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Abstract

In this paper we derive asymptotic expressions for the mean integrated squared error of a class

of delta sequence density estimators for circular data. This class includes the class of kernel

density estimators usually considered in the literature, as well as a new class which is closer

in spirit to the class of Parzen–Rosenblatt estimators for linear data. For these two classes

of kernel density estimators, a Fourier series-based direct plug-in approach for bandwidth

selection is presented. The proposed bandwidth selector has a n−1/2 relative convergence

rate whenever the underlying density is smooth enough and the simulation results testify that

it presents a very good finite sample performance against other bandwidth selectors in the

literature.
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1 Introduction

Given an independent and identically distributed sample of angles X1, . . . ,Xn ∈ [0, 2π[ from some

absolutely continuous random variable X with unknown probability density function f , a delta

sequence estimator is an estimator of f that takes the form

f̂n(θ) =
1

n

n
∑

i=1

δn(θ −Xi), (1)

where θ ∈ [0, 2π[ and δn : R → [0,∞[, for n ∈ N, is a sequence of periodic functions with period

2π, called delta function sequence, which satisfies the conditions

(∆.1)

∫ π

−π
δn(y)dy = 1, for all n;

(∆.2) sup
λ<|y|≤π

δn(y) → 0, as n→ +∞, for all 0 < λ < π;

(∆.3)

∫ π

−π
δn(y)

2dy <∞, for all n.

The reader is referred to Watson and Leadbetter (1964) for the concept of delta function se-

quence in the context of linear data. This class of density estimators includes some density

estimators already considered in the literature. If the delta function sequence is symmetric, that

is δn(−y) = δn(y), for all y ∈ R and n ∈ N, the previous class is closely related with the subclass

of nonnegative circular estimators (of second sin-order) considered in Di Marzio, Panzera, and

Taylor (2009) (see also Di Marzio, Panzera, and Taylor 2011, Definitions 1 and 2, pp. 2157–2158).

Conditions (ii) and (iii) of Definition 1 in Di Marzio et al. (2009, p. 2067) are trivially fulfilled un-

der assumptions (∆.1) and (∆.2), being this last condition stronger than condition (iii). However,

under the previous conditions the delta function sequence does not necessarily admit a pointwise

convergent Fourier series representation as assumed in condition (i) of Definition 1 in Di Marzio

et al. (2009). Nevertheless, from assumption (∆.3) we know that the delta function sequence

admits the L2([−π, π]) Fourier series representation

δn(y) =
1

2π

(

1 + 2

∞
∑

k=1

{

ak(δn) cos(ky) + bk(δn) sin(ky)
}

)

, (2)

where

ak(δn) =

∫ π

−π
δn(y) cos(ky)dy and bk(δn) =

∫ π

−π
δn(y) sin(ky)dy, (3)

are, up to a constant, the real Fourier coefficients of δn (Butzer and Nessel 1971, Definition 1.2.1

and Proposition 4.2.3, pp. 40, 175).

Kernel type methods for estimating densities of q-dimensional unit spheres, for q ≥ 1, were

initially studied in Beran (1979), Hall, Watson, and Cabrera (1987), Bai, Rao, and Zhao (1988)

and Klemelä (2000), this last work being restricted to q ≥ 2. The class of delta sequence estimators
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includes the class of kernel estimators considered in the first three of these works in the specific

case of circular data. For θ ∈ [0, 2π[, they are defined by

f̃L(θ;h) =
ch(L)

n

n
∑

i=1

L

(

1− cos(θ −Xi)

h2

)

, (4)

where L : [0,∞[→ R is a bounded function satisfying some additional conditions, h = hn is a

sequence of positive numbers such that hn → 0, as n→ ∞, and ch(L), depending on the kernel L

and the bandwidth h, is chosen so that f̃L(·;h) integrates to unity. If L is the so-called von Mises

kernel L(t) = e−t, then (4) is the density estimator considered in Taylor (2008) and Oliveira,

Crujeiras, and Rodŕıguez-Casal (2012) denoted henceforth by f̃vM. In this case the estimator is a

combination of circular normal or von Mises densities with mean directions Xi and concentration

parameters equal to h−2 as it takes the form

f̃vM(θ;h) =
1

n

n
∑

i=1

fvM(θ;Xi, h
−2), (5)

where

fvM(θ;µ, κ) =
1

2πI0(κ)
exp

(

κ cos(θ − µ)
)

,

is the von Mises density with mean direction µ ∈ [0, 2π[ and concentration parameter κ ≥ 0, and

Ir(ν) is, for ν ≥ 0 and r ≥ 0, the modified Bessel function of order r defined by

Ir(ν) =
1

2π

∫ 2π

0
cos(rθ) exp(ν cos θ)dθ.

The class of delta sequence estimators also comprises an estimator that is closer in spirit to

the Parzen–Rosenblatt estimator for linear data (Rosenblatt 1956; Parzen 1962). For θ ∈ [0, 2π[,

it is defined by

f̌K(θ; g) =
dg(K)

n

n
∑

i=1

Kg(θ −Xi), (6)

where Kg is a real-valued periodic function on R, with period 2π, such that Kg(θ) = K(θ/g)/g,

for θ ∈ [−π, π[, with K : R → R a bounded function satisfying some additional conditions,

g = gn > 0 is the bandwidth, and dg(K) is a normalising constant depending on the kernel K and

the bandwidth g which is chosen so that f̌K(·; g) integrates to unity. Of course, for K(u) = L(u2)

and g =
√
2h the estimators f̃L and f̌K are closely related and it is expected that there will

be no significant differences between them. The results presented in this paper will support this

statement. If L(t) = e−t we get K(u) = e−u2

, in which case f̌K is close to a kernel density

estimator for linear data based on the normal or Gaussian kernel. Although the rationale behind

its construction can be found in Silverman (1986, pp. 29–32), to the best of our knowledge it is

the first time that this estimator is explicitly proposed and studied in the literature.



4

This work has two complementary purposes. The first one, which is addressed in Sections 2

and 3, comprises the study of the consistency of the delta sequence estimator f̂n defined at (1)

as an estimator of f and, under some additional assumptions on the delta function sequence, the

derivation of an asymptotic expansion for the mean integrated squared error (MISE) of f̂n defined

by

MISE(f ; f̂n, n) := E
(

ISE(f ; f̂n, n)
)

= E

∫ 2π

0

{

f̂n(θ)− f(θ)
}2
dθ. (7)

Such an expansion generalises the one obtained in Di Marzio et al. (2009, Theorem 1, p. 2068).

The specific cases of kernel estimators f̃L, f̃vM and f̌K , as well as the delta sequence estimator f̂wC

based on the wrapped Cauchy kernel considered in Tsuruta and Sagae (2017a), are discussed in

detail. As in kernel estimation for linear data, the asymptotic expansions obtained for the mean

integrated squared error of estimators f̃L and f̌K , besides permitting the derivation of explicit

expressions for their asymptotic optimal bandwidths, enable us to compare the two estimators

regarding their mean integrated squared error asymptotic performance, and also to identify the

optimal kernels for each of these classes of estimators. Additionally, the efficiencies of other kernels

with respect to the optimal ones can also be quantified. As in optimal kernel theory for linear

data, we conclude that one loses very little when suboptimal kernels are used.

The second purpose of this work is the automatic selection of the smoothing parameter for

kernel estimators f̃L and f̌K . In addition to the seminal paper of Hall et al. (1987) where two

cross-validation methods for bandwidth selection are considered, some more recent works where

several plug-in bandwidth selectors are proposed, some of them restricted to the case of circular

data, comprise the papers of Taylor (2008), Di Marzio et al. (2009), Oliveira et al. (2012), Garćıa-

Portugués, Crujeiras, and González-Manteiga (2013) and Garćıa-Portugués (2013). Following the

strategy of Tenreiro (2011), we propose in Section 4 an alternative Fourier series-based direct

plug-in approach for selecting the bandwidths of kernel estimators f̃L and f̌K , and we prove

that the proposed selectors achieve the relative convergence rate n−1/2 whenever the underlying

density is smooth enough (in the context of linear data, see also Tenreiro 2020). These theoretical

properties, which are not shared by other existing plug-in methods, but principally because of the

very good finite sample performance they possess, provide very strong evidence that the proposed

selectors might present a good overall behaviour for a wide range of circular density features.

The remaining sections of this work are organised as follows. In Section 5, the finite-sample

behaviour of the new Fourier series-based direct plug-in bandwidth selector for estimator f̃vM is

illustrated by means of a Monte Carlo study, and in Section 6, it is used in two real data sets.

Finally, in Section 7, we draw some overall conclusions. For the convenience of exposition all the

proofs are deferred to Section 8 and some of the simulation results are relegated to the online

supplementary material. The simulations and plots in this paper were performed using programs

written in the R language (R Development Core Team 2019).
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2 Bias and variance

As X is a circular random variable that takes values on [0, 2π[, the probability density function

f of X is a nonnegative valued function defined on the interval [0, 2π[ such that
∫ 2π
0 f(θ)dθ = 1.

For the sake of simplicity we will also denote by f the periodic extension of f to R given by

f(θ) = f(θ − 2kπ), whenever θ ∈ [2kπ, 2(k + 1)π[, for some k ∈ Z.

2.1 Asymptotic behaviour

In the following result we establish the consistency in mean squared error of the delta sequence

estimator (1) as estimator of f , for all density f continuous on [0, 2π]. As the established con-

sistency is uniform in θ ∈ [0, 2π[, from this result we also deduce the convergence to zero of the

mean integrated squared error of the estimator.

Theorem 1. Under assumptions (∆.1)–(∆.3), if f is continuous on [0, 2π] we have:

a)

sup
θ∈[0,2π[

|Ef̂n(θ)− f(θ)| → 0.

b)

sup
θ∈[0,2π[

∣

∣nα(δn)
−1 Varf̂n(θ)− f(θ)

∣

∣ → 0,

where

α(δn) =

∫ π

−π
δn(y)

2dy → +∞. (8)

Moreover, if nα(δn)
−1 → +∞ we have

sup
θ∈[0,2π[

E
(

f̂n(θ)− f(θ)
)2 → 0.

