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A B S T R A C T   

Digital agriculture has evolved significantly over the last few years due to the technological developments in 
automation and computational intelligence applied to the agricultural sector, including vineyards which are a 
relevant crop in the Mediterranean region. In this work, a study is presented of semantic segmentation for vine 
detection in real-world vineyards by exploring state-of-the-art deep segmentation networks and conventional 
unsupervised methods. Camera data have been collected on vineyards using an Unmanned Aerial System (UAS) 
equipped with a dual imaging sensor payload, namely a high-definition RGB camera and a five-band multi-
spectral and thermal camera. Extensive experiments using deep-segmentation networks and unsupervised 
methods have been performed on multimodal datasets representing four distinct vineyards located in the central 
region of Portugal. The reported results indicate that SegNet, U-Net, and ModSegNet have equivalent overall 
performance in vine segmentation. The results also show that multimodality slightly improves the performance 
of vine segmentation, but the NIR spectrum alone generally is sufficient on most of the datasets. Furthermore, 
results suggest that high-definition RGB images produce equivalent or higher performance than any lower res-
olution multispectral band combination. Lastly, Deep Learning (DL) networks have higher overall performance 
than classical methods. The code and dataset are publicly available on https://github.com/Cybonic/DL_vi 
neyard_segmentation_study.git.   

1. Introduction 

Deep Learning (DL) has been increasingly gaining relevance in pre-
cision agriculture, namely in remote sensing tasks. Remote sensing 
technology such as satellite and UAVs allow non-invasive and time- 
effective inspection techniques, which enable the automation of tasks 
such as disease detection (Kerkech et al., 2020a), crop yield prediction 
(van Klompenburg et al., 2020), and other monitoring-related tasks 
(Karatzinis et al., 2020). Conversely to satellites, which are limited by 
temporal and resolution constraints, UAV-based remote sensing offers a 
cost-effective data collection approach to generate the necessary geo-
spatial products of smaller crops such as vineyards (Deng et al., 2018). 

In vineyards,the use of UAV-based imagery combined with DL ap-
proaches enables the automation of complex tasks, such as: the inference 
of the spatio-temporal variability or the mapping the structure of vine-
yards; tasks of particular relevance for designing site-specific 

management strategies (de Castro et al., 2018). These strategies mini-
mize unnecessary treatments (Campos et al., 2019) and, on the other 
hand, maximize both yield and quality (Pádua et al., 2020). However, to 
integrate such technology as a reliable source of information in a 
decision-making process, vine plants have to be discriminated from the 
remaining vegetation to avoid measurement contamination. Otherwise, 
the farmers may be misled, causing poor decisions that may compromise 
yield. 

The most recurrent approaches for avoiding such contaminations 
resort to computer vision methods to perform row detection. These 
methods identify segments (or clusters) in images that contain only vine 
plants, which are used a posteriori in other tasks such as vigor maps or 
disease detection to extract only information from the pixels that belong 
to vine-rows. 

This work goes beyond row detection. Conversely, to traditional 
approaches, which perform row detection, this work resorts to DL-based 
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segmentation approaches to detect vine plants. Specifically, the main 
goal of this work is to study the applicability of consolidated DL seg-
mentation networks in a specific agricultural task such as vine seg-
mentation using aerial imagery. From a computer vision perspective, 
this problem is relatively simple, given that the task in hand is a binary 
segmentation problem, where the positive class represents vine plants, 
and the negative is everything else. However, the adverse environmental 
conditions and the various growth stages of the plants over time, com-
bined with a limited amount of available data, make the problem 
challenging. 

In this context, this work presents a comprehensive study that was 
conducted with the following objectives: the first objective is to assess 
which bands or band combinations of a state-of-the-art multispectral 
(MS) sensor are more appropriate for this task; the second objective is to 
assess the relationship between resolution and performance, comparing 
for this purpose a high-definition RGB (HD-RGB) camera with a 
comparatively lower resolution MS sensor; and the third objective is to 
assess the appropriateness of DL-based segmentation approaches 
compared with classical methods, outlining their advantages and 
disadvantages. 

To attain these objectives, this study was conducted on three state-of- 
the-art DL-based segmentation networks while using aerial imagery 
from three distinct vineyards captured by an UAV, with HD and MS 
sensors onboard (see Fig. 1). All datasets used in this work are freely 
available, which we believe is a strong advantage for both DL and pre-
cision agriculture communities since there are very few aerial datasets 
available of vineyards comprising MS and HD-RGB orthomosaics, digital 
surface models, and ground-truth masks for segmentation. 

In summary, the main contributions of this work are the following: 

• A comparison study to assess the most appropriate spectral infor-
mation for DL segmentation networks applied to the task of vine 
detection. 

• A new publicly available UAV-based vineyard dataset, with anno-
tated segmentation masks, comprising MS, HD-RGB orthomosaics, 
and digital surface models. 

The remainder of this paper is organized as follows: Section 2 pre-
sents the state-of-the-art in the domain of semantic segmentation using 
UAV/drone data for precision agriculture, namely applied to vineyards. 

