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a b s t r a c t

Operation of Gas Electron Multiplier (GEM) in pure xenon was studied in a double-phase chamber under

well-controlled conditions, in terms of temperature, pressure and gas purity. The maximum gain of

� 150 was achieved in gas phase at �108 �C. Stable operation, during several hours, was observed.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Double-phase xenon (liquid/gas) detectors are becoming
extensively used and continue to be developed by several groups
and collaborations aiming at detection of galactic dark matter in
the form of hypothetical heavy neutral particles with the mass of
� 10–� 1000 GeV coupled to the ordinary matter through the
weak interaction and generically called Weakly Interacting
Massive Particles (WIMPs). WIMPs are expected to be observed
through their elastic scattering from nuclei, of the detector
material, thus resulting in nuclear recoils with the kinetic energy
t100 keV and approximately exponential spectrum. Extremely
small predicted scattering cross-section leads to expected event
rate of t1 event=kg=day, i.e. orders of magnitude lower than
achievable natural radioactive gamma and electron background
rate. Use of low background materials and active background
discrimination techniques, as well as efficient shielding, are
therefore mandatory for these experiments. Liquid xenon dou-
ble-phase detectors, in which WIMP scattering in the liquid phase
is followed by extraction of electrons from the recoil track to gas,
offer both intrinsic amplification of the signal via secondary
scintillation of gas and an efficient discrimination method by
comparing the ratio of secondary to primary light [1–3]. The
scintillation light is detected with photomultiplier tubes that
are known to be a source of significant radioactive background.
This justifies searches for alternative amplification techniques
that would use only low radioactivity materials.

Micro-pattern avalanche detectors such as GEMs and alike
seem to be good candidates for this purpose. They can be made
ll rights reserved.

ent of Physics, University of

el.: +351 239 410 684;
sensitive to the scintillation light by deposition of a thin layer of
CsI photocathode on one of the surfaces [4]. However, operation of
these devices in a two-phase system is not sufficiently studied.
Promising results were obtained both with a triple GEM structure
in double-phase argon, krypton and xenon [5], and with a single
GEM placed above liquid xenon [6]. For xenon, a maximum gain of
about 200 was reported for a triple GEM and about 25 with a
single foil. Instabilities of GEM operation in saturated vapour
sometimes leading to complete disappearance of the signal,
presumably because of xenon condensation in the GEM channels,
have also been noticed [7].

In this work we aimed at achieving a higher gain with single
GEM by reducing the liquid temperature and thus the vapour
density. From the experience with GEMs at room temperature, it is
well known that the maximum achievable gain decreases with
increasing of gas pressure [8]. Good temperature control and
stability become more critical when approaching the xenon
triple point. Therefore, special effort was made to ensure good
temperature stabilisation of the experimental chamber. As a
result, stable operation of GEM during several hours at the visible
gain up to 150 has been achieved at the temperature of �108 �C
using 241Am as a source of 5 MeV a-particles and 60 keV g-rays.
2. Experimental setup

Measurements were carried out with the setup shown in
Fig. 1(a).

A stainless steel cathode with 241Am a-source mounted on top
of it was placed at a distance of 11.1 mm below a 50mm thick GEM
foil. The GEM, manufactured by 3M [9], has holes of 70mm in
diameter at 140mm pitch. A collector grid made from 50mm
stainless steel wires at 1 mm pitch was placed 3.5 mm above the
GEM. The electrode structure was mounted on a stainless steel
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Fig. 1. Chamber in the cryostat.

Fig. 2. Readout schematics.

F. Balau et al. / Nuclear Instruments and Methods in Physics Research A 598 (2009) 126–129 127
flange with ceramic feedthroughs and placed into a cylindrical
chamber, 100 mm diameter and 70 mm high, made of titanium.
Inside the chamber, only high-vacuum compatible materials such
as metal, glass, ceramic and PTFE were used. The chamber was
placed inside of a liquid nitrogen cryostat as shown in Fig. 1(b).
Special care was taken to ensure temperature stability and
uniformity along the chamber. The copper screens around the
chamber allowed to maintain a constant temperature gradient of
about 2 �C between the bottom and the top of the chamber. The
power delivered to the heaters was automatically adjusted
according to the level of liquid nitrogen in the cryostat, which
was measured with a capacitive probe, so that the temperature
of the chamber could be maintained constant within 1 �C. The
temperature was measured with precision of 0:5 �C using three
platinum thermo-resistors distributed along the chamber. The
chamber was helium leak tested, pumped to 10�7 mbar and baked
at 75 �C for three days. Then it was further cleaned by passage of
xenon gas purified by Oxisorb column.