A simple example of a delta function sequence satisfying assumptions (∆.1)–(∆.3) is given by

the so-called wrapped Cauchy kernel defined, for y ∈ R, by

δn(y) =
1

2π

(

1 + 2

∞
∑

k=1

ρk cos(ky)

)

=
1

2π

1− ρ2

1 + ρ2 − 2ρ cos y
, (9)

where the concentration parameter ρ = ρn is such that 0 < ρ < 1 and ρ→ 1, as n tends to infinity

(see Mardia and Jupp 2000, p. 51, and Tsuruta and Sagae 2017a, sec. 3). Taking into account

that

α(δn) =
1

2π

1 + ρ2

1− ρ2
=

1

2πh
(1 + o(1)),

where h = 1−ρ, from Theorem 1 we conclude that the delta sequence estimator f̂wC based on the

wrapped Cauchy density is a consistent estimator for all density continuous on [0, 2π], whenever

h→ 0 and nh→ +∞, as n→ +∞.
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In the case of estimator f̃L given by (4), conditions (∆.1)–(∆.3) are fulfilled whenever the

smoothing parameter h converges to zero as n tends to infinity, and the kernel L : [0,∞[→ R,

assumed to be nonnegative and bounded, satisfies the additional conditions:

(L.1) lim
t→+∞

t1/2L(t) = 0;

(L.2) 0 <

∫ ∞

0
t−1/2L(t)dt <∞.

Moreover, if h→ 0, as n→ +∞, we have

α(δn) = h−12−1/2

∫ ∞

0
t−1/2L(t)2dt

(
∫ ∞

0
t−1/2L(t)dt

)−2

(1 + o(1)). (10)

Concerning estimator f̌K given by (6), conditions (∆.1)–(∆.3) are fulfilled whenever the

smoothing parameter g converges to zero as n tends to infinity, and the kernel K : R → R,

assumed to be nonnegative, bounded and symmetric, satisfies the conditions:

(K.1) lim
u→+∞

uK(u) = 0;

(K.2) 0 <

∫ ∞

−∞
K(u)du <∞.

In this case, if g → 0, as n→ +∞, we have

α(δn) = g−1

∫ ∞

−∞
K(u)2du

(
∫ ∞

−∞
K(u)du

)−2

(1 + o(1)). (11)

From Theorem 1 and equality (10) we conclude that under conditions (L.1) and (L.2), f̃L

is a consistent estimator of f , for all density f continuous on [0, 2π], whenever the smoothing

parameter satisfies the classical conditions h → 0, nh → +∞, as n tends to infinity. Taking

into account (11) a similar result holds for estimator f̌K whenever K satisfies conditions (K.1)

and (K.2) and g is such that g → 0, ng → +∞, as n → +∞. Note that the kernel L satisfies

conditions (L.1) and (L.2) iff the kernel K defined by K(u) = L(u2) satisfies conditions (K.1) and

(K.2). In this case the main terms of the asymptotic expansions (10) and (11) coincide whenever

g =
√
2h.

2.2 Asymptotic expansions

From Theorem 1, a uniform asymptotic expansion for the variance of the estimator f̂n is given by

sup
θ∈[0,2π[

∣

∣Varf̂n(θ)− n−1α(δn)f(θ)
∣

∣ = o
(

n−1α(δn)
)

. (12)

In order to obtain an equally useful asymptotic expansion for the bias of the estimator, the

following additional assumptions on the delta function sequence need to be imposed:

(∆.4)

∫ π

−π
yδn(y)dy = 0, for all n;
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(∆.5)

∫ π

−π
|y|2+γδn(y)dy = o

(

β(δn)
)

, for all γ ∈ ]0, 1], where β(δn) :=

∫ π

−π
y2δn(y)dy.

Taking into account their symmetry, the delta function sequences of the estimators f̃L and f̌K

trivially fulfil the first of the previous assumptions. The second condition holds for estimator f̃L

if the kernel L is such that

(L.3)

∫ ∞

0
tL(t) dt <∞.

In this case we have

β(δn) = 2h2
∫ ∞

0
t1/2L(t)dt

(
∫ ∞

0
t−1/2L(t)dt

)−1

(1 + o(1)). (13)

With respect to estimator f̌K , condition (∆.5) holds if the kernel K is such that

(K.3)

∫ ∞

−∞
|u|3K(u)du <∞.

Moreover, we have

β(δn) = g2
∫ ∞

−∞
u2K(u)du

(
∫ ∞

−∞
K(u)du

)−1

(1 + o(1)). (14)

Kernel L fulfils condition (L.3) iff the kernel K defined by K(u) = L(u2) satisfies condition (K.3),

and the sequences (13) and (14) are asymptotically equivalent whenever g =
√
2h.

Theorem 2. Under assumptions (∆.1)–(∆.5), assume that f is twice differentiable on [0, 2π] and

that f ′′ satisfies the Lipschitz condition

∣

∣f ′′(x)− f ′′(y)
∣

∣ ≤ C|x− y|α, x, y ∈ [0, 2π], (15)

for some α ∈ ]0, 1] and C > 0. We have

sup
θ∈[0,2π[

∣

∣Ef̂n(θ)− f(θ)− 1

2
β(δn)f

′′(θ)
∣

∣ = o
(

β(δn)
)

, (16)

where

β(δn) =

∫ π

−π
y2δn(y)dy → 0. (17)

It is possible to improve the asymptotic rate of convergence to zero of the bias of f̂n by allowing

the delta function sequence (δn) to take negative values (see Wand and Jones 1995, pp. 32–35,

for linear data, and Tsuruta and Sagae 2017b, for circular data). Nevertheless, this issue is not

pursued here.
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3 MISE expansions and asymptotic optimal bandwidths

The mean integrated squared error defined at (7) is a widely used global measure of the per-

formance of a density estimator f̂n. Under the conditions of Theorem 2 with nα(δn)
−1 → +∞,

as n → +∞, from expansions (12) and (16) we deduce that the integrated variance and the

integrated squared bias of f̂n can be expressed as

IV(f ; f̂n, n) :=

∫ 2π

0
Varf̂n(θ)dθ = n−1α(δn) + o

(

α(δn)
)

(18)

and

ISB(f ; f̂n, n) :=

∫ 2π

0

{

Ef̂n(θ)− f(θ)
}2
dθ =

1

4
β(δn)

2θ2(f) + o
(

β(δn)
2
)

, (19)

where α(δn) and β(δn) are given by (8) and (17), respectively, and θ2(f) denotes the quadratic

funcional

θ2(f) =

∫ 2π

0
f ′′(θ)2dθ.

In the next result we present two asymptotic expansions for the mean integrated squared error

of the delta sequence estimator (1). The first one follows directly from expansions (18) and (19).

The second one is valid whenever the delta function sequence is symmetric.

Theorem 3. Under assumptions (∆.1)–(∆.5), assume that f is twice differentiable on [0, 2π] and

that f ′′ satisfies the Lipschitz condition (15). If nα(δn)
−1 → +∞ then

MISE(f ; f̂n, n) = n−1α(δn) +
1

4
β(δn)

2θ2(f) + o
(

n−1α(δn) + β(δn)
2
)

. (20)

Moreover, if the delta function sequence is symmetric we have

MISE(f ; f̂n, n) = n−1α(δn) +
1

16
(1− a2(δn))

2θ2(f) + o
(

n−1α(δn) + (1 − a2(δn))
2
)

, (21)

where a2(δn) is given by (3).

Several results that appear in the literature on circular density estimation follow from this

general result. When the delta function sequence (δn) is symmetric, from the L2([−π, π]) rep-

resentation (2) we have α(δn) = 1
2π

(

1 + 2
∑∞

k=1 ak(δn)
2
)

, and the approximation of the mean

integrated squared error is given by

AMISE(f ; f̂n, n) = n−1α(δn) +
1

16
(1− a2(δn))

2θ2(f), (22)

agrees with the one presented in Di Marzio et al. (2009, Theorem 1, p. 2068). However, from

Theorem 3 we can further conclude that this approximation is asymptotically equivalent to the

mean integrated squared error of f̂n, a fact that is not established in the work of Di Marzio et al.

(2009).
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In the particular case of estimator f̃vM defined at (5), the delta function sequence, also known

as von Mises kernel, is given by δn(y) = exp(h−2 cos y)/(2πI0(h
−2)), for y ∈ R. Therefore, from

(22) we get the approximation of the mean integrated squared error given by

AMISE1(f ; f̃vM, h, n) =
I0
(

2h−2
)

2πnI0
(

h−2
)2 +

1

16

(

1− I2
(

h−2
)

I0
(

h−2
)

)2

θ2(f), (23)

when h→ 0 and nh→ ∞, as

α(δn) =
1

4π2I0(h−2)2

∫ π

−π
exp

(

2h−2 cos y
)

dy =
I0(2h

−2)

2πI0(h−2)2

and

a2(δn) =
1

2πI0(h−2)

∫ π

−π
cos(2y) exp

(

h−2 cos y
)

dy =
I2(h

−2
)

I0(h−2
) .

This approximation, which we now know to be asymptotically equivalent to the mean integrated

squared error of f̃vM, is considered in Oliveira et al. (2012, p. 3899) to define new plug-in bandwidth

selectors.