Section 3 describes the material and methods used to conduct the 
study, detailing the framework, the methods and respective tools related 
to the dataset acquisition, and the techniques applied to perform seg-
mentation. Section 4 highlights the implementation details of the 
experimental evaluation. Section 5 reports and discusses the results. 
Finally, Section 6 concludes the findings of this study and suggests future 
research directions. 

2. Related work 

Precision agriculture, in general, has greatly benefited from the ad-
vances of machine learning and remote sensing, namely using multi-
spectral (MS) sensors. These sensors can capture relevant information 
regarding biological phenomenons in plants that are not captured by the 
RGB spectrum. 

In vineyards, MS information is widely used in many applications, 
using the data either from UAVs or satellites. In Cogato et al. (2020), the 
spectral bands of Sentinel-2 are used to assess the vineyards’ damage 
and recovery time after a late frost event. Despite the evident advantages 
of satellite-based sensing in agriculture, the specific case of vineyards is 
particularly challenging for many of these systems (including Sentinel) 
because of its low spatial resolution (10–50 m/pixel) when compared 
with the 2 m (approximately) of the inter-row distance in vineyards. 
With such resolution, one pixel may represent a crop area that comprises 
multiple rows and thus making it difficult to discriminate between inter- 
row plants (e.g.., weeds) and vine plants. Consequently, this leads to 
measurements contamination (Khaliq et al., 2019). 

UAVs, on the other hand, are more flexible and adjustable in altitude 
to obtain adequate image resolution. Works have been using UAVs 
equipped with MS or/and RGB cameras to collect field data from crops. 
In vineyards, UAVs are frequently used to collect data for disease 
detection (Kerkech et al., 2020a), water status assessment of vine plants 
as in Romero et al. (2018), among other applications. Recent research 
has shown that the primary information source in these domains is 
provided by RGB, Red-Edge (RE), and near-infrared (NIR) bands. Survey 
data can be used to generate geospatial products such as digital surface 
models (DSM), which are used as simple dept maps as an additional 
source of information (Kerkech et al., 2020a). It is interesting to note, in 
this context, that most of the UAVs are equipped only with one camera, 
either a MS sensor or an RGB camera while, in our work, we equipped 
our UAV with a dual gimbaled sensor system, combining a state-of-art 
HD-RGB camera and a MS sensor. 

MS aerial imagery provides both rich spectral and spatial informa-
tion. However, in the vineyard context, only the pixels that belong to the 
vine plant are of interest. Approaches to assess these pixels have differed 
over the years. A common one - still today - is to convert spectral in-
formation to vegetation indices (e.g., NDVI) and thereof resort to a se-
mantic segmentation technique to identify pixels belonging to the vine 
plants. Early (classical) segmentation approaches were mainly based on 
thresholds (Karatzinis et al., 2020), color indices (Kirk et al., 2009), 
clustering (Comba et al., 2015), histograms (Hall et al., 2003) or clas-
sical supervised (Guerrero et al., 2012) and unsupervised (Comba et al., 
2018) learning methods. Advantages of these classical approaches 
include simplicity, ‘shallow’ training, and low computation cost. On the 
other hand, the disadvantages, particularly in the agriculture context, 
are mainly related to low performance when faced with different 
lighting conditions, shadows, or complex backgrounds, making them 
more suitable for simpler and non-changing environments. A survey on 
early segmentation approaches in agriculture can be found in Hamuda 
et al. (2016). 

More recent works resort to DL techniques, which have created a new 
momentum in many scientific areas, including digital agriculture, where 
many of the algorithms rely on Convolutional Neural Networks (CNNs) 
to learn features from the input representation. In the agricultural 
domain, works related to segmentation rely on deep-networks, for 
example, the encoder-decoder SegNet (Badrinarayanan et al., 2017) and 
U-Net (Ronneberger et al., 2015). In Bah et al. (2019), authors propose 
CRowNet, which relies on S-SegNet (Badrinarayanan et al., 2017) and a 
CNN-based Hough transform CNNs for row detection in RGB images. In 
Kerkech et al. (2020b) and Kerkech et al. (2020a), SegNet is used for 
disease detection using as input RGB, NIR, and DSM, in the former, and 
RGB plus NIR in the latter. In other crops such as sunflowers, the RGB 
and NIR bands are also used as inputs to a SegNet (Song et al., 2020). In 
Fawakherji et al. (2019), a U-Net is used for crop/weed classification. In Fig. 1. UAS and the on-board cameras used for data collection.  
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our work, we make use of U-Net and SegNet, as well as an additional 
model called ModSegNet (Ganaye et al., 2018), which is also an encoder- 
decoder network, to compare their performances when using imagery 
from a HD-RGB camera and a MS sensor on a vineyard segmentation 
task. 

To summarise the related work on semantic segmentation applied to 
precision agriculture, particularly for vineyard-row detection, Table 1 
presents a comprehensive view of the S.O.T.A. highlighting the classical 
vs DL-based methods, the spectral bands and data representation, the 
fusion strategies, followed by the related architectures/models that have 
been used in the application domains. 

