann-Liouville
derivatives, that are defined by the first derivative of a fractional integral. For the integral, we use
the approximation derived in Section 3.2. For the first order derivative, we build three types of
approximation.

Fractional derivative approximation

In this section, we approximate the left and right Riemann-Liouville derivatives

0 0

aflu(x,z), —aﬂru(x,t) (5.8)
using a central and two upwind approximations of the derivative and the linear spline approximation
of the integral developed in Section 3.2 for a € (0, 1). Recall that, resorting to the linear spline and
considering the uniform domain discretization x; = x;_; + Ax, j € Z, the integrals .# u(x,t) and
Z"u(x,t) can be approximated by

. Axl—a ©
I'u(xj,t) = m 2 aru(xj_g,t), (5.9)
k=0
Axl—Oc

Iru(xj,t) = m

ku(xj+k,t), (5.10)

\M8

respectively, with the coefficients of both quadratures given by (3.19).

We proceed with the derivative approximation.

Fractional derivative central approximation

We start by considering the left Riemann-Liouville derivative; the steps for the right derivative are
similar. This type of approximation was done in [75]. The central approximation for the first order
derivative of the integral is given by

o Iu(xjpr,t) — Iu(xj_1,1)
) = 2Ax
and, furthermore,
o Tu(xjp1,t) —u(xj—1,1)
af u(xj,t) ~ SAr :

Using (5.9), we obtain

a e}
a*fl (xp ) ~ 2AxF 3—a) <Zaku Xj+1—kyt _Zaku(xj—l—kat)>
k=0
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and, considering X" = k — 1 in the first sum and &’ = k + 1 in the second sum,

0 | Axlf(x 0
af u(xj,t) ~ m Z Qg 1 U(Xj_gr 1) Z g 1u(xj_g,1)
K=—1 k=1

Finally, we can combine the terms as follows

—Q

a o0
— 7y (xj,1) ~ m (aou(xj+1, ) +aju(x;,t) Z A1 — Ag—1) (xj_k,t)> )

0x

Therefore, we conclude that the left fractional derivative 0.# u(x;,t)/0x can be approximated by
8lu(x;,t)/Ax* with 8!u defined as

1
SLI.M()CJ',I) = W Z bkcu Xj— kot)s

k=—1

where
b_y1.=ay, bo.=ay, by.=ar1—a1, k=1 (5.1D)

Replicating the same steps using (5.10), for the right Riemann-Liouville derivative we obtain

Axl—a

»
o )~ SR r A )

~ Z b (X151, (5.12)
=—1

k=

and then the right fractional Riemann-Liouville derivative —0.#"u(x;,t)/0x can be approximated by
Ofu(x;j,1)/Ax* with 8/ u defined as

1

S u(xj,t) = m

Z bkcu x]+k>t)7

k=—1
where the coefficients by . are defined in (5.11).

Therefore, we can define the general operator Vhu, for 0 < a < 1 and —1 < p < 1, can be

approximated by the operator 84 .u(x;,t)/Ax* where the operator &, .u is given by
5[7 1 + psl - par
(X,Cu(xﬁt) = T cu(xjv ) (xj’ ) (5.13)

The reason why we want to derive alternative approximations is the fact that, using this approach,
we may obtain spurious numerical oscillations, although we are in the presence of a second order
accurate scheme. We show some examples in Section 5.2.5. Even though we did not present the
numerical method using this approximation yet, in Figure 5.1 we plot the solution of the central
method considering & = 0.1,0.3,0.5,0.7,0.9 for p = —0.8 at left, p = 0 at center and p = 0.8 at right.
We can observe that, in the asymmetric cases p = —0.8,0.8, as a grows more severe oscillations
appear. For p = —0.8 they emerge at the left side of the solution and for p = 0.8 they emerge at the
right side. For the symmetric case, there are no oscillations, regardless of the value of a.
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—a=09 a=07—a=05—a=03—a=0.1]

x1073 %10-3

Fig. 5.1 Numerical solution with the central method for & = 0.1,0.3,0.5,0.7,0.9. Left: p = —0.8.

Center: p = 0. Right:p = 0.8.

Therefore, in the next two sections we resort to a first order and a second order upwind discretiza-

tions to approximate the fractional derivative in an attempt to obtain solutions without oscillations.

Fractional derivative upwind first order approximation

In this section, we approximate the derivative of the fractional integral by a first order upwind
approximation. In the case of the left fractional derivative, it uses a two-point backward difference
and, in the case of the right fractional derivative, a two-point forward difference. This is a natural

consequence of the fact that the left and right derivatives have opposite signs for 0 < o < 1.

The first order upwind approximation [61] is given by
u(x;) — ulx; 1)

c )
c@(x)N A
ox T

for ¢ > 0,

Cu(xj+1) —u(x;)

Ar , forc<0.

For the left fractional derivative we have

0 Tu(xj,t) —T'u(x;_1,t) Ax'—¢ a2
,ﬂl ) A J J—D ) E .
ax u(xj7 ) A 1—1(3_(X)~ k:Oaku(xj k7

Considering K’ = k + 1 in the second sum and aggregating the terms,

o0

— > au(xj 1 g,t)

k=0

o 1 ) e)
l ~ E . E .
o 5 (xj7 ) X F(?) — (X) o (kz aku(x.,_k,t) — ak/_lu(x]_k/,t)>

k=1

1 o0
- m (aou x]’ ];1 A — Af— 1 (Xj_k,t)>.

) |
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We arrive to
o 1
— T I e E b ikl
axj M(xj7 ) F(3—O£)f ak:O k71u(xj ks ))

where
b()’l = ay, bk71 =ar—ai_1, k= 1. (5.14)

For the right fractional derivative, it follows

_Iru(ijrlat) _Iru(xjvt)
Ax

Axl—OC 0 L
TG oa | ) = Y i) |
k=0 k=0

Once again, considering &’ = k + 1 in the first sum and aggregating the terms, we get

a r
_aij (xjv ) ~

0 1 =
—a*fr u(xj,t) ~ —m <Z ap—1u(Xjprst) — Eaku Xjtkst )

k=1
= F (2 Ay — Ag— 1 xj+k,t)+aou(xj,t)> .
k=1
Therefore, we obtain

1
N bulxet
r(3—a)AxakZO k14X 1),

0
—afru(xj,t) ~
where by | are defined in (5.14). Then, the left and right fractional derivatives, 0.# u(x j,t)/0x and
—0.%"u(x;,t)/0x, can be approximated respectively by 8{u(x;,7)/Ax* and 8]u(x;,t)/Ax*, such that

1

l—‘(37 Zbklu xj+k,t)

| ,
6llu<xj'7t>:mZbk?lu(Xjfk,t), 6ll/l(.x]',t):
= k=0

Therefore, the general operator Vhu, for 0 < oo < 1 and —1 < p < 1, will be approximated by the
operator 8y, u(x;,t)/Ax* where 8} u is given by

1+ -
88 u(x1) = — L 8lu(xy.t) + —F 8{u(x; 1), (5.15)

Fractional derivative upwind second order approximation

Similarly to what we have done in the previous section, we build a new approximation for the
derivative of the fractional integrals by a second order upwind approximation. It consists in a three-
point backward finite difference for the left fractional derivative and in a three-point forward finite
difference for the right fractional derivative.
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The second order upwind approximation is defined as

Bu(xj) —4u(xj—1) +u(xj—2)

c , for ¢ > 0,
ou Ax
Ca(xj) ~
c*3u(xj) +4u(xj1) — u(xj”)’ for ¢ < 0.
Ax
Thus, for the left fractional derivative we have
o 3lu(xj,t) — 4u(xj—1,t) + Tu(xj—a,t)
o M) > 2Ax
Ax e} e}
— 2F(3 A <3Zaku Xj_jyt —4;aku(xj_1_k,t) +I§)aku(xj_2_k,t)> )

Doing k' = k + 1 in the second sum and X’ = k + 2 in the third one and rearranging the terms,

a 1 0 0 0
&jl ()Cj, ) x m (3 Z(lku(xj'_k,t) —4 Z aszlu(xj,k/,t) + Z ak/Zu(xjk/at)>
k=0 k'=2

k'=1

1 0
S G aae <3aou(xj-,t) + (3ayr —4ag)u(xj_1,t ];2 (Bar —4a—1 +ak_2)u(xj_k,t)> )

Then, the approximation can be written as

0 1 i
—Fuxit)r —————N'b i k»t 5.16
Ox M(xja ) 21"(3—05)Ax°‘];) k,Zu(-xj k»y )7 ( )
where
b()’z = 3ay, b172 = 3a; —4ay, bk72 =3ar—4dap_1 +ar_o, k=2. (5.17)
Similarly, for the right derivative we have
o =3I u(xj,t) + 4 u(xjp1,t) —'u(xjio,t)
Pl 2Ax
_Axl—a o0 0
= m 32 aru(Xj gyt +4kZ;)ak” Xj+1+kst —];)aku(xﬁﬂkat) .

Using the same strategy as before,

a _1 o] e8] o0
—= A ulxj )~ o <—3 aru(Xjrk,t) +4 ) ar_u(xjpp,t) — ak—zu(xj+k7t))
Oox 2F(3 — Oz)AxO‘ ];) ];1 ];2

1 0
= m <3aou(xj,t) + (3a; —4ao)u(xjt1,t) —l-;(?aak —4ag_ +ak2)u(xj+k,t)> )

We arrive to
0 1
_ " gr - . ) 1
2 w1 ~ TG—a) a/;_obk,zu(xﬁk,t) (5.18)
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Finally, we conclude that the left and right fractional derivatives, 0% u(x;,¢)/0x and —0.%"u(x;,t)/0x,
can be approximated respectively by iu(x;,1)/Ax* and 8yu(x;,t)/Ax* with 8u and 85u defined as

1 < 1
521u(xj,t) = m Zb]@zbl(.x]'fk,l‘), 52ru(x],t) = W Zbkzu .x]+k,t),
=0 k=0

with the coefficients by > given by (5.17). The general operator Vhu,forO<o<land —1<p<1,
will be approximated by the operator & ,u(x;,1)/Ax* where &, ,u is given by

1+ 1—
5p2u(xj, ) = Tp52lu(xj,t)+ TPS{u(xj,t). (5.19)

Concluded the three approaches, we proceed with the construction of the numerical method with
an even more general operator.

5.2.2 Numerical methods

We present a numerical method for the equation (5.5). Let us consider a uniform mesh in time
tu+1 =tm +At, withtg =0and fyy =T, form =0,...,M — 1. In space, consider the uniform mesh in
the real line defined as x; = x;_ + Ax, for j € Z.

Note that the three operators (5.13), (5.15) and (5.19) are defined similarly. Therefore, we can
consider a general operator that represents each of the three operators given previously, 8% .u, 55.114
or 8y ,u, and we denote it by O ..