The delta sequence estimator f̂wC based on the wrapped Cauchy kernel (9) considered before,

is an example of an estimator that does not fulfil assumption (∆.5). In fact, for the wrapped

Cauchy kernel we have
∫ π

−π
|y|2+γδn(y)dy =

h

2π

∫ π

−π

|y|2+γ

1− cos y
dy (1 + o(1)),

for all γ ≥ 0, when h = 1 − ρn tends to zero, as n tends to infinity. Therefore, although we may

conclude from Theorem 1 that n−1α(δn) = 1
2πnh (1 + o(1)) is asymptotically equivalent to the

integrated variance of f̂wC, from Theorem 3 we cannot deduce that one of the terms 1
4β(δn)

2θ2(f)

or 1
16

(

1− a2(δn)
)2
θ2(f) is asymptotically equivalent to the integrated square bias of f̂wC. This is

clear from the expansion for the mean integrated squared error of f̂wC we give in the next result

which corrects the one presented in Tsuruta and Sagae (2017a, Theorem 2, p. 4).

Theorem 4. If f continuously differentiable on [0, 2π] and h = 1 − ρ is such that h → 0 and

nh→ +∞, we have

MISE(f ; f̂wC, h, n) =
1

2πnh
+ h2θ1(f) + o

(

1

nh
+ h2

)

,

where θ1(f) denotes the quadratic funcional

θ1(f) =

∫ 2π

0
f ′(θ)2dθ.

If f is not the circular uniform distribution, the asymptotic optimal bandwidth, that is,

the bandwidth that minimises the most significant terms of the mean integrated squared error

asymptotic expansion, usually called the asymptotic mean integrated squared error, is given by

h∗ = (4π)−1/3θ1(f)
−1/3n−1/3.
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This expression also corrects the expression for the asymptotic optimal bandwidth of f̂wC given

in Tsuruta and Sagae (2017a, eq. 8, p. 4).

In the remaining of this section we discuss some additional consequences of Theorem 3 in the

case of the kernel estimators f̃L and f̌K defined by (4) and (6), respectively. Especially, we will

see that the optimal convergence rate n−2/3 we get for the MISE of estimator f̂wC is overcome by

the corresponding optimal convergence rate n−4/5 obtained for f̃L and f̌K.

We consider first the case of the estimator f̃L defined at (4).

Theorem 5. Let L be a nonnegative and bounded kernel satisfying conditions (L.1)–(L.3), and

assume that f is under the conditions of Theorem 2. If h is such that h → 0 and nh → +∞, as

n→ +∞, we have

MISE(f ; f̃L, h, n) =
1

nh
c1(L) + h4c2(L) θ2(f) + o

(

1

nh
+ h4

)

,

where

c1(L) = 2−1/2

∫ ∞

0
t−1/2L(t)2dt

(
∫ ∞

0
t−1/2L(t)dt

)−2

and

c2(L) =

(
∫ ∞

0
t1/2L(t)dt

)2(∫ ∞

0
t−1/2L(t)dt

)−2

.

If f is not the circular uniform distribution, the asymptotic optimal bandwidth for estimator

f̃L is given by

h∗ = c(L)θ2(f)
−1/5n−1/5,

where

c(L) = 2−1/2

(
∫ ∞

0
t−1/2L(t)2dt

)1/5 (∫ ∞

0
t1/2L(t)dt

)−2/5

. (24)

Although the previous asymptotic expansion for the mean integrated squared error of f̃L is not

established in the works of Taylor (2008), Di Marzio et al. (2009) and Oliveira et al. (2012), which

address the estimation of densities in the unit circle, it agrees with the one we can deduce from

Proposition 1 of Garćıa-Portugués (2013), which is valid for the general kernel density estimator

on the q-dimensional unit sphere Ωq with q ≥ 1 (see also Garćıa-Portugués et al. 2013, sec. 4). In

fact, under slightly different assumptions on f and L, if we use Proposition 1 of Garćıa-Portugués

(2013) in the specific case of circular data together with the asymptotic approximation given in

equation (2) of Garćıa-Portugués et al. (2013), we get for MISE(f ; f̃L, h, n) an expansion that

is identical to the one given in Theorem 5 but with θ2(f) replaced by
∫

Ω1
Ψ(ḡ, x)2ω1(dx), where

ω1 denotes the Lebesgue measure in the unit circle Ω1, ḡ is the real-valued function defined

by ḡ(x) = g(x/||x||), for x ∈ R2 \{(0, 0)}, where ||x|| denotes the Euclidean norm, and g is

the function defined on Ω1 by f(θ) = g(x(θ)), with x(θ) = (cos θ, sin θ), for θ ∈ [0, 2π[, and,

finally, Ψ(ḡ, x) = −xT∇ḡ(x) + ∇2ḡ(x) − xTHḡ(x)x, where ∇ḡ(x), ∇2ḡ(x) and Hḡ(x) denote,

respectively, the gradient vector, the Laplacian and the Hessian matrix of ḡ at x. However, as
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f ′′(θ) = Ψ(ḡ, x(θ)), from which we deduce that
∫

Ω1
Ψ(ḡ, x)2ω1(dx) =

∫ 2π
0 f ′′(θ)2dθ = θ2(f), we

conclude that the expansion for MISE(f ; f̃L, h, n) we get from Proposition 1 of Garćıa-Portugués

(2013) in the specific case of circular data is exactly the one presented in Theorem 5.

As seen previously, when f̃vM is the estimator given by (5) the MISE approximation given at

(23) is asymptotically equivalent to the MISE of f̃vM. Taking for L the von Mises kernel, from

Theorem 5 we get an alternative asymptotic approximation to the MISE of f̃vM given by

AMISE2(f ; f̃vM, h, n) =
1

2
√
π nh

+
h4

4
θ2(f). (25)

This approximation is used in Garćıa-Portugués (2013) to define new plug-in bandwidth selectors

(we will return later to this point). For small values of h the MISE approximations (23) and

(25) are similar as revealed by the quotients between the corresponding integrated variance and

integrated squared bias terms which are in an interval centred at one with radius not greater than

0.05 for 0 < h ≤ 0.2.

Assuming that the true density f is a von Mises density with mean direction µ ∈ [0, 2π[ and

concentration parameter κ ≥ 0, we denote by fvM(·;µ, κ), we know that

θ2(fvM(·;µ, κ)) = 3κ2I0(2κ) − κI1(2κ)

8πI0(κ)2
, (26)

which equals the curvature term given in Garćıa-Portugués (2013, Proposition 1). Replacing

θ2(f) by (26) in (25), we get an approximation to the MISE of f̃vM when the true density is a von

Mises density that is interesting to compare with the approximation considered in Taylor (2008,

p. 3495), which can be rewritten as

ÃMISE(f ; f̃vM, h, n) =
1

2
√
π nh

+
3h4

(

κ2I0(2κ) − κI1(2κ)
)

32πI0(κ)2
, (27)

by observing that I2(2κ) = I0(2κ) − I1(2κ)/κ, due to the properties of the Bessel functions.

We see that integrated variance terms agree in both expressions (25) and (27), but the same

does not happen with respect to the integrated squared bias terms which are not asymptotically

equivalent. Therefore, the MISE approximation (27) considered in Taylor (2008, p. 3495) to define

his von Mises-scale plug-in bandwidth selector is not asymptotically equivalent to the MISE of the

estimator when the true density f is the von Mises density. The derivation of the approximation

(27) in Taylor (2008) was not accurate enough to allow the identification of the most significant

terms of the integrated squared bias expansion of estimator f̃vM.

We turn next to the estimator f̌K defined at (6).

Theorem 6. Let K be a nonnegative, bounded and symmetric kernel satisfying assumptions

(K.1)–(K.3), and assume that f is under the conditions of Theorem 2. If g is such that g → 0

and ng → +∞, as n→ +∞, we have

MISE(f ; f̌K , g, n) =
1

ng
d1(K) +

g4

4
d2(K) θ2(f) + o

(

1

ng
+ g4

)

,
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where

d1(K) =

∫ ∞

−∞
K(u)2du

(
∫ ∞

−∞
K(u)du

)−2

and

d2(K) =

(
∫ ∞

−∞
u2K(u)du

)2 (∫ ∞

−∞
K(u)du

)−2

.

If f is not the circular uniform distribution, the asymptotic optimal bandwidth for estimator

f̌K is given by

g∗ = d(K)θ2(f)
−1/5n−1/5,

where

d(K) =

(
∫ ∞

−∞
K(u)2du

)1/5 (∫ ∞

−∞
u2K(u)du

)−2/5

. (28)

The previous formulas agree with the well-known formulas for the mean integrated squared

error and the asymptotic optimal bandwidth of the Parzen–Rosenblatt estimator for linear data

(see Wand and Jones 1995, p. 21). Moreover, the estimator f̃L with kernel L and bandwidth h and

the estimator f̌K with kernel K(u) = L(u2) and bandwidth g =
√
2h share the same first-order

asymptotic terms for the corresponding mean integrated squared errors and therefore the same

asymptotic optimal bandwidth. This is one more piece of evidence that supports the previously

mentioned close relationship between these two kernel density estimators.

The special case of the circular uniform distribution, for which θ2(f) = 0, is not covered by

the previous optimal bandwidth asymptotic theory. For this distribution the bias of the delta

sequence estimator is equal to zero and its exact mean integrated squared error is simply given by

MISE(f ; f̂n, n) =
1

2πn

(

α(δn) − 1
2π

)

, for every delta function sequence satisfying conditions (∆.1)

and (∆.3). In the particular case of estimator f̃L, under very general conditions on the kernel

L we have MISE(f ; f̃L, h, n) = o(1) even when the smoothing parameter does not converge to

zero as n tends to infinity. More precisely, if h → λ ∈ [0,+∞], as n → +∞, the fastest rate

of convergence is obtained when λ = +∞, in which case we get MISE(f ; f̃L, h, n) = o(n−1). A

similar result is valid for estimator f̌K .