3. Materials and methods 

In this section, the methods, framework, processes, and the ‘tools’ 
that have been used in this study are described. The first part is related to 
the field data, which includes the characterization of the study sites, as 
well as the description of the materials and data acquisition process. The 
second part of this section is dedicated to the methods used to obtain the 
results, namely the OrthoSeg pipeline (shown in Fig 3), where a 
comprehensive description of the various stages is presented, including 
the three DL models, and then we present a description of the classical 
segmentation methods that have been used for comparison purposes. 

3.1. Study sites 

The study was carried out in three vineyards located in the Centre of 
mainland Portugal. Two vineyards, designated hereafter by Valdoeiro 
and Quinta de Baixo, are located in the Bairrada wine region, while the 
third vineyard (ESAC) is a “living-lab/farm” within the Agrarian School 
of Coimbra (Fig. 2). All the studied vineyards belong to a region with a 
Mediterranean climate, subjected to a strong influence of the Atlantic 
Ocean, characterized by average annual rainfall of 1077 mm and 
average annual temperature of 15 ◦C (Ferreira et al., 2018), marked by a 
relatively long and dry summer (June-August). All vineyards are 
managed under conventional practices but present different biophysical 
characteristics. 

Valdoeiro is a 2.9 ha vineyard, located at an altitude of 99 m, in flat 
terrain (< 2◦) under Cambisoil soil type, with a northeast-southwest 
exposure. The vineyard was planted in 2005 with a typical Baga vine 
variety and an approximate density of 3200 vines per ha, with plants 
spacing 1.3 m in straight rows, an inter-rows distance of 2.4 m, and a 
row azimuth of approximately 210◦. 

Quinta de Baixo covers an area of 3.2 ha, located at an average 
altitude of 90 m, in a smoothly sloping terrain (2◦-5◦), under Podzol soil 
type. The vineyard was planted in 2002, with Syrah, Pinot and Baga vine 
varieties with a density of 4400 vines per ha. The vines are installed at 
0.9 m apart within the rows, 1.1 m between rows, and row azimuth of 
approximately 162◦. 

The ESAC vineyard extends over an area of 2.3 ha divided into two 
plots: Esac1 and Esac2 (see Fig. 6.a). These plots are located at an alti-
tude of 28 m, in a smoothly sloping terrain (2◦-5◦) under Fluvisol soil 
type. The vineyard was planted in 1999 with different vine varieties 
such as Alfrocheiro, Aragonez, Touriga Nacional, and Marselan. Esac1 
has a south-north exposure with an approximate plant density of 2800 
vines per ha, a plant distance of 1.5 m in straight rows, an inter-rows 
distance of 2.4 m, and row azimuth of approximately 177◦. Esac2 has 
an east–west solar exposure with a plant density of approximately 3400 
vines per ha, a plant distance of 1.4 m, an inter-row distance of 2.1 m, 
and a row azimuth of approximately 266◦. 

3.2. Materials and data acquisition 

To survey the study areas, a compact and “low-cost” UAS from DJI 
(shown in Fig. 1) was equipped with a MS sensor (Micasense Altum), a 
HD-RGB camera (Zenmuse X7), and a global navigation satellite systems 
(GNSS) with RTK correction. The UAS’s flight missions have been 
planned with the DJI Pilot 1.9 software, where the front and side overlap 
was set to 80% and 70%, respectively, using the Altum sensor as a 
reference. 

The Altum sensor captures four spectral bands (R, G, B, RE, NIR) with 
a 2064 × 1544 resolution and a thermal band with a lower resolution of 
57× 44; a sample of each band is illustrated in Fig. 4. The Zenmuse X7 
sensor captures R, G, and B bands with a resolution of 6016 × 4008. A 
more detailed description of the cameras is provided in Table 2. 

The data acquisition process was carried out by surveying all sides (i. 
e., ESAC, Valdoeiro, and Quinta de Baixo) with custom settings, which 
were set to optimize information acquisition at survey time. Namely, the 
altitude at which the vineyard plots were surveyed was adjusted at each 
site. The Coimbra plots were surveyed in October at an altitude of 120 m 
after the harvest was finished. The Valdoeiro plot was surveyed in April. 
At this time, the plants are still in an early growth stage with no, or few, 
visible leaves which makes plant recognition difficult at 120 m. Thus, 
the height was adjusted to 60 m to capture more rich and detailed in-
formation from the plants. The Quinta de Baixo vineyard was surveyed 
at 70 m at the end of July, which is a critical season for vineyards, since 
plants are very advanced in the growth stage and diseases are more 
prevalent. 

After data acquisition, raw images of both cameras were used to 
generate the geospatial products (i.e., DSM and orthomosaic) of the 

Table 1 
Related work on mulstispectral data for semantic segmentation in digital/pre-
cision agriculture.  