The explicit and implicit Euler numerical methods are given respectively by

U}n+1 —ur yml _ ur D

D
Y =%z 557*UJ’~" —i—g;f’7 J & -~ 557*U71+1 +gr/rl+1_

The Crank-Nicolson scheme is given by the average of the last two methods, this is,

urtt-ur p D1
. L= SO0 U — Sk U g

At CAx®2 N ) Y ’

Whereg ml/2 _ (gTJrl +8'7)/2, that is,

D D 1/2
(1 +5xa Az&f;ﬂ*) Ut = (1 — 2Ax0‘At55’*> U+t 72,

Let 1y = DAt /Ax*. The numerical method can be rewritten as

1 1 m
<1 + Zua5£,*> Ut = (1 - 2“"‘55’*> ur gt (5.20)

All the three schemes can also be written in a matricial form. When the problem is defined in the
real line we assume natural boundary conditions given by (5.6). Hence, for the implementation of the
numerical method, if we consider N large enough, that is, N such that the condition u(x,) ~ 0, for
x ¢ [x0,xn], the numerical boundary conditions do not interfere with the accuracy of the numerical
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solutions. Therefore, assume the nodal points are U J’.”, j=—N,...,N such that U, = 0 for k < —N and
k > N. Introducing the vector U™ = [U™,...,U]", the schemes may be written as matrix equations

1 1
<I + 2.uOtB](;,*> Ut = <I - 2,uaBg,7*> U™+ Gm+1/2,
where I is the identity matrix, U” is the solution vector U™ = [U™y,...,U]T, G™ contains the values

of the source term and BQ* is defined such that

1+ 1—
Bl 1 Bae b 15 B 21

with B+, the matrix associated with the operators 84 cu, 6% ju and 87 ,u and given by

[ boe  b_ic 0 ... 0 0
1 bie boe boie ... 0 0
Bo.c TG ) b%,c b]‘7c b(‘Lc e 0 0 (5.22)
| bone bon—1e ban—2e ... bic boc |
in the first case,
[ Do 0 0 ... 0 0 |
by bo,1 0 ... 0 o0
By1= NE 1_ o) b2‘,1 b1‘,1 b?.l 0 0 (5.23)
| bonvg bav—1g bov—2g ... b1y bog |
in the second case and
[ by, O 0 ... 0 0
b1 boo 0 ... 0 0
B2 = 2F(31— %) szz b1.72 b?,z 0 0 (5.24)
| bon2 bon—12 ban—2p ... bip bop |

in the last case. Note that B, » is a Toeplitz matrix, a type of matrices that we have already seen in
Section 2.2. Furthermore, Bq, » for * = 1,2 is, additionally, a lower triangular matrix.
In the next section, we study the convergence of the three numerical methods obtained specifying

the operator in equation (5.20).

5.2.3 Convergence analysis

In order to analyze the convergence of the proposed numerical methods, in this section we study their
consistency and stability. In our analysis, we assume we are dealing with functions that vanish at
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infinity, since our problems are defined in the whole real line. We start by presenting some results
regarding the consistency and then present the stability analysis.

Consistency analysis

We discuss the truncation errors of the fractional derivative approximations and, for the sake of clarity,
we omit the variable 7. Furthermore, we present the results only for the left fractional derivative since
the ones for the right fractional derivative can be obtained in a similar manner.

We start by presenting a known result for the central approximation.

Theorem 5.1 (Central approximation, [75]). Let 0 < & < 1, u € C*(R) and such that the third-order
derivative, u®, has compact support. We have that

0%u Slu
G )~ () =€), Jelr) <CA?,

where C does not depend on Ax.

Before moving to the next method, we present a result of great use for the next consistency
theorems.

Lemma 5.2. Consider & € [x;_1,x;] and

si(E) = ulxe_r) + Mu(m. (5.25)

(a) Forue C*(R), we have

(&)~ s:(8) = 4P (@a(E), o Do ]

(b) For ue C*(R), we have

%=
Ax

() =5§) =~ (nhalE) —5; (™

- (1= 4 G £ S )

Ax
for ni € [xk—1,&] and & € [&,x]-
In both lines, [ 2(E) = (x — E)Ax — (xx — &)

Proof. (a) We follow the proof presented in [76]. For & € [x;_1,x;], doing the Taylor expansions of
u(xg—1) and u(x;) around &,

u(g—1) = u(§) +u' () (-1 — &) + gu( V(M) (a1 — €)%, M€ [, €],

u(x) = u(&) +u'(§)(x — &) + gu(z)(Ck)(Xk —&)%, Gee[8,ul.
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Replacing u(x;—1) and u(x;) in (5.25) by the previous expansions,

0®) = e () Ot - )+ Ju® o - 27

Ax 2

+E (@) €))7

that is equivalent to

(€)= (&) + 31 00) (St -+ - 5

with oy € [x¢_1,x¢], since u? is continuous and the coefficients of u(?) have the same sign.

Then, we can write

(&) (&) = —5u® (@)a(E). o [ror i,

with
li2(€) = (i — E)Ax— (x — &), (5.26)

(b) Following the same ideas of the previous proof, doing the Taylor expansions of u(x;—_;) and

u(x) around &,

(1) = u(&) +u' () (xx—1 — &) + %M(z)(é)(xk—l —&)’+ §M(3)(77k)(xk 1= &), mee o1, €],

k) = w(§) + 4 (§)k — &)+ 7y (€ — )7+ 36 () (e~ )%, G [6, ]

and replacing u(x;—1) and u(x;) in (5.25) by the previous expansions,

€)= o () @O~ )4 P )t~ 8+ 5 - 2

et <u(§) 1l ()0~ &)+ 3y (8) (s — £+ 300 () ok~ é>3) -

Gathering the terms according to the derivative of u, we obtain
1 X —§
28 = u(@)+5u () < (w1 = &P+ (&)

5 ( O™ (1~ &)+ (G- £ )Z;Ax).

Ax

In this case, despite u(®) being continuous, one coefficient is positive and the other is negative.

Therefore,

1 E—xp+ Ax

() =518) = -3 @a(®) - 35 (L - 87 + O @ - £ )

with Mg € [x,—1,&], Gk € [§,x(] and [ » defined in (5.26).
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We present the result for the upwind first order approximation.

Theorem 5.3 (Upwind first order approximation). Let 0 < a < 1, u € C*(R) and such that the spatial

derivatives vanish at infinity in an appropriate manner, that is, there exists an x, such that

[ u@)-e)ag < cne 527
-0
Then, we have that l

0%u olu

) — @(xj) =£(x;), [e(x;)| < CAx,

where C does not depend on Ax.

Proof. For the first order upwind approximation, we have

Iu(x;) — Iu(x;—y)
Ax

Sy e

pe +é&1(x;)

where € (x;) = O(Ax). Considering now the approximation of .#"u(x;) by I'u(x;), we can write

jxflu(xj) = (le:(xj) +&(xj) +&1(x))
where :
&(xj) = o ([# u(x;) = Lu(x)] = [ uxj—1) — Tu(xj—1)]) -

Recall that the approximation I'u(x ;) is obtained substituting u by the linear spline s

s(@) = Y, ulu)BY (x—x),

k=—00

where, for k < j

X = Xg—1
y o Xk—1 <X < Xy,
Ax Xj—X e
P xj—l \x\xjv
Bl (x—2xp) = { X1 —X < x<x and Bl (x—x;)={ Ax
Ax 0k =Mt 0, otherwise.
0, otherwise

Then, we can rewrite the spline as

k=—00
with
se(8) = XkA_xéu(xk_l) + : _A);k_lu(x ), fork<j.
Hence,

) =1os) = gy || (E)=5(8) = &) 529
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can be written as

1 J

hula) = 1'uls) = 55 —gy 2 | (u(&) — () x; — &)

Therefore

&(x;)= Ale3 pe ( Z Lk 1 —sk(8))(x;—&)"%dE — Z Lk 1 ) (%) 1_5)0“1‘:’)-

From Lemma 5.2(a),

(&)~ 5k(8) = 5 (M0)1ka(&), 1 € Ly, (5.29)

where
ka(§) = (e —&)Ax— (n—&)?
and therefore, |I; 2(&)| < Ax?. Using (5.29),

k—ooxkl

For the second integral, by doing a change of variable £ = £ — Ax,

Jj—1 X j—1 X+ 1
| amna@em - g = 3 [ u o haE - a0 - £) .

oo Jri P A
Noting that
k2 (6 —Ax) = (v — & +AV)Ax— (1 — & +Ax)?
= (w41 —&)Ax — (ws1 — §)?
= ler12(8),
we obtain

=1 il
2| @m0 @ -07E = 3 | (@) -0,

k=—00 k=—00

that is equivalent to

j—1
5[ @m0 )t - Zj ) (e 2 (E) (x) — E)"dE.

k=—00 Xk—1 k=—0o0 Xk—1
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Additionally, if we assume that the function u and its derivatives behave as (5.27), then we can write

erx) = 2 [ a® o na@)w—)-a

xa/Ax Xk—1

RS DR e gy ,
MT@—a%F%LWLA (M)l 2(8) (xj = 6)~%dE + O(Ax").

Therefore we can obtain the following upper bound for & (x;)

2 (PRI (xj —xa)' ¢
o

— CiAX.
AT(3— ) 1— e

|&2(x))] <

We conclude that this approximation is a first order approximation for the fractional derivative. [

We finish this section with the result regarding the accuracy of the upwind second order approxi-

mation.

Theorem 5.4 (Upwind second order approximation). Let 0 < o < 1, u € C3(R) and such that the
spatial derivatives vanish at infinity in an appropriate manner as in (5.27). We have that

0%u 8lu )
)~ ) =), Je()] <Al
where C does not depend on Ax.

Proof. For the second order upwind approximation, we have

0 i
aj u(xj) =

350u(x;) — 45 u(xj—1) + I lu(x;_)
2Ax

+&1(x))

where € (x;) = O(Ax?). Then, using the spline approximation of the integral, we can write

Ly u(x;) =

o (x) + & (x)) + &1 (x))

I,
ou
Ax

where

82()Cj) = ﬁ (3(flu(x]) —IZM(X]')) —4(flu(xj_1) —IZM(XJ'_])> + (ﬂlu(xj_z) —IZM(XJ'_Q))) .

From Lemma 5.2(b),

1

(&)~ s18) = 34 ()ha(€) ~ 5rerlE L)

with i » given by (5.26) and ¢ (&, 1k, &) given by

3% Xk‘i’AX'
Ax

0l& 050 = i ()8 (51~ € 44D (G e~ )
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Therefore we can write

£x(xj) = — 5E22(x7) - 31, £23(x))
with
f2) = TG ZOO | ra@u® @ -eyea
‘zim;—a)ki | 2 () (&) (xj1 — £)dE
+2;xr(31_%i2; f:1lk,z(é)u(z)(é)(xj—z—5)_%’5
and

J

e5(t) = 2;“33 )kZ [ atemtowm o

2AxF Z J (& My G) (xj—1 — &)~ “dE

2AXF3 (x 2 J énkvgk Xj— 2_6)706615.

We continue with the simplification of the term &, »(x;). By doing the change of variables § = § — Ax
in the second integral and £ = £ — 2Ax in the third one, we obtain

Xk

J
exl) = saroa |, ke g

Xk—1
ji—1

4 1 J A
e N R L LR
k=—00 Y ¥—17F

j—2

Xy +2Ax
3 f  halE 200 (E 28 ).