The asymptotic comparison between estimators f̃L and f̌K , or between two estimators from

one of these classes that use different kernel functions, can be based on the previous asymptotic

expansions for the mean integrated squared error. If deterministic smoothing parameters h =

c(L)γ n−1/5 and g = d(K)γ n−1/5, with γ > 0, are respectively used in estimators f̃L and f̌K ,

from Theorems 5 and 6 we know that their mean integrated squared errors are such that

MISE(f ; f̃L, h, n) = ϕ(f ; γ)φ(L)n−4/5(1 + o(1))

and

MISE(f ; f̌K , g, n) = ϕ(f ; γ)ψ(K)n−4/5(1 + o(1)),

where

ϕ(f ; γ) =
1

γ
+
γ4

4
θ2(f),
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L(t) K(u) eff(L) = eff(K)

I(t ≤ 1) I(|u| ≤ 1) 0.9295

(1− t)I(0 ≤ t ≤ 1) (1− u2)I(|u| ≤ 1) 1

(1− t)2I(t ≤ 1) (1− u2)2I(|u| ≤ 1) 0.9939

(1− t)3I(t ≤ 1) (1− u2)3I(|u| ≤ 1) 0.9867

e−t e−u2

0.9512

Table 1: Efficiencies of kernels L and K with respect to optimal kernels L∗ and K∗.

φ(L) =

(
∫ ∞

0
t−1/2L(t)2dt

)4/5(∫ ∞

0
t1/2L(t)dt

)2/5(∫ ∞

0
t−1/2L(t)dt

)−2

and

ψ(K) =

(
∫ ∞

−∞
K(u)2du

)4/5(∫ ∞

−∞
u2K(u)du

)2/5(∫ ∞

−∞
K(u)du

)−2

.

This last functional is well-known in the context of kernel estimation for linear data. We know

that the parabolic kernel K∗(u) = (1− u2)I(|u| ≤ 1) minimises ψ(K) among all the nonnegative,

bounded and symmetric kernels K satisfying conditions (K.1)–(K.3) (see Epanechnikov 1969,

Bosq and Lecoutre 1987, pp. 82–83, and Wand and Jones 1995, p. 30). As ψ(K) = φ(L) for

L(t) = K(
√
t ), we also deduce that the half-triangular kernel L∗(t) = (1−t)I(t ≤ 1) minimises the

functional φ(L) among all the nonnegative and bounded kernels L satisfying conditions (L.1)–(L.3)

(see also Hall et al. 1987, p. 758). Therefore, the kernels L∗ and K∗ are optimal for each one of the

classes of estimators f̃L and f̌K , whenever the considered bandwidths are, respectively, given by

h = c(L)γ n−1/5 and g = d(K)γ n−1/5, for some positive value γ. The efficiencies of other kernels

with respect to these optimal kernels can be deduced from the previous asymptotic expansions

for the mean integrated squared errors. They are given by the ratios eff(L) :=
(

φ(L∗)
/

φ(L)
)5/4

and eff(K) :=
(

ψ(K∗)
/

ψ(K)
)5/4

. For some kernels, these efficiencies are reported in Table 1. As

in kernel estimation for linear data framework (see Wand and Jones 1995, Table 2.1, p. 31), we

see that suboptimal kernels may be almost as efficient as the optimal ones.

4 A Fourier series-based plug-in bandwidth selector

When a nonnegative and bounded kernel L satisfying conditions (L.1)–(L.3) is used in (4), or when

a nonnegative, symmetric and bounded kernel K satisfying conditions (K.1)–(K.3) is used in (6),

under some smoothness assumptions on f we have seen that the asymptotic optimal bandwidths
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for estimators (4) and (6) are respectively given by

h∗ = c(L) θ2(f)
−1/5n−1/5 and g∗ = d(K) θ2(f)

−1/5n−1/5, (29)

when θ2(f) =
∫ 2π
0 f ′′(θ)2dθ 6= 0, and c(L) and d(K) are given by (24) and (28), respectively.

As the only unknown quantity in (29) is the density curvature θ2(f), the problem of providing

data-dependent bandwidth selectors through the estimation of h∗ and g∗, is reduced to that of

estimating θ2(f), this being the rationale of the direct plug-in approach to bandwidth selection.

For classical references on the direct plug-in method for linear data the reader is referred to

Woodroofe (1970), Nadaraya (1974) and Deheuvels and Hominal (1980).

The approaches developed in the literature in a circular data context to deal with the fact

that the quadratic functional θ2(f) appearing in the previous theoretical bandwidths is unknown,

assume that f is a member of some parametric family of densities, such as the von Mises family, or

more generally, the family of von Mises mixtures (cf. Garćıa-Portugués 2013; see also Taylor 2008

and Oliveira et al. 2012). After obtaining a suitable approximation f̂ of f from the considered

reference density family, the automatic bandwidth selectors are given by ĥ∗ = c(L) θ2(f̂)
−1/5n−1/5

and ĝ∗ = d(K) θ2(f̂)
−1/5n−1/5, where the quantity θ2(f̂) takes the place of θ2(f) in (29). Although

θ2(f̂) can be a good approximation for θ2(f), especially when the considered reference density

model is able to capture the curvature of the underlying density f , from a theoretical point of view

we cannot assure that the data-dependent bandwidths ĥ∗ and ĝ∗ are asymptotically equivalent

to h∗ and g∗, respectively, when f belongs to some large set of circular densities. Wanting to

define automatic plug-in bandwidth selectors that possess such a consistency property, we follow

in this section the approach of Tenreiro (2011) where the Fourier series-based estimators studied

in Laurent (1997) are used to estimate the quadratic functional θ2(f).

The Fourier series-based or projection estimator of θ2(f) is motivated by the representation

θ2(f) =
1

π

∞
∑

k=1

k4
(

ak(f)
2 + bk(f)

2
)

,

where ak(f) and bk(f) are, up to a constant, the real Fourier coefficients of f given by ak(f) =
∫ 2π
0 f(θ) cos(kθ)dθ and bk(f) =

∫ 2π
0 f(θ) sin(kθ)dθ (also known as the trigonometric moments of

X). Based on this representation, which is valid whenever f and f ′ are absolutely continuous on

[0, 2π] and f ′′ is square integrable on [0, 2π] (see Butzer and Nessel 1971, Propositions 4.1.8 and

4.2.2, pp. 172, 175), the Fourier series-based estimator of θ2(f) is defined by

ˆ̄θ2,m =
1

π

m
∑

k=1

k4 ˆ̄ck, (30)

where ˆ̄ck is the unbiased estimator of ak(f)
2 + bk(f)

2 given by

ˆ̄ck =
2

n(n− 1)

∑

1≤i<j≤n

cos(k(Xi −Xj)), (31)



15

and m = m(n) is a sequence on integers converging to infinity (for related estimators of θ2(f) in a

linear data context, see Chiu 1991, p. 1891, and Wu 1995, p. 1476). As shown in Laurent (1997),

the previous estimator achieves the n−1/2 rate of convergence, whenever f is smooth enough and

it is efficient. Moreover, when the n−1/2 rate is not achievable they achieve the optimal rate of

convergence. A closely related alternative positive estimator of θ2(f) is

ˆ̃
θ2,m = θ2(f̃m) =

1

π

m
∑

k=1

k4
(

â2k + b̂2k
)

, (32)

where

f̃m(x) =
1

2π

(

1 + 2
m
∑

k=1

{âk cos(kx) + b̂k sin(kx)}
)

, (33)

is the Fourier series-based estimator of f studied in Kronmal and Tarter (1968), and âk and b̂k

are unbiased estimators of ak(f) and bk(f) given by

âk =
1

n

n
∑

i=1

cos(kXi) and b̂k =
1

n

n
∑

i=1

sin(kXi).

The numberm of Fourier terms plays the role of smoothing parameter and makes the trade-off

between the variance and the bias of these estimators. A large value ofm implies a small bias but a

large variance, whereas a small value ofm implies a large bias but a small variance. As in practical

situations the choice of m should be based on the observations, this is, m = m̂(X1, . . . ,Xn), we

consider the automatic estimators ˆ̄θ2,m̂ and ˆ̃θ2,m̂ of θ2(f), whose asymptotic behaviour, established

in Tenreiro (2011, Lemma 1, pp. 543–544), enables us to describe the corresponding behaviour of

the relative errors of the plug-in bandwidth selector defined by

ĥ∗m̂ = c(L) θ̂
−1/5
2,m̂ n−1/5, (34)

where θ̂2,m denotes either ˆ̄θ2,m or
ˆ̃
θ2,m defined by (30) and (32), respectively. Of course, the same

asymptotic behaviour can be established for the relative error of the plug-in bandwidth selector

defined by

ĝ∗m̂ = d(K) θ̂
−1/5
2,m̂ n−1/5. (35)

Theorem 7. Let L be a nonnegative and bounded kernel satisfying conditions (L.1)–(L.3). For f

different from the circular uniform distribution, and s = p+ α > 2, with p ∈ N and α ∈ ]0, 1], let

us assume that f is p-times differentiable on [0, 2π] and that f (p) satisfies the Lipschitz condition

∣

∣f (p)(x)− f (p)(y)
∣

∣ ≤ C|x− y|α, x, y ∈ [0, 2π],

for some α ∈ ]0, 1] and C > 0.

a) Consistency. If m̂ is such that m̂
p−→ +∞ and n−1m̂5 p−→ 0 then

ĥ∗m̂
h∗

p−→ 1.
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b) Rates of convergence. If m̂ satisfies

P
(

C1 n
ξ1 ≤ m̂ ≤ C2 n

ξ2
)

→ 1, (36)

where C1, C2, ξ1, ξ2 are strictly positive constants with

0 < ξ1 ≤ ξ2 <
1

5
,

then
ĥ∗m̂
h∗

− 1 = Op

(

n−min{1/2,1−5ξ2,2ξ1(s−2)}
)

.

c) Asymptotic normality. If s > 4 + 1/2 and m̂ satisfies (36) with

1

4(s − 2)
< ξ1 ≤ ξ2 <

1

10
,

then
√
n

(

ĥ∗m̂
h∗

− 1

)

d−→ N
(

0, σ2(f)
)

,

with

σ2(f) =
4

25

(

E(f (4)(X1)
2)

E2(f (4)(X1))
− 1

)

.