Ref Bands/ 
Data 
Type 

Fusion Architecture/ 
Approach 

Application 

(Karatzinis 
et al., 
2020) 

RGB Late (HSV) Otsu’s 
thresholding 

Hough 
Transformation 

Vineyard row 
detection 

(Romero 
et al., 
2018) 

RGB +
NIR +

RE 

Early 
(Vegetation 

Indices) 

Two-layer 
feedforward 

network 

Vineyard water 
status 
estimation 

(Hall et al., 
2003) 

NIR +
RGB 

Early (NDVI) Histogram Vineyard 
canopy 
characterising 
and mapping 

(Ahmed 
et al., 
2019) 

RGB +
NIR +

RE 

Early (NDVI) Laplacian of 
Gaussian 

unsupervised 
clustering 

random walker 

Detection and 
segmentation 
of lentil plots 

(Comba 
et al., 
2015) 

RGB Early (Gray- 
scale) 

Hough Space 
Clustering Total 
Least Squares 

Vineyard 
detection 

(Comba 
et al., 
2018) 

Point 
Clouds 

– Unsupervised Vineyard 
detection 

(Kerkech 
et al., 

2020a) 

RGB +
NIR 

Late (case- 
based) 

Encoder- 
Decoder 
(SegNet) 

Mildew disease 
detection in 
vine + row 
detection 

(Fawakherji 
et al., 
2019) 

RGB Early 
(Concatenation) 

Encoder- 
Decoder (Unet) 

Weed/crop 
segmentation 
and 
classification 

(Bah et al., 
2019) 

RGB Early 
(Concatenation) 

S-SegNet 
HoughCNet 

Crop row 
detection 

(Song et al., 
2020) 

RGB +
NIR 

Early 
(Concatenation) 

Encoder- 
Decoder 
(SegNet) 

Identification 
of sunflower 
lodging 

(Kerkech 
et al., 

2020b) 

(RGB +
NIR) +
DSM 

Late (case- 
based) 

Encoder- 
Decoder 
(SegNet) 

Vine disease 
detection +
row detection  
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respective vineyards. The HD images were used to generate both the HD 
orthomosaics and the DSMs of the vineyards, which were computed 
based on a workflow presented in Gonçalves et al. (2021). The MS 
orthomosaics, on the other hand, were generated using the MS images 
acquired by the Altum sensor and computed based on the workflow 
proposed by Agisoft Metashape Professional Edition software (Agisoft 
LLC, St. Petersburg, Russia) version 1.7.2. However, before using such 
workflow, the MS images were pre-processed in order to apply the 
necessary radiometric corrections: vignetting, dark pixel offset, and 
converting raw images to radiance and then to reflectance space. 

The conversion process resorted to pre-and post-flight images from 
an Altum calibration panel, which was located in vineyards for adequate 
reflectance calibration. Furthermore, when the illumination conditions 
changed over time (due to sun/cloud conditions), an additional 
correction step has been performed using the Downwelling Light Sensor 
(DLS). An overview of the survey conditions and the geospatial products 
are presented in Table 3, while the generated geospatial products are 
presented in Fig. 2. 

3.3. Orthomosaic deep learning-based segmentation 

Orthomosaics are data structures that may have a large and arbitrary 
size. Such data structures are not appropriate to feed directly to DL- 
based approaches, which rely on CNN and are optimized for grid- 
based and fixed-sized inputs. Moreover, the computational demands of 
CNNs increase proportionally with the input size, which makes feeding 
orthomosaics directly to DL networks computationally too expensive. To 
overcome this limitation, this work resorts to an approach (named 
OrthoSeg illustrated in Fig. 3) that has the following steps: receives 
orthos as inputs; splits these orthos into sub-images and then pre- 
processes the sub-images; the pre-processed sub-images are fed to the 
segmentation network, which outputs prediction sub-masks. Finally, the 
sub-masks are rebuilt into an orthomosaic mask of the same size as the 
input. 

3.3.1. Orthomosaic splitting & rebuilding 
The image splitting approach has been devised to divide the ortho-

mosaics of all bands into smaller sub-images with a fixed size of 240×

240 pixels, which represents a much less computational burden for DL 
segmentation networks. 

The splitting process, illustrated in Fig. 5, begins at the top-left 
corner of the orthomosaic and proceeds to the right, creating sub- 
images every 240 pixels. After the row is completed, a new row is 
defined 240 pixels below. The process is repeated until the whole 
orthomosaic has been processed. 

3.3.2. Pre-processing 
In order to improve convergence at training time, the generated sub- 

images are standardized using (1), before being fed to the neural 
network, 

X
′

b =
Xb − μb

σb
(1)  

where Xb represents the sub-image of the band b, μb is the mean, σb 

denotes the standard deviation and X′

b the corresponding standardized 

Fig. 2. Overview of the geographic locations of the three vineyard sites and their corresponding orthomosaics. The vineyard locations are shown in a). The 
orthomosaics of Esac are shown in the following sub-figures: b) corresponding to the orthomosaic based on HD images, captured by the X7 sensor; c) representing the 
digital surface model (DSM); d) corresponding to the R-G-B composition of the MS images captured by the Micasense Altum sensor; d) corresponding to the false- 
color RE-R-G composition also captured by the Micasense Altum sensor. The orthomosaics of Valdoeiro are shown in the following sub-figures: f) representing the 
HD-based orthomosaic; g) the DSM; h) the R-G-B composition; i) the false-color RE-R-G composition. The orthomosaics of Quinta de Baixo are shown in the following 
sub-figures: j) corresponding to the HD-based orthomosaic; l) the DSM; m) the R-G-B composition; n) the false-color RE-R-G composition. 