1 1
M T(R—a) a) 4

Since Iy 2(& — Ax) = lk112(§), as we seen in the last theorem, it follows that

J X
82,2<Xj) = 2Axl_,(13_a) 2 f lk,2(€)(3”(2)(§) _414(2)(& _Ax) + u(z)(é —ZA)C))(X]‘ B g)—adg'
k=—o0 k-1

Note that

3u(&) —4u? (E—A0) +1? (280 =3 (1 (&) —u (E—v) ) — (u® (E—a0) 1) (E—24)).
(5.30)
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Doing a Taylor expansion of u(?) (& — Ax) around & and a Taylor expansion of u(?) (& —2Ax) around
¢ —Arx,
DE-an) = u?(@E)-au (&), Srelc—Axc],
uP(E—28x0) = u®(E - Ax)—Au® € [€ —2Ax,& — Ax
(4 ) (& —Ax) (&), &elé & —Ax]

and therefore, (5.30) can be written as

3 () — (& — A) +u? (E ~24%) = (368 (&) —uP) (&) ) Ax

Thus, assuming that the derivatives of u vanish in an appropriate manner as in (5.27) so that there
exists x, such that
! Sk () ) 2
—a
&,(x)) = ATG—a) > J 2 (&) (BAxu'™ (&1) — Axu'™ (8)) (xj — &)~ *dE + CiAY,

e

we obtain
4

23— o)

)l—oc

Ax2||u(3)||oo(xj_ a +C]Ax2.

|&22(x))| < -

Similarly, for the term &; 3, by doing a change of variables and assuming that the derivatives of u
vanish in an appropriate manner as in (5.27) we have that there exists x, such that

() = ST Zj (6 80 3~ &)
J X
TG ), e A b -6

rk (& —2A%, M2, G—a) (xj — &) ~dE + C1AX .

Therefore " )1
8 2 —Xa) 2
€ i) < 7& —— + CAx".
It follows from the bounds of & »(x;) and & 3(x;) that the bound of &(x;) is of second order. O

In the next section, we discuss the stability of the methods described previously.

Stability analysis

We present the stability results using the von Neumann analysis, regarding the central, the upwind
first order and the upwind second order methods. The study of the three implicit methods is done in
the same way. For each method, we present a lemma that involves properties of the coefficients that
will be needed to prove the main theorem on stability.

We start with the implicit central method given by

1 m 1 1/2
Ut 4 Hadg U = UF = S padh U+ gy (5.31)
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where the operator 6570u is defined by (5.13).
The next lemma concerns the coefficients that appear in the operator (5.13) that already appeared
in the literature.

Lemma 5.5 ([75]). The coefficients by ., defined by (5.11), verify
(@) It <lbecl k=1, lim b =0,

(b) i by cos(k¢) =0, i bre =0, i bre(—1)F =0,

k=—1 k=—1 k=—1

The main stability result for the method involving the central approximation is presented next.
Theorem 5.6 (Central method). The implicit central method is unconditionally stable.

Proof. As described in section 4.2.2, the Fourier analysis can be done, in brief, substituting the error
in equation
1
e+ uacSéZ €t = = Shadi ], (5.32)

by k™e/? and verifying if the amplification factor K is not larger than 1, for all ¢ € [0, 7r]. Using the
formula of the operator 6g7cu

1 1+p 1 —p 1
K.m-‘rl ijo | * K.m-i—l b i(j—k)¢§ - - b i(j+k)¢o
TyH 2 UB-a) k_Z_l el 2 2I(3-a) k_z_ll e

iy 1 1+p 1 1—p 1
= Meli® _ Z i b, eli—=k)9 b etk
e T ek [ 2 AB-« k_Zl ke T G a k_El ke® ]

Simplifying x”’e"/¢ on both sides we obtain

1 [1ep 1 e 1op 1 )
14t | P N py ek N e
K( +2“"‘[ 2 A(G-a) Z k€ T T MG a) Z kie®

k=—1 k=—1
1 I+p 1 = ae  1=p 1 = ,
=1—= b ikd b ik¢ )
2““[ 2 G- “)k_Zl ke® T 2F(3—oc)k_21 ki

Since Uy > 0, if the real part of

e S byt 120 £ 3 byt
k=—1 k=—1

is positive or zero then |k ()| < 1, as explained in the remark after this proof. The real part is given
by

1
+p Z by cos(k¢) + Z by cos(kg)
k=—1 k=—1
that is equal to

Z by cos(k¢).

k=—1
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By the previous lemma we can conclude that it is nonnegative.
O

Remark. Consider three complex numbers z1,z> and zz such that zp =1 —a—ib,zz3=1+a+1ib
and 71 = z2/z3. In polar coordinates, we have z; = rye'% for k = 1,2,3 where |z;| = 1. Then, we can

write
22 2 (o, —
=== 22 i(92—93)
3 13

that implies that

In order to have |z;| < 1, it requires that (1 —a)? < (1 4 a)? and therefore we just have to guarantee

that a > 0.

Let us now consider the implicit upwind first order method given by

m+1/2

1 1
U™+ S ey U = U = S e, U+ g7 17,

(5.33)
where the operator 5571u is defined by (5.15).
Lemma 5.7. The coefficients by 1, defined by (5.14), verify:

(a) lim by =0, br1<0,k=2,
k—0

(b) D bi1 =0, ) biicos(kd) > 0.

k=0 k=0
Proof. (a) Recall that by 1 is defined by (5.14) as
by =ag, br)=ax—ax—1, m=1,

with
ap=1, ap=(k+1)> %2624 (k—1)>"% fork>1.

Then, bo,1 >0, b1 = 22-% _3 can be positive, negative or 0 and, for k > 2, we have by ; <0. The
coefficient by ; is positive for & < 1n(4/3)/In(2) ~ 0,415 and negative otherwise.

The coefficients by 1 can be written for k > 1 in the form
by = (k+1)>"% =3k % 4+ 3(k—1)>"% — (k—2)*%,

that is equivalent to

1 2—a 1 2—o o) 2—o
_ 12—« - . - . _“
by =k [<1+k> 3+3<1 k) (1 k> :
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Using the generalized binomial theorem,
+00 j
2—«o . o 1
b1 =k"%( -3 1+ (=1)3—(=1)72)) (-] |.
st (-5 (v ()

In the series, the first three terms are given by

(1+3-1)=3, (2—a)(1—3+2)% 0, <2;“> (1+3-2) (}C)z:o

and therefore we can arrive to

ee}
2—o Cj
bk,1=2( . )W (5.34)

=3

where ¢; = 1+ (—1)7/(3 —2/).It follows from (5.34) that, for 0 < a < 1, we have klim bi1 = 0.
—0

400 N N
(b) Note that Z b1 can be seen as lim Z bi.1. Then, let us consider sy = Z by,1. We have
=0 N=% 20 =0

that

sy =bo1+b11+ - +by_11+bn
=aptay—ap+---+anN-1,1 —an-2,1 +an,1 —an—1,1
=an,
that is equivalent to
. .
2—a\ 1+ (—1)/
sv=(N+1)>%—2N* %4 (N—1)>% =} < >()

— J Na—2+j
j:

Therefore lim sy = 0 and we have
N—0

o0}
S by =0. (5.35)
k=0

Regarding the cosine series, we denote it by s(¢), that is,

o0
s() == be1 cos(ke). (5.36)
k=0
Since
0
boy = —bi1+ Z(—bk,l)
k=2
we have

18

o0
s(¢) =bo,1+bi1cosd + Z by, cos(kd) = —by (1 —cos¢) +
k=2 k

(=bi,1)(1 —cos(kg)).

Il
)
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The series is nonnegative, once by; < 0 for k > 1 and 0 < 1 —cos(k¢) < 2. However, the term
—by,1(1 —cos @) can be either positive or negative, depending on the sign of b; ;. For the values of
o such that by | < 0, we can conclude immediately that s(¢) > 0. If by ; > 0 we proceed differently.
From the definition of s(¢) we conclude that it is a continuous function for ¢ € [0, 7] and, from (5.35),
5(0) = 0. Furthermore, s(¢) is positive, since s(r/2) > 0 and s(¢) # O for all ¢ # 0 as can be seen in
Figure 5.2. O

a=0.3

Fig. 5.2 Plot of the series function of cosines s(¢) given by (5.36) when ¢ € [0, 7] and for different
values of o changing from 0.1 to 0.9.

The main stability result for the method involving the first order upwind approximation is presented

next.

Theorem 5.8 (Upwind first order method). The implicit upwind first order method is unconditionally
stable.

Proof. Similarly to the last theorem, the von Neumann analysis can be done replacing the error in
equation

1 1
e’}”l + 5[.@55716?1“ =} — 5:”0!65,161}1’ (5.37)
by k™e'/® and verifying if the amplification factor K is less than or equal to 1, for all ¢ € [0, 7r]. Using
the formula of the operator 6&7114 and dividing the whole equation by x"e'/?,

i 1+p o 1-p
1 a by e ik by 1 ik
K( +2r(3a)[ RPILEL R ];)"’16

k=0

i 1+p < l—p<
-1 te Mbpie 0+ PNy e |
21“(3—0:)[ P R
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If the real part of

is positive or zero then |k(¢)| < 1 as seen before. The real part is given by

1+p & 1—p &
zl;bm cos(k9) + Z,Zé)b“ cos(kg).

By the previous lemma we can conclude that it is nonnegative. 0

The implicit upwind second order method is given by

1 1
m+1 1 m +1/2
U +§““5572°71+ =Uj _5““55720748? ) (5.38)

where the operator 5532u is defined by (5.19).
Lemma 5.9. The coefficients by », defined by (5.17), verify:
(a) limbr =0, br2<0, k=>4
k—00
o0 0
(b) D bioy =0, ) bracos(kd) > 0.
k=0

k=0

Proof. The proof can be done following the same steps of Lemma 5.7.
(a) From (5.17), we have

bop =3ap, bip=3a;—4ay, by =3ar—4ar+ar2, k=2.

It is easy to check that, for all kK > 4, we have by, < 0. For k = 0, we have bp, =3 > 0. Fork =1,
b1 =3 x2*~%—10 s positive for & < In(6/5)/In(2) ~ 0,263 and negative otherwise. For k = 2,3,
we have that b, ; can be positive or negative, once again depending on the value of «.

For k > 3, the coefficients by > can be written as
bro=3(k+1)""% 10> % + 12(k— 1)** —6(k —2)>"* + (k—3)*7%,

that leads us

1 2—a 1 2—a o) 2—a 3 2—a
_ 12—« - _ - _ _ = -
bir=k [3 <1+k) 10+ 12 (1 k) 6<1 k) + (1 k) .

Applying the generalized binomial theorem,

bra=k"° <—1o+§) (2;O‘> (3+12x (—=1)/ =6 x (=1)/27 + (—1)/3/) <llc)]> :
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Note that, the first three terms of the series are given by
1 1
3+12—-6+1=10, (3—12+6><2—3)% =0, (3+12—6><4+9)k—2 =0.