The practical implementation of the proposed plug-in bandwidths depends on the data-

dependent method for selecting m we consider. As in Tenreiro (2011) we will take m in such

a way that f can be well approximated, in the sense of the mean integrated squared error, by the

Fourier series-based estimator f̃m given at (33). For a squared integrable density function f with

support contained within the interval [0, 2π], Hart (1985) proves that the mean integrated square

error of f̃m can be expressed as

MISE(f̃m) =
1

π

(

H(m) +

∞
∑

k=1

(

ak(f)
2 + bk(f)

2
)

)

,

where

H(m) =
m

n
− n+ 1

n

m
∑

k=1

(

ak(f)
2 + bk(f)

2
)

,

with H(0) = 0. Therefore, the data-dependent method for selecting m we consider is defined by

the first integer m̂Hγ satisfying

m̂γ = arg min
m∈Mn

Ĥγ(m), (37)

where

Ĥγ(m) =
m

n
− γ

n+ 1

n

m
∑

k=1

ˆ̄ck,

and Ĥγ(0) = 0, with Mn = {Ln, Ln + 1, . . . , Un}, Ln < Un are deterministic sequences of non-

negative integers, 0 < γ ≤ 1 needs to be chosen by the user, and ˆ̄ck is given by (31). The value
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Figure 1: Empirical distribution of ISE(f ; f̃vM, ĥ
∗
m, n) depending on m for models M3 and M19

(n = 200) from the Oliveira et al. (2012) set of circular density models. The number of replications

is 500.

m̂γ depends on Mn through the sequences Ln and Un that need also to be chosen by the user.

If they are taken equal to Ln = ⌊C1n
ξ1⌋ + 1 and Un = ⌊C2n

ξ2⌋, where ⌊x⌋ is the integral part

of x and C1, C2, ξ1, ξ2 are strictly positive constants satisfying the conditions of Theorem 7, we

know that the data-dependent bandwidths ĥ∗ and ĝ∗ will possess good asymptotic properties.

Assuming for ease of explanation that s ≥ 5 in Theorem 7, we deduce that the best orders of

convergence for the relative errors of each one of the bandwidths ĥ∗ and ĝ∗ will take place by

choosing ξ1 = ξ2 = 1/11. In this case, since the power n1/11 remains small for very large sample

sizes, the sequences Ln and Un are dominated by the size of the constants C1 and C2. If we want

to deal with a wide set of distributional characteristics of the underlying density function f the

sequences Ln and Un should be chosen such that the set Mn contains very small and moderately

large values of m.

This is illustrated in Figure 1 where we show 30 boxplots describing the empirical distribution

of the integrated squared error ISE(f ; f̃vM, h, n) =
∫ 2π
0 {f̃vM(θ;h)−f(θ)}2dθ, based on 500 samples

from the circular densities M3 and M19 considered in Oliveira et al. (2012), where h = ĥ∗m for

m ∈ {1, 2, . . . , 30}. We include a polygonal line going through the sample mean values of these

distributions, thus giving an approximation of EISE(m) := E
(

ISE(f ; f̃vM, ĥ
∗
m, n)

)

. The solid red

circle is used to point out the optimal value of m in the sense of minimising the approximation of

the EISE function. The integrals are evaluated numerically by using a grid of equally spaced 1501

points and the composite Simpson’s rule. As for other densities that present simple distributional

features, for the wrapped normal density M3 with mean direction µ = 0 and mean resultant

length ρ = 0.9, a small value of m seems to be the best choice. A different situation occurs

for densities that present more complex distributional features. This is the case of density M19

that is a mixture of five von Mises densities with mixture proportions α =
(

4, 5
36 ,

5
36 ,

5
36 ,

5
36

)

,
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mean directions µ = (2, 4, 3.5, 4, 4.5), and concentration parameters κ = (3, 3, 50, 50, 50). For

these densities, using a large value of m seems to be highly advisable. In the following we take

C1 = 0.25 and C2 = 25 which leads to Ln = 1 and 30 ≤ Un ≤ 87 for 10 ≤ n ≤ 106. Some

simulation experiments reveal that the previous method for selecting m is quite robust against

the choice of C2 and its performance is not affected if larger values for C2 are taken.

The inclusion of the correction parameter γ in the previous criterion function is crucial for the

good performance of the method. To the best of our knowledge, a similar idea was for the first

time suggested by Hart (1985) for selecting the number of terms to be used in a Fourier series-

based density estimator. As the considered set Mn of possible values of m includes large values

of m, some simulation experiments reveal that taking γ = 1, in which case Ĥγ(m) is an unbiased

estimator of H(m), does not prevent us from getting excessively large values of m, which leads

to very poor results especially for densities whose Fourier coefficients converge quickly to zero.

In fact, excessively large values of m might lead to an overestimation of the quadratic functional

θ2, and therefore to an underestimation of the asymptotic optimal bandwidths h∗ or g∗. Taking

into account that the function γ 7→ m̂Hγ is nondecreasing with probability one, we may expect to

soften the above-mentioned problems by including a correction parameter strictly less than one

in the considered criterion function. As suggested by this property, the simulation results support

the idea that small values of γ generally improve Hart’s method for distributions whose Fourier

coefficients converge quickly to zero, and large values of γ are more appropriate for distributions

with Fourier coefficients converging slowly to zero. In order to find a compromise between these

two extreme situations, we decide to follow the suggestion of Tenreiro (2011) and taking γ = 0.5.

5 Simulation study

We present in this section the results of a simulation study carried out to analyse the finite

sample behaviour of the Fourier series-based direct plug-in bandwidth selectors introduced in the

previous section. However, as the results obtained by the plug-in bandwidths ĥ∗m̂ and ĝ∗m̂ defined,

respectively, by (34) and (35), with m̂ given by (37), were very similar, we will restrict our

attention to the kernel estimator (4) for the first of these bandwidths. Moreover, as the estimator
ˆ̄θ2,m̂ of θ2(f) defined by (30) may occasionally produce poor, sometimes negative, estimates of

θ2(f) when the size of the sample is small, and it performs similarly to ˆ̃θ2,m̂ defined by (32)

when the sample size is moderate or large, the data-dependent bandwidth based on ˆ̄θ2,m̂ is not

considered hereafter. Finally, as the estimator f̃vM given at (5) is used in the already mentioned

papers of Taylor (2008), Di Marzio et al. (2009), Oliveira et al. (2012) and Garćıa-Portugués

(2013), that address the automatic selection of the smoothing parameter, from now on we take

for L the von Mises kernel L(t) = e−t, t ≥ 0. Therefore, as c(L) = (4π)−1/10 for this kernel, the

asymptotic optimal bandwidth h∗ in (29) is given by

h∗ = (4π)−1/10θ2(f)
−1/5n−1/5, (38)
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and the Fourier series-based plug-in bandwidth we consider henceforth is defined by

ĥFO := (4π)−1/10 ˆ̃θ
−1/5
2,m̂ n−1/5 = (4π)−1/10θ2(f̃m̂)−1/5n−1/5,

where ˆ̃θ2,m is given by (32), m̂ = m̂γ is given by (37) with Ln, Un and γ chosen as explained in

the previous section, and f̃m is the Fourier series-based estimator of f given at (33).

Some other plug-in bandwidths existing in the literature are included in this study. The

simplest one, firstly considered in Garćıa-Portugués (2013, eq. 6, p. 1661), is an adaptation of the

method proposed in a kernel density estimation for linear data context by Deheuvels (1977, p. 36)

and Deheuvels and Hominal (1980, pp. 28–29), and made popular by Silverman (1986, pp. 45–48).

The idea is to estimate θ2(f) by making a parametric hypothesis on f . Assuming that f is a von

Mises density with mean direction µ and concentration parameter κ, from (26) and (38) we can

define the von Mises reference distribution bandwidth selector by

ĥvM = (4π)−1/10

(

3κ̂2I0(2κ̂)− κ̂I1(2κ̂)

8πI0(κ̂)2

)−1/5

n−1/5,

where we take for (µ̂, κ̂) the maximum likelihood estimator of (µ, κ) (under the von Mises model)

given by the equations

1

n

n
∑

i=1

sin(Xi − µ̂) = 0,
1

n

n
∑

i=1

cos(Xi − µ̂) =
I1(κ̂)

I0(κ̂)
.

This bandwidth selector is implemented by the function bw dir rot of the R package ‘DirStats’

(Garćıa-Portugués 2020). A similar proposal leading to an alternative “von Mises-scale plug-

in rule” was made by Taylor (2008, p. 3495). However, as this plug-in bandwidth is based on

approximation (27) which is not asymptotically equivalent to the mean integrated squared error

of f̃vM, it is not considered in what follows.

A more flexible reference distribution family is proposed in Oliveira et al. (2012). These authors

assume that f is a mixture of M von Mises densities with mean directions µj and concentration

parameters κj , for j = 1, . . . ,M , that is, f takes the form

fM(θ) =
M
∑

j=1

pifvM(θ;µj, κj),
M
∑

j=1

pj = 1, pj ≥ 0.

For each one of the considered mixtures the associated 3M parameters of the model are esti-

mated by using maximum likelihood estimation via an EM algorithm performed with the function

movMF of the R package ‘movMF’ (Hornik and Grün 2014), and the selection of the number of

mixture components is performed by using the Akaike Information Criterion (AIC) (see Oliveira

et al. 2012, p. 3900). The AIC is computed for mixtures of M = 2, 3, 4, 5 von Mises distributions

and the selected number of mixtures M̂ for the reference distribution is the one minimising the

AIC. As described in Oliveira et al. (2012, p. 3906) some computational problems may arrive in

practice in the implementation of the EM algorithm. When no result can be obtained for the
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different values of M , one takes M̂ = 1 in which case the bandwidth selected is the von Mises

reference distribution bandwidth as the distribution parameters are estimated via maximum like-

lihood. Denoting by fM̂ the density selected from the considered reference density family where

the parameters are estimated and M̂ is obtained from the sample, we consider in our study the

bandwidth selector given by

ĥOLI = (4π)−1/10θ2(fM̂ )−1/5n−1/5.