Table 2 
Specifications of the two sensors integrated in the dual imaging payload. Field of 
view (FoV), Ground Sample Distance (GSD).  

Sensor Band: Center 
wavelength 

(width) [nm] 

Resolution 
[px] 

Focal 
Length 
[mm] 

FoV 
[◦] 

GSD@100 
m 

AGL[cm/ 
px] 

Micasense 
Altum 

B: 475 (32); G: 
560 (27); R: 

668 (16); RE: 
717 (12); NIR: 

840 (57) 

2064x1544 8 48 ×
37 

4 

Thermal: 
11000 (60) 

57 × 44 1.77 57x44 67 

DJI 
Zenmuse 
X7 (24) 

R,G,B 6016 ×
4008 (3:2) 

24 52.2 
×

36.2 

1.6  

Table 3 
UAS surveys and the corresponding GSD of the generated geospatial products.  

Location Date [mm/dd/yyyy] Time [hh:mm] Duration [min] Weather Flying height [m] AGL GSD [cm/pix] 

RGB Multispectral DSM 

Coimbra 10/01/2020 1:40:00 pm 17 Sunny 120 1.7 4.8 3.4 
Valdoeiro 04/15/2021 11:45:00 am 10 Sun/cloud 60 1 3 2 

Quinta de Baixo 07/27/2021 12:10:00 pm 15 Sunny 60 1 2.5 2  
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sub-image. 

3.3.3. Deep segmentation networks 
In this work, three deep neural networks are used for the task of 

supervised semantic segmentation: U-Net (Ronneberger et al., 2015), 
SegNet (Badrinarayanan et al., 2017) and ModSegnet (Ganaye et al., 
2018). All three networks are state-of-the-art DL-based segmentation 
approaches, particularly SegNet and U-Net that have been widely used 
in various fields, including agriculture. The three networks have a 
similar encoder-decoder-like architecture followed by a pixel-wise 
classification layer. A compact formulation of such networks can be 
expressed as follows: 

Fm = Dec(Enc(I, θEnc), θDec) (2)  

M = C(Fm) (3)  

where Enc(⋅) is the encoder, which receives as input parameters the 
encoder’s weights θEnc and an image (I ∈ Rb×h×w), where b, h and w 
represent respectively, the number of spectral bands, image height, and 
image width. The decoder Dec(⋅) has as input parameters the encoder’s 
outputs and the decoder’s weights θDec. The Decoder outputs a feature 
map (Fm ∈ Rl×h×w), with l representing the number of classes, that is fed 
to a classifier C(⋅). The classifier outputs a mask (M ∈ Rc×h×w) where c 
represents the number of existing classes. 

In the encoder, the reduction is performed by consecutive operators, 
where each includes a 3 × 3 unpadded convolution layer, a batch 
normalization (BatchNorm) layer (Ioffe and Szegedy, 2015), a rectified 
linear unit (ReLu) layer and a dropout layer (Srivastava et al., 2014); 
each of these operators is followed by a 2 × 2 max-pooling layer to 
achieve translation invariance over small spatial shifts. The decoder uses 
the same consecutive sets of operations, in this case followed by an 
upsampling operation which transforms spatially Fm to M. 

The SegNet architecture uses the same indices of the max pooling 
operations learned in the respective encoder steps, avoiding the need to 
learn new indices for the upsampling phase. On the other hand, U-net 
learns new indices for the transposed convolution operations used for 
the upsampling but has the particularity of concatenating each new 
feature space, obtained after each upsampling step, with the cropped 
feature space from the end of the corresponding encoder stage. Mod-
Segnet incorporates both the memorized polling indices and the 
concatenation of feature spaces from the aforementioned architectures. 
Finally, in the last step of each architecture, we use a 1 × 1 convolution 
to map the final feature space to a prediction mask with the same size as 
the input image. 

3.4. Unsupervised segmentation methods 

Two unsupervised segmentation methods, K-means (Lloyd, 1982) 
and OTSU (Otsu, 1979), are used for comparison purposes. K-means is a 
classical clustering algorithm, where the in-cluster sum of squared 
Euclidean distances of the points (in images, pixel values), w.r.t the 
cluster centroids, is iteratively minimized. In this work, the K-means is 
used to define 2 clusters of pixels: negative and positive class. On the 
other hand, OTSU is a classical thresholding method, that finds a 
threshold value that minimizes the variance within each of the 2 classes. 