Therefore, we can write that the coefficients by » are defined by the series
[ee}
2—o 3¢ j
bk,2 = Z < ] )kj+(x2’ (539)
j=3

for k > 2, with ¢; = 1+ (—1)7(4 —2/71 +-3/=1). It follows from (5.39) that, for 0 < & < 1, we have
lim bk,z =0.
k—oo
N 00
(b) Considering sy = Z by, we can write lim sy = Z by>. Using the definition of by 5, for sy
’ N—o0

k=0 k=0
we have

sN=bop+bia+bra+--+by>
=3ag+3a; —4ag+3a, —4a, +ag---+3ay_1 —day_or+ay_3+3ay —4day_1 +an_»

=3ay1—an—-1.1,
which is equivalent to
sy =3 ((N+1)7¥ 2N+ (N—1)>"%) — (N “—2(N— 1)>" %+ (N -2)*"%)

and then
sy =3(N+1)>"%—TIN> "% L 5(N—1)>"% — (N —2)*%,

Using once again the generalized binomial theorem, we obtain
e 0]
2—«o d j
SN = Z ( ; >2'7
= j No&—2+]
where d; = 3+ (—1)/(5—2/). Therefore Jim sy =0 and
—00

e}
Dby =0. (5.40)
k=0
Regarding the cosine series, that we denote it by s(¢),
0
s() == brocos(ke), (5.41)

k=0

and, from (5.40), we have that s(0) = 0. Furthermore, s(¢) is positive, since it is a continuous function
s(/2) > 0 and s(¢) # O for all ¢ +# 0 as can be seen in Figure 5.3.
O
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o 05 1 15 2 25 3
¢

Fig. 5.3 Plot of the series function of cosines s(¢) given by (5.41) when ¢ € [0, 7] and for different
values of o changing from 0.1 to 0.9.

The main stability result for the method involving the second order upwind approximation is
presented next.

Theorem 5.10 (Upwind second order method). The implicit upwind second order method is uncondi-
tionally stable.

Proof. The proof is similar to the proof of Theorem 5.8. By replacing the error in equation
1
m+1 + “a5p m+1 e — 5“0655,26?7 (5.42)

by a single mode xe/? and simplifying k"e/? on both sides we obtain

Ho [ 1+p —ikg 11— iko
K<1+4[ 5 F(3 Zbkze + — Zbkge

o MHaf1l+p 1 —iko ko
=1 ——4 ( E bkze ! +7 § kaGl
If the real part of

1+p & 1—p &
b —ik¢ b ik¢
5 kZ_;) k,2€ +72 l;) k,2€

is non-negative then |k(¢@)| < 1. The real part is given by

1+p = 1—p =
- ];)bkg cos(k¢) + — ];)bkg cos(k¢)
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and, by Lemma 5.9(b), we can conclude that it is positive or zero. O

In the next sections we present some experiments with the three numerical methods discussed

previously.

5.2.4 Numerical experiments

Consider equation (5.5), with D = 1, source term g(x,#) and initial condition uy(x) are defined in
order to the exact solution of the problem be u(x,t) = e ~'x*(2 — x)*. Moreover, consider the following
domain [0,2] x [0, 1], discretized uniformly.

In the next tables we determine the discrete L* norm and the discrete L? norm of error for an

instant of time #; = MAt, as follows

M M M
[l — U] =j:1r7n“2.1$_1’u(xj,tM)—Uj (5.43)
and
N—1 1/2
2
| —UM||, = (MZ lu(xj ) — UY| > : (5.44)
j=1
We present the convergence in space, for different values of & and for p = —1,0, 1, for the three

numerical methods suggested previously.

Table 5.1 Results concerning the central approximation for p = 1, At = 0.001 and different values of
a. Convergence rates Ry, for the error (5.43) and R; for the error (5.44).

6 1.923e-04 2.227e-04 2.606e-04 2.998e-04 4.132e-04

~7 4.805e-05 2.00 5.567e-05 2.00 6.538e-05 2.00 7.569e-05 1.99 1.049e-04 1.98
8
9

1.199e-05 2.00 1.390e-05 2.00 1.637e-05 2.00 1.907e-05 1.99 2.659e-05 1.98
2.975e-06 2.01 3.455e-06 2.01 4.080e-06 2.00 4.783e-06 2.00 6.756e-06 1.98

R> R, Ry Ry R

6 1.514e-04 1.766e-04 2.079e-04 2.400e-04 2.565e-04
7 3.783e-05 2.00 4.416e-05 2.00 5.213e-05 2.00 6.062e-05 1.99 6.490e-05 1.98
8 9.447e-06 2.00 1.104e-05 2.00 1.306e-05 2.00 1.528e-05 1.99 1.641e-05 1.98
9 2.352e-06 2.01 2.752e-06 2.00 3.266e-06 2.00 3.844e-06 1.99 4.142e-06 1.99

In Tables 5.1-5.9 we have the results for the three methods, for p = 1,0 and —1. In Tables 5.1-5.3
we exhibit the results for the central approximation; in Tables 5.4-5.6 we exhibit the results for the
first order upwind approximation; and in Tables 5.7-5.9 we exhibit the results for the second order
upwind approximation. By observing the tables, we conclude that the methods using the central
approximation and the second order upwind approximation are second order accurate while the first
order accuracy is attained by the first order upwind scheme. All the results are according to the

theoretical results.
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Table 5.2 Results concerning the central approximation for p = 0, At = 0.001 and different values of
a. Convergence rates R, for the error (5.43) and R, for the error (5.44).

Ax a=01 Ry, a=03 Ry, a=05 R, a=07 Ry o=09 Ry

276 1.902e-04 2.029e-04 2.046e-04 1.907e-04 1.226e-04

277 4.753e-05 2.00 5.069e-05 2.00 5.109e-05 2.00 4.760e-05 2.00 3.057e-05 2.00
278 1.186e-05 2.00 1.265e-05 2.00 1.275e-05 2.00 1.187e-05 2.00 7.604e-06 2.01
279 2.942e-06 2.01 3.140e-06 2.01 3.163e-06 2.01 2.940e-06 2.01 1.867e-06 2.03

Ry Ry R R, Ry

276 1.498e-04 1.612e-04 1.642e-04 1.556e-04 1.032e-04

277 3.742e-05 2.00 4.027e-05 2.00 4.102e-05 2.00 3.883e-05 2.00 2.572e-05 2.00
278 9.344e-06 2.00 1.006e-05 2.00 1.024e-05 2.00 9.694e-06 2.00 6.413e-06 2.00
279 2.326e-06 2.01 2.505e-06 2.01 2.552e-06 2.00 2.414e-06 2.01 1.592e-06 2.01

Table 5.3 Results concerning the central approximation for p = —1, At = 0.001 and different values
of o. Convergence rates R, for the error (5.43) and R, for the error (5.44).

© 1.923e-04 2.227e-04 2.606e-04 2.998e-04 4.132e-04

~7 4.805e-05 2.00 5.567e-05 2.00 6.538¢-05 2.00 7.569e-05 1.99 1.049e-04 1.98
8
9

1.199¢e-05 2.00 1.390e-05 2.00 1.637e-05 2.00 1.907e-05 1.99 2.659e-05 1.98
2.975e-06 2.01 3.455e-06 2.01 4.080e-06 2.00 4.783e-06 2.00 6.756e-06 1.98

Ry Ry R Ry Ry

6 1.514e-04 1.766e-04 2.079e-04 2.400e-04 2.565e-04
7 3.783e-05 2.00 4.416e-05 2.00 5.213e-05 2.00 6.062e-05 1.99 6.490e-05 1.98
8 9.447e-06 2.00 1.104e-05 2.00 1.306e-05 2.00 1.528e-05 1.99 1.641e-05 1.98
9 2.352e-06 2.01 2.752e-06 2.00 3.266e-06 2.00 3.844e-06 1.99 4.142e-06 1.99

Table 5.4 Results concerning the upwind first order approximation for p = 1, At = 0.001 and different
values of o. Convergence rates R, for the error (5.43) and R, for the error (5.44).

276 2.166e-02 2.278e-02 2.346e-02 2.840e-02 4.084e-02

277 1.083e-02 1.00 1.140e-02 1.00 1.176e-02 1.00 1.424e-02 1.00 2.054e-02 0.99
278 5.415e-03 1.00 5.703e-03 1.00 5.890e-03 1.00 7.132e-03 1.00 1.030e-02 1.00
279 2.708e-03 1.00 2.852e-03 1.00 2.947e-03 1.00 3.569e-03 1.00 5.158e-03 1.00

R> R> R> Ry R,

276 5.194e-03 5.930e-03 6.969¢-03 8.447e-03 1.063e-02

277 2.599¢-03 1.00 2.974e-03 1.00 3.507¢-03 0.99 4.269¢-03 0.98 5.411e-03 0.97
278 1.300e-03 1.00 1.490e-03 1.00 1.759e-03 1.00 2.146e-03 0.99 2.731e-03 0.99
272 6.501e-04 1.00 7.455e-04 1.00 8.810e-04 1.00 1.076e-03 1.00 1.372e-03 0.99
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Table 5.5 Results concerning the upwind first order approximation for p = 0, At = 0.001 and different
values of o. Convergence rates Ry, for the error (5.43) and R, for the error (5.44).

Ax a=01 Ry, a=03 Ry, a=05 R, a=07 Ry o=09 Ry

276 3.356¢-03 1.252e-02 2.593e-02 4.702e-02 8.402e-02

277 1.788e-03 0.91 6.400e-03 0.97 1.318e-02 0.98 2.392e-02 0.98 4.300e-02 0.97
278 9.219e-04 0.96 3.235e-03 0.98 6.647e-03 0.99 1.206e-02 0.99 2.175e-02 0.98
279 4.679e-04 0.98 1.626e-03 0.99 3.337e-03 0.99 6.056e-03 0.99 1.093e-02 0.99

Ry Ry R R, Ry

276 6.650e-04 2.554e-03 5.077e-03 9.088e-03 1.789e-02

277 3.674e-04 0.86 1.321e-03 0.95 2.602e-03 0.96 4.664e-03 0.96 9.272e-03 0.95
278 1.926e-04 0.93 6.715e-04 0.98 1.317e-03 0.98 2.363e-03 0.98 4.722e-03 0.97
277 9.852e-05 0.97 3.385e-04 0.99 6.627e-04 0.99 1.189¢-03 0.99 2.383e-03 0.99

Table 5.6 Results concerning the upwind first order approximation for p = —1, Ar = 0.001 and
different values of o. Convergence rates R, for the error (5.43) and R, for the error (5.44).

276 2.152e-02 2.269e-02 2.509e-02 3.025e-02 4.282e-02

=7 1.076e-02 1.00 1.135¢-02 1.00 1.259¢-02 0.99 1.531e-02 0.98 2.224e-02 0.95
8 5.379¢-03 1.00 5.679e-03 1.00 6.309e-03 1.00 7.707e-03 0.99 1.135e-02 0.97
9 2.689e-03 1.00 2.840e-03 1.00 3.158e-03 1.00 3.866e-03 1.00 5.735e-03 0.98

Ry Ry R Ry Ry

6 5.194e-03 5.930e-03 6.969¢-03 8.447e-03 1.063e-02
72.599¢-03 1.00 2.974e-03 1.00 3.507e-03 0.99 4.269¢-03 0.98 5.411e-03 0.97

—8 1.300e-03 1.00 1.490e-03 1.00 1.759¢-03 1.00 2.146e-03 0.99 2.731e-03 0.99
9 6.501e-04 1.00 7.455e-04 1.00 8.810e-04 1.00 1.076e-03 1.00 1.372e-03 0.99

NN

Table 5.7 Results concerning the upwind second order approximation for p = 1, At = 0.001 and
different values of o¢. Convergence rates R, for the error (5.43) and R, for the error (5.44).