The chamber was filled with liquid xenon (purified with
Oxisorb) up to a level of 7� 1 mm above the a-source. The voltage
of �4:5 kV was applied to the cathode resulting in a field of �
3 kV=cm in the liquid, at which about 50% of the electrons
reaching the liquid–gas boundary are emitted into the gas phase
[10]. It is worth mentioning that due to strong recombination,
the charge that is extracted from the track of a-particles in the
liquid is only about 5% of that in the gas, i.e. about 3 fC per
a-particle [11].

The readout schematics is presented in Fig. 2.
Low-noise charge-sensitive preamplifiers (Cremat-110) were

connected to the bottom face of the GEM and to the collector
grid. The output signals of the preamplifiers were amplified and
shaped by a spectroscopy amplifier (Canberra 2021) and analysed
by a multi-channel analyzer. Two modes of operation were
used. In the first mode, the top face of the GEM and the collector
grid were both kept at ground potential. In this case all the
charge extracted from the liquid was collected at the bottom face
of the GEM. This allowed to measure the initial charge (Q0)
arriving to the GEM. In the second mode, the initial charge was
amplified in the GEM and partially extracted to the collector
grid (Qext) by applying positive voltages to the GEM and collector
grid. The amplification factor Qext=Q0 (also referred herein as
visible gain), was measured as a function of the voltage applied to
the GEM (VGEM) at constant voltage of 1.3 kV applied to the
collector grid.
3. Results

Amplitude spectra were recorded at different voltages
(between 525 and 625 V) across the GEM. Fig. 3 shows the
spectra recorded for the highest visible gain (� 150) achieved in
this work.

In the upper spectrum, the main peak corresponds to 5.5 MeV
a-particles from 241Am and appears at lower energy that can be
expected for the gamma rays of the same energy due to the strong
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Fig. 3. Pulse-height spectra measured in double-phase xenon, at VGEM ¼ 624 V at which Q ext=Q0 ¼ 149. For the spectrum in the lower plot, the amplifier gain was increased

by a factor of 3.
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Fig. 4. Gain (Qext=Q0) as a function of the voltage applied across the GEM for

(Vcoll ¼ 1:3 kV).

Table 1
Experimental conditions and maximum gain as measured in the present work and

in Ref. [6]

T ð�CÞ P (bar) Density ðcm�3Þ Qext=Q0 VGEM (V)

Ref. [6] �102 1.40 6:10� 1019 25 650

Present work �108 1.04 4:71� 1019 150 624
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recombination in LXe. The 241Am 60 keV gamma rays, as well as
� 30 keV xenon escape peak are clearly visible in the spectra. Low
energy 237Np X-rays can also be distinguished.
Fig. 4 shows the dependence of the visible gain on the voltage
across the GEM. The GEM gain exponentially grows with VGEM, as
expected.

The best energy resolution for a-particles (� 19%, FWHM) was
obtained at 602 V corresponding to the gain of 81.

The maximum gain achieved in the present work and
experimental conditions are compared with those of Ref. [6] in
Table 1. A higher gain obtained in this work can be explained by
the fact that the measurements were done at lower temperature,
i.e. at lower gas density, being in general agreement with the
observations at room temperature and high pressure [8].
4. Conclusions

Operation of single GEM in double-phase xenon was studied.
Continuous stable operation, during several hours, was repeatedly
observed.

The maximum gain of � 150 was achieved at �108 �C and
vapour density of 4:71� 1019 cm�3. Energy resolution of 19%
(FWHM) was obtained for 5:5 MeVa-particles.
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