4. Implementation details of the experimental evaluation 

This section describes the implementation details of the conducted 
experiments. Firstly, the collected orthomosaics were post-processed to 
generate representative data of each vineyard. The new dataset is then 
used in a cross-validation scheme to study the various segmentation 

Fig. 3. Orthomosaic segmentation pipeline (OthoSeg) with the following modules: image splitting, which splits the orthomosaics into sub-images; pre-processing, 
which normalizes each band of the sub-images; DL segmentation, which predicts sub-masks using a DL-based segmentation approach; and mask rebuilding, which 
uses the sub-masks to build a mask with the same size of the input orthomosaic. 

Fig. 4. Image examples of the Vineyards showing the spectral bands that 
integrate the mustispectral sensor, and a ground-truth mask. 

Fig. 5. Orthomosaic splitting approach. The splitting begins at the upper left 
corner and proceeds to the right until the end of the row. The process is 
repeated until the bottom. 
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networks, as well as the impact of the bands in the segmentation 
performance. 

4.1. Datasets 

The collected orthomosaics from Esac, Valdoeiro, and Quinta de 
Baixo were post-processed and a sub-region of each orthomosaic was 
selected to generate a representative set of each vineyard. The sub- 
region of each orthomosaic is illustrated in Fig. 6, which represents, in 
the Valdoeiro and Quinta de Baixo case, the upper region of the ortho-
mosaics. The ESAC orthomosaic was split into two regions, corre-
sponding to Esac1 and Esac2 (they include distinct vine types). 

For practical reasons, given the limited GPU memory available for 
training, the orthomosaics of each set were divided into 240× 240 sub- 
images. We note that only the images with at least 1 pixel belonging to 
the positive class (i.e., corresponding to a vine plant) were used on the 
training stage. 

The resulting dataset comprises thus four sets, denominated by 
Esac1, Esac2, Valdoeiro and QtaBaixo. Each set comprises data from the 
HD-RGB camera and MS sensor, as well as the respective masks. More 
information about the image distribution among the sets is presented in 
Table 4, where P represents the positive class (referring to vine-plants 
pixels) and N the negative class (referring to non-vineyard pixels). 

4.2. Ground-truth data 

In segmentation tasks, the ground truth data correspond to masks. In 
this work, ground truth masks have been generated in the geospatial 
space (i.e., orthomosaic and DSM spaces), populating the pixels that 
belong to vine plants with the positive class (label = 1) and the 
remaining pixels with a negative class (label = 0) i.e., this is a binary 
segmentation problem. The masks were split with the same process as 
the orthomosaics thus, a sub-mask for each sub-image has been created. 
Fig. 7 illustrates three sub-image samples of the three areas with their 
respective sub-masks, and Table 4 contains information regarding 
image/mask and class distributions of each area of interest. 

4.3. Evaluation and experiments 

The evaluation procedure adopted in this work was k-fold cross- 
validation, using the F1-score as performance metric: 

F1 =
2TP

2 TP + FP + FN
(4)  

where the True Positives (TP) are pixels that were correctly classified as 
vines; False Positives (FP) are pixels that were wrongly classified as a 
vine plant; True Negative (TN) are pixels that were correctly classified as 
background; False Negatives (FN) are pixels that were wrongly classified 
as background. 

In particular, the results from this work were generated based on four 
non-overlapping subsets defined by: Esac1, Esac2, Valodeiro, and Qta-
Baixo. Hence, four combinations were generated denoted by T1, T2, T3, 

and T4, the corresponding data distributions are represented in Table 5. 
The first three sets (i.e., T1, T2, and T3) are used to conduct the band 

combination and spatial resolution assessments, while T1, T2, T3 and T4 
are used for the comparison of the DL segmentation approaches with 
classical unsupervised segmentation techniques, as well as for the 
assessment of the generalization capabilities of these methods. 

4.4. Implementation details and training 

All experiments were conducted using Python 3.7 and PyTorch, 
which were set up on a hardware with an NVIDIA GFORCE GTx1070Ti 
GPU and an AMD Ryzen 5 CPU with 32 GB of RAM. 

All networks were initialized, trained, and validated using the same 
conditions. The networks’ weights were initialized using a normal dis-
tribution with a mean of 1 and a standard deviation of 0.2. The training 
was performed using the AdamW optimizer (Loshchilov and Hutter, 
2019) with a learning rate and a weight decay of 0.000171 and 0.00061, 
respectively. The loss function was Pytorch’s BCEWithLogitsLoss with the 
positive class weight set to 5, to compensate the unbalanced class dis-
tribution (as can be verified in Table 4). Data augmentation was also 
implemented in the form of random rotations with angles between 0 and 
180 degrees and random changes in the brightness, contrast, saturation, 
and hue values. Finally, the networks were trained during 20 epochs, 
using early stopping to extract the best scores. 

5. Results and discussion 

This section presents the results and the discussion w.r.t. the objec-
tives of this work. The comparisons are given in terms of the three DL 
networks, the spatial resolutions, the band combinations, and the 

Fig. 6. Areas of interest of (a) Coimbra’s vineyard plots (ESAC1 and ESAC2) 
and (b) Valodeiro’s plot (Valdoeiro). 

Table 4 
Data and class distributions of each sensor modality where P and N represent 
respectively, the positive and the negative class fraction available in each set.   