6 7.649¢-04 8.042¢-04 8.310e-04 8.321e-04 1.292e-03

7 2.036e-04 1.91 2.135e-04 1.91 2.213e-04 191 2.207e-04 1.91 3.187e-04 2.02
8
9

5.280e-05 1.95 5.548e-05 1.94 5.744e-05 1.95 5.700e-05 1.95 7.881e-05 2.02
1.359e-05 1.96 1.420e-05 1.97 1.468e-05 1.97 1.454e-05 1.97 1.956e-05 2.01

R> R> R> Ry R,

276 1.512e-04 1.770e-04 2.129e-04 2.674e-04 3.53%¢-04

277 3.784e-05 2.00 4.427e-05 2.00 5.312¢-05 2.00 6.636e-05 2.01 8.816e-05 2.01
278 9.473e-06 2.00 1.107e-05 2.00 1.326e-05 2.00 1.647e-05 2.01 2.188e-05 2.01
279 2.378e-06 1.99 2.776e-06 2.00 3.314e-06 2.00 4.093e-06 2.01 5.426e-06 2.01
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Table 5.8 Results concerning the upwind second order approximation for p = 0, Az = 0.001 and
different values of o. Convergence rates R, for the error (5.43) and R, for the error (5.44).

6 7.822e-04 8.302e-04 8.085e-04 8.064e-04 1.079¢-03

7 2.115e-04 1.89 2.230e-04 1.90 2.082e-04 1.96 2.097e-04 1.94 2.743e-04 1.98
8 5.499¢-05 1.94 5.756e-05 1.95 5.232e-05 1.99 5.290e-05 1.99 6.809¢-05 2.01
9 1.404e-05 1.97 1.459e-05 1.98 1.296e-05 2.01 1.319e-05 2.00 1.681e-05 2.02

Ry Ry R Ry Ry

6 1.508e-04 1.662e-04 1.750e-04 1.767e-04 1.517e-04
7 3.761e-05 2.00 4.097e-05 2.02 4.244e-05 2.04 4.155e-05 2.09 3.186e-05 2.25
8 9.394e-06 2.00 1.017e-05 2.01 1.044e-05 2.02 1.006e-05 2.05 7.207e-06 2.14
9 2.356e-06 2.00 2.540e-06 2.00 2.598¢-06 2.01 2.481e-06 2.02 1.717e-06 2.07

-
.
.
.

Table 5.9 Results concerning the upwind second order approximation for p = —1, Ar = 0.001 and
different values of or. Convergence rates R, for the error (5.43) and R, for the error (5.44).

276 8.248e-04 8.904e-04 8.877e-04 9.327e-04 1.184e-03

277 2.186e-04 1.92 2.324e-04 1.94 2.269e-04 1.97 2.360e-04 1.98 2.978e-04 1.99
278 5.646e-05 1.95 5.894e-05 1.98 5.730e-05 1.99 5.908e-05 2.00 7.426e-05 2.00
279 1.439e-05 1.97 1.484e-05 1.99 1.436e-05 2.00 1.471e-05 2.01 1.841e-05 2.01

Ry Ry R Ry Ry

276 1.512e-04 1.770e-04 2.129e-04 2.674e-04 3.539¢e-04

277 3.784e-05 2.00 4.427e-05 2.00 5.312e-05 2.00 6.636e-05 2.01 8.816e-05 2.01
278 9.473e-06 2.00 1.107e-05 2.00 1.326e-05 2.00 1.647e-05 2.01 2.188e-05 2.01
279 2.378e-06 1.99 2.776e-06 2.00 3.314e-06 2.00 4.093e-06 2.01 5.426e-06 2.01

Furthermore note that, by analyzing all the tables, in general the values of the error are higher
for larger values of @, as it is illustrated by some figures displayed in the next section. Moreover,
from Tables 5.1-5.3 we can see that the values of the error for the central method are smaller for
the symmetric case p = 0. From Tables 5.4-5.6 we confirm that for larger values of «, namely
a =0.5,0.7,0.9, the upwind first order method presents higher values for the error when p = 0
comparing with p = —1 and p = 1. These features are also highlighted by figures in the next section.

One computational advantage of using the upwind numerical method is the lack of need of
extending the computational domain to the right-hand side, as in the central method case, when p = 1
since the numerical method only uses interpolation points on the left, for the left fractional derivative.
Similarly, for the right fractional derivative, for p = —1 we do not have to extend the computational
domain to the left-hand side since the numerical method only uses interpolation points on the right.

Furthermore, the main advantage of the upwind methods over the central method is going to be

explored in the next section and is related to oscillations.
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5.2.5 Central method versus upwind methods: numerical behaviour

It is known that some high-order finite differences methods may trigger spurious oscillations, including
the central differences scheme [93]. We have used a second-order central difference to approximate
the derivative outside the integral that appears in the left and right fractional derivatives of order
0 < a < 1. In what follows, we present examples for which spurious oscillations arise when using
the central discretization and do not occur when using an upwind approximation for the fractional
derivatives.

Consider equation (5.5) defined in the domain [0,2] x [0,7] and the following uniform space
and time discretizations x; = jAx, j=0,...,N withxy =2 and t,, = t,,_1 + mAt, m = 1,...,M with
ty = T. Also consider the diffusion coefficient D = 1 and the source term g(x,7) and the initial
condition ug(x) such that the exact solution of the problem is u(x,t) = e ~'x*(2 —x)*. Note that the
problem can be interpreted as defined on the real line with u(x,7) = 0, x ¢ (0,2). Then, the regularity

of the solution in space is C3(R).

In the following, we present several numerical tests with space step Ax = 2/125, for T = 5 and,
since we have implicit methods one of the advantages would be to be able to choose a large time step,
and therefore we chose Ar = 0.1.

In Figures 5.4-5.6, we plot the numerical solutions versus the exact solution for different values
of p=-0.8,-0.4,0,0.4,0.8 and ¢ = 0.8 (left) and o = 0.2 (right), for the three methods. The
experiments using the central method in Figure 5.4 show, once again, the influence of p in where
appear the oscillations, specially for ¢ = 0.8. For a = 0.2, we can still spot some oscillations for
the more extreme cases p = —0.8 and p = 0.8, signalized with black ellipses. In Figure 5.5, we plot

p —
10 €T p

_10 xr

Fig. 5.4 Numerical solution with the central method for p = —0.8,—0.4,0,0.4,0.8. Left: a = 0.8.
Right: o = 0.2.

the numerical solutions obtained using the second order upwind method. In this case, we no longer
observe the spurious oscillations for any values of p and «. In Figure 5.5, we present the numerical
solutions obtained using the first order upwind method. Despite not having the oscillations observed
previously, for o = 0.8 the method does not approximate the exact solution as effectively as the
second order upwind method, specially for p = 0 and closer values.
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Fig. 5.5 Numerical solution with the upwind second order method for p = —0.8,—-0.4,0,0.4,0.8.
Left: o = 0.8. Right: o =0.2.
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Fig. 5.6 Numerical solution with the upwind first order method for p = —0.8,—0.4,0,0.4,0.8. Left:
a =0.8. Right: ¢ =0.2.

Note that, by observing the three Figures 5.4, 5.5 and 5.6, all the methods seems to perform better
for oo = 0.2, when considering At = 0.1. None the less, as we have seen in the last section, as we
refine the mesh the three methods approximate accurately the solution as expected by the theoretical
analysis for all values of o.

5.3 Superdiffusion when 1 < o0 <2

In this section, we present the numerical method derived in [76] for the real line and then we suggest
an approach to the case with a reflecting boundary at x = 0. Hence, the only purpose of including this
section is to turn the next one more clear, this is, to better expose the difference between not having a
boundary and having a reflecting boundary. Therefore, for all the results presented in this section, the

proofs are omitted.
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As described at the beginning of the chapter, in Section 5.1 we saw that Lévy flights can be
represented by the fractional equation

dulx,t)

P d(x)Vhu(x,t) +g(x,t), xeR,t>0, (5.45)
where
1+ pd%u 1—p 0%
P _ il
Vou(x,t) = 7 axa( 1)+ 3 o) (x,1),

forl <a <2, —1<p<1,xeR, whered(x) > 0 is the diffusion coefficient and g(x,7) is the source
term. Furthermore, we start by considering an initial condition and

lim u(x,t) =0.

x| —c0

The Riemann-Liouville derivatives are given by (1.7) and (1.8) for 1 < a < 2, this is, for x € [a, b],
the left and right Riemann-Liouville derivatives are defined by

%y 2 rx
T )~ Ty g | e8! (5.46)

and a | o
S ) = Frgy g ), MG =8 e, (547

In order to approximate these derivatives, we use the integral approximation derived in Section 3.2
and the central second order finite differences to approximate the second order derivative.

5.3.1 Numerical method

In this section we develop the approximations to the fractional derivatives.

Consider the uniform domain discretization x; = x;_1 + Ax, j € Z. As we saw in Section 3.2, to

approximate
60 = g [ WENG e a7 = o [ i) g
’ re—a)), 7’ ’ re—a)), ’
(5.48)
using the linear spline approximation, we obtain the following formulas
— 0
I'u u(x;j,t) Zaku (Xj—k,1), Tu(xj,t) = Z aru(Xjpk,t), (5.49)

respectively, where the coefficients of both quadratures are given by (3.19).

Considering the second order centered finite differences

82 f(xj) = f(xje1) =2 (x)) + f(xj1),
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we obtain, for the left Riemann-Liouville derivative

0%u /
axia(.x,t) Eﬂ (x t)
the following
0%u I'(xjp1,t) =20 (xj,1) + 1 (xj_1,1)
axa(xt) =~ A2
1 o0 0 0
= — apu(xi—1—g,t) =2 > agu(xXj—g,t) + Y agu(xjr1—g,t) |-
AVT(4—a) L; j ;0 j ;0 +

Considering k' = k + 1 in the first sum and &’ = k — 1 in the last sum, we have
o AT (4 — o) Z i i
(x,1) ~ g u(Xj_jr,1) =2 ) agu(xj_g,1) + A1 U(Xj_gr,1)
o 104
ox I'( 4 @) |2 k=0 K=—1

that is equivalent to

0%u 1 =
A )~ Rara gy 2 W)

with
g-1=a0, qo=—2a0+a1, qrx=ar1—2ax+ap, fork=1. (5.50)

For the right Riemann-Liouville derivative, we obtain similarly

AL PN S 0
a(_x)a 'xﬂ Axar<4 a)k _lqku xj"rk? I

with gy defined in (5.50).

We construct a numerical method based on these approximations, but before we need to do the time
discretization. In [46], they use the 6 —method but here we take into account only the Crank-Nicolson
m

method. Consider a uniform mesh 0 < #,, < ) with time step Az, d; = d(x;), g7 = g(x;, ) and the
operators 6*U™ /Ax* and §%U" /Ax* given by

é‘éUJ’.” 1 o

A AT(4—aq) k_Z l‘lkU?ik (5.51)
and - B

o = Axar(lél o) kzz_l WUy (5.52)
with g defined in (5.50).