This is not the bandwidth selector originally proposed in Oliveira et al. (2012, p. 3900), which is

defined as the minimiser over h > 0 of the mean integrated squared error approximation given at

(23) after replacing θ2(f) by θ2(fM̂ ), implemented by the function (bw.pi)−1/2 of the R package

‘NPCirc’ (Oliveira, Crujeiras, and Rodŕıguez-Casal 2015). However, as the two selectors per-

formed similarly, we decided to show here only the results of the selector based on the asymptotic

optimal bandwidth.

An alternative procedure for selecting the number M of mixture components is proposed in

Garćıa-Portugués (2013, Section 4.1). For each one of the considered mixtures the parameters of

the model are estimated as in Oliveira et al. (2012) but the selection of M is performed by using

a different strategy and the Bayesian Information Criteriun (BIC). The details on the considered

procedure are given in Garćıa-Portugués (2013, Algorithm 3, p. 1666). Denoting by fM̃ the density

selected from the considered reference density family, we include in our study the AMI and EMI

selectors proposed in Garćıa-Portugués (2013, Algorithm 1, p. 1664, and Algorithm 2, p. 1665).

They are defined by

ĥAMI = (4π)−1/10θ2(fM̃ )−1/5n−1/5

and

ĥEMI = argmin
h>0

MISE(fM̃ ; f̃vM, h, n),

where the exact mean integrated squared error is evaluated by using the closed expression for

MISE(f ; f̃vM, h, n) derived in Garćıa-Portugués et al. (2013, Proposition 4, p. 159) when f is

a mixture of von Mises densities. These bandwidth selectors are implemented by the functions

bw dir ami and bw dir emi of the R package ‘DirStats’ (Garćıa-Portugués 2020).

Two other data-driven procedures for selecting the bandwidth proposed by Hall et al. (1987)

are also included in our study. They are the least-square cross-validation and the Kullback-

Leibler or likelihood cross-validation methods. Denoting by f̃vM,−i the kernel density estima-

tor (5) by leaving out the i-th observation, the least-square cross-validation bandwidth ĥLSCV

is obtained by minimising the classic least-square cross-validation criterion function given by

LSCV(h) =
∫ 2π
0 f̃vM(θ;h)dθ − 2n−1

∑n
i=1 f̃vM,−i(Xi;h), whereas the likelihood cross-validation

bandwidth ĥLCV is obtained by maximising the likelihood cross-validation criterion function

defined by LCV(h) =
∏n

i=1 f̃vM,−i(Xi;h). These methods are implemented by the function

(bw.CV)−1/2 (methods ”LSCV” and ”LCV”) from the R package ‘NPCirc’ (Oliveira et al. 2015).
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The set of 20 circular distributions considered in Oliveira et al. (2012), which includes the von

Mises distribution, the cardioid distribution, various wrapped distributions and mixtures of them,

is used to analyse the effectiveness of the proposed plug-in bandwidth ĥFO and to compare it with

the data-driven bandwidths ĥvM, ĥOLI, ĥAMI, ĥEMI, ĥLSCV and ĥLCV. This set of densities is

very rich, containing densities with a wide variety of distribution features such as multimodality,

skewness and/or peakedness. For a careful description of the different models and the plots of

the corresponding circular densities see Oliveira et al. (2012, pp. 3901, 3902, 3907). Although

we have used self-programmed code written in R and functions from the ‘circular’ package in R

(Lund and Agostinelli 2017) for generating data from the previous models, this can also be done

by using the function rcircmix from the above-mentioned ‘NPCirc’ package.

For different sample sizes and for each one of the 20 test distributions the quality of each

one of the considered bandwidths ĥ is analysed through the measure of stochastic performance

defined by

L2–norm of ISE(f ; f̃vM, ĥ, n) =

√

Var(ISE(f ; f̃vM, ĥ, n)) + E2(ISE(f ; f̃vM, ĥ, n)).

As expressed by the last equality, this performance measure takes into account not only the mean

of the ISE(f ; f̃vM, ĥ, n) distribution, but also its variability. As the least-square cross-validation

bandwidth showed an inferior global performance compared to the likelihood cross-validation

bandwidth, only the results obtained by the bandwidths ĥFO, ĥvM, ĥOLI, ĥAMI, ĥEMI and ĥLCV

are reported in Figures 2, 3, 4 and 5. In these figures the empirical L2–norm of ISE(f ; f̃vM, ĥ, n),

based on 500 replications, is shown for sample sizes n = 25 · 2k, k = 0, 1, . . . , 7. As before, the

integrals
∫ 2π
0 {f̃vM(θ; ĥ) − f(θ)}2dθ are evaluated by using a grid of equally spaced 1501 points

and the composite Simpson’s rule.

As we can see from the graphics, the bandwidth ĥvM is suitable when the underlying density

has a distributional structure that is close to a von Mises distribution. This situation occurs with

models 1, 2, 3, 4 and 9. However, its performance is very poor for circular distributions that

present more complex features. Some extreme situations where this poor behaviour is observed

for all sample sizes are models 7, 11, 13, 14, 16 and 20. In all these cases the sampling distribution

of the considered concentration parameter estimator κ̂ is distributed around zero leading to large

bandwidths that provide uniform estimates for the underlying circular density (on this situation,

see Oliveira et al. 2012, p. 3906). With respect to the bandwidth ĥOLI, we can see that it

shows a poor behaviour for almost all the considered scenarios when the sample size is small.

This behaviour can be improved if we take M̂ = 2 for small samples, which is in line with the

observation of Oliveira et al. (2012, p. 3903) that consider such a choice a fair one when the sample

size is small. This strategy produced better results (see the online supplementary material) for

almost all the considered models when n ≤ 200, with the exception of models 11, 14, 16, 17,

18 and 20, where worse results were observed for at least one of the sample sizes n = 100, 200.

The performance of ĥOLI improves significantly for moderate or large sample sizes, where it is

among the best of the considered bandwidth selectors. The bandwidths ĥAMI and ĥEMI show a
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Figure 2: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n) (log scale) for the bandwidths ĥFO, ĥvM, ĥOLI,

ĥAMI, ĥEMI and ĥLCV, and circular density models 1 to 5. The number of replications is 500.
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Figure 3: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n) (log scale) for the bandwidths ĥFO, ĥvM, ĥOLI,

ĥAMI, ĥEMI and ĥLCV, and circular density models 6 to 10. The number of replications is 500.



24

M11

sample sizes ÷ 25

L
2
 −
n
o
rm

 o
f 
IS
E

1 2 4 8 16 32 64 128

0
.0
0
1

0
.0
0
5

0
.0
2
0

0
.1
0
0

FO
vM
OLI
AMI
EMI
LCV

M12

sample sizes ÷ 25

L
2
 −
n
o
rm

 o
f 
IS
E

1 2 4 8 16 32 64 128

0
.0
0
1

0
.0
0
5

0
.0
5
0

FO
vM
OLI
AMI
EMI
LCV

M13

sample sizes ÷ 25

L
2
 −
n
o
rm

 o
f 
IS
E

1 2 4 8 16 32 64 128

0
.0
0
2

0
.0
1
0

0
.0
5
0

0
.2
0
0

FO
vM
OLI
AMI
EMI
LCV

M14

sample sizes ÷ 25

L
2
 −
n
o
rm

 o
f 
IS
E

1 2 4 8 16 32 64 128

0
.0
0
2

0
.0
1
0

0
.0
5
0

0
.2
0
0

FO
vM
OLI
AMI
EMI
LCV

M15

sample sizes ÷ 25

L
2
 −
n
o
rm

 o
f 
IS
E

1 2 4 8 16 32 64 128

0
.0
0
1

0
.0
0
5

0
.0
5
0

FO
vM
OLI
AMI
EMI
LCV

Figure 4: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n) (log scale) for the bandwidths ĥFO, ĥvM, ĥOLI,

ĥAMI, ĥEMI and ĥLCV, and circular density models 11 to 15. The number of replications is 500.
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Figure 5: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n) (log scale) for the bandwidths ĥFO, ĥvM, ĥOLI,

ĥAMI, ĥEMI and ĥLCV, and circular density models 16 to 20. The number of replications is 500.
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Figure 6: Estimates for the cross-bed density by using the kernel estimator f̃vM(·; ĥ) and the

bandwidth selectors ĥFO, ĥvM, ĥEMI and ĥLCV.

very good global behaviour with the exception of models 15, 17, 18 and 19 where for some of the

considered sample sizes they present and inferior performance with respect to other bandwidth

selectors. With the exceptions of models 5, 10 and 17, whose densities present a single or several

strong peaks, the likelihood cross-validation bandwidth ĥLCV shows a very good behaviour for

all the test densities and sample sizes. However, a better global behaviour is shown by the

Fourier series-based plug-in bandwidth ĥFO. This bandwidth is quite competitive against the

von Mises reference distribution bandwidth selector for simple distribution models, the exception

being model 1, and, at the same time, presents a good performance for all the considered circular

density models and sample sizes. It is the best or is among the best of the considered bandwidth

selectors for all the considered models and sample sizes. This analysis suggests that ĥFO is always

a good choice for selecting the bandwidth in kernel density estimation for circular data.

6 Two real-data examples

In this section we consider two real-data sets analysed in Oliveira et al. (2012) and available

through the R package ‘NPCirc’ (Oliveira et al. 2015). For each of them, the data-driven band-

width selectors considered in the previous section, namely ĥFO, ĥvM, ĥOLI, ĥAMI, ĥEMI and ĥLCV,

are used.