I/M HD MS  

MS HD P N P N 

ESAC1 85 624 0.25 0.75 0.23 0.77 
ESAC2 89 626 0.28 0.72 0.25 0.75 
Valdo. 150 1,196 0.07 0.93 0.08 0.92 
QtaBaixo 120 766 0.16 0.84 0.19 0.81  

Fig. 7. Sub-images and corresponding ground truth masks (240 x 240) used for 
training and testing. 

Table 5 
Image/Mask (I/M) distribution among the training and test set for cross- 
validation. MS denotes multispectral and HD = high-definition.   

Training Set Test Set  

Plots I/M Plot I/M   
MS HD  MS HD 

T1 Esac1 & Esac2 174 1250 Valdoeiro 150 1196 
T2 Esac1 & Valdoeiro 235 1820 Esac2 89 626 
T3 Esac2 & Valdoeiro 239 1822 Esac1 85 624 
T4 Esac1 & Esac2 & Vald. 324 2446 QtaBaixo 120 766  
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classical vs DL-based approaches. The performance of the segmentation 
approaches are presented and discussed based on quantitative measures 
as shown in Tables 6 and 7. Additionally, qualitative results are dis-
cussed in Section 5.4. 

5.1. Network comparison and generalization 

The results shown in Table 6, which represent the segmentation 
performance of the DL networks on the cross-validation set T1, T2, and 
T3 of the various band combinations, suggest that the networks have 
equivalent overall performance; with SegNet and U-Net having slightly 
higher and more consistent results over the three subsets. 

To achieve more consistent performance, the networks were trained 
using randomly applied spatial and color augmentation techniques. In 
particular, empirical evidence showed that augmentation of the 
brightness, contrast, saturation, and hue values is essential to achieve 
higher generalization capability. 

Other transformations such as random rotation and horizontal flip-
ping were also applied but had less effect on the performance. Since 
vineyards are relatively well structured and have a set of “natural colors” 
characterized by the vine plants, the augmentation techniques were 
adjusted to match the attributes of vineyards, such as colors and 
orientations. 

The T4 results, given in Table 7, were also obtained using augmen-
tations during the training phase, corroborating the usefulness of these 
techniques for the generalization of the networks. Nevertheless, the 
results in Table 7 also indicate that the networks performed poorly on 
the NIR band of the T4 set (QtaBaixo test set), despite the augmentation 
techniques. 

We speculate that a possible cause of the lower performance of the 
DL networks is grounded in the fact that the datasets were captured 
under different environmental conditions, namely different environ-
ment temperatures. Esac was captured in early autumn with a mean 
temperature between 19–20◦C, Valdoeiro was captured in early spring 
with a mean temperature between 17◦C, and QtaBaixo was captured in 
mid-summer with a mean temperature between 28–30◦C (see Fig. 10 
temperature distribution). In Fig. 9, NIR images of the three datasets (i. 
e., Esac, Valdoeiro, and QtaBaixo) are presented, showing clearly that in 
the Esac and Valdoeiro the vine plant pixels have a higher brightness 
compared to the remaining pixels. In the QtaBaixo, the vine plant pixels 
are less highlighted due to a higher overall temperature. This observa-
tion suggests that, despite the NIR band being a valuable information 
source, it is also highly sensitive to environmental variations such as 
temperature. Therefore, we can note that if not properly handled during 
the training i.e., by including more representative data in the training 
set, using the NIR band may lead to poor results as demonstrated in this 
study. 

5.2. Image resolution comparison 

Table 6 shows, in the first and last row respectively, the F1-scores for 
different camera resolutions i.e., the RGB bands of the MS and HD 
cameras. We can see that the achieved performance is, in general, higher 
for the HD camera, which can be partially explained by a larger amount 
of training data. As given in Table 5, the HD sets comprise in average 7 
times more examples than the MS sets. 

DL-based approaches are highly data demanding thus, having more 
data for training with adequate classes distribution, tends to lead to 
higher performance. However, it is interesting to note that, in some 
cases like in the T1 cross-validation scenario, different spectral infor-
mation can be more relevant than extra spatial information. 

5.3. Spectral band comparison 

One notable observation from the results is that the NIR spectral 
band tends to achieve the best results (when compared with modalities Ta
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of the same resolution), which is in line with the literature. Furthermore, 
using this band alone is sufficient to obtain proficient performance. In 
some cases, adding other bands to the models do not improve the per-
formance. The thermal band is one of such cases, having very low per-
formance when used alone. A possible reason behind the thermal band 
having such a poor outcome is due to its low resolution when compared 
to the other bands as provided in Table 2. 

Despite the high performance of the NIR band, having access to such 
information requires MS sensors, which are less affordable than their 
RGB counterparts. Due to the low cost and ease of acquiring, color 
cameras are very popular among the works in agriculture (as can be seen 
in Table 1). In terms of segmentation performance, when comparing the 
results of the RGB band with the best-performing band combination, 
RGB has on average 4.1% lower performance, which can be acceptable 
when a MS sensor is not an option. 