We arrive to the numerical method

1 1
<1 — zua65> Ut = <1 + Zua55> U+ gtz (5.53)
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where g;-"H/Z = (" +g")/2, u® = At/Ax® and

1 1—
stuy = —Lsup +~—Lauy. (5.54)

If we assume U]’.", j=—N,...,N such that U, =0 for k < —N and k > N, we can rewrite the
scheme in the matricial form

1 1
(I + 2an£> Umtl = <I — zang) U™+ G2,
where U™ = [U™y, ...,U]" is the solution vector, I is the identity matrix and G™ contains the values

of the source term. The matrix Q% is given by

p_1+p

1—
h = —1Qu+—1Qk (5.55)

with Q, defined as

q0 4q-1 0 0 0
| q1 q0 qg-1 ... 0 O
= 0 0 |. 5.56
W g ® " | (30
| 92N o2N—1 @oN—-2 - 41 40 |

In the next section we state the results regarding the accuracy and the stability of the numerical
method.

5.3.2 Convergence analysis

In this section, we do not provide the proofs because they are very similar with the ones done in
Section 5.2.3 and can also be seen in [76]. Once again, for the sake of clarity, we omit the variable ¢.

Theorem 5.11 ([76]). Let u € C*(R) and such that u'™® (x) = 0, for x < a, being a a real constant. We
have that o 50
u u
&Cﬁ(xj) - ﬁ(xj) = &(xj),
where |€(x;)| < CAx* and C is a constant independent of Ax.

Using this result, we are able to prove the following consistency result.

Theorem 5.12 ([76]). The truncation error of the weighted numerical method (5.53) is of order
O(Ax*)+0(Ar?).

We proceed with the study of the stability of the method using the von Neumann approach. We
start by presenting some results on the coefficients (5.50).

Lemma 5.13. Consider the coefficients qy. defined by (5.50). Then

(a) g-1=1, g0 <0, g =0fork=>2, klirn gk = 0and qr+1 < gk < q2,
—00
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0
(b) D qx=—3+3x2¢-37¢,
k=2

() >, =0,

k=—1

0
(d) Z qrcos(kg) < 0.
k=—1
Using this lemma, it can be proved that the numerical method is unconditionally von Neumann
stable. It can also be concluded that the numerical method (5.53) is second order convergent both in
time and space [76].

5.4 Superdiffusion with a reflecting boundary

The problem of including boundary conditions in nonlocal problems is very interesting and challenging.
It also ables us to simulate different phenomena. The two types of conditions that appear more
frequently related to Lévy flights are the absorbing and the reflecting boundary conditions. For the
absorbing boundary conditions it is considered that, at the bounds of an interval, the probability of
a particle to be there or anywhere out of the interval is zero. In other words, if we consider a mass
from which a particle jumps to outside the domain (or to the boundaries), then the mass of the system
decreases, once the particle is absorbed. This can be represented by homogeneous Dirichlet boundary
conditions [2]. For the reflecting condition, in a porous medium, such boundary may represent a wall
permeable to the fluid but impermeable to the tracer: the particle hits the wall and is bounced back,
which means that if it would reach the position x = —a with a > 0, then it will end at x = a [40]. The
imposition of boundary conditions changes the fractional differential equation as we are going to see
during this section.

We start by formulating the superdiffusive problem with a left reflecting wall. The chosen
reflecting boundary is according to [40], where a symmetric diffusion on a semi-infinite domain is
considered, this is, the particles are restricted to a semi-infinite domain limited by a reflecting wall.
Mathematically, we have a problem defined by equation (5.45)

Ou(x,1)
ot

= DV!OJCM()@I) +g(x7t)7

where
1+ pd®u 1—p 0%

Vhu(x,t) = 5 ax—a(x,t)—i-TW(x,t),

for —1 < p <1, xe R, where D > 0 is the diffusion coefficient and g(x,¢) is the source term. This
equation is subjected to the wall condition, suggested in [40], u(x,7) = u(—x,t), for x < 0 and
illustrated in Figure 5.7.

The left Riemann-Liouville fractional derivative for x > 0

o, 2 0 2 rx
S )~ gy | EN—8) T+ st [y g

. (2—a)ox? J,
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0.4 ;
flight hitting the wall
03+ wall
0.2r
0.1+ direct flight
O l' 1
-0.5 0 0.5 1

Fig. 5.7 Illustration of the reflecting boundary condition at x = 0.

is affected by this condition u(x,7) = u(—x,t) for x < 0 as follows

0%u 1 2 (0 —a 1 o (" —a
S ) — gy | G 8) g+ s | g8 e

By doing a change of variables, we obtain what we define as the reflecting left Riemann-Liouville
fractional derivative, for x > 0,

aa u 2 e} 2 X
) g ae | MENEHE e s o [ -
(5.57

The right Riemann-Liouville derivative is not affected by the reflecting wall and remains defined by
(5.47).

Formally, when subjected to a reflecting wall, we are considering the following problem

ou 1+paféfu 1—p 0%

Zwn=n(—=2L —£ :
) =D (52 w4 152 ) e, x>0, (5.58)
u(x,t) =u(—x,t), forall x<0, (5.59)

with an initial condition u(x,0) = up(x), x = 0.

In the next section, we derive a similar numerical method to the one described in Section 5.3.1.

5.4.1 Numerical method

When we have a reflecting boundary condition at x = 0, since the left fractional derivative is modified
to (5.57), the modified left fractional integral is defined by

Iy eu(xj,1) = F(zl_a)f:cu(é,t)(ﬁ E)ITYdE + F(Zl_a)f:u(é,t)(x—?j)l_adé. (5.60)
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Following a similar approach as in the open domain, where u inside the integral is approximated by a
linear spline, we obtain the following approximation for the left fractional integral (5.60),

szia 0 AXZ*“ J
Ifefu(xj,t) = Z agu(xg—j,t) + Ta—a) Z aru(Xj_g,t). (5.61)
k=0

Once again, we use the central second order finite difference to discretize the second order
derivative involved in the modified left Riemann-Liouville derivative 62.#! eru(x,1)/ 0x? and in the right
Riemann-Liouville derivative 0>.#"u(x,t)/0x*. For the modified left Riemann-Liouville derivative, it

follows
0? L) ~ 1 ) 1 = ( f)
— I rtt (X _ E u(x; +—— g u(Xp—
ox2 T el T Ax*T (4 — Ot)k _IQk =k AT (4—a) k:jHCIk k=it

with gy defined in (5.50). For the right Riemann-Liouville derivative, we use the approximation given
by (5.52).

We assume a uniform mesh in time and space with #,,11 =1, +At, m =0,... M -1, x; =
xj—1+Ax, jeN. Let U} be the approximated solution of u(x;,#,) and define g = DAt/Ax®.
Consider the Crank-Nicolson scheme to approximate equation (5.45) given by

1 "
( MO, ref) Uyt = <1 + zua5£,,ef) U+ gt (5.62)

where ngr]/2 (g7 +g")/2 and

8L o f Ul = —58b 0 U + 5 ——8,Uy (5.63)
and
84 e UJ! 1
aref
A AT(4—a) Z WUt G o Axocl'* Z aUp" ;. (5.64)
k=—1 k Jj+1

Consider the nodal points U7", j = 0,...,N such that U} ~ 0 for k > N. The numerical method
can be written matricially as

<I + ,ana ref> ymtl = <I — f,ana ref> U™+ Gm+1/2

where U™ = [U[",...,U#]" is the solution vector, I is the identity matrix and G™ contains the values
of the source term. The matrix Q7 aref is given by
» 1+p 1

P,
aref = Qaref 5 Qorers (5.65)
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with Q- defined by

a.re

i q0 q-1+41 q2 4gN—1 qN 1
] q1 qo0+q2 q-1+q3 qn qnN+1
Qfx,ref = m q2 q1+q3 qo +qa e 4qN+1 4gN+2 . (566)
| gN gN-1T4qN+1 gN-2F+gN+2 ... q1+GgaN—1 qot+goN |

Note that as we are considering the positive semi-infinite domain (0, 00), for the right derivative at U}’
we have, from (5.52),

1 & 1 &
67'Um:7 Uﬂlzi . Um Um
o F(4_()‘)1(;1—1% ¢ Té-a) (q 1 —1+];)Qk k>

and using the fact that U™, = U[" we obtain

1 0
6Up' = T4—a) <40U6"+ (g1 +¢11)U1m+261kU1§n> :

k=2
Hence B ~
q 4g-1+q1 q ... gn—-1 4N
1 q-1 q0 q ... 4gN-2 (gN-1
rop=—=———1 0 q-1 go .-~ qn-1 qn—2 |. 5.67
Ques “Fa—oy| . ' ¢ o 507
. 0 0 0 ... g1 qo |

We continue with the study of the convergence of the method.

5.4.2 Convergence analysis

The dependency on ¢ is omitted in the following results in the sake of clarity and simplicity. The
results on the open domain are present in Section 5.3.2. The approach to the convergence analysis is
similar to the ones taken previously.

The next result determines the truncation error for the approximation (5.64) of the modified left
Riemann-Liouville derivative.

Theorem 5.14. Let u € C*(R) and such that verifies (5.59). Additionally, let the spatial derivatives

vanish at infinity in an appropriate manner. Then

8f‘efu

Ox®

5(11 u
ref
(xj) — A;ea (xj) = €refa(x;), |8ref,l(xj)|<cref,le27

where Cy.r does not depend on Ax.
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Proof. We start by focusing our attention on the difference .7/, au(xj) — I su(x;). For exact value of

the integral, .#! fu(x ), by doing a change of variable we have

re

09]

Sy = [ u@)—8)" g+ [ @)+ 8)' 0

0 0

[ —reas— [ u-g) o'
0

0

and, taking in consideration the reflecting condition (5.59),

Xj

frlefu(xj) = f

0

0
W) —8)' "z + | (@) —8)' 0
J Xk
=N NCGIRT

k=—o0 YXk—1

For the approximation of the integral, we have

, AxZ—a i AxZ—Oz i
Lo pu(xj) = =——— ) au(xj—k) + =——— au(xi—j)
F4-—a) = I'4—a) Ml

and, taking into account (5.59),

Ax2—@ A2 ©

Loulx) = —— Z apu(xXj—g) + =——— Z aru(xj_g)
ref*\*J _ J — J
F4-oa) = I'4—a) el
A2 L
= Z aku(xj,k)
F4-—a) =
Therefore, we have that
1 l 1 d xk -«
Fhgulo) ~ogut) = rotan B[ ) =€) 8)' e,
F(4 - Ot) Xp—
k=—00 ¥ k1
where
sk(€) = x"A_xé u(xe_1) + 5_Axx’<—‘u(xk).

From this point on, the proof follows the same steps as the proof of Theorem 5.11 that can be seen in
[76]. O

In the next theorem, we study the stability of the numerical method, based on the von Neumann
analysis, resorting to Lemma 5.13.

Theorem 5.15. The numerical method (5.62) is unconditionally stable.
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Proof. The difference operator defined in (5.63)

1+p
5P rerm _ 5 Z qum
k—fl

can be rewritten as

1+p
p m __
606 rer ) 4 (X k_Z_]Qk

since U,z”_j = Uj’."_k for k > j.