The first data set consists of 104 cross-bed measurements from the Himalayan molasse in

Pakistan presented in Fisher (1993, Measurements of Chaudan Zam large bedforms, pp. 250–

251). The smoothing parameter selectors ĥFO = 0.370 and ĥOLI = 0.362 (M̂ = 2) yield identical

bandwidths, while larger bandwidths are produced by ĥvM = 0.442, ĥAMI = 0.484, ĥEMI = 0.488

(M̃ = 1) and ĥLCV = 0.507. As we can see from Figure 6 the different smoothing parameters
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Figure 7: Estimates for the dragonflies orientation density by using the kernel estimator f̃vM(·; ĥ)
and the bandwidth selectors ĥFO, ĥvM, ĥEMI and ĥLCV.

provide similar density estimates (only the estimates for the bandwidths ĥFO, ĥvM, ĥEMI and

ĥLCV are displayed). Other than the main mode distribution, the linear plot seems to reveal the

presence of a second less important mode distribution in an opposite direction to the main one.

The second data set, presented in Batschelet (1981, pp. 23–24), consists of the orientation of

214 dragonflies with respect to the azimuth of the sun. As most dragonflies have chosen a direction

of approximately 90◦ either to the right or to the left of the sun’s rays, the underlying circular

density should be bimodal. For this data set the bandwidth selectors ĥFO = 0.136, ĥOLI = 0.126

(M̂ = 4), ĥAMI = 0.130 and ĥEMI = 0.140 (M̃ = 3) yield identical bandwidths. Although a

slightly larger bandwidth is produced by the likelihood cross-validation selector ĥLCV = 0.168,

the different kernel density estimates are similar, revealing a clear bimodal circular distribution

as shown in Figure 7. A bimodal distribution structure is also revealed by the larger bandwidth

produced by the von Mises reference distribution bandwidth selector ĥvM = 0.778. However,

based on the simulation results obtained in the previous section for the circular density with

opposite modes M7 (see Figure 3), we expect a poor behaviour for this last bandwidth selector.

7 Conclusions

The asymptotic expansions for the mean integrated squared error of a general class of delta

sequence estimators for circular data presented in this paper improve and correct similar ones

existing in the literature, and enabled us to derive, in a unified way, explicit expressions for the

asymptotic optimal bandwidths of kernel estimators f̃L and f̌K given at (4) and (6), respectively.

Based on these expressions a Fourier series-based direct plug-in approach for bandwidth selection

is proposed. The theoretical properties established for the new bandwidth selector method, not



28

shared by other existing plug-in methods, but principally because of the very good finite sample

performance it possesses, provides very strong evidence that it might present a good overall

behaviour for a wide range of circular density features.

8 Proofs

As mentioned at the beginning of Section 2, we denote by f not only the probability density

function of the observed circular random variables, but also its periodic extension to the real line

with period 2π. In this section all the limits are understood to be taken as n→ +∞.

Proof of Theorem 1: From the periodicity of δn and f we have

Ef̂n(θ) =

∫ 2π

0
δn(θ − x)f(x)dx =

∫ π

−π
δn(y)f(θ − y)dy, (39)

for θ ∈ [0, 2π[. The uniform convergence stated in a) follows now from standard arguments as f is

uniformly continuous on R and the sequence (δn) satisfies conditions (∆.1) and (∆.2) (see Watson

and Leadbetter 1964, Proof of Lemma 3, p. 104). Similar arguments can be used to establish

b). For that we start by noting that α(δn) → +∞ as the sequence (δn) satisfies condition (∆.3)

(cf. Watson and Leadbetter 1964, Lemma 1, p. 103). In order to conclude, it suffices to use the

equality

nα(δn)
−1 Varf̂n(θ) =

∫ π

−π
ϕn(y)f(θ − y)dy − α(δn)

−1
(

Ef̂n(θ)
)2
,

where θ ∈ [0, 2π[ and ϕn(y) = δn(y)
2
/ ∫ π

−π δn(y)
2dy, and the fact that (ϕn) also satisfies conditions

(∆.1) and (∆.2). �

Proof of Theorem 2: We start by proving that
∫ π
−π |y|βδn(y)dy → 0, for all β > 0. In fact, from

assumptions (∆.1) and (∆.2), for any 0 < λ < π and n large enough, we have

∫ π

−π
|y|βδn(y)dy ≤ λβ + 2πβ+1 sup

λ<|y|≤π
δn(y).

Using again assumption (∆.2), we get the stated convergence. Therefore, for β = 2 we get

β(δn) → 0. Using now assumptions (∆.1) and (∆.4), and the fact that f ′′ satisfies Lipschitz

condition (15), from classic arguments we get

sup
θ∈[0,2π[

∣

∣Ef̂n(θ)− f(θ)− 1

2
β(δn)f

′′(θ)
∣

∣ ≤ C

2

∫ π

−π
|y|2+αδn(y)dy.

The stated result follows now from assumption (∆.5). �

Proof of Theorem 3: Expansion (20) follows easily from (18) and (19). Moreover, taking into

account that y = sin y + 1
2y

3
∫ 1
0 (1− t)2 cos(ty)dt, from assumption (∆.5) we have

β(δn) =

∫ π

−π
(sin y)2δn(y)dy + o(β(δn)).
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Finally, from representation (2) we get

β(δn) =
1

2

(

1− a2(δn)
)

+ o
(

β(δn)
)

,

which, together with (20), leads to the alternative expansion (21) for mean integrated squared

error of the delta sequence estimator. �

Proof of Theorem 4: As f is squared integrable in [0, 2π], we know that f admits the L2([0, 2π])

representation f(θ) = 1
2π

(

1 + 2
∑∞

k=1{ak(f) cos(kθ) + bk(f) sin(kθ)}
)

, where ak(f) and bk(f)

are given by ak(f) =
∫ 2π
0 f(θ) cos(kθ)dθ and bk(f) =

∫ 2π
0 f(θ) sin(kθ)dθ, for k ∈ N (Butzer and

Nessel 1971, Proposition 4.2.3). Therefore, from (39) and representation (2) we get the following

expression for the integrated squared bias of the delta sequence estimator based on any symmetric

delta function sequence satisfying (∆.1) and (∆.3):

ISB(f ; f̂n, n) =
1

π

∞
∑

k=1

(1− ak(δn))
2
(

ak(f)
2 + bk(f)

2
)

.

Moreover, as f is absolutely continuous on [0, 2π] and f ′ is square integrable on [0, 2π] (these are

in fact the minimal conditions on f under which Theorem 4 is valid), we can use Propositions

4.1.8 and 4.2.2 of Butzer and Nessel (1971, pp. 172, 175) to conclude that π−1
∑∞

k=1 k
2
(

ak(f)
2 +

bk(f)
2
)

= θ1(f) <∞. Therefore, as for the wrapped Cauchy kernel we have 1−ak(δn)
1−ρ = 1−ρk

1−ρ → k,

from the dominated convergence theorem we deduce that

ISB(f ; f̂wC, n) = (1− ρ)2π−1
∞
∑

k=1

k2
(

ak(f)
2 + bk(f)

2
)

(1 + o(1)) = (1− ρ)2θ1(f)(1 + o(1)),

which concludes the proof. �

Proof of Theorems 5 and 6: From (10) and (13) we have α(δn) = h−1
c1(L) and β(δn) =

2h2c2(L)
1/2, for estimator f̃L, and from (11) and (14) we have α(δn) = g−1

d1(K)(1 + o(1)) and

β(δn) = 2g2d2(K)1/2(1+o(1)), for estimator f̌K. The stated expansions for MISE(f ; f̃L, h, n) and

MISE(f ; f̌K, g, n) follow now straightforwardly from expansion (20) of Theorem 3. �

Proof of Theorem 7: When θ̂2,m is the estimator ˆ̄θ2,m̂ defined at (30), from (29) and (34) we

deduce that
ĥ∗m̂
h∗

− 1 = −1

5
θ̃
−6/5
2 θ2(f)

1/5
( ˆ̄θ2,m̂ − θ2(f)

)

,

for some random value θ̃2 between ˆ̄θ2,m̂ and θ2(f). Therefore, the stated asymptotic behaviour of

the relative error of ĥ∗m̂ follows straightforwardly from the asymptotic behaviour of ˆ̄θ2,m̂ that is

established in Lemma 1 of Tenreiro (2011, pp. 543–544). A similar reasoning also applies when

θ̂2,m is the estimator ˆ̃θ2,m̂ defined at (32) as ˆ̃θ2,m = (1−n−1)ˆ̄θ2,m+(nπ)−1
∑m

k=1 k
4. This completes

the proof. �
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2

M1

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 0.8571 0.3753 0.2539 0.0892 0.0465
vM 0.4601 0.2080 0.1004 0.0496 0.0307
OLI 5.3599 1.4722 0.5376 0.1781 0.0747
AMI 1.1582 0.3711 0.1614 0.0434 0.0274
EMI 0.8425 0.3061 0.1466 0.0489 0.0306
LCV 1.4039 0.7841 0.4307 0.2116 0.1015

M̂=2 2.1836 0.6566 0.2774 0.1090 0.0584

M2

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 1.6693 0.9014 0.4815 0.2666 0.1477
vM 1.2620 0.7172 0.4136 0.2389 0.1395
OLI 8.2672 2.1555 0.5965 0.2845 0.1471
AMI 1.7170 0.8206 0.4305 0.2387 0.1394
EMI 1.4168 0.7677 0.4240 0.2387 0.1394
LCV 1.7146 0.9634 0.5684 0.3311 0.1713

M̂=2 2.2802 1.1078 0.4495 0.2433 0.1414

M3

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 3.0550 1.9259 1.1365 0.6567 0.3518
vM 2.5923 1.5536 0.9192 0.5500 0.3280
OLI 16.4319 5.4680 1.4616 0.7283 0.3358
AMI 2.9567 1.5721 0.9184 0.5502 0.3282
EMI 2.7802 1.5472 0.9131 0.5484 0.3277
LCV 3.4402 2.1343 1.1236 0.6332 0.3612