5.4. Comparison with conventional unsupervised methods 

The comparison study of the DL networks vs the classical unsuper-
vised segmentation methods is based on the cross-validation sets T1, T2, 
T3, and T4, using the NIR and RGB bands (of both HD and MS). The NIR 
band alone was selected due to leading to the highest performance, 
while the VIS (RGB) bands, from both HD and MS cameras, were 
selected due to being widely used in the literature. The classical methods 
were evaluated under the same conditions as the DL counterparts i.e., by 

segmenting each sub-image separately instead of the whole orthomo-
saic. The results of this comparative study are presented in Table 7, 
where the DL network scores on T1, T2, and T3 sets are replicated from 
Table 6 to facilitate the comparison. The overall performance of the 
methods is given by averaging over the 4 subsets. 

In general, DL-based methods outperform the classical approaches 
but, in the NIR band of the T4 set, the DL approaches present a 
considerably lower performance when compared to the HD-RGB and 
MS-RGB sets. The potential causes that have led to such performance 
have been addressed in Section 5.1, being the high environmental 
temperature during T4’s data acquisition probably the main cause. The 
remaining results show that K-means is completely inadequate for this 

Table 7 
Segmentation performance (F1 scores) of the unsupervised (non-deep) and the 
deep networks using the NIR, HD-RGB and MS-RGB bands. The results from T1, 
T2 and T3 of the DL networks were replicated from Table 6 to facilitate the 
comparison.    

T1 T2 T3 T4 Mean 

NIR OSTSU 0.52 0.76 0.67 0.73 0.67 
KMeans 0.34 0.49 0.44 0.58 0.46 
SegNet 0.79 0.83 0.81 0.63 0.77 
U-Net 0.81 0.84 0.78 0.66 0.77 
ModSeg. 0.74 0.81 0.81 0.59 0.74        

RGB HD OSTSU 0.55 0.63 0.55 0.82 0.64 
KMeans 0.63 0.51 0.54 0.58 0.57 
SegNet 0.73 0.85 0.85 0.76 0.80 
U-Net 0.75 0.82 0.91 0.75 0.81 
ModSeg. 0.75 0.83 0.89 0.76 0.81        

RGB MS OSTSU 0.47 0.63 0.55 0.67 0.58 
KMeans 0.58 0.49 0.49 0.62 0.55 
SegNet 0.73 0.78 0.79 0.71 0.75 
U-Net 0.73 0.76 0.82 0.71 0.76 
ModSeg. 0.72 0.77 0.77 0.73 0.75  

Fig. 8. Qualitative prediction masks comparison of DL-based and classical approaches. The two samples represent: (upper) a corner-case where classical approaches 
have low performance; and (lower) an ideal case where classical approaches are competitive with DL-based approaches. 

Fig. 9. NIR Sub-images of the Quinta de Baixo, Esac and Valdoeiro datasets.  

Fig. 10. Thermal orthomosaics of Quinta de baixo, Esac, and Valdoeiro sites, 
where the average temperature at acquisition time was between 28–30◦C, 
around 17◦C and between 19–20◦C, respectively. 
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task, presenting scores near 0.5. OTSU, on the other hand, has a 
competitive performance in T4, despite struggling in some corner cases 
where the ‘positive’ class is scarce, contrarily to DL-based approaches, as 
illustrated in Fig. 8. 

Lastly, DL approaches have similar performances on the MS-based 
sets (i.e. MS-RGB and NIR) and achieved better performance, in terms 
of the average F1-scores, on the HD-RGB bands, which reinforces the 
idea that DL-based approaches perform better with more training data. 

6. Conclusions 

In this work, a new UAV-based MS and HD-RGB dataset was used to 
train three deep segmentation networks for the task of pixel-wise vine-
yard segmentation. The aim was to study the responses of the different 
spectral bands, image resolutions, and segmentation networks when 
used in this agricultural application. The data was captured from three 
distinct vineyards at different seasonal stages, all located in the central 
region of Portugal: Coimbra, Valdoeiro, and Quinta de Baixo. 

From the results, three major conclusions can be drown. Firstly, 
SegNet, U-Net, and Mod-SegNet have equivalent overall performance in 
vine segmentation. Secondly, the NIR band is essential and generally 
sufficient to obtain satisfactory performance in most of the datasets. 
Thirdly, higher image resolution in the HD-RGB spectrum increases the 
general performance of the DL networks, when compared to the 
different MS modalities. Lastly, the DL-based networks have in general 
higher performance than the unsupervised segmentation methods, 
despite the latter having competitive performances in particular 
conditions. 

The present article makes a good case for the use of this type of dual- 
camera approach to UAV-based data acquisition, highlighting the clear 
advantages and disadvantages of each option and discussing, in a 
thorough and rigorous way, the best semantic segmentation approaches 
for each scenario. Finally, the DL-based networks were compared with 
traditional approaches, underlining the importance of this type of study 
for real-life precision agriculture applications. For future work, a com-
bination of data acquired from both cameras could be introduced in our 
analysis of Neural Network performance, as well as some depth infor-
mation retrieved from the DSMs. 
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