1
Cd—a) 2wl |+

X 1

Z‘M j+k

k=j+1 )

ZQk +

4 (X Z k j+k’
k Jj+1

As seen previously, we can do the von Neumann analysis by inserting a single mode k™e’/% into

the numerical scheme (5.62), neglecting the source term. Taking in consideration the previous equality

for the reflecting operator, then

i L [1 +p 1

1— 1
i(j—k)o p i(j+k)9
Z o’ Ty Te—a) 2 e ]

K
2 Mo 2 Té—a) & s
o 1 l+p 1 i 1-p 1 T
meijo  — g ogem| 8 - =k y - F - i(j+k)9
¢ Tk [ 2 r(4—oc)k21‘”‘e L) 1_,(4_a)k21q1<6 '

Dividing the whole equality by k™e'/?, we obtain

1—p 1
Z gre 0 + —= 7 Ta-a), Z qke’k¢’]>
—1 k=—1

1—p 1
—ik¢ ik¢
Z W T Ta—a k_ZIle ]

1 1+p 1
1— =
K( 2““[ 2 Tlé—a)

1 I+p 1
—14-
+2“‘)‘[ 2 Tlé—a) &

If the real part of

1+p Z

k=—1

is negative or zero then |k (¢)| <

1+p

k=—1

7tk¢ +

- Z grcos(ke) +

Z qie™?

k=—1

1 (see remark of Theorem 5.6). The real part is given by

I_Tp > grcos(kg)

k=—1

and by Lemma 5.13 we can conclude that it is nonpositive. O

In the next section we present a numerical test that illustrates the order of accuracy of the method.

5.4.3 Numerical experiments

Let U}" and u(x;j,t,) be the approximate solution and the exact solution, respectively, at x; = jAx,

jeNg,andt,, =mAt, m=0,.... M

Consider the problem with a reflecting wall at x = 0 and with source term and initial condition

defined such that the solution u(x,t) = 4e~"(2 +x)?(2 — x)? is the exact solution of the equation
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(5.58), for 0 < x < 2. In Tables 5.10-5.12, we illustrate the order of accuracy of the method for
a=1.1,1.4,1.5,1.7,1.9 resorting to the L? discrete norm and the L™ discrete norm given, respectively,
by (5.44) and (5.43). Table 5.10 refers to the use of p = 1, the results displayed in Table 5.10 have to
do with p = 0 and in Table 5.10 are the results for p = —1. As predicted by the theoretical result, the
numerical method is second order accurate.

Table 5.10 Results concerning problem with a reflecting boundary, for u(x,t) = 4~ (2 4+ x)?(2 — x)?
and p = 1 for different values of & and Ar = 0.0001. Convergence rates in space R, for the error
(5.43) and R, for the error (5.44).

277 3.163e-03 2.638e-03 2.416e-03 2.209e-03 1.666e-03

278 7.008e-04 2.00 6.599e-04 2.00 6.063e-04 1.99 5.588e-04 1.98 4.2547e-04 1.97
27% 1.977e-04 2.00 1.651e-04 2.00 1.519e-04 2.00 1.410e-04 1.99 1.0847e-04 1.97
2710 4.942¢-05 2.00 4.127e-05 2.00 3.804e-05 2.00 3.549e-05 1.99 2.7595e-05 1.97
2711 1.235e-05 2.00 1.031e-05 2.00 9.510e-06 2.00 8.911e-06 1.99 6.9979e-06 1.98

R2 R2 R2 R2 R2

7 3.257e-03 2.961e-03 2.713e-03 2.412e-03 1.7824e-03

8 8.139e-04 2.00 7.399e-04 2.00 6.797e-04 2.00 6.088e-04 1.99 4.544e-04 1.97
9 2.034e-04 2.00 1.849e-04 2.00 1.702e-04 2.00 1.534e-04 1.99 1.157e-04 1.97
2710 5,084e-05 2.00 4.622¢-05 2.00 4.260e-05 2.00 3.860e-05 1.99 2.942¢-05 1.98
2711 1.270e-05 2.00 1.154e-05 2.00 1.065e-05 2.00 9.690e-06 1.99 7.460e-06 1.98

Table 5.11 Results concerning problem with a reflecting boundary, for u(x,t) = 4e~(2 + x)?(2 — x)?
and p = O for different values of & and Ar = 0.0001. Convergence rates in space R, for the error
(5.43) and R, for the error (5.44).

277 1.610e-03 1.516e-03 1.184e-03 1.137e-03 1.194e-03

278 4268e-04 1.92 4.036e-04 1.91 3.225e-04 1.88 2.829e-04 2.01 3.0107e-04 1.99
277 1.121e-04 1.93 1.059%-04 1.93 8.637e-05 1.90 7.027e-05 2.01 7.5773e-05 1.99
2710 2.910e-05 1.95 2.749e-05 1.95 2.283e-05 1.92 1.742e-05 2.01 1.9035e-05 1.99
2711 7.479¢-06 1.96 7.077e-06 1.96 5.976e-06 1.93 4.373e-06 1.99 4.7642e-06 2.00

Ry Ry R Ry Ry

277 7.296e-04 1.076e-03 1.059e-03 1.039e-03 1.1292e-03

278 1.946e-04 191 2.821e-04 1.93 2.754e-04 1.94 2.629e-04 1.98 2.821e-04 2.00
279 5.072e-05 1.94 7.305e-05 1.95 7.120e-05 1.95 6.662¢-05 1.98 7.053e-05 2.00
2710 1.304e-05 1.96 1.875e-05 1.96 1.831e-05 1.96 1.688e-05 1.98 1.762e-05 2.00
2711 3.322e-06 1.97 4.781e-06 1.97 4.685e-06 1.97 4.272e-06 1.98 4.393e-06 2.00

We proceed with some numerical simulations involving the three cases of superdiffusion con-
sidered previously: superdiffusion on the open domain for 0 < o < 1, superdiffusion on the open
domain for 1 < a < 2 and superdiffusion considering a reflecting wall for 1 < o < 2. We complete
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Table 5.12 Results concerning problem with a reflecting boundary, for u(x,t) = 4e~(2 + x)?(2 — x)?
and p = —1 for different values of o and Ar = 0.0001. Convergence rates in space R, for the error
(5.43) and R, for the error (5.44).

Ax a=11 R, a=13 Ry, a=15 Ry a=17 Ry, «a=19 Ry,

277 5.535¢-03 3.550e-03 2.345e-03 1.449e-03 8.618e-04

278 1.355e-03 2.03 8.601e-04 2.05 5.752e-04 2.03 3.815e¢-04 1.93 2.1583e-04 2.00
279 3.316e-04 2.03 2.090e-04 2.04 1.416e-04 2.02 9.950e-05 1.94 5.4033e-05 2.00
2710 8.113e-05 2.03 5.098¢-05 2.04 3.496e-05 2.02 2.575e-05 1.95 1.3513e-05 2.00
2711 1.987e-05 2.03 1.248e-05 2.03 8.661e-06 2.01 6.625e-06 1.96 3.4147e-06 1.98

Rz RQ R2 R2 R2

277 2.117e-03 1.659¢e-03 1.368e-03 1.080e-03 7.8427e-04

278 5.316e-04 1.99 4.211e-04 198 3.497e-04 1.97 2.820e-04 1.94 1.999e-04 1.97
27% 1.332e-04 2.00 1.060e-04 1.99 8.861e-05 1.98 7.285e-05 1.95 5.109e-05 1.97
2710 3.336e-05 2.00 2.662¢-05 1.99 2.235e-05 1.99 1.868e-05 1.96 1.306e-05 1.97
2711 8.359e-06 2.00 6.675¢-06 2.00 5.622e-06 1.99 4.765e-06 1.97 3.335e-06 1.97

the simulations presenting a final experiment focused on illustrating the main differences between

superdiffusion and subdiffusion.

5.5 Numerical approximations of the fundamental solutions

Similar to what has been done in the last chapter, we illustrate the process of superdiffusion for
different values of o.. We also compare different values of p. We consider the approximations of the
solution of equation (5.5) defined for 0 < & < 1 and the solutions of (5.45) defined for 1 < a <2
without source term. The initial condition is an approximation of the Dirac delta function, this is,

wo(x) — 8e(x),  with 58(x)=8\1/ﬁe_(x_x0)2/82, (5.68)

for a small € > 0. For all figures, we have considered D =1, € =0.1, xo =0 and p = —0.8,0,0.8.

In Figures 5.8, 5.9, 5.10 and 5.11 we show the evolution of the solution along time for o =
0.2,0.8,1.2 and 1.8, respectively, for different values of p. Overall, we observe the asymmetry taking
place as we evolve in time, being more prominent for & near 1, bothforO0 < o <l and 1 < @ < 2.
We can also see that, as o increases the solution is more diffusive. Therefore the peak values of
the solutions are higher for smaller values of «, illustrating the increasing speed of the (anomalous)
diffusion with the increase of ¢. Recall that the initial condition and the final instant are the same for
all the involved experiments.

In Figures 5.12 and 5.13, we show the evolution of the numerical solution along time for the
reflecting problem given by (5.58) and (5.59) with initial condition (5.68) for @ = 1.2 and 1.8,
respectively, and for different values of p. The parameters considered were D = 1, € = 0.1, xg = 0.7
and p = —0.8,0,0.8. The solutions exhibit similar behaviour as the solutions for o between 1 and 2
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Fig. 5.8 Numerical solutions when the initial condition is (5.68) with xo =0, D = 1, & = 0.2 and as
time changes from 1 to 2. Left: p = —0.8. Center: p = 0. Right: p = 0.8.

Fig. 5.9 Numerical solutions when the initial condition is (5.68) with xo =0, D = 1, & = 0.8 and as
time changes from 1 to 2. Left: p = —0.8. Center: p = 0. Right: p = 0.8.

Fig. 5.10 Numerical solutions when the initial condition is (5.68) with xo =0, D = 1, &« = 1.2 and as
time changes from 1 to 2. Left: p = —0.8. Center: p = 0. Right: p = 0.8.

on the open domain regarding the influence of p and o: for o = 1.2 the asymmetry is more noticeable
and for o = 1.8 the dispersion occurs faster.



112 Superdiffusion problem

Fig. 5.11 Numerical solutions when the initial condition is (5.68) with xo = 0, D = 1, & = 1.8 and as
time changes from 1 to 2. Left: p = —0.8. Center: p = 0. Right: p = 0.8.

0.8
0.6

204

/2
\<li

4

Fig. 5.12 Numerical solutions considering a reflecting wall when the initial condition is (5.68) with
x0=0.7,D=1, @ =1.2 and as time changes from 1 to 2. Left: p = —0.8. Center: p = 0. Right:
p=0.8.

Fig. 5.13 Numerical solutions considering a reflecting wall when the initial condition is (5.68) with
x0=0.7,D =1, @ = 1.8 and as time changes from 1 to 2. Left: p = —0.8. Center: p = 0. Right:
p=0.8.
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In Figures 5.14, 5.15 and 5.16 we plot the numerical solutions for ty; = 0.5 for the problem with a
reflecting wall at x = 0 (solid lines) versus the problem defined on the open domain (dashed lines)
for ¢ = 1.1,1.5 and 1.9, respectively, and for p = —0.8,0,0.8, in order to see the effect of having a
reflecting condition. The initial condition is, once again, (5.68) with xo = 0.7 and € = 0.1. We can
observe that the area under the graph of the open domain solution for (—o0,0) seems to accumulate
under the graph of the reflecting wall solution, specially near the reflecting boundary. Therefore, the
differences between the solutions with and without wall tend to escalate for higher values of a.