M̂=2 5.4840 2.3821 1.0479 0.5881 0.3301

M4

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 1.2593 0.6841 0.3998 0.2241 0.1248
vM 1.1154 0.6115 0.3683 0.2191 0.1243
OLI 10.2377 2.2710 0.7423 0.3083 0.1605
AMI 1.5720 0.7545 0.4431 0.2466 0.1391
EMI 1.3151 0.6662 0.4118 0.2307 0.1303
LCV 1.7162 0.9995 0.5814 0.3049 0.1832

M̂=2 1.9023 0.8911 0.4383 0.2372 0.1324

Table 1: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n)×100 for the bandwidths ĥFO, ĥvM, ĥOLI, ĥAMI,

ĥEMI, ĥLCV and ĥOLI with M̂ = 2, and circular density models 1 to 4. The number of replications
is 500.
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M5

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 6.7272 3.9458 2.3400 1.2551 0.7410
vM 9.4133 6.9467 5.0972 3.5811 2.4998
OLI 12.8475 5.3785 2.3329 1.2411 0.7289
AMI 6.8758 3.6908 2.1811 1.2454 0.7404
EMI 6.8570 3.7029 2.2276 1.2704 0.7555
LCV 12.0817 7.2185 4.0636 2.1326 1.1698

M̂=2 6.8204 4.0971 2.1765 1.2304 0.7381

M6

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 4.9139 3.1217 1.9565 1.2189 0.6892
vM 4.3050 3.1154 2.2625 1.6861 1.1995
OLI 15.4331 6.2135 2.3851 1.2409 0.6847
AMI 5.0196 3.1224 1.8874 1.1863 0.6707
EMI 4.6088 2.9371 1.8057 1.1400 0.6482
LCV 4.9555 3.1464 1.9568 1.2448 0.7608

M̂=2 5.0210 2.9589 1.8281 1.1342 0.7082

M7

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 2.4285 1.4011 0.8029 0.4646 0.2578
vM 9.1469 9.0068 9.0070 8.9819 9.0158
OLI 13.9815 2.8960 0.9267 0.4587 0.2536
AMI 2.6414 1.3996 0.7518 0.4402 0.2514
EMI 2.3033 1.3346 0.7442 0.4376 0.2506
LCV 2.5369 1.4291 0.8020 0.4724 0.2696

M̂=2 2.3146 1.3136 0.7438 0.4401 0.2567

M8

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 2.8533 1.6173 0.8935 0.5090 0.3050
vM 3.8957 2.7796 1.8634 1.2325 0.7972
OLI 9.9637 4.0549 1.0260 0.5258 0.3013
AMI 2.7655 1.5876 0.8445 0.4946 0.2991
EMI 2.6106 1.5368 0.8365 0.4928 0.2985
LCV 2.8680 1.7182 0.9146 0.5415 0.3225

M̂=2 2.6569 1.5114 0.8444 0.4957 0.3027

Table 2: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n)×100 for the bandwidths ĥFO, ĥvM, ĥOLI, ĥAMI,

ĥEMI, ĥLCV and ĥOLI with M̂ = 2, and circular density models 5 to 8. The number of replications
is 500.
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M9

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 1.7187 1.0985 0.6028 0.3329 0.1918
vM 1.3130 0.8613 0.5034 0.2985 0.1777
OLI 8.6427 2.4272 0.7294 0.3274 0.1771
AMI 1.9213 1.1825 0.5476 0.3087 0.1743
EMI 1.5845 1.0670 0.5270 0.3038 0.1740
LCV 1.7386 1.0603 0.6300 0.3442 0.1975

M̂=2 3.4859 1.0851 0.5407 0.3005 0.1779

M10

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 4.8376 3.3165 2.0037 1.1973 0.7260
vM 3.9471 2.9478 2.1437 1.6246 1.2514
OLI 13.8096 5.5740 2.6244 1.2146 0.7051
AMI 4.5031 3.1760 2.0460 1.2332 0.7076
EMI 4.2247 3.0130 1.9835 1.2035 0.6993
LCV 4.8477 3.3501 2.3723 1.6579 1.1073

M̂=2 5.8261 3.2672 2.2440 1.3428 0.7750

M11

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 2.8191 1.5545 0.8953 0.5278 0.3032
vM 6.4178 6.3177 6.2753 6.2498 6.2353
OLI 10.8292 2.8382 1.0283 0.5457 0.3025
AMI 4.3670 1.7991 0.9024 0.5244 0.3011
EMI 4.0373 1.7286 0.8835 0.5210 0.3002
LCV 2.8350 1.6607 0.9516 0.5512 0.3135

M̂=2 3.6061 2.5096 2.4624 2.5638 3.1216

M12

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 2.2935 1.3014 0.7581 0.4271 0.2482
vM 3.4075 2.8887 2.3247 1.7232 1.2425
OLI 7.5424 2.4560 0.8745 0.4317 0.2477
AMI 3.0110 1.4042 0.7777 0.4236 0.2469
EMI 2.6032 1.2841 0.7200 0.4129 0.2447
LCV 2.3336 1.3394 0.7589 0.4475 0.2596

M̂=2 2.4594 1.2889 0.6890 0.4129 0.2534

Table 3: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n)×100 for the bandwidths ĥFO, ĥvM, ĥOLI, ĥAMI,

ĥEMI, ĥLCV and ĥOLI with M̂ = 2, and circular density models 9 to 12. The number of replications
is 500.
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M13

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 3.2671 2.0340 1.2106 0.6901 0.4024
vM 10.3324 10.1878 10.0906 9.9161 9.6580
OLI 8.3516 3.7104 1.4454 0.6889 0.4008
AMI 4.1362 2.1725 1.2166 0.6743 0.3986
EMI 3.5210 1.9845 1.1492 0.6590 0.3927
LCV 3.3956 2.0397 1.1844 0.6867 0.4045

M̂=2 3.4464 2.0698 1.2045 0.7394 0.4439

M14

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 3.6230 1.9958 1.1898 0.7004 0.4098
vM 8.3183 8.2128 8.1636 8.1378 8.1253
OLI 9.8771 3.0111 1.3360 0.7177 0.4099
AMI 6.1660 2.4824 1.2250 0.7066 0.4087
EMI 5.7398 2.3636 1.1939 0.6993 0.4064
LCV 3.7064 2.1106 1.2384 0.7240 0.4234

M̂=2 6.8369 6.9169 7.1482 7.2239 7.1870

M15

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 1.2110 0.8531 0.6888 0.4971 0.2650
vM 0.9041 0.7319 0.6517 0.5897 0.5276
OLI 6.9877 1.9514 0.8750 0.4293 0.2355
AMI 1.4372 0.8776 0.6678 0.5911 0.5127
EMI 1.1675 0.7966 0.6585 0.5793 0.4953
LCV 1.6780 1.0622 0.7052 0.4346 0.2523

M̂=2 2.3539 0.9864 0.6264 0.4894 0.4140

M16

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 4.9118 2.4273 1.3928 0.8214 0.4762
vM 8.0286 7.9228 7.8650 7.8360 7.8251
OLI 7.8557 2.7624 1.4522 0.8349 0.4778
AMI 7.6447 4.2652 1.4530 0.8351 0.4780
EMI 7.3014 4.1098 1.4066 0.8235 0.4748
LCV 4.2739 2.5145 1.4474 0.8518 0.4881

M̂=2 7.5458 7.5261 7.5333 7.5203 7.5019

Table 4: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n)×100 for the bandwidths ĥFO, ĥvM, ĥOLI, ĥAMI,

ĥEMI, ĥLCV and ĥOLI with M̂ = 2, and circular density models 13 to 16. The number of replica-
tions is 500.
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M17

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 7.9383 5.1597 2.8398 1.5884 0.9327
vM 8.5780 7.5080 6.3768 5.4802 4.6068
OLI 11.2766 5.0852 2.8716 1.6259 0.9690
AMI 8.6342 6.6524 4.1481 2.0114 0.9581
EMI 8.5868 6.7004 4.1978 2.0217 0.9870
LCV 8.0645 6.0661 4.0445 2.5430 1.5454

M̂=2 8.3586 6.2830 5.1367 4.4947 3.8189

M18

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 4.7903 3.3195 1.9234 0.8934 0.5195
vM 4.1513 3.4189 2.9064 2.4034 1.9160
OLI 13.0529 3.6827 1.9193 0.9363 0.5210
AMI 4.5964 3.4338 2.7348 1.9140 0.6537
EMI 4.4064 3.4217 2.7582 1.9506 0.6580
LCV 4.2462 3.0265 1.8874 1.0421 0.5786

M̂=2 4.5001 3.2736 2.6187 2.2033 1.7430

M15

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 4.1508 2.7296 1.9320 1.2602 0.6418
vM 4.1312 3.2961 2.6970 2.2342 1.8989
OLI 9.9848 3.8756 1.9673 1.1166 0.6647
AMI 4.2250 2.7070 1.8736 1.2955 0.8254
EMI 3.8657 2.6095 1.8802 1.3187 0.8606
LCV 3.9235 2.6252 1.8401 1.2215 0.7229

M̂=2 3.6402 2.5023 1.8617 1.4142 1.0788

M20

ĥ n = 50 n = 100 n = 200 n = 400 n = 800

FO 6.7279 3.6745 2.3416 1.4669 0.8479
vM 10.6886 10.6007 10.5651 10.5246 10.5163
OLI 10.7344 4.4795 2.4327 1.4316 0.8729
AMI 8.1015 4.4374 2.4644 1.4396 0.8672
EMI 7.6957 4.3605 2.4590 1.4721 0.8908
LCV 5.7748 3.6836 2.3009 1.4248 0.8634

M̂=2 7.4523 6.4313 5.5767 4.6722 3.8507

Table 5: Empirical L2–norm of ISE(f ; f̃vM, ĥ, n)×100 for the bandwidths ĥFO, ĥvM, ĥOLI, ĥAMI,

ĥEMI, ĥLCV and ĥOLI with M̂ = 2, and circular density models 17 to 20. The number of replica-
tions is 500.