2.5
——reflecting wall p = —0.8
2L open domain p = —0.8 |
reflecting wall p =0
- --.open domain p =0
150 ——reflecting wall p = 0.8 |
: ----open domain p = 0.8
-
1 L ]
05 .
0 A | R S L
-2 -1.5 -1 -0.5 2

Fig. 5.14 Numerical solutions on the infinite domain (——) versus on the semi-infinite domain with a
reflecting wall at x = 0 (—) for ¢ = 1.1 and p = —0.8,0,0.8.

——reflecting wall p = —0.8

- - --open domain p = —0.8
0.8 reflecting wall p =0
- --.open domain p =0
—reﬂecting wall p=0.8
0.6 - |----open domain p = 0.8
o
0.4+
0.2
0 mmbhmmesczs==z22S%®
-4 3 2

Fig. 5.15 Numerical solutions on the infinite domain (——) versus on the semi-infinite domain with a
reflecting wall at x = 0 (—) for ¢ = 1.5 and p = —0.8,0,0.8.
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0.7
——reflecting wall p = —0.8
06 | .. -open domain p = —0.8
reflecting wall p =0
0.5 |----open domain p=20
——reflecting wall p = 0.8
0.4 [--open domain p = 0.8
-
0.3
0.2
0.1+
‘0
O dummww RS Vi -
4 3 2

Fig. 5.16 Numerical solutions on the infinite domain (——) versus on the semi-infinite domain with a
reflecting wall at x = 0 (—) for ¢ = 1.9 and p = —0.8,0,0.8.

To finalize, we want to illustrate the differences between subdiffusion and superdiffusion, both
considering 0 < o < 1. Therefore, we choose the parameters that equalize the approaches. For
subdiffusion, we use the method derived in Chapter 4 for § = 1 and, for superdiffusion, we use the
upwind second order method derived in Section 5.2.1 for p = 0 to preserve the spacial symmetry
verified in the subdiffusive case. All the other parameters are the same for the two methods.

In Figure 5.17, we plot the solutions obtained for the subdiffusive model, in blue, and for the
superdiffusive model, in orange. By observing the figure, we can identify the expected differences
between the two models. For the Lévy flights (superdiffusion), we see that the solution peak remains
higher for a longer period of time but, eventually, surpasses the subdiffusion solution. Additionally,
we can spot the tails of the superdiffusive solution reaching a longer distance in a shorter period of
time, illustrating the divergent second order moment of the displacement while for subdiffusion we
can notice the tails tending to zero. Figure 5.18 is a cropped version of Figure 5.17 that makes more

clear the previous conclusions.
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Fig. 5.17 Numerical solutions of the subdifusion and the superdiffusion problems when the initial
condition is (5.68) with xo = 0 for @ = 0.5. Top left: + = 0.5. Top right: = 1. Bottom: ¢ = 2.
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Fig. 5.18 Cropped plot of Figure 5.17 to enhance the different behaviour of the numerical solutions of
the subdiffusion and the superdiffusion problems when the initial condition is (5.68) with xo = 0 for
a = 0.5. Top left: t = 0.5. Top right: = 1. Bottom: ¢ = 2.



Chapter 6

Conclusions and future work

In this thesis, we have investigated different problems in the field of anomalous diffusion, more
specifically models related with subdiffusion and superdiffusion.

We have started, in Chapter 2, by presenting the definitions of B-splines and splines of fractional
degree and then we have described the construction of the fractional B-splines on the real line, based
on integer B-splines. Handling fractional splines is much more delicate than the classical ones, since
the support of the functions is no longer compact and they are not always positive. We have focused
our attention on splines with degree 0 < B < 2. We have started by studying the splines of degree
0 < B < 1, which are fully determined by the values on the knots of the function being interpolated.
However, for the splines of degree 8 > 1, additional conditions are required. The most common
condition is s"(z9) = u/(to). Nevertheless, this imposition originates an unstable scheme and therefore
we have chosen the condition s(ty) = u/(fyr), being ty the last knot. Resorting to [85], we have seen
that the fractional approximation is of order B + 1 for functions in H#+!(R). Furthermore, when the
function has unbounded derivatives near the initial point of the time domain, that is, at # = 0, the order
of convergence is affected. For functions such that u = O(¢?) as t — 0, we have obtained that the order
of accuracy of the approximation of a function by its spline interpolator of degree f is the minimum
between 3 + 1 and ¥+ 1/2, for the L? norm. This result was illustrated by numerical tests. For the L*
norm, we have obtained a heuristic result for the order of accuracy of the approximation that is the
minimum between 3 + 1 and y. This result was supported by numerical experiments.

In Chapter 3, we have approximated the fractional integrals that are part of the definition of the
Riemann-Liouville derivatives. These integrals are defined as the convolution of the function and
a kernel. To approximate these integrals, we replace the function by a spline that is a polynomial.
This allows us to compute exactly the integral for almost every point. For the points for which we
cannot determine it exactly, we use the trapezoidal rule to approximate the integral. For the integral
operator in time, we have used fractional splines of degree 0 < 8 < 2. In all cases we have arrived
to a recursive formula to compute the integral that involves the values of the replaced function on
the knots. For 0 < 8 < 1, the quadrature formula includes another recursive formula that expresses
the entries of an inverse matrix by the values of the original lower triangular matrix, constructed
using the B-splines. For 1 < B < 2, such explicit recursive formula has not been obtained due to the
change of structure of the matrix, that is no longer a triangular matrix. Furthermore, because the value
of the derivative of u is needed but, in the scope of these problems, it is hardly available, we have

117



118 Conclusions and future work

included an approximation of the first order derivative considered in [39]. Using the error bounds
for the spline approximation, we obtain the upper bound for the error norm when approximating the
integral of order &¢. The upper bound tells us that the order of the approximation is the minimum
between 8 + 1 and ¥+ o + 1/2 for the L? norm and the minimum between 8 + 1 and ¥+ o for the
L™ norm, when 0 < 8 < 1. All the results have been corroborated by numerical tests represented by
tables. For 1 < f < 2, the numerical experiments point out that the approximation of the first order
derivative of u influence the rate of convergence of the method: for the L? discrete norm, we obtain as
order of convergence the minimum between 8 + 1, ¥+ a + 1/2 and 2 + o; for the L* discrete norm
we obtain as order of convergence the minimum between 8 + 1, ¥+ o and 2 + . All the results have
been indicated by numerical tests displayed in tables. These conclusions have been obtained once
again for functions u = O(t") as t — 0. For the integral operator in space, we have only presented
an approximation with the linear spline. This has been studied in [76] and it has been useful when
approaching the problem of superdiffusion.

In Chapter 4, we have derived a numerical method for equation (4.1) by approximating the integral
of order , with 0 < & < 1, using a fractional spline of degree 3, derived in Chapter 3. To discretize
the second order spatial derivative, we have used the central second order difference formula. For
0 < B < 1, as we had the explicit values of the inverse matrix, we have been able to study the stability
of the method and have concluded that the method was conditionally stable with a not very restrictive
condition referred in Theorem 4.4(b). The order of convergence of the numerical method has been
predicted from the error bounds derived for the fractional integral approximation. For 0 < 8 < 1, the
order of convergence is the minimum between 8 + 1 and ¥+ & + 1/2 for the L? discrete norm and the
minimum between 8 + 1 and Y+ « for the L* discrete norm. Furthermore, the results have pointed
out that the fractional splines of degree B = a perform better for larger meshes. For 1 < 8 < 2, the
order of convergence is the minimum between 8 + 1, Y+ @ + 1/2 and 2 + « for the L? discrete norm
and the minimum between 8 + 1, ¥+ o and 2 + « for the L* discrete norm. Once again, these results
have been illustrated by numerical tests. At the end we have compared some figures with approximate
solutions obtained by the numerical method with initial condition an approximation to the Dirac delta
function. We have concluded that the process of subdiffusion is faster for higher values of «, this is,
the peak values of the solution are lower for the same initial condition and final instant.

In Chapter 5, we have explored superdiffusion for 0 < @ < 1 and for 1 < o < 2. For the case with
0 < a < 1, we have presented three different numerical methods to obtain numerical solutions for the
problem involving the fractional differential equation (5.5). In order to approximate the derivative
in time, we have used the Crank-Nicolson method. To approximate the integral operator in space,
we used the linear spline, already proven to be of second order for sufficiently smooth function. To
approximate the derivative of the integral, it has been considered a central approximation of second
order (already studied in [75]) and two upwind approximations, one of first order and another of
second order. The upwind schemes have been considered because the central method, despite being
of second order, presented spurious oscillation for nonsymmetric cases for larger time steps. With the
first order upwind method we extinguish the false oscillations, however it presents a lower order of
accuracy. We have concluded that the upwind second order implicit method is the best choice since it
is second order accurate and delivers solutions without unwanted oscillations. We have also studied
the stability of the methods that have been proved to be unconditionally stable. We have presented
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tables with data obtained by the implementation of the numerical methods that illustrates the expected
order of convergence for the three methods. For the superdiffusion with 1 < o < 2, we have presented
briefly a second order numerical method based on the linear spline to approximate the solution of
equation (5.7) that was derived in [76]. Then, we move forward to consider a reflecting boundary at
x = 0. This resulted in considering equation (5.7) for x > 0 and u(x,t) = u(—x,t) for x > 0, which
led to a direct impact on the fractional operator. We have analyzed the stability and consistency of
the new method, based on the proofs done in [76] for the open domain and have concluded that we
had obtained a second order accurate and unconditionally stable method. This result was supported
by numerical tests. The influence of the boundary condition has been illustrated by displaying the
solution of the same model with and without boundary and we observed that the area that is under the
open domain solution for (—o0,0) accumulates under the solution of the problem with the reflecting
wall defined in (0, 00), namely closer to x = 0. At the end, we show several numerical simulations
for the three superdiffusive models with the initial condition once again being an approximation to
the Dirac delta function. By observing these simulations, we have concluded that the asymmetry
involved in all cases of superdiffusion considered in this thesis influences more the solutions for
a near to 1. Furthermore, the spread of the solution seems to be faster for larger values of . We
conclude the chapter with a figure containing one solution of the subdiffusive model and another
of the superdiffusive model, illustrating the characteristic behaviour of Lévy flights, with the tails
becoming heavier as time evolves, while for the subdiffusive solutions the tails tend to zero.

Beyond the themes that we have approached in this thesis, there are still a lot of open problems
related to anomalous diffusion. The open questions that are more closely correlated with our work are
enumerated next. For the subdiffusion equation, it would be valuable to perform a more complete
convergence analysis of the method proposed in Chapter 4 when using fractional splines of degree 3
with 1 < 8 < 2. Furthermore, it may be of interest to apply the fractional splines approximation in
space and therefore in problems of superdiffusion. The behaviour of the fractional splines approach
the behaviour of the solution and we could expect that, to simulate superdiffusion of order ¢, the best
tools would be splines of degree B = . Therefore, the study of fractional splines for 1 < f < 2 is
even more important since superdiffusion may contemplate the values of & between 1 and 2. Another
question is how to include boundary conditions properly in superdiffusive models. The consideration
of boundary conditions will remain one of the most important and challenging topics to be researched.